]

(

1

i

1 — 1 [—1 I [

1

DO Microprogrammer’s Manual

Document: Unassigned
Date: October 1978
Version: 20

This manual is intended to provide all necessary documentation for microprogramming a DO.

Familiarity with the DO Functional Specification is assumed.

addressed to the editor via Laurel.

Release Stage: draft/RELEASED /issued

Approval:

W, B.‘Ke{incd),/f'iﬂW
(\B

All comments should be

XEROX

BUSINESS SYSTEMS
System Development
Palo Alto, California

TABLE OF CONTENTS

D0 MICROASSEMBLER MANUAL

S S B A L O i i

pd ek b ek ek ek pemd ek e
ol BN R L

MICRO:

ol o A

Introduction

Assembly Procedures

Error Messages

Debugging Microprograms
Comments and Conditional Assembly
Simplified Parsing Rules
Statements Controlling Assembly
Integers

REPEAT Statements
Parameters

Constants

SETTASK Statements
Assembling Data for RM

Assembling Data Items in the Instruction Memory

RM & STK Clauses
ALU Clauses

Memory Referencing Instruction Statements

Branching
18.1. Branch Clauses
18.2. Dispatch Clauses

18.3. Placement Declarations

MACHINE-INDEPENDENT MICROASSEMBLER

Introduction
Assembly Procedures
Error Messages
Assembly Listings

O O 0 ~J O\ W B B W -

I N T o T =
DT D Ea W N NN =0 O

17
17
20
21

5. Cross Reference Listings
Comments and Conditional Assembly
7. Statements
7.1. Builtins ,
7.2. Defining Symbols
73. Tokens
7.4. Neutrals and Tails
7.5. Clause Evaluation
7.6. Treatment of Arguments
7.7. Undefined Symbols
7.7.1. Destination Addresses
7.7.2. Octal Numbers
7.7.3. Literals
8. Integers
9. Macros
10. Neutrals
11. Fields, Assignments, and Preassignments
12. Conditionals
13. Memories, Addresses, and Stores
13.1. Target Memory
13.2. Default Statement
13.3. Post Macros
14. Repeat Statement
15. SELECT
16. Bit Tables
Appendix 1. Micro Error Messages
Appendix 2. Limitations of the Language
Appendix 3. Binary Output Format

MICROD MANUAL

22
23

25

27

30

30
31

K72
32 -

32
32

I g

35
37
37
37
37
38
38
39
41
44

46

. : | t

t ! i B i 1 :

t

D0 MICROPROGRAMMER’S GUIDE

© 2 3o

Introduction

The ALU and Basic Architecture

2.1. Inputs and Outputs
2.2. The Stack

The Microinstruction and Branching Conditions

3.1. The Microinstruction
3.2. Conditional Branches
3.3. Subroutine Calls

34. Dispatch

3.5. Changing Pages

3.6. Notify

Special Functions

Memory and 170

5.1. General Comments
52. Comments on Style
53 Quadword Alignment
5.4. Bypassing

5.5. Memory Interlock
Getting Started

Caveats

Suggested Programming Style
Sample Programs

Common Error Mess:iges

MIDAS MANUAL

-

Midas

Starting Midas

Midas Display

Midas Command Menu

49
49
49
50

31
51
33

53
83

54

36
56
56
57
57
59
60
60
62
64

65
65
65
67

Keyboard

Command Files

Syntax of Command-file Actions

Loading Programs

Dump and Compare

Virtual and Absolute Control Store Interpretation
Testing Directly From Midas

Scope Loop Actions

D0 MIDAS MANUAL

oo E W~

[w—y
e

Registers and Memories Known to Midas
Task-Specific Registers

Complications in the Display of Register Values
How Registers Are Read/Written

Special Keyboard Input Formats

STEP and GO

BREAK and UNBREAK

BOOT

Acquiring Midas

Midas Maintenance

D0 SIMULATOR MANUAL

N A e =

Introduction
Documentation
Getting Started
Using DDT

Load and Dump
Examine and Change
Simulator Execution
Command Strings
DDT Commands

69
70
72
73
74
74

75

71

a9

80
80

81
81
81
82
82
82

83
83
83
84
84

85
87
87

10. The Simulator Memories
10.1. The C Memory in Detail

88
88

—— —— — — — —— _11||l|4 p———y ———my ey r—— —— F— P r 2y r y M. - — ~—
. H { i i i i

1

!

|

DO
MICROASSEMBLER
MANUAL

20 October 1978
by

Edward Fiala
edited by
Carol Hankins
Xerox Business Systems
Systems Development Department

3408 Hillview Road
Palo Alto, California 94304

1{\l|:) — 1‘{4_ — — — ~— ———
i .

s S S T et S

DO Microassembler Manual 4 20 October 1978

1. Introduction

The DO microprogramming language, called D0OLang here, is implemented as a set of definitions on
top of the machine-independent assembler Micro. The assembly language is based upon the
machine description in the 30 July 77 release of "D0 Processor Functional Specification”.

If DOLang were perfect, you would never need to know any details of Micro itself--the language
specification described in this document would be complete. 1 have tried to make DOLang
complete, so if you are forced to modify or augment the DOLang definition file, please bring the
circumstances to my attention.

In the event you are forced to fall back on basic Micro constructs, the documentation on Micro is
on-line. It is Micro.Press on Maxcl <AltoDocs>. This is supplemented by
< AltoDaocs > Micro.Tty. .

The documentation here is also supposed to be complete, so you should not have to study the
DOLang definition file to figure out how anything works. If this proves untrue, please bring it to
my attention also. -

All numbers in this document (and in DOLang source files) are in octal.

I personally write microprograms with the upper-case shift-lock key depressed, and the definitions
in the microlanguage consist entirely of upper-case characters. However, a Micro switch converts all
source file characters to upper-case, so you may follow your own capitalization conventions and use
this switch.

Micro flushes Bravo trailers, so you can use Bravo formatting if you want to. Hocher, the cross
reference program, Mcross, which is expected to produce primary microprogram documentation,
does not handle Bravo trailers, so you are advised not to do any special formatting.

2. Assembly Procedures

To assemble microprograms on your Alto, you must obtain from Maxc <Alto > Micro.run,
<{D1Source > DOlang.mc, and < Alto > MicroD.run. Micro, MicroD, and DOLang may also be
obtained from Iris <D0> and Isis <DO0>.

MICRO/L/E dOlang source1l source 2 ... sourceN

This causes the source files "dOlang.mc”, "sourcel.mc”, ..., "sourceN.mc" to be assembled. The
"/L" causes a listing file named "sourceN.LS" to be produced. If "/L" is omilted, no listing file is
produced. The assembler also outputs "sourceN.DIB" (intermediate binary and addresses),
"sourceN.ER" (error messages--error messages go to the terminal irrespective of whether they are
also going to the .ER file), and "sourceN.ST" (the Micro symbol table after assembling source N).

D0 Microassembler Manual . 20 October 1978

In other words, micro assembles a sequence of source files with default extension ".MC" and
outputs four files whose extensions are ".DIB", ".ER", ".LS", and ".ST". The default name for
these is the name of the last source file to be assembled. Direct output to particular files as follows:

MICRO SYS/L SYS/B dOlang source 1 .. sourceN

This would cause listing output to be put on "SYS.LS" and symbol table and binary output on
"SYS.ST" and "SYS.DIB".

A summary of the local and global flags for Micro is as follows:

Global: /L Produces an expanded listing of the input
/N Suppresses binary and symbol table output
/U Convert text in all source files to upper-case

/0 Omit ST file

Local: /R Recover from symbol table file
/L Put expanded listing on named file
/B Put binary output and symbol table output on named file with extensions .DIB and ST,
respectively. Default error listing to named file.
/E Put error listing on named file
/S Put symbol table on named file
/U Convert text in named file to upper-case

. Assemblies are slow--it should take about 3 minutes to assemble a 2048-instruction microprogram.

The symbol table (.ST) file produced by Micro can be used to establish a basis point for further
assemblies, thereby reducing assembly time. For example, you can build a DOLANG.ST file as
follows:

Micro dOlang
Then do all further assemblies as follows:

Micro/0 dOlang/R sys/B sourcel ... sourceN
MicroD dOLang sys

Preassembling DOLLANG in this way would save about 5 seconds of assembly -time. This time
savings is so small that 1 recommend you do not do it

INSERT[file] statements, as described in Section 2.7, can be put in source files so you don’t have to
type as many source files on the command line.

Afler obtaining an error-free assembly from Micro, you must postprocess the .DIB file with MicroD
to transform it appropriately for loading by Midas. This is accomplished by the following command
linc syntax to the Alto Excculive:

MICROD S8YS

{

o [{ ! [i

{ P b "

B

i - 1“ - j i - i

DO Microassembler Manual - 20 October 1978

'I{/Ih_e source files for MicroD (only SYS in the above example) are the output files produced by
icro. ’ .

MicroD displays a progress message while it is churning away. I believe that MicroD will require
about 3 minutes to process a 2048-instruction file.

The output of MicroD is an ".MB" file, consisting of blocks of data that can be loaded into various
Do f1:nlemor1es and of addresses associated with particular locations in memories. The memories are
as follows:

M 40-bit x 4000-word or 10000-word instruction memory
(also contains 20 bits/word of placement and other information)
RM 20-bit x 400-word register bank and stack memory

There are at present no facilities provided for microcode overlays. Providing such a facility would
require a major addition to MicroD and no such facility will be provided for a long time (maybe
never).

3. Error Messages

During assembly, error messages are output to both the display and the error file.

The "TITLE" statement in each source file causes an error message of the form:
1...title...ILC = 341

This message is not the result of an error. It simply indicates that the assembler has started working
on that source file. "ILC=341" indicates that the first IM location asscmbled in this source file is
the 341st in the microprogram. This will be helpful in correlating sources statements with error
messages from the postprocessor, MicroD.

Micro error messages are in one of two forms, like the following:

218...error message
TAG + 39...error message

The first example indicates an error on the 218th line of the sourcc file. This form is used for
errors that precede the first label in the file. The sccond form is used afterwards, indicaling an
error on the 39th linc afler the label "TAG". ‘

The most common error messages during assembly are due to multiply sct fields in instructions and
to undefined symbols. 1 do not believe that you will have any trouble figuring out that the§e
messages mean, so no comments are offered here. The Micro error messages arc discussed in
Section 3.

DO Microassembler Manual 20 October 1978

MicroD error messages are discussed in Appendix A.

4. Debugging Microprograms

There is a simulator for the D0. See the section on Simulator.

Microprograms can also be debugged on the hardware using facilities provided by Midas. See the
section on Midas. g

Midas facilities consist of a number of hardware tests, a loader for DO microprograms, set/clear

breakpoints, start, step, or halt the machine, and examine and modify storage. Addresses defined
during assembly may be examined on the display.

Midas works with both the imaginary IM addresses defined in your source program and with the

absolute IM addresses assigned to instructions by MicroD. The way this works is discussed in the
: Midas section,

5. Comments and Conditional Assembly

Micro ignores all non-printing characters and Bravo trailers. This means that you can freely use

spaces, tabs, and carriage returns to format your file for readability without in any way affecting the
meaning of the statements.

Comments are handled as follows:

il

begins a comment terminated by carriage return.

"%" begins a comment terminated by the next "%". This is used for multi-line comments.

(It

;" lerminates a statement. Note that if you omit the ";" terminating a statement, and, for example,
put a "*" (o begin a comment, the same statcment will be continued on the next line.

Micro has one mecthod of producing multi-statement conditional assemblies. This is the
COMMENTCHAR feature, used as follows.. Suppose you want to have conditional assemblies
based on whether the microcode is being assembled for a 2K or 4K DO configuration. To do this

define "~" as the comment character for 2K (i.c, COMMENTCHAR[~];) and "!" as the comment
character for 4K. Then in the source files:

*t 2K configuration only

..Statements for 2K configuration...
* end of 2K condilional
*~ 4K configuration only

..statements for 4K configuration...
.

i

DO Microassembler Manual 20 October 1978

In other words, "*" followed by the comment character is equlvalent to "%" and is terminated by
its next occurrence.

6. Simplified Parsing Rules

After comments, false conditionals, and non-printing characters are stripped out, the rest of the text
forms STATEMENTS.

", e

Statements are terminated by You can have as many statements as you want on a text line,
and you can spread statements over as many text lines as you want. Statements may be indefinitely
long.

However, the size of Micro's statement buffer limits statements to 500-decimal characters at any one
time. If this is exceeded at any time during the assembly of a statement, an error message is
output. If you ever experience a statement buffer overflow error, please tell me. This should be
impossible except on multi-statement REPEAT's.

The special characters in statements are:

"[* and "]" for enclosing built-in, macro, field, memory, and address argument lists;

(" and ")" for causing nested evaluation;

"e as the final character of the token to its left;

to put the address to its left into the symbol table with value equal to the current
location and current memory;

separates clauses or arguments

separates statements

#1, #2, etc, are the formal parameters inside macro definitions
"01234567" are number components (all arithmetic in octal)

waoox

All other printing characters arc ordinary symbol constituents, so it is perfectly ok to have symbols

containing "+", "-", "&", ectc., which would be syntactically significant in other languages. Also,
don’t forget that blanks, carriage returns, and tabs are syntactically meaningless (flushed by the
prescan), so "P+Q" = "P + Q", each of which is a single symbol.

Note that name length is limited only by the size of the statement buffer. However, avoid defining
addresses longer than 13 characters because of problems you will encounter with the dcbugger
Midas.

Statements arc divided into CLLAUSES separated by commas, and the clauses are evaluated right-to-
left. An indcfinite number of clauscs may appear in a statement.

Examples of clauses are:

NAME
NAMEIARGLARG?2.... . ARGN] R
FOO«FOO1«FOO2«P+Q+1, P+Q+1 is referred to as a "source while FOOe,

IFOOl«, and FFOO2¢ arc "destinations” or “sinks".

D0 Microassembler Manual 20 October 1978

P«STEMP,
NAME[N1[N2[ARG],ARG2]« FOO[X],

Further discussion about clause evaluation is postponed until later.

7. Statements Controlling Assembly

Each source file should begin with a TITLE statement as follows:
TITLE[SOURCE1];

The TITLE statement performs a number of operations.

a. It prints a message in the .ER file and on the display which will help you correlate subsequent
error messages with source statements which caused them. ' ,

b. It puts the assembler in TASK 0 mode and SUBROUTINE mode. These modes will be
discussed later.)

The final file to be assembled should be terminated with an END statement:

END;
Currently, the END staﬁment doesn’t do anything, but I might find something for it to do later,
You may at any place in the program include an INSERT statement:

INSERT[sourceX];

This is cquivalent to the text of the file sourceX.MC. However, since INSERT is defined by
DOLLANG, you cannot INSERT DOLANG itself--cither DOLANG itself or a /R file which
assembled DOLANG must be explicitly mentioned on the command line or an INSERT function
must be defined in the file such as:

BUILTIN[INSERT,24];
INSERT[DOLANG];

The message printed on the .ER file by TITLE is most helpful in correlaling subsequent error
messages if any INSER'T statements occur either before the TITLE statement or at the end of the
file (before the END statement). INSERT works ok anywhere, but it might be harder to figure out
which file suffered an error if you deviate from this recommendation.

In the cvent you rcquest a listing by putting "/L" in the Micro command line, the exact stuff
printed is determined by declarations that can be putl anywhere in your program.

[0 { i [S [—;

)

DO Microassembler Manual 20 October 1978

DO0Lang selects verbose listing output. However, unless you are looking for an elusive assembly
problem, you will generally NOT want to print this listing. The listing produced by MicroD is the
normal listing file you will use during debugging.

If you want to modify the default listing control in DOLang for any reason, you can do this using
the LIST statement, as follows:

LIST[memory,mode];
where the "memory"” may be any of the following:

M 4000-word or 10000-word x 40-bit (+20-bit placement) instruction memory
RM 400-word x 20-bit register bank memory

and the mode, the "OR" of any of the following:

alphabetically-ordered list of address symbols
numerically-ordered list of address symbols
(TAG) FFe«3, JCNe«d, etc. (list of field stores)
(TAG) nnnn nnnn nnnn (octal value printout)

—oa S

NOTE: The listing output will be incorrect in fields affected by forward references (i.e., references
to as yet undefined addresses).

8. Integers 4

Micro provides a number of built-in operations for manipulating 20-bit assembly-time intcgers.
These have nothing to do with code generation or storage for any memories. Integers are used to
implement assecmbly-time variables and to control REPEAT statements. The operations given in the
table below are included here for completeness, but hopefully you will not have to use any of them
except SET:

SET[NAME,OCT] Defines NAME as an integer with value OCT. Changes the
value of NAME if already defined.

SELECTYi, CO, ... , Cn] i must be an integer O to n. Evaluates COifi = 0, C1 if i
= 1, etc.

ADD|01, ..., 08] Sum of up to 8 integers Ol ... 08.

sSuB[01,02] 01-02

IFE[01,02,C1,C2] ' Evaluates clause C1 if 01 equals 02, else C2.

IFG[01,02,C1,C2] Evaluates C1 if O1 greater than 02, else C2.

NOT[01] Ones complement of 01.

OR[01,02, ... , 08] Inclusive 'OR’ of up to 8 integers.

XOR[01,02, ..., 08} Exclusive 'OR’ of up to 8 integers.

AND[01,02, ... , 08] 'AND” of up to 8 integers.

LSHIFT[O1,N]} 01 Ishift N

RSHIFT[01,N} 01 rshift N

OCT in the SEIINAME,OCT] clause, may be any expression which evaluales to an intcger, e.g.:

DO Microassembler Manual 20 October 1978

SET[NAME,ADD[NOT[X],AND{Y,Z,3],W]]
Where W, X, Y, and Z are integers.

If you want do arithmetic on addresses, then the addresses must be converted to integers using the
IP operator, e.g.:

IP[FOQ] takes the integer part of the address FOO
ADDI3,IP[FOQ]] is legal
ADDI3,FOO0] is illegal

Some restrictions -on doing arithmetic on IM addresses are discussed later.

9. REPEAT Statements

"The assortment of macros and junk in the DOLANG file successfully conceals Micro’s complicated.

macro, neutral, memory, field, and address stuff for ordinary use of the .assembler.

However, one special situation that may require you to understand underlying machinery is
REPEAT statements--in a diagnostic you might want to assemble a large block of instructions

- differing only a little bit from each other, and you want to avoid typing the same instruction over

and over.

Instructions statements are assembled relative to a location counter called IL.C. This is originally set
to 0 and is bumped cvery time an instruction is assemblcd To do a REPEAT, you must directly
reference ILC as follows:

REPEAT{[20,ILC[{ .. INSTRUCTION STATEMENT ..)i

This would assemble the instruction 20 times. If you want to be bumping some field in the
instruction each time, you would proceed as foilows:

SET[X,0];
REPEAT[20,ILC[(SET[X,ADD[X,1]] ... instruction stalement ...)]]

where the instruction statement would use X someplace.

For a complicated REPEAT, you may have to know details in DOLANG. For this you will have to
delve into it and figurc out how things work.

Multi-instruction REPEAT’s are also possible. The "ILC[(..)]" in the above example-can be used
several times to accomplish this. However, the 500-character size of (he statement butfu will limit
the complexity of the REPEAT body to only a few instructions.

DO Microassembler Manual 20 October 1978

10. Parameters

Pa;ameters are special assembly-time data objects that you may define as building blocks from
which CONSTANTS, RM, or IM data may be constructed. Two macros define parameters:

MP[NAME,OCT}; makes a parameter of NAME with value OCT
SP[NAME,P1,...,P8]; makes NAME a parameter equal to the sum of P1, ..., P8,
which are parameters or integers.
NSP[NAME,P1,...,P8]; makes NAME a parameter equal to the ones complement of
. the sum of Pt, .., P8, which are parameters or integers.

The parémeter "NAME" is defincd by the integer "NAME!"/ , S0 it is ok to use the NAME again
as an address or constant. However, you cannot use it for more than one of these.

NOTE: The MC and NMC macros discussed in the next sections not only define constants, but
also parameters with the same name (i.e., NAME!) and value.

IThe E, " is a symbol comlitdent added so that a constant or RM address can have an identical
NAME. '

11. Constants

The hardware allows 10-bit constants to be output in either the left or right halves of ALUB with
0’s in the other half of the word. In conjunction with arithmetic ALU operations, the right-half
constant -is sign-extended.

4

The assembler permits literal constants to be written as “122C", "177400C", "177600C", "122000C",
etc. These can be inserted in microinstructions without previous definition. The assembler error-
checks the ALU operation in cases where the sclected constant requires or prohibits sign-extension.

Negative constants such as "-1C", "-55C", ectc., are presently illegal. However, they may be
implemented later, if I can figure out how.

Alternatively, constants may be constructed from parameters, integers, or addresses using the
following macros:

MC[NAME]P1,...,P8]; defines NAME as a constant whose value is the sum of
P1..P8 (integers or parameters).
NMCINAME,P1,...,P8]; defines NAME as the ones complement of the sum.

NOTE: The two macros above also define NAME as a parameter. You must not redefine a
parameter with the same name as a constant because the binding of the constant is to the name of
its associated parameter, not to its vatue. In other words, if you redefine a parameter with the same
name as a constant, you will redcfine the constant also.

Occasionally, you may wish to crcate a constant whose valuc is an arithmetic expression or an
expression including an address in RM. Here are several cxamples of ways to do this:

D0 Microassembler Manual ~ 20 October 1978
IP[RADDR]C A constant whose value is an RM address
ADD[3,LSHIFT[X,4]]C A constant whose value is a function of the integer X

12. SETTASK Statements

The hardware OR'’s various bits of the task number into fields of the microinstruction to determine
which RM addresses are referenced. You must tell the assembler what task is going to execute each
section of microcode, so that it can perform the proper error checks and set up the fields of
microinstructions appropriately. ’

This is done with a clause of the form:
SET TASK[n];

where n is the task number, 0 to 17. If you want to‘ refer to task numbers symbolically, you can
define integers with values equal to the task numbers. For example: = . ;

‘ SET[DISPTASK,3];
Then use SETTASK[DISPTASK] to refer to the task.

SETTASK controls not only the assembly of instructions, but also the allocation of RM addresses to
100-word sections of RM, as discussed in the next section.

NOTE: The TITLE statement at the beginnihg of a file does a SETTASK]0].4

13. Assembling Data for RM
RM addresses are allocated by RV statements in one of the following ways:

RV[name,disp,P1,P2,...,P7];
RV[name,,P1,P2,...P7];
RV{name,disp];

RV{name];
RV[name,disp,value};
RV{name,,value];

The first argument "name" is the namc of the RM address which you will subsequently use in
instruction statements.

The sccond argument "disp” is a displacemnent between 0 and 77. This specifics the low six bits of
the RM address. The lop two bits are determined by the top two bits of the task number, declared
by the last SETTASK statement. "If “"disp” is omilted, the RM address is allocated at the last

location plus 1.

10

-

L L L

————

1 H

N
i

r"' -

DO Microassembler Manual 20 October 1978

The remaining 7 arguments are parameters summed to determine the value loaded into that
location. If all of these are omitted, then the location will be uninitialized.

Avoid assigning useless initial values to variables because this will prevent the "Compare" function
in Midas (which compares the microstore image against what you loaded) from reporting fictitious
errors. In a system microprogram (as opposed to a diagnostic), any occurrence of a variable with an
initial value is probably a programming error since it requires reloading the microcode to restore the
initial value. Hence, if you have variables with initial values, you probably should store the initial
values elsewhere (in IM, for example), and copy the initial values into the registers during
initialization. .

The hardware imposes a number of strange constraints upon the placement of RM addresses. For
example, addresses used as base registers must be less than 4 mod 8, quadruple fetch/store locations
must be 0 mod 4, double fetch/store locations must be even. Also, RM is partitioned so that only
locations 0 to 77 are accessible to tasks 0 to 3, 100 to 177 to tasks 4 to 7, 200 to 277 to tasks 10 to
13, and 300 to 377 to tasks 14 to 17. Tasks 1 to 3 in each group of 4 are further limited because
the task number is OR’ed into high address bits in vanous ways. These constraints will be a source
of many program bugs.

You must be careful to assign a "disp” that satisfies all the uses of each RM address. If you screw
up, the assembler will give you an error message when you subsequently reference the RM location
in an instruction.

- Sometimes you may want to use several different names to refer to the same RM location. To do

this, define the first name with RV, as above; then define the synonyms as follows:
RM[FOO,IP[FOO]];

This defines the address FOO1l at the same location as the (previously-defincd) addreés FOO.

14. Assembling Data Items in the Instruction Memory

If you do not want to clutter RM with infrequently referenced constants or variables, and if you are
willing to cope with the hardware kludges for reading/writing the instruction memory as data, then
you can store data items in IM.

To assemble a table of data in the instruction memory:

SET[T1LOC,100];
DATA[(TABLE1:LH[P1,...P8] RH[P1,....P8], AT[T1LOC))];
DATA[(LH[P1....,P8] RH[P1,..,P8], AT[T1LOC,1])};

where TABLE] is an IM address symbol equal to the location of the first instruction in the table,
P1, ..., P8 arc parameters, integers, or addresses. LH stores the sum of up to 8 parameters in the
left-half of the IM word and RH, the right-half. "AT" is discussed in Scction 2.18.3. Sample
sequences for reading and writing IM are given in Section 5.

11

DO Microassembler Manual , 20 October 1978

15. RM & STK Clauses

The hardware complicates references to RM by providing only six bits of RM address in the
microinstruction. The remaining two address bits come from the task number. The programmer
must declare the task number with SETTASK before referencing any variables or constants.

RM addresses can source ALUA destinations and can be used in ALU expressions. In this case, the
RM address has to be enclosed in "()". '

RM addresses can be used as destinations for ALU operations and ALU sources (which the
assembler routes through the ALU). For these simply write the register name followed by "«".

16. ALU Clauses

The operations performed by the ALU are given below. In these expressions, the "A" component
of the ALU expression may be any RM address or one of the other "A" sources. These must be
enclosed in "()". The "B" component may be constant, enclosed in "()" or T. "()" are optional

~around T.

17. Memory Referencing Instruction Statements

Instruction statements that initiate memory references or INPUT have a different form from regular
instructions, as discussed in the hardware manual. Branch and placement clauses are identical to
those in regular instructions, and the F2 clause, if any, is identical to that in a regular instruction.
The rest of the instruction is a single clause in one of the following forms:

PFETCH1(rbase,rdest< ,f2>]
PFETCH2[rbase,rdest< ,f2>]
PFETCH4[rbase,rdest< 2]
PSTORE 1{rbase,rsource < f2>]
PSTOREZ2[rbase,rsource < ,f2>]
PSTORE4[rbase,rsource < ,f2>]
IOFETCH4(rbase,device < ,f2>]
IOFETCH20[rbase,device < ,f2 >
IOSTORE4[rbase,device € 12>]
IOSTORE20[rbase,device < f2 >]
WRITEMAP{rbase,rsource< ,f2>]
READMAP[rbase,rdest< 12>]
INPUT[raddr < 12>]

In these clauses, "rbasc” is an RM address which must be in the group of 100 accessible to the
current task (sce "SETTASK™) and less than 4 mod 8. The two words of base address are taken
from the sclected RM address and that location +4. The assembler will give an error if you use an
invalid RM address.

12

|]

s ans

Lo

———
_d

r

7

DO Microassembler Manual 20 October 1978

The displacement relative to the base register is taken from T, if you omit the optional f2 argument
("< > above denotes an optwnal argument) If you supply the f2 argument, which must be in
integer less than 20, that value is stored in the F2 field of the microinstruction and used instead of
T. See the hardware manual for details on how this works.

PFETCHn will then move n words from the memory to the n-word block of RM addresses
beginning at "rdest". "rdest must be even for PFETCH2 and 0 mod 4 for PFETCH4; it must be in
the group of 100 (task 0 mod 4), 40 (tasks 1 mod 4 and 2 mod 4), or 20 (task 3 mod 4) RM
locations accessible to the task--the assembler will give an error message if "rdest" is illegal.

PSTOREn is like PFETCHn, but moves data from RM to memory.

IOFETCHn moves n words from memory to the selected 10 device, where the IO device must be
specified by an integer. The hardware OR’s the current task number with the 8-bit device in the
instruction, and the assembler will give an error message if the device you code is inaccessible to the
task.

IOSTOREn is like IOFETCHn, but moves data from the device to memory.

NOTE: The hardware OR’s the current task number into the RM address in the microinstruction
so that a group of 4 tasks will use different RM locations, while executing a single stretch of
microcode. Suppose, for example, that you want tasks 10, 11, 12, and 13 to share a section of
microcode but use independent RM locations. Then do a SETTASK[10] before that section of
microcode, allocate a block of RM locations in the range 100 to 117 and refer to these locations in
the stretch of microcode; also allocate parallel blocks of RM locations in the ranges 120 to 137, 140
to 157, and 160 to 177 for use by tasks 11, 12, and 13. In this way, the program will do what you
want, If the stretch of microcode also refers to constants, allocate these in the range 160 to 177, so
that they will be accessible to all four tasks.

18. Branching

This section defines branch clauses in instruction statements, declarations which affect instruction
placecment, and dispatch clauses.

Micro assembles instructions for an imaginary machine identical to D0 but with additional fields
asscmbled for its postprocessor. ‘The imaginary machine is characterized by full-size 12-bit branch
addresses in instructions.

A postprocessing program called MicroD) places instructions and transforms the .DIB (micro bmary)
output file for the imaginary machine into a .MB file for DO.

13

DO Microassembler Manual . 20 October 1978

18.1. Branch Clauses

The assembly language defines several constructs of the form:
GOTO[branch address, branch condition 1, branch condition 2]

where both branch conditions are optional.

The branch addresses for these may be either instruction tags or one of the following special
symbols: -3 -2 -1 ..+1 .+2 .+3, where "." refers to the current instruction and the others are

relative to this in-line.

(It is obviously possible to define .-4, .+4, -5, etc.,, but my feeling is that it is bad style to jump
further than +/-3 without using a tag. If anyone finds this inconvenient, please let me know.]

When complementary branch conditions are used, the assembler simply reverses the order of the
branch tags. Hence, DBLGOTO[TAG1,TAG2,com Cl, . com C2) =
DBLGOTO|TAG2,TAG1,C1,C2]. This is provided as a programming convenience. :

NOTE: If two branch conditions appear in a statement, they must be both regular or both
complementary. When two regular branch conditions are used, the true path takes if either is true.
However, when two complementary branch conditions are used, the true path takes only when both
are true. Don't get confused by this.

Below "< >" denote optional args; Cl and C2 either two hardware branch conditions or
complements of two hardware branch conditions:

RETURN To LINK (smashes LINK also).

CORETURN Like RETURN but LINK«. +1 and next instruction in-
line placed at .+1.

DBLGOTO[TAG1,TAG2,C1<,C2>] To TAG1 if C1 or C2 true, else to TAG2. Limits
TAG2 to the goto addresses.

DBLCALL[TAG1,TAG2,C1<,C2>] = DBLGOTO[TAG1,TAG2,C1,C2], forces next

instruction in-line to be at .+1 mod 100, and limits
TAG2 to call addresses.

CALL[TAG(,C1<,C2> >] = DBLCALL{TAG,.+1,C1,C2], complementary BC's
illegal
GOTO[TAG < ,C1¢,C2> >] = DBLGOTO[TAG,. + 1,C1,C2]

A conditional CALL is just barely possible. It requires the next instruction in-line to be
simultancously at the true branch address.xor 1 and at the address of the caller +1. Since the true
branch address must be at a location with three low bits equal 001, these conditions are only met
when the address of the caller is the location before the false larget address. In other words,
complementary BC’s are illegal with CALL, and you cannot code two consecutive microinstructions

each containing a conditional CALL.

It is also impossible to have a CALL in the instruction after a conditional GOTO because the return
of the CALL would be to the true target of the previous conditional branch.

An unconditional RETURN branches to the address of the caller +1. There is no placement
constraint on an instruction containing a RETURN.

4

7

N

D0 Microassembler Manual : 20 October 1978

A conditional RETURN is not defined by the hardware.

If omitted, the branch clause is defaulted to GOTO[. +1].

18.2. Dispatch Clauses

The assembly language defines the following dispatch clauses (or slow branches):

DISPATCH[RADDR,POS,SIZE] Dispatch on 1 to 8 bits from RADDR
BBFA[RADDR]
NEXTINST[RADDR]

An example using a dispatch clause is given in the next secction.

18.3. Placement Declarations

An instruction containing the clause "AT[N]" will be forced by the assembler to appear at absolute

- location N in the microstore. This will be necessary for instructions in dispatch tables.

"AT[N1,N2]" in an instruction is equivalent to AT[ADD[N1N2]]. For example, an 8-way
DISPATCH might be written as:

DISPATCH[RTEMP,0,3;
... GOTO[SWITCH];

SET[SWLQC,320];
SWITCH: .., AT[SWLOC]; °*B[15:17]=0
, AT[SWLOC,1]; *B[15:17]=1
., AT[SWLOC7]: *B[15:17]=7
where the three instructions in the dispatch need not be consecutive in the assembly source.

NOTE: Because microinstruction addresses are unknown during assembly, it is illegal to create
parameters, constants, or R-memory data referring in any way to instruction locations. To do this,
you must manually locate the affected instructions with "AT" statements and do arithmetic on
integers with the same values as the instruction locations.

Global entries are declared by a "GLOBAL" clause in a statement, e.g.:
DONEXT: RETURN, T«377C, GLOBAL;

GLOBAL. declarations cause placement at onc of the 20 global call locations in the microstore.

15

DO Microassembler Manual 20 October 1978

It would probably be nicer for the assembler to have some way of positioning an instruction at a
boundary of 4, 10, 20, etc., without forcing the absolute location to be completely specified.
However, 1 decided this was harder to implement and it will not be provided--you are stuck with
"AT" for all dispatch tables.

16

e

L—J

| S

-

MICRO
MACHINE-INDEPENDENT
MICROASSEMBLER

29 August 1978

by

Edward Fiala
Peter Deutsch
Butler Lampson

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

This manual describes a machine-independent microassembly language originally developed for the Maxcl
computer and since used for the Maxc2, Dorado, and DO computers as well as for several smaller projects.

This manual is the property of Xerox Corporation and is to be used solely for evaluative purposes. No part
thereof may be reproduced. stored in a retrieval system transmited. disseminated. or disclosed to others in any
form or by any means without prior written permission of Xerox.

p—

—

-

Micro: Machine-Independent Microassembler 29 August 1978

1. Introduction

This document describes MICRO, originally implemented in 1971 for NOVA in Algol to assemble
microprograms for the Maxcl microprocessor. It has since been reimplemented for Alto in Bepl
and is now used to assemble microprograms for Maxcl, Maxc2, Dorado, and DO0. Its output format
is compatible with the MIDAS loader/debugger, for which there are versions on each of these four
machines.

Micro is a rather unspecialized one-pass assembler. It does not know anything specific about the
target machine, but instead has a general facility for defining fields and memories, a standard string-
oriented macro capability, and a rather unusual parsing algorithm which allows setting fields in
memories in a natural way by defining suitable macros and neutrals with properly chosen names.

This document will be of interest primarily to someone who is going to define a new assembly
language for some machine. There are a number of complications inside Micro that this person
must be aware of when defining the language. However, once the language has been appropriately
defined, the interface seen by someone writing programs for a target machine is natural and simple,

In other words, if you were going to write microprograms for Dorado or DO,‘ for example, you
would need to read "The Dorado Microassembler” or "The D0 Microassembler”, which define
languages for those machines, but would probably not require this document.

2. Assembly Procedures

To assemble microprograms on your Alto, you must obtain [Maxc]< Alto > Micro.run or
[IVY] < Alto > Micro.run. In addition, you will need to get the definition file(s) for the particular
microlanguage that you will be using (see other relevant documentation).

Micro flushes Bravo trailers, so you can use Bravo formatting in the preparation of microprograms.
However, MCross, a Maxc program that produces cross-reference listings of Micro programs, does
not ignore Bravo trailers, so you may not use arty Bravo formatting featurcs if you are going to use
MCross. In addition, error messages produced during assembly have line numbers that will be
more difficult to correlate with source statements if automatic Bravo line breaks occur in the source
text rather than explicit carriage returns.

We recommend use of GACHAS (i.e., a relatively small fixed pitch font) for printing hardcopy
microprogram listings, and the use of GACHA10.AL for editting microprograms with Bravo. Bravo
tab stops should be set at precisely 8 character interals for identical tabulation in Bravo and MCross.

The two relevant lines in USER.CM for Bravo are:

FONT:0 GACHA 8 GACHA 10
TABS: Standard tab width = 1795

You will probably want to delete the other Font lincs for Bravo in USER.CM.

Suppose that you have prepared a language definition file LANG.MC and a number of sourcc files
for assembly by Micro. Then a microassembly is accomplished by the following dialog with the

17

Micro: Machine-Independent Microassembler 29 August 1978

Alto Executive:
MICRO/L LANG SRC0 SRCl1 .. SRCn

This causes the source files "LANG.MC", "SRCOMC", ..., "SRCn.MC" to be assembled. The
binary output and symbol table at the end of assembly are written onto "SRCn.MB" and
"SRCn.ST", the error messages onto "SRCn.ER", and an assembly listing onto "SRCn.LS".

In other words, Micro assembles a sequence of source files with default extension "MC" and
outputs four files whose extensions are ".MB", ".ER", ".LS", and ".ST". The default name for
these is the name of the last source file assembled. Direct output to particular files as follows:

MICRO SYS/L/B LANG SRCO SRC1 .. SRCN

This would cause listing output to be put on "SYS.LS" and symbol table and binary output onto
"SYS.ST" and "SYS.MB".

A summary of the local and global flags for Micro is as follows:

Global: /L produces an expanded listing of the output
/N suppress binary output
/0 suppress - symbol table output
/U convert text in all source files to upper case

Local: /R recover from symbol table file.

/L put expanded listing on named file
/B puts binary output and symbol table output on named file with extensions MB and .ST,
respectively. Default error listing to named file.
/E put error listing on named file
/S put symbol table on named file
~ /U convert text in named file (and any file which it INSERTs) to upper case

Local flags override global ones.
INSERTIfile];

statements may be put into source files so you don't have to type as many source names on the
command line. This is exactly equivalent to the text of filemc. INSERT’s may be nested to a
reasonable depth. However, although INSERT saves typing it is slower than putting the file names
on the command line because Micro uses a fast file-lookup routine to get handles on every file
named in the command line in about 1 second; each INSERT adds an additional 1 second for file
name lookup.

Another shortcut is to define a command file MI containing "Micro/O/U LANG" or whatever and
then type @MI@ SRCO .. SRCN", which avoids some typing.

The SETMBEXTT[.ext] builtin allows the binary output file cxtension (o be changed from .MB to
something else. This declaration has to be assembled before defining any memories (clse the output
file will have alrcady been opened with cxtension MB). The Dorado and DO microassemblers use
this to change the extension to .DIB, as expected by the postprocessor, MicroD.

18

Micro: Machine-Independent Microassembler 29 August 1978

Micro creates a temnporary file Micro.fixups and deletes it at the end of assembly. If you abort
assembly with shift-swat, you may delete it yourself.

Micro’s binary output is generated in one pass and consists of memory definitions, store directives
to memories, forward and external reference fixup directives, and new or changed address symbols
for each memory. The block types written on the output file are given in -Appendix 3.

Micro assembles declarations at a rate of about 60 statements/second and, with typical
microlanguages, assembles microinstructions at about 7 statements/second. On very large assemblies
this rate slows slightly as the symbol table grows larger. The assembly time for the Maxc system
microcode is about 7 minutes (~2000 72-bit microinstructions, ~500 36-bit words in other
memories, ~500 definitions, and ~1400 addresses).

Comments are flushed very quickly by the prescan, so do not worry about a profusion of comments
slowing assembly.

Presently, the Micro-Midas system has no provision for relocating independently assembled source

programs. However, the Micro symbol table is dumped onto a file at the end of the assembly.

Later, assembly can be continued at that point onto another binary output file, thereby reducing
assembly time. For example, you can build a LANG.ST file as follows:

MICRO LANG
Then do all further assemblies as follows:
MICRO/OU LANG/R SYS/B SRCO .. SRCN

This saves a little assembly time but still does not allow several people to independently maintain
sources used in a common system.

To avoid reassembling unchanged files, one would have to partition his program into separate
asscmblies, each of which used absolute location-counters for the various memories. This would be
difficult, probably not as good as reassembling everything. However, if this were done, Midas could
link external references between the different modules at load time.

The MicroD program, used to post-process Micro assemblies for Dorado and DO, has limited
provisions for relocation. Programmers using the Dorado or DO microlanguages should read the
relevant documentation. : :

19

Micro: Machine-Independent Microassembler 29 August 1978

3. Error Messages

During assembly, any error messages are output both to the terminal and to the error file. If an
assembly listing is being printed, the error messages are also printed there.

As Micro churns through the source files it prints the name of each on the error file (and terminal),
and when INSERTIfile] statements appear it outputs "* FILE file .." and "* RETURN to file"
messages. These will pinpoint any error message to a particular source file.

Micro error messages are in one of two forms, like the following:

statement
218...error message

statement
TAG+39...error message

- The first example indicates an error in a statement beginning on the 218th line of the source file.
This form is used for errors that precede the first label in the source file. The second form is used
afterwards, indicating an error on the 39th line after the label "TAG". Micro also prints the source
statement causing the error before printing the error message.

- Note that the line count measures carriage returns in the source, so if you are using Bravo
formatting in the source files, you may have trouble distinguishing carriage returns from line breaks
inserted by Bravo’s hardcopy command.

ER is the builtin by which a Micro program outputs messages to the error file (and to the terminal).
ER[message,stopcode,value]

Blanks are squeezed out of the message by the prescan so "-" signs or other printing characters
should be used instead. :

Stopcode equal 0 continues assembly; non-zero aborts assembly (nulstring in the stopcode defaults
to 0).

ER first prints the message (a literal string) on the error file; then, if the value argument is present,
evaluates it (c.g., it may be an IP or other arithmetic expression) and prints it in octal on the error
file; then, if stopcode is non-zero, aborts the assembly.

When the assembly is not aborted, assembly of the statement in which the error occurred will
continue from the point of the error. This may result in more error messages if the assembler gets
confused by an undefined symbol or some other condition. The location counter gets incremented
iff at least one store is donc by the statement, so a statement with an crror may still generate an
output word, or it may not.

A summary of crror message is given in Appendix 1.

20

]

| | i

Micro: Machine-Independent Microassembler 29 August 1978

4. Assembly Listings

An expanded listing is produced only when either the global or local /L option is selected. When
the listing file is being produced, the information output is controlled independently for each
memory by the LIST builtin.

LIST[memory,mode}

controls assembly listing output for all stores to the selected memory. The value of mode is bit-
encoded as follows:

1 enable listing of stores in the memory as octal numbers; by default these are divided into 12-
bit groups starting at the right-most bit of the value; the bit of value 20 and the
LISTFIELDS builtin modify the form of the octal printout.

2 list stores in the memory as field assignments;

4 produce a numerically-ordered list of symbols at end of assembly;

10 produce an alphabetically-ordered list of symbols at end of assembly;

20 makes the octal printout divide stores into 16-bit groups.

The actions of these bits are or'ed. LIST may be given many times during the assembly, to
enable/disable listing output for code sections with difficult bugs. The value of mode at the end of
assembly determines whether or not numerically or alphabetically-ordered address lists are printed.

When a statement of the form:
ANAME[TAG: mumble)};

is assembled, the listing output would be as follows:

302 (TAG) NNNN NNNN .. NNNN for mode 1
302 (TAG) NNNNNN ... NNNNNN for mode 21
302 (TAG) Fle3, F2¢34, F3¢20: for. mode 2
302 (TAG) NNNN NNNN .. NNNN for mode 3

Fle3, F2¢34, F3¢20
Mode equals 0 disables all listing for the specified memory.

Fl, F2, and F3 in the above example represent all the fields to which explicit assignments were
made during the assembly of (mumble). Fields which have non-zero values due to the action of a
DEFAULT statement for the memory are not listed, nor are preassignments listed. Also, fields
filled in by forward references will be erroneously listed as containing their default value.

Error messages are printed on the line after the listing of the memory word or between memory
words if no field assignments were completed in the statement.

LIST[.mode], where the memory name is null, AND's mode with the listing mode for all memories
other than the tlarget, e.g. LIST[.0] suppresses listing of all non-target memorics and LIST[,3]
restores.

21

Micro: Machine-Independent Microassembler 29 August 1978

The LISTFIELDS builtin can be used to control the assembly listing more precisely. Micro
assembles

LISTFIELDS[MNAME (clauselist)};

as a word for memory MNAME and then notes the positions of all the 1-bits in the result.
Thereafter, in the octal listing for that memory, rather than each field being precisely 12 or 16 bits
wide, 1-bits in the word given to LISTFIELDS are taken as the rightmost bits of the fields. For
example, if the word contains 1-bits only in positions 2, 5, and 6, the octal listing will show a 3-bit
field (bits 0:2), another 3-bit field (bits 3:5), a 1-bit field (bit 6), and then the rest of the word
chopped up into groups of 12 or 16 bits.

The mode argument to LIST determines whether or not the stores are printed, but LISTFIELDS
controls the format of the numerical printout whenever that is turned on by the mode =1, bit.

5. Cross Reference Listings :

A Tenex program called MCross will parse source files according to Micro syntax and produce
cross-reference listings. Several simple files must be prepared to tailor MCross for the language file
being used. These files eliminate the garbage tokens that would otherwise clutter the cross-refernce
listing.

A cross-reference listing is not very useful for small microprograms but becomes increasingly
valuable for large systems. Consecquently, if you are maintaining a large system, you will probably
wish to obtain an account on our Maxc timesharing system. Occasionally, you will dump the
sources on your Tenex directory and run MCross over them.

A typical dialog with MCross is given below. The program is more-or-less self documenting and
will give you a list of its commands if you type "7".

@MCross

Output file: LPT:GACHAS8

Machine: D (selects Dorado syntax--M for Maxc, 0 for DQ0)
Action: N (read def’s, no printout)

File: LANG <cr>

Action: CL (read def's, produce cross ref.)
File: SRC1<cr>

Action; CL

File: SRC2<cr>

Action: P (print operation usage statistics)
Action; G (print global cross reference)
Action: E

@

| 1

Micro: Machine-Independent Microassembler ‘ 29 August 1978

6. Comments and Conditional Assembly

Micro ignores all non-printing characters and Bravo trailers. This means that you can freely use
spaces, tabs, and carriage returns to format your file for readability without in any way affecting the
meaning of the statements.

Comments are handled as follows:
"*" begins a comment terminated by carriage return.
"%" begins a comment terminated by the next "%". This is used for multi-liné comments.

"o "o

:" terminates a statement. Note that if you omit the ";" terminating a statement, and for example,
put a "*" to begin a comment, the same statement will be continued on the next line.

Micro has one method of producing multi-statement conditional assemblies. This is the
COMCHAR builtin, which provides conditional assembly of a large block of instructions by altering
the interpretation of comments.

COMCHAR|[char]

 makes *char be a comment bracket similar to %. Micro will discard everything from an occurrence

of *char through the end-of-line following the next occurrence of *char. Note that this is not quite
like % because % stops discarding immediately at its matching occurrence.

You can disable this feature with
COMCHAR(]

which is Micro’s initial state. As an example, suppose you want to assemble one of two code
sequences depending upon whether some integer symbol X is zero. You could write the following:

IFE[X.0,COMCHAR[#] COMCHAR[=]}
*= here is some code to skip if X negq O (assemble if X eq 0)

end of X eq 0 code

n

1]

*# here is some code to skip if X eq O (assemble if X neq 0)

*# end of X neq 0 code
COMCHAR([]: *Disable feature

23

Micro: Machine-Independent Microassembler 29 August 1978

7. Statements

After comments and non-printing characters are stripped out, the rest of the text forms
STATEMENTS. There is no level of program structure superior to the statement (e.g., conditionals
cannot span more than one statement) except for the COMCHAR kludge.

Statements are terminated by ";". You can have as many statements as you want on a text line,
and you can spread statements over as many text lines as you want. Statements may be indefinitely
long.

However, the size of Micro’s statement buffer limits statements to 500-decimal characters at any one
time. If this is exceeded at any time during assembly of a statement, an error message is output.
Since horrendous macro expansions occur during instruction assembly, overflow is a possibility, and
care is required when defining complicated macros.

The special characters in statements are:

" "["and "]" for enclosing builtin, macro, field, memory, and address argument lists;

"("and ")" for causing nestgd evaluation;
"et as the final character of the token to its left;
" to put the address to its left into the symbol table with value equal to the

current location in the current memory;

" separates clauses or arguments;
" separates statements
-2 #1, #2, etc. are the formal parameters inside macro definitions;

"01234567" are number components (all arithmetic in octal)

All other printing characters are ordinary symbol constituents, so it is perfectly ok to have symbols

containing "+", "-", "&", etc. which would be syntactically significant in other languages. Also,
don’t forget that blanks, carriage returns. line feeds, and tabs are syntactically meaningless (flushed
by the prescan), so "P+Q" = "P + Q", each of which is a single symbol.

Micro handles all code generation by table lookup and minimal use of conditionals. In particular, it
doces not evaluate P+Q+1 but rather looks it up in the symbol table. Since P + Q + 1is the same
for a human, we have chosen to suppress all blanks. Other non-printing characters are suppressed
so that control characters don’t appear invisibly in print names.

Note that name length is limited only by' the size of the statement buffer. However, avoid defining
address symbols longer than about 13 characters because of problems you will encounter with the
dcbugger Midas.

Statements are divided into clauses by commas. An indefinite number of clauses may appecar in a
statement.

24

| S
| SR

Micro: Machine-]ndeﬁerzdent Microassembler 29 August 1978

Examples of clauses are:

NAME,

NAME[ARG], ARG2, .., ARGN],

FOO<«FOO1«FO02¢P+Q+1 P+Q+1 is a "source” while FOO, FOO!, and FOO2 are
"destinations” or "sinks."

P « STEMP

NAME[NI[N2{ARG]],ARG2]«FOO[X].

7.1. Builtins

All of the predefined operations of Micro are called builtins, With the exception of the BUILTIN
and INSERT builtins, none of them have a priori names but instead are assigned names by the
programmer. Names are assigned to builtin operations by declaration statements of the form:

BUILTIN[BUILTIN.1};

where the second argument is the intrinsic operation number and the first argument is the name by
which it is referred to.

All builtiﬁs are called using this same syntax:
NAME[ARG], ARG2, .., ARGS9}

The all-inclusive list of builtins is given in Table 1. Note that the only print-names assembled into -
Micro are BUILTIN and INSERT; i.e., the other names in Table 1 are chosen by convention.

7.2. Defining Symbols

The builtins BUILTIN, MACRO, NEUTRAL, MEMORY, FIELD, and SET are used to define
symbols of different types, as discussed later. The name of a defined memory can then be used to
define addresses in that memory, and addresses are also defined when labels appear in statements
being assembled for storage in a memory. Once a symbol has been defined, it is an error to
redefine it as any other type of symbol.

It is legal to change the value of a symbol of type integer.
Redefining a macro is legal (but Micro prints a warning message).

When an address is defined by a label, any attempt to change its value is illegal, but when defined
by MEMNAME[symbol,value] it is legal to change the integer part of the value (illegal to change
the memory part of the value).

25

Micro: Machine-Independent Microassembler ‘ 29 August 1978

Builtin No.

BEaNownswn—

Name

BUILTIN
MACRO
NEUTRAL
MEMORY
TARGET
DEFAULT
FIELD

NOT
REPEAT
OR

XOR

AND
COMCHAR
BITTABLE
GETBIT
SETBIT
FINDBIT
MEMEBT
LSHIFT
RSHIFT
FVAL
SELECT
SETPOST

LISTFIELDS
SETMBEXT
SUB

Table 1: Builtins
Discussion

Section 7.1

Macro definition (usually the short name "M" is used), section 9
Neutral definition (usually the short name "N" is used), sections 7.3, 10
Memory definition, section 13

Target memory declaration, section 13.1

Default value of memory bits, section 13.2

Field definition, section 11

Field preassignments, section 11

Integer definition and set, section 8 :
Section 8

Integer part of an address, section 8

If-string-equals conditional, section 12

If-field-assigned conditional, section 12

If-integers-equal conditional, section 12

If-integer-greater conditional, section 12
If-symbol-defined conditional, section 12
If-memory-part-of-address-equals-string conditional, section
Print error message, section 3 f.
Control assembly listing, section 4 :
Insert file, section 2

Section 8

Repeat evaluation, section 14

Section 8

Section 8

Section 8

Multi-statement conditionals, section 6

Define bit table, section 16

Section 16

Section 16

Section 16

Section 16

Left-shift integer, section 8

Right-shift integer, section 8

Get value in field, section 11

Switchon integer, section 15

Define post-evaluation macro for memory, section 13.3
Deimplemented

Control assembly listing, section 4

Set binary output file extension, section 2

Section 8

26

[

Micro: Machine-Independent Microassembler 29 August 1978

7.3. Tokens

The rules for delimiting clauses into tokens have been carefully chosen to permit the user of Micro
to write readable programs. The parsing of statements is strictly right-to-left and the following
definitions are required in explanation:

An L-token terminates the token to its left.
An R-token terminates the token to its right

Then:

R group delimiter

L group delimiter

L builtin argument list delimiter
builtin argument list delimiter

LR clause delimiter ‘

LR clause delimiter which takes the preceding token as an address in the current
memory at the current address

« LR separator which is part of the symbol to its left

St -~

e

Any text with an R-token to its left and an L-token to its right constitutes a token called a symbol
whose meaning is determined by looking it up in the symbol table. Text enclosed in parentheses is
lexically independent of anything outside, and a parenthesized string of text is lexically equivalent to
the "tail" which its evaluation produces. The following example clarifies this.

In the expression:
FOOS(FOOIFOO2]FOO3[FO04))FOO6[FOO7]

the order in which expansions are recognized assuming that each FOO expansion leaves behind no
text is:

FOOI[FOQ2}

IFOO3[FO04]
FOOSFOO06(I007]

27

Micro: Machine-Independent Microassembler 29 August 1978

7.4. Neutrals and Tails

The handling of tails, a distinguishing peculiarity of Micro, works as follows. The tail is initialized
to the nulstring at the start of processing a clause. When a neutral symbol is recognized using the
rules for delimiting tokens (previous section), it is concatenated on the left of a string called the tail
thusly:

temp <« concatenate (symbol, tail);
if tail eq null do;
tail « temp;

else do;

tail « null;

trcat temp as a symbol;
end;

Parentheses push down the current tail and start a new null one. When the text inside is
- completely processed, its tail (null or neutral) is treated as though it were-a string whlch had
appeared without parentheses.

The use of neutral tails permits complicated machines like Maxc and Dorado to be described by a
relatively small number of macros and neutrals. The following example shows how this works.

Maxc has about 30 bus sources and 30 bus destinations, but not all combinations of source and
destination arc legal (a slow source may not feed a slow destination). An example using the bus is:

MDR «X

X is a macro that expands to a store into the bus source field of the microinstruction and leaves
behind the neutral symbol B. MDR «, the next token recognized, is a macro that expands into a
store into the bus destination field and leaves behind the neutral symbol B«. BeB is the next
token recognized. Since the connection of a fast bus source to a fast bus dcestination is legal, B«B
has also been entered into the symbol table as a macro cquivalent 1o the neutral symbol B.

If B« could not have been legally connected to B, then the B«B macro would not have been
defined, and Micro would have output an error like "B«B undefined” when assemblmg the
statement.

Thus the number of symbols which must be defined for describing bus sources and destinations is
roughly 1/source plus 1/destination plus a small number of macros to describe legal connections of a
class of sources to a class of destinations. Each class of objects is represented by a neutral symbol.

In other words, the connection concept, which neutral tails implement, decouples sources and
destinations inside the language definition file. In conjunction with the peculiar handling of "«
this permits a natural assembly language to be defined in which the programmer thinks of sources
flowing over buses to destinations. It is impossible to create a natural language of this type with an
ordinary macroasscmbler.

Here is a more complicated example:

28

Micro: Machine-Independent Microassembler 29 August 1978

STEMP«MDR«(RTEMP¢«P) U (X)

In this example (from Maxcl), there is an interior routing of data from P (a register) to RTEMP (an
address in the RM memory); this routing moves data from P through the ALU and into RTEMP.
The ALU data is also routed onto B (a bus) where it is or'’ed with data from X (a register). Then
the bus data is written into MDR (a register) and into STEMP (an address in the SM memory). A
crude outline of the way this is assembled is as follows:

P is a macro that stores the P control in the ALUF field of the microinstruction and leaves the neutral ALU;

RTEMP« is recognized as an RM destination (details later); its address is stored in the RA field leaving the
neutral RB«;

RB«ALU is a (connection) macro, leaving the neutral ALU behind;

X is a macro that stores the code for B«X into the BS field of the microinstruction leaving the neutral B;
ALUUB is a (connection) macro that stores the code for B« ALU into the F1 field and leaves the neutral B;
MDR¢« is a macro that stores the code for MDR¢B into the BD field leaving the neutral Be;
B¢B is a (connection) macro leaving the neutral B; .

STEMP« is recognized as an SM destination (details later): its address is stored in the SA field leaving the
neutral SBe:

SB¢B is a (connection) macro that stores the code for loading SM into the F2 field leaving the neutral B;

B is the final tail which is thrown away.

This example is as complicated as any we have used in real assemblers thus far. The construction
of "(..) U (..)" to represent merging diffcrent sources on a bus is used systematically throughout the
Maxc microlanguage; sources can be given in arbitary order so, in the above ecxample, (X) U
(RTEMP«P) would also assemble. All of these factors contribute to an easily readable, easily
remembcrable assembly language.

In the above example, the assembler also successfully concealed some complicated alternate
encoding issues from the programmer. B«ALU could have been encoded in either the BS or F1
fields; the assembler picked F1 since BS was needed for B«X. SB«B could have been encoded in
either BD, F1, or F2; the assembler picked F2 becausc BD and F1 had already been used. These
are somc of the issues that the designer of a microlanguage must consider.

29

Micro: Machine-[ndependent Microassembler 29 August 1978

7.5. Clause Evaluation

When a clause is broken into top level tokens, the possible resulting symbol types and actions are
given by the table below:

Symbol type

undefined
integer
address{clauselist]

address SYM

address SYM«
unbound address
MNAME[SYM,integer}
FNAME[address]
FNAME{integer]
FNAME[undefined]}

macro [args]
macro
neutral
neutral [args]
builtin [args]

Table 2: Top Level Evaluation

Action

See section 7.7
Error message and abort clause expansion

Carry out a store of the word assembled by the clauselist at the location
and memory of the address, and then increment the integer part of the
address symbol.

Replace by sourcemacro[SYM] (section 13)

Replace Ly sinkmacro[SYM] (sections 7.7, 13)

Error message

Create an address symbol "SYM" in memory MNAME with value "integer"
Store IPfaddress] in field FNAME (section 11)

Store integer in field FNAME

Generate forward reference for eventual field assignment at end of assembly
or by MIDAS.

Expand it (section 9)

Expand it

See sections 7.4, 10

Error message

Call the builtin function (Table 1) with arguments handled as discussed in

section 7.6

Ultimately, the original clause must reduce through macro and neutral expansions to a series of
field assignments, preassignments, and builtin calls with a neutral symbol in the "tail.” The necutral
symbol is then thrown away and the necxt clause is evaluated.

7.6. Treatment of Arguments

Many symbol types may be followed by argument lists. The only difference among these is that
ficlds, memories, addresses, and most builtins must be followed by an exact number of arguments.
Macros, on the other hand, may have surplus arguments (ignored) or deficient arguments (nulstrings
supplied). Conditionals may omit arguments (nulstrings supplied).

The nulstring argument is spccial in the following sense. If it appears where an integer result is
wanted, it is equivalent to the vatue 0 (except for the AND builtin); if it appears where a string is
wanted, it is the nulstring: and, if it is looked up, it is undcfined. Micro does not allow the
programmer to define the nulstring as a symbol.

Each builtin may choose one of three basic ways to receive its arguments: quoted, looked up in the
symbol table, ot evaluated. Some languages have a step short of evaluation which might be called
“macro expansion”, but Micro docs not make any distinction between macro expansion and
complete evaluation of an argument. However, if a string of the form

NAMEfarguments]:

Micro: Machine-Independent Microassembler 29 August 1978

occurs in a clause being evaluated, NAME[arguments] is expanded until a string is left without
brackets or parentheses, and then this string is the one affected by the ":". However,

IFDEF[NAME(arguments], ...]

which looks up its first argument, will look up the entire string including the brackets. This is a
limitation of Micro which may someday be repaired. It prevents symbol names from being
generated in some situations.

The exact meaning of "look up" and "evaluate” changes with the builtin. Those builtins which
"lookup"” an argument generally do so for a symbol type check or to decide what action’to carry out
based upon the symbol type. There is no way for macro definitions to get at symbol types. Only
builtins can do this. This is an unfortunate limitation of Micro.

Argument evaluation is slightly different from clause evaluation. For example, evaluating the
argument for the field assignment FNAME[VALUE] takes place as follows: evaluate the tokens in
the argument right-to-left cxpanding all macros and neutrals, looking for one of the following:

1) Address: Use its integer part to complete the ficld assignments discussed in section 11.
2) Unbound address: Generate -a forward reference.

3) Undefined symbol: Create an unbound address and generatc a forward reference.
4) Integer: Complete the assignment as discussed in section 11.

If the argument is the nulstring, put the integer 0 into the field. If the argument is a
neutral symbol, if any text is lefl when the address, integer, or undefined symbol is found,
generate an error.

Note that a ncutral symbol results in no crror for clause evaluation, but an error for a field
assignment whilc an integer results in an error in a clause but no error in an assignment. Other
builtins which evaluate their arguments may have different requirements.

For example, the integer builtin ADD (see scction 8) accepts only integer arguments. Address
[clauselist] evaluates the clausclist exactly as if it had occurred at the top level. In all cases, if part
of the argument being evaluated is in parentheses, that part is evaluated exactly as if it had occurred
at the top level :

7.7. Undefined Symbols

The print-name of a symbol is a character string by which the symbol can be referred to in the
source. However, when the lexical scan finds a string S of characters which is a symbol token
(delimited by L. or R-tokens), it looks for a symbol with print-name S. If no such symbol cxists, an
error is indicated except in the following cases:

31

Micro: Machine-Independent Microassembler 29 August 1978

7.7.). Destination Addresses

S ends with «. In this case the « is stripped off and the resulting string S’ is looked up. If S’ is an
address in memory MEM, S is replaced by MEMSINK][S’] as discussed in section 11.

7.7.2. Octal Numbers
S consists entirely of octal characters with an optional leading "-" sign. In this case it is treated like
a symbol of type integer whose value is the octal number. Note that integers may not be larger

than 16 bits. Micro does not allow an integer string to be entered into the symbol ‘table, which
would usurp the natural use of that integer.

7.7.3. Literals

S starts with an octal character or with a "-" followed by an octal character. In this case the "-" (if

any) is stripped off nad the rest is split into a head OCT and a tail SYM such that OCT consists

entirely of octal characters and SYM does not start with an octal character. Then the macro SYM
or -SYM is called as described below.

The first argument of SYM is the four right-most octal characters. The second argument is the next
four octal characters, and so on until the octal characters are used up. For example,

37436521000V and
1234567V

are replaced by

V[1000,3652.374] and
-V[4567,123)

The awkwardness of the 16-bit limitation for integers is clearly pointed out by this kludge. Clearly
V[37436521000] would have been much ecasier to work with and would have been possible if the
integer size was greater than or equal to the memory size. Also, going from a three-integer 36-bit
result back to a text string is made impractical by the intcger size limit.

8. Integers

Micro permits use of integer variables constrained to 16 bits.

SET[NAME.VALUE]

looks up its first argument and evaluates its sccond with the following results:

Type of Name Type of Value Action

Undefined Integer FEnter NAME in the symbol table with type integer and value
VALUE.

Integer Integer Change the value of NAME to VALUE
32

—

Micro: Machine-Independent Microassembler 29 August 1978

All other combinations are errors.

The following builtins accept integers as arguments and produce an integer as value:

ADD{i0, i1, ... , i7] Sums 0 .. i7

SUBiY, i1, ... , i7} Subtracts the sum of i1 .. i7 from i0
NOTIi0} 1's complement of i0

OR{i0, i1, ... , i7] Inclusive-or of i0 .. i7

XOR[i0, i1, ... , i7] Exclusive-or of i0 .. i7

ANDI[i0, i1, ... , i7] And of 0 .. i7

LSHIFTIi0, i1) Logical left-shifts the integer i0 by il bits
RSHIFTIi0, i1] Logical right-shifts the integer i0 by il bits

In these, omitted arguments are 0's for every operation except AND, which supplies 177777 (ie., -1)
for omitted arguments. Note that octal strings may begin with an optional "-". However, the
negative of an integer-valued symbol cannot be obtained by inserting a leading "-"; -(ISYM) will
not work, either.

The value of these integer operations is the unsigned octal string representing the result. Example:
ADDI3, 4, 15]S is equivalent to 24S

IP[ANAME], where ANAME must be an address, is the integer part of the address. This must be
done when an address is used in an arithmetic or set expression. (It is not reasonable to
automatically take the integer part of an address because of confusion between its use as a source
and its use as an integer).

FVAL[FNAME], where FNAME must be a ficld, is the integer contents of the field FNAME in the
word currently being assembled. If nothing has been stored in that field yet, then the contents are
whatever value was setup by the DEFAULT statement for the current memory, or are 0, if no
DEFAULT statement applies.

9. Macros

A symbol can be given a macro value by the clause

M[NAME, body]

where the body is an arbitrary balanced string of characters (i.c., parentheses and brackets match up
and are nested). Occurrences of the text

digit

in the body will be replaced by the corresponding actual parameters (counting left-to-right from 1)
when the macro is called. Unsupplied arguments are nulstrings, surplus drgumcnls are ignored, and
#0 will be replaced by the number of arguments supplied.

33

Micro: Machine-Independent Microassembler 29 August 1978

The lexical scan of a statement is done from right to left. Whenever a symbol S is detected, it is
looked up. If S turns out to be a macro, then the macro body replaces both S and the bracketed
argument list immediately to the right of S, if there is one. Thus after

M[FOO, MUMBLE #1};

the text FOO[E]D; expands into MUMBLEED; note that D is not a symbol since] is not an R-
token. Note that the macro body is quoted and that Micro has no provision for getting any part of
it expanded at definition time.

Due to the way in which macro bodies are stored in the Micro symbol table symbols used in the
macro body should be defined before the macro is defined when feasible. Assembly will be quicker if
this rule is followed.

10. Neutrals

A symbol which has been declared neutral by a clause of the form
NEUTRAL[SYM]

is concatenated with the tail and handled as discussed in section 7.4.

11. Fields, Assignments, and Preassigninents

FIELD[FNAME, leflbit, rightbit] causes a symbol of type field to be created. Lefibit and rightbit
must evaluate to integers. Also, because of the Alto’s 16-bit integer size, the ficld should not be
wider than 16 bits or clse some bits of the field could never be set. Finally, lefibit must be in the
range [0, 255] and rightbit in the range [leftbit, min(lefibit+15, 255)).

Clauses of the form

FNAME[integer]:
FNAME[address}:
FNAME[unbound address]; or
FNAME[undefined];

where FNAME is a ficld, are used to construct memory words. A ficld assignment cvaluates its
argument in the manner discussed in' section 7.6.

Ficld assignments also have the property that attempting more than onc assignment to a field in a
statement will cause an error unless the new value = old value. (When an error occurs, the value
ultimately left in a field is that of the final assignment to it.) Forward references fixup the true
value later.

The preassignment
PF[FNAME, integer]

does nothing if any bits of FNAME have previously been assigned. Otherwise, it is equivalent to

34

i t
e

1

—

Micro: Machine-Independent Microassembler 29 August 1978

FNAME][integer] except that a later assignment will overrule the preassignment and cause no error.
Forward references are illegal in preassignments.

The integer value stored in any field of the memory word currently being assembled may be
obtained by using

FVAL[FNAME]

If the field has not yet been set, FVAL returns the default value.

12. Conditionals

There are a number of builtins which will substitute the text represented by one of their arguments
if the other arguments meet some condition. These are called conditionals, suinmarized in Table 2.

A conditional and the argument list to its right are equivalent to the "true” string, if the specified

_condition is met, or the "false” string, if it is not met. Note that any number of arguments may be

omitted. The true and false strings may be any balanced strings of characters.

Although these conditionals can be used at the top level, they are intended for use inside macro
definitions, and the string compare conditional could be used sensibly only inside macro definitions.

Table 2: Conditionals

Form Condition
IFE[l, i2, (true), (false)] il = i2
IFGil, i2. (true), (false)} il > i2
IFDEIsl. (true), (false)] sl in symbol table and not unbound address
IFSE[sl. 52, (true), (false)] sl = 82
IFA[field, (true), (false)] any bit of field previously assigned
IFME(address. sl. (truc), (false)] memory name for address = string

13. Memories, Addresses, and Stores
MEMORY[MEM, wordlength. length, sourcemacro, sinkmacro]

causes creation of a memory. Micro can manage a reasonable number (15) of these memorics,
subject to a 255-bit word-length limit and 64K-1 length limit. Once MEM has been defined,
symbols can be defined as addresses in MEM and words of MEM can be initialized. -

35

Micro: Machine-lnde])endent Microassembler 29 August 1978

An address ANAME in MEM is created by an expression of the form:
MEM[ANAME, integer]

or by using
ANAME:

in a clauselist which is stored in MEM.

Stores into MEM are generated either by selecting an address in MEM as the target. (see section
13.1) or by writing

ANAME[(clauselist)]

which stores the word assembled by the clauselist into MEM at the location of the address ANAME
and then increments ANAME. Note that the memory store and mcrementmg the address are done
iff one or more field assignments result from the clauselist.

The value stored is generated as follows: It is initialized according to the value assembled by the
DEFAULT statement (0 if there has been no DEFAULT statement). Next, the clauselist is
evaluated. Then the post macro for the memory, declared by the SETPOST builtin, is evaluated.
Finally, if ANAME is out-of-bounds, an error message will occur.

The sourcemacro MSRC and sinkmacro MSINK are applied when the address ANAME appears in
a clauselist. If ANAME is cvaluated as a token in a clauselist without a following argument list, it
is replaced by the string

MSRC[ANAME].

If ANAME« appears and is undefined, it is replaced by
MSINK[ANAME].

Note, however, that forward and external references can be generated only in the context
FNAME[ANAME],

not when ANAME is used as a source or sink.

36

.

Micro: Machine-Independent Microassembler 29 August 1978

13.1. Target Memory

At any time TARGET[ANAME] will set the target address to ANAME which means that a
statement of the form '

X: mumble;
where mumble must do ar least one field assignment, is equivalent to
ANAME[(X: mumble)];

Otherwise, the target has no effect. Note that the target memory is nof preserved in the /R file and
must be given again for each assembly.

13.2. Default Statement

Before assembly of a clauselist for storage into a memory MEM, the word is initialized to a value
which may be overruled by the various assignments in the clauselist. Normally, the initial value is
0, but this may be changed by the statement

DEFAULT[MEM, (clauselist)];

~ which assembles clauselist into a value that will subscquently initialize words being assembled for

MEM. Note that forward references are not permitted in the clauselist and that any of the dcfault
settings may be overruled by explicit assignments in a statement being assembled.

13.3. Post Macros
SETPOSTIMNAME POSTMACRO]

arranges things so that the macro POSTMACRO will be called just after a word has been assembled
for the memory named MNAME but just before the word is output to the binary file. If
POSTMACRO is null, SETPOST simply turns off this feature for the memory MNAME.
14. Repeat Statement

REPEATIil. TEXT]

assembles TEXT il times. This is used primarily for initializing blocks of memory and for
replicating nearly-identical instructions in diagnostics.

Since TEXT cannot include ";" storcs to the target memory must be put in explicitly. In other

words, the program cannot rely on the TARGET directive to insert "1LC[TEXT]" or whatever cach
time TEXT is repeated. Note that the statement buffer is cleared afier each asscinbly of TEXT.

37

Micro: Machine-Independent Microassembler 29 August 1978

15. SELECT

The SELECT builtin corresponds to the Bcpl switchon (case selection) statement. Its form is
SELECT[index, text0,textl, ... , textn]

and its effect is to replace itself with one of text0, textl, ..., textn depending on whether the value of
index is 0, 1, .., n. Note that although index is evaluated and must produce an integer result, the
text arguments may be anything at all, just as in the comparison builtins IFE, IFG, etc. If the
index does not have a value in the range 0 through n, an error results.

16. Bit Tables

Several builtins manipulate bittables. The rationale for bittables in Micro is the existence of
microprocessors (such as the Alto) in which the addressing structure imposes constraints on the
locations of certain instructions, and for which the assembler must therefore keep track of precisely
which locations have already been used for instructions. The bittable facilities in Micro are
adequate for this task in simple cases.

The builtin
BITTABLE[table,n]

makes table a bittable of size n (the bits are numbered from 0 through n-1). All the bits in the
bittable arc initially zero.

GETBIT]table,i]
returns the value of the i'th bit in the table, 0 or 1. Setting bits is a little more complicated.
SETBIT{table.i,n,delta,val]

sets n bits in table starting with the i'th bit and going up by increments of della (i.e., bits i, i+-delta,
., 1+(n-1)*dclta) to val; however, SETBIT may be called with any number of arguments from 2 to
5, with the omilted trailing arguments defaulted as follows: n=1, delta=1, val=1.

There is a builtin similar to SETBIT for locating patterns of 0-bits (available locations) in a table:
FINDBIT{table.i.n.delta.hop,count]

starts out seeing if bits i, i+delta, ..., i+(n-1)*delta in table are all zero. If so, FINDBIT rcturns
the initial location i. If not, it increments i by hop and trics again, until it has tried a total of count
times. If the scarch fails, FINDBIT returns a null string. As for SETBIT, FINDBIT will supply
default values for trailing arguments: n=1, delfta=1, hop=1, count=177777 (infinity, i.c., until the
size of the bil table is reached). The idea is that, for example, to find a pair of consccutive free
locations whose last 3 address bits are 110, 111 respectively, you would use FINDBI I table,6,2,1,10].

38

Micro: Machz’ne-]ndependent Microassembler 29 August 1978

Appendix 1. Micro Error Messages

Micro error messages are enumerated below, in which the character @ should be replaced by the
printname of the token related to the error., Unless marked with a 13 assembly continues from the
error with no special action; errors marked with ! terminate assembly.

Program Organization Errors

SOURCE FILE @ DOES NOT EXIST!
COULD NOT OPEN FILE @ FOR 'INSERT!

STORAGE FULL!
Storage required during the assembly is roughly proportional to the following computation:

1/2*Sum [namelength +1} for all symbols
+ 6* no. symbols
+ 1/2*Sum [length +1] of all macro definitions.

When this number is greater than the size of the buffer (approx. ? Alto words), the STORAGE FULL
message results.

TOO MANY MEMORIES!
Limit is currently 15 memories.

Declaration Errors

@ ALREADY DEFINED
The new definition will replace the old and this warning message will be printed.

MACRO @ REDEFINED
Just a warning (doesn’t increment error count)

ARG NOT A MEMORY NAME
For DEFAULT, which requires an argument to be of type memory.

UNDEFINED SYMBOL @ IN 'DEFAULT!

BAD PARAMETERS FOR 'F :
A field may not be larger than 16 bits nor a memory wider than 256 bits. so rightbit > 255 or rightbit-leftbit
> 16 are ficld definition errors.

MEMORY @ ALREADY USED!

ILLEGAL WIDTH OR SIZE FOR ‘MEMOR‘Y"1
Limits are 256 bits wide and 64K-1 in size

WRONG NO. ARGS TOR '@ ’ ‘
Only for those builtins which must have correct number of arguments.
Macros may have loo many or too few.

ILLEGAL BUILTIN NUMBER FOR '@'1

Statcment Assembly Errors
END O TILE INSIDE COMMENT
Terminates comment and forges ahead

INPUT STATEMENT TOO LONG
Maximum length is 500 characters, Text to the right of the 500th character is truncated.

STATEMENT TOO LONG .
During macro expansion of the input statement, the unprocessed text is never permitted t.o exceed 500

39

Micro: Machine-[ndependerzt Microassembler 29 August 1978

characters. Text to the right is truncated.

MACRO ARGUMENT STORAGE FULL
Truncates characters right-to-let up to matching ' and proceeds.

SYMBOL @ NOT LEGAL AS TOKEN
Symbol appears without its required argument list.

@ MAY NOT BE FOLLOWED BY [] -
Only macros, builtins, fields, addresses, and memories may have °[' to their right

UNPAIRED) OR] IN ARGUMENT LIST
UNPAIRED)
UNPAIRED (

TOO MUCH NESTING OF () AND [] IN CLAUSE
Limit is 8 levels

MISSING MACRO NAME OR TAG SYMBOL
No symbol to the left of a : or [

MACRO '@ NOT DEFINED
Symbol to the left of a "[* wasn’t defined

TAG @ ALREADY DEFINED

'TARGET' GIVEN AFTER FIELD SET!

NO TARGET FOR FIELD SET!

'TARGET NOT LEGAL INSIDE A STORE!

@ UNDEFINED
Not including forward references. Plunges ahead with value 0 and type integer

FIELD @ DOES NOT FIT IN MEMORY @
Right bit of field > right bit of memory

VALUE @ DOES NOT FIT IN FIELD @
Left bits of value truncated before store

ARG IN FIELD STORE NOT INTEGER OR ADDRESS
Doesn’'t do field assignment and plunges ahead

FIELD @ ALREADY SET
The new value is stored into the field ~ This message will occur iff new value # old value

ARG DOES NOT YIELD INTEGER VALUE
Assumes 0 and proceeds. Syntax OK but undefined symbol or address instead of integer.

BAD SYNTAX WHERE VALUE REQUIRED
Somcthing complicated where a simple value expected

FIRST ARG OF 'PI” NOT FIELD
No action

FORWARD REFERENCE NOT LEGAL IN 'PF
No action

STORE TO @ OUT OF RANGE FOR @

@ BAD FIRST ARG FOR 'SET
Must be integer or undefined symbol. However, redefinition will take place.

INTEGER '@ TOO LARGE
Integer MOD 2**16 is used.

ARG NOT A FIELD NAME IN CIFSET

40

-

)
—

|) l i { i

—
R i

Micro: Machine-Independent Microassembler 29 August 1978

Appendix ‘2. Limitations of the Language
Micro lacks some features and possesses certain limitations discussed below:
1. It is impossible to relocate a microprogram at load time.

2. Forward and external references are permitted only on field-assignments which means that the
occurrence of ‘

MDR «STEMP, or STEMP«MDR

where STEMP is an address in SM, cannot be assembled if STEMP is a forward or external
reference. Forward references to symbols that are not addresses are also impossible.

3. Significant size limits:

a. Symbol table storage is tight.
b. Integers are limited to 16 bits.

4. It is impossible to check the memory part of an address on forward or external references. Nor
is it possible for programs to get at the type of a symbol, at the parameters of a field or memory, or
at the name of the target memory. The "lookup’ capability of builtins is not available through any
language constructs.

5. Conditionals or macros which expand to more than one statement are impossible.

© 6. It is impossible to pull print names apart or to construct print names except by using neutral

subsymbols. In particular, it is impossible to construct constants larger than 16 bits parametrically
such that, if several constants contain the same value they can be assigned the samec location. This
is true because one cannot generate the print name "1420000S" (a literal) either directly from an
integer or indirectly from the value asscmbled by assignments. (Note that if intcgers were large
enough ADD[PI, P2, ... , P7]S would generate the litcral in S.)

7. There are a number of siluations when part of an otherwise quoted argument wants to be
expanded and there is no way to do this. For example,

IFDEFFOO[E](true clause).(false clause))
should lead to expamsion of the macro FOO[E] before checking for a defined symbol.
8. Blanks in user-defincd error messages are impossible.

9. The REPEAT builtin should supply a ";" after each rcpetition of the text, so that the ILC[..] in
REPEAT[n(ILCL...])] can be omitted.

10. PF [ficld, value] was a bad choice because it makes parameterizing the values of a field
impractical. For example, suppose that the function P«Pl is accomplished by setting the PS field to
50. What we would like to do is to definc neutrals P+ and Pl and then define the macro P«Pl as
PS[50]. If the hardware is changed so that P«Pl is accomplished by PS[20] instead of PS[50], we

41

Micro: z\lachine—[ndependent Microassembler 29 August 1978

would prefer to change only the one macro P«Pl. However, there are also several instances of
PF[PS,50] which have to be found and changed and this is the reason why PF[field, value] was a
bad choice. Instead, a preset-clauselist operation would have been better because then no other
usage than P«Pl would be needed.

To prevent some of the'above limitations or to otherwise streamline or augment the language, the
following changes should be considered (the ones followed by ? or ?? or 7?7 are not serious
proposals).

1. Make integers at least 36 bits long for MAXC, and consider variable length integers, Currently,
considerable inconvenience results from "making do" with 16-bit integers. Also this would make it
possible to get the literal equivalent of a constant constructed from parameters, which would allow
merging identically-valued constants.

2. Provide a builtin like the one for defining fields except that it takes an additional argument
which is a memory name:

AFIELD[AFNAME, leftbit, rightbit, memory].

AFNAME[address] works like FNAME[integer] except that its argument must expand to an address
in "memory" rather than an integer, or if its argument is undefined, a forward address reference is
- assumed. Forward references to FNAME[undefined] would be illegal and FNAME[address] would
be illegal. Unbound addresses would contain the memory type. This would permit memory
checking of addresses very conveniently (currently it is cumbersome) and would permit forward
references to be checked also (77).

3. Multi-statement conditionals and macro definitions should be added. Perhaps "{" and "}" could
be used syntactically to enclose multi-statement stuff.

4. It should be permissible for an argument list to appear to the right of a neutral symbol because
of the following usage:

P<LB RSH (1}

where LBRSH is a ncutral symbol, P« is a neutral symbol, and P«LBRSH is a macro. The
argument list [1] should be preserved until P«LLB RSH [1] is expanded.

5. In every place where an argument string is "looked up™ for a builtin, all macros and ncutrals
should be expanded. In other words, “looking up” an argument should be identical to evaluating
an argument, except that occurrence of any builtin causes an error. Expansion stops when a non-
ncutral non-macro symbol without brackets, parentheses, «, or : is left.

6. Currently address« is handled by the assembler, but undefined« and macro« arc not handled in
any special way. Similarly, an undefined source is not handled. It might be uscful to have these
cases result in the substitutions UDEST[undefined], MDEST[macro] and USRClundefined]. This
would permit forward or cxternal references o succeed where they don't currently and would

permit macros which cxpand to addresses to be used. MDEST, UI)PSl and USRC should be

macro names selectable by the programmer.

42

|

S

Micro: Machine-Independent Microassembler 29 August 1978

7. Currently the TARGET directive causes a top level statement to be equivalent to
TARGLC[(#1)];

where #1 stands for the top level statement. This could be changed to a general macro whose first
argument is the clauselist of the statement. However, this would slow assembly.

8. Instead of causing an error, integer results should be treated at the top level as neutral symbbls

equal to the octal text string for the integer. This would permit arithmetic to be performed and the
result concatenated with text to select one of many macros or address symbols.

43

Micro: Machine-Independent Microassembler 29 August 1978

-

Appendix 3. Binary Output Format

Micro outputs binary memory images as a series of short blocks of 16-bit words. Each block begins
with a word that specifies the type of the block; the number and format of following words depend
on the block type. During its pass through the source files, Micro outputs a message to the file
Micro.fixups whenever it encounters an assignment -

FNAME [NAME]

and NAME is undefined. At the end of processing the source files, Micro reads back Micro.fixups
and outputs either a type 3 or type 6 message (sece below) to the binary file depending upon
whether the symbol was a forward reference or undefined. Finally, it orders new or changed
address symbols by memory and outputs them to the binary file.

Midas can link up external address references at load time. Address symbols for Midas to use in
linking up external references are output as described below.

Table 4: Micro Binary Output File Format
Type Followed by Use -

0 nothing Indicates the end of the binary file.

1 source line # (1 word);
data (N words) Specifies a data word to go in the current memory at the current
location. The current location is to be incremented. N is just large
enough to cover the width of the memory, and the value is left-
justified, e.g.. for a 36-bit memory N=3 and the first word goes in
bits 0:15, the second in 16:31, and bits 0:3 of the third in 32:35

The source line # is zero if the word was generated by an INSERT
file, and has bit 0 set if the word was generated in the main file by a
STORE.

2 memory # (1 word);
location (1 word) Sets the current. memory and the current location. Memory numbers
are related to memory names by type 4 blocks (see below).

3 memory # (1 word);
location (1 word):
first bit * 256 + last bit (1 word);
value (1 word) Specifics a forward reference fixup. The value is to be stored into the
given bits at the given location in the given memory. (Current
memory and location scttings are not affected.)

4 memoty # (1 word);

width of memory in bits (1 word);

symbolic name of memory (L words)
Corrclates a memory number with a user-supplied name.
The name is packed 2 &-bit characters per word terminated by a null
(all O's) character; L=(C+ 2)/2 where C is the number of characters
in the name. The type 4 block defining a memory will appcar before
any type 2 or 3 blocks storing into that memory.

S memory # (1 word);
value (1 word);
address symbol name (L words)
Gives the definition of an address symbol. There is a type 5 block

44

. F——T [

Micro: Machz'ne-lndependent Microassembler 29 August 1978

for every new or changed address symbol. - All type 5 blocks appear
together at the end of the binary file.

6 memory # (1 word);
location (1 word);
first bit * 256 + last bit (1 word);
undefined symbol name (L. words) .
Specifies a reference to an undefined (external) symbol. The first
three words have the same interpretation as for block type 3.

The Midas program accepts any of the block types above. In addition, Midas accepts the following compact block types
which are more compact than the ones above and use less storage.

11 Dblock address (1 word);
word count N (1 word):
N data words; The left-half of the word containing the type is the memory #. The
N data words are in the same form as block type 1.

12 address (1 word);
Bcepl string (L words); The left-half of the word containing the type is the memory #. The
first word of the Bcpl string contains a character count in the first
byte (0:7), followed by the characters of the string,

45

——— — —— —/ ~— = S — — " " " r] r 1 r 1 H 1 ~— j ! 1
,,,,,,,,,,,

|

— 3 3 3

]

B
|

[

M
J—

(

3

MICROD MANUAL

20 October 1978
by

Peter Deutsch
edited by
Carol Hankins
Xerox Business Systems
Systems Development Department

3408 Hillview Road -
Palo Alto, California- 94304

»»»»»

MicroD: Instruction Placer , ‘ 20 October 1978

MicroD takes microprograms for the Dorado or D0, assembled by Micro, and completes the
assembly process by assigning absolute locations to the microinstructions. The resulting file can be
loaded into a D- machine by Midas and run. MicroD’s job is to find a way to assign locations to
microinstructions in a way that satisfies both the semantics of the source program and the peculiar
addressing restrictions of the hardware.

This document is deliberately somewhat sketchy, since it assumes that its readers have already
absorbed the necessary "culture” surrounding D-machine microprogramming and just want to know
how to convert Micro output into Midas input. At some future date it may be expanded to be
more helpful to - people just getting started.)

The simplest way to use MicroD is to assemble your entire microprogram at once with Micro,
producing a single file xxx.DIB. (DIB stands for "D-machine Intermediate Binary”.) Then you
invoke MicroD as follows:

MicroD xxx

to produce a listing file xxx.DLS and a final binary file xxx.MB which can be fed to Midas.

MicroD normally produces a listing with the following parts:
The name and initial contents of each defined R memory location.
The initial contents of cach IFU and ALUF memory location.
The label and octal representation of each microinstruction.
A summary of how much of each page of I (microinstruction) memory was used.

MicroD accepts the following global flags which affect the listing:

/N (No listing) - only produce the summary
/C (Concise) - produce everything but the octal contents of I memory

The following global flags produce additional information, not useful to the ordinary user:

/D (Debug) - print a large amount of debugging information
/T (Trace) - print a trace of the calls on the storage allocator

Normally MicroD produces its output on xxx.DLS and xxx.MB, where xxx is the name of the last
(or only) input file. You can specify a different name with the local /O switch, e.g.

MicroD xxx yyy/o

to process xxx.DIB but produce yyy.DLS and yyy.MB.

If you wish, you can assemble your microprogram in pieces and let MicroD link the pieces together.
(This can save a large amount of asscmbly time for large programs.) Suppose your program consists
of the following parts: some definitions defs].MC and defs2.MC; one large piece of code this1.MC
and this2.MC: another large piecce of code thattMC. Then you can proceed as follows:

Micro saveit/s defs/b defsl defs2

This assembles the definitions, saves Micro’s state on saveit.ST, and produces a file defs.DIB.

Micro saveit/r this/b thisl this2

47

MicroD: Instruction Placer 20 October 1978

This resumes assembly with the definitions saved in saveit, producing this.DIB. Micro will give you
a list of "undefined symbols”, which are references to symbols not defined in thisl or this2
(presumably defined in that). -

Micro saveit/r that

This again resumes assembly with the saved definitions, producing that. DIB. Again, Micro will
list the symbols not defined in that (presumably defined in thisl or this2).

MicroD myprog/o defs this that

MicroD will link together any references from this to that (or vice versa) and produce the output
files myprog.DLS and myprog.MB.

Note that you do not need to do anything special in your source files to declare labels which are
exported (defined here, used elsewhere) or imported (used here, defined elsewhere): Micro
assumes that any undefined symbol is meant to be imported (but gives you the list just so you
can check), and MicroD assumes that all labels are exported. MicroD also discards all but the last
definition of a name (e.g. the name ILC is defined in every file as the address of the last
microinstruction). '

If you have multiple .DIB files, you can control the listing mode (normal, No listing, or Concise)
for each file individually by using /L (List), /N, or /C as a local switch on the file name. The
global switch, if any, applies to any input filc that lacks a local switch. For example, to get only a
concise listing for the second part of the program in the above example, you can use

MicroD/n myprog/o defs this that/c

48

\\\\\

B

—

—J

DO MICROPROGRAMMER’'S GUIDE

¢
22 August 1978

by

Carol Hankins

Xerox Business Systems
Systems Development Department
3408 Hillview Road
Palo Alto, California 94304

WD Xcrox
8{3 Private

%’ Data

C

-

L 3

1
_d

B} S | — | S | G|

{ I S

[

DO Microprogrammer’s Guide 22 August 1978

1. Introduction

You will never get to be a super microcoder until you memorize and understand the architecture of
the machine. It is assumed that you have made some attempt to understand the DO Functional
Specification, and that you are now ready to program. This manual breaks the machine into small
parts and describes the use of each section in detail. Accompanying each part are some examples of
microcode which illustrate the features of the machine.

All numbers in this manual should be considered octal. When decimal is required, the number will
be suffixed with a "D". Any number followed by a "B" is octal.

Throughout the manual, a register called "rtemp” will be used.

The DO Functional Specification alluded to in this manual is dated January 16, 1978.

2. The ALU and Basic Architecture .

2.1. Inputs and Outputs

The last page of this section is a diagram of the processor. In the center is a box labelled ALU.
There are two inputs, labelled A and B. The A input comes from the R registers through the
cycler/masker. Also on this bus are the special-purpose R registers, such as APC, PCF... The B
bus comes from T. Notice the way constants are put on the bus. You can have a constant or T -
not both. Constants are eight bits - all of which must be entirely contained in the left or right half
of the word. There is one output from the ALU which goes into T and R, and also into the

- memory map.

Notice the signal coming in the top of the ALU, called ALUControl. There are two ways of
controlling the ALU’s operations: from the ALUF field of the microinstruction, or from a special
box called SALUF. The ALU is really a unit with 64 operations, with 14 of the most common
mapped into the ALUF field of the microinstruction. All 64 functions may be accessed by loading
SALUF. Sece the D0 Functional Specification for an enumeration of these functions. The ALU
operations are:

ALUF ALUOut =
0 B
1 A
2 A ANDB
3 AORB
4 AXORB
5 A AND NOT B
6 AOR NOTB
7 A XNOR B
8 A+l
9 A+B
10 A+B+1
1 A-l
12 A-B
13 A-B-1
14 unassigned
15 use SALUF for ALU function

&
49 <)

Xerox
Private
Dala

Do Mz'croprogrammer"s Guide 22 August 1978

The closest piece of hardware to the input of the ALU along the A bus is the cycler/masker. The
cycler/masker is used to manipulate bits from an R register, and provides some standard shifting
and masking operations. The following operations are available:

LDF{rtemp, pos, size] - right justify value rtemp of length “size” beginning at bit "pos”

RSH(rtemp, count] - right shift rtemp by "count”
LSHirtemp, count] - left shift rtemp by "count”
RCY][trtemp, count] - right cycle rtemp by “"count”
LCY|[rtemp, count] - left cycle rtemp by "count”

RHMASK][rtemp] - rtemp AND 377C

LHMASK[rtemp] - rtemp AND 177400

ZERO - a way to load a 0 on the bus

DISPATCH|rtemp, pos, size] - see the section on the jump conditions

The cycler/masker is controlled by a translation of the above instructions into the special function
field in the microinstruction. This field will be described in more detail in section 3.0, Special
Functions.

Already you know how to write simple microinstructions for manipulating the ALU. Note that
Micro requires parentheses around the A input to the ALU. Parentheses around the B input are
necessary if it is a constant, optional otherwise. Here are some examples of legal and illegal
instructions: :

Legal
T « (ttemp) + T; * an A input and a B input. Note parentheses
rtemp « (rtemp) + T; * can store into rtemp or T
Te, rtemp« (rtemp) + T; * can store into both
T « (LDF[rtemp, 14,4]) + T: * LDF is a cycler/masker function
rtemp « (RITIMASK[rtemp}) XOR T: * RHMASK is a cycler/masker function
riemp « (riemp) + (377C) * constant with lower 8 bits
rtemp « (rtemp) + (177400C); * constant with upper 8 bits
Te(zero) + T + 1; * thig is the only way to add 1to T. zerois an
* output of the cycler/masker, and A+B+1is
* an ALU function..
Mlegal
rtemp « rtemp + T; * no parentheses around the A source
Te T+ (37C); * two B bus sources
rtemp « (rtemp) + (177777C): * constant is more than 8 bits
rtemp « (rtemp) + (770C); * the 8 bits cross a byte-boundary
T « (LDF{rtemp, 14, 4] + (37C); * LDF uses F ficld and so does constant
T « (RUHMASKI[T]): ’ * T is not on the A bus
rtemp « T + 1; * no ALU function of this type

2.2. The Stack

There is a 208 word stack which is loaded from an R register. There are actually two constructs
which dcal with the stack: STKP and STACK. STKP is the stack pointer which points to an
arbitrary location in the R register bank, while STACK contains the contents of the R register
pointed to by STKP. Since the stack is on the A bus, STKP gets loaded from this bus. The actual
loading of STKP (STKPe«) is a special function; this is nccessary since there would be two R

addresses in the microinstruction otherwise. Reading STKP returns the complement of the value;

writing STKP is normal. When reading the stack, it is possible o updatc STKP in the same

microinstruction. Several options can be appended onto STACK, such as &+1, &-2... which result

<p
50 U

Xcrox
Private
Data

'O R

i

'
[SO}

l
| S

D0 Microprogrammer’s Guide 22 August 1978

in automatic updating of STKP,

Legal
STKP¢rtemp; * load occurs from A bus
t«STKP; * t contains complement of STKP
teSTACK; * t will contain contents of R register pointed to by STKP
teSTACK& +1; . - *after this, STKP will be incremented by one
t«STACK&-1; * read and decrement
STACK& + 1et; * store and increment
Illegal
STKP«t; * load can’t happen from B bus
STKP«(37C); * constant is from B bus
Caution: The stack is operated on modulo 20B, so if STKP points at register 77B, executing STACK& +1 will
have STKP equal to 60B.
Note: STKP is the only way of accessing any register in R memory.
3. The Microinstruction and Branching Conditions I IS SV

3.1. The Microinstruction

" Since you would like to do more than arithmetic and logical functions and perhaps more

importantly, you would like to maximize the work that you can get from one instruction, the
following table shows the fields in a non-memory microinstruction:

NORMAL 0 or 1 - depends on if it's a memory operation or not

RMOD used for addressing the special R registers (e.g. APC, SB, DB..)
RSEL used for R addressing. NOTL: only 1 R address per m-i.
ALUF what the ALU is supposed to do

BSEL what is supposed to be on the B bus (T or constant)

F1 special function

F2 special function

LR load R

LT : load T

IC jump control - call, goto, return, dispatch

JA where to go next. NOTE: addressing is 8 bits = > page-relative

You know about RSEL, ALUF, BSEL, and the loading of R and T. The remainder of this sectin
will discuss the branching mechanisms and the control logic of the D0. The next section will
explain the special function fields and their uses.

Alteration of the flow of control is accomplished by the JC (jump control) and JA (jump address)
ficlds. FEach microinstruction must indicate its successor. If you do not instruct otherwise, a
microinstruciton will be followed by the next instruction in your program. You can modify this in
many ways. A simple GOTO[lubel] will cause the JA ficld to contain the address of "label”.

3.2. Conditional Branches

For the programmer’s convenience, sceveral branch conditions cxist and alter the flow of control
when tested. There is a pmgr‘xmmmg feature called DBLGOTO which has the form

Q‘E’b
51 ﬁ ¥

Xcrox

<3 Private

Data

DO Microprogrammer’s Guide 22 August 1978

DBLGOTO[labell, label2, branch-condition]. If branch-condition is true, control will be transferred
to labell, if not the next instruction will be label2. The processor requires that these two labels be
one bit apart in their address. These are guaranteed to get you into trouble if you do not
remember the instruction-placement constraints. The table below describes the placement
constraints for "labell”. Labell will occupy an odd location if the condition is listed in the goes-to-
odd column below: '

JC,J4 goes-to-odd goes-to-even BRANCHSHIFT time page
000 ALU#0 ALU=0 0 t3 18
001 CARRY NOCARRY 0 t3 18
010 ALU<O ALU> =0 0 t3 .18
011 QUADOVF INQUAD 0 t3 45
100 R<0O R> =0 0 tl

101 R ODD R EVEN 0 t1 .

110 NOATTEN IOATTEN 0 t3 62
11 MB NOMB 0 tl 24
000 INTPENDING NOINTPENDING 1 t3

001 NOOVF OVF 1 t3 18
010 BPCCHK BPCNOCHK 1 3

011 SPAREBRANCH NOSPAREBRANCH 1

Note: GOTO[labell, branch-condition] is a degenerate case of DBLGOTQ with label2 = current location + 1.

The column labelled "time" refers to the time that this condition is available for testing. If "t3" is
listed, you should test this condition in the instruction following the instruction which could generate
the condition. Conditions listed as "tl" can be tested during the current microinstruction.

The BRANCHSHIFT column deals with special functions (in particular, F1), and will be discussed
fully in section 3.0, Special Functions.

The page column refers to the page in the DO Functional Specification where more information
about these conditions can be located.

Note: Don’t memorize the above table. In general you won't have to worry about even or odd placement.
Micro does it's best to let you do what you want. You will need this table only when MicroD tries to place
the instructions in the control store, and cannot succeed because of the above constraints

Following are examples of instruction placement:

T « (rtemp) + (377C);
DBLGOTOI[L1, L2, ALU#0);
regular-instruction;

L1l: mumble2; * at an odd location (L2 OR 1)
L2: mumble3; ~ *atan even location

* notice test during instruction following operation

T « (rtemp) - T:
DBLGOTOI[L1, L2, ALU > =0

mumble;

L1l: mumble2; * at an even location

L2: mumble3; * at an odd location (L1 OR 1)
DBLGOTO[LL, L2, R<0], LU « rtemp: * notice test during current instruction
mumble:

L1: mumble2; * at an odd location (L2 OR 1).

L2: mumble3; * at an even location

52

AUB. Xerox
€200« Private

GW Daa

1

i | S

L u—

|

S

=

i ! H

| S

{
| — PR

—

DO Microprogrammer’s Guide 22 August 1978

3.3. Subroutine Calls

There is a mechanism for one-level subroutines. These are accomplished by an instruction of the
form CALL[label]l. When a RETURN is executed, control will be given to the call instruction+1.

Example: Suppose that you wish to begin execution at INIT.

DoubleRAndT: T « rtemp « (rtemp) + T;
rtemp « (rtemp) + T, RETURN; * next instruction will be "MUMBLE"

INIT: rtemp « (4C);
T « (37C);
CALL[DoubleRAndT];
mumble;

3.4. Dispatch

DISPATCH is a cycler/masker function which allows the next instruction to be one of sixteen
possible addresses. The lower four bits of APC are selected via DISPATCH{rtemp, pos, size]. You
must use the "AT" construct to nail down the targets of the dispatch table. This tells MicroD that
you really know where you want this instruction to go. A trivial example of dispatch is as follows:

D: DISPATCH]rtemp, 10, 4]; * dispatch on bits 10:13B of RTMP
DISP{DO}: * set up label for dispatch
SET[DLOC, 20}; * note dispatch table on 16 word boundary

DO: gotofX], mext « (0C), AT[DLOC, 0]; * this instr will be at location 20

D1: rnext « (1C), AT[DLOC, 1]; -
goto[X], t « LDFrnext, 3, 1}; * instuctions don't have to be consecutive

D2: goto[X], rnext « (2C), AT|DLOC, 2};
D3: goto[X], rnext « (3C), AT[DLOC, 3J;
D4: goto[X], rnext « (4C), AT|DLOC, 4];
DS: goto[X], rmext « (5C). AT[DLOC:; 5};
D6: gotofX]. rmext « (6C), AT|DLOC, 6};
D7: goto{X]. rnext « (7C). AT{DLOC, 7};
D10: goto[X]. rnext « (100), ATIDLOC, 10};
Di1: goto]X]. rnext « (11C), AT{DLOC, 11};
D12: goto{X]. rnext « (12C), AT|DLOC, 12];
D13: goto[X]. mext « (13C), AT{DLOC, 13};
D14: goto[X]. rnext « (14C), AT[DLOC, 14];
D1S: goto[X]. rnext « (15C), AT|DLOC, 15}
D1l6: goto[X]. rnext « (16C), AT[DLOC, 16];
D17: goto|X]. rnext « (17C), AT[DLOC, 17].

X: © T « (rnext): _
Caution: [ardware exccution of a DISPATCI requires that all four of the low address bits come from APC.

This requires all tables to be on 16 word boundarics, no matter how small your dispatch lable is. Failure to
follow this will result in truly bizarre execution.

35. Changing Page's

As noted above, a microinstruction does not know what page it is on, and can only jump to
addresscs on its current page. There arc ways to circumvent this at assembly-time and at run-time.

Asscmbly-time

ONPAGTE]xx] - dircets assembler to put this instruction on page xx.
' ‘ AT2 Xerox
%8%9 Private

53 Data

DO Microprogrammer’s Guide 22 August 1978

AT[nn] - the assembler assumes that it has been given a 12 bit address, and puts this instruction on the page
indicated by the top four bits, and the offset of the last eight bits.

Run-time
LOADPAGEIn] - this is to be done before every branch that will be on a different page.
GOTO, DBLGOTO, CALL, DISPATCH.

This includes

3.6. Notify

When one wants to jump to a specific location in a specific task, APCTASK&APC are loaded with
the desired information, and a RETURN is executed. :

rtemp « (20C);

rtemp ¢« (rtemp) OR (160000C);
APCTASK&APC « (rtemp);
RETURN;

L1 : T «(0C), AT[20):

* set up the location you want to get to
* OR in the task number = 16
After execution of the first block of code, control will be transferred to L1 with task 16 active.

4. Special Functions

~ The F-field decodes are as follows:

CODE FI F2 GROUP B

00 BBFA REGSHIFT unused

01 RS232« STKP+ RESETERRORS

02 LOADTIMER FREEZERESULT INCMPANEL

03 ADDTOTIMER STACKSHIFT CLEARMPANEL

04 unused CYCLECONTROL« GENSRCLOCK

05 LOADPAGE SBe RESETWDT

06 unused DBe BOOT

07 GROUP B NEWINST SETFAULT

10 no-op BRANCHSHIFT APC&APCTASK «

11 WFA SALUF« RESTORE

12 BBFB no-op RESETFAULT

13 WFB MNBR« USECTASK

14 RF PCF« WRITECS0&2

15 BBFFBX RESETMEMERRS WRITECS1

16 NEXTINST USECOUTASCIN READCS

17 NEXTOP PRINTER « DOOFF
(NEXTDATA) ‘

Functions can be best be explained by division into categories. Following cach group name will be
the pages in the DO Functional Specification where more information in available. The only
function groups expected o be of concern to the programmer arc: Useful, ALU, and Sncaky. The
rest of the functions should remain unused by most code. In addition, registers used for the Mesa
cmulator and BitBLT should be avoided.

Uscful functions:
APC&APCTASK « - used to directly load this register from ALUA. This is the recommended way to do a notify
of a differemt task at a different location. It is usually followed by a RETURN,
USECTASK - forces the next instruction to be taken from the current task. This usuaily precedes a RETURN, and
prohibits task switching.
1.OADPAGE - uses IF2 for an argument.

This statement should precede all CALLs or GOTOs which reference a
diffcrent page. .

54 A

P

Xerox
Private
Data

,I/_AJ [S

ey
| S

[
[

i

S—

7 Y H ! / 1 H i
e

|G

DO Microprogrammer’s Guide 22 August 1978

ALU functions (p. 17-18):
FREEZERESULT - inhibits loading of RESULT register. This is used to save the output of the ALU from one
instruciton to the next
USECOUTASCIN - use carry out as carry in.
SALUFe - can expand the ALU to its full capabilities.

Sneaky functions: THESE GET SET WITHOUT YOUR EXPLICIT KNOWLEDGE!!!!!
REGSHIFT - Set by accessing certain R registers (PRINTER, DB, SB, MNBR) and invoking BBFB.
STACKSHIFT - Set when STACK&+2, +3, -2, -3 are used
BRANCHSHIFT - Set by certain branch conditions: MPCARRY, NOOVF, BPCCHK, ALU=<0.

BitBLT (p. 22):
BBFA - sets up 3 bit dispatch based on SB, DB, MNBR for the next instruction
BBFB - update of the x level from MW. SETS REGSHIFT!
BBFBX - update of the main level from MW
SB¢ - loaded from A bus
DBe - loaded from A bus
MNBR¢ - loaded from A bus

Mesa (p. 20-22):
STKP¢ - loaded from A bus
WFA - Mesa Write Field
WFB - same
RF - Mesa Read Field controlling the cycler/masker directly from field descriptor .
NEXTINST - used for Mesa instructions
NEXTOP, NEXTDATA - used for Mesa- instructions
PCF¢ - loaded from A bus '
CYCLECONTROL¢ - loaded from A bus. This is a way for controlling the
cycler/masker. It also loads SBX[0:5], DBX[0:1].

Auxiliary Registers (p. 27-30):
RS232« - from B bus
PRINTER« - loaded from A bus

Modification of Control Store (p. 39-40):
WRITECS0&2 - preceeded by APCTASK&APC +« x, where x is the address you want
to write in. Word 0 is written from A bus, word 2 from B bus.
WRITECS1 - item on A bus written to word 1 in location in APCTASK&APC

Note: when writing an instruction into the control store, it is the responsibility of the programmer to write proper
parity.

READCS - reads a word from the control store. For the values 0. 1, 3 of T,
you get word €. 1, and 2 from control store into CSData. Word 2 comes back in bits 0:3 of the
word, with bits 4:20 coming from word 1

Timer functions (p. 30-33):
LOADTIMER - loads a timer from ALUA: bits[0:3] state, [4:11] data, [12:15] slot
ADDTOTIMER - increments a timer from ALUA -

Maintenance panel:
CLEARMPANEL - clears the maintenance panel
INCMPANEL - increments the maintenance panel

System functions:
RESETERRORS (p.38) - clears the freeze on CIA, RESULT and resets PARITY and the fault logic
RESETMEMERRS - clears the memory error logic
RESETFAULT - resets the fault logic
RESTORE (p.38) - loads RESULT register from 112, loads APCTASK&APC from ALUA. This is to testore the
machine state after a FAULT.
GENSRCI.OCK - clock out bits to the 10 controllers
RESETWDT (p.27) - reset Watchdog timer
BOOT - initiate a software boot
SETFAULT - cause a fault to occur

Qﬁ&
55 =) W

Nerox
Private
Dala

Do M[croprogrammer’& Guide 22 August 1978

5. Memory and 170

5.1. General comments

This section is an amplification of the D0 Functional Specifications of January 16, 1978. Its
purpose is to provide an interim guide to the proper use of memory and 10 operations. You
should assume that any topic not covered here is considered correct in the manual. If you follow
the guidelines listed, you should not run into any trouble. Ignoring them will get you into funny
situations whose symptom is that the data is not where it should be when you think it should be
there. The three main topics to be discussed here will be quadword alignment, bypassing, and the
memory interlock feature,

Words and phrases in italics are meant to convey a special meaning. If one wanted to avoid
trouble, verbs should be read as "must".

5.2. Comments on style

Since the memory operates in parallel with the processor, there are certain hardware features which
will prevent you from accessing a location which is an operand in the memory operation which is
running concurrently, if these features are used correctly. When an instruction following a memory
operation attempts to use data from that operation, the instruction aborts (this means that time
freczes until the operation is complete). Efficient microcoders will not write code in this mannecr,
but will use the cycles between a memory operation and use of the data for other necessary code.
A forthcoming section will list the maximum execution time for memory and IO’ instructions.

5.3. Quadword alignment

Memory operations dealing with transference of more than one word should adhere to double- or
quadword alignment. The memory instruction has two fields involving R registers: the base
register field and the SRC/DEST field. The base registers should be an even and odd word pair.
The even word is the page and displacement, and the odd word contains the upper bits of the
virtual address. '

Caution: If the base pomtcr is denoted BP[0:23], bits 0:7 in the odd register hold BP[O 7). and bits 8:15 hold
the BP{0:7]+1. This is incorrect in the manual

Caution: Scction 5.5 hints that bits 0.1 and 8.9 of the base register can get you' into trouble if they are not set
properly. For safe use, these four bits should be explicitly set to 0 by the programmer.

In general, you should always have aligned registers and memory. You can transfer data to a non-
quad (or double) aligned R register, but it will defeat the interlock(see below). 1f the memory is
not quad or double aligned, the memory will pick the smallest outer bound matching your request
and transfer those words to you. For example, exccuting a PFetch4 with a memory address of 2
will not give you words 2,34, and 5. It will give you 0,12, and 3.

Caution: Do not use register 0 in any task block for a SRC/DEST. This forces use of the stack.

Note: The signal QUADOVF is generated only in the following situation: The stack is used for a PFetch2 or
PStore? with memory address equal to 3 mod 4. This is not a general signal which occurs whenever you cross

a quadword boundary. v\:y
AUD.
56 1

Xerox

Private

Data

bt

»»»»»

!

DO Microprogrammer’s Guide 22 August 1978

5.4. Bypassing

A non-memory instruction is broken into four cycles: cycle 0 reads the R registers or T, cycles 1
and 2 are taken by the ALU operation, and cycle 3 writes R or T. Since another instruction begins
at the beginning of cycle 2, data needed for this instruction will not have been written when the
read occurs. The hardware notices this, grabs the needed data for the current instruction, and does
the write during cycle 1. The bypass is only good for the following instruction. Bypassing only
allows data to be used from one instruction to the next; it does not imply storing.

If the instruction following a store is a memory instruction, the write will be delayed for another
two cycles. This means that the store will not take place until cycle 1 of the instruction following
the memory operaton. As an example, consider a sequence of three instructons, the fmiddle one
being the memory operation. A memory instruction reads R registers in cycle 0 for bits 8:23 of the
virtual address, and in cycle 1 for the upper bits. Since the R memory cannot be read and written
in the same cycle, the second read required by the memory operation forces the write of instruction
1 to occur in cycle 1 of the third instruction. The bypass of data from instruction 1 to instruction 2
will work, and give data to the memory operation for its cycle 0 read, but not its cycle 1 read. This
is why you can load an even base register before a memory operation, but not an odd base register.

Read Write - can’t take place because of read for memory
/ / / / /

Read Read

[meenen [ommome /

Read Write - from above is done here
/ / / / /

5.5. Memory Interlock

The memory interlock is provided to protect you from accessing data which may not have been
operated on by a preceding memory operation. Use of quad or double word aligned registers will
make this work smoothly; nonaligned registers defeat the interlock. The actual R register address
is compared (with appropriatc low order bits omitted if the operation is double or quad) with R
addresses in MC1 and MC2, and the instruction is aborted until the memory is finished. If you like
to gamble, you can use non-aligned registers and access those protected by the interlock in the next
instruction, but wait until some time later to access the other registers.

Some people have failen victim to a few bizarre occurrences, and with memory timings, there can
be a lot of bizarre occurrences. If you have a problem with the memory, check your code with
some of the examples below, particularly the "Gotcha" section. If you find another example of
something which doesn’t work, please send it to me.

Examples
Proper use of the memory will look like the following:

RV[rbaseEven, 10];
RVirbascOdd. 11];
R Vjrsre2, 12);
RV|rsred, 14);

AUD
Bt

Xcerox
Private
Data

D0 Microprogrammer’s Guide

RV[rbaseEven2, 20];
RV[rbaseOdd2, 21};

RV[rtmp};

L

rbaseOdd « valuel;
rbaseBven « value2;
PFetch2[rbaseEven, rsrc2];
t « rsre2;

2, rbaseOdd « valuel;
rbaseEven « value2;
PFetchd|rbaseEven, rsrcd];
t « rsred;

3 rbaséOdd « valuel;

rbaseEven « value2;
PFetch2{rbaseEven, rsrc2];
rbaseOdd2 « value3;

tmp « t;
PFetch2{rbaseEven2, rsrc2};

Improper use of memory:

22 August 1978

* set up Odd register first

* set up even register - bypass will get proper

* value to mem op in cycle 0

* when memory done, this instr will be executed

* this could also be rbaseEven2 « mumble
* need this to be sure store is accomplished

1 rbaseEven « value2;
rbaseOdd « valuel; * mem op needs this in cycle 1, but bypass
PFetch2{rbaseEven, rsrc2); * only works for cycle 0

2, rsre2 « value3; * set up a register to be stored
PStore2[rbaseEven, rsrc2]; * rsrc2 will not have been written when this

* begins (note 1, page 47)

3a. tmp « value3; * this will not work because of the bypassing
MemOp{rbaseEven, rsrc2); * mentioned above. Writing of rtmp is in cycle
t « rtmp; * 1 of this instruction

3b. t « value3; * same reasons as 3a.
MemOpjrbaseEven, rsrc2};
tmp « t;

Gotchas:

1. When you do a PFetch or PStore, and you are using a register which is out of your 16 per

task allotment, you arc likely to be writing into the wrong register. If you use 16 registers, your
RSEL field in the microinstruction will contain only 4 bits. As you may recall from R addressing,
the top two bits of the 6-bit RSEL ficld are conditionally ORed with your task number. When
doing a PFetch or PStore, the task bits are unconditionally ORed with your task number, which
may or may not change the R address.

2. PFetchl{rbaseEven, rsrc2];

L.OADTIMER|[rsrc2]; * this will defeat the interlock!!!!!!!

This bug/feature is very subtle. Unfortunately, Micro decodes this instruction in such a way that
the register rsre2 is not considered a source and thercfore the interlock is not checked. This will
happen to ALI. special functions which load a register from ALUA, and therefore includes
APCTASK&APCe. BLEWAREN The way to get around the above, is to say:

luersrc2. LOADTIMER:

Now rscr2 will be checked.

‘ \#/ Xerox
é % Private
58 G\ pua

,‘
|-

i i
LR

f
{

7 1
L

]

Do Microprogrammer;s Guide 22 August 1978

6. Getting Started

Most of the information which you will need will be present on Iris, and eventually Isis. We have a
directory called DO. This is the first place you should go and look for any programs or
documentation that you need. There is also a microcoder’s distribution list which is on
[maxc] < secretary > dOusers.dl. You will receive notification of new programs or updates via this
distribution list Send a message to Jeannette Jenkins in CSL to get on this list.

There are two files on [Iris] < DO > which can be used to create a microcoder’s disk. If you have a
virgin disk, you should obtain a copy of <alto > newdisk.cm from your local file server. After
running this, get [Iris] < D0 > newmidasdisk.cm for a Midas disk or <D0 > newsimdisk.cm for a
simulator disk. Either command file will give you all the files you need to use for microcoding.
For a disk already containing an operating system, FTP, Chat, Bravo, and other basic programs, you
need to run [Iris} < DO > midasdisk.cm or < DO > simdisk.cm. This will provide you with enough
Mesa to run Midas or the simulator and all needed microcode files.

The first document to be read is the D0 Processor Functional Specification, January 16, 1978. This
explains the hardware and also gives you pictures of the architecture which are useful to look at
while coding. After reading this, you should look at the DO MicroAssembler manual (which is in
this guide) to familiarize yourself with the microcode syntax. After this, you should be able to write
a simple program.

Given that you've now written a program, you need to assemble it. Actual assembly is
accomplished by two programs: Micro and MicroD ([Iris] < DO > micro.run, microd.run). Micro is
the main assembler; MicroD's function is instruction placement in the microstore, Micro is a very
general microcode assembler, and it accepts language features from a file called DOlang.mc
([1ris] < DO > DOlang.mc). This file is assembled with each of your microcode files. If your file is
named Test, you would assemble it in the following manner:

Micro DOlang Test
Assuming you got no errors, you would then proceed with

MicroD Test

At this time you have a file called Test.mb which is ready for loading into the DO or for use with
the simulator.

It is possible to check out your code without a D0. A DO Simulator ({Iris] < DO > s.bed) exists, and
is very uscful for code which does not use and IO routines. There is a very rcadable document on
how to use the simulator in this manual. The simulator closcly tracks the 10 and any changes
made to it. Once your program runs through the simulator, you can be very confident that it will
work on the D0. The simulator has a feature for running in non-overlap mode which is most useful

for dcbugging.

On the DO, microcode programs will be run and debugged with a program called Midas. Midas has-

its own documentation in this manual. The Midas system is in the form of a "dump” file and is on
[Iris] < DO > midasrun.dm. If most of the information in this scction is new to you, don't bother

getting into Midas yet.
(53

DT
50 %8%9 Private

Xerox

Data

DO Microprogrammer’s Guide 22 August 1978

Caution: NEVER get Midas unless it is in a dump file. Midas and its auxiliary files are quite dependent

7. Caveats

You must execute a TASK function evéry 12 microinstructions to insure that data from higher
priority devices is not lost. A TASK clause in a microinstruciton is a cheap trick to execute a
CALL and a RETURN, since RETURNS are the only way a higher priority task can gain control.

NEVER use more than sixteen R registers for a given task.

If you are writing microcode which will be incorporated into a release, you must "check out” a
prefix from the person in charge of DO microcode releases (currently Carol Hankins). This prefix
will occur before your labels and register names.

Anyone who does not follow the above rules will receive no help from me whatsoever.

8. Suggested Programming Style

It is highly unlikely that you will be the only person reading your code, so below are some
. suggestions which will make your fellow coder’s life easier.

As mentioned in the Caveat section, if this piece of code will ever be in a microcode release, you
must check out a prefix from me. This prefix is to be used in front of all R register names and
labels. Given that they all begin with this prefix, they can still be named something which suggests
their function. It is possible to define many names for a particular R register (by executing as many
RV’s as are nccessary), and if your code can be sectioned in a reasonable manner, you may want to
try this technique,

If you usc names which are a concatenation of two or more syllables, you might consider using
lower case letters and having the next syllable begin with upper case. This produces quite readable
text. If you use lower case, you must call the micro-assembler, Micro, with the "/u” switch on the
command line,

Micro, makes it quite easy to define constants which assign English-like names to arbitrary sets of
bits. There are two facilitics for accomplishing this. The macro MC[name, number] defines a
constant; i.e., every time the assembler finds "name", it substitutcs the number appended with a
"C". SET[name, number] will give you the number without a "C" which is suitable for use as a
parameter.

Examples:

MC(}bitMask. 200 * used for expressions like riemp«(rtemp) OR (bitMask);
MC[scctorMask, 16400]; * T«(DiskAddr) AND (sectorMask);

* use this as a parameter as in ONPAGE[myPage]:

SryenyFege. 3 * DISP|dispLoc];

SET]dispLoc, 200]:

Note: It should be noted that constants formed in this manner must still adhere to the eight bit limit
discussed in the section on constants, :

av>

Nerox
Private
Dala

00 | U

/////

L d

L1

—

]

]

D0 Microprogrammer’s Guide 22 August 1978

It is suggested that you begin each of your modules with a SETTASK and an ONPAGE.
Parameterization will make these easy to change later on. You should also begin your modules with

a "notify" to get you to the proper task and location for the start of your code.

In addition to writing readable code, you should also try to pack as much in any given

microinstruction as is possible.

y %

4UD

Xerox
<3 Private

W Data

Do Microprogrammer;s Guide 22 August 1978

9. Sample Programs

The following code is a template of what microcode files should look like. It is filed on
[iris] < d0 > template.mc, and you are welcome to retrieve it. It is assumed that you will insert your
code via Bravo. Micro knows about Bravo trailers, so you may format your code as much as you
would like.

builtin[samplelnsert, 24]; * you can do this if you want to insert a file
samplelnsert{dOlang]; * like DOlang of a defs module so you won't have
* to type it on the command line to Micro
title[template]; * give it a reaonable title.)
%

Next put in some comments as to what this code does. If it is a long comment, you can
enclose it between two percent signs. You might also want to include any assumptions
that are necessary for this code to work,

%

* your local constants

mc[sectorLate, 4000]; * makes a symbolic constant

mc[resetEverything, 13]; * another

mcffirstLoc, 20]; * first location you want to go to

* your parameters

setimyTask, 4]; * see use in settask statement below

set{myPage, 13}; ’
set{dispLoc0, OR@[LSHIFT[myPage, 10], 0}}; * a handy way to parameterize dispatch tables
set{dispLocl, OR@[LSHIFT[myPage, 10], 20]]; * 50 that if your page changes you don't have to

* manually change those locations

settask[myTask]; * used to allocate proper R registers - does NOT make you
* run in that task. You have to do a notify. Sece below

» r.égister declarations

rv{rtemp, 0}; * you can force use of a particular register this way
rvlcount, 1; * actually you don't need "1", regs are assigned in order
rvibaseEven, 2]; * a good way o set up base register for memory ops
rv[baseQdd, 3}; * other half

rviword0]; * a quad-word buffer beginning at R register 4
rvwordl];

rviword2};

rvfword3};

* ready to begin your code
onpage{myPage} * directs assembler where to put it

* bootstrap yourself up to your task and load your TPC

init: rtemp « myTask:
rtemp « Ishiretmp, 14]; * put it in the task field for loading APCTASK&APC
t « firstLoc;
rtemp « (rtemp) OR t;

apctask&ape « rtemp; * do the notify

return;
actualStart: t « rtemp, at{firstLocl; - * you are now running in your task
end., ' * that's all

47>
62 9 \v

Xerox

& 0O«€ Private

Data

R A T

T
! |

L

]

r

1

D0 Microprogrammer’s Guide

22 August 1978

The file, [Iris] <_D0 > sample.mc, consists of sample programs, which are each prefaced with what I
hope they will illustrate. The sections can each be broken out (code between TITLE and END)

and be assembled and run through the Simulator, if you wish.

TITLE[Samplel];

* This code takes the number in R register RNum and multiplies
* it by 10. This is accomplished by multiplying it first by

* 8, multiplying a copy of it by 2, and adding the resuits,

RV[RNum];
RV[RTempj; *just a temporary register

INIT: RNum « (40); *initialize it
START: T « RNum; *need to copy it into T to get it to RTemp
RTemp « T: *RTemp = RNum
RTemp ¢ LSH[RTemp, 3]; *RTemp = 8*RNum
RNum « LSH[RNum, 1}; *RNum = 2*RNum
T « RTemp; *putin T so we can add them
RNum « (RNum) + T;
GOTO[START};
END.

%
I;Iow we try and make the above a bit more efficient.
(4

TITLE[Sample2};

- RV[RNum]j;

RV[RTemp];

INIT: T « RNum « (4C); *loading T is free
TIMES10: RTemp ¢« T,
T « RTemp « LSH{RTemp, 3}
um « (LSH[RNum, 1}) + T: *shifting is on A-bus
TO[TIMES10];

END.
%

Moving right along, let’s look at branching. The important things to remember about branching are
that ALU conditions are available at t3 (after cycle 2) and are saved, while R conditions are

available at tl, and are destroyed after this time.

In the next program, we’re going to use two subroutines. GETVAL is totally mythical - assume it

gets a number from somewhere and puts it in T.

TIMES10 is the above code made into a

subroutine. The following program reads a count via GETVAL, then calls GETVAL to give it
numbers which it makes positive if they aren't, and then multiplies them by 10. When finished

with that loop, il goes back up to get another count.

%

TITLE[Sample3};

~ RV[RNum];

RV[RCounl];
RV[RTemp};

START: CALL{GETVAL};
RCount « T;

GOTO[DONE, R< 0}, LU « RCount: *way to put something on bus

* could have tested on T above via
* GOTO[DONE, ALU<0};

AGAIN: NOP; *see below for explanation

63

AU, Xerox

<) Privale

% v Data

DO Microprogrammer’s Guide 22 August 1978

CALL[GETVAL};

RNum « T;
* again, could have tested on T as above

GOTO[MULR, R > =0], LU « RNum; *if it's positive, jump

RNum « (RNum) XOR (100000C): *make it positive
MULR: CALL[TIMES10};

RCount « (RCount) - (1C); *decrement count DBLGOTO[AGAIN, DONE, ALU#0];
DONE: GOTOI[START];

TIMES10: T « RNum;
RTemp « T,
T « RTemp « LSH[RTemp, 3];
RETURN, RNum « (LSH[RNum, 1) + T;

END. ’ .

%

Many errors can be avoided by understanding the branching logic. CALL'’s always have to be at
even locations. DBLBRANCH and DBLGOTO go to odd locations if true, and even if false. The
DBLGOTO which is right before the label DONE is supposed to go to AGAIN if true, and DONE
if false. At AGAIN, we really want to do a CALL[GETVAL], but since the branching logic dictates
that AGAIN be placed at an odd location, we have to put in a NOP.

%

10. Common Error Messages

Micro occasionally produces rather baroque error messages. . For a complete list, see the Micro
documentation. The following are the ones most commonly received when beginning:
RREGISTER -+ B Undefined - a missing set of parentheses around the "A" field of the the ALU function in

the instruction. This comes from @ statement like T « RTEMP + (1C), where the above message would be
RTEMP+B Undefined. ;

Field RSEL2 already used - this usually results from referring to two R registers in the same statement. There
is only space for one in the micro-instruction. RTEMP ¢ (RADDR) + (T) is illegal

Illegal constant - a constant in a microinstruction can only be 8 bits, cither the upper or lower 8. If you need
a constant which is longer you need to do it in two instructions.

T+B Undefined - you are trying to put two things on the B bus. Look at the diagram of the D0. An
instruction of the form T « T + (377C) is not possible, since T is on the B bus, and so is the constant.

Field BS already set - Bsel is 0 or 1 for a constant, and 3 for the cycler/masker., Thus, RTEMP «
RSH[RTEMP, 1] AND (2C) would produce this message. This statement also produces “I'lused.twice".

MicroD is the part of the assembler which places the instructions in their final locations. Any
messages received from MicroD) are because of placement constraints. The following are the most
common:;
Attempted to link LabelX with LabelY - you probably have two DBLGOTOs which require LabelX or LabelY
to be on an even location for one and an odd location for the other:

e.g. DBLTOGO|LabelX. LabelY, alu#0);
DBLGOTO[LabelX, LabelZ, alu> =0);

Impossible allocation constraints - Most likely there are two CALLs in sequence.

A printout of all locations on two pages - This probably results {rom doing a GOTO/CALL to a different page
not being preceded by a LOADPAGE.

(=
—

|

r

[[1 T [T [Tl

A5 Xerox
€ t_‘f'-ﬂ Private
64 % Data

]

L] -

1

C

]

L.AJ

1
[

S DD e

MIDAS MANUAL

29 December 1977
by

Edward R. Fiala
edited by
Brian Rosen
Xerox Business Systems
Systems Development Department

3408 Hillview Road
Palo Alto, California 94304

1 T 1 i —
i H i
3

L1

C i

]

. L i o L o Lo o i [L

C

h) Al
[

-

f
| S

L3

Midas Manual . 29 December 1977

1. Midas

Midas is a loader/débugger with versions existing for the Maxc2, Dorado, D0, and M68
microprocessors. Midas runs on an Alto, controlling the target machine remotely. It is used for
loading/dumping microprograms assembled by Micro, for examining and modifying storage and
control signals, and for testing the hardware in an assortment of ways.

Midas is about 90% coded in Bcpl and 10% in assembly language. The Maxc2 version was
implemented by E. R, Fiala and H. E. Sturgis. The Dorado, D0, and M68 versions consist of
machine-independent modules implemented by E. Fiala (ISF and Overlay packages implemented
by L. Deutsch and A}lto microcode by E. Taft are also used) and machine-dependent sections
implemented by E. Fiala for Dorado; D. Swinehart and P. Baudelaire for M68; D. Charnley, C.
Thacker, B. Rosen, and C. Hankins for DOQ.

An internal description of Midas is available to anyone interested in adapting Midas to a new
hardware system (see Maxcl < D1Docs > MidasInternal Press).

2. Starting Midas;

To start Midas, simply say "Midas” to the executive or, more generally, "Midas com-file". The

- following ways of starting Midas are of particular interest:

midas/i initializes (required when any Midas files move or change);
midas simply fires up Midas;
midas debug starts Midas and immediately rcads commands from the

"Debug.Midas” command file

"Midas debug<cr>" to the executive is equivalent to bugging the "debug” item in
the submenu put up by the "Run-Prog” command.

Midas command files have the extension ".Midas". Generally, there is one command file for each
hardware diagnostic, with the same name as the diagnostic, e.g.

dgbasic.mb the diagnostic;
dgbasic.midas the command file.

A command file following this convention loads the diagnostic into the microprocessor and
displays various registers of interest when the microprogram is in use. Assorted command files
currentlly in use are’ discussed later, in the section about "Run-Prog” and "Rcad-Cmds".

3. Midas Display

Al the top of the Midas display are a number of name-value menus. Below these arc the name of
the last microprogram loaded, two command comment lincs, the command menu, and the input text
line. When you move the mouse over a name-value menu or the command menu, the menu item

selected (if any) turhs black.

65

Midas Manual 29 December 1977

Note that mouse actions execute when you RELEASE the mouse button, so you can move the
mouse with the button depressed without causing damage. If the mouse is no longer over the
selected menu item, nothing happens when the button is released.

A name-value menu may contain a register or memory address in the name area and its contents in
the value area. A memory address may be specified as the memory name and word number, or as
the name of an address symbol defined in a microprogram you have loaded. The address symbol
may be followed by +/- displacement.

Name-value areas are of different sizes. Smaller areas on the left are alrecady filled in when you
fire-up Midas. You can clear these or replace them with other stuff from your microprogram, if
you want to.

Initially, some name-value menus are empty. The largest areas on the right should be used for
items with long names or values. If the item you display overflows the selected area, the right-
most characters of the name get truncated, then the left-most characters of the value.

To display a new item, type its name (which will appear on the input text line), move the mouse
over the name field in a name-value menu, and push-and-release the left (or top) mouse button.
Memory addresses in your microprogram may optionally be followed by a displacement " +n" or

"_.n " ”"

n". n" is the same as "4n".
If the command line is empty, the selected menu will be cleared when the button is released.

When you push the right (bottom) mouse button over a name field in which an address is
displayed, a subsidiary menu appears as follows:

A+l A-l
"A+1" increments the address, displaying the next location. "A-1" decrements the address.

Releasing the middle button over an address item shows an alternate printout (if any) on the
command comment lines. If the input text line is non-empty, it will first display that item.

Releasing the left button over a value item, evaluates the input text and stores the value (or 0 if no
text typed) in the sclected register. The input tcxt may consist of octal numbers or memory
addresses + /- offscts. For memorics and registers whose values are displayed as scveral fields, the
input text must also be divided into fields. Blanks must be inscrted where Midas prints blanks in
the displayed value of the register.

Midas also provides for special input evaluation based upon the register or memory into which the
value is to be stored. At the present time, an alternate input routine is implemented for registers
and mcmories that contain microinstructions (MIR, IM, and IMX on Dorado). These are
discussed later.

Releasing the middle butlon over a value item shows an alternate printout of the value on the
command comment lines. The altcrnate for registers that normally hold IM addresses is the
nearcst IM address tag less-equal to the value+offsct (The value is also put on the input text line,
so you can cxamine that IM location in some name-value menu, if you want t0.). Registers and

66

[

1] E"”'@ i

| I
e

|
| "

—

L

e

i 1
| S—

7

1

]

L

v
i
—

2 o o 3

et

Midas Manual ' 29 December 1977

. memories that contain microinstructions may also be printed out symbolically. These are

discussed in more detail later.

Releasing the right button over a value item appends the text of the value to the input text line.
This is primarily used ini command files to move values from one register to another.

Summary:
Name-field Value-field
Left Button Examine Change value
Middle Button Alternate printout Alternate printout
Right Button A+l A1 Append vailue to input line

4. Midas Command Mcnu

The command menu contains a list of commands or actions that Midas can execute. The basic
menu is modified under some conditions. For example, the "Dump” menu item only appears
after you have done a "Load". During execution, some commands replace the command menu by

sub-menus.

For the command menu, all mouse buttons are presently equivalent (On Dorado, "Ck-DMux" and
"No-ck-DMux" actions are exceptions). Many common actions may alternatively be initated by
keyboard command characters, as given in the action table below.

General philosophy on ﬂixing keyboard and mouse button control is that, when possible, a
command involving some typing is carried out completely at the keyboard, whereas commands
involving mouse buttons are carried out completely with the mouse.

For example, to start a midroprogram at some address, you normally have to type an address; then
you could bug the "Go" ilem in the command menu, but normally it is more convenient to type
"address;:G" because you won't have to lift your hand from the keyboard; ";G" are the command

characters cquivalent to bugging "Go".

Many commands are executed in overlays. When these get executed, the register display will tum
off (The code for overlays resides where the display bit buffers would otherwise be.). During
loading or execution of command files, the display is turned off to make the machine run faster.

Long-running commands normatly display an "Abort” menu item. When this is bugged or when
control-C is typed, the action terminates.

67

Midas Manual

Input

Char

Menu Item

29 December 1977

Comments

Actions (potentially) available on all implementations of Midas

[File]

File

Files
Files
[File}

[File}

Addr
IMaddr

[IMaddr]
[IMaddr]
{IMaddr}
[IMaddr]
@

@IMaddr

" @IMaddr

@
@

- @LDRaddr

.. i .

WaR @

R
S

Read-Cmds

Show-Cmds
Write-Cmds
Run-Prog

Load
LoadSyms
Dump

Compare

Break

UnBreak
Go

Go

Step
Reset

Test
Test-All
Rep-Go
Rep-SS
PEscan
Field-loop
LDR-loop
Virtual
Absolute

Executes command file (def. ext. ".Midas”) on input text line or from
submenu

Shows command file text for selected menu items

Write subsequent commands on file

Run microprogram selected from submenu (restricted use in command
files)

Loads .MB files

Loads only addresses from .MB files

Dumps compacted .MB file using the .MB file(s) of the previous load
to control what's dumped :

Compares microprocessor data to data specified in MB file--compare
file must not have fixups for forward references

Prints value of an address (illegal in com-file)

Inserts break point (The breakpoint occurs after the instruction containing
the break has been executed.)

Removes break at address (last break if nothing typed)

* Start at address (continue if nothing typed)

* Same as :G (more mnemonic when you mean “proceed”)
Single-step at address (continue-step if nothing typed)

Reset or cold-start the machine. Assorted options: are controlled by a
subsidiary menu.

* Test register or memory (see below)

Test everything (see below)

* Go at address, repeat endlessly after halts

* Repeatedly step at address

Scans local memories (IM, IFUM, RM, T on Dorado) for parity errors
* For scoping (see below)

* (see below)

Changes IM address interpretation to be virtual

Changes IM address interpretation to be absolute

@Not available in DO Midas as of this date

Actions available only on the Dorado Midas

(IMaddr]

Actions available only

[Filc}

Set-Clock
t1

t2
t3

Rep-12
Ck-DMux

SimGo
SimTest
Passive
Active
Update

on the DO Midas

Boot

Set the clock speed to the value selected from a submenu
Clocks MIR through tl, reads the DMux, then clocks through t2 and
restores MIR (so display shows DMux values read after tl).
Clocks MIR through 2, reads the DMux, and restores MIR (so display
shows DMux values read after t2).

Clocks MIR through t3. reads the DMux, then clocks through t4 and
restores MIR (so display shows DMux values read after t3).
Repeatedly does t2

Left-button causes the DMux consistency checker to be called after Go,
Step, tl, t2, and 3. Middle and right mouse buttons modify display of
DMux items as discussed later.

* Like "Go" invoking the DMux checker after cach step.

* Random instruction tcst using MIR and the DMux checker.
Prevents Midas from disturbing the hardware while running

Puts Midas into normal mode

Read registers and display new values (used while passive)

Boot DO and load [File] as kerncl
KERNELMB used if {File] is defaulted

68

T i
| Sp—

—
| I

L J U

Midas Manual ‘ 29 December 1977

* = requires preceding§ "TimeOut” command in com-file
requires confirmation with <er>, "Y", or " (or by preceding "Confirm" command in com-file)

[-..] optional input text

Some actions in the Epreceding table are replaced with complementary actions after execution.
These are Show-Cmds by Conceal-Cmds, Write-Cmds by Stop-Write-Cmds, Ck-DMux by No-ck-
DMux, Passive by Active.

5. Keyboard

Some characters which are symbol constituents in microprograms will cause trouble for Midas if
they appear in address symbols.

Lower case typein is converted to upper case by Midas, so avoid lower case characters in
microprogram addresées. You should write microprograms with the shift-lock key depressed or
assemble them with the convert-to-upper-case assembly switch. ’

Avoid "=".

"+" and "-" are ok 50 long as the follm'ving character (if any) is a letter, but you should avoid
these generally.

Typing ahead is legal|until the character you type would cause execution of an action. After that,
Midas will flush input and blink at you until the current action finishes.

At the end of an action, input text typed for that action is displayed on the input text line. This
text remains valid anci can be used as the arg for another mouse action. However, if you type any
character (except control-A or backspace), the old input will be flushed before inserting the new
character.

Keyboard editting characters are as follows:

control-A . -delete last character
backspace delete last character
control-Q clear text line
del clear text line

Other special keyboard characters are as follows:

control-C ~ abort the current aclion--equivalent to bugging the "Abort" command
control-Z abort a command file .

escape repeat previous action (special for "Test” and "TestAll")
control-D turns on the display (used during command files)

control-O turns off the display (used during command files)

The interrupt characters above arc ineffective during loading, dumping, or comparing, which
typically take between 2 and 20 seconds. Indefinite duration commands, such as "Go", "Test",
clc. always monitor the keyboard, so control-C can be used to terminate them. Although control-

69

Midas Manual ' 29 December 1977

C and "Abort" are equivalent, "Abort" is only effective if the Midas main Ioop sees the mouse
button go down then up; in testing big memories or registers that take a long time to read-write,
Midas doesn’t monitor mouse buttons often--you may have to depress a button 5 or 10 seconds
before Midas sees that it is down. For this reason, normally use control-C to abort--even with
control-C the abort may be delayed for a few seconds.

Control-Z, control-D, and control-O are intended for use during command files. However, these
characters do not take effect until the command file executes a command such as "Go" which
monitors the keyboard. There is no way to abort a command file and give control back to Midas
safely except during a "Go" or other long-running command. This is not expected to be a
problem because commands are executed quickly.

After interrupting a "Go" with control-C or control-Z, proceeding with ";P" or ";G" will succeed
except when you have smashed the machine state by doing a "test", "reset”, etc. action or have
displayed a register that Midas cannot examine non-destructively (e.g., IFUM on Dorado can only
be examined destructively).

Although command menu items "Step”, "Go", "Break”, "UnBreak”, "Rep-SS", and "Rep-Go"
are provided, the keyboard character equivalent to these is usually more convenient.

6. Command Files

Command files (default extension ".Midas") are normally executed either by typing "Midas
filename" to the Executive or by bugging a file name in the subsidiary menus put up by "Run-
Prog" or "Read-Cmds". Alternatively, you may type a file name first, then bug "Read-Cmds".
("Run-Prog” does not permit you to type a file name--you are limited to files appearing in the
sub-menu.) :

"Run-Prog" resets Midas, while "Read-Cmds" does not; resetting Midas consists of clearing the
symbol table and restoring the display to its initial arrangement.

"Run-Prog” is used to compiletely change contexts--to run a new microprogram, for exaniple.
Sclecting a command file from the "Run-Prog” submenu is equivalent to exiting to the Executive
" and typing "Midas comfilename”.

"Read-Cmds"” is frequently used to modify the display in various ways.

The file names that appear in the sub-menus for these are contained in the Midas.Programs file.
The command-file facility is actually an (awkward and limited) programming language. The
collection of actions discussed below is being developed so that command files can monitor
diagnostic microprograms, colicct and report error information on an output file, or direct the
sequence of diagnostic microprograms according to hardware failures that are obscrved.
For system microcode, command-files can be used to control auto-restart and failure diagnosis.
Command files can be nested several levels (limited by the size of sysZone which must be big

enough to accommodate OpenFile and buffers for the command files already open). However,

70

3 1
‘L !

|

[———

|

1 !
[SOR—

Midas Manual 29 December 1977

there are the following RESTRICTIONS:

(1) [Maxc2 only] "AltIO" terminates command files (i.e., upon return to Midas from AlItIO the
command file will not be continued).

(2) "Run-Prog" is illegal except in the top level command file. ("Run-Prog" resets Midas, then
calls "Read-Cmds"”. This reset operation smashes the symbol table, the display, and the stack back
to their initial state. Hence, if you were to execute "Run-Prog" from a subsidiary command file,
that command file would be continued, but the higher level ones would not, and the sysZone
buffers for the higher level command files would not be released.)

a

Since Midas builds a table of file FP’s during its initialization, when you edit a command file or
.MB file, you should reinitiatlize Midas by typing "Midas/I". When you add new command files
or .MB files you should update the "Midas.Programs” file appropriately and do "Midas/I". The
form of "Midas.Programs” is discussed later.

A number of commands that can never occur when Midas is run interactively are useful in

| S—

—

| S

command files. These, not given in the table earlier, are as follows:

Text Arg Action Comments

Value SkipVEql Skip the next command if the input text evaluates equal to the contents of the
register or memory word displayed. The input text is cvaluated exactly as though it
were to be stored into the register displayed in that name-value menu, so if the
value displayed has several fields, the input text must also have several fields.

Value SkipVGr Skip the next command if input text evaluates greater than the contents of the item
in the name-value menu.

Value SkipVLs Skip the next command if input text evaluates less than the contents of the item in
the name-value menu.

Octal no. Skip Skip N following commands, where N is the value of the input text

Octal no. BackSkip Reset to byte 1 of the command file, then skip.

Octal no. Return Return out of current command file, then skip (".Tag" form is presently illegal for
this one.).

.Tag Skip Skip following commands until one is encountered with the label ".Tag". Command
labels are distinguished by beginning with "

.Tag BackSkip Reset 10 byte 1 of the command file, then skip.

DisplayOn Turn on the display, so that effects of subsequent commands can be observed. The
display is initially off for a command file.
DisplayOff Turns off the display.

Octal no. TimeOut Input text is evaluated to a 32-bit octal number of msec at which to abort the
immediately following command, if it has not finished by then. This is intended for
use before "Go™ and other commands which might hang indefinitely. 1f the timcout
occurs. Midas will skip the command after the "Go”. TimeOut also turns on the
display. necessary because the machinery which checks for timeout is only active with
the display on.

Confirm Supplics confirmation for the command which follows (which should be one of the
commands requiring confirmation). _

File name OpenOutput Opens an output file (default extension ".Report”) on which text can be written.

CloseOutput Closes the output file.
[text] WriteMessage Writes the contents of the input text buffer on the output file. Note that if any text

follows the WritcMessage. that text up 10 but not including the <cr> is what gets
written. However. if <cr> immediately follows WriteMessage, then the contents of
the input text buffer left by the previous command get written. "~" {s translated
into <cr>. :

i

Midas Manual 29 December 1977

text ShowError Displays the text arg on the command line, turns on the display if it was off, and
queries with "Abort" and "Continue” menu items,

7. Syntax of Command-file Actions
The syntax of a command-file action is as follows:
["."<tag> <$" ">]<buttons> <$" "> <{menud <" ">[<$" "> <text>][";"<commem>]<cr).

where the "[]" denote that the ".tag”, input text, and ";comment"” are optional. <$" "> denotes
a sequence of blanks.

If the first character on the line is a ".", then the characters after that are a label or tag which may
be used as the argument for the "Skip" or "BackSkip” actions given in the table earlier.

<buttons > may be any combination of the letters "L" (left-button), "M" (middle-button), and
"R" (right-button); these are the buttons released to execute the action. These may appear in any
order. .

<{menu > is the menu name in which 'the action is executed ("X" for the command menu,
"AQ0".."A19", "B0".."B19", and "C0".."Cl19" for name-value menus).

<{text> is the text typed on the command line, which may be anything except a ";".

Note that if a single blank terminates <menu > and if no input text argument is given, then input text left-
over from the preceding action will be used. This allows text from a right-button action over a value to be
used in a following action (c.g., in WriteMessage or to store the value into another reigster). However, one
or more extra blanks will reset the input text, so the action is executed with null input text

For registers/memories that contain addresses, the pretty-print procedures (middle-button over value), also
print the result on the input text line; this can also be used in subsequent actions.

":" begins a comment, which may be omitted.
<cr> (carriage-return) tcrminates the action,

To find out what text should be put in command files, you can bug "Show-Cmds” in the
command menu. This will cause the command file text for cach command to be displayced -on the
command comment line as the mouse selects it (You don’t have to exccute the command to see
the equivalent text.). This text is complete except that the mouse bulton which executes the
command isn’t shown unless you depress the mouse button. To terminate "Show-Cmds”, bug
"Conceal-Cinds" (which appears only when "Show-Cmds” is in progress.).

You can preparc a command file (default cxtension ".Midas") by typing a filc name and bugging
"Write-Cmds". This causes text for subsequent commands to be put on the file. When you are
done with this, bug "Stop-Write-Cmds" to close the file. ("Stop-Write-Cmds” is in thec command
menu only when a command file is being written.). '

72

L 9l

{ }
| S—

—

| G
| N |

7 !

L —

)

3

—
| S

]

! 3

L

| —

—

Midas Manual ' 29 December 1977

You will probably want to edit out your goofs with Bravo afier the command file is written.
In addition, you will have to insert "Confirm" and "TimeOut" commands into the command file
before those actions which require confirmation or which might hang indefinitely (See the table
given earlier for the actions that require this.).

Here is a sample command file:

L X Load dgl; Equivalent to typing "dgl" and bugging "Load” in the command menu
L A0 Addr TASK; Examine the "TASK" register in name-value menu A0

L A0 Val 0; Change the value in TASK to 0

1. Al Addr RTEMP; Examine the address "RTEMP" in menu Al

L Al SkipVEql FOO+3; Skip the next command if RTEMP contains the value FOO+3

L X ShowError Rh‘EMP not loaded correctly

L A2 TLINK 0; Examine the Link register for task 0 in menu A2

L X TimeOut 2000; Abort the following command if it hasn't finished in 1.024 sec.

L X Go START; Begin microprogram execution at address “START"’

L X Skip 1; Skip the next command if "Go" halts before timeout

L X ShowError START;G failed; Show an error message

8. Loadihg Programs

Programs are loaded by typing a file name (default extension ".mb") and bugging "Load" in the
command menu. However, direct use of "Load" should be rare if you add appropriate command
files to Midas.Programs. "Load" loads the entire .mb file--symbols into the Midas symbol table
and data into the hardware. .

"LoadSyms" loads only the address symbols and virtual memory mapping table from the .mb file.
This may be useful when reentering Midas from the Executive without smashing the program
stored in the microprocessor.

"l.oadData"”, (in com{nand files but not available interactively), loads only the data blocks from

the .mb file. "LoadData" is provided so that, when necessary, a microprogram can be loaded
without cluttering the Midas symbol table.

On Dorado. the DMUX and DCHK memories are exceptions--symbols for these are loaded anyway.

The Midas symbol table consists of resident storage for about 700 symbols (i.e., 6 symbol blocks
of 20004 words each). If your program exceeds (his, symbol buffers swap off the disk. (The
primary penalty for exceeding resident symbol storage is that breakpoint response will be .15
seconds slower per symbol block on the disk.)

To avoid this problemn, don’t load one microprogram on top of another--use "Run-prog” to reset
Midas, or, if the program you want to load does not exist in the "Run-prog” submenu, do a
"Run-Prog” and bug "Loader” in the submenu to reinitialize Midas, then do a "Load".

It is also a good idea lo assemble microprograms as a single .MB file. Although Midas can load
multiple .MB files (typed as a list separated by commas), this will fragment the symbol table and
cause cxtra thrashing.

73

Midas Manual 29 December 1977

These recommendations follow because Midas takes advantage of alphabetical address ordering in
.MB files to pack its symbol buffers nearly full. But when subsequent files are loaded the symbol
buffers will fragment to about half-full, symbol buffer swapping will result, and symbol searches
will be longer.

9., Dump and Compare

Both "Dump" and "Compare” require confimation by <cr>, Y, or "." They accept the name of
a microprogram (default extension ".mb") on the input text line. If the input text line is empty,
then the file name is defaulted to the name of the program last loaded.

"Dump" deletes forward reference fixups left by Micro (which never occur on Dorado or DO
because MicroD does these) and compacts both data and addresses to use less disk space and load
more quickly later.

Also, if undumped .MB files contain forward references, they cannot be used with "Compare” (no
problem on Dorado). L ,

Note that only memory words loaded by Load are dumped--you cannot patch. unused locations,
dump the program, and expect the patches to survive. (Suggestion: assemble extra locations as a
~ patch arca with your microprogram, so that you can patch and dump during debugging.)

"Compare” compares data currently in storage against data in the file and reports differences on
the Midas.Errors file.

10. Virtual and Absolute Control Store Interpretation

Because the placement transformations performed by MicroD make it difticult to correlate IM
locations with positions in microprogram sources, the Dorado and D0 implementations of Midas
contain a map to transform addresses produced by Micro into absolute control store locations
produced by MicroD.

The general idea is that, if you suspect a hardware problem in the control section, you will work
in absolute mode, but in all other situations you will work in virtual mode.

When you fire up Midas, the display is in absolute mode and the "Virtual" command appears in
the command menu:; when you load a microprogram, the display switches to virtual mode and the
"Absolute” command appears in the command menu. You can always tell which ode the
display is in because the opposite mode appears in the command menu. You can always switch
from onc mode to the other by bugging "Virtual” or "Absolute”, but if you have not loaded any
microprogram, then swiltching to virtual mode will not be useful.

In virtual mode, values in all registers that normally contain control store addresses are translated
by Midas into virtual addresses, and the virtual addresses are displayed on the screen.

On Dorado the registers affected by this are CIA, CIAD, TNIA, BNPC, TPC, TLINK, and OLINK.

On the D0, the affected registers are CIA, TPC and CALLER.

74

- Midas Manual

29 December 1977

When a memory or register containing a control store has a value outside the VM, it prints as
7777. To find the absolute value in this case, you have to switch to "Absolute” mode.

Midas defines two memory names for the control store, IM and IMX. IM is addressed by virtual
addresses, and only lochtions assembled by your microprogram have meaning in the virtual

memory.

In other words, if your microptogram is 10 words long, the meaningful part of virtual memoty is only 10
words long. In this case, if you examine virtual addresses greater than 7, the printout will show an absolute
address of 7777 and ‘a meaningless number for the rest of the value.

If you wish, one of these meaningless virtual locations can be added to the virtual memory (i.e, made
meaningful) by storing a value into it. However, be careful to assign an absolute location not used
elsewhere--note that rhe absolute location is part of the value. If you screw up, you can wind up with
several virtual addressés mapping to the same absolute location.

Also, remember that any patched locations not part of the original "Load” cannot be "Dump”ed.

When you modify the jcontents of a virtual IM location with Midas by typing fields of octal
numbers, you must supply the absolute address as part of the value. Midas neither. defaults this to
the old absolute location nor warns you when you smash an absolute location already in use
elsewhere. Consequently, it is possible to modify a different absolute location than the one you
originally examined. This is grounds for caution. Normally, use the symbolic method for patching

IM (discussed later), which does not have this problem.

To examine a memory location on the display, you usually type memory name and location or
memory address and displacement. If you omit the name and simply type a number, then Midas
defaulls the memory mame to either "IM" in virtual mode or "IMX" in absolute mode.

11. Testing Directly From Midas
As of this date. testing was not implemented on DO Midas.

“Test", "LDR-loop”, and "Test-All" allow the microprocessor to be tested from the Alto. Data
patterns for the test are determined from the first subsidiary menu, as follows:

ZEROES All-zeroes data

ONES All-ones data .

SIHOULD-BE Constant test- pattern equal to value in SHOULD-BE

CYCl Vector of the same size as the register containing zeroes with a single one-bit cycled left
one position each iteration .

CYCo Cycled zero in vector of ones

RANDOM Random numbers

SEQUENTIAL 0, 1. ... scquential numbers

ALTZ0O Alternating all-ones and all-zeroes patterns

ALT-SHOULD-BE Alternating contents of SITOULD-BE with its ones-complement
Testing is controlled/described by eight addresses on the display as follows:
LOW-ADDR

75

Midas Manual ' 29 December 1977

HIGH-ADDR

CURRENT-ADDR

ADDR-INC (For memory tests only) These words all contain double-precision numbers.
CURRENT-ADDR contains the last address tested. If ADDR-INC (normally 1) is
positive, the test starts at LOW-ADDR and advances through the memory in steps of
ADDR-INC until CURRENT-ADDR is greater than HIGH-ADDR. If ADDR-INC is
negative, the ‘test starts at HIGH-ADDR and goes by steps of ADDR-INC until
CURRENT-ADDR is below LOW-ADDR.

LOOP-COUNT The number of successful iterations of the test prior to failure or prior to aborting from
the keyboard or with the mouse.

SHOULD-BE What the data should have been,

DATA-WAS What the data actually was.

BITS-CHECKED Mask of bits checked (see below).

These addresses are in the fake DLDR memory (i.e., the values are stored in a table in the Alto's
memory, not in the hardware).

When the value initially in LOW-ADDR is greater than HIGH-ADDR or greater than the largest
legal memory address, it is reset to 0 before testing. Similarly, when HIGH-ADDR is initially
greater than the largest legal address in the memory, it is reset to memlength-1 prior to testing.

"Test” AND's BITS-CHECKED with the maximum-sized mask for the register or memory being
tested to determine a comparison mask for the test. If you previously tested a small register, then
you must load BITS-CHECKED with a full-sized mask before testing a big register. If you don’t
want to check all the bits in a register, then clear the bits you don’t want to check in BITS-
CHECKED. '

"Test", after showing the data-pattern menu, shows a menu of register and memory names and
other test namecs, and executes a test of the one you select until the test fails or you halt the test

from the keyboard.

The testable registers and memories appear in the sccond sub-menu for the "Test” action. This
menu also includes several other machine-dependent test programs.

On Dorado, the additional tests are as follows:

STACK « Tests writing RM with address in StkP

B«STACK Tests reading RM with address in StkP

StkP +1 Tests Stkp+Stkp-+1 (does not test RM read/write)

StkP-1 Tests Stkp«Stkp-1

StkP-2 Tests Stkp«Stkp-2

Shmv Tests the output of the shift-control ROM's on the ProcH and ProcL boards against
correct values.

WF Tests loading ShC via WFe

RF Tests loading ShC via RFe

IF Tests loading ShC wvia “inscrt field”

LF Tests loading ShC via “extract field”

<esc > will continue a register or memory test that has halted: it restarts an OtherTest that has

76

H .

—

r T ey
[| S

L

1 J
| SO

S

i ! H !
RN |

[S

"
S

O

—d

-

| R
| O L

e

Midas Manual . 29 December 1977

halted.

"Test-All" automatically loads BITS-CHECKED with a full-sized comparison mask prior to testing
each item; memories) are tested with LOW-ADDR = 0, HIGH-ADDR = memory length-1, and
ADDR-INC = 1. It tests each register 200 times and makes 4 passes through each memory and
each OtherTest. It is a good idea to run "Test-All" whenever the hardware is in a suspicious state.

On Dorado, the "LIDR-loop” action should only be used when the "debug” command file has
been executed. This requires a sophisticated understanding of the hardware and of the innards of
Midas and is not recommended for novices.

o

Dorado Midas stores many microinstructions in a fake memory called LDR (sce LOADER.MC). These are
used by various actions to operate the hardware. "LDR-loop” allows these to be executed in non-standard
sequences to beat' on particular hardware problems.

"LDR-loop” accepts a list of LDR addresses separated by commas as input text. If only one LDR address
is typed, the ABMUJX register is loaded once with the selected data pattern, then the LDR instruction is
repeatedly executed with UseABMux true for a scope loop.

When two, three, etc, up to ten LDR addresses are typed. a test loop occurs whereby ABMUX is loaded
with the next data pattern, the first instruction is executed with UseABMux true, then the rest of the
instructions are exe¢uted. and then the BMux is read back and compared against the original data under
control of BITS-CHECKED. The loop stops when (data-read-back xor data-sent-out) & BITS-CHECKED is
non-zero.

12. Scope Loop Actions

"Field-Loop" exercises signal decoding for particular fields of the microinstruction for scope loops.
A microinstruction is fabricated from a no-op microinstruction in which the ficld selected from the
first subsidiary menu is replaced by various values. The second subsidiary menu allows the value
in the selected field to be incremented, decremented, and shifted.

"Rep-Go" starts the microprocessor at the address typed on the command line, waits for it to halt
at a breakpoint or parity crror, then restarts it at the original address.

On Dorado, the task for the original Go is taken from the TASK register: subscquent restarts do not
reselect the task. The control section's NOTIFY register is reset before the first Go. but is not reset each

time through the loop.

“Rep-SS" single-steps the microprocessor at the address typed on the command line cndlessly.

On Dorado, "Rep-t2" endlessly executes the instruction in MIR and rcloads that value into MIR.
Uniike "Rep-SS”, "Rep-t2" doesn’t issue extrancous clocks while looping, so it is ordinarily more
convenient for scoping. :

77

......

DO MIDAS MANUAL

30 December 1977

by

Brian Rosen

Xerox Business Systems
Systems Development Department
3408 Hillview Road
Palo Alto, California 94304

[Lo i L,‘._J O

1
H 1
| S—]

I

1
—J

C

— 3 o 4 O

DO Midas Manual

1. Registers and Memories Known to Midas

30 December 1977

The registers and memories known to Midas are as follows (numbers in octal):

Memory Length
TPC%S 20
M 10000
MX 10000
RM 400
12 20
MAIN ”
VMAIN ”
MAP 40000
DLDR? 40
BP3 100

Width

14
100
44
20
20
20
20
20
42
40

Fakc memories and registers, artifacts of stuff inside Midas

Register Width
. APCTASK 4
APC 20
CTASK 4
cia%’ 2
CSDATA 20
PAGE 4
PARITY! 4
BOOTREASON! 10
RS232 20
PCXREG 4
PCFREG 4
DBREG 6
SBREG 6
MNBR 20
ALURESULT 4
SALUF 10
SSTKP 10
STKP 10
MEMERROR 20
MEMSYNDROME 10
TIMER 20
T(CTASK)3 20
TPC(CTASK)3
CALLER13 20
1. Read-only to Midas
2. Task-specific registers
3.
4, Derived from NCIA
S. Virtual/absolute stuff

applies

Most registers and memories listed above correspond to ones discussed in the DO

Functional Specification (January 16, 1978).

CIA is the complement of the hardware’s NCIA.

The others are discussed below.,

T(CTASK) and TPC(CTASK) show the current task’s T register and TPC. Changing CTASK will
change T(CTASK) and TPC(CTASK).

The CALLER rcgistcr‘ shows the absolute value in TPC(CTASK)with the least significant bit

forced to be a zero.

When control store addresses are displayed in absolute mode, this is uscless.

However, in virtual mode CALLER will usually show the location that last did a CALL.

IM and IMX arc virtually and absolutely addessed versions of the control store, discussed later.

VMAIN is the same memory as MAIN but is addressed by the current contents of MAP rather

79

D0 Midas Manual _ 30 December 1977

than absolutely. In other words, to reference MAIN, Midas first loads a Map location with the
absolute page location, then makes the reference. This is not done in referencing VMAIN. As of
this date, the D0 did not have a memory system, and so this is not available.

2. Task-Specific Registers

Midas treats all task-specific registers (T and TPC) as 20-word memories. In other words, "T 6" is
the T-register for task 6.

In addition, a special kludge allows you to display the 21st word (i.e., "T 20", "TPC 20", etc.) and

have that be interpreted as the register for the currently selected task. The currently selected task
is the value in CTASK.

3. Complicati.ons in the Display of Register Values

IMX and IM contain microinstructions, and the 448 bits which are the value of the instruction are

displayed the same way for all of these. A middle-button action over the value will print this -

value symbolically on the comment lines.

. 4. How Registers are Read/Written

The DO contains no special hardware for MIDAS to enable reading or writing any state
information without affecting the microprocessor. To enable MIDAS to control the DO, a special
microprogram (the kernel) is loaded into the last page of the control store by midas when it does
a Boot. The kernel uscs the DO’s printer interface in conjunction with the Blue Box to connect to
an ALTO’s printer interface. The MIDAS (running in the ALTO) communicates with the kernel
through this hardware, passing commands and data back and forth between the two programs.
When MIDAS wants to know the contents of a register, its asks the kernel to supply it; similarly,
when MIDAS wants to change the contents of a register, it sends a message Lo the kernel with the
address and the contents of the affected register. For registers which are part of the machine state
which the kernel itsclf modifies (CIA, CTASK, APC, APCTASK, CSDATA, etc), the kernel
maintains copies of the hardware registers in the R file. The copies are updated when the kernel
is entered (via Boot, breakpoint or other fault). MIDAS manipulates the copies, cxamining and
changing them as necessary. " When GO or STEP is nceded, the kernel loads the harware state
from the copies.

Breakpoints are done by rcplacing the instruction with another instruction containing the
BREAKPOINT "F". The JA ficld of this instruction has the breakpoint number in it. MIDAS
saves the original instruction and replaces it when the breakpoint is reached. MIDAS can analyze
an instruction to find is sucessor(s), it will breakpoint all sucessors of an instruction when
STEPing, or procceding from a breakpoint. :

80

»»»»»

|
J

L.

-

C

T H
|

N A

DO Midas Manual 30 December 1977

5. Special Keyhoard Input Formats

Registers and memories that contain microinstructions (IM and IMX) evaluate a special form of
input as follows: The first character on the input text line should be "(" to change the values of
several fields in the instruction without clobbering other fields, or "[" to reconstruct the value
beginning with a no-op microinstruction. This is followed by a number of clauses of the form
"Field ~integer" separated by blanks and/or commas. The legal field names are MEMINST,
RMOD, RSEL, ALUF, BSEL, LR, LT, Fl1, F2, JC, JA, CSpar and AT.

AT is defined only of IM, it sets the absolute address.

In addition to "field«value" clauses, Midas interprets RETURN (= JC«6) and the following
control clauses: GOTO[n], GOTOI[ntrue,nfalse,cond], CALL[n], and DISP[n]. The parameters n,
ntrue and nfalse can be an IM (virtual mode) or IMX (absolute mode) address and modify JC and
JA to contain a goto/call/dispatch to the target location. Arguments may be expressions such as
FOO+3, if you likes The address evaluater assumes you are causing PAGE to be loaded
correctly, it only worries about setting up the JA field.

6. STEP and GO

When the microprocessor halts, the values of CTASK and PC are remembered and used later, if
you continue (i.e., execute a "GO" or "STEP"” without specifying a starting address).

When you execute a "GQO" or "STEP" at a new address, the value in CTASK is the task activated.

~ Although "GO" and "STEP" appear in the command menu, you will probably discover that it is

faster to type "address;G" to Midas, an alternative to "GO", or "address;S”, an alternative to
"STEP". Similarly, ";S" is equivalent to a continue-"STEP" and ";G" to a continue-"GQ". ":" is
a synonym for ";S8", and ";P" (Proceed) is s synonym for ";G".

7. BREAK and UNBREAK

The "BREAK" command inserts a breakpoint in the IM or IMX address typed on the input text
line. The original contenst-of the instruction are saved by MIDAS and replaced tewith a special
Breakpoint instruction just before MIDAS starts the processor. The BP memory shows you the
status, address and contents of the breakpoints. '

The address must be typed--there is no default break address. You will normally find it faster to
type "address;B" to insert a breakpoint.

"UNBREAK" clecars the breakpoint enty in the BP table. If no lext is typed, the address defaults
to the breakpoint that caused the last program halt. You will normally find it faster to type
"address: K" or ":K" to remove a breakpoint.

81

DO Midas Manual 30 December 1977

8. BOOT

BOOT cause a complete harware restart on the D0. MIDAS causes the D0 to go through a boot
proceedure, and then downloads the kernel program. The BOOT command without a file name
loads KERNEL.MB, if a file name is supplied, it is used instead of KERNEL.MB. When midas
is initially started, it does a BOOT of KERNEL.MB.

9. Acquiring Midas

To acquire Midas, use Ftp to retrieve {Iris] < DO > newmidasdisk.cm or midasdisk.cm (:see section
in DO Microprogrammer’s manual entitled "Getting Started”. Afier loading, you must do Midas/I
to initialize Midas on your disk. The total size of the files retrieved by these command files and

those created by Midas/I is about 400 pages--be sure your Alto disk has enough space before
plunging ahead.

10. Midas Maintenance
The current sources for Midas are kept on the "D0 Midas" disk (maintained by Charnley).

The various files in < eod > d0midasrun.dm are used as follows:

Midas.run ~240 pages

Midas.syms ~38 pages

Midas.Programs ~2 pages (see below)

* Midas ~2 pages each Command files for Run-Prog and Read-Cmds

*mb Assorted micro-binary files loaded by command files

Midas.Programs contains a list of file names separated by blanks, commas, or carriage-returns.
The names must be UPPER-CASE. This list serves two purposes. First, file FP’s are built for all
of the names to speedup OpenFile. Next, the list of names for the "Run-Prog"” command menu is
built. If the file name contains no extension, then hint FP's will be buill for both name.MB and
name.MIDAS and name will be put in the "Run-Prog" menu. (However, the hint FP’s are not
built unless the file exists, and the file name will not be put in the "Run-Prog” menu unless
name.MIDAS exists). If the file name contains an extension, then it will be put in the quick
OpenFile table, but won't appear in the "Run-Prog” menu. If the name ends in "*", a quick
OpenFile table entry is made for name.midas and the name will appear in the "Recad-Cmds”
menu.

Midas creates and uses the following files (+ Swatee):

Midas.State ~29 pages Built by Midas/1

Midas.FixUps 2 pages Built when external fixups occur in .MB files being
loaded (Current wmicrocode never uses this.)

Midas.Errors 2 pages Written when “Compare” fails

Altogether this is about 400 disk pages.

82

DO SIMULATOR MANUAL

14 December 1977

by

Will Crowther
Robert Garner

Xerox Business Systems
Systems Development Department
3408 Hillview Road
Palo Alto, California 94304

1
|
|
N |

1

DO Simulator Manual 30 December 1977

1. Introduction

Thjs manual is based on a 28 October 1977 memo from Will Crowther to the DO Simulator users.
It is unghanged from that memo except for corrections and updates. All questions and problems
concerning the Simulator should be addressed to Bob_Garmer at SDD in Palo Alto.

2. Documentation

'I;he 11:ser of the simulator must be familiar with three other systems which are documented
elsewhere:

1. The DO Assembler System, documented in this manual;

2. The mesa system, documented on [maxc]< mesa-doc>;

3. The DO Functional Specification;
This manual will assume that the reader knows how a D0 works, presumably from reading the
documentation on the processor. If the reader is unfamiliar with mesa, he is advised to get help
from an expert in preparing his starting disk; thereafter mesa can be ignored.

3. Getting Started

To run the simulator you need a disk with the following modules on -it:

Mesa.run (renamed runmesa.run if using Johnsson's exec)

Mesa.Image ’

wmanager.bcd

s.bed
s.bed is on [Iris] < DO > s.bcd. Johnsson's exec is on [Iris] € johnsson > exec.run. All the other files
can be found on the mesa directory on your local file server. It is also helpful but not necessary to
have an installed mesa debugger on the disk. With a debugger, if the system crashes the user gets
some clue about what happened.

To run the simulator you must start the file s. If using the regular exec type the following (user
types the bold characters, system the normal characters):

mesa
new filename s
start filename ESC

If using Johnssons exec (which I recommend) type:

mesa s

After a delay for loading, the Allo screen comes alive and is waiting for your instructions. In order
to understand what to do now, you must realize that there are really three quile separate programs
running in the machine at this instant.

1) There is the standard mesa window package, which is documented with the mesa system: it has
complete control of the mouse, and will let you move the window(s) on the screen or create and
destroy new windows. You can scroll any window in the normal mesa way.

2) There is a DO simulator, which has a complete simulated state for a DO (without any 1/0). The
DO design is documented ¢lsewhere. This simulator has a few features which the real DO lacks: in
particular, there is a control register which will start the machine when something is writlen into it.
Depending on whether a 12, or 3 is written the simulated DO will run for one cycle, one
instruction, or forever (until a break is encountered). The 10 simulator communicates with the rest
of the system through a pair of routines which read and write simulated DO memories. This is the
only -path into the simulator.

83

.....

DO Simulator Manual 30 December 1977

3) There is a ddr, which is a complex teletype-oriented user interface. The ddt accepts one
character user commands, optionally preceded by a single parameter, converts them into commands
to the simulator, and displays some sort of result at their completion. Since the ddt is trying to
present a nice interface, it knows something about the format of DO memory and DO instructions,
and can print the latter in a fairly reasonable way. It is often unnecessary to make a distinction
between the ddt and the simulator, and I will occasionally confuse the two in the following. But
sometimes the distinction is crucial for an understanding of the whole package.

4. Using DDT

You are now in the ddt and able to type ddt commands. The format of almost ail commands is a

single optional parameter followed by a single command character. The parameter is either an octal

number or an alphanumeric string, while the command is either a punctuation character or a control

charatter (written in this memo as tX. Note that "+" written by itself signifies the up arrow
" "_" "ot

command character). The characters "+", "-", , and Space are really command characters, but
their only effect is to help build up a complex parameter from a simple one. Using these commands

one could type myStart4-5 and use it as a parameter. In the use of strings the distinction between

uppercase and lowercase is ignored, so that string, String, and STRING are all the same symbol.

Note that the parameter is specified in octal. Except for two minor exceptions, the whole of the ddt
operates in octal mode only, both on input and on output, and there are never any decimal
numbers involved.

5. Load and Dump

.

The simulator is not of much use without a microcode program to simulate. The simulator will load
the output of the micro/microd microcode assembly system (a ".mb" file). In addition the simulator
load command expects there to be a source file (a ".mc" file), which it places into a second window
on the alto display. The relevant ddt command is "nametl”, which loads files name.mb and
name.mc. The assembler and its input language are described elsewhere. Usually tL is the very first
command given to the ddt.

6. Examine and Change

After the load the user may wish to cxamine or change some of the memory locations in the
simulated machine. He may examine a location by typing its address as the parameter and /" as
the command. The address may be specified either as an absolute octal number or as a symbol
(which presumably came from the .mb file out of the assembler, but see below for a way to define
symbols in the ddt). Since there are several memorics, the user is cxpected to precede the octal
number with a single letter to indicate the desired memory. For cxample, "i23/" would inspect
register 23 of the instruction store. The defined memories are i (instruction), r (register), m (main), ¢
(control =d0 hardware registers), and z (map). If the single letter is omitted it defaults to whatever
the previous memory was.

Normally the contents will print out in octal, but for the i memory that is not much use, so the i
printout_attempts to interpret the instruction symbolically. For the most part this is possible, but

84

D N A

L3

1
.

)

1
4

3

1

]

L

1
o

DO Simulator Manual 30 December 1977

sometimes the meaning of an instruction depends on the context in which it occurs. One will
frequently see a goto 45 interpreted as a [J«T, goto 45. Here the ddt is not smart enough to realize
that the assembler specifies a T source for the alu and no store back when there is nothing else to
do. (Of course the very next instruction might test the alu, so one cannot know for sure that this is
a null operation), Typical instruction printouts are: : : -

1300/ bbfbx,R64db+~R64db SALUF T Dispatch BB
i301/ Teldf[pos=4size=6] of CSData goto 111
i111/ Pstorel[R20}]<R4 goto 130

i130/ freezeResult, T«R4«R4-T Return

i131/ tepcf AND ~T Call Loop

There are other ways to inspect memory. One can type linefeed(LF) to inspect the next location,
and "t" to inspect the previous. One can type TAB to inspect the location specified as the
destination in the previous instruction printout (but watch out for Call, Return, and Dispatch, which
may not do what you expect - the ddt is only looking at memory, not executing it). TAB is the most
useful way of examining instruction memory. ~

One can change memory. This is particularly useful for setting up test cases during a debugging
session. The method is to examine the desired memory location by any of the methods described

- above, and then to type a new contents followed by a carriage return (CR). For example, “r15/123

456 CR" will change r memory location 15 from 123 to 456. LF, t, and TAB will work just as
CR, and in addition will go on to inspect a new location.

To change the instruction memory, first display its contents as you normally would (such as with
"/") then type "~" and the intstruction will be typed out by labeled ficlds, with each ficld given as
an octal number. Then, to change any field, type "field«valueCR", where "field” is a field name
and "value"” is the new octal value for the field. The new i memory value must be opened by “/”
again before "~" will type the new field value. One can also change the i memory by typing in a
16 digit octal number (yes, the input is triple precision), but in practice that is too painful to
attempt.

7. Simulator Execution

Eventually one tires of looking at the program and decides to run the simulator on it. The easiest
way to do this is to type the start address followed by +G. If you are just learning the simulator 1
do not recommend this way, but if you use it, the simulator will exccute instructions as the program
directs until one of three things happens:

1) a breakpoint is encountcred. You may sct breakpoints in the file loaded from the asscmbler, or
you may set them by typing address Ctl B. The simulator will stop with the breakpoint instruction
about to be exccuted.

2) onc of many illegal instructions is encountered.

3) you type a backspace (BS).
Another way to run the simulator is to type "addresstS”. This will prime the simulator to start at
the specified address, but will actually execute nothing. Another S without a parameter will step
the simulator forward one instruction. In this way onc can step the program forward one instruction
at a time. 1 rccommend this mode when first learning the simulator.

85

DO Simulator Manual 30 December 1977

When the simulator stops execution and returns to the ddt, all of the active registers of the
simulated DO are accessible, as well as all of the memories described before. One can type t/ or
apc/ and see what is currently in these registers. One can even change these registers in mid stride.
At each return to ddt, two especially useful registers are automatically printed. These are the register
polilf@ng the address of the next instruction to be executed, and the MIR which holds the instruction
itself.

I want to tell you at what part of its cycle the simulated DO stops, for that is vitally important for
understanding what the various registers mean. In order to do that I must explain a little bit about
how the simulator treats time. The answer will sort of turn out to be that the DO has stopped just
after the start of cycle zero of the machine, so that all of the registers which are loaded'at time zero
have actually been loaded, but none of the gates which hang off of those registers have yet started
to change.

At the beginning of every cycle the simulator starts with a record which contains the complete state
of the DO. This record contains things like hl and cia and apc. It first executes a set of procedures

whose job is to compute various gating functions from that record. For example, the actual r

address specified and the output of the cycle/masker. It next executes another set of procedures
whose job is to compute a new record which will be the state of the machine at the start of the next
cycle. This new record is kept completely separate from the old one until the very end of the
simulated cycle. Finally, the new record is copied into the old one (with due care for the abort
case), and the cycle repeats. When the machine stops, the copy over has not happened, but the ddt
is looking at the new registers. Normally the simulator stops at the end of cycle 3, but because the
ddt is looking at the new register it scems that it is the beginning of cycle 0. Actually, since an abort
can prevent the normal loading of some of the registers, one must take care when interpreting the
ddt output. The ddt is willing to display not only the contents of the new state record, but also any
of the gating functions which seem to be of interest. There are approximately 60 values which can
be examined in this way. .

One of the entries in the state record is a 2 bit counter (called Cycle) which cycles through the four
stages of the instruction being executed. Cycle is used to set one of four corresponding booleans
called time0, timel, time2, and time3. The booleans in turn are used to decide whether a particular
part of the simulator logic should execute. Thus afler four passes through the main loop of the
simulator one instruction will be completely executed. To mimic the DO overlap, the simulator scts
another of the time boolcans on each pass. This will force the execution of logic corrcsponding to
the appropiate cycle of the overlapped instruction, and because of the nature of the DO design the
two cycles will not conflict. But the simulator will work equally well if the overlap is not called for,
which means that it is easy to run the DO simulator in a non-overlapped mode. The value of such a
mode is in the debugging of microcode: it is much easier to understand what is going on if you
have all of the variables relevant to the current instruction al hand, instead of secing half of them as
they have been stepped on by the next instruction. There is a control register (c1 = "overlap™)
which can be set to zero for overlapped mode and one for nonoverlapped. The default is
nonoverlapped.

I recommended the single step mode for the initial experience with the simulator because I found
the variou$ registers did not always have the values T expected, even when the simulator was
working correctly. With the single step mode one is at lcast confident where the program has
stopped and by what path it got there. One final caution: the main memory is of course
asynchronous, and the result does not always show up until several instructions have been exccuted.
If you stop just afler computing your final answer, you may never get to sce it! Also, the memory
does not slow down during nonoverlap mode, so memory operations will happen sooner than they
would during overlap mode (with respect o the rest of the “program).

86

L

_—

]

7

1
4

L

L]

1
)

]

[4__)

DO Simulator Manual 30 December 1977

By empirically timing some programs, it seems that the simulator runs approximately 25,000 times

- slower than a real 70 nanosecond DO. In other words, one second of DO time is equivalent to

approximately 7 hours of simulator time. In general the simulator will run twice as slow if in
nonoverlap mode.

8. Command Strings

The user has the ability to enter a string (called a command string) for the ddt to remember. He can
later specify that the ddt execute the whole string as though it had been typed from the keyboard.
A typical string might single step the simulator and print out several registers for the user. to
examine. The ddt has storage for four such strings, labeled 0,1,2,and 3. The syntax for command
string entry is "labeltZcommand stringtZ”, where "label” is the string label, and "commandstring”
is a list of ddt commands with arguments written as they would normally be entered into ddt. The
syntax for executing the command string is "label ESC". An ESC with no label repeats the last
command string. A tZ with no label implies string 0.

It is also possible to read into ddt a string which resides in a file. Type "nametF" and the
commands in file "name" will be executed by ddt. They can also be loaded into a command string
by typing "nametF" immediately after the first tZ used to set up the string (1e "labeltZ
nametF1Z").

9. DDT Commands

The rest of this manual lists and describes each of the ddt commands, including all those mentioned
above plus a few other less used ones. Following the ddt commands is a list of the simulator
memories, with special emphasis on the 64 simulator control registers.

editing:
DEL, BS tA abort the current command
CR with no parameter moves the carrot

inspect and change(change only if explicit paramcter):
memloc/ display contents of location "loc” of memory "mem”
value CR change contents to "value” (ie, m20/123 456CR)
value > same as CR (for wasling less display space)
valucLLF change and inspect ncxt location
valuet change and inspect previous location
valueTAB change and inspect jump address of dlapl.lyed inst

ficld~valueCR change ficld of last displayed thing

building parameters:

+ plus (ie, m20+30/)

- minus

* times

Space plus

load/dump:

nametL Load

nametD Dump [hasn’t worked since 36 bit DO change]
87

DO Simulator Manual

DO control:
addresstG
addresstS
addresstB
addresstC
numtW
+0
N
BS

ddt control:
1Q
?

labeltZ

label ESC
labeltT
nametF

1R

name: valueCR

30 December 1977

run DO (Go)

Step DO

set Breakpoint

Clear breakpoint

set task number (W stands for Wakeup task)
put the simulator in Overlap mode (like the DO)
put the simulator in Nonoverlap mode

halt a running simulator

exit ddt (Quit) (Shift swat is faster)

type list of ddt commands

type the last thing in octal

type the last displayed thing in instruction format
enter a command string terminated by another tZ
play the command string through the ddt

type out command string "label”

play the command string from file "file”

type out all the R memory symbols with their values
define symbol "name" to have value "value"

10. The Simulator Memories

i memory: 4K 48-bit words
1) only 36 bits are used.
2) the parity bit holds breakpoint information. IF YOU USE THE PARITY BIT FOR
DATA, BEWARE - CLEAR ALL BREAKS WILL CLEAR IT.
3) the simulator keeps i memory on the disk, and caches two 256 word pages in core.

m memory: 2K 16-bit words

r memory: 256 16-bit words

z memory. 8 16-bit words
nominally 16K of 13 bit words pointing from virtual to real addresses. Actually 8 wotds
pointing from real o virtual addresses. Searching the 8 words slows the simulator down a
little, -but not as much as kecping the z memory on disk.

t memory: 16 16-bit words _
only t[ctask] can be read and written by the ddt.

¢ memory: 64 48-bit words
1) most of these addresses have only 16 bits of memory behind them, but a couple have

more.

2) most of these addresses are implemented by a table of pointers to various structures in
the simulator data region. In patticular, there are a lot of poinlers into the output version of
the state vector, and a lot into the computed gating functions.

10.1. The C Memory in Detail

The following list gives the ¢ address, followed by the ddt symbol for that address, followed by a
brief description of the register. There is no longer any method behind the ordering of these

registers.

Note: If you use the following ¢ memory names as symbols in your microassembly source (such as:

38

[

T

T

-

[

"
i i

| ¢

DO Simulator Manual 30 December 1977

by the SET,MP,SPMCRM, or RV macros) then the ¢ memory value defined below will be

L ’ overwritten by your source.code values.
= c00 none: write 1-3 issues command to the simulator:
% 1=> run (*QG)
o 2=> step (*S)
3=> single cycle
[c01 overlap: zero=overlap mode(tQ), 1=non overlap mode (tN)
¢02 pc: D0 Register (i mem Program Counter)
— c03 break: set break (tB)
. c04 clearBreak: clear break (t+C)
c05 clear; - write 1-3 issues command to the simulator:
| | 1=> clear im,rzt, and tpc memories
2=> clear all breakpoints
N 3= > clear output state record (D0's Registers)
L c06 stkp: D0 Register (STacK Pointer)
) ¢07 pcf: D0 Register (mesa Program Counter Fetching)
¢10 cycleCtl: DO Register (CYCLE Control = dbx2..5,, mwx)
B cl1 sstkp: DO Register (Saved STACK pointer)
“ cl2 sb: DO Register (Source Bit)
- cl3t: D0 Register (Task temporary[ctask])
cl4 hl; D0 Register (cycler/masker input)
B cl5 h2: D0 Register (ALUb input)
! cl6 stack: RMemory[stkp]
— cl7 alua: asynchronous A input of ALU
c20 atu: asynchronous ouput of ALU
c21 mpanel: D0 Register (Maintance PANEL - decimal output)
L . €22 mir: D0 Register (Micro Instruction Register)
¢23 rselGates: asynchronous R Address computed from mir
- c24 jumpGates: asynchronous jump Address computed from mir
. ¢25 cycle: the value of Cycle for the cycle last executed
L ¢26 apc: D0 Register (Alternate Program Counter)
c27 flags: a set of bits indicating control conditions:
1= > abort
40= > steal
L 100= >r write back
200= >t write back
400= > time3
1000 = > dispatch
" 2000= > freczeResult
30 ctask: DO Register (Current TASK)
| c31 mw: asynchronous function of sb,db, and mnbr
L c32 db: D0 Register (Destination Bit)
¢33 pex: D0 Register (mesa Program Counter eXecuted)
. c34 rs232; DO Register
| ¢35 printer: DO Register
L c36: unused
c37 saluf: D0 Register (Special ALU Function)
¢40 mnbr: D0 Register (Minus Number of Bits Rcmaining)
} c41 page: DO Register
. c4? cia,next: DO Register (Current Instruction Address)
c43 tpc: DO Register (Task Program Counterfctask])
B c44 conds: a set of boolcans related to skip conditions:
[1= attention
- 2=>r neg
. 4=>r odd
89
N
|

DO Simulator Manual

10=>a carry
20=>a neg
40= >a zero

100= > overflow
c45 apctask: D0 Register

cd6:

c47:

c50:

c5l:

¢52 mc2going:

c53:

c54:

c535:

c56:

¢57 mclgoing:

c60:

¢6l clock: number
c62:

¢63 csData:

c64 csin:

¢65 csinExtend:

c66 sbx:

c67 dbx:

¢70 mwx:

¢71 nextm7: address
c72 nextmé6: address
c73 nextm3: address
c¢74 nextm4: address
¢75 nextm3: address
¢76 nextm2: address
¢77 nextml: address

of

of
of
of
of
of

of

mc2 real memory page

mc2 virtual memory quad word rounded address
mc2 type

mec2 r address

mc2 has been going for this many cycles

mcl real memory page

mcl virtual memory quad word rounded address
mcl type

mcl r address

mcl has been going for this many cycles
unused '

cycles executed (decimal output)

unused

D0 Register (Control Store DATA)

D0 Register (Control Store INput)

D0 Register (Control Store INput EXTENDed)
DO Register (Source Bit eXecuting)

DO Register (Destination Bit eXecuting)

D0

Register (Minimum Width eXccuting)

instruction executed 7 insts ago

instruction executed 6
instruction executed 5
instruction executed 4 insts ago
instruction executed 3
instruction executed 2

insts ago
insts ago

insts ago
insts ago

instruction executed last

90

30 December 1977

VVVVV

— O O 0o coo /oo

3 3 4o

t_J

]

L}

L

]

Coond

r

]

e

N B

	D0 Microassembler Manual
	MICRO Machine-Independent MicroAssembler
	MicroD Manual
	D0 Microprogrammer's Guide
	Midas Manual
	D0 Midas Manual
	D0 Simulator Manual

