
c
c
p

c
E
c -
c
L-
c

c
c
c
[1

c
c-
c
c

DO Microprogrammer's Manual

Document:
Date:
Version:

Unassigned
0 c to ber 1978
2.0

This manual is intended to provide all necessary documentation for microprogramming a DO.
Familiarity with the DO Functional Specification is assumed. Ail comments should be
addressed to the editor via Laurel.

a

Release Stage: draft/RELEASED/issued

Approval:

XEROX
BUSINESS SYSTEMS
Sjsicr,i Develoyrrierit
Palo Alto, California

TABLE OF CONTENTS

DO MICROASSEMBLER MANUAL

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Introduction
Assembly Procedures
Error Messages
Debugging Microprograms
Comments and Conditional Assembly
Simplified Parsing Rules
Statements Controlling Assembly
Integers
REPEAT Statements
Parameters
Constants
SETTASK Statements
Assembliag Data for RM
Assembling Data Items in the Instruction Memory
RM & STK Clauses
ALU Clauses
Memory Referencing Instruction Statements
Branching
18.1, Branch Clauses
18.2. Dispatch Clauses
18,3. Placement Declarations

MICRO: MACHINEmINDEPENDENT MICROASSEMBLER

1. Introduction
2, Assembly Procedures
3. Error Messages
4. Assembly Listings

1
1

. 3
4
4
5

- 6 .
- 7 -

8
9
9
10
10
11
12
12
12
13
14
15
15

17
17
20
21

5.
60
7.

8.
9.
10.

11.
12.
13.

14.
15.
16.

Cross Reference Listings
Comments and Conditional Assembiy
Statements
7J. Builtins
7.2. Defining Symbols
7.3, Tokens
7.4. Neutrals and Tails
7.5. Clause Evaluation
7.6. Treatment of Arguments
7.7. Undefined Symbols

7.7.11. Destination Addresses
7.72. Octal Numbers
7.7.3. Literals

Integers
Macros
Neutrals
Eields, Assignments, and Preassignrnents
Conditionals
Memories, Addresses, and Stores
13.1. Target Memory
13.2, Default Statement
13.3. Post Macros
Repeat Statement
SELECT
Bit Tables

Appendix 1. Micro Error Messages
Appendix 2. Limitations of the Language
Appendix 3. Binary Output Format

MICROD MANUAL

22
23
24
25
25
27
28
30
30
31
32 - -
32 - -

32
32
33
34
34
35
35
37
37
37
37
38
38
39
41
44

46

DO MICROPROGRAMMER’S GUIDE

1.
2.

3.

. .

4.
5.

6.
7.
8.
9.

Introduction
The ALU and Basic Architecture
2.1. Inputs and Outputs
2.2. The Stack
The Microinstruction and Branching Conditions
3.L The Microinstruction
3.2. Conditional Branches
3.3. Subroutine Calls
3.4. Dispatch
3.5. Changing Pages
3.6. Notify
Special Functions
Memory and I/O
5.1. General Comments
5.2. Comnients on Style
5.3. Quadword Alignment
5.4. Bypassing
5.5. Memory Interlock
Getting Started
Caveats
Suggested Programming Style
Sample Programs

b

10. Common Error Messages

MIDAS MANUAL

1. Midas
2. Starting Midas
3. Midas Display
4. Midas Command Menu

49
49
49
50

51
51
53
53 ~

54
54

: : 53 .. , . , , . - - -

56
56
56
57
57
59
60

60
62
64

65
65
65
67

5 a

6.
7.
8.
9.
1 0 a
l l a
12.

Keyboard
Command Files
Syntax of Command-file Actions
Loading Programs
Dump and Compare
Virtual and Absolute Control Store Interpretation
Testing Directly From Midas
Scope Loop Actions

DO MIDAS MANUAL

- 1.
2,
3.
4.
5.
6.
7 a
8.
9.
10.

Registers and Memories Known to Midas
TaskeSpecific Registers
Complications in the Display of Register Values
How Registers Are ReadIWritten
Special Keyboard Input Formats
STEP and GO
BREAK and UNBREAK *

BOOT
Acquiring Midas
Midas Maintenance

DO SIMULATOR MANUAL

1.
2.
3.
4.
5.
6.
7.
8.
9.

Introduction
Documcntation
Getting Started
Using DDT
Load and Dump
Exaininc and Change
Simulator Execution
Command Strings
DDT Conrniancls

-3
-1
-1
-1

69
70
72 *

73
74
74
7s
77 -.

-.

-.

-.

82
82 -1 -

-1
-1
-1
-1

83
83 -.

83
84 -.

84
84 -.

85

87 -

10. The Simulator Memories
10.1. The C Memory in Detail

88
88

a

DO

MICROASSEMBLER

MANUAL

20 October 1978

Edward Fiala

edited by

Carol Hankins

Xerox Business Systems
Systems Development Department

3408 Hillview Road
Palo Alto, California 94304

r -
i c,

I

!I

DO Microassembler Manual

1. Introduction

20 October 1978

The DO microprogramming language, called DOLang here, is implemented as a set of definitions on
top of the machine-independent assembler Micro. The assembly language is based upon the
machine description in the 30 July 77 release of "DO Processor Functional Specification".

'

If DOLang were perfect, you would never need to know any details of Micro itself--the language
specification described in this document would be complete. I have tried to make DOLang
complete, so if you are forced to modify or augment the DOLang definition file, please bring the
circumstances to my attention.

In the event you are forced to fall back on basic Micro constructs, the docutnentation on Micro is
on-line. It is Micro.Press on M a c 1 < AltoDocs >. This is supplemented by
< AltoDocs > Micro.Tty.

.

The documentation here is also supposed to be complete, so you should not have to study the
DOLang definition file to figure out how anything works. If this proves untrue, please bring it to
my attention also.

All numbers in this document (and in DOLang source files) are in octal.

I personally write microprograms with the upper-case shift-lock key depressed, and the definitions
in the microlanguage consist entirely of upper-case characters. Howcver, a Micro switch converts all
source file characters to upper-case, so you may follow your own capitalization conventions and use
this switch.

Micro flushes Bravo trailers, so you can use Bravo formatting if you want to. Fiowcver, the cross
refcrcncc program, Mcross, which is expected to produce primary microprogram documentation,
docs not handle Bravo trailers, so you are advised not to do any special formatting.

2. Assembly Procedures

To asscmble microprograms on your Alto, you must obtain from Maxc < Alto>Micro.run,
< DlSource > DOlangmc, and < Alto > MicroD.run. Micro, Micron, and DOLang may also be
obtaincd from Iris <DO > and Isis <DO >.

MICRO/L/E dOlang source1 source 2 ... sourceN

This caiiscs the soiircc files "dOlang.mc", "sourcel.mc", ..., "sourceN.mc" to be assembled. 'The
"/L" caiiscs a listing lilc named "sourccN.LS" to be produced. If "/Id" is omittcd, no listing file is
produced. The asscinbler also outputs "sourccN.I)II3i1* (intcnnediate binary and addresses),
"sou rccN XR" (error tncssages--error tncssages go to thc termin:il irrespcctive of wlicther they are
also goiiig to thc .ER filc), and "sourceN.S?'" (the Micro symbol table after asscmblirig source N).

DO Illicroassernbler Manual 20 October 1978

I
I

I

In other words, micro assembles a sequence of source files with default extension "MC" and
outputs four files whose extensions are ".DIB", ".ER", ".LS", and ".ST". The default name for
these is the name of the last source file to be assembled. Direct output to particular files as follows:

MICRO SYS/L SYS/B dOlang source 1 ... sourceN

This would cause listing output to be put on "SYS.LS" and symbol table and binary output on
"SYS.ST" and "SYS.DiB".

A summary of the local and global flags for Micro is as follows:

Global: /L Produces an expanded listing of the input
/N Suppresses binary and symbol table output
/U Convert text in all source filcs to upper-case
/O Omit .ST file

h l : /R Recover from symbol table file
/L Put expanded listing on named file
/B Put binary output and symbol table output on named file with extensions .DIB and .ST,
/E Put error listing on named file
/S Put symbol table on named file
/U Convert text in named file to upper-case

respectively. Default error listing to named file.

Assemblies are slow--it should take about 3 minutes to assemble a 2048-instruction microprogram.

The symbol table (.ST) file produced by Micro can be uscd to establish a basis point for hrther
assemblies, thcrcby reducing assembly time. For example, you can build a DOLANG.ST file as
follows:

Micro dOlang

Then do all further assemblies as follows:

Micro/O dOlang/R sys/B source1 ... sourceN
MicroD dOLang sys

Prcassembling DOLANG in this way would save about 5
savings is so small that I recommend you do not do

INSERT[file] stakments, as described in Section 2.7, can be
type as many source files on the command line.

seconds of assembly -time. This time
it.

put in source files so you don't have to

AAcr obtaining an error-frec asscmbly from Micro, you must postprocess thc .DID file with MicroD
to transform it appropriately for loading by Midas. This is accomplished by the following command
linc syntax to thc Alto Executive:

MICROD SYS

2

DO Microassembler Manual 20 October 1978

The source files for MicroD (only SYS in the above example) are the output files produced by
Micro.

MicroD displays a progress message while it is churning away. I believe that MicroD will require
about 3 minutes to process a 2048-instruction file.

The output of MicroD is an ".MB" file, consisting of blocks of data that can be loaded into various
DO memories and of addresses associated with particular locations in memories. The memories are
as follows:

* IM 40-bit x 4000-word or 10000-word instruction memory .
(also contains 20 bits/word of placement and other information)

RM 20-bit x 400-word register bank and stack memory

There are at present no facilities provided for microcode overlays. Providing such a facility would
require a major addition to MicroD and no such facility will be provided for a long time (maybe
never).

3. Error Messages

During assembly, error messages are output to both the display and the error file.

The "TITLE" statement in each source file causes an error message of the form:

l...title...JLC = 341

This message is not the rcsult of an error. It simply indicates that the assembler has started working
on that source file. "ILG=341" indicates that the first IM location asscmbled in this source file is
the 341st in the microprogram. This will be helpfbl in correlating sources statements with error
messages from the postprocessor, MicroD.

Micro error messages are in one of two forms,

2 1 8.. .error message
TAG + 39 ... error message

The first example indicates an error on 'the 218th
errors that preccdc the first labcl in thc file. Thc
error on the 39th linc afler thc label "TAG".

like the following:

ine of the sourcc file. This form is used for
sccond form is uscd afterwards, indicating an

The most common error messages during asscmbly arc due to multiply sct ficlds in instructions and
to undefiticd symbols. I do not bclicvc that you will have any troublc figuring out that these
messages mean, so no coinmcnts arc offered licrc. 'llie Micro error mcssages arc discussed in
Scction 3.

3

I

DO 11 ficroassernbler Manual 20 October 1978

MicroD error messages are discussed in Appendix A.

4, Debugging Microprograms

There is a simulator for the DO.

Microprograms can also be debugged on the hardware using facilities provided by Midas. See the
section on Midas.

See the section on Simulator.

Midas facilities consist of a number of hardware tests, a loader for DO microprograms, setlclear
breakpoints, start, step, or halt tlie machine, and examine and modify storage. Addresses defined
during assembly may be examined on the display.

Midas works with both the imaginary IM addresses defined in your source program and with the
absolute IM addresses assigned to instructions by MicroD. The way this works is discussed in the
Midas section.

5. Comments and Conditional Assembly

Micro ignores all non-printing characters and Bravo trailers. This means that you can freely use
spaccs, tabs, and carriage returns to format your file for readability without in any way affecting the
meaning of the statements.

4 Comments are handled as follows:

"*" begins a comment terminated by carriage return.

"%" begins a comment terminated by the next %'*. This is used for multi-line comments.

";'* tcrminates a statement. Note that if you omit tlie ";" terminating a statcment, and, for example,
put a "*" to begin a cuminerit, the same statement will be continued on the next line.

Micro has onc method of producing multi-statement conditional assemblies. This is the
COMME"T'CHA1~ feature, used as follows. , Suppose you want to h a w conditional assemblies
bascd on whether thc microcodc is being assumblcti for a 2K o r 4K DO configtirtltioii. To do this
define "-" as the comment charxtcr for 2K (ix., C'OMMEN'I'CHf~l~[-];) and "!" as the cornrncnt
character for 4K. Then in the source files:

*! 2K configuration only
. . .statcmcnts For 2K cotifiguration ...
*! end of 2K condiliorial
*- 4K configuration only
... statcmunts for 4K configuration ...
*,

4

DO Micronssenibler Manual 20 October 1978

In other words, "*" followed by the comment character is equivalent to "%" and is terminated by
its next occurrence.

6. Simplified Parsing Rules

After comments, false conditionals, and non-printing characters are stripped out, the rest of the text
forms STATEMENTS.

Statements are terminated by '*;'*. You can have as many staterncnts as you want on a text line,
and you can spread statements over as many text lines as you want. Statements may be indefinitely
long.

However, the size of Micro's statement buffer limits statemcnts to 500-decimal characters at any one
time. If this is exceeded at any time during the assembly of a statemcnt, an error message is
output. If you ever experience a statement buffer overflow error, please tell me. This should be
impossible except on multi-statement REPEATS.

The special characters in statements are:

T* and *199

"(",,and '*)"
'* t
, I , I,

*I ,I: f

I,. I1

9

" # "
"01234567"

for enclosing built-in, macro, field, memory, and address argument lists:
for causing nested evaluation:
as the final character of the token to its left:
to put the addrcss to its left into the symbol table with value equal to the current
location and current memory:
scparates clauses or arguments
scparates staletnents
#l. #2. etc., are the formal parameters insidc macro definitions
are numbcr components (all arithmetic in octal)

All other printing Characters arc ordinary symbol constituciits, SO it is pcrfcctly ok to have symbols
containing " + ", "-", "&", ctc., which would be syntactically significant in other languagcs. Also,
don't forget tliat blanks, carriage returns, and tabs arc syntactically rnwningless (flushcd by the
prescan), so "P+Q" = "P + Q", each of which is a singlc symbol.

Notc that namc length is limited only by the size of the statcment buffer. However, avoid defining
addresses longer than 13 characters bccausc of problems you will encounter with thc dcbugger
Midas.

Statements arc divided into CI AUSES soparatcd by commas, and the clauscs arc cvaluatcd riglit-to-
left. An indefinite numbcr of cl;iuscs may appear it1 a statement.

Examples of clauses are:

i

P t- Q t 1 is referred to as a "soiircc while FOOt, +--
Fool+, and F002+ arc "dcstinatiotis" or "sinks".

DO illicroassenibler iC.lantta1 20 October 1978

PcSTEMP,
NAME[Nl[N2[ARG]],ARG2] 6 FOO(X1,

Further discussion about clause evaluation is postponed until later.

7. Statements Controlling Assembly

b c h source file should begin with a TITLE statement as follows:

TITLE[SOURCEl];

The TITLE statement performs a number of operations.

a. It prints a message in the .ER file and on &he display which will help you correlate subsequent
error messages with source statements which caused them.

b. It puts the assembler in TASK 0 mode and SUBROUTINE mode. These modes will be
discussed later.

The final file to be assembled should be terminated with an END statement:

END:

Currently, thc END stat

You may at any place in the program include an INSERT statement:

cnt doesn't do anything, but I might find something for it to do later. -r
INSERT[sourceX];

This is equivalent to the text of Ihc file sourceX.MC. Howevcr, since INSERT is defined by
I3OI.ANG, you cannot INSERT DOLANG itself--either DO1 ANG itsclf or a /R file which
asscinblcd DOLANG must be explicitly mentioned on the command line or an INSERT function
must be defined in the file such as:

BU lLTlN[INSERT,24];
lNSERT[DOLANG);

Thc mcssagc printcd on the .ER file by TITLE is most helphl in corrclating subscqucnt crror
messages if any INSER'I' statements occur either bctbre the 'ITl'[,E statcmcnt or at the end of the
file (bcfure the END statctnent). INSERT works ok anywhcre, but it might be hnrdcr to figure out
which tile suffered an error if you dcviate froin this reconimcndation.

In the cvcnt you rcqucst a listiris by putting "/I," in Lhc Micro command hic, the cxact stuff
printcd is dctermiticd by dwlarations that can bc put anywlicre in your program.

- --1
-. --1
- _ --I

~ I - i
[-
I,

DO iI4icroasseni 15 ler Manual 20 October 1978

DOLang selects verbose listing output. However, unless you are looking for an elusive assembly
problem, you will generally NOT want to print this listing. The listing produced by MicroD is the
normal listing file you will use during debugging.

If you want to modify the default listing control in DOLang for any reason, you can do this using
the LIST statement, as follows:

LIST[memory,mode] ;

where the "memory" may be any of the following:

IM 4000-word or 1oooO-word x 40-bit (+20-bit placement) instruction memory
RM 400-word x 20-bit register bank memory

and the mode, the "OR" of any of the following:

10 alphabetically-ordered list of address symbols
4 numerically-ordered list of address symbols
2 (TAG) FF4-3, JCNc4, etc. (list of field stores)
1 (TAG) nnnn nnnn nnnn (octal value printout)

NOTE: The listing output will be incorrcct in fields affected by forward references (i.e., rcferences
to as yet undefined addresses).

8. Integers

Micro provides a number of built-in operations for manipulating 20-bit assembly-time intcgers.
These have nothing to do with code generation or storage for any memorics. Integers are uscd to
irnplemen t assembly-time variablcs and to control REPEAT strttemcn 1s. 'I'lie operations given in the
table below arc included here for cornpletencss, but hopefully you will nut have to use any of them
except SET:

4

SET [N AME,OCT]

SELECT[i, CO, ... , Cn]

ADD[Ol, ... I 081
SUB[Ol,02]
lFE[Ol,02,Cl ,C2]
IFG[01,02,Cl,C2]
NOT[O 11
OR[01,02, ... , 081

AND[O1,02, ... I 081
LSHIFT[Ol ,N]
RSHIFT[Ol ,N]

xon[o1,02, ... , 081

Defines NAME as an integer with value OCT. Changes the
value of NAME if already defined.
i must be an integer 0 to n. Evaluates CO if i = 0, C1 if i
= 1, etc.
Sum of up to 8 integers 01 ... 08.
01 -02
Evaluates clause C1 if 01 equals 02, else C2.
Evaluates C1 i f 01 greater than 02, else C2.
Ones coniplernent of 0 1.
lncliisive 'OR' of up to 8 integers.
Exclusive 'OR' of up to 8 integers.
'AND' of up to 8 integers.
01 lshift N
01 rshift N

OCT in the SLIL'[NAME,OCI'] clrtusc, may bc any exprcssioii which evaluatcs to an integer, e.g.:

7

DO hlicroassembler Manual 20 October 1978

SET" AME,ADD[NOT[X] ,AND[Y ,Z,3] ,W]]

Where W, X, Y, and 2 are integers.

If you want do arithmetic on addresses, then the addresses must be converted to integers using the
IP operator, e.g.:

IP[FOO] takes the integer part of the address Fa)
ADD [3, IP[FOO]] is legal
ADD[3;FOO] is illegal

Some restrictions eon doing arithmetic on IM addresses are discusscd later.

9. REPEAT Statements

The assortment of macros and junk in the DOLANG file successfilly conceals Micro's complicated.
macro, neutral, memory, field, and address stuff for ordinary use of the .assembler.

However, one special situation that may require you to understand underlying machinery is
REPEAT statements--in a diagnostic you might want to assemblc a large block of instructions
differing only a little bit from each otlier, and you want to avoid typing the same instruction over
and over.

Instnictions statements are assembled relative to a location counter called JLC. This is originally set
to 0 and is bumped cvery time an instruction is assernhlcd. To do a REPEAT, you must directly
reference ILC as follows: 4

REPEAT[20,1LC[(... INSTRUCTfON STATEMENT ...)I];

This would assemble the instruction 20 times.
instruction each time, you would proceed as follows:

If you want to be bumping some field in the

SET[X,O];
REPEAT[20,1LC[(SET[X,ADD[Xli]] ... instruction statement ...)]]

where the instruction statement would use X sortieplace.

For a complicated REPEAT, you may haw to know dctails in DOLANG. For this you will have to
delve into it and figurc out how things work.

Multi-instruction REPEAT'S arc also possible. The 'X,C[(...)I" in the above example -can be used
sevcral tiirics to accomplish this. Howevcr, [he SOO-charackr sizc of llic staterncnl buffcr will limit
the complexity of the KEPEAT body tu only a fcw instructions.

8

DO Microassembler Manual 20 October 1978

10. Parameters

Parameters are special assembly-time data objects that you may define as building blocks from
which CONSTANTS, RM, or IM data may be constructed. Two macros define parameters:

MP[N AME,OCT]; makes a parameter of NAME with value OCT
SP[NAME,Pl, ..., P8];
NSP[NAME,Pl, ..., P8];

makes NAME a parameter equal to the sum of P1, ..., P8,
which are parameters or integers.
makes NAME a parameter equal to the ones complement of
the sum of PI , ..., P8, which are parameters or integers.

The parameter "NAME" is defincd by the integer "NAME!"', so it is ok to use the NAMg again
as an address or constant. However, you cannot use it for more than one of these.

NOTE: The MC and NMC macros discussed in the next sections not only define constants, but
also parameters with the same name (i.e., NAME!) and value.

[The **!*' is a symbol constituent added so that a constant or RM address can have an identical
NAME.

11. Constants

The hardware allows 10-bit constants to be output in either the left or right halves of ALUB with
0's in the other half of the word. In conjunction with arithmetic ALU operations, thc right-half
constant is sign-extended.

The assembler pennits literal constants to be written as "122C", "177400C3", "177600C3", "122000C",
etc. These can be inserted in microinstructions without previous definition. 'The assembler error-
checks the ALU operation in cases where the selected constant requires or prohibits sign-extension.

4

Negative constants such as "-lC", "-55C", etc., are presently illegal.
implemented later, if I can figure out how.

However, they may be

A1 tcrnatively, constants may be constructed from parametcrs, integers, or addresses using the
following macros:

MC[NAME]PI, ..., PSI; defines NAME as a constant whose value is the sum of

NMC[NAME,P 1 ,...,PSI; defines NAME as the ones complement of the sum.
P1 ... PS (integers or parameters).

NOTE: Thc two macros above also define NAME as a parameter. You nzlrst not redcfine a
parameter with thc same name as a constant because the binding of thc constant is to the name of
its associated parameter, not to its value. In othcr words, if you rcdefinc a parameter with the stme
namc as a constant, you will rcdcfinc the constant also.

Occasionally, you may wish to crcate a constant whose value is an aritlimctic cxprcssion or an
expression including an addrcss in KM. Here are several cxmples of ways to do this:

9

DO 12.f icroassembler Manual 20 October 1978

I P[R ADD R] C A constant whose value is an RM address
ADD[3,LSHIFT[X,4J]C A constant whose value is a function of the integer X

12. SETTASK Statements

The hardwarc OR'S various bits of the task number into fields of the microinstruction to determine
which RM addresses are referenced. You must tell the assembler what task is going to execute each
section of microcode, so that it can perform the proper error checks and set up the fields of
microinstructions appropriately.

This is done with a clause of the form:

SET TASK[n];

where n is the task number, 0 to 17. If you want to refer
define integers with values equal to the task numbers.

SET[OISPTASK,S];

Then use SETTASK[DISPTASK] to refer to the task.

to task numbers symbolically, you can
For example.:

SETTASK controls not only the assembly of instructions, but also the allocation of RM addresses
100-word sections of RM, as discussed in the next section.

NOTE: The TITLE statement at the beginning of a file does a SETTASK[O].d

13. Assembling Data for RM

RM addresscs are allmatcd by RV statements in one of the following ways:

RV[name,disp,Pl ,P2 ,..., P7];
RV[name,,Pl,P2, ..., P7];
RV[name,disp];
RV[narne];
RV[name,disp,value];
RV[name,,value];

The first argument "name" is the namc of the RM addrcss which yoii will subscqucntly use
instruction statcments.

Tlie sccond argumcnt "disp" is a displacctncnt bctwecn 0 and 77. This spccifics thc low six bits
the IIM addrcss. 'Thc top two bits are determined by tlic top two bits of thc task numbcr, declared
by the last SITTASK statcmcnt. If' "disp" is omitted, the RM addrcss is allocatcd at the last
location plus 1.

10

to '

in

of

DO Iliicroassembler Manual 20 October 1978

The remaining 7 arguments are parameters summed to determine the value loaded into that
location. If all of these are omitted, then the location will be uninitialized,

Avoid assigning useless initial values to variables because this will prevent the "Compare" fbnction
in Midas (which compares the microstore image against what you loaded) from reporting fictitious
errors. In a system microprogram (as opposed to a diagnostic), any Occurrence of a variable with an
initial value is probably a programming error since it requires reloading the microcode to restore the
initial value. Hence, if you have variables with initial values, you probably should store the initial
values elsewhere (in IM, for example), and copy the initial values into the registers during
initialization.

The hardware imposes a number of strange constraints upon the placement of RM addresses. For
example, addresses used as base registers must be less than 4 mod 8, quadruple fetch/store locations
must be 0 mod 4, double fetchlstorc locations must be even. Also, RM is partitioned so that only
locations 0 to 77 are accessible to tasks 0 to 3, 100 to 177 to tasks 4 to 7, 200 to 277 to tasks 10 to
13, and 300 to 377 to tasks 14 to 17. Tasks 1 to 3 in each group of 4 are further limited because
the task number is OR'ed into high address bits in various ways. These constraints will be a source
of many program bugs.

You must be careful to assign a "disp" that satisfies all the uses of each RM address. If you screw
up, the assembler will give you an error message when you subsequently reference the RM location
in an instruction.

Sometimes you may want to use several differcnt names to refer to the same RM location. To do
this, define the first name with RV, as above; then define the synonyms as follows:

RM[F00,IP[FW]];

This defines the address FOOl at the same location as

14. Assembling Data Items in the Instruction

the (previously-defincd) addrds FOO.

Memory

If you do not want to clutter RM with infrcqucntly referenced constants or variables, and if you are
willing to cope with thc hardware kludges for reading/writing thc instruction mcrnory as data, then
you can store data items in IM.

To assemble a table of data in the instruction mcrnory:

SETIT1 LOC, 1001;
DATA[(TABLEl:LH[Pl, ..., Pa] RH[Pl, ..., P8], AT[TlLOC]));
DATA[(LH[Pl ,..., P8] RH[P1, ..., P8], AT[T1 LOC,l])];
...

where TABLE1 is an IM address symbol equal to the location of the first instructioti in the table,
P1, ..., P8 arc parmctcrs, intcgcrs, or addresscs. LH stores thc sum of up to 8 pr'anictcrs in the
left-half of the 1M word and KH, the right-half. "AT" is discussed in Scctioii 2.18.3. Sample
sequences for reading and writing IM are given in Section 5.

DO illicroassernbler hluntial 20 October 1978

15* RM & STK Clauses

The hardware complicates references to RM by providing only six bits of RM address in the
microinstruction. The remaining two address bits come from the task number. The programmer
must declare the task number with SETTASK before referencing any variables or constants.

RM addresses can source ALUA destinations and can be used in ALU expressions: In this case, the
RM address has to be enclosed in "()".

*

RM addresses can be used as destinations for ALU operations and ALU sources (which the
assembler routes through the ALU). For these simply write the rcgister name followed by "*".

16* ALU Clauses .. , ' I c .

The operations performed by the ALU are given below. In these expressions, the "A" component
of the ALU expression may be any RM address or one of the other "A" sources. These must be
enclosed in "()". The "13" component may be constaiit, enclosed in "()" or T. *'()'' are optional
around T.

17. Memory Referencing Instruction Statements

Instruction Statements that initiate memory refcrences or INPUT have a different form from regular
instructions, as discussed in the hardware manual. Branch and placement clauses are identical to
those in regular instructions, and the F2 clause, if any, is identical to that in a regular instruction.
The rest of the instruction is a single clause in one of the following forms:

PFETCHl[rbase,rdest < ,f2 >]
PFETCti2[rbase,rdest < ,f2 >]
PFETCH4[rbase,rdest < ,f2 >]
PSTORE 1 [rbase,rsource < ,f2 >]
PSTORE2[rbase,rsource < ,f2 >]
PSTORE4[rbase,rsource < ,f2 >]
IOFETCH4[rbase,device < ,f2 >]
IOFETCH20[rbase,device < ,f2 >] *

IOSTORE4[rbase,device < ,f2 >]
IOSTORE20[r base,device < ,f2 >]
WRITEMAP[rbase,rsouree < ,f2 >]
READMAP[rbase,rdest < ,f2 >]
INPUT[raddr < ,f2 >]

In these clauscs, "rbnsc" is ;in RM addrcss which must bc in the group of 100 acccssiblc to the
ciirrcnt task (scc "SEl"r/\SK") and less than 4 mod 8. The two words of bzlsc address arc takcn
froin the sclccted R M ;iddrcss and that location +4. The asscmbler will give an error if you use an
invalid l<M address.

I !
._ .-I
--I -.

I1
-1 -
.-- -1
--1 _ -

--I 4

::I

12

D 0 Microassem b ler hf an ual 20 October 1978

The displacement relative to the base register is taken from T, if you omit the optional f2 argument
(" < > 'I above denotes an optional argument). If you supply the f2 argument, which must be in
integer less than 20, that value is stored in the F2 field of the microinstruction and used instead of
T. See the hardware manual for details on how this works.

PFETCHn will then move n words from the memory to the n-word block of RM addresses
beginning at "rdest". "rdest must be even for PFETCH2 and 0 mod 4 for PFETCH4: it must be in
the group of 100 (task 0 mod 4), 40 (tasks 1 mod 4 and 2 mod 4), or 20 (task 3 mod 4) RM
locations accessible to the task--the assembler will give an error message if "rdest" is illegal.

PSTOREn is like PFETCHn, but moves data from RM to memory.

IOFETCHn moves n words from memory to the selected I 0 device, where the I 0 device must be
specified by an integer. The hardware OR'S the current task number with the 8-bit device in the
instruction, and the assembler will give an error message if the device you code is inaccessible to the
task.

IOSTOREn is like IOFETCHn, but moves data h m the device to memory.

NOTE: The hardware OR'S the current task number into the RM address in the microinstruction
so that a group of 4 tasks will use different RM locations, while executing a single stretch of
microcode. Suppose, for example, that you want tasks 10, 11, 12, and 13 to share a section of
microcode but usc independcnt RM locations. Then do a SElTASK[lO] before that section of
microcode, allocate a block of RM locations in the range 100 to 117 and refer to these locations in
the stretch of microcode: also allocate Parallel blocks of RM locations in the ranges 120 to 137. 140
to 157, and 160 to 177 for use by
want. If the stretch of microcode
th3t they will be accessible to

, task 11, 12, and 13. In this way, the progrc& will do what you
also rcfers to constants, allocate these in thc range 160 to 177, so
all four tasks.

18. Branching

This section defines branch clauscs in instruction statements, dcclarations which affect instniction
placcment, and dispatch clauses.

Micro assemblcs instructions for an imaginary machine identical to DO but with additional fields
asscmbled for its postproccssor. 'Ihe imaginary machine is characterized by tiill-size 12-bi t brmch
addresses in instructions.

A postprocessing program callcd MicroD places instructions and transforms tlzc .DID (micro binary)
output file for the imaginary machine into a .MB file for DO.

13

DO Microassembler Manual

. 18.1. Branch CIauses

The assembly language defines several constructs

GOTOEbranch address, branch condition 1 ,

where both branch conditions are optional.

20 October 1978

of the form:

branch condition 21

The branch addresses for these may be either instruction tags or one of the following special
symbols: .-3 .-2 .-1 ..+ 1 .+2 .+3, where "." refers to the current instruction and the& others are
relative to this in-line.

[It is obviously possible to define .-4, .+4, .-5, etc., but my feeling is that it is bad style to jump
hrther than +/-3 without using a tag, If anyone finds this inconvenient, please let me know.]

When complementary branch conditions are used, the assembler simply reverses the order of the
branch tags. Hence, DBLGOTO~AGl9TAG2,cwn C1, corn C2] =
DBLGOTO[TAG2,TAG1,Cl,C2]. This is provided as a programming cohvenience.

NOTE: If two branch 'conditions appear in a statement, they must be both regular or both
complementary. When two regular branch conditions are used, the truc path takcs if either is true.
However, when two complementary branch conditions are used, the truc path takes only when both
are true. Don't get confbsed by this.

Below " < > " denote optional args; C1 and C2 either two hardware branch conditions or
complements of two hardware branch conditions:

RETURN To LINK (smashes LINK also).
CORETURN Like RETURN but LINK*. + 1 and 'next instruction in-

line placed at . + 1.
DBLGOTO[TAGl ,TAG2,C1< ,C2 >] To TAG1 if C1 or C2 true, eke to TAG2. Limits

TAG2 to the goto addresses.
DBLCALL[TAGl ,TAG2,C1 < ,C2 > 1 = DBLGOTO[TAG 1 ,TAG2.C1 ,C2], forces next

instruction in-line to be at . + 1 mod 100, and limits
TAG2 to call addresses.

CALL[TAG < ,C1< ,C2 > >] = DBLCALL(TAG,. + 1 ,C1 ,C2], complementary BC's
illegal

GOTO[TAG < ,C1< ,C2 > >] = DBLGOTO[TAG,. + 1 ,C1 ,C2]

A conditional CALL is just barely possible. It requires the next instruction in-line to be
simultancously at the truc branch addrcss,xor 1 and at the address of the caller +l. Since the true
branch address must be at a location with three low bits cyual 001, these conditions arc only met
when tho iddrcss of the crtllcr is the location beforc tllc false targct itddrcss. I n other words,
complementary I K s arc illcgnl with CALL, and you cannut code two consecutive microinstructions
each containing a conditional CALL.

It is also impossible to have a CALL in the instruction attcr a conditional GOT0 becausc the return
of the CALL would bc to the true target of thc previous conditional branch.

An unconditional RE'I'UKN branchcs to the address of thc caller +l.
constraint on a11 instruction containing a KETUlIN.

There is no placement

24

~ I_.
DO hficroassernbler Manual

If

conditional RETURN is not defined by tlie hardware.

omitted, the branch clause is defaulted to GOTO[.+l].

20 October 1978

18.2. Dispatch Clauses

The assembly language defines the following dispatch clauses (or slow branches):

DISPATCH[RADDR,POS,SIZE] Dispatch on 1 to 8 bits from RADDR
BBFA[RADDR]
NEXTlNSTtR ADDR]

An example using a dispatch clause is given in. the next section.

18.3. Placement Declarations

An instruction containing the clause "AT[N]" will be forced by the assembler to appear at absolute
location N in the microstore. This will be necessary for instructions in dispatch tables.

"AT[Nl,N2]" in an instruction is cquivalent to AT[ADD[Nl,N2]]. For example, an 8-way
DISPATCH might be written as:

DISPATCH[RTEMP,0,3];
. . . , GOTO[SWITCH];

SET[SWLOCI32O];
SWITCH: ..., AT[SWLOC]; 'B[15: 171 = 0

..., AT[SWLOC,l]; +B[15:17] = 1

...

..., AT[SWLOC,7]; 'B[15:17] =7

where the three instructions in tlie dispatch necd not be consccutive in the assembly source.

NOTE: Because microinstruction addresses are unknown during asscmbly, it is illcgal to create
paramctcrs, constants, or R-memory data- rcfcrring in any way to instruction locations. To do this,
you must manually locatc the affcctcd instructions with "A?'" statcmcnts and do arithmctic on
integers with the s;mc valucs as the instruction locations.

Global entries arc declared by a "GLOBAL" clause in a statcment, e.g.:

DONEXT: RETURN, T+377CI GLOBAL;

GLOBAl, declarations cause placetiicnt at one of thc 20 global call locations in thc microstore.

DO Microassembler Manual - - '1 20 October 1978

It would probably be nicer for the assembler to have some way of positioning an instruction at a
boundary of 4, 10, 20, etc., without forcing the absolute location to be completely specified.
However, I decided this was: harder to implement and it will not be provided-you are stuck with
"AT" for all dispatch tables,

16

MICRO

MACHINE-INDEPENDENT

MICROASSEMBLER

29 August 1978

Edward Fiala
Peter Deutsch

Butler Lampson

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

This manual describes a machine-indepcndent microassetribly language originally developed for the M a c 1
computer and since uscd for the Maxc2. Ilorado, and DO computers as well as for several smaller projects.

This manual is the property of Xerox Corporation and is to bc uscd solcly for evaluative purposes. No part
thereof may be reproduced. stored in a rctrieval system transmited, disseminatcd, or disclosed to others in any
form or by any mcnns without prior written permissioii of Xerox.

Micro: Machine-lndependen t hiicroassem bler 29 August 1978

1. Introduction

This document describes MICRO, originally implemented in 1971 for NOVA in Algol to assemble
microprograms for the M a c 1 microprocessor. It has since been reimplemented for Alto in Bcpl
and is now used to assemble microprograms for Maxcl, Maxc2, Dorado, and DO. Its output format
is compatible with the MIDAS loaderldebugger, for which there are versions on each of these four
machines.

Micro is a rather unspecialized one-pass assembler. It does not know anything specific about the
target machine, but instead has a general facility for defining fields and memories, a standard string-
oriented macro capability, and a rather unusual parsing algorithm which allows setting fields in
memories in a natural way by defining suitable macros and neutrals with properly chosen names.

This document will be of interest primarily to someone who is going to define a new assembly
language for some machine. There are a number of complications inside Micro that this person
must be! aware of when defining the language. However, once the language has been appropriately
defined, the interface seen by someone writing programs for a target machine is natural and simple.

In other words, if you were going to write microprograms for Dorado or DO, for example, you
would need to read "The Dorado Microassembler" or "The DO Microassembler", which define
languages for those machines, but would probably not require this document.

2. Assembly Procedures

To assemble microprograms on your Alto, you must obtain [Mac] < Alto > Micro.run or
[IVY]<Alto>Micro.run. In addition, you will need to gct the dcfinition filc(s) for the particular
microlanguage that you will be using (see other relevant documentation).

Micro flushes Bravo trailers, so you can use Bravo formatting in the preparation of microprograms.
Howcver, MCross, a M a c program that produces cross-reference listings of Micro programs, does
not ignore Bravo trailers, so you maj' not use ady Bravo formatting fcatures if you are going to use
MCross. In addition, error mcssagcs produccd during asscmbly have linc numbers that will be
morc difficult to correlate with source statements if automatic Bravo line breaks occur in thc source
tcxt rather than explicit carriage returns,

Wc recommend use of GACHh8 (i.e., a relatively small fixcd pitch font) for printing hardcopy
microprogram listings, and thc use of GACHA 10.AL for editting microprograins with Bravo. Dravo
tab stops should bc set at precisely 8 character interals for idcntical tabulation in Bravo and MCross.

'I'hc two relevant lines in USER.CM for Bravo are:

F0NT:O CACIIA 8 GACIIA 10
TABS: Standard tab width = 1795

You will probably want to dclcte the other Font lincs for nravo in USER.CM.

Supposc that you havc preparcd a languagc dcfinition file LANG.MC and a numbcr of sourcc files
for asscmbly by Micro. TIicii n microassembly is xcomplishcd by tlic following dialog with the

r7

kIicro: Muchine- Indeperiderit Microassem bler 29 August 1978

Alto Executive:

MICROIL LANG SRCO SRCl ... SRCn

This causes the source files "LANG.MC", "SRCO.MC", ... , "SRCn.MC" to be assembled. The
binary output and symbol table at the end of assembly are written onto "SRCn.MB" and
"SRCn.ST", the error messages onto "SRCn.ER", and an assembly listing onto "SRCn.LS".

In other words, Micro assembles a sequence of source files with default extension ",MC" and
outputs four files whose extensions are ".MB", ".ER", *'.LS", and '*.ST". The default name for
these is the name of the last source fire assembled. Direct output to particular files as follows:

MICRO SYS/L/B LANG SRCO SRCl ... SRCN

This would cause listing output to be put on "SYS.LS'* and symbol table and binary output onto
"SYS.ST" and **SYS.MB'.

- . . -
A summary of the local and global nags for Micro is as follows: '

Global: /L produces an expanded listing of the output
/N suppress binary output
/O suppress symbol table output
/U convert text in all source files to upper case

Local: /R recover from symbol table file.
/L put expanded listing on named file
/B puts binary output and symbol table output on named file with extensions .MB and .ST,

/E put error listing on named file
/S put symbol table on named file

respectively. Default error listing to named file.

\ /U convert text in named file (and any file which it INSERT'S) to upper case

Local flags override global ones.

INSERT[file];

statements may be put into source files so you don't have to type as many source names on the
command line. This is exactly equivalcnt to the text of fi1e.m. INSERT'S may be ncstcd to a
reasonable depth. Howevcr, although INSERT saves typing it is slower than putting the file names
on the command line because Micro uses a fast file-lookup routine to get handles on every file
named in the command linc in about 1 second; each INSERT adds a11 additional 1 sccond for file
name lookup.

Another shortcut is to define a command file MI containing "Micro/O/U LANG" or whatever and
then type @MI@? SRCO ... SRCN", which avoids some typing.

The SE'I'MlIEXT[.ext] builtin allows the binary output filc cxtension to bc changcd from .MB to
somcthing clsc. 'rhis dcclaration has to be asscmblcd bcforc dcfining any inemorics (clsc the output
file will havc alrcady been opened with cxtension .MB). The Dorado and DO microassemblers use
this to change the extension to .DIB, as expected by the postprocessor, MicroD.

18

. .
. L

Micro: Machine- Independeat Microassembler 29 August 1978

Micro creates a temporary file Micro.fixups and deletes it at the end of assembly. If you abort
assembly with shift-swat, you may delete it yourself.

Micro’s binary output is generated in one pass and consists of memory definitions, store directives
to memories, forward and external reference fixup directives, and new or changed address symbols
for each memory. The block types written on the output file are given in =Appendix 3.

Micro assembles declarations at a rate of about 60 statements/second and, with typical
microlanguages, assembles microinstructions at about 7 statements/second. On very large assemblies
this rate slows slightly as the symbol table grows larger. The assembly time for the M a c system
microcode is about 7 minutes (-2000 72-bit microinstructions, -500 36-bit words in other
memories, -500 definitions, and - 1400 addresses).

Comments are flushed very quickly by the prescan, so do not worry about a profixion of comments
slowing assembly.

Presently, the: Micro-Midas system has no provision for relocating independerotly assembled source
progrlims. However, the Micro symbol table is dumped onto a file at the end of the assembly.
Later, assembly can be continued at that point onto another binary output file, thereby reducing
assembly time. For example, you can build a LANG.ST file as follows:

MICRO LANG

Then do all hrther assemblies as follows:

MICRO/OU LANG/R SYS/B SRCO ... SRCN

This saves a little assembly time but still does not allow several people to indcpendently maintain
sources used in a common system.

To avoid reassembling unchanged files, one would have to partition his program into separate
asscmblies, each of which used absolutc location-counters for the various memorics. This would be
difficult, probably not as good as reassembling everything. However, if this were done, Midas could
link external refercnccs between the different modules at load time.

The MicroD program, used to post-process Micro assemblies for Dorado and DO, has limited
provisions for rclocation. Programmers using the Ilorado or DO microlanguages should read the
relevant documcntation.

Micro: Machine-Independent Microassembler 29 August 1978

3. Error Messages

During assembly, any error messages are output both to the terminal and to the error file. If an
assembly listing is being printed, the error messages are also printed there.

As Micro chums through the source files it prints the name of each on the error file (and terminal),
and when INSERT[file] statements appear it outputs "* FILE file ..." and "* RETURN to file"
messages. These will pinpoint any error message to a particular source file.

Micro error messages are in one of two forms, like the following:

statement
218 ... error message

statement
TAG+39 ... error message

The first example indicates an error in a statement beginning on the 218th line of the source @e.
This form is used for errors that precede the first label in the source file. The sFond form is used
afterwards, indicating an error on the 39th line after the label "TAG", Micro also prints the source
statement causing the error before printing the error message.

Note that the line count measures carnage returns in the source, so if you are using Bravo
formatting in the source files, you may have trouble distinguishing carriage returns from line breaks
inserted by Bravo's hardcopy command.

ER is the builtin by which a Micro program outputs messages to the error file (and to the terminal),

ER[message,stopcode,value]

Blanks are squeezed out of the message by the prescan so "J' signs or other printing characters
should be uscd instead.

S topcode equal 0 continues assembly; non- zero aborts assembly (nulstring in the stopcode defaults
to 0).

ER first prints the message (a literal string) on the error file: then, if the value argument is prescnt,
evaluates it (c.g., it may be an fP or othcr arithmetic expression) and prints it in octal on the error
file; then, if stopcodc is non-zcro, aborts tlie assembly.

When tlie assembly is not aborted, asscmbly of the statcrncnt in which the error occurred will
continue from the point of the crror. This may result in rnorc error rncssagcs if the asscinbler gets
confused by an undcfincd symbol or some othcr condition. Thc location counter gets iticrcmented
iff at least one store is donc by the statemctit, so a statcinciit with an crror may still gciierate an
output word, or it may not.

A summary of crror mcsmge is givcn in hppcndix 1.

20

Micro: Machine- Indeperident hlicroassernbler 29 August 1978

4. Assembly Listings

An expanded listing is produced only when either the global or local /L option is selected. When
the listing file is being produced, the information output is controlled independently for each
memory by the LIST builtin.

LIST[memory ,mode]

controls assembly listing output for all stores to the selected memory. The value of mode is bit-
encoded as follows:

1 enable listing of stores in the memory as octal numbers: by default these are divided into 12-
bit groups starting at the right-most bit of the value: the bit of value 20 and the
LISTFIELDS builtin modify the form of the octal printout.

2 list stores in the memory as field assignments;
4 produce a numerically-ordered list of symbols at end of assembly;

10 produce an alphabetically-ordered list of symbols at end of assembly;
20 makes the octal printout divide stores into 16-bit groups.

The actions of these bits are or'ed. LIST may be given many times during the assembly, to
enable/disable listing output for code sections with difficult bugs. The value of mode at the end of
assembly determines whether or not numerically or alphabetically-ordered address lists are printed.

When a statement of the form:

ANAME[(TAG: mumble)];

is assembled, the listing output would be as follows:

302 (TAG) NNNN NNNN ... NNNN for mode 1

302 (TAG) NNNNNN , . . NNNNNN for mode 21

for mode 2 302 (TAG) Fle3, F2t34, F3~20;

302 (TAG) NNNN NNNN ... NNNN for mode 3
Flt3. F2t34, F3t20

Mode equals 0 disables all listing for the specified memory.

Fl, F2, and F3 in the above example represent all the .fields to which explicit assignments were
made during the assenibly of (mumble). Fields which have non-zero values due to the action of a
DEFAULA' statement for the memory are not listed, nor arc prcassignmcnts listed. Also, fields
filled in by forward references will be erroneously listed as containing thcir default value.

Error mcssages arc printcd on the line after thc listing of the rncmory word or bctween memory
words if no ficld assignments wcre completed in the statement.

LIST[,mode], whcrc the tncmory nntne is null, AND'S rnodc with the listing rnodc for all memories
othcr than the target, e.g. L,IST[,O] suppresses listiiig of all non-target meinorics and LIST[,3]
restores.

21

iclicro: Machine- Independent Microassembler 29 August 1978

The LISTFIELDS builtin can be used to control the assembly listing inore precisely.
assembles

Micro

LISTFIELDS[MNAME,(clauselist)];

as a word for memory MNAME and then notes the positions of all the 1-bits in the result.
Thereafter, in the octal listing for that memory, rather than each field being precisely 12 or 16 bits
wide, 1-bits in the word given to LISTFIELDS are taken as the rightmost bits of the fields. For
example, if the word contains 1-bits only in positions 2, 5, and 6, the octal listing will show a 3-bit
field (bits 0:2), another 3-bit field (bits 3 3 , a 1-bit field (bit 6), and then the rest of the word
chopped up into groups of 12 or 16 bits.

"lie mode argument to LIST determines whether or not tlie stores are printcd, but LISTFIELDS
controls the format of the numerical printout whenever that is turned on by the mode =1, bit.

5, Cross Reference Listings . . . i -

A Tenex program called MCross will parse source files according to Micro syntax and produce
cross-reference listings. Several simple files must be prepared to tailor MCross for the language file
bcing used. These files eliminate the garbage tokens that would otherwise clutter the cross-refernce
listing.

A cross-reference listing is not very usefbl for small microprograms but becomes increasingly
valuable for large systems. Consequently, if you are maintaining a large system, you will probably
wish to obtain an account on our M a c timcsliaring system. Occasionally, you will dump the
sources on your Tenex directory and run MCross over them.

A typical dialog with MCross is given below. The program is more-or-less self-documenting and
will give you a list of its commands if you type "?I*.

@lMCross
Output file:
Machine:
Action:
File:
Action:
File:
Action:
File:

Action:
Action:
Action:

. . .

@

LPT:GACIIAS
D
N
LANG < cr >
CL
SRCl < cr >
CL
SRC2 < cr >

P
G
E

(selects Dorado syntax--M for Mac, 0 for W)
(read defs, no printout)

(read defs, produce cross ref.)

(print operation usage statistics)
(print global cross reference)

22

Micro: Machine- Iridependent Microassembler

6. Comments and Conditional Assembly

Micro ignores all non-printing characters and Bravo trailers. This means
spaces, tabs, and carriage returns to format your file for readability without
meaning of the statements.

Comments are handled as follows:

'**" begins a comment terminated by carriage return.

29 August 1978

that you can freely use
in any way affecting the

'*%'* begins a comment terminated by the next "%'*. This is used for multi-line comments.

";** terminates a statement. Note that if you omit the ";'* terminating a statement, and for example,
put a "*" to begin a comment, the same statement will be continued on the next line.

Micro has one method of producing multi-statement conditional assemblies. This is the
COMCHAR builtin, which provides conditional assembly of a large block of instructions by altering
the interpretation of comments.

COMCHAR[&r]

makes *char be a comment bracket similar to %. Micro will discard everything from an Occurrence
of *char tlirough the cnd-of-line following the next occurrence of *char. Note that this is not quite
like % because %I stops discarding immcdiately at its matching occurrence.

You can disable this feature with

COMCHARU

which is Micro's initial state. As an example, suppose you want to assemble one of two code
sequences depending upon whether somc integer symbol X is zero. You could write the following:

IFE[X.O.COMCHAK[#].COMCHAR[=I]:
*= here is some code to skip if X neq 0 (asscmble if X eq 0)

*= end of X eq 0 code

*# here is some code to skip if X eq 0 (assemble if X neq 0)

...

...

...
* # end of X ncq 0 code
COMCIIAR[]: *Disable feature

23

Micro: Machine- Independent Adicroassern bier 29 August 1978

7. Statements

After comments and non-printing characters are stripped out, the rest of the text forms
STATEMENTS. There is no level of program structure superior to the statement (e.g., conditionals
cannot span more than one statement) except for the COMCHAR kludge.

Statements are terminated by ";". You can have as many statements as you want on a text line,
and you can spread statements over as many text lines as you want. Statements may be indefinitely
long.

However, the size of Micro's statement buffer limits statements to 500-decimal charactekj at any one
time. If this is exceeded at any time during assembly of a statement, an error message is output.
Since horrendous macro expansions occur during instruction assembly, overflow is a possibility, and
care is required when defining complicated macros.

The special characters in statements are:

*l 1)

Y

t? , **
Y

** # '*
"01234567"

for enclosing builtin, macro, field, memory, and address argument lists;
for causing nested evaluation;
as the final character of the token to its left;
to put the address to its left into the symbol table with value equal to the
current location in the current memory;
separates clauses or arguments;
separates statements
#l, 432, etc. are the formal parameters inside macro definitions;
are numbcr componcnts (all arithmetic in octal)

All other printing characters are ordinary symbol constituents, so it is perfectly ok to have symbols
containing * * + *', "-", **&*', etc. which would be syntactically significant in other languages. Also,
don't forget that blanks, carriage returns, line feeds, arid tabs are syntactically meanirigless (flushed
by the prescan), so "P+Q" = "P + Q", each of which is a single symbol.

Micro handles all code generation by table lookup and minimal use of conditiotials. In particular, it
docs not erduate P+Q+l but rather looks it up in the symbol table. Since P + Q + 1 is the same
for a human, we have chosen to suppress all blanks. Other non-printing characters are suppressed
so that control characters don't appear invisibly in print names.

Notc that name length is limited only by the sizc of the statemcnt buffer. However, avoid dcfining
address symbols longcr than about 13 characters bccause of problems you will encounter with the
dcbugger Midas.

Statements arc divided into clauses by commas. An indefinitc number of clauses may appcar in a
s tatemcn t.

24

Micro: Mach in e- Independen t Microassem bler 29 August 1978

Examples of clauses are:

NAME,
NAME[ARGl, ARG2, ..., ARGN],
FOO +FOOl* F 0 0 2 + P + Q + 1 P+Q+1 is a "source" while FOO, FOO1, and F 0 0 2 are

P + STEMP
NAME[Nl[N2[ARGU,ARG2] * FOO[X].

"destinations" or "sinks."

7.1. Builtins

All of the predefined operations of Micro are called builtins. With the exception of the BUILTIN
and INSERT builtins, none of them have a priori ncmes but instead are assigned names by the
programmer. Names are assigned to builtin operations by declaration statements of the form:

BUILTIN[BUILTIN,l]:

where the second argument is the intrinsic operation
which it is referred to.

All builtins are called using this same syntax:

NAME[ARGl, ARG2, ..., ARGg]:

The all-inclusive list of builtins is given in Table 1.
Micro are BUILTIN and INSERT: i.e., the other

I number and the first argument is the name by

Note that the only print-names assembled into
names in Table 1 are chosen by convention.

.

7.2. Defining Symbols

The builtins BUILTIN, MACRO, NEUTRAL, MEMORY, FIELD, and SET are used to define
symbols of diffcrent types, as discussed later. The namc of a defined memory can then be used to
define addrcsscs in that memo@, and addresses are also defined when litbels appear in statements
being asscrnbled for storage in a memory. Once a symbol has been dcfincd, it is an error to
redefine it as any other type of symbol.

It is legal to change the value of a symbol of type integer.

Redefining a macro is legal (but Micro prints a warning message).

Whcn an addrcss is dcfined by a label, any attcrnpt to change its value is illcgal, but wlien dcfined
by MEMNAME[symbol,value] it is legal to change tlie integer part of thc value (illegal to change
the memory part of the value).

25

I I_

~

- .-
Micro: Machine- Independent Microassembler 29 August 1978

Builtin Na

1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
231
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50

Name

BWILTIN
MACRO
NEUTRAL
MEMORY
TARGET
DEFAULT
FIELD
PF
SEX
ADD
IP
IFSE
IFA
IFE
IFG
IFDEF
IFME
ER
LIST
INSERT
NOT
REPEAT
OR
XOR
AND
COMCHAR
BITTABLE
GETBIT
SETBIT
FINDBIT
MEMBT
LSHIFT
RSHIFT
FVAL
SELECT
SET'POST

LISTFIELDS
SETMBEXT
SUB

--

Table 1: Builtins

Discussion

Section 7.1
Macro definition (usual1y the short name "M" is used), section 9
Neutral definition (usually the short name "N" is used), sections 7.3, 10
Memory definition, section 13
Target memory declaration, section 13.1
Default value of memory bits, section 13.2
Field definition, section 11
Field preassignments, section 11
Integer definition and set, section 8
Section 8
Integer part of an address, section 8
If-string-equals conditional, section 12
If- field-assigned conditional, section 12
If- integers-equal conditional, section 12
If-integer-greater conditional, section 12
If-symbol-defined conditional, section l2
I f -memory-part-of -add-equ~~ng conditional, section U
Print error message, section 3
Control assembly listing, section 4
Insert file, section 2
Section 8
Repeat evaluation, section 14
Section 8
Section 8
Section 8
Multi-statement conditionals, section 6
Define bit table, section 16
Section 16
Section 16
Section 16
Section 16
Left-shift integer, section 8
Right-shift integer, section 8
Get value in field, section 11
Switchon integer, section 15
Define post-evaluation macro for memory, section 13.3
Deimplemented
Control assembly listing, section 4
Set binary output file extension, section 2
Section 8

26

Micro: Machine- Iriiiepeniient hlicroassernbler 29 August 1978

7.3. Tokens

The rules for delimiting clauses into tokens have been carehlly chosen to permit the user of Micro
to write readable programs. The parsing of statements is strictly right-to-left and the following
definitions are required in explanation:

Tlien:

An L-token tcrminates the token to its left.
An R-token terminates the token to its right.

(R group delimiter
) L group delimiter
[L builtin argument list dclimiter
I builtin argument list delimiter
, LR clause delimiter
:

+

LR

LR

clause delimiter which takes the preceding token as an address in the current
memory at the current address
separator which is part of the symbol to its left

Any text with an R-token to its left and an L-tokcn to its right constitutes a token called a syrnbol
whose meaning is determined by looking it up in the symbol table. Text enclosed in parentheses is
lexically independent of anything outside, and a parenthesized string of text is lexically equivalent to
the "tail" which its evaluation produces. The following example clarifies this.

In the expression:

the order in which expansions are recognized assuming that each FOO expansion leaves behind no
text is:

27

hf icro: Machine- Independent Microassembler 29 August 1978

7.4. Neutrals and Tails

The handling of tails, a distinguishing peculiarity of Micro, works as follows. The tail is initialized
to the nulstring at the start of processing a clause. When a neutral symbol is recognized using the
rules for delimiting tokens (previous section), it is concatenated on the left of a string called the tail
thusly:

temp += concatenate (symbol, tail);
if tail eq null do;

tail + temp;
else do;

tail += null;
treat temp as a symbol;

end;

Parentheses push down the current tail and start a new null one. When the text inside is
completely processe<% its tail (null or neutral) is treated as though it were a string which had
appeared without parentheses.

The use of neutral tails permits complicated machines like M a c and Dorado to be described by a
relatively small number of macros and neutrals. The following example shows how this works.

Maxc has about 30 bus sources and 30 bus destinations, but not all combinations of source and
destination are lcgal (a slow source may not feed a slow destination). An example using the bus is:

MDRcX

X is a macro that expands to a store into thc bus source ficld of the microinstruction and leaves
bchind the neutral symbol l3. M I X + = , the next token recognized, is a macro that expands into a
store into the bus destination ficld and leavcs behind thc neutral symbol B+=. B+B is the next
token rccognizcd. Since the connection of a fast bus sourcc to a fast bus dcstination is legal, B+=B
has also bcen cntered into tlic symbol table as a macro cquivalent to thc neutral symbol B.

If B+= could not have bcen lcgally connectcd to B, then the B+=R macro would not have been
dcfincd, and Micro would have output an crror likc "I3+fi undefined" when assembling the
s tatcment.

Thus the nurnbcr of symbols which must be defined for dcscribing bus sources and dcstinations is
roughly l/sourcc plus Vdcstination plus a sinall nurnbcr of macros to dcscribc legal connectjotis of a
class of sources to a class of destinations. Each class of objccts is rcprescntctl by a ncutral symbol.

In other words, the connection concept, which ncutral tails implement, decouples sourccs and
destinations insidc the languagc definition file. lp conjunction with tlic pcculiar hmiling of '* + ",
this permits ;i ti;ilural assembly languagc to be defined in which the prograintrier thinks of sources
flowing ovcr buscs to dcstinations. It is impossible to create a natural language of this typc with an
ordinary macroasscmbler.

Hcrc is a inorc complicated example:

25

Micro: Machine- Independent hf icroassetnbler 29 August 1978

STEMP+MDR+(RTEMP+P) U (X)

In this example (from Maxcl), there is an interior routing of data from P (a register) to RTEMP (an
address in the RM memory); this routing moves data from P through the ALU and into RTEMP.
The ALU data is also routed onto I) (a bus) where it is or'ed with data from X (a register). Then
the bus data is written into MDR (a register) and into STEMP (an address in the SM memory). A
crude outline of the way this is assembled is as follows:

P is a macro that stores the P control in the ALUF field of the microinstruction and leaves the neutral ALU;

RTEMPc is recognized as an RM destination (details later): its address is stored in the RA field leaving the
neutral RB+;

RBcALU is a (connection) macro, leaving the neutral ALU behind:

X is a macro that stores the code for BcX into the BS field of the microinstruction leaving the neutral B:

ALUUB is a (connection) mcro that stores the code for BcALU into the Fl field and leaves the neutral B:

MDRt is a macro that stores the code for MDRtB into the BD field leaving the neutsrf B*:

B+B is a (connection) macro leaving the neutral B:

STUMP6 is recognized as an SM destination (details later): its address is stored in the SA field leaving the
neutral SBt:

SBcB is a (connection) macro that stores the code for loading SM into the F2 field leaving the neutral B;

B is the final tail which is thrown away.

This example is as complicated as any we have used in real assemblers thus far. 'fie construction
of "(..) U (..)" to represent merging diffcrcnt sources on a bus is used systematically throughout the
Maxc microlanguage; sources can be given in arbitary order so, in the above cxample, (X) U
(RTEMIW)) would also assemble. All of these factors contribute to an easily readable, easily
remembcrable assembly language.

In the hove example, the assembler also successfully conccalcd some complicated alternate
encoding issues from thc programmer. RcALU could have bcen cncoded in either the BS or F1
fields: the asscmbler pickcd F1 sincc 13s was needcd for W X . S134.3 could have bcen encoded in
either BD, Fl, or F2; the assembler pickcd F2 bccwx DD and F1 had already bcen used. 'I'hcse
are somc of the issues that the designer of a microlanguage must consider.

29

Micro: n~uc~iine-lridependeIzr Alicroassembler

7.5.

When
, given

Clause Evaluation

29 August 1978

a clause is broken into top level tokens, the possible resulting symbol types and actions are
by the table below:

Table 2: Top Level Evaluation

Symbol type Action

undefined
integer
address[clauselist]

address SYM
address SYM+
unbound address
MNAME[SYM,integer]
FNAME[address]
FNAM E[integer]
FNAME[undefined]

macro [args]
macro
neutral
neutral [args]
builtin [args]

See section 7.7
Error message and abort clause expansion
Carry out ;1 store of the word assembled by the clauselist at the location
and memory of the address, arid then incremcnt the integer part of the
address symbol.
Replace by sourcemacro[SYM] (section 13)
Replace by sinkmacro[SYM] (sections 7.7, 13)
Error message
Create an address symbol "SYM" in memory MNAME with value "integer"
Store IP[address] in field FNAME (section 11)
Store integer in field FNAME
Generate forward reference for eventual field assignment at end of assembly
or by MIDAS.
Expand it (section 9)
Expand it
See sections 7.4, 10 ,

Error message
Call the builtin function (Table 1) with arguments handled as discussed in
section 7.6

Ultimately, the original clause must reduce through macro and neutral expansions to a series of
field assignments, preassignments, and builtin calls with a neutral symbol in thc "tail." llic neutral
symbol is then thrown away and thc ncxt clause is evaluatcd.

7.6. 'Treatment of Arguments

Many symbol types may be followcd by argumcnt lists. The only diffcrencc 'among thcse is that
fields, memories, addresses, and niost builtins must be followcd b y an exact number of rirguincnts.
Macros, 011 the other tiand, m a y have surplus xgutncnts (ignored) or deficient arguments (riulstrings
supplicd). Conditionals may omit arguments (nulstrings supplicd).

'The riulstring arguincnt is special in the following scnsc. If it appears whcrc an integer rcsult is
wantcd, it is eqiiiv;ilciit to tlic valuc 0 (except for the AND builtin): if it appcars where a string is
wanted, it is the nulstring: and, if it is looked up, it is undcfiiied. Micro docs not allow the
prvgrammer to dctine thc nulstring as a symbol.

Each builtin may choosc one of thrcc basic ways to receive its arguments: qitottd, looked up it2 the
synbol table, or ewlrtuted. Sotnc laiiguages have 11 stcp short of cvaluatioti which might bc called
"macro expiinsion", but Micro docs not make any distinction betwccn macro expansion ;md
coinplctc cvaluation of an argumcnt. However, if a string of the form

N A M I$irgu t I icnts]:

30

Micro: il.luch in e- Independen t A1 icroassembler 29 August 1978 I

occurs in a clause being evaluated, NAME[arguments] is cxpanded until a string is left without
brackets or parentheses, and then this string is &lie one affected by the ":". However,

IFDEF[NAME[arguments], ...I

which looks up its first argument, will look up the entire string including the brackets. This is a
limitation of Micro which may someday be repaired. It prevents symbol names from being
generated in some situations.

The exact meaning of "look up" and "evaluate" changes with the builtin. Those builtins which
"lookup" :in argument generally do so for a symbol type clicck or to decide what action'to carry out
bascd upon the symbol type. There is no way for macro definitions to gct at symbol typcs. Only
builtins can do this. This is an unfortunate limitation of Micro.

Argument evaluation is sligli tly differcnt from clause evaluation. For example, evaluating the
argument for the field assignment FMAME[VALUE] takes place as follows: evaluatc the tokens in
the argument right-to-left cxpanding all macros and neutrals, looking for one of the fdowing:

1) Address: Use its integer part to complete the field assignments discussed in section 11.

2) Unbound address: Generate . a forward reference.

3) Undefined symbol: Create an unbound address <and generatc a forward reference.

4) Integer: Completc the assignment as discussed in section 11.

If the argument is the nulstring, put the integer 0 into the field. If the argument is a
neutral symbol, if any text is lefl when the address, integer, or undefined symbol is found,
generate an error.

Note that a ncutral symbol rcsults in no crror for clausc evaluation, but an error for a field
assignmcnt wliilc an integcr rcsults in an error in a clause but no error in an assignment. Other
builtins which evaluate their argumcnts may have diffcrent requirements.

For exarnplc, the integer builtin ADD (see scction 8) acccpts only intcgcr arguments. Address
[clausclist] cvaluatcs thc clausclist exactly as if it had occurred at thc top level. In all cases, if part
of the arguincnt being cvaluatcd is in parentheses, that part is evaluatcd exactly as if it had occurred
at the top lcvel.

7.7. Undcfiiicd Symbols

Tlie print-iianlc of a symbol is a char;ictcr string by which the symbol can bc rct'crrcd to in the
sourcc. Fh)wcver, when thc lcxical scan finds a string S of characters which is ;I synibol token
(dclimitcd by 1, or R-tokcns), it looks for ;i symbol with print-namc S. If no such symbol cxists, an
error is indicated except in thc following cases:

31

Micro: il/iachine- Independent iWcroassembler 29 August 1978

7.7.1, DestiIiation Addresses

S ends with + * In this case the
address in memory MEM, S is replaced by MEMSINK[S'J as discussed in section 11.

is stripped off and the resulting string S' is looked up. If S' is an

7.7.2. Octal Numbers

S consists entirely of octal characters with an optional leading "-'* sign. In this case it is treated like
a symbol of type integer whose value is the octal number. Note that integers may not be larger
than 16 bits. Micro does not allow an integer string to be entered into the symbol .table, which
would usurp the natural use of that integer.

7.7.3. Literals

S starts with an octal character or with a **-" followed by an octal character. In this case the "-" (if
any) is stripped off nad the rest is split into a head OCT and a tail SYM such that O f f consists
entirely of octal characters and SYM does not start with an octal character. Then the macro SYM
or -SYM is called as described below.

Thc first argument of SYM is the four right-most octal characters. The second argument is the next
four octal characters, and so on until the octal characters are used up. For example,

37436521000V and
-1234567V

are replaced by

V[1000,3652,374] and
-V[4567,123].

lThe awkwardness of the 16-bit limitation for integcrs is clearly pointed out by this kludge. Clearly
V[37436521000] would have bcen much easier to work with and would have bccn possible if the
intcgcr size was greatcr than or equal to the memory size. Also, going from a threc-intcgcr 36-bit
result back to a tcxt string is madc impractical by the intcgcr size limit.

8. Integers

Micro permits use of intcger variables constraincd to 16 bits.

SET[N AM E.VA LUE]

looks up its first argument and evaluates its sccond with thc following results:

Type of Name Type of Vulue Action

Undefined

Integer Integer Charigc the value of NAME to VALUE.

Intcgcr Enter NAME in the symbol table with type intcgcr and value
VALUE.

32

A I icro: Ilf~ichine- Iridependen t icrf icroassembler 29 August 1978

All other combinations are errors.

The following builtins accept integers as arguments and produce an integer as value:

ADD[iO, i l , ... , i7]
SUB[iO, i l , ... , i7]
NOT[iO]
OR[iO, il, ... , i7]
XOR[iO, i l , ... , i7]
AND[iO. i l , ... , i7]
LSHIFT[iO, ill
RSNIFT[iO, ill

Sums i0 ... i7
Subtracts the sum of i l ... i7 from i0
l's complement of i0
Inclusive-or of i0 ... i7
Exclusive-or of i0 ... i7
And of i0 ... i7
Logical left-shih the integer i0 by il bits
1,ogical right-shifts the intcger i0 by i l bits

In these, omitted arguments are 0's for every operation except AND, which supplies 177777 (i.e., -1)
for omitted arguments. Note that octal strings may begin with an optional "-". However, the
ncgative of an integer-valued symbol cannot be obtained by inserting a leading "-"; -(ISYM) will
not work, either.

The value of these integer operations is the unsigned octal string representing the result. Example:
ADD[3, 4, 151s is equivalent to 24s.

IP[ANAME], where ANAME must be an addrcss, is the integer part of the address. Tiis must be
done when an address is used in an arithmctic or set cxprcssion. (It is not reasonable to
automatically take the integer part of an address because of confusion betwcen its usc as a source
and its use as an integer).

FVAL[F'NAME], where FNAME must bc a field, is the intcgcr contents of thc field FNAME in the
word currently being assembled. If nothing has been stored in that ficld yct, then the contents are
whatever valuc was setup by the DEFAULT statement for thc current mcmory, or are 0, if no
DEFAULT statcment applies.

9. Macros

A symbol can be given a macro value by the clause

M [N A M E. body]

whcre the body is an arbitrary balanced string of charactcrs (ix., parenthescs and brackcts match up
and are ncstcd). Occurrences of the text

#digit

in the body will be rcplaced by the corresponding actual parameters (counting left-to-light from 1)
whcn thc macro is callcd. IJnsupplicd arguments m nulstritigs, surplus argumcnts are ignorcd, and
O will bc rcp1:iced by the number of argumetits supplied.

33

Micro: h fachine- Independent i\ficroassenibler 29 August 1978

The lexical scan of a statement is done from right to left. Whenevcr a symbol S is detected, it is
looked up. If S turns out to be a macro, then the macro body replaccs both S and the bracketed
argument list immediately to the right of S, if there is one. Thus after

M[FOO, MUMBLE #I]:

the text FOO[E]D; expands into MUMBLEED; note that D is not a symbol since] is not an R-
token. Note that the macro body is quoted and that Micro has no provision for getting any part of
it expanded at definition time.

Due to the way in which macro bodies are stored in tlie Micro symbol table synzbols used in the
macro body should be deJirted before the macro is defined when feasible. Assembly will be quicker if
this rule is followed.

10. Neutrals

A symbol which has been declared neutral by a clause of the form

NEUTRAYSYM]

is concatenated with the tail and handled as discussed in section 7.4.

11. Fields, Assignments, and Preassignments

FIEI.D[FNAME, lcflbit. rightbit] causes a symbol of type field to bc crcated. Leflbit and rightbit
must cvaluatc to integers. Also, bccause of the Alto’s 16-bit intcgcr size, the ficld should not be
wider than 16 bits or else some bits of the field could never be set. Finally, leflbit must be in the
range [0, 2551 and rightbit in tlic range [leftbit, min(leRbit+15, 255)].

Clauses of the form

FN AM E[integer]:
FN AM E[address]:
FN AME[un bound address]: or
FNAME[undefined]:

where FNAME is a ficld, are used to construct memory words. A ficld assignmcnt cvaluates its
argumcnt in the manner discussed in ’ section 7.6.

Ficld mignmcnts also havc the property that attempting more than onc assignmcnt to 3 field in a
statement will cause an crror unless thc ncw value = old value. (Wlicn an error occurs, the valuc
ultimatcly left in a ficld is that of tlic filial assignmctit to it.) Forward referenccs fixup the true
value Iatcr.

‘I’he prcassignment

PF[FNAME, intcgcr]

docs nothing if any bits of F N A M E l w c prcviously bccn assigned. Othcrwisc, it is cquivalent to

34

1cIicro: Mach iri e- Independen t Microassem bler 29 August 1978

FNAMElinteger] except that a later assignment will overnilc the preassignment and cause no error.
Forward refcrences are illegal in preassignments.

The integer value stored in any field of the memory word currently being assembled may be
obtained by using

FVAL[FNAME].

If the field has not yet been set, FVAL returns the default value.

.
12. Conditionals

There are a number of builtins which will substitute the text represented by one of their arguments
if the other arguments meet somc condition. 'flicse are callcd conditionals, summarized in Table 2.

A conditional and the argument list to its right are equivalent to the "true" string, if the specified
condition is met, or the "false" string, if it is not met. Note that any number of arguments may b e
omitted. The true and false strings may be any balanced strings of characters.

Although these conditionals can be used at the top level, they are intended for use inside macro
dcfinitions, and tlic string comparc conditional could be used scnsibly only inside macro definitions.

Table 2:

Form

IFE[il. i2, (true). (false)]
IFG(i1. i2. (true), (false)]
IFDW[S~. (true), (false)]
IFSE[SL s2. (true). (false)]
IFA(fic1d. (truc). (false)]
IFMEladdress. sl. (true). (false)]

Conditionals

Condition

il = i2
il > i2
sl in symbol table and not unbound address
sl = s2
any bit of field previously assigned
memory name for address = string

13. Memories, Addresses, and Stores

MEMORY[MEM, wordlength. length, sourccmaao, sinkmacro]

causes creation of a memory.
subjcct to a 255-bit word-lcngth limit and 04K-1 length limit.
syrribols can be defined as addrcsses in MEM and words of MEM can be initializcd.

Micro can managc a reasonablc number (15) of these mcmoiics,
Once MEM has been dcfincd,

3s

hficro: Machine-lrtdependent Microassembler 29 August 1978

An address ANAME in MEM is created by an expression of the form:

MEMIANAME, integer]

or by using

ANAME:

in a clauselist which is stored in MEM.

Stores into MEM are generated either by selecting an address in MEM as the target.(see section
13.1) or by writing

ANAME[(clauselist)]

which stores the word assembled by the clauselist into MEM at the location of the address ANAME
and then increments ANAME. Note that the memory store and incrementing the address are done
iff one or more field assignments result from the clauselis~

The value stored is generated as follows: It is initialized according to the value assembled by the
DEFAULT statement (0 if there has been no DEFAULT statement). Next, the clauselist is
evaluated. ‘I’hen the post macro for the memory, declared by the SETPOST’builtin, is evaluated.
Finally, if ANAME is out-of-bounds, an error message will occur.

The sourcemacro MSRC and sinkmacro MSINK are applied when the address ANAME appears in
a clauselist. If ANAME is cvaluated as a token in a clausclist without a following argurncnt list, it
is replaced by the string

MSRC[ANAME].

If ANAMEc appears and is undefined, it is replaccd by

MSINK[ANAME].

Note, however, that forward and extcrnal referenccs can be generated only in the context

FNhMEf ANAME].

nol when ANAME is used as a source or sink.

36

&- - 1

Micro: Machine- Independent 111 icroassembler 29 August 1978

13.1. Target Memory

At any time TARGET[ANAME] will set the target address to ANAME which means that a
statement of the form

X: mumble:

where mumble must do at least one field assignment, is equivalent to

ANAME[(X: mumble)]:

Othcrwise, the targct has no effect. Note that the target memory is not preserved in the /R file and
must be given again for each assembly.

13.2. Default Statement

Before assembly of a clauselist for storage into a memory MEW, the word is initialized to a value
which may be overruled by the various assignments in the clauselist. Normally, the initial value is
0, but this may be changed by the statement

DEFAULT[MEM, (clauselist)]:

which asscmbles clauselist into a value that will subscquently initialize words being assembled for
MEM. Note that forward references are not pcrrnittcd in the clauselist and that any of the dcfault
settings may be ovcrruled by explicit assignments in a statement being assembled.

13.3. Post Macros

SETPOST[MNAME.POSTMACRO]

arranges things so that the macro POSI'MACRO will be called just after a word h3s been assembled
for the memory nanicd MNAME but just beforc the word is output to the binary filc. If.
POSTMACRO is null, SETPOS'I' simply turns off this feature for the memory MNAME.

14. Repeat Statement

R EPEA?"[iI.TEXT]

asscinblcs TEXT il times.
rcplicating nearly -identical instructions in diagnostics.

This is used primarily for initializing blocks of mcmory and for

Sincc TEXT cannot include ":" storcs to the target memory must be put in explicitly. In othcr
words, tlic program cannot rely on the 'I'ARGET dircctivc to inscrt "1 I .CpEXr]" or whritcvcr cach
time TEXT is rcpeatcd. Nole that thc statcinciit buffer is clearcd aflcr each asscinhly of 'l'EXT.

37

A4 icro: Muchine- Independent Microassembler 29 August 1978

15. SELECT

The SELECT builtin corresponds to the Bcpl switchon (case selection) statement. Its form is

SELE~index,texd),textl, ... , textn]

and its effect is to replace itself with one of text0, textl, ..., textn depending on whether the value of
index is 0, 1, ..., n. Note that although index is evaluated and must produce an integer result, the
text arguments may be anything at all, just as in the comparison builtins IFE, IFG, etc. If the
index does not have a value in the range 0 through n, an error results.

1 6 Bit Tables

Several builtins manipulate bittables. The rationale for bittables in Micro is the existence of
microprocessors (such as the Alto) in which the addressing structure imposes constraints on the
locations of certain instructions, and for which the assembler must therefore keep track of precisely
which locations have already been used for instructions. The bittable facilities in Micro are
adequate for this task in simple cases.

The builtin

BITTABLqtable.n]

makes table a bittable of size n (the bits are numbered from 0 through n-1). All the bits in the
bittable arc initially zero.

G ETBIT[table,i]

returns the value of the i'th bit in the table, 0 or 1. Setting bits is a little more complicated.

SETBIT[table.i,n,delta,val]

sets n bits in tablc starting with the i'th bit and going up by increments of dclta (i.e., bits i, i+delta,
..., i+(n-l)*dclta) to val: howcvcr, SETMI' may be called with any numbcr of argumcnts from 2 to
5, with the omitted trailing arguments dcfaulted as follows: n = l , delta=l, val=l.

Tlicre is a builtin similar to SETBIT for locating patterns of 0-bits (available locations) in a table:

starts out secing if bits i, i+dclta, ...* i+(n-l)*dclta in table arc all zero. If so, FINDBIT rctums
thc initial location i. If not, it incrcrnents i by hop and trics again, until i t has tricd a total of count
titncs. If the scarch fails, F1NI)IlIT returns a null string. As for SETIII'I'. FINDI31T will supply
dcfiiult valucs for trailing argiinicnts: n = 1, delta= 1, hop = 1, count = 177777 (infinity, i.c., until the
s i x of the bit table is reached). 'I'he idca is that, for cxnrnplc, to find a pair of consocutivc frce
locations wliosc last 3 nddrcss bits arc 110, 11 1 rcspcctively, you would usc ~IN1>L3i'l'[t~~blc,0,2,1~10].

35

Micro: Machine- Indepedent Microassernbler 29 August 1978

Appendix 1. Micro Error Messages

Micro error messages are enumerated below, in which the character @ should be replaced by the
printname of the token related to the error. Unless marked with a ', assembly continues from the
error with no special action; errors marked with terminate assembly.

'

Program Organization Errors

SOURCE FILE @ DOES NOT EXIST^
COULD NOT OPEN FILE @ FOR 'INSERT~

STORAGE FULL^
Storage required during the assembly is roughly proportional to the following computation:

1/2*Sum [namelength +1] for all symbols
+ 6* no. symbols
+ 1/2*Sum [length +I] of all macro definitions.

When this number
message results.

Limit is currently
TOO MANY MEMORIES~

is greater than the size of the buffer (approx. ? Alto words), the STORAGE FULL

15 memories.

Dcclaration Errors

@ ALREADY DEFINED
The new definition will replace the old and this warning message will be printed.

Just a warning (doesn't increment error count)

For DEFAULT. which requires an argument to be of type memory.

MACRO @ REDEFINED

ARC NOT A MEMORY NAME

UNDEFINED SYMBOL @ IN DEFAULT'^
BAD PARAMETERS FOR ' F

A field may riot bc larger than 16 bits nor a menlory widcr than 256 bits, so rightbit > 255 or rightbit-lcftbit
> 16 are ficld dcfinition errors.

MEMORY @ ALREADY USED'

ILLEGAL WIDTII OR SIZE FOR ~MEMORY'~
1.imits are 256 bits wide arid MK-1 in size

WRONG NO. ARCS FOR '@'
Orily for those builtins which must have correct number of arguments.
Milcros may have too many of too few.

ILLEGAL I3UILTIN NUILI13tX FOR 'd

Statcinciit Asscmbly Errors

END OF 1:II.E INSIDE COMhlENT
'T'crminatcs comtiicrit and forges ahead

Maximum length is 500 characters.

1)uring macro expatision of thc input stntcmcnt. thc iiriproccsscd text is nevcr pernlittcd to excccd 500

INPUT STA*TEMI:NT 'roo LONG
Text to the right of the 500th character is truncated.

STAITMI<NT TOO LONG

39

Micro: Mach in e- Iridepen den t itlicroassern bler 29 August 1978

MACRO

SYMBOL

@ MAY

characters. Text to the right is truncated.

4RGUMENT STORAGE FULL
Truncates characters right-to-lett up to matching ") and proceeds.

@ NOT LEGAL AS TOKEN
Symbol appears without its required argument list.

NOT BE FOLLOWED BY []
Only macros, builtins, fields, addresses, and memories may have '[, to their right

UNPAIRED) OR] IN ARGUMENT LIST
UNPAIRED)

UNPAIRED (

TOO MUCH NESTING O F () AND [] IN CLAUSE
Limit is 8 levels

MISSING MACRO NAME OR TAG SYMBOL
No symbol to the left of a : or [.

Symbol to the left of a I*[" wasn't defined
MACRO '@' NOT DEFINED

TAG Q ALREADY DEFINED

'TARGET' GIVEN AFTER FIELD SET1
NO TARGET FOR FIELD SET'
'TARGET' NOT LEGAL INSIDE A STORE^
@ UNDEFINED

FIELD @ DOES NOT FIT IN MEMORY @

VALUE @! DOES NOT FIT IN FIELD @

Not including forward references. Plungcs ahead with value 0 and type integer

Right bit of field > right bit of memory

Left bits of value truncated before store

Doesn't do field assignment and plunges ahead
ARG IN FIELD STORE NOT INI'EGER OR ADDRESS

FIELD @ ALREADY SET

ARG DOES NOT YIELD INTEGER VALUE

The new value is stored into the field. This message will occur iff new value # old value.

Assumes 0 and proceeds. Syntax OK but undefined symbol or address instcad of integer.

Something complicated where a simple value expected

No action

No action

BAD SYNTAX w m m VALUE REQUIRED

FIRST ARG OF 'PI7* NOT FIELD

FORWARD REFERENCE NOT LEGAL IN 'PF

STORE TO @ our OF RANGE FOR
@ HAD FIRST ARG FOR 'SET

Must bc ititcgcr or uridcfincd symbol. However, redefinition will take placc.

lntcgcr MOD 2**16 is used.
INl*IXLR '@' TOO IARGE

ARC NOT A FIELD NAME IN 'IFSLT

40

Micro: hhchine- Independent Microassembler 29 August 1978

Appendix 2. Limitations of the Language

Micro lacks some features and possesses certain limitations discussed below:

1. It is impossible to relocate a microprogram at load time.

2. Forward and external references are permitted only on field-assignments which means that the
Occurrence of

MDRtSTEMP, or STEMPcMDR .
where STEMP is an address in SM, cannot be assembled if STEMP is a forward or external
reference. Forward references to symbols that are not addresses are also impossible.

3. Significant size limits:

a. Symbol table storage is tight.

b. Integers are limited to 16 bits.

4. It is impossible to check the memory part of an address on forward or external references. Nor
is it possible for programs to get at the type of a symbol, at the parameters of a field or memory, or
at the name of the target memory. The 'lookup' capability of builtins is not available through any
language constructs.

5. Conditionals or macros which expand to more tlian one statement are impossible.

6. It is impossible to pull print names apart or to construct print names except by using neutral
subsymbols. In particular, it is impossiblc to construct constants larger than 16 bits paramctrically
such that, if several constants contain the same value they can be assigncd the samc location. This
is true bccause one cannot generate the print name "1420000S" (a literal) either directly from an
integcr or indirectly from tlie value asscmblcd by assignments. (Note that if intcgers were large
enough AIID[Pl, P2, ... , P7]S would generate tlie litcral in S.)

7. There are a number of situations when part of an othcrwisc quoted argument wants to be
expanded and there is no way to do this. For ex'ample,

IFDEF~FOO[E],(me clause).(false clausc)]

should lead to expansion of the macro FOO[E] before checking for a defined symbol.

8. Blanks in user-defincd error mesmges are impossible.

9. Thc REPEAT builtin should supply a ";" after each rcpctition of thc text, so that thc ILC[...I in
REI)EArl'[n,(11 .C[...])] can be omitted.

10. PF [ficld, valuc] was a bad choice bccause i t mnkcs par,mctci-izing the valucs of a field
impractical. Fur cxample, supposc that thc function P+Pl is accumplislicd by setting the PS field to
50. What wc would like to do is to defiiic neutrals P+ rind 1'1 and tlicn dcfinc thc macro P+P1 as
PS[50]. If tlic hxdwarc is c1i;ingcd so tliat PcYl is accoinplishcd b y lJS[20] instcad of IJS[50], wc

41

hi icro: Machine- Iudependent hlicroassernbler 29 August 1978

would prefer to change only the one macro P+P1. However, there are also several instances of
PF[PS,SO] which have to be found and changed and this is the reason why PF[field, value] was a
bad choice. Instead, a preset-clauselist operation would have been better because then no other
usage than P+Pl would be needed.

To prevent some of the'above limitations or to otherwise streamline or augment the language, the
following changes should be considered (the ones followed by ? or ?? or ??? are not serious
proposals).

1. Make integers at least 36 bits long for MAXC, and consider variable length integers. Currently,
considerable inconvcnience results from "making do" with 16-bit integers. Also this wduld make. it
possible to get thc literal equivalent of a constant constructed from parameters, which would allow
merging identically-valued constants.

2. Provide a builtin like the one for defining fields except that it takes an additional argument
which is a memory name:

AFIELD[AFNAME, leRbit, rightbit, manmy].

AFNAMEEaddressj works like ?WAME[integer] except that its argument must expand to an address
in "memory" rather than an integer, or if its argumcnt is undefincd, a forward address reference is
assumcd. Forward refcrcnces to FNAME[undcfined] would be illegal and FNAME[address] would
be illegal. This would permit memory
checking of addresses very conveniently (currently it is cumbersome) and would permit forward
refcrenccs to be checked also (??).

Unbound addresses would contain the memory type.

3. Multi-statement conditionals and macro definitions should be added. Perhaps "{I' and "}" could
be uscd syntactically to enclosc multi-statement stuff.

4. It should be permissible for an argument list to appear to the right of a neutral symbol because
of the following usage:

PtLB RSH [l]

whcrc LBRSW is a ncutral symbol, P + is a neutral symbol, and P+LBRSH is a macro. 'The
argunicnt list [l] should be prcscrved until P+LB RSH [I] is cxpanded.

5 . In cvcry placc where an argument srring is "looked up" for ii builtin, all macros and neutrals
should be cxpandcd. In other words, "looking up" an argument should bc idcntical to evaluating
an argirrncnt, exccpt that occurrcncc of any builtin causes an error. Expansion stops whcn a non-
ncutral non-macro symbol without brackets, patcntheses, +, or : is left.

6 . Currcntly address+- is handled by the assembler, but tindcjitied+ and macro+ arc not handled in
any spcckil way. Similnrly, an undefined sourcc' is not liandlcd. I t might bc L J S C ~ U ~ to have thesc
cascs rcsult in the substitutions UL)l-Sl'[undcfincd], M I>ES'("xnacro] and USKC[uridcfined]. Illis
would permit forward or cxternal rcfcrcnccs to succccd whcrc tlicy don't currcntly and would
pcmit macros which cxpand to addrcsscs to be uscd. MDESl', UIIEST, and USKC should be
macro namcs sclectriblc by the programmer.

42

Micro: Machine- Independent Microassernbier 29 August 1978

7. Currently the TARGET directive causes a top level statement to be equivalent to

TARGLC[(#l)];

where #l stands for the top level statement. This could be changed to a general macro whose first
argument is the clauselist of the statement. However, this would slow assembly.

8. .Instead of causing an error, integer results should be treated at the top level as neutral symbols
equal to the octal text string for the integer. This would permit arithmetic to be performed and the
result concatenated with text to select one of many macros or address symbols.

43

Micro: Machine- Indeperiderit Micrwasserriller 29 August 1978

.*.""

Appendix 3. Binary Output Format

Micro outputs binary memory images as a series of short blocks of 16-bit words. Each block begins
with a word that specifies the type of the block; the number and format of following words depend
on the block type. During its pass through the source files, Micro outputs a message to the file
Micro.fixups whenever it encounters an assignment 0

FNAME [NAME]

and NAME is undefined. At the end of processing the source files, Micro reads back Micro.fixups
and outputs either a type 3 or type 6 message (see below) to the binary file depending upon
whetlier the symbol was a forward reference or undefined. Finally, it orders new or changed
address symbols by memory and outputs them to the binary file.

Midas can link up external address references at load time. Address symbols for Midas to use in
linking up external references are

Type

0

1

2

3

4

Table 4:

Followed by

nothing

source line # (1 word):
data (N words)

memory # (1 word):
location (1 word)

memory # (1 word);
location (1 word):
first bit * 256 + last bit
value (1 word)

output as described below.

Micro Binary Output File Format

Use .

Indicates the end of the binary file.

Spccifies a data word to go in the current memory at the current
location. The current location is to be incremented. N is just large
enough to cover the width of the mcmory, and the value is left-
justified, e.g., for a 36-bit memory N = 3 and the first word g a s in
bits 0:15, the second in 16:31, and bits 0:3 of the third in 32:3S.

The source line # is zero if the word was generated by an INSERT
file, and has bit 0 set if the word was generated in the nuin file by a
STORE.

Sets the current. memory and the currcnt location.
are related to memory names by type 4 blocks (see below).

Memory numbers

(1 word):
Specifics a forward reference fixup. The value is to be stored into the
given bits at the given location in the given memory. (Current
mcmory and location settings are not affected.)

memory # (1 word):
width of memory in bits (1 word):
symbolic name of memory (L words)

Corrdates a memory number with a user-supplied name.
T h e riame IS packed 2 8-bit charactcrs pcr word termimrtcd by a null
(i l l 1 0's) character: I.=(C1t 2)/2 whcrc (* i s the number of charactcrs
in the name. The type 4 block dcfitiing i1 memory will rlppcar before
any type 2 or 3 blocks storing into that memory.

5 memory # (1 word):
value (1 word):
address symbol name (L words)

Givcs the ticfiriitiori of an addrcss symbol. There is a type 5 block

44

Micro: Mach iii e- Independen t ilf icroassernbler 29 August 1978

for every new or changed address symbol. All type 5 blocks appear
together at the end of the binary file.

6 memory # (1 word):
location (1 word):
first bit * 256 + last bit (1 word):
undefined symbol name (I, words)

Specifies a reference to in undefined (external) symbol. The first
three words have the same interpretation as for block type 3.

The Midas program accepts any of the block types above. In addition, Midas accepts the following compact block types
which are more compact than the ones above and use less storage.

11 block address (1 word):
word count N (1 word):
N data words: The left-half of the word containing the type is the memory #. The

N data words are in the same form as block type 1.

12 addrcss (1 word):
Bcpl string (L words): The left-half of the word containing the type is the memory #. The

fmt word of the Bcpl string contains a character count in the first
byte (0:7), followed by the characters of the string,

-. -- I

I

MICROD MANUAL

20 October 1978

Peter Deutsch

edited by

Carol Hankins

Xerox Business Systems
Systems Development Department

3408 Hillview Road .
Palo Alto, California 94304

hficroD: Instruction Placer 20 October 1978

MicroD takes microprograms for the Dorado or DO, assembled by Micro, and completes the
assembly process by assigning absolute locations to the microinstructions. The resulting file can be
loaded into a D- machine by Midas and run. MicroDs job is to find a way to assign locations to
microinstructions in a way that satisfies both the semantics of the source program and the peculiar
addressing restrictions of the hardware.

This document is deliberately somewhat sketchy, since it assumes that its readers have already
absorbed the necessary "culture" surrounding D-machine microprogramming and just want to know
how to convert Micro output into Midas input. At some future date it may be expanded to be
more helpful to people just getting started.

The simplest way to use MicroD is to assemble your entire microprogram at once with Micro,
producing a single file xxx.DIB. (DIB stands for "D-machine Intermediate Binary".) Then you
invoke MicroD as follows:

MiaoD xxx

to produce a listing file xxx.DLS and a final binary file xxx.MB which can' be fed to Midas.

MicroD normally produces a listing with the following parts:
. The name and initial contents of each defined R memory location.

The initial contents of each IFU and ALUF memory location.
The label and octal representation of each microinstruction.
A summary of how much of each page of I (microinstruction) memory was used.

MicroD accepts the following global flags which affcct the listing:
/N (No listing) - only produce the summary
/ C (Concise) - produce everything but the octal contents of I memory

The following global flags produce additional information, not useful to the ordinary user:
/D (Debug) - priint a large amount of debugging information
/T (Trace) - print a trace of the calls on the storage allocator

Normally MicroD produces its output on xxx.DI,S and xxx.MB, where xxx is the name of the last
(or only) input file. You can specify a different name with the local /O switch, e.g.

MicroD xxx yyy/o

to process xxx.DIB but produce yyy.DLS and yyy.MB.

If you wish, you can assemble your microprogram in pieces and lct MicroD link the pieces togcthcr.
(This can save a large amount of asscmbly time for Inrgc programs.) Suppose your program congists
of thc following parts: some definitions defsl.MC and defs2.MC; one large piece of code thisl.MC
and this2.MC; another large piccc of code Uiat.MC. Thcn you can proceed as follows:

Micro saveiVs dcfs/b dcfsl defs2

This assembles thc dcfinitions, saves Micro's statc on saveit.Sr, and produces ;I file defs.DIB.

Micro saveiVr this/b this1 this2

47

MicroD: Ittstruction Placer 20 October 1978

This resumes assembly with the definitions saved in saveit, producing this.DIB. Micro will give you
a list of "undefined symbols", which are references to symbols not defined in thisl or this2
(presumably defined in that).

Micro saveitfr that

This again resumes assembly with the saved definitions, producing that.DIB.
list the symbols not defined in that (presumably defined in thisl or this2).

Again, Micro will

MicroD myprog/o defs this that

MicroD will link together any references from this to that (or vice versa) and produce the output
files myprog.DLS and myprog.MB.

Note that you do not need to do anything special in your source files to declare labcls which are
exported (defined here, used elsewhere) or imported (used here, defined elsewhere): Micro
assumes that any undefined symbol is meant to be imported (but gives you the fist just so you
can check), and MicroD assumes that all labels are exported. MicroD also discards all but the last
definition of a name (e.g. the name ILC is defined in every file as the address of the last
microinstmc tion).

If you have multiple .DIB files, you can control the listing mode (normal, No listing, or Concise)
for each file individually by using /L (List), /N, or /C as a local switch 011 the file mame. The
global switch, if any, applies to any input filc that lacks a local switch. For example, to get only a
concise listing for the second part of the program in the above example, you can use

MicroDh myprog/o defs this thatfc

DO MICROPROGRAMMER'S GUIDE .

r
22 August 1978

Carol Hankins

Xerox Business Systems
Systems Development Department

3408 Hillview Road
Palo Alto, California 94304

DO ~ficroprograrn~rier~s Guide 22 August 1978

1. Introduction

You will never get to be a super microcoder until you memorize and understand the architecture of
the machine. It is assumed that you have made some attempt to understand the DO Functional
Specification, and that you are now ready to program. This manual breaks the machine into small
parts and describes the use of each section in detail. Accompanying each part are some examples of
microcode which illustrate the features of the machine.

All numbers in this manual should be considered octal. When decimal is required, the number will
be suffixed with a "D". Any number followed by a "B" is octal.

Throughout the manual, a register called "rtemp" will be used.

The DO Functional Specification alluded to in this manual is dated January 16, 1978.

2. The ALU and Basic Architecture

2.1. Inputs and Outputs

The last page of this section is a diagram of the processor. In the center is a box labelled ALU.
There are two inputs, labelled A and B. The A input comes from the K registers through the
cycledmasker. Also on this bus are the special-purpose R registers, such as APC, PCF ... The B
bus comes from T. Notice the way constants arc put on the bus. You can have a constant orT -
not both. Constants are eight bits - all of which must be entirely contained in the left or right half
of the word. There is one output from the ALU which gocs into T and R, and also into the
memory map.

Notice the signal coming in the top of the ALU, called ALUControl. There are two ways of
conlrolling the ALU's operations: From the ALUF field of the microinstruction, or from a special
box called SALUF. The ALU is really a unit with 64 opcralions, with 14 of the most common
mopped into the ALUF field of the microinsliuction. All 64 functions may be accessed by loading
SALUF. See the DO Functional Specification for an enumcration of these functions. Thc ALU
opcrations are:

ALUF ALUOut = -
0
1
2
3
4
5
6
I
8
9
10
11
12
13
14
15

B
A
A AND B
A O K B
A XOR B
A AND NOT B
A OK NOT B
A XNOR B
A + l
A + B
A t B i - 1
A-1
A-8
A-B-1
unassigned
use SALUF for ALU function

49

DO itiicroprogrammer's Guide 22 August 1978

I The closest piece of hardware to the input of the ALU along the A bus is the cycler/masker.
cycler/masker is used to manipulate bits from an R register, and providcs some standard shifting

The I
'_

and masking operations. The following operations are available:

-I* t.--..-y, F"". "."", ..O ..., ..""., I...-., ...,...r Y. .'..*". I.-- -0e U. V.. r""
RSH[rtemp, count] -
LSH[rtemp, count] -
RCY[rtemp, count] -
LCY[rtemp, count] -
RHMASK[rtemp] - rtemp AND 377C
LHMASK[rtemp] - rtemp AND 177400
ZERO - a way to load a 0 on the bus
DISPATCH[rtemp. pos, size] -

right shift rtemp by "count"
left shift rtemp by "count"
right cycle rtemp by "count"
left cycle rtemp by "count"

see the section on the jump conditions

The cycler/masker is controlled by a translation of the above instructions into the special function
field in the microinstruction. This field will be described in morc detail in section 3.0, Special
Functions.

Already you know how to write simple microinstructions for manipulating the ALU. Note that
Micro requires parentheses around the A input to the ALU. Parentheses around Ehe B input are
necessary if it is a constant, optional otherwise. Here are m e examples of legal and illegal
instructions:

Legal

T + (rtemp) + T;
rtemp + (rtemp) + T;
T-, rtemp+ (rtemp) + T:
T + (L.DF[rtemp, 14, 41) + T;
rtemp + (KIIMASK[rtemp]) XOR T:
rtcmp + (ncmp) + (377C);
rtemp + (rtemp) + (1774oOC);
T + (zero) + T + 1;

* an A input and a B input Note parentheses
* can store into rtemp or T
* can store into both
* LDF is a cycler/masker function
* RHMASK is a cycler/masker function
* constant with lower 8 bits
* constant with upper 8 bits
* this is the only way to add 1 to T. zero is an
* output of tlie cycler/masker, and A + B+ 1 is
* an ALU function..

Illegal

rtemp + rtcmp + T;
T - T + (37C):
rtemp + (rtcmp) + (177777C):
rtcnip - (rtcnip) + (770C):
T - (LIW[rtcmp. 14, 41) + (37C):

rtemp +- T + 1:

* no parentheses around the A source
* two B bus sources
* constant is more than 8 bits
* the 8 bits cross a byte-boundary
* LDF uses F ticld and so does constant
* T IS not on the A bus
* no ALIJ function of this type

-r + (RIIMASK[T]);

2.2. The Stack

There is a 2011 word stack which is loadcd from an R register. Therc are actually two constructs

J

.I

which deal with lhe stack: STKP is the stack pointcr which points to an
arbitrary 1txc;ition in the R rcgister bank, while STACK contains the coiitcnts of the R rcgister
pointed to by S'I'KP. Sincc the stack is on the A bus. S'I'KI' gets loadcd from lhis bus. 'I'hc actual
loading of S'I'KP (STKPt) is a spcci:il function: this is necessary sincc thcre would bc two R
addresses in the microinstruction olllcrwisc. I<cading S'I'K 1' returns the corrzplernerif of the value:
writing S'I'KP is normal. When reading the stack, it is possiblc to updalc STKP in the same
microinstniction. Scverol options ciln be appended onto S'I'ACK. such as s(+ 1, &-2 ... which result

STKP and STACK.

so

DO Microprogrammer's Guide 22 August 1978

LJ;
J 7

in automatic updating of STKP.

Legal

STKPcrtemp;
t+STKP
t * STACK:
t+STACK&+ 1;
t+STACK&-1:
STACK&+lW;

Illegal
STKP+t:
STKP+(37C);

* load occurs from A bus
* t contains complement of STKP
* t will contain contents of R register pointed to by STKP
* after this, STKP will be incremented by one
* read and decrement
* store and increment

* load can't happen from B bus
* constant is from B bus

Caution: The stack is operated on modulo 20B, so if STKP points at register 77B, executing STACK&+ 1 will
have STKP equal to 60B.

Note: STKP is the only way of accessing any register in R memory.

" . , .- 3. The Microinstruction and Branching Conditions

3.1. The Microinstruction

Since you would like to do more than arithmetic and logical functions and perhaps more
importantly, you would like to maximize the work that you can get from one instruction, the
following table shows the fields in a non-memory microinstruction:

NORMAL
RMOD
RSEL
ALUF
BSEL
F1 special function
F2 special function
LR load R
LT load T
JC
JA

0 or 1 - depends on if it's a iiicmory operaoon or not
used for addressing the special R registers (e.g. APC, SB, DB ...)
used for R addressing. NOTE: only 1 R address pet m4.
what the ALU is supposed to do
what is supposed Lo be on the B bus (T or constant)

jump control - call, goto. return. dispatch
where to go next. NOTE: addressing is 8 bits = > pagerelative

You know about RSEI,, ALUF, BSEL,, and the loading of R and T. The rcmainder of this sectin
will discuss the branching mechanisms and the control logic of the DO. The next section will
explain the spccial hnction fields and heir uses.

Alteration of thc flow of control is accomplished by the JC (jump control) and JA (jump address)
fields. If you do not instiuct otherwise, a
microinslruciton will be followed by the next instruction in your program. You cat1 modify [his in
many ways. A simple GOTO[labcl] will cause the JA ficld to contain thc addrcss of "label".

Each microinstruction must indicate its successor.

3.2. Conditional Branches

For the programmer's convenience, scveral branch conditions exist and alter the flow of control
when tested. 'Ihcre is a programming fcaturc callcd IN31 .GOTO which has thc fonn

51

DO Microprogrammer's Guide 22 August 1978

DBLGOTO[labell, label2, branch-condition]. If branch-condition is true, control will be transferred
to labell, if not the next instruction will be label2. The processor requires that these two labels be
one bit apart in their address. These are guaranteed to get you into trouble if you do not
remember the instruction-placement constraints. The table below describes the placement
constraints for "labelP". Label1 will occupy an odd location if the condition is listed in the goes-to-
odd column below:

JC,, JA goes-to-odd goes-to-even BRANCHSHIFT time Page

000
001
010
011
100
101
110
111
OOO
001
010
011

AI.U#O
CARRY
ALU < 0
QUADOVF
R<O
R ODD
NOATTEN
MB
INTPENDING
NOOVF
BPCCHK
SPAREBRANCH

ALU = 0 0
NOCARRY 0
ALU > =O 0
INQUAD 0
R > =O 0
R EVEN 0
IOAlTEN 0
NOMB 0
NOINTPENDING 1
OVF 1
BPCNOCHK 1
NOSPAREBUNCH 1

t3
t3
t3
t3
t l
t l
t3
t l
t3
t3
03

18
18
18
45

62
24

18

Note: GOTO@abeU. branch-condition] is a degenerate case of DBLGOTO with label2 = current lotation + 1.
The column labelled "time" refers to the.time that this condition is available for testing. If "t3" is
listed, you should test this condition in the instruction folZowing the instruction which could generate
the condition. Conditions listcd as "tl" can be tested during the current microinstruction.

The RRANCHSHIFI' column deals with special hnctions (in particular, Fl), and will be discussed
fblly in section 3.0, Special Functions.

The page column refers to the page in the DO Functional Specification whcre more information
about these conditions can be located.

In general you won't have to worry about even or odd placement
You will need this table only when MicroD tries to place

Note:
Micro does it's best to let you do what you want.
the instructions in the conuol store. and cannot succccd because of the above constraints.

Don't memorize the above table.

Following are cxamples of instruction placerncnt:

T + (rtemp) + (3770:
DBLC~OlO[L1, L2, ALU#O]:
regular-instruction:
L1: mutnble2: * at an odd lowtion (L2 OR 1)
L2: mumble3; * at an even location

* notice test during instruction following operation

T + (rtcnip) - T:
DRLGOI'O[Ll. L2, ALU > =O]:
mumble:
L1: mumble2: * at an even location
L2: muniblc3; * at an odd locabon (L1 OR 1)

D~I.GOrO[I,l. L2. R < 01. I,U + rtemp:
mumble:
1,1: tnunible2: * at an odd lowtion (L2 OR 1)
L2: mumble3: * at an evcn location

* notice test durhg current instruction

52

DO Microprogrammer's Guide 22 August 1978

3.3. Subroutine Calls

There is a mechanism for one-level subroutines. These are accomplished by an instruction of the
form CALL[label]. When a RETURN is executed, control will be given to the call instruction+l.

Example: Suppose that you wish to begin execution at INIT.

DoubleRAndT: T + rtemp + (rtemp) + T:
rtemp + (rtemp) + T, RETURN; * next instruction will be "MUMBLE

INIT: rtemp + (4C):
T + 1 3 7 0
CALL[D;ubleRAndT];
mumble:

3.4. Dispatch

DISPATCH is a cycler/masker hnction which allows the next instruction to be one of sixteen
possible addresses. The lower four bits of APC are selected via DISPhTCH[rtemp, pos, size]. You
must use the "AT" construct to nail down the targets of the dispatch table. This tells MicroD that
you really know where you want this instruction to go. A trivial example of dispatch is as follows:

D: DISPATCH[rtemp,
DISP[DO]:
SET[DLOC, 201:

10, 41: * dispatch on bits 10:13B of RTMP
* set up label for dispatch
* note dispatch table on 16 word boundary

DO: goto[X]. rnext + (OC). AT[DLOC. 01:
D1: rnext + (1C)- AT[DLOC, 11:

gotojX]. t + I,DF[rnext. 3. 11:
DZ: goto[X], rnext + (2C). ATIDLOC. 21:
D3: gotoo(], riiext + (3C). AT[DLOC. 31;
D4: goto[X]. rnext - (4C), ATIDLOC, 41;
DS: gotojx]. rnext + (5C). ATIDLOC. 51;
D6: gotoo(]. rnext + (6C). A1IL)LOC. 61:
D7: gotoo(). rnext + (7 0 . AT[DL.OC, 71:
D10: gotolX1. rncxt + (1OC). AT[I1LOC, lo];
D11: gotolXl. rnext + (11C). AI[I)LOC, 111:
1112:
D13: goto(X1. riicxt + (13C). AT[l)l,OC, 131:
1114: gotolXI. rricxt ,- (140. A7'(1)1.OC, 141:
1115: goto[Xl. rriext + (LSC). Al'[I)l.OC. 151:
D16: goto[>(]. rnext * (160, A'r[I)I.OC, 161:
D17: gotojX]. mcxt + (17C). Al'[l)l~OC, 171:

X: . T + (rnext):

Caution:
Illis requires all lablcs to be on 16 word boundaries. no niatter how sinall your dispatch table is.
follow this will rcsult in truly bimrre execution.

* this insw will be at location 20

* instuctions don't have to be consecutive

gotojxj. mcxt + (1 2 0 , AIIIXOC, 121:

IIardware execution of a IIISPA'TCII requircs th;it all four of thc low address bits come from APC.
hilure to

3.5. Changing Pages

As riolcd iibovc, a microinstruction docs not know what page it is on, and can otily jump to
addrcsscs on its currcnt page. There arc ways to circuinvcnt this at nsscmbly-time ;ind at run-time.

Asscmbly- time
ONPAGElxx] . dircrts wcnibler to put this instruction on page xx.

53

DO itiicroprogrammer's Guide 22 August 1978

AT[nn] - the assembler assumes that it has been given a 12 bit address, and puts this instruction on the page
indicated by the top four bits, and the offset of the last eight bits.

Run-time
LOADPAGE[n] - this is to be done before every branch that will be on a different page. This includes

GOTO, DBLGOTO, CALL, DISPATCH.

3.6. Notify

When one wants to jump to a specific location in a specific task, APCTASK&APC are loaded with
the desired information, and a RETURN is executed.

rtemp + (20C):
rtemp + (rtemp) OR (1 6 0 C) :
APCTASK&APC + (rtemp);
RETURN:

* set up the location you want to get to
* OR in the task number = 16

L1 : T + (OC), AT[20]:

After execution of the first block of code, control will be transferred to L1 with task 16 active.

4. Special Functions

The F-field decodes are as follows:

CODE Fl F2 GROUP B

00 BBFA REGSHIFT unused
01 RS232+ STKP+ RESETERRORS
02 LOADTIMER FREEZER ES U LT INC'MPANEL
03 A DDTOTIMEK STACKSHIFT CLFARMPANEL
04 unused CYCLECONTROL + GENSRCLOCK
05 LOADPAGE SB+ RESETWDT
06 unused DB+ BOOT
07 GROUP B NEWINST SETFA ULT
10 no-op BRANCHSHIFT APCCAPCTASK +
11 WFA SALUFc RESTORE
12 BBFB no-op RESETFAULT
13 WFB MNBR+ USIICTASK
14 RF PCF+ w I<I'I'ECSO&2
15 BlWBX RESETMEMERRS WRI'I'ECSl
16 N EXTINST USIJCOUTASCIN READCS
17 NEX'TOP PKINTER + DOOFF

(NEXTDATA)

Functions can be best be explained by division into categories. Following cacli group name will be
the pages in the DO Functional Specification wlierc more infbmiation in available. Tlic only
hnclion groups cxpcctcd to be of concern to thc programmer arc: Useful, ALU, and Sneaky. I h e
rcsl of the funclions should remain unused by most code. In addition, registers uscd for the Mesa
emulator and 13itI~L'~ should be avoidcd.

Uscfiil functions:
APC~&APC'I'ASK + - used to directly load this rcgistcr frotn ALIJA. This is the rcconitncriclcd way to do ;f nofrfL

or a difrcrciit task at a dillcrcnt IocaLiori. It is L I S U U ~ ~ Y lollowcd by a Rlil'URN.
USECTASK . forces Ihe next iirsttuction to be t a k w from Ihe current bsk. This usually prcccdcs a KII'I'URN. and

1.OADPAGE . uscs F2 for ;in argument. This statemetit should precede a11 CAI.1-s or GOl'Os which rcfcrence a
prohibits krsk switcliing.

dilfcrent page.

54

I _ j~ I

-1 & _

-1 I

DO Microprogrammer's Guide 22 August 1978

ALU functions (p. 17-18):
FREEZERESULT - inhibits loading of RESULT register. This is used to save the output of the ALU from one

USECOUTASCIN - use carry out as carry in.
SALUFc - can expand the ALU to its full capabilities.

instruciton to the next.

Sneaky functions: THESE GET SET WITHOUT YOUR EXPLICIT KNOWLEDGE!!!!!!!
REGSIIIR - Set by accessing certain R registers (PRINTER, DB, SB, MNBR) and invoking BBEB.
STACKSIIIFT - Set when STACK&+2, +3, -2, -3 are used
BRANCHSHIR - Set by certain branch conditions: MPCARRY, NOOVF, BPCCHK, ALU= < O .

BitBLT (p. 22):
BBFA - sets up 3 bit dispatch based on SB. DB. MNBR for the next instnrction ,
BBFB - update of the x level from MW. SETS REGSHIFT!
BBFBX - update of the main level from MW
SB+ - loaded from A bus
DB+ - loaded from A bus
MNBR+ - loaded from A bus

Mesa (p. 20-22):
STKP+ - loaded from A bus
WFA - Mesa Write Field
WFB - same
RF - Mesa Read Field controlling the cycler/masker directly from field descriptor.
NEXTINST - used for Mesa instructions
NEXTOP. NEXTDATA - used for Mesa. instructions
PCF+ - loaded from A bus
CYCLECONTROL+ - loaded from A bus. This is a way for controlling the

cycler/masker. It also loads SI3X[O:5], DBX[O:l].

Auxiliary Registers (p. 27-30):
RS232c - from B bus
PRINTER+ - loaded from A bus

Modification of Control Store (p. 39-40):
WRITECS0&2 - preceeded by APCTASKSrAPC + x. where x is the address you want

to write in. Word 0 is wntten from A bus, word 2 from B bus.
WRITECSl - item on A bus wntten to word 1 in locallon in APCTASK&APC

Note: when writing an instruction into the control store, it is the responsibility of the programmer to write proper
panty.

READCS - reads a word from the control store. For the values 0, 1, 3 of T,
you get word 0. 1, and 2 from coritrol store into CSData. Word 2comes back in bits 0:3 of the
word, with bits 4:20 comiiig from word 1

Timer hnctions (p. 30-33):
LOADTIMER - loads a timer from ALUA: bits[0:3] state. [4:11] data, [1215] slot
ADDTOTIMER - increments a timer from ALUA

Maintenance panel:
CLEARMPANEL - clears the maintcnance panel
INCMPANLL - increments Ihc maintcnance patic1

System functions:
RESI~l'ERl<OKS (p.38) - clcars the freeze on CIA, RESULT and rescts PARITY arid the fault logic
Kl<SEl'h.II~MI~K I<S - clcurs tlic memory error logic
l<~Sl~l ' l~AIl l . ' l ' - rescts the filult logic
KES'I'OK1:. (p.38) - loads HI:SUI,*T register from 112. loads AI'C:'TASK&APC from ALUA.

C;ENSR('I.OC'K - clock out bits to the I 0 controllers
RESEI'WIYI' (p.27) - rcsct Wiitchdog timer
BOOT - initiate a software boot
SE1'FAIJLl' - cause a faiill to occur

This is to restore the
in:ichiric state after a FAIJLT.

5 5

DO Microprogrammer's Guide 22 August 1978

. 5. Memory and I/O

5.1. General comments

This section is an amplification of the DO Functional Specifications of January 16, 1978. Its
purpose is to provide an interim guide to the proper use of memory and I 0 operations. You
should assume that any topic not covered here is considered correct in the manual. If you follow
the guidelines listed, you should not run into any trouble. Ignoring them will get you into hnny
situations whose symptom is that the data is not where it should be when you think it should be
there. The three main topics to be discussed here will be quadword alignment, bypassing, and the
memory interlock feature.

Words and phrases in italics are meant to convey a special meaning.
trouble, verbs should be read as "must".

If one wanted to avoid

5.2. Comments on style

Since the memory operates in parallel with the processor, there are certain hardware features which
will prevent you from accessing a location which is an operand in the memory operation which is
running concurrently, if these features are used correctly. When an instruction' following a memory
operation attcmpts to use data from that operation, the instruction aborts (this means that time
freezes until the operation is complete). Efficient microcoders will not write codc in this manncr,
but will use the cycles between a memory opcration and use of the data for other necessary code.
A forthcoming section will list the maximum cxcciition time for memory and I 0 instructions.

5.3. Quadword alignment

Memory operations dealing with transference of more than one word should adhere to double- or
quadword alignnient. 'The mcmury instruction has two fields involving R registers: the base
register field arid the SIIC/DES'I' field. The base registers shotcld be an even and odd word pair.
?he even word is tlic page and displacement, and the odd word contains the uppcr bits of the
virtual address.

Caution: I f the base pointer is dcnoted BP[O:23], bits 0:7 in the odd rcgister hold BP[O:7]. arid bits 8:lS hold
the BP[0:7]+ 1 This is incorrect in the inanual.

Caution: Scctiori 5.5 hints that bits 0.1 and 8.9 of the base register c m gct you into trouble if they are not set
properly Foi safe use, thcsc four bits should be explicitly set to 0 by thc programmer.

In general, you should always have aligned rcgisters and memory. You can transfer data to a non-
quad (or doublc) aligned R register, but i t will dcfeat the intcrlock(see below). I f the memory is
not quad or double aligned. the memory will pick thc smallest ontcr bound mntching yoiir request
and transfcr those words to you. For exnmplc, executing a PFctch4 with a memory addrcss of 2
will not give you words 2,3,4, and 5. It will give you 0,1,2, and 3.

Caution: Do iiot use register 0 in any task block for a SIIC/I)EST. This forccs use of the stack.

Ij ~

._. . I

I

. ' -1 . .- ~

Note: 'The signal QtJADOVF is gcricratcd only in thc following situstion: The stack is uscd for a PFetch2 or
PStorc? with iiiciiiory address cqu;il to 3 m o m lhis is not n general signal which occurs whcriever you cross
n qu;idword boundary

5b

..A - .. u v M icroprogrammer-s w i d e 22 August 1978

5.4. Bypassing

A non-memory instruction is broken into four cycles: cycle 0 reads the R registers or T, cycles 1
and 2 are taken by the ALU operation, and cycle 3 writes R or T. Since another instruction begins
at the beginning of cycle 2, data needed for this instruction will not have been written when the
read occurs. The hardware notices this, grabs the needed data for the current instruction, and does
the write during cycle 1. The bypass is only good for the following instruction. Bypassing only
allows data to be used from one instruction to the next: it docs not imply storing.

If the instruction following a store is a memory instruction, the write will be delayed for another
two cycles. This means that Lhe store will not take place until cycle 1 of the instruction following
the memory operaton. As an cxrunple, consider a sequence of three instructons, thc middle one
being the memory operation. A memory instruction reads R registers in cycle 0 for bits 8:23 of the
virtual address, and in cycle 1 for the upper bits. Since the R memory cannot be read and written
in the same cycle, the second read required by the memory opcration forces the write of instruction
1 to occur in cycle 1 of the third instruction. The bypass of data from instruction 1 to instruction 2
will work, and give data to the memory operation for its cycle 0 read, but not its cycle 1 read. This
is why you can load an even base register before a memory operation, buL not an odd base register.

Read
/ / .______ / -______ / _-_____ / -----.-

Read Read
/ / -___--- / ___-__.

/ / ______- / ----..- / -...--. / -------

Write - can't take place because of read for memory

Read Write . from above is done here

5.5. Memory Interlock

The memory interlock is provided to protcct you from accessing data which may not have been
operated on by a preceding mcmory operation. Use of quad or doublc word aligncd rcgisters will
make this work smoothly; nonaligncd rcgistcrs defeat the inlcrlock. 'Ihc actual R register address
is compared (with appropriatc low order bits omitted if the operation is double or quad) with R
addresses in MCl and MC2. and the instruction is abortcd until the mcmory is finished. If you like
to gamble, you can use non-aligned registers and access those protected by thc interlock in the next
instruction, but wait until somc time later to access the other registers.

Somc people have fallen victim to a few. bizarre occurrenccs, and with memory timings, thcre can
be a lot of bizarrc occurrenccs. If you have a problcin with the memory, chcck your codc with
some of the cxairiples below, particularly thc "Gotcha" scction. If you find anothcr example of
something which doesn't work, please scnd it to me.

Examples

Proper usc of the mcmory will look likc the following:

KV[rbiiseEven. 101:
liV(rbase0dd. 111:
1<V(rsrc2, 121:
IiVlrsrch 141:

5 7

DO Microprogrammer's Guide 22 August 1978

RV[rbaseEven2, 201;
RV[rbaseOdd2. 211;
RVrtmpl;

1. rbaseOdd + valuel;
rbaseEven + value2
PFetchZ[rbaseEven, rsrc21;
t + mc2:

a set up Odd register first
* set up even register - bypass will get proper *
a when memory done, this instr will be executed

value to mem op in cycle 0

2. rbaseOdd + valuel;
rbaseEven 6 value2;
PFetch4[rbaseEven, rsrc41:
t + rsrc4;

3. rbaseOdd + valuel;
rbaseEven + value2:
PFetch2[rbaseEvcn, rsrc21;
rbaseOdd2 + value3;
m p * t:
PFetchZtrbaseEven2, rsrc2]:

Improper use of memory:

* this could also be rbaseEven2 + mumble
a need this to be sure store is accomplished

1. rbaseEven + value2
rbaseOdd + valuel:
PFetch2[rbaseEven, rsrc21: a only works for cycle 0

PStoreZ[rbaseEven, rsrc21;

a mem op needs this in cycle 1, but bypasa

* set up a register to be stored
a rsrc2 will not have been written when this

* this will not work because of the bypassing
* mentioned abovc. Writing of rtmp is in cycle

2. rsrc2 + value3:

* begins (note 1. page 47)

3a. rtmp + value3:
MemOp[rbaseEven, rsrc?];
t + m p : * 1 of this instruction

McmOp(rbaseEven. rsrc21:
m p + t;

3b. t + value3: * same reasons as 3a.

Gotchas:

1. When you do a PFetch or PSLore, and you are using a registcr which is out of your 16 per
task allotment, you arc likely to be writing into the wrong register. If you use 16 registers, your
RSEL field in the microinstruction will contain only 4 bits. As you may recall from R addressing,
the top two bits of the 6-bit RSEL field are conditiortully ORed with your task number. When
doing B PFctch or PStore, the task bits are unconditionally ORcd with your task number, which
may or may not change the R address.

2. PFetchl[rbaseEven, rsrc21; .-.--.
1 .OADTIMER[rsrc2]: * this will dcfeat the interlock!!!!!!!

This bug/featurc is very subtle. Unfortunately, Micro decodes this instruction in such a way that
the registcr rsrc2 is not considered a soiircc and thcrcfore the interlock is not checked. This will
happcn lo ALJ, special fiirictions which load a rcgistcr from ALUA, and thcrcfore includes
APC'I'ASKScAPC+. 13EWARE!! 'Ihc way to gel around the abovc, is Lo say:

lu+rsrc2. LOADTIMER:

Now rscr2 will be checked.

. I
I

1
I

58
I " I

DO Microprogrammer’s Guide 22 August 1978

6. Getting Started

Most of the information which you will need will be present on Iris, and eventually Isis. We have a
directory called DO. This is the first place you should go and look for any programs or
docurnentation that you need. There is also a microcoder’s distribution list which is on
[maxc] < secretary > d0users.dl. You will receive notification of new programs or updates via this
distribution list

’

Send a message to Jeannette Jenkins in CSL to get on this list.

There are two files on [Iris] < DO > which can be used to create a microcoder’s disk. If you have a
virgin disk, you should obtain a copy of < alto > newdisk.cm from your local file server. After
running this, get [Iris] < DO > newmidasdisk.cm for a Midas disk or < DO > newsimdisk.cm for a
simulator disk. Either command file will give you all the files you need to use for microcoding.
For a disk already containing an operating system, FTP. Chat, nravo, and other basic programs, you
need to run [Iris] < DO > midasdisk.cm or < DO > simdisk.cm. This will provide you with enough
Mesa to run Midas or the simulator and all needed microcode files.

The first document to be read is the W Processor Functional Specification, January 16, 1978. This
explains the hardware and also gives you pictures of the architecture which are useful to look at
while coding. After reading this, you should look at the DO MicroAssemblcr manual (which is in
this guide) to familiarize yoursclf with the microcode syntax. After this, you should be able to write
a simple program.

Given that you’ve now written a program, you need to assemble it. Actual assembly is
accomplished by two programs: Micro and MicroD ([Iris] < DO > micyo.run, microdmn). Micro is
the main assembler; MicroD’s function is instruction placement in the microstorc. Micro is a very
general microcode assembler, and it accepts language features from a file called DO1ang.m~
([Iris] < DO > DO1ang.m~). This file is assembled with each of your microcode files. If your file is
named Test, you would assemble it in the following manner:

Micro Mllang Test

Assuming you got no errors, you would then proceed with

MicroD Test

At this time you have a file called Test.mb which is ready for loading into the DO or for use with
the sirnulator.

It is possible to check out your codc without a DO. A DO Simulator ([Iris] < DO > s.bcd) exists, and
is very useful for codc which does not use and 10 routines. ?’here is a vcry readable documcnt on
how to use the simulator in this manual. 7he sirnulator closely tracks the 110 and any changes
made to it. Once your program runs llirougli the simulator, you can be vcry confident that it will
work on the DO. The simuliitor h:rs a fcaturc for running in non-overlap mode which is most uschl
for debugging.

On the DO, microcode programs will be run and debugged wilh a program called Midas. Midas has
its own documentation in this m;inual. I’hc Midas systcm is i n the form of ;I “dump” file and is on
[Iris] < 110 > midasrun.dm. I f most of the information in this scction is new Lo you, don’t bother
gctting into Midas yet.

5 9

DO iMicroprogrummer's Guide

Caution: NEVER gt

7. Caveats

22 August 1978

Midas unless it is in a dump file. Midas and its auxiliary files are quite dependent.

You must execute a TASK function every 12 microinstructions to insure that data from higher
priority devices is not lost. A TASK clause in a microinstruciton is a cheap trick to execute a
CALL and a RETURN, since RETURNS are the only way a higher priority task can gain control.

NEVER use more than sixteen R registers for a given task.

If you are writing microcode which will be incorporated into a release, you must "check out" a
prefix from the person in charge of DO microcode releases (currently Carol Hankins). This prefix
will occur before your labels and register names.

Anyone who does not follow the above rules will receive no help from me whatsoever.

8. Suggested Programming Style

It is highly unlikely that you will be the only person reading your code, so below are some
suggestions which will make your fellow coder's life easier.

As mentioned in the Caveat section, if this piece of code will ever be in a microcode release, you
must check out a prefix from me. This prefix is to be used in front of all R register names and
labels. Given that they all bcgin with this prefix, thcy cati still be named something which suggests
their hnction. It is possiblc to define many names for a particular R register (by executing as many
RV's as are necessary), and if your code can be sectioned in a reasonable manner, you may want to
try this technique.

If you USC names which are a concatenation of two or more syllables, you might consider using
lower case letters and having the next syllable begin with upper casc. This produces quite readable
text. If you use lower case, you must call the micro-asscmbler, Micro, with the "/u" switch on the
command line.

Micro, makes it quite easy to define constants which assign English-like names to arbitrary sets of
bits. Thcre are two fkilitics for accomplishing this. The macro MC[nrune, numbcr] defines a
constant: i.e., every time tlic assembler finds "namc", it substitutes the number appended with a
"C". SE'I'[name, number] will give you thc number without a "C" which is suitablc for use as a
parameter.

Examples:

MC'lbilMnsk. 2001: * used for exprcssioiis like rIcmp+(rtcmp) OR (bitMask):
MC'[scclorMask. 16400j; * Tt(Diski1ddr) A N D (sectorMask);

SETlniyPage. 31:
St<T[tiispLoc. 2001: * DISPldispLoc]:

Note:

* use this as a parameter iIS in ONPAGE[myPage]:

It should be noted that constiink! formed in this manner must still adhere to the eight bit limit
discusscd in the scction on constants.

60

DO Microprogrammer's Guide 22 August 1978

It is suggested that you begin each of your modules with a SE'ITASK and an ONPAGE.
Parameterization will make these easy to change later on. You should also begin your modules with
a "notify" to get you to the proper task and location for the start of your code.

i! .

In addition to writing readable code, you should also try to pack as much in any given
microinstruction as is possible.

61

I I

L' I

DO Microprogrammer3 Guide 22 August 1978

9. Sample Programs

The following code is a template of what microcode files should look like. It is filed on
[iris] < do > template.mc, and you are welcome to retrieve it. It is assumed that you will insert your
code via Bravo. Micro knows about Bravo trailers, so you may format your code as much as you
would like.

builtin[sampleInserf 241;
sampIeInser+lOlang]:

title[template]:

%
Next put in some comments as to what this code does. If it is a long comment, you can
enclose it between two percent signs. You might also want to include any assumptions
that are necessary for this code to work.
%

* your local constants
mc[sectorLate. 40001;
mc[resetEverything, 131; * another
mc[firstloc, 201;

* your parameters
set[myTask, 41;
set[myPage. 131;
set(dispLoc0, OR@(LSIiIFI'[myPage, lo], 011;
set[dispLocl, OR@[LSHIFT[myPage. lo], 2011;

* you can do this if you want to insert a file
* like DOlang of a defs module so you won't have

* to type it on the command line to Micro

* give it a reaonable title.

* makes a symbolic constant

* fm location you want to go to

* see use in settask statement below

* a handy way to parameterize dispatch tables
* so that if your page changes you don't have to

* manually change those locations

settask[myTask]; * used to allocate proper R registers - does NOT make you
* run in that task. You have to do a notify. See below

* ragister declarations
rv[rtemp. 01:
rvlcount, 11;
rv(baseEven. 21;
rv[baseOdd, 31; * other half
rv[wordO];
rv[wordl]:
rv(word21;
rv[word3];

* ready to begin your code
onpage[myPagc]:

* bootstrap yourself up to your task and load your TPC
init: rtemp + myTask:

rtemp c Ish[retmp, 141; * put it in the task field for loading APC'TASKUPC
t + firstloc:
rtemp + (itcmp) OR t:
apctaskdiiipc * rtemp;
return;

* you can force use of a pamcular register this way
* actually you don't need "1". regs are assigned in order
* a good way to set up base register for memory ops

* a quad-word buffer beginning at R register 4

* directs assembler where to put it

* do the notify

actualstart: t + rtemp, at(firstLoc1:

end. * that's all

* you are now running in your task

62

DO Microprogrammer’s Guide 22 August 1978

The file, [Iris] < DO > sample.mc, consists of sample programs, which are each prefaced with what I
hope thcy will illustrate. The sections can each be broken out (code between TITLE and END)
and be assembled and run through the Simulator, if you wish.

TITLE[Samplel];
* This code takes the number in R register RNum and multiplies
* it by 10. This is accomplished by multiplying it first by
* 8, multiplying a copy of it by 2, and adding the results.

RV[RNum]:
RV[RTemp]; *just a tempomy register

INIT: RNum + (4C): *initialize it
START: T + RNum;

RTemp + T: *RTemp = RNum
RTemp + LSH[RTemp. 31;
RNum + LSH[RNum. 11;
T + RTemp; *put in T so we can add them
RNum + (RNum) + T;
GOTO[START];

*need to copy it into T to get it to RTemp

*RTemp = 8*RNum
*RNum = 2*RNum

END.

%
Now we try and make the above a bit more efficient.
%

TITLE[Samplet];

RV[RNum]:
RV[RTemp] ;

INIT: T + RNum + (4C); *loading T is free
TIMESlO: RTemp + T;

T * RTemp + LS€I[RTemp, 31:
um + (LSH[KNum. 4) + T:
TO[TIMESlO];

*shifting is on A-bus

END.

96
Moving right along, let’s look at branching. The important things to remember about branching are
that ALU conditions are available at t3 (afler cycle 2) and are savcd, while R conditions are
available at tl , and arc destroyed afler this time.

In tlie next program, we’re going to use two subroutines. GETVAI, is totally mythical - assume it
gets a number from somewhere and puts it in 1’. TIMESlO is the above code made into a
subroutine. The following program rends a count via GETVAI,, then calls GEI’VAL to give it
numbers which it makes positivc if thcy aren’t, and then multiplies thcm by 10. When finished
with that loop, it goes back up to get another count.
96

TITLE[Sample3]:

RVIRNum]:
RV[RCounl];
RV[RTemp]:

START: C‘AIL[GETVALJ:

* could h a w tcstcd on T above via
* GO‘TO[DONE, ALU < 01;

RCount + T:
GUTO[DONE. R < O]* 1.U + RCount: *way to put something on bus

AGAIN: NOP: *see below for explanation

63

DO Microprogrammer's Guide 22 August 1978

CALL[GETVAL];
RNum + T;

* again, could have tested on T as above
GOTO[MULR, R > =O], LU + RNum; *if it's positive, jump
RNum + (RNum) XOR (10OOOOC);

MULR: CALLRTIMESlO]:
RCount + (RCount) - (1C); "decrement count DBLGOTO[AGAIN, DONE, ALU#O]:

DONE: GOTO[START];

TIMES10 T + RNum;

*make it positive

RTemp + T;
T * RTemp + LSH[RTemp. 31;
RETURN, RNum + (LSH[RNum. 4) + T;

END.

%
Many errors can be avoidcd by understanding the branching logic. CALL'S always have to be at
even locations. DBLBRANCH and DBLGOTO go to odd locations if true, and even if false. The
DBLGOTO which is right before the label DONE is supposed to go to AGAIN if true, and DONE
if false. At AGAIN, we really want to do a CALL[GETVAL], but since the branching logic dictates
that AGAIN be placed at an odd location, we have to put in a NOP.
%

10. Common Error Messages

Micro occasionally produces rather baroque error messages. For a complcte list, see the Micro
documentation. The following are the ones most cornmonly received when beginning:

RREGISTER-t-13 Undefined - a missing set of parentheses around the "A" field of the the ALU function in
the instruction. This comes from statement like T + RTEMP + (lC), where the above message would be

Field RSEL2 already used - this usually results from referring to two R registers in the same staterncnt. There
is only space for one in the micro-instruction. RTEMP + (RADDR) -t (T) is illegal.

Illegal constant - a constant in a microinstruction can only be 8 bits. either the upper or lower 8. If you need
a constant which is longer you need to do it in two instructions.

T+R Undefined - you are wing to put two things on the B bus. An
instruction of the form 'r + T + (377C) is not possible, since T is on the I3 bus, and so is the constant.

Field BS already set - Bsel is 0 or 1 for a constant, and 3 for the cycler/tnasker. Thus, IUEMP +
RSH[RTEMP, 11 AND (2C) would produce this message. 'nns statement also produces "1~l.used.twice".

RTEMP + B Undefined. 4f

Look at the diagram of the DO.

MicroD is the part of thc assembler which places the instructions in thcir final locations. Any
messages received from Microl) are because of placement constraints. 'The following arc the tnost
common:

Attempted to link LabclX with LabelY - you probably have two DDI.GOTOs which rcquire LabelX or IabelY
to be on an even locabon for one and an odd locallon for the other:

e g lX3L7'0C~O~lsbelX. IabelY. nlu#O]:
DBLGOTO[L;ibclX. LabelZ. alu > =O]:

Inipossible allocabon constraints ~ Most likely there are two CAL1.s in sequence.

A printout of all locabons on two pages - This probably results from doing a COTO/C'AI,L to a different 1IiIgC
not being preceded by a LOAUPAGE.

64

MIDAS MANUAL

29 Decem ber 1977

Edward R. Fiala

edited by

Brian Rosen

Xerox Business Systems
Systems Development Department

3408 Hillview Road
Palo Alto, California 94304

Midas Manual 29 December 1977

1. Midas

Midas is a loader/d&bugger with versions existing for the Maxc2, Dorado, DO, and 68
microprocessors. Midis runs on an Alto, controlling the target machine remotely. It is used for
loading/dumping microprograms assembled by Micro, for examining and modifying storage and
control signals, and for testing the hardware in an assortment of ways.

Midas is about 90% coded in Bcpl and 10% in assembly language. The Mac2 version was
implemented by E. R, Fiala and H. E. Sturgis. The Dorado, DO, and M68 versions consist of
machine-independent dnodules implemented by E. Fiala (ISF and Overlay packages implemented
by 1,. Deutsch and Alto microcode by E. Taft are also used) and machine-dependent sections
implemented by E. Fihla for Dorado; D. Swinehart and P. Baudelaire for M68; D. Charnley, C.
Thacker, B. Rosen, and C. Hankins for DO.

An internal descriptioo of Midas is available to anyone interested in adapting Midas to a new
hardware system (seel Maxcl < D1l)ocs > MidasInternal.Press).

2. Starting Midas

To start Midas, simply say "Midas" to the executive or, more generally, "Midas com-file". The
following ways of starting Midas are of particular interest:

midas/i initializes (required when any Midas files move or change);
midas simply fires up Midiis;
midas debug starts Midas and immediately rcads commands from the

"Dcbug.Midas" command file

"Midas debug < cr > *' to the executive is equivalent to bugging the "dcbug" item in
the submenu put up by the "Run-Prog" command.

Midas command files have the extension ".Midas". Generally, there is one command file for each
hardware diagnostic, with the same name as the diagnostic, e.g.:

dgbasic.mb the diagnostic:
dgbasic.midas the command file.

A command file follbwing this convcnlion loads the diagnostic into thc microprocessor and
displays various registers of iiitcrest whcn the microprogram is in USC. Assorted command files
currently in use are discusscd later, in thc section about "Run-Prog" and "Rcad-Cmds".

3. Midas Display

At thc top of the Mides display are a number of nante-value menus. Ilclow thcsc are the name of
the last microprogram 1o;idcd. two cornviarid cornmetif f i r m the cotnrnarid m n u , and thc irrpuf tcxf
line. When you movc thc mouse over ;I ~lilme-valu~ mcnu or thc command menu, thc mcnu item
selected (if any) turhs black.

Midas Manual 29 December 1977

Note that mouse actions execute when you RELEASE the mouse button, so you can move the
mouse with the button depressed without causing damage. If the mouse is no longer over the
selected menu item, nothing happens when the button is released.

A name-value menu may contain a register or memory address in the name arca and its contents in
the value area. A memory address may be specified as the memory name and word number, or as
the name of an address symbol defined in a microprogram you have loaded. The address symbol
may be followed by +/- displacement.

Name-value areas are of digerent sizes. Smaller areas on the leR are already filled in. when you
fire-up Midas. You can clear thesc or replacc them with other stuff from your microprogram, if
you want to.

Initially, some name-value menus are empty. The largcst areas on the right should be used for
items with long names or values. If the item you display overtlows the selccted area, the right-
most characters of the name get truncated, then the left-most characters of the value.

To display a new item, type its name (which will appear on the input text line), move the mouse
over the name field in a name-value menu, and push-and-release the left (or top) mouse button.
Memory addresses in your microprogram.may optionally be followed by a displacement " +n" or
"-n". " n" is the same as "+n".

If the command line is empty, the selected menu will be cleared when the button is released.

When you push the right (bottom) mouse button over a name field in which an address is
displayed, a subsidiary menu appears as follows: I

A + l A-1

"A + 1" increments the address, displaying the next location. "A-1" decrements the address.

Rclcasing the middle button ovcr an addrcss item shows an alternafe printout (if any) on the
command comment lines. If the input text line is non-empty, it will first display that itcm.

Releasing the lej2 butfun over a value item, evalitafes the input text and stores tlic v.alue (or 0 if no
text typed) in the sclected register. The input tcxt may consist of octal numbers or memory
addrcsses +/- offsets. For mcmorics and rcgistcrs whose valucs arc displaycd as several fields, the
input tcxt must also be divided into fields. nlanks must be inscrtcd where Midas prints blanks in
thc displayed value of the register.

Midas also providcs for special input evaluation based upon thc rcgister or mcmory into which the
valuc is to be storcd. At the prcscnt time, an nltcrnate input routine is implcinentcd for rcgisters
and mcmorics that contain microinstructions (MIR. IM. and IMX oil Dorndo). Thcsc are
discussed later.

Rclcasing the middlc button ovcr n value item shows an altertiale printout of llie value on the
cornmatid comincnt lines. The idtcrnatc for rcgisters that noiinrtlly hold IM addresses is the
ncilrcst IM addrcss tag less-cqwl lo the value+offsct (Thc valuc is also put on the input lcxt line,
so you can cxiitninc that IM location in some name-value menu, if you want to.). Registers and

Midas Manual 29 December 1977

. memories that contain microinstructions may also be printed out symbolically. These are
discussed in more detail later.

Releasing the right button dver a value item appends the text of the value to the input text line.
This is primarily used in command files to move values from one register to another.

.

Summary:

Name-Jield Value-field

Lejl Button Examine Change value
Middle Button Alternate printout Alternate printout
Right Button A f 1, A - l Append value to input line

4. Midas Command Menu

The command menu con 'ns a list of commands or actions that Midas can execute. The basic
menu is modified under 3 s me conditions. For example, the "Dump" menu item only appears
after you have done a "Lodd". During execution, some commands replace the command menu by
sub-menus.

For the command menu, all mouse buttons are prcsently cquivalent (On Dorado, "Ck-DMux" and
"No-ck-DMux" actions ard cxccptions). Many common actions may alternatively be initated by
keyboard command charupers, as given in the action table below.

General philosophy on mixing keyboard and mouse button control is that, when possible, a
command involving some typing is carried out complctcly at the keyboard, whereas commands
involving mouse buttons are carried out completely with the mouse.

For example, to start a miqroprogram at some address, you normally havc to type an address; then
you could bug the "Go" itcm in the command menu, but normally it is more convcnicnt to type
"address:G" bccause you hon't have to lifl your hand froin the keyboard; ";G" are the command
charactcrs cquivalcnt to bugging "Go".

Many commands are execwtcd in overlays. When thcse gct cxecutcd, thc register display will turn
off (The code for ovcrlayb rcsides whcrc the display bit buf'fers would othcrwise be.). During
loading or cxccution of ccimmand filcs, the display is turncd off to makc the machine run faster.

Long-running commands normally display an "Abort" mciiu item. When this is bugged or when
control-C is typed, thc action terminates.

67

llil idas Manual 29 December 1977

Input Char

Actions (potentialb)

[File]

File

Files ;L
Files
[File] ;D

[File] :C

- Addr -
IMaddr :B

[IMaddr] :K
[IMaddr] ;G
[iMaddr] :P
[IMaddr] :

@

@IMaddr :R
@IMaddr :S
@
@
@LDRaddr

@Not ovaihble in

Menu Item Comments

available on all implementations of Midas

Show-Cmds
Write-Cmds
Run-Prog

Load
LoadSyms
Dump

Compare

Break

UnBreak
Go
GO
step
Reset

Test
Test-All
RepGo
Rep-SS
PEscan
Ficld-loop
LDR-lwp
Virtual
Absolute

Executes command file (def. ext. ".Midas") on input text line or from
submenu
Shows command file text for selected menu items
Write subsequent commands on file
Run microprogram selected from submenu (restricted use in command
files)
Loads .MB files
Loads only addresses from .MB files
Dumps compacted .MB file using the .MB file@) of the previous load
to control what's dumped
Compares microprocessor data to data specified in MB file--compare
file must not have fixups for forward references
Prints value of an address (illegal in com-file)
Inserts break point (The breakpoint occurs after the instruction containing
the break has been executed.)
Removes break at address (last break if nothing typed)
* Start at address (contmue if nothing typed)
* Same as :G (more mnemonic when you mean "proceed")
Single-step at address (continue-step if nothing typcd)
Reset or cold-start the machine.
subsidiary menu.
* Test register or memory (see below)
Test everything (see below)
* Go at address, repeat endlessly aRer halts
* Repeatedly step at address
Scans local memories (IM, IFUM, RM, T on Dorado) for panty errors
* For scoping (see below)
* (see below)
Changes IM address interprctation to be virtual
Changes IM address interprctahon to be absolute

Assorted options.are controlled by a

DO Midas as of this Clare

Actions avuilable 0nI.v on the Dorado Midas

Set-Clock
t l

t7.

t3

Rcp-t.2
Clc-DMux

[IMaddr] SimGo
SimTcst
Passive
Active
llpdate

Set the clock speed to the value selected from a submenu
Clocks MIR through tl. reads the DMux, thcii clocks through t2 and
restores MIK (so display shows DMux values read aRer tl).
Clocks MIR through t2. reads the DMux. and restores MIR (so display
shows DMux vitlues read dfter Q).
Clocks MIK through t3. reads Uie DMux, then clocks through t4 and
restores MIK (so display shows DMux values read after t3).
Repcatedly does t2
Left-button muses the DMux consistency checker to be called after Go,
Step, tl. t2, aiid t3 Middle aiid right mouse buttons modify display of
DMux items ;IS discussed Inter.
* Like "Go" invoking the DMux checker afier each step.
* Random instruction tcst usiiig MIR and thc DMux checker.
Prevents Midas from disturbiiig the hardware while running
Puts Midas into normal mode
Read registers and display new values (used while passive)

Actions uvuiluble only on the DO Midus

[File] h o t Iloot W arid load [File] as kernel.
KliRNIIL,.MB used if [I'ile] is dcfiiulted

68

Midas Manual 29 December 1977

* = requires preceding1 "TmeOut" command in corn-file
= requires confirma).ion with <a>. "Y", or "." (or by preceding "Confirm" command in corn-file)
[...I = optional input #xt

Some actions in the preceding table are replaced with complementary actions after execution.
These are Show-Cm& by Conceal-Cmds, Write-Cmds by Stop-Write-Cmds, Ck-DMux by No-ck-
DMux, Passive by Active.

5. Keyboard

Some characters which are symbol constituents in microprograms will cause trouble for Midas if
they appear in adddess symbols.

Lower case typein ig converted to upper case by Midas, so avoid lower case characters in
microprogram addresies. You should write microprograms with the shift-lock key depressed or
assemble them with the convert-to-upper-case assembly switch.

Avoid "=". ,

"+" and "-'I are ok so long as the following character (if any) is a letter, but you should avoid
thcse generally.

Typing ahead is legalluntil the character you type would cause execution of an action. After that,
Midas will flush input and blink at you until the current action finishes.

At the cnd of an actiQn, input text typed for that action is displayed on the input text line. This
text remains valid and can be used as the arg for another mouse action. However, if you type any
character (except contlrol-A or backspace), the old input will be flushed bcfore inserting thc new
character.

Keyboard editting characters are as follows:

control-A delete last character
backspace dcletc last character
control-Q clear text line
del clear text line

Other special kcyboard characters are as follows:

control-C
con trol-Z abort a command file
escape
control-D turns on the displi1y (used during command files)
control-0 turns off thc display (uscd during command filcs)

abort the current action-equivalent to bugging the "Abort" command

rcpcat previous action (spccial for "'Test" and "'TcstAll")

I l ~ c interrupt charactcrs above arc ineffcctivc during loading, dumping. or comparing, which
typically take bctwceb 2 and 20 seconds. Indcfinitc duration commands, such as "Go", "'l'cst",
ctc. idways monitor tlic kcyboilrd. so control-C can be uscd to Lcrminate thcm. Although conlrol-

Midas Manual 29 December 1977

C and "Abort" are equivalent, "Abort" is only effective if the Midas main loop sees the mouse
button go down then up; in testing big memories or registers that take a long time to read-write,
Midas doesn't monitor mouse buttons often--you may have to depress a button 5 or 10 seconds
before Midas sees that it is down. For this reason, normally use control-C to abort-even with
control-C the abort may be delayed for a few seconds.

'

Control-2, control-D, and control-0 are intended for use during command files. However, these
characters do not take effect until the command file executes a command such as "Go" which
monitors the keyboard. There is no way to abort a command file and give control back to Midas
safely except during a "Go" or other long-running command. This is not expected to be a
problem because commands are cxecuted quickly.

After interrupting a "Go" with control-C or control-Z, proceeding wilh ";PI or ";G" will succeed
except when you have smashed the machine state by doing a "test", "reset", etc. action or have
displayed a register that Midas cannot examine non-destructively (c.g., IFUM on Dorado can only
be examined destructively).

Although command menu items "Step", "Go", "Break", "UnBreak", "Rep-SS", and "Rep-Go"
are provided, the keyboard character equivalent to these is usually more convenient.

6. Command Files

Command files (default extension ".Midas") are normally executed either by typing "Midas
filename" to the Executive or by bugging a file name in the subsidiary menus put up by "Run-
Prog" or "Read-Cmds". Alternatively, you may type a file name first. then bug "Kcad-Cmds".
("Run-Prog" does not permit you to type a file name--you are limited to files appearing in the
sub-menu.)

"Run-Prog" resets Midas, while "Read-Cmds" does not: resetting Midas consists of clearing the
symbol table and restoring the display to its initial arrangement.

"Run-Prog" is used to completely change contexts--to run a new microprogram, for example.
Selecting ;i command file from the "Run-Prog" submenu is equivalent to exiting to the Executive
and typing "Midas comfilename".

"Read-Cmds" is frequently used 'to modify the display in various ways.

The file names that appear in the sub-mcnus for these are containcd in the Midas.Progrruns file.

The command-file facility is actually an (awkward and limited) programming language. The
collection of actions discussed below is bcing dcvciopcd so that command files can monitor
diagnostic microprograms, collect and report error information on an output file. or direct the
sequence of diagnostic microprograms according to hardware f:iilures that are observed.

For systcm microcode, command-files can be used to control auto-restart and failurc diagnosis.

Command filcs can be nested several lcvcls (limited by thc size of syszonc which must be big
enough to ;scommodatc OpcnFile and buffers for the command files alrcndy open). However,

70

- -1
-1

Midas Manual 29 December 1977

there are the following RESTRICTIONS:

(1) [Mac2 only] "AltIO" terminates command files (i.e., upon return to Midas from AltIO the
command file will aot be continued).

(2) "Run-Prog" is illlegal except in the top level command file. ("Run-Prog" resets Midas, then
calls "Read-Cmds". h i s reset operation smashes the symbol table, the display, and the stack back
to their initial state. Hence, if you were to execute "Run-Prog" from a subsidiary command file,
that command file wbuld be continued, but the higher level ones would not, and the sysZone
buffers for the highkr level command files would not be released.)

Since Midas builds a table of file FP's during its initialization, when you edit a command file or
.MB file, you should reinitialize Midas by typing "Midas/I". When you add new command files
or .MB files you sliojld update the "Midas.Programs" file appropriately and do "Midas/I". The
form of "Midas.Programs" is discussed later.

A number of comm4nds that can never occur when Midas is run interactively are useful in
command

Text Arg

Value

Value

Value

Octal no.
Octal no.
Octal no.

.Tag

.Tag

Octal no.

File name

[text]

files. Thlese, not given in the table earlier, are as follows:

Action '

SkipVEql

SkipVGr

SkipVLs

Skip
BackSkip
Return

Skip

BackSkip
Display On

Displayoff
TimeOut

Confirm

OpcnOutplit
CloscOutplIt
W nteMcsqgc

Comments

Skip the next command if the input text evaluates equal to the contents of the
register or memory word displayed. The input text is evaluated exactly as though it
were to be stored into the register displayed in that name-value menu, so if the
value displayed has several fields, the input text must also have several, fields.
Skip the next command if input text evaluates greater than the contents of the item
in the name-value menu.
Skip the next command if input text evaluates less than the contents of the item in
the name-value menu.
Skip N following commands. where N is the value of the input text.
Reset to byte 1 of the command file, then skip.
Return out of current command file, then skip (".Tag" form is presently illegal for
this one.).
Skip following commands until one is encountered with the label ".Tag". Command
labels are distinguished by beginning with ".".
Reset to byte 1 of the command file, then skip.
Turn 011 the display, so that effects of subsequent commands can be observed. The
display is initially off for a command file.
Turns off the display.
Input text is evaluated to a 32-bit octal number of msec at which to abort the
inimcdiately following command. if it has not finished by then. This is ititcnded for
use before "Go" and other commands which might hang indefinitely. If the tinicout
occurs. Midas will skip the command aRcr the "Go". 7'inicOut also turns on the
display. necessary bemuse the machinery which checks for tiiiieout is only active with
the display on.
Supplics confirmation for the command which follows (which should be one of the
comtnands requiring confirmation).
Opens ;in output file (dcfiiult extension ".Repoft") on which text can be written.

Writes the contcnts of Uie input text buffer 0 1 1 the output lilc. Note that if any text
follows the WtitcMcssige. that text up to but not including the < cr > is what gets
writtcrl. 1 lowcver. if < cr > immcdiatcly I'ollows WriteMessagc. then the contents of
the input text buffer lclt by the previous command get writtcn. "-" is translated
into < c r > .

Closes the output file.

71

hlidas Manual 29 December 1977

text ShowError Displays the text arg on the command line, turns on the display if it was off, and
queries with "Abort" and "Continue" menu items.

7. Syntax of Commandwfile Actions

The syntax of a command-file action is as follows:

r."<tag> <$" ">]<buttons> < $ " > <menu> < " ' I > [< $ " " > <text>](";"<comment>]<cr>

where the "t]" denote that the ".tag", input text, and ";comment" are optional. < $" ". > denotes
a sequence of blanks.

If the first character on the line is a ".", then the characters after that are a label or tag which may
be used as the argument for the "Skip" or "BackSkip" actions given in the tablc earlier.

<buttons > may be my combination of the letters "L" (left-button), "M" (middle-button), and
"R" (right-button); these are the buttons released to executc the action. These may appear in any
order.

<menu > is the menu name in which 'the action is executed ("X" for the command menu,
"AO" ..." A19". "BO ..." B19", and "CO ..." C19" for name-value menus).

<text > is the text typed on the comm'and line, which may be anything except a ";".

Note that if a single Blunk terminates < menu > and if no input text argument is given, then input text left-
over from the preceding action will be used. This allows text from a righvbutton action over a value to be
used in a following action (e.g., in WriteMessage or to store the value into another reigster). However, one
or more extra blanks will reset the input text, so the action is executed with null input text

For rcgisters/memories that contain addresses, the pretty-print procedures (middle-button over value), also
print the result on the input text line: this can also be used in subsequent actions.

";" begins a comment, which may be omitted.

< cr > (carriage-return) terminates the action,

To find out what tcxt should be put in command files, you can bug "Show-Cmds" in the
command mcnu. This will cause the command file text for each comm:ind to be displaycd on the
command comment line as Uic mouse selccts it (You don't have to exccule thc command to see
the cquivalcrit text.). This text is complete except that the mouse button which cxccutes the
command isn't shown unless you depress the mousc button. '10 tcrminalc "Show-Cmds", bug
"Conceal-Crnds" (which appcars only whcn "Show-Cmds" is in progress.).

You can prcpnrc a command file (dcfault cxtcnsion ".Mid;is") by typing a filc name and bugging
"Writc-Cmds". This causcs tcxt for subscqucnt cominands to bc put on the file. Wlicn you are
donc with this, bug "Stop-Writc-Cmds" to close the file. ("Stop-Writc-Cmds" is in thc command
mcnu only whcn a command file is bcing written.).

72

Midm Manual 29 December 1977

You will probably wbnt to edit out your goofs with Bravo aRer the command file is written.

In addition, you will have to insert "Confirm" and "TimeOut" commands into the command file
before those actions *hich require confirmation or which might hang indefinitely (See the table
given earlier for the actions that require this.).

Here is a sample command file:

L X Load dgl;
L A0 Addr TASK:
L A0 Val 0
L A 1 Addr RTEMP;
L A1 SkipVEql F00+3:
L X ShowError Rk'EMP not
L A2 TLINK 0:
L X TimeOut 2000:
L X Go START;
L X Skip 1:
L X ShowError STAkT;G failed:

Equivalent to typing "dgl" and bugging "Load in the command menu
Examine the "TASK" register in name-value menu A0
Change the value in TASK to 0
Examine the address "RTEMP" in menu A 1
Skip the next command if RTEMP contains the value F00+3

Examine the Link register for task 0 in menu A2
Abort the following command if it hasn't finished in 1.024 sec.
Begin microprogram execution at address "START" '
Skip the next command if "Go" halts before timeout
Show an error message

loaded correctly

8. Loading Progr&ms

Programs are loaded by typing a file name (default extension ".mb") and bugging "Load" in the
command menu. However, direct use of "Load" should be rare if you add appropriate command
filcs to Midas.Progr@s. "Load" loads the entire .mb file-symbols into the Midas symbol table
and data into the fiardware.

"LoadSyms" loads only the address symbols and virtual memory mapping tablc from the .mb file.
This may be useful when reentering Midas from the Executive without smashing the program
stored in the microprocessor.

"LoadData", (in cominand files but not available interactively), loads only thc data blocks from
the .mb file. "Loadllata" is provided so that. when necessary, a microprogrilm can be loadcd
without cluttering the Midas symbol table.

On Dorado. the DhUX and DClIK memories are exceptions--symbols for these are loaded anyway.

Thc Midas symbol tablc consists of resident storage for about 700 symbols (i.e., 6 symbol blocks
of 2000, words each). If your program exceeds this, symbol buffers swap off thc disk. (The
primary penalty for cxcceding residcnt symbol storage is that breakpoint responsc will be .15
seconds slower per symbol block on the disk.)

To avoid this problctp, don't load one microprogram on top of anothcr--use "Run-prog" to reset
Midas, or, if the prdgram you want to load docs not cxist in thc "Run-prof submenu, do a
"Run-hog" and bug "Loadcr" in thc submenu Lo rcinitializc Midas. thcrl do a "Load".

It is also a good idc:i to asscmblc microprograms as ;I singlc .MI1 file. Although Midas can load
mulliplc .Mi1 filcs (typcd as a list scparntcd by commas), this will fragment thc symbol tablc and
c a w cxtra thrashing.

73

Midus Munual 29 December 1977

These recommendations follow because Midas takes advantage of alphabetical address ordering in
.MB files to pack its symbol buffers nearly full. But when subsequent files are loaded the symbol
buffers will fragment to about half-full, symbol buffer swapping will rcsult, and symbol searches
will be longer.

9. Dump and Compare

Both "Dump" and "Compare" require confimation by < cr > , Y, or ".'I They accept thc name of
a microprogrcm (default extension ".mb") on the input text line. If the input text line is empty,
then the filc name is dcfaulted to the natne of the program last loaded.

"Dump" deletes forward reference fixups left by Micro (which never occur on Dorado or DO
because MicroD does thcse) and compacts both data and addresses to use less disk spacc and load
more quickly later.

Also, if undumped .MB files contain forward references, they cannot be used with "Compare" (no
problem on Dorado).

Note that only memory words loaded by Load are dumped-you cannot patch. unused locations,
dump the program, and expect the patchcs to survive. (Suggestion: assemble extra locations as a
patch arca with your microprogram, so that you can patch and dump during debugging.)

"Compare" compares data currently in storage against data in the file and rcports differences on
the Midas.Errors file.

10. Virtual and Absolute Control Store Interpretation

13ccause the placcment transformations pcrformcd by MicroD make it difficult to corrckite IM
locations with positions in microprogram sources, the Dorado and D O implementations of Midas
contain a map to transform addrcsses produccd by Micro into absolutc control storc locations
produced by MicroD.

The general idea is that, if you suspect a hardware problem in the control section, you will work
in absolute modc, but in all other situations you will work in virtual mode.

When you fire up Midas, thc display is in absolute mode and the "Virtual" command appears in
the command tncnu: whcn you load a microprogram, the display switchcs to virtual motic and the
"Absofute" command appears in thc command mcnu. Yoti can always (ell which inode the
display is in bccause the opposite mode appears in the command mcnu. You can always switch
from onc inodc to the other by bugging "Virtual" or "Absolutc". but if you havc not 1o:dcd any
microprogram, tlicn switching to virturtl inode will not bc useful.

I n virtual modc, valucs i n a11 registers that nortn;illy contain control storc addresses arc Ir:uislatcd
by Midas into virtual ilddrcsscs, and thc virtual addresses are displnycd on the screen.

On Dorado Uic registers affcctcd by this arc CIA, CIAD. TNIA. DNPC. TPC, 'I'LINK, and OLINK.

On the DO. thc arfcctcd rreistcrs arc CIA. TPC' iirid CAl.l.TrR.

74

hdidas Manual 29 December 1977

When a memory or regibter containing a control store has a value outside the VM, it prints as
7777. To find the absolute value in this case, you have to switch to "Absolute" mode.

Midas defines two memdry names for the control store, IM and IMX. IM is addressed by virtual
addresses, and only locktiom assembled by your microprogram have meaning in the virtual
memory.

In other words, if your microprogram is 10 words long, the meaningful part of virtual memory is only 10
words long. In this case, if you examine virtual addresses greater than 7, the printout will show an absolute
address of 7777 and a meaningless number for the rest of the value.

If you wish, one of UlFse meaningless virtual locations can be added to the virtual memory (i.e., made
meaningful) by storing a value into it. However, be careful to assign an absolute locallon not used
elsewhere--note that the absolute location IS purr of [he value. If you screw up, you can wind up with
several virtual addresses mapping to the same absolute location.

Also, remember that any patched locations not part of the original "Load cannot be "Dump"ed.

When you modify the Icontents of a virtual IM location with Midas by typing fields of octal
numbers, you must supply the absolute address as part of the value. Midas neither.defaults this to
the old absolute 1ocatic)n nor warns you when you smash an absolute location already in use
elsewhere. Consequently, it is possible to modify a different absolute location than the one you
originally examined. T& is grounds for caution. Normally, use the symbolic method for patching
Zhf (discussed later), which does not have this problem.

To cxaminc a memoryllocation on the display, you usually type mcmory name and location or
memory address and digplacement. If you omit thc name and simply type a numbcr, then Midas
defriults the memory Iliame to either "IM" in virtual mode or "IMX" in absolute modc.

11. Testing Directly From Midas

As of this date. testing was not implemented on DO Midas.

"Tcst", "LDR-loop", aiid "Test-All'' allow the microprocessor to be tcstcd from thc Alto. Data
patterns for the test are determined from the first subsidiary menu, as follows:

ZEROES
ONES
SIIOULD-BE
CYCl

CYC0
RANDOM
S1:QIJFNTIAL
A LTLO
AL:r-si IOUIDBE

All-zeroes data
All-ones data
Constmt test pattern equal to value in S1IOUI.D-BE
Vector of Ule same size as the register containing Leroc's wilh a single one-bit cycled leR
one position each iterauon
Cycled zero in vector of ones
Random iiumbers
0, 1. . sequential numbers
AltemaLmg all OIICS md all-zcioes palterns

Alternating contents of SIIOIJI.I>-BE with its ones-complement

Testing is conlrollcd/dcscribcd by eight addresses on the display as follows:

Midas ilfanual 29 December 1977

HIGH- ADDR
CURRENT-ADDR
ADDR-INC (For memory tests only) These words all contain double-precision numbers.

CURRENT-ADDR contains the kist address tested. If ADDR-INC (normally 1) is
positive, the test starts at LOW-ADDR and advances through the memory in steps of
ADDR-INC until CURRENT-ADDR is greater than HIGH-ADDR. If ADDR-INC is
negatlve. the test starts at HIGH-ADDK and goes by steps of ADDR-INC until
CURRENT-ADDR is below LOW-ADDR.

LOOP-COUNT The number of successful iterations of the test prior to failure or prior to aborting from
the keyboard or with the mouse.

SHOULD-BE What the data should have been.
DATA- WAS What the data actually was.
BITS-CHECKED Mask of bits checked (see below).

These addresses are in the fake DLDR memory (i.e., the valucs are stored in a table in the Alto's
memory, not in the hardware).

When the value initially in LOW-ADDR is greater than HIGH-ADDR or greater than the largest
legal memory address, it is reset to 0 before tcsting. Similarly, when HIGH-ADDR is initially
greater than the largest legal address in the memory, it is reset to memlength-1 prior to testing.

"Test" AND'S BITSCHECKED with the maximum-sized mask for the register or memory being
tested to determine a comparison mask for the test. If you previously tested a small register, then
you must load III'T'S-CHECKED with a full-sized mask bcfore testing a big register. If you don't
want to check all the bits in a register, then clear the bits you don't want to check in BITS-
CHECKED.

"Test", after showing the data-pattern menu, shows a menu of register and mcmory names and
other test names, and executes a test of the one you select until the test fails or you halt the test
from the keyboard.

The testable rcgistcrs and memories appear in the sccond sub-tncnu for the "Tcst" action. This
menu also includcs several other machine-dependent test programs.

On Dorado. the additional tests are as follows:

STACK c
BcSTACK
StkP + 1
StkP-1
StkP-2
Shmv

WF
R F
IF
EF

Tests writing RM with address in StkP
Tests rciiding RM with address in SutP
Tests Stkp+-Stkp+l (does not tcst RM rc;id/write)
Tests StkpcStkp-1
Tcsts StkpcStkp-2
Tcsts thc output of the shift-control ROM's on the ProcII and ProcL boards against
correct values.
l'csts loading ShC via W17+
l'csts loadiilg ShC via RF-
Tests looding ShC via "insert field
Tests loading ShC via "extract field

< csc > will continuc ;I rcgistcr o r mcmory kst that has 1i;iltcd: it rcstarls ;in OthcrTcst thnl has

70

ikiidas Manual

halted.

"Test-All" automatically loads BITS-CHECKED with a full-sized

29 December 1977

omparison mask prior 3 testing
each item; memories are tested with LOW-ADDR = 0, HIGH-ADDR = memory length-1, and
ADDR-INC = 1. It tests each register 200 times and makes 4 passes through each memory and
each OtherTest. It is a good idea to run "Test-All" whenever the hardware is in a suspicious state.

On Dorado, the "aR-loop" action should only be used when the "debug" command fils has
been executed. This requires a sophisticated understanding of the hardware and of the innards of
Midas and is not recommended for novices.

Dorado Midas store6 many microinstructions in a fake memory called LDR (sce LOADER.MC). These are
used by various actions to operate the hardware. "LDR-loop" allows these to be executed in non-standard
sequences to beat on particular hardware problems.

"LDR-loop" accepts a list of LDR addresses separated by commas as input text If only one LDR address
is typed, the ABMUX register is loaded once with the selected data pattern. then the LDR instruction is
repeatedly executed with UseABMux me for a scope loop.

When two. three, ep.. up to ten LDR addresses are typed. a test loop occurs whereby ABMUX is loaded
with the next data pattern, the first instruction is executed with UseABMux me, then the rest of the
instructions are exquted. and then the BMux is read back and compared against the original data under
control of BITSCHECKED. The loop stops when (data-read-back xor data-sent-out) & BITS-CHECKED is
non-zero.

12. Scope Loop Actions

"Field-Loop" exercises signal decoding for particular fields of the microinstruction for scope loops.
A microinstruction is fabricated from a no-op microinstruction in which thc field selcctcd from the
first subsidiary menu is rcplaced by various values. 'The second subsidiary menu allows the value
in the selected field to be incremented, dccremcnled, and shifted

"Rep-Go" starts the microproccssor at the address typed on the command line, waits for it to halt
at a breakpoint or parity crror, then restarts it at the original address.

On Dorado, the ta+ for thc original Go is taken from the TASK register: subscquent restarts do not
reselect h e task. t h e control section's NOTIFY register IS rcsct before the first Go. but is not reset each
time through the loop.

"Rep-SS" single-steps the niicroprocessoi at the addrcss typed on the command line cndlcssly.

On Dorado. "Rep-t2" cndlcssly exccutcs the instruction in MTR and rclonds that value into MIR.
Unlikc "Rcp-SS", "$cp-t2" docsn't issuc cxtrnncous clocks whilc looping, so it is ordinarily more
convenient for scoqing.

77

DO MIDAS MANUAL

30 December 1977

by

Brian Rosen

Xerox Business Systems
Systems Development Department

3408 Hillview Road
Palo Alto, California 94304

DO hfidas Manual 30 December 1977

1. Registers and Memories Known to Midas

The registers and memories known to Midas are as follows (numbers in octal):

CIA is

Register Width

APCTASK
APC
CTASK
 CIA^.^
CSDATA
PAGE
PARITY~
BOOT REASON^
RS232
PCXREG
PCFREG
DBREG
SBREG
MNBR
ALURESULT
SALUF
SSTKP
STKP
MEMERROR
MEMSY NDROME
TIMER
T(CTASK)3
TPC(CTASK)3
CALLEK1.3

1.
2.
3.
4.
5.

4
20
4
20
20
4
4

10
20
4
4
6
6

20
4

10
10
10
20
10
20
20

20

Read-only to Midas
‘Task-specific registers
Fake memories and
Derived from NCIA
Virtual/absolute stuff

Memory

TPC2>’
IM
IMX
RM

MAIN
VMAIN
MAP
DLDR3
BP3

T2

Length

20
loo00
loo00

400
20

??
??

40000
40

100

Width

14
100

44
20
20
20
20
20
42
40

registers, artifacts of stuff inside Midas

applies
Most registers and mcmories listed above correspond to oncs discussed in the DO
Functional Specification (January 16, 1978). The others are discussed below.

the complement of Lhc hardware’s NCIA.

T(CTASK) and ‘TPC(CTASK) show the currcnt task’s T register and TIT. Changing CTASK will
change T(CTASK) and ’l’PC(CI’ASK).

The CALI .El< rccgistcr shows the absolute v;ilue in TPC(C‘TASK)with thc lcast significant bit
forced to bc a mu. Whcn control store addrcsscs arc displaycd in absolute inodc, this is usclcss.
However, in virtual mode CALLXR will usually show thc location that last did a CALL.

TM and IMX arc virtually and absolutcly addcsscd versions of the control store, discusscd later.

VMAIN is thc s;imc memory ;is MAIN but is addrcsscd by the ciirrcnt contcnts of MAP rathcr

79

DO Midas Manual 30 December 1977

than absolutely. In other words, to refcrence MAIN, Midas first loads a Map location with the
absolute page location, then makes the reference. This is not done in referencing VMAIN. As of
this date, the DO did not have a memory system, and so this is not available.

2. TaskmSpecific Registers

Midas treats all task-specific registers (T and TPC) as 20-word memories. In other words, "T 6" is
the T-register for task 6.

In addition, a special kludge allows you to display the 21st word (i.e., "T 20", "TPC 20", etc.) and
have that be interpreted as the registcr for the curre'ently selected fask. The currently selected task
is the value in CTASK.

3. Complications in the Display of Register Values

IMX and IM contain microinstructions, and the 448 bits which are the value of the instruction are
displayed the same way for all of these. A middle-button action over the value will print this
value symbolically on the comment lines.

4. Mow Registers are ReaUWritten

The DO contains no special hardwarc for MIDAS to enable reading or writing any state
information without affccting the microprocessor. To enable MIDAS to control the DO, a special
microprogram (the kcrncl) is loaded into the last page of the control store by midas when it does
a Boot. The kernel uses the DO'S printer interface in conjunction with the Blue Box to connect to
an ALTO'S printer interface. Thc MIIIAS (running in the ALTO) communicates with the kernel
through this hardware, passing commands and data back and forth between the two programs.
When MIIIAS wants to know the contents of a register, its asks the kernel to supply it: similarly,
when MIDAS wants to changc the contcnts of a register, it sends a message to thc kernel with the
address and the contcnts of the affcctcd rcgister. For rcgistcrs which arc part of the machine statc
which the kernel itsclf modifies (CIA, CTASK, A P C APCTASK, CSDATA, etc), thc kernel
maintains copies of tlic hardware rcgistcrs in the R filc. The copies are updatcd whcn the kernel
is entcrcd (via Boot, brcakpoint or other fault). MIDAS manipulatcs the copies, examining and
changing them as necessary. ' When GO or STEP is nceded, the kcrncl loads the harware state
from the copies.

Breakpoints are donc by rcplacing thc instruction with another iiistruction containing the
BREAKPOINT "F". 'Ilic JA ficld of this instruction has thc brcnkpoint number i n it. MIDAS
savcs thc original instruction and rcplaccs it whcti thc brcakpoint is rcached. MlDAS can analyze
an instruction to find is succssor(s). i t will brcakpoint all sucessors of an instruction when
SI'EPing, or procccding from a brcakpoint.

i i

li

DO Midas Manual 30 December 1977

5. Special Keyboard Input Formats

Registers and memories that contain microinstructions (IM and IMX) evaluate a special form of
input as follows: The first character on the input text line should be "('* to change the values of
several fields in the instruction without clobbering other fields, or I",, to reconstruct the value
beginning with a no-op microinstruction. This is followed by a number of clauses of the form
"Fieldcinteger" separated by blanks and/or commas. The legal field names are MEMINST,
RMOD, RSEL, ALUF, BSEL, LR, LT, F1, F2, JC, JA, CSpar and AT.

AT is defined only of IM, it sets the absolute address.

In addition to "fieldcvalue" clauses, Midas interprets RETURN (= JC4-6) and the following
control clauses: GOTO[n], GOTO[ntrue.nfalse,cond], CALL[n], and DISP[n]. The parameters n,
ntrue and nfalse can be an IM (virtual mode) or IMX (absolute mode) address and modify JC and
JA to contain a goto/call/dispatch to the target location. Arguments may be expressions such as
FOO+3, if you like, The address evaluater assumes you are causing PAGE to be loaded
correctly, it only worries about setting up the JA field.

6. STEP and GO

When the microprocessor halts, the values of CTASK and PC are remembercd and used latcr, if
you continue (i.e., execute a "GO" or "STEP" without specifying a starting address).

When you execute a "GO" or "STEP" at a new address, the value in CTASK is the task activated.

Although "GO" and "STEP" appear in the command menu, you will probably discover that it is
faster to type "address;G" to Midas, an alternative to "GO", or "address;S", an alternative to
"STEP". Similarly, ";S" is equivalent to a continue-"STEP" and ";G" to a c0ntinue;"GO". 'I:" is
a synonym for ";S", and ":P" (Proceed) is s synonym for ";G".

7. BREAK and UNBREAK

Thc "BREAK" comrnand inserts a breakpoint in the IM or IMX address typcd on the input text
linc. The original contenst.of thc instruction are saved by MIDAS and replnccd tcwith a special
Breakpoint instruction just before MIDAS starts thc processor. 'l'he BP memory shows you the
status, address and contents of the breakpoints.

The address must be typed--there is no default break address. You will normally find it fastcr to
typc "address;B' to insert a breakpoint.

"UNBREAK" clcars the breakpoint enty in thc l3P table. If no text is typcd, the address defaults
to thc brcakpoitit that causcd the last program halt. You will normally find it faster to type
"addrcss;K" or ";K" to rcmovc a breakpoint.

81

1
I

DO Midas Manual 30 December 1977

8. BOOT

BOOT cause a complete harware restart on the DO. MIDAS causes the DO to go through a boot
proceedure, and then downloads the kernel program. The BOOT command without a file name
loads KERNEL.MB, if a file name is supplied, it is used instead of KERNELMB. When midas
is initially started, it does a BOOT of KERNEL.MB.

9. Acquiring Midas

To acquire Midas, use Ftp to retrieve [Iris] < DO > newmidasdisk.cm or midasdisk.cm (see section
in DO Microprogrammer's manual entitled "Getting Started". After loading, you must do Midas11
to initialize Midas on your disk. The total size of the files retrieved by thesc command files and
those created by Midas/I is about 400 pages-be sure your Alto disk has enough space before
plunging ahead.

10. Midas Maintenance . .

The current sources for Midas are kept on the "DO Midas" disk (maintained by Charnley). .
The various files in < eod>dOmidasrun.dm are used as follows:

Midasmn -240 pages
Midassyms -38 pages
Midas.Programs -2 pages (see below)
* Midas -2 pages each Command files for Run-Prog and Read-Cmds
*.mb Assorted micro-binary files loaded by command files

Midas.Programs contains a list of file names separated by blanks, commas, or carriagc-returns.
The names must be UPPER-CASE. This list serves two purposes. First, file FP's are built for all
of the naincs to speedup OpcnFile. Next, the list of names for thc "Run-Prog" command menu is
built. If the file name contains no extension, then hint FP's will be built for both nainc.MI3 and
namc.MlDAS and name will be put in the "Run-Prog" menu. (However, the hint FPs are not
built unless llie file exists, ilnd the file name will not be put in tlic "Run-Prog" menu unless
namc.MlDAS exists). If the file name contains an extension, then it will be put in the quick
OpenE'ile table, but won't appear in the "Run-Prog" mcnu. If the name ends in "*", a quick
OpcriFile table cntry is madc for namcmidas and the name will appear in thc "Rcad-Cmds"
menu.

Midas creates and uses the following files (+ Swatee):

Midas.State -29 pages Built by Midas/I
MidxFixUps 2 pages Built whcn cxternal fixups occur in .MB files being

Mitias.Errors 2 pages Written when "Compare" fails
loadcd (Currcnt iiiicrocodc never uses this.)

Altogether this is about 400 disk pages.

82

ti

DO SIMULATOR MANUAL

14 December 1977

by

Will Crowther
Robert Garner

Xerox Business Systems
Systems Development Department

3408 Hillview Road
Palo Alto, California 94304

DO Simulator h4anual

1. Introduction

30 December 1977

This manual is based on a 28 October 1977 memo from Will Crowther to the DO Simulator users.
It is unchanged from that memo except for corrections and updates. All questions and problems
concerning the Simulator should be addressed to -at SDD in Palo Alto.

2. Documentation

I” -
,/“&

The user of the simulator must be familiar with three other systems which are documented
elsewhere:

1. The DO Assembler System, documented in this manual;
2. The mesa system, documented on [maxc]<mesa-dw>;
3. The DO Functional Specification;

This manual will assume that the reader knows how a DO works, presumably from rcading the
documentation on the processor. If the reader is unfamiliar with mesa, he is advised to get help
fiom an expert in preparing his starting disk; thereafter mesa can be ignored.

3. Getting Started
To run the simulator you need a disk with the following modules on it:

Mesa.run (renamed runmesamn if using Johnsson’s exec)
Mesa.Image
wmanager.bcd
s.bcd

s.bcd is on [Iris] < DO > s.bcd. Johnsson’s exec is on [Iris] < johnsson > exec.nin. All the other files
can be found on the mesa dircctory on your local file server. It is also helpfhl but not necessary to
have an installcd mesa debugger on the disk. With a debugger, if the system crashes the user gets
some clue about what happened.

To run the kmulator you must start the file s. If using the regular exec type the following (user
types the bold characters, system the normal characters):

mesa
ncw filcname s
start filename ESC

If using Johnsson’s exec (which I recommend) type:

mesa s

Afcr a delay for loading. thc Alto screen coincs alive and is waiting for your instructions. In order
to undcrsland what to do now. you must realize that there are really three quite separate programs
running in thc machine at this instant.

1) ‘here is lhc standard iriesu window packaxe, which is documented with the mesa systcm: it has
complete control of Lhc mouse, and will let you move the window(s) on the screen or crcatc and
destroy new windows. You can scroll any window in thc normal mcsa way.

2) Thcre is a DO siiriulutor, which has a cornplclc simulatcd shlc for H DO (without any VO). The
D O dcsign is documcntcd elsewhere. This simu1;ilor has a fcw fcaturcs wliich lkc real 110 lacks: in
particular, thcrc is a control register which will start thc in;ichitic when soinclhing is written into it.
llcpcnding o n whcthcr a 1,2, or 3 is wriltcn the simulated 110 will ritii for one cyclc, one
instruction, or forevcr (until a brwk is cncounlcred). ‘I’hc 1>0 sitnulator cornmunicalcs wi th the rest
of lhc system tlirough a pair of routincs which read and writc siinulalcd DO incmoi-ics. ‘Ihis is the
only path into the simulator.

83

DO Sitnitlator Manual 30 December 1977

3) There is a ddt, which is a complex teletype-oriented user interface. The ddt accepts one
character user commands, optionally preceded by a single parameter, converts them into commands
to the simulator, and displays some sort of result at their completion. Since the ddt is trying to
present a nice interface, it knows something about the format of DO memory and DO instructions,
and can print the latter in a fairly reasonable way. It is often unnecessary to make a distinction
between the ddt and the simulator, and I will occasionally confuse the two in the following. But
sometimes the distinction is crucial for an understanding of the whole package.

4. Using DDT

You are now in the ddt and able to type ddt commands. The format of almost all commands is a
single optional paramctcr followed by a single command character. The paramctcr is either an octal
number or an alphanumeric string, while the command is either a punctuation charactcr or a control
character (written in this memo as ?X. Note that "?" written by itself signifies the up arrow
command character). The characters "+", "-", "*", and Space arc really command characters, but
their only ef'fect is to help build up a complex parameter from a simple one. Using these commands
one could type mystarti-5 and use it as a parameter. In the use of strings the distinction between
uppercase and lowercase is ignored, so that string, String, and STKING are all the same symbol.

Note that the parameter is specified in ocial. Except for two minor exceptions,-the whole of the ddt
operates in octal mode only, both on input and on output, and there are never any decimal
numbers involved.

5. Load and Dump

The simulator is not of much use without a microcode program to simulate. The simulator will load
the output of the micro/microd microcodc assembly system (a "mb" filc). In addition the simulator
load command expects there to be a source file (a ".mc" file), which it places into a second window
on thc alto display. l'hc relevant ddt command is "namc?L", which loads files nnme.mb and
name.mc. 'I'lie assembler and its input languagc are described elsewhcrc. Usually TL is the very first
command given to thc ddt.

6. Examine and Change

After the load the uscr may wish to cxamine or change some of the memory locations in the
simulated machine. I-ic may cxamiiie a location by typing its address as the paranictcr and "/" as
thc command. 'Ilic addrcss may be specified either as an absolute oolnl nurnbcr or as a symbol
(which prcsurnably came from the .mb filc out of the osscmbler, but sec bclow for a way to define
symbols i n thc ddt). Since here are scveral memories, llic user is cxpcctcd to prcccdc Ihe octal
nurnbcr with ;i singlc letter to indicntc tlic dcsircd mcmory. For cxample, "i23/" would inspect
register 23 of the instruction store. 'I'hc dcfincd memories arc i (instruction), r (rcgistcr), in (main). c
(control = dO hardware rcgistcrs), and z (map). If the siiiglc letter is oinittcd i t def:,rulki to whatevcr
the prcvious mcmory was.

Normally the contciits will print out in octal, but for thc i mcmory th;it is not much use, so the i
printout ;ittempts to intcrprct UIC iriotrtiction sytnbolicillly. For thc most part this is possible, but

84

DO Simulator Manual 30 December 1977

sometimes the meaning of an instruction depends on the context in which it occurs. One will
frequently see a goto 45 intergreted as a U+T, goto 45. Here the ddt is not smart enough to realize
that the assembler specifies a T source for the alu and no store back when there is nothing else to
do. (Of course the very next instruction might test the alu, so one cannot know for sure that this is
a null operation). Typical instruction printouts are:

i300/ bbfbx,R64db+R64db SALUF T Dispatch BB
i301/ T+ldqpos=4,size=6] of CSData goto 111
ill11 Pstorel[R20]+R4 goto 130
i130/ freezeResult, T+R4+R4-T Return
i131/ t+pcf AND -T Call Loop

There are other ways to inspect memory. One can type linefeed(LF) to inspect the ncxt location,
and "t" to inspect the previous. One can type TAB to inspect the location specificd as the
destination in the previous instruction printout (but watch out for Call, Return, and Dispatch, which
may not do what you expect - the ddt is only looking at memory, not executing it). TAB is the most
usehl way of examining instruction memory.

One can change memory. This is particularly usefUl for setting up test cascs during a debugging
session. The method is to examine the desired memory location by any of the methods described
above, and then to type a new contents followcd by a carriage rcturn (CR). For example, "r15/123
456 CR" will change r memory location 15 from 123 to 456. LF, t, and 'TAB will work just as
CR, and in addition will go on to inspect a new location.

To change the instruction memory, first disblay its contents as you normally would (such as with
"/") then type "-" and the intstruction will be typed out by labcled fields, with each field given as
an octal number. Then, to change any field, type "field+valucCR", where "field" is a field name
and "value" is the new octal value for thc field. The new i mcmory value must be opened by "/"
again before 'I-" will type the new field value. One can also change the i memory by typing in a
16 digit octal number (yes, the input is triple prccision), but in practice that is too painhl to
attcmpt.

7. Simulator Execution

Evcntually one tires of looking at the program and dccidcs to run the simulator on it. llie easiest
way to do this is to typc the start address followed by rG. If you are just learning the simulator I
do not recommend this way, but if you use it, the simulator will exccutc instructions as tlic program
directs until one of thrce things happens:

1) a brcakpoitit is cticountcrcd. You may sct breakpoints in Ihc file loaded from the asscmblcr, or
you may set ~ I ~ C I T I by typing address Ct1 13. 'Ihe simulator will stop with the brcakpoint instruction
about to be exccutcd.

Anothcr way to run thc simulator is to type "addrcssrS". This will primc tlic simulator to start at
the specified address, but will actually cxccutc nothing. Anolhcr rS without ;I pmmctcr will stcp
the simulator forward otic instruction. in this way otic can stcp tlic program forward one instniction
at a timc. 1 rccommcnd this mode whcn first learning the simulator.

2) one of many illcgnl instructions is encountered.
3) you type ;I backspace (11s).

DO Simulator Manual 30 December 1977

When the simulator stops execution and returns to the ddt, all of the active registers of the
siniulated DO are accessible, as well as all of the memories described before. One can type t/ or
apc/ and see what is currently in these registers. One can even change these registers in mid stride.
At each return to ddt, two especially usefid registers are automatically printed. These are the register
holding the address of the next instruction to be executed, and the MIR which holds the instruction
itself.

I want to tell you at what part of its cycle the simulated DO stops, for that is vitally important for
understanding what the various registers mean. In order to do that I must explain a little bit about
how the simulator treats time. The answer will sort of turn out to bc that the DO has stopped just
after the start of cycle zero of the machine, so that all of the rcgisters which are loadcd'at time zero
have actually been loaded, but none of the gates which hang off of those registers have yet started
to change.

At the beginning of every cycle the simulator starts with a record which contains the complete state
of the DO. This record contains things like h l and cia and apc. It first executes a set of procedures
whose job is to compute various gating functions from that record. For example, the actual r
address specified and the output of the cycle/rnasker. It next executes another set of procedures
whose job is to compute a new record which will be the state of the machine at the start of the next
cycle. This new record is kept completely separate from the old one until the very end of the
simulated cycle. Finally, the new record is copied into the old one (with due care for the abort
case), and the cycle repeats. When the machine stops, the copy over has riot happened, but the ddt
is looking at the new registers. Normally thc simulator stops at thc end of cycle 3, but because the
ddt is looking at the iiew rcgister it scems that it is the beginning of cycle 0. Actually, since an abort
can prevent the normal loading of some of the registers, one must take care when intcrpreting the
ddt output. 'Ilhe ddt is willing to display not only the contents of the new state rccord, but also any
of the gating functions which seem to be of interest. There are approximately 60 valucs which can
be examincd in this way.

One of the entries in the state record is a 2 bit counter (called Cycle) which cycles through the four
stages of thc instruction being executed. Cycle is used to set one of four corresponding booleans
called limc0, timel, time2, and time3. Tlie booleans iii turn are used to decide whether a particular
part of the simulator logic should execute. Thus aflcr four passes through the main loop of the
simulator one instruction will be complctcly executed. To miinic the 110 overlap, the simulator scts
another of the time booleans on each pass. This will force [he execution of logic corresponding to
the appropiatc cycle of the ovcrlapped instruction, and bccause of tlic nature of the 110 design the
two cycles will not conflict. 13ut the simulator will work equally well if the overlap is not called for,
which nicans that it is easy to run tlie DO simulator in a non-overlapped mode. 'I'hc valuc of such a
mode is in the dcbugging (if microcodc: it is much easier 10 understand what is going on if you
have all of the variables rclcvant to tlie current instruction a t hand, instcad of sccing half of them as
thcy have been stepped on by thc iicxt instruction. Ilicre is a control register (cl = "overlap")
which can be sct to zcro for overlapped modc and one for nonovcrlapped. The default is
nonoverlapped.

I recommcndcd Lhe single stcp modc for the initial cxpcrience with thc simulator bccnusc I found
the various rcgistcrs did not always have the values I cxpectcd, evcii when the siinulator was
working corrcclly. With thc single stcp inode one is at least confidcnt whcrc Ihc program has
stopped and by what parli it got tlicrc. One final cautiori: the niain mcmory is of course
asynchroiious, and the rcsull docs not always show up iintil scvcral instruclions have bccn executed.
If you stop jus t atler computing your final answer. you may nevcr gcl to see it! Also, Ihc mcmory
does not slow down during nonoverlap modc, so mcmory operations will h;ippcii sooncr than thcy
would during ovcrlap aiotlc (with respect to the rest of thc projiriiln).

86

DO Sirniulator Manual 30 December 1977

By empirically timing some programs, it seems that the simulator runs approximately 25,000 times
slower than a real 70 nanosecond DO. In other words, one second of DO time is equivalent to
approximately 7 hours of simulator time. In general the simulator will mn twice as slow if in
nonoverlap mode.

8. Command Strings
I

The user has the ability to enter a string (called a command string) for the ddt to remember. He can
later specify that the ddt execute the whole string as though it had been typed from Qe keyboard.
A typical string might single stcp the simulator and print out several registers for the user to
examine. 'The ddt has storage for four such strings, labeled 0,1,2,and 3. Thc syntax for comninnd
string cntry is "labelrZcommnnd stringrZ", where "label" is the string label, and "commandstring"
is a list of ddt commands with arguments written as they would normally be entered into ddt. 'The
syntax for executing the command string is "label ESC". An ESC with no label repeats the last
command string. A r Z with no label implies string 0.

It is also possible to read into ddt a string which resides in a file. Type '.'name?F" and the
commands in file "name" will be executed by ddt. They can also be loaded into a command string
by typing "name?F" immediately after the first r Z used to set up the string (i.e. "labelrZ
name? Fr Z").

9. DDT Commands

Thc rest of this manual lists and describes each of the ddt commands, including all those mentioncd
above plus a fcw other less uscd ones. Following the ddt commands is a list of the simulator
mcmories, with spccial emphasis on the 64 siinulator control registers.

editing:
DEL, BS ,?A abort thc current command
CR with no paramctcr moves the carrot

mcmloc/
value CK
value >
valucLF
valuer
valueTAB
field+ valueCK

inspect and change(c1~nnge only if explicit paratncter):
display contcnts of location "loc" of mcmory "mem"
chanac contents to "value" Ox., m20/123 456CR) -
same ;IS CK (for wasting less display space)
change and inspect ncxt location
change and inspect prcvious location
changc and inspect jutnp addrcss of displilyed inst
changc field of' last displayed thing

building parametcrs: +
*
Space

lo;id/dump:
namerL
namerD

plus (i.e., m20+30/)
minus
timcs
plus

Load
Dump [hasn't worked sincc 36 bit D O change]

8 7

DO Simulator Manual

DO control:
addressTG
address? S
address?B
addressre
numrW
TO
?N
BS

ddt control:
TQ
? - -
CI

1abelrZ
label ESC
1abelrT
nameTF
7R
name: valueCR

30 December 1977

run DO (Go)
Step DO
set Breakpoint
Clear breakpoint
set task number (W stands for Wakeup task)
put the simulator in Overlap mode (like the DO)
put the simulator in Nonoverlap mode
halt a running simulator

exit ddt (Quit) (Shift swat is faster)
type list of ddt commands
type the last thing in octal
type the last displayed thing in instruction format
enter a command string terminated by .another ?Z
play the command string through the ddt
type out command string "label"
play the command string from file "file'@
type out all the R memory symbols with their values
define symbol "name" to have value "value"

10. The Simulator Memories

i memory: 4K 48-bit words
1) only 36 bits are used.
2) the parity bit holds breakpoint information. IF YOU USE THE PARITY BIT FOR

3) the simulator keeps i memory on the disk, and caches two 256 word pages in core.
DATA, BEWARE - CLEAR ALL, BREAKS WILL CLEAR IT.

m memory: 2K 16-bit words

r memory: 256 16-bit words

z memory: 8 16-bit words
nominally 16K of 13 bit words pointing from virtual to real addresses. Actually 8 words
pointing from real to virtual addresses. Searching the 8 words slows the simulator down a
little, .but not as much as keeping the z memory on disk.

t memory: 16 16-bit words

c memory: 64 48-bit words

only t[ctask] can be read and written by the ddt.

1) most of these addresses have only 16 bits of memory behind them, but a couple have
more.
2) most of these addrcsscs arc implcincntcd by a table of pointers to various structures in
the simulator data region. In particular, there arc ;I lot of pointers into the output version of
the state vector, and a lot into thc computed gating functions.

10.1. Thc C Memory in l~cltlil

'Ihe following list gives the c address, followcd by the ddt symbol for that address, followed by a
brief description of the segistcr. 'I'herc is no longer any nicthod behind the ordering of these
scgistcrs.

Note: If you usc the following c iticmory mmcs as symbols i n your microasscmbly SOLI~CC (such as

DO Simulator Manual 30 December 1977

by the SET,MP,SP,MC,RM, or RV macros) then the c memory value defined below will be
overwritten by your source. code values.

COO none: write 1-3 issues command to the simulator:
1=> run (TG)
2= > step (?S)
3= > single cycle

cO1 overlap: zero = overlap mode(rO), 1 = non overlap mode (rN)
c02 pc: DO Register (i mem Program Counter)
c03 break: set break (rB)
c04 clearBreak: clear break (rC)
c05 clear: . write 1-3 issues command to the simulator:

1= > clear i,m,r,z,t, and tpc memories
2= > clear all breakpoints
3= > clear output state record (DO’S Registers)

c06 stkp: DO Register (STacK Pointer)
c07 pcf:
c10 cycleCtl: DO Register (CYCLE Control = dbx2..5,,mwx)
c l l sstkp:
c12 sb: DO Register (Source Bit)
c13 t: DO Register (Task temporary[ctask])
c14 hl:
c15 h2:
c16 stack: RMemory[stkp]
c17 aha: asynchronous A input of ALU
c20 alu: asynchronous ouput of ALU
c21 mpanel: DO Register (Maintance PANEL - decimal output)
c22 mir: DO Register (Micro Instruction Register)
c23 rselGates: asynchronous R Address computed from mir
c24 jumpGates: asynchronous jump Address computed from mir
c25 cycle: the value of Cycle for the cycle last executed
c26 apc: DO Register (Alternate Program Counter)
c27 flags: a set of bits indicating control conditions:

DO Register (mesa Program Counter Fetching)

DO Register (Saved STACK pointer)

DO Register (cyclerlmasker input)
DO Register (ALUb input)

1 = > abort
40= > steal

100= > r write back
200= > t writc back
400= > time3

1000 = > dispatch
2000 = > freezeResult

c30 ctask: DO Register (Current TASK)
c31 mw: asynchronous hnction of sb,db, and mnbr
c32 db: DO Register (Destination Bit)
c33 pcx:
c34 rs232: DO Register
c35 printer: DO Register
c36: unused
c37 saluf: DO Register (Special AL,U Function)
c40 mnbr: DO Register (Minus Number of Bits Remaining)
c41 page: DO Register
c42 cia,ncxt: DO Rcgistcr (Current Instruction Address)
c43 tpc:
c44 conds: a set of booleans related to skip conditions:

DO Register (mesa Progrmn Counter executed)

DO Register (‘Risk Program Countcr[ctask])

1 = > attention
2= > r neg
4 = > r odd

89

--
I I

DO Simulator Manual

1 0 = > a carry
20= > a neg
40= > a zero

100 = > overflow
c45 apctask: DO Register
c46 : mc2 real memory page
c47: mc2 virtual memory quad word rounded address
c50: mc2 type
c51: mc2 r address
c52 mc2going: mc2 has been going for this many cycles
c53: mcl real memory page
c54: mcl virtual memory quad word rounded address
c55: mcl type
c56: mcl r address
c57 mclgoing: mcl has been going for this many cycles
c60: unused
c61 clock: number of cycles executed (decimal output)
c62: unused
c63 csData: DO Register (Control Store DATA)
c64 csin: DO Register (Control Store INput)
c65 csinfitend:
c66 sbx: DO Register (Source Bit executing)
c67 dbx: DO Register (Destination Bit executing)
c70 mwx:
c71 nextm7: address of instruction executed 7 insts ago
c72 nextm6: address of instruction executed 6 insts ago
c73 nextm5: address of instruction executed 5 insts ago
c74 nextm4: address of instruction executed 4 insts ago
c75 nextm3: address of instruction executed 3 insts ago
c76 nextm2: address of instruction exccutcd 2 insts ago
c77 nextml: address of instruction executed last

DO Register (Control Store INput EXTENDed)

DO Register (Minimum Width executing)

90

30 December 1977

1

,J I

I I
I ____.- I

-I-

	D0 Microassembler Manual
	MICRO Machine-Independent MicroAssembler
	MicroD Manual
	D0 Microprogrammer's Guide
	Midas Manual
	D0 Midas Manual
	D0 Simulator Manual

