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Introduction 

This document describes the interior architecture of the OIS System Element 
Digital Processor. It includes a description of the virtual storage system, the 
instruction set, and the input-output facilities. 

It is required that all System Element Digital Processors implemented for OIS be 
compatible with this architecture. This will allow common software systems to be 
constructed which will operate on all members of the family, as well as providing 
for a common input-output interface. It will also allow reimplementation of the 
processor to occur when it is economically advantageous. 

This document does not specify an implementation for any instance of the OIS 
processor; It does specify those principles which must be adhered to to 
guarantee software compatibility at the instruction set level, and input-output 
compatibility at the level of the devices. 

This document will be modified from time to time, as implementation of the initial 
instances of the OIS processor family occurs, and the Mesa language 
implementation is refined. We expect to stabilize both the architecture and this 
document in early 1977, so that final product development may proceed without 
significant impact from them. 
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Information Forms and Syntactic Conventions 

Throughout this document, a number of conventions are used, which are described 
in this section. 

Number system 

Numeric quantities are expressed in decimal unless otherwise specified. The 
suffix B is used to indicate octal. 

* is used to indicate multiplication, •• is used to indicate exponentiation: 

5D3 = 5000 " 5'10"3 
385 = 3000008 = 3·8"5 

For large multiples of a power of 2, K is used to designate 2·"10, and M is used to 
designated 2· *20: 

32K = 32°2 •• 10 = 2··15 " 32768, 
1 M = 1°200 20 = 2 00 20 " 1048576 

Special Characters 

<x> means "contents of x". 

Square brackets [ ] are used to indicate indexing or to delimit the arguments of a 
function: 

x[3] " <x+3> means the contents of Ication x+3, Le. the third element of the vector x 
hf[2] means the value returned by the function hf with argument 2. 

Double commas are used to indicate the concatenation of two fields. If x is a 3-bit 
field and y is a 5-bit field, then x"y is an eight-bit field with x in its high order bits. 

Terms 

a word is a sixteen bit quantity. Bit 0 is the most significant bit, bit 15 is the least 
significant bit. When diagrammed, bit 0 is on the left. 

A doubleword is a thirty-two bit quantity, with bits numbered from 0 to 31. In main 
storage, the least significant bits (16-31) of a doubleword are stored in location n, 
the most significant bits (0-15) are stored in location n+ 1. When a doubleword 
appears on the evaluation stack, the most significant bits are on the top of the 
stack, the least significant bits are in the second position. 

A byte is an eight bit quantity. Bit 0 is th~ most significant bit, bit 7 is the least 
significant bit. When diagrammed, bit 0 i5 on the left. 

A field is a contiguous group .of bits within a word or larger field. The bits are 
numbered from the left starting at O. For example, the field consisting of the least 
significant byte of x is indicated with x[8:15]. If the field is named, the contruct 
p.f, where p is the address of the word containing the field and f is the field name, 
is sometimes used to represent the value of the field. 
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A pOinter is the address (or displacement from a designated base address) of the 
first location of a contiguous region of virtual memory. There are a number of 
different formats for pOinters which are described below. 

A page is a contiguous block of 256 16-bit words. the first word of which begins 
at an address which equals 0 mod 256. 

A Procedure is a body of code which performs a single function. 

A Code Segment is a collection of procedures which are compiled together. 

A Process is a group of operations and the data on which they operate which can 
(at least conceptually) execute in parallel with other processes. A process is 
defined by the contents of memory and by a state block which is loaded into the 
processor registers when the process is run. All processes supported by the OIS 
processor share a common virtual address space. 

A Main Data Space (MOS) is a contiguous region of virtual memory associated 
with one or more processes. It has a maximum size of 64K words, and wili be 
described in detail in subsequent sections.· By hardware convention it always 
begins on a page boundary, hence its address is always 0 mod 256. MOS will be 
used as the abbreviation for Main Data Space, mds as the designator of the 
register which points to MOS. and mds pointer as defined below. 
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Virtual Storage, 

Introduction 

All implementations of the OIS Processor will provide a virtual memory system 
(VMS) which supports a linear virtual address space of 2··24 sixteen-bit words. 
This will allow the development of complex software systems which are, to a large 
extent, configuration-independent. 

The virtual memory system has several purposes: 

It provides address translation between virtual addresses generated by a 
program and real memory addresses used by the memory hardware. 

It provides dynamic relocation of information so that objects need not 
occupy fixed locations in main storage throughout their existence, but may 
be moved between secondary storage and any unoccupied area of main 
storage as required. 

It provides protection for areas of the address space. Although many of 
the protection mechanisms normally provided by hardware are provided in 
the OIS environment by the Mesa compiler's type checking machinery, 
some degree of protection in the hardware is desirable, primarily to detect 
errors rather than to defend against hostile action. 

There are four primary components of the virtual memory system: First, there 
must be hardware and/or firmware to do the address translation. Second, there 
must be storage for the translation information. Third, there must be a secondary 
storage device which holds the majority of the information contained in the virtual 
space. Finally, there is a body of software, usually associated with the operating 
system, which is responsible for transferring information between main and 
secondary storage. 

Mesa's Use of the'Virtual Memory System 

The OIS processor instruction set has been designed for efficient execution of the 
Mesa language, which will be used for all OIS programming. A primary Mesa 
design goal was to provide a space-efficient representation for code. As a result, 
a large fraction of the memory reference instructions make use of implicit or 
explicit base registers which point to frequently referenced structures. Thus, the 
amount of address information required in an instruction is small. In addition, 
several commonly referenced structures are constrained to begin on (256 word) 
page boundaries in memory, and can thus be represented by sixteen-bit pointers 
rather than full addresses. 

Although the instruction set makes use of a number of formats for addresses, all 
are short forms of a full 24-bit virtual address. There is no method spe~ified to 
bypass the address translation process and directly reference a real main storage 
location. 
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Address Translation 

The address translation process is identical for all memory references, i.e. for 
instructions, operands, and 1/0 operations. 

The CPU generates a 24-bit virtual address, usually by adding one or more offsets 
to an implicit or explicit base register. The generation of this effective virtual 
address is described later in this document for each instruction. 

The 24-bit address is then passed to the address translation hardware, which will 
attempt to translate it into a real storage address. If the translation is successful, 
and if no access protection checks are violated, the reference is made and 
execution continues. If a protection violation occurs, the memory management 
software will be notified via a trap, and the offending instruction will not be 
ex-ecuted. 

Since all operations are implemented such that they can be restarted if a memory 
fault occurs, the memory manager can Simply bring the required information into 
main storage and restart the offending instruction. The interface between the 
translation hardware/firmware and the memory management software is thus 
reduced to two traps, Page Fault and Write Protect, and the Mesa instructions 
required to manipulate the map. 

All implementations of the processor must provide a virtual address space of not 
less than 22 bits, and there must be a mechanism (described later) to report the 
maximum size of the virtual space in a particular model to the software, as well as 
a provIsion for causing a PageFault trap on any attempt to reference locations 
outside the virtual space provided. 

Translation between virtual addresses generated by the processor or I/O system 
and real addresses used by the memory is done by a map implemented in 
hardware. The map accepts a 24-bit virtual address from the requester, and 
delivers a real address to the storage modules. The real address is from 18 to 20 
bits, depending on the amount of real storage provided in the particular model. 
Mapping takes place in one page (256 word) quanta, i.e. the least significant eight 
bits of the virtual address bypass the mapping hardware. 

In addition to the information necessary for address translation, the map also 
contains three bits. Dirty, Write Protected, and Referenced, which provide the 
memory management software with information about each page. The Dirty bit is 
set by the mapping hardware when a store is done to a non-write protected page. 
The Write Protect bit prohibits stores into a particular page, and reports an error if 
a store is attempted. The Referenced bit is set when any access is made to a 
page. 
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Requests 

The memory system is capable of accepting four types of requests: I/O fetches, 
I/O stores, Processor fetches, and Processor stores. Error conditions arising from 
these requests are reported to the requester in one of two ways. If the request 
came from an I/O device controller, the controller is notified that an error 
occurred, and the reference is not done. ,;t~e controller will take whatever action 
is required (usually halting the data tra~f), and will report the error to the 
processor in its next status report. Jf/the error arose as a result of a Mesa 
instruction or operand reference ~~a' trap will be generated. The trap parameter 
for all memory-related traps is the 16-bit virtual page number. 

When a request is received by the memory system, the address is range checked 
(in configurations providing less than 24 bits of virtual space), then sent to the 
map. The following table shows the possible outcomes for a request based on its 
type and the original state of the flag bits. 

Map flag bits: Request Type I Result (W,D,Ref): 

(W,D,Ref) Processor Processor 110 1/0 
Fetch Store Felch Store 

000 001 011 00 1 o 1 1 
001 001 o 1 00 1 0 1 1 
010 011 o 1 011 0 1 1 
011 011 011 011 0 1 1 
100 101 1 0 0 (1) 101 1 0 0 (2) 
101 101 1 0 1 (1) 101 0 1 (2) 
1 1 X (3) 1 1 X (4) 1 1 X (4) 1 1 X (5) 1 X (5) 

(1) Inhibit the store. Cause the WriteProtect trap. 
(2) Inhibit the store. Return violation to the 110 controller, which reports it in its status. 
(3) This state means vacant. i,e. the requested virtual page is not in real memory. 
(4) Page is not In real memory, cause PageFaurt trap. 
(5) Page is not in real memory. Return violation to 1/0 controller, which reports iI in its status. 

Operations on the Map 

The processor will provide two operations for dealing with the map (as Mesa 
instructions). In what follows, v is a 16-bit virtual page number, r is a 12-bit real 
page number, and f is the 3-bit flag value: 

'V'). 
Associate[r.v.f] Makes a correspondence in the map between real page r and virtual page 
v, and sets the flag bits in the map entry to f, 

SetFlags(v.f) Sets the flag bits associated with the map entry for virtual page v to t, and 
returns the old value 01 the flags. If the entry for v is not in the map or is not currently 
associaled with a real page. the operat.on returns vacant (old flags = 6). The operation 
consisting of reading the old flags and setting the new value must be indivisible. 

The software mLlst not attempt to map two different pages in the virtual space into 
the same real page {restriction imposed by associative implementations}. 
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Mapping Examples 

To bring virtual page v into main storage, the software will do: 

Obtain a free real page, say page r. . 

Associate[m,r,O] -- Map r into a virtual page m known only to the memory manager. This 
'hides' the page from all software other than the memory manager during the time the page 
is being read in from the disk. 

Read the page from the disk into m. 

Associate[m,r,vacant] -- Remove the page from m. 

Associate[v.r,new flags] --Make the page available to the requester. 

To remove a virtual page v from real page r, the software will do: 

OldFlags ... SetFlags[ v,r,WriteProtected] 

if OldFlags.dirty then WritePage[ ... ] -- If the page was dirty, write it to the disk. Since the 
page is now write protected, no stores into the page are possible during the write. 

SetFlags[v,vacant] -- Release the page 

The software will require one or more auxiliary tables which contain information 
about the allocation and state of virtual and real storage. These structures need 
not be known to the hardware in any manner. 
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Pointer Formats 

All addresses generated by the processor are 24-bit virtual addresses. These 
addresses are stored in a variety of ways, and specific terms are used to describe 
each format. This section describes the various pointer formats and the terms 
used for them. This information is also shown schematically in figure 1. 

A 24-bit pointer is a doubleword which contains the 24-bit virtual address 
in bits 8-31. Bits 0-7 are zero. 

A page pointer is the most significant sixteen bits of a 24-bit. virtual 
address. Page pointers are stored in a single word. 

The OIS processor supports a number of processes, each of which has 
associated with it a Main Data Space. The MOS is a 64K word (maximum) 
region of the virtual space which is pointed to by the register md.s. Note 
that although each process has only one MOS, a number of processes may 
share a particular MOS. Since an MOS is constrained to begin on a page 
boundary by hardware convention, mds contains a page painter. Since 
many operations make use of 16-bit displacements which are added to mds 
to form a full 24-bit virtual address, we will make use of the term mds 
pointer to d!escribe such a displacement. There is nothing unique about an 
mds pointer - the term is used solely for brevity to indicate. that the pointer 
is a 16-bit displacement relative to the page pointer content of mds. 

A 32-bit pointer is a doubleword containing a page pointer in bits 0-15, and 
a word displacement relative to the start of the page in bits 16-31. 

The term long pointer is used when an operation will accept either a 24-bit 
or a 32-bit pointer. To allow the pointer type to be determined from its 
value, the convention is used that no object which may be described by a 
32-bit pointer will be placed in the first 64K of the virtual space. Thus, if 
bits 0-7 of a long painter are zero, the pointer is a 24-bit pointer, 
otherwise it is a 32-bit pointer. 
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Centra) Processor 

Data Structures and Associated Registers 

The Mesa languagle makes use of a number of structures with defined formats 
which are known both to the control transfer instructions (hardware) and to the 
compiler. The location of a number'of these structures relative to the beginning of 
MDS or relative to the beginning of virtual memory are given by constants whose 
values are giv~n in Appendix A (in most cases, the precise values of these 
constants have not been determined at present. Where this is the case, 
approximate values are given and the approximation is indicated). These 
structures are shown in figure 2, and include: 

Code Segments (C Register) 

A code segment contains the instructions for a group of procedures which were 
compiled as a unit (a module), plus an entry vector which contains the information 
necessary to find the code associated with each procedure in the module and to 
allocate a local frame of the appropriate size for the procedure. The register C 
contains a 24-bit pointer to the base of the' currently active code segment. 

In most cases, the information required to find the code associated with a 
procedure (the entry vector item) occupies a single word in the entry vector: 

bit 0: 0 
bits 1 :4: Frame size index 
bits 5:15: C~relative byte pointer 10 the code for this entry 

In this case, the frame size index must be such that it can be represented in four 
bits, the code must lie within 2048 bytes of the base of the code segment, and the 
pro~dure must not have any defaulted parameters. If this is not the case, the 
entry vector item has a different format: 

bit 0: 1 
bits 1: 15: C~relative word pointer to the code for lhis entry 

For this format, the code must lie within 32K words of the base of the code 
segment, and the code must start on an even byte. The remaining information 
required to run the code is contained in the word which precedes the code itself: 

bits 0:3: Information for defaulting parameters (meChanism unspecified as yell· 
bits 4:15: Frame size index. This number is either the frame size index or the size of the 
frame (in words) if fsi>MaxAllocSlot~1 (see "Frame Allocation") 

Since the code painter (the initial PC) is a byte pointer, and is held in a 16-bit 
word the maximum size of a code segment is 2·"16 :: 65536 bytes or 32768 
words. Further, since the code segment ·is pointed to by a 24-bit pointer it is 
generally (by software convention) disjoint from all Main Data Spaces. The 
maximum size of a frame is limited by this mechanism to 4096 words. 

By software convention, code segments are read-only, and are modified only by 
the Mesa debugger's breakpoint machinery. 
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Global frames (G Register) 

A global frame is a designated area in MDS. It contains a 24-bit pointer to a code 
segment, and contains all global variables and external linkage information required 
by an instance of that code segment. The register G contains an mds pointer to 
the currently active global frame. 

Global frames are created each time that an instance of a module is required. This 
may occur dynamically at runtime, but usually will be done only when a number of 
modules are bound into a functional configuration. There may thus be more than 
one global frame per code segment. 

Local Frames (L Register) 

A local frame is a designated area in MDS. It contains all the local state for a 
procedure. It is created when a procedure is called, and destroyed (usually) when 
the procedure returns control to its caller. The register L contains an mds pointer 
to the currently active local frame. The local frame contains all the information 
required to continue execution of a procedure whose execution was suspended 
(when, for example, it calls another procedure). 

System Dispatch (sd) 

The system dispatch table occupies the same designated area in every MDS. The 
constant sd specifies the offset (in all main data spaces) of the system dispatch 
table. The system dispatch table contains control links for commonly used runtime 
procedures, and is used only by the KFCB instruction and by traps. 

Global Frame Table (gft) 

The global frame table occupies the same designated area in every MDS. The 
constant gft specifies the offset (in all main data spaces) of the global frame table. 
Each entry in the global frame table is an mds pointer to a global frame (G). The 
global frame table is accessed by using the GFT index portion of a standard 
procedure descriptor (see "Control Links"). 

Allocation Vector (av) 

The allocation vector occupies the same .designated area in every MDS. The 
constant av specifies the offset (in all main data spaces) of the allocation vector. 
The allocation vector is used primarily for dynamic allocation of local frames. A 
pool of frames of the most frequently used sizes is maintained by the software. 
This pool is accessed via the allocation vector av, each entry of which is the head 
of a list of frames of a fixed size. The frame size index in the entry vector of a 
code segment provides an index into the allocation vector which is used to locate 
a frame of the required size when a procedure is entered. The frar:ne itself 
contains this index as well, so that it can be retllrned to the appropriate list when 
the procedure returns. There is a mechanism for indirection which allows the last 
frame in a list to point to the list for some larger frame" size (see "Frame 
Allocation"). An attempt to allocate a frame" from a totally empty list results in a 
trap. 
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The Processor Stack 

Many of the roles normally filled by central registers or accumulators in some 
machines are filled in the OIS processor by the processor stack. This stack is an 
array of sixteen-bit registers accessed indirectly via a pOinter register stkp. 

The precise number of registers in the stack has not yet been detemined. In this 
document, the parameter stkmax is used to designate this value. 

The registers comprising the stack are designated stk[ 1] through stk[ stkmax]. 
The instruction set makes use of two prmitive operations, push and pop, which 
write and read 16-bit words to the stack register addressed by stkp. In the 
instruction descriptions which follow, push[x] means: 

stkp +- stkp+ 1 
stk[stkp] t- x 

Pop[x] means: 

x .. stk[stkp] 
stkp ... stkp-1 

The stack pointer points to the highest numbered occupied stack location (the 'top 
of stack'). The stack is empty if stkp=O, full if stkp = stkmax+1. Although the Mesa 
compiler normally keeps track of the depth of the stack and will not compile 
operations which underflow or overflow it, a trap is provided by the hardware to 
detect an attempt to cause underflow (pop when stkp=O) or overflow (push when 
stkp=stkmax+ 1 ). If this is attempted, the trap StackError is generated, and the 
stack pOinter is not modified. 

In addition to the push and pop operations, some instructions need to be able to 
modify the stack poi1nter without affecting the values on the stack, others need to 
be able to address locations in the stack relative to the stack pOinter {note that 
implementation constraints are likely to preclude the latter capability. The 
capability is a logical requirement, and need not be implemented in precisely this 
way}. 

The stack is used for expression evaluation and for passing arguments to 
procedures. The load instructions push words from memory onto the stack, the 
store instructions pop the stack into memory. The conditional jump instructions 
pop the top one or two items from stack, test them in various ways, and branch 
based on the result of the test. The arithmetic operations pop their operands from 
the stack, calculate a result, and push it onto the stack. 

Some operations leave infrequently used results 'above the stack', i.e. in stack 
locations beyond the one pointed to by ·stkp. A Mesa instruction (Push) is 
provided to recover these quantities, if required. by incrementing stkp. Another 
instruction (Pop) is provided. to discard the top element of the stack by 
decrementing stkp. 
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The Machine State 

The OIS processor supports a total of sixteen hardware-scheduled Mesa 
processes. The structure of the process switching system which controls the 
selection of the currently active process is desribed in a later section of this 
document. Each of these hardware-scheduled processes has a main data space 
of up to 64K words which contains. the local storage for the process, as well as 
the tables described earlier. The state for a hardware-scheduled process is 
accessed via an entry in the 16 word Process State Vector. The process state 
vector must begin on a page boundary. The constant psv is a page pointer to the 
process state vector. Each entry in the psv is the (16-bit) psv-relative 
displacement of a state block containing the state of the process. Each of the 
state blocks contains the following quantities, which are sufficient to completely 
specify the process: 

stkp: The evaluation stack pointer (right justified in the word) 

stk[1]. stk[2] •...• stk[stkmax): The stack itself 

dest: A control link (usually a local frame pointer). which is used by the processor to 
obtain all the portions of the process state which are kept in machine registers while the 
process is running. The quantities which are located, either directly or indirectly. from dest 
are: 

G: Pointer to the current global frame (an mds pointer) 

c: Pointer to the current code segment (a 24-bit pointer) 

pc: The program counter (a byte displacement relative to C) 

L: A pointer to the current local frame (an mds pointer) 

The precise manner in which these quantities are located from dest is described 
under "Process Switching", 

mds: A page pointer to the main data space of the process 
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Instruction Formats and Classes 

The Mesa instruction set is divided into four principal classes: 

Loads and stores 
Data modification instructions 
Jumps 
Control transfers 

. . 
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Instructions are from one to three bytes in length; the opcode is always the first 
byte. The second and third bytes, if used, are designated a and f1 respectively. In 
situations in which both a and f1 are used as a 16-bit quantity, the designation afJ 
is used. 

Currently, the instruction set contains more than 256 opcodes. The intent is to 
reserve a single opcode for an OPERATE instruction, and encode a number of 
infrequently used opcodes into the a byte of this instruction. This will yield a 
total of 511 opcodes, not all of which will be used. If the processor attempts to 
execute an unimplemented opcode, the trap Un!mplementedlnstruction is generated. 

In the description of the instructions, the format used is: 

Instruction Name 
Mnemonic (length in bytes): 

description of the instruction's effects. 

L.G,and C refer to the values of the L,G, and C registers. 

The octal opcodes of all instructions are summarized in Appendix A. 

The pseudo-language used to describe the effects of instructions is provided for 
precision, and is not intended to suggest actual implementation, although the 
sequence in which the atomic operations which comprise instructions are 
executed is often important. A number of temporary values (e.g. temp,pointer,data) 
are used in the descriptions. 
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Load/Store Instructions 

These instructions transfer data between the evaluation stack and one or more 
locations in main storage. Instructions are provided for accessing partial words, 
full words, and doublewords. 

The final effective address of all load/store instructions is a 24-bit virtual 
address. It is the responsibility of the virtual storage system to translate this 
virtual address into a real address, verify that the location referenced is present in 
main storage, and apply the appropriate protection checks. These translation 
operations are not described in detail in the descriptions of the instructions. 

Many of the instructions are optimized to access the main data space using a 
16-bit mds pointer rather than a full 24-bit address. This is indicated explicitly in 
the instruction descriptions by including mds in the effective address calculation. 
When used in this way, mds is to be interpreted as a 24-bit value consisting of the 
page pointer followed by eight zeroes. 

When an instruction makes use of a doubleword pointer, the value is treated as a 
long pointer, i.e. either of the formats for specifying a 24-bit address in a 
doubleword may be used. It is the responsibility of the hardy-.'are to interpret this 
pOinter properly, as described under "Pointer Formats". In the instruction 
descriptions, long pointers are designated "I pointer" (= Ipointerh"lpointerl). 

/'~":, XEROX .. ~ '.'~ .... ' . 
t:.'>O<'J PRIVATE 
~LjV DATA 
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Load/Store Global Word 

The load global instructions read a word from the global frame and push it onto the 
stack. The compiler sorts the references to global variables in a module by 
frequency, and assigns the eight most frequently referenced variables to the first 
eight globals in the frame. These variables are accessed using single byte 
instructions. The remaining globals are referenced using a two-byte instruction in 
which 0 indicates the offset into the frame, or with a single byte instruction which 
uses the top element of the stack as the offset. Note that the first global variable 
is in G[globalbase] (globalbase is a small constant, see Appendix A), and the 
single byte loads include this offset. The instructions which use 0 as the 
displacement do so relative to G. 

Load Global n, n=0-7 
LGn (1): 

push[ (mds+G+n+globalbase > ] 

Load Global Byte 
LGB (2): 

pUSh[ (mds+G+o>] 

The store global instructions store the top element of the stack into the global 
frame. They take the displacement from the opcode, or from o. 

Store Global n, n=0-3 
SGn (1): 

pop[mds+G+n+globalbase] 

Store Global Byte 
SGB (2): 

pop[mds+G+o] 

XEROX 
PRIVATE 
DATA 



16 

Load/Store Local Word 

The Load Local instructions read a word from the local frame and push it onto the 
stack. The compiler sorts the references to local variables in a procedure by 
frequency, and assigns the eight most frequently referenced variables to the first 
eight locals in the frame. These variables are accessed using single byte 
instructions. The remaining locals are referenced using a two-byte instruction in 
which a indicates the offset into the frame. Note that the first local variable is in 
L[localbase] (locallbase is a small constant, see Appendix A), and the single byte 
loads include this offset. The instructions which use a as the displacement do so 
relative to L. 

Load Local n, n:O-7 
LLn (1): 

push[ <mds+L+n+localbase)] 

Load Local Byte 
LLB (2): 

push[ <mds+L+a)] 

Load Local 0 and 0 
LLOO (1): 

push[ (mds+L+localbase+O)] 
push[O] 

Load Local 1 and 0 
LL 10 (1): 

push[ <mds+L+localbase+ 1 >] 
push[O] 

The Store Local instructions store the top element of the stack into the local 
frame. They take the' displacement from the opcode or from a. 

Store Local n, n=O-7 
SLn (1): 

pope mds+L+n+localbase] 

Store Local Byte 
SLB (2): 

pop[mds+L+a] 

XEROX 
PRIVATE 
DATA 
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This instruction is identical to the Store Local instructions except that the stack 
pointer is not decremented, leaving the stored value on top of the stack. 

Put Local n, n:O-3 
PLn (1): 

pop[mds+L+n+localbase] 
stkp .. stkp + 1 

Load Immediate 

These instructions push constants onto the stack. 

load Immediate n, n:O-10 
Lin (1): 

push[n] 

load Immediate Negative One 
LIN 1 (1): 

push[-1] 

load Immediate Byte 
LIB (2): 

push[a] 

load Immediate Word 
LlW (3): 

puSh[a{J] 

XEROX 
PRIVATE 
DATA 



Load/Store Global Doubleword 

Load Double Global Byte 
LOGB (2): 

puSh[ <mds+G+a>] 

push[ <mds+G+a+l >] 

Store Double Global Byte 
SOGB (2): 

pop[mds+G+a+ 1] 
pop[mds+G+a] 

Load/Store Local Doubleword 

Load Double Local a 
LOLO (1): 

push[ <mds+L+localbase+O>] 
push[ < mds+L+localbase+ 1>] 

Load Double Local Byte 
LOLB (2): 

push[ < mds+L+a>] 

push[ <mds+L+ ex+ 1>] 

Load Double Local Swapped a 
LOLSO (1): 

push[ <mds+L+localbase+l >] 
push[ <mds+L+localbase+O)] 

Store Double Local 0 
SOLO (1): 

pope mds+L+localbase+ 1 ] 

pope mds+L+localbase+O] 

Store Double Local Byte 
SOLS (2): 

pope mds +L + ex + 1 ] 

pop[mds+L+ ex] 

18 

XEROX 
PRIVATE 
DATA 
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Read/Write Word 

These instructions use the top element of the stack as a pointer, add to it a 
displacement from the opcode or a, and do a push or pop. 

Read n, n=O-4 
Rn (1): 

pop[pointer] 
puSh[ <mdsi-n+pointer>] 

Read Byte 
RB (2): 

pop[pointer] 
push[ <mds+a+pointer>] 

Read Byte and Load Local 0 
RBLLO (2): 

pop[pointer] 
push[ <mds+pointer+a] 
push[ <mds+L+localbase+O>] 

Write n, n=O-2 
Wn (1): 

pop[pointer] 
pop[mds+n+pointer] 

Write Byte 
WB (2): 

pop[pointer] 
pop[mdsHHpointer] 

The following two instructions are similar to Wn and WB, except that the order of 
their operands on the stack is reversed so that the pointer may be recovered with 
a Push instruction: . 

Write Swapped a 
WSO (1): 

pop[data] 
pop[poinler] 
<mds+pointer> +- data 

~;;::/ ... :, XEROX 
r ~:Z'~(t<tJ PRIV ATE 
<i./:3V DATA 



Write Swapped Byte 
WSB (2): 

pop[data] 
pop[pointer] 
<mds+pointer+a) +- data 
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The following two instructions are similar to Wn and WB, except that the order of 
their operands on the stack is reversed and the painter is left on the stack for a 
subsequent instruction: 

Put Swapped 0 
PSO (1): 

pop[data] 
pop [pointer] 
<mds+pointer) +- data 
stkp +- stkp + 1 

Put Swapped Byte 
PSB (2): 

pop[data] 
pop[pointer] 
<mds+pointer+a> +- data 
stkp +- stkp + 1 

The following instructions interpret the top two elements of the stack as a long 
pointer, add a to it, and do a push or pop. 

Read Byte Long 
RBL (2): 

pop[lpointerh] 
pop[lpointerl] 
push[ < a+lpointer>] 

Write Byte Long 
WBL (2): 

pOp[lpointerh] 
poprlpointerl] 
pope a + Ipointer] 
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Read/Write Doubleword 

These instructions take a pointer from the stack and do a doubleword push or 
pop_ The byte versions use a as a displacement relative to the pointer: 

Read Double a 
RDO (1): 

pop[pointer] 
push[ <mds+pointer>] 
push[ <mds+pointer+ 1>] 

Read Double Byte 
RDB (2): 

pop [pointer] 
push[ < mds+pointer+a>] 

push[ <mds+pointer+a+1 >] 

Write Double 0 
WDO (1): 

pop[pointer] 
pop[mds+pointer+1 ] 
pop[mds+pointer] 

Write Double Byte 
WDB (2): 

pop[pointer] 
pop[mds+pointer+a+ 1] 

P op[mds+po inter + a] 

PSDO and PSDB take their operands from the stack in reverse order and leave the 
pointer on the stack for a subsequent instruction: 

Put Swapped Double 0 
PSDO (1): 

pop[data1 ] 
pop[data2] 
pop[pointer] 
<mds+pointer+1> .. daia1 
<mds+pointer> .. data2 
stkp .. stkp + 1 

XEROX 
PRIVATE 
DATA 



Put Swapped Double Byte 
PSDB (2): 

pop[data1] 
pop[data2) 
pop[pointer] 
<mds+pointer+a+l> +- datal 

<mds+pointer+a> +- data2 
stkp +- stkp + 1 
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WSDO and WSDB take their operands from the stack in reverse order, so that the 
pointer may be recovered by a Push instruction: 

Write Swapped Double 0 
WSDO (1): 

pop[data1] 
pop[data2] 
pop [pointer] 
<mds+pointer+l> +- datal 
<mds+pointer> .. data2 

Write Swapped Double Byte 
WSDB (2): 

pop[data1] 
pop[data2] 
pop[pointer] 
<rnds+pointer+a+ 1> .. datal 
<mds+pointer+a> +- data2 

The following instructions interpret the top two elements of the stack as a long 
painter, and do a doubleword read or write. 

Read Double Byte Long 
RDBL (2): 

POp[tpoinlerh] 
pop[lpointerl] 
push[ < Ipointer+(~ >] 

push[ <lpointer+(H1 >] 

Write Double Byte Long 
WDBL (2): 

pOp[lpointerh] 
pop[lpointerl] 
pop[lpoillter + a+ 1 ] 

pop[lpoillter+a] 

XEROX 
PRIVATE 
DATA 
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Read/Write Indexed 

These instructions consider a as a pair of numbers encoded in four bit fields. The 
displacement in the first field and the item from the top of stack are added to the 
local selected by the second field and a push is performed at that location. 

Read Indexed by Local Pair 
RXLP (2): 

pop[index] 
pointer'" (mds+l+localbase+a[O:3]> 

push[ <mds+pOinter+index+a[ 4:7»] 

Write Indexed by Local Pair 
WXLP (2): 

pop[index] 
pointer'" <mds+l+localbase+a[O:3]> 

pop[mds+pointer+index+a[ 4:7]] 

Read Indexed by Local Pair Long 
RXLPL (2): 

pop[index] 
Ipointer! ... < mds+l+localbase+a[O:3]> 

fpointerh ... <mds+l+!ocalbase+a[o:3]+1 > 

push[ < Ipointer+index+a[ 4:7] > ] 

Write Indexed by Local Pair Long 
WXLPL (2): 

pop[index] 
Ipointerl .. (mds+l+localbase+a[o:3]> 

fpointerh ... <mds+L+locafbase+a[o:3]+1> 

pop[lpointer+index+a[ 4:7]] 

XEROX 
PRIVATE 
DATA 
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Read/Write Indirect 
() 

These instructions add a displacement from the opcode to. 8'; local variable, and do 
a push or pop to that location. 

Read Indirect Local n, n= 0-3 
RILn (1): 

push[ < mds + < mds+l +Iocalbase > +n> ) 

This instruction is similar to RILn, except that the pointer is in the local specified in 
the first 4 bits of a, and the offset is taken from second four bit field of a. 

Read Indirect Local Pair 
RILP (2): 

push[ <mds+<mds+l+localbase+a[O:3]>+a[ 4:7]>] 

Writing version of RILP. 

Write Indirect Local Pair 
WILP (2): 

popE <mds+l+localbase+a[O:3] >+a[ 4:7]] 

This instruction is similar to RILP, except that the pointer is taken from the global 
frame. 

Read Indirect Global Pair 
RIGP (2): 

push[ <mds+<mds+G+globalbase+a[O:3]>+a[ 4:7]>] 

Read Indirect Local Pair Long 
RILPL (2): 

Ipointer! ... <mds+l+localbase+a[O:3]> 

Ipointerh +- <mds+l+localbase+a[o:31+ 1> 

push[ <Ipointer+a[ 4:7]>] 

Read Indirect Global Pair Long 
RIGPL (2): 

Ipointerl ~ <mds+G+globalbase+cx[O:3]> 

Ipointcrh ... <mds+G+glob~!base+a[O:3]+ 1 > 
push[ (Ipointer+a[ 4:7»] 



Write Indirect Local Pair Long 
WILPL (2): 

Ipointerl .. <mds+L+localbase+a[O:3]> 

Ipointerh .. <mds+L+localbase+a[O:3]+1 > 
pop[lpointer+a[ 4:7]] 

Write Indirect Global Pair Long 
WIGPL (2): . 

Ipointerl .. <mds+G+globalbase+a[O:3]> 

Ipointerh .. <rnds+G+globalbase"'a[O:3]+1 > 
pop[lpointer+a[ 4:7]] 

These instructions optimize double indirection. 

Read Indirect Indirect Local 0 Pair 
RIILP (2): 

pointer .. <mds+L+localbase> 
push[ <mds+<mds+pointer+a[O:3]) +a[ 4:7]>] 

Read Indirect Indirect Pair 
RIIP (2); 

pop[pointer] 
push[ <mds+<mds-rpointer+a[o:3] >+a[ 4:7]>] 

25 
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Read/Write String 

These operations take a byte index into a string from the top element of the· stack, 
a pointer to the string from the second element, and read or write a single 
character (byte) from the string. There· are also versions which use the second 
and third elements of the stack as a long painter. A Mesa string has the format 
shown in figure 3 (the instructions do not make use of the first two words of the 
string). 

Read String 
RSTR(1 ): 

pop[indexJ 
pop[pointerJ 
if index odd do --odd index means right byte 

push[ (mds+pointer+2+indexl2) and 377BJ 
else do 

push[«mds+pointer+2+index/2) and 1774008) rshift 8J 

Read String Long 
RSTRL (1): 

pop[indexJ 
pop[lpointerh] 
pop[lpointerl] 
if index odd do --odd index means right byte 

push[ <lpointer+2+index/2) and 377B] 
else do 

push[«lpointer+2+index/2) and 1774008) rshift 8] 

Write String 
WSTR (1): 

pop[index] 
pop[pointer] 
pop[data] 
if index odd do 

<mds+pointer+2+index/2)<-(mds+pointer+2+index/2) 

else do 
and 177400B) or (data and 377B) --odd index means right byte 

<mds+pointer+2+index!2)<-<mds+pointer+2+index/2) and 377B) or (data and 
177 400B) --even index means left byte 

Write String Long 
WSTRL (1): 

pop[index] 
pop[lpointerhJ 
pop[lpointerl] 
pop[data] 
if index odd do 

< IpOinter+2+index/2)<- < Ipointe r+2+index!2) 
and 177400B) or (data and 3778): --odd index means right byte 

else do . 
(lpointer+2+index!2)" < Ipointar+2+index12) 
and 3778) or (data and 1774008) --even index means left byte 
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Read/Write Field 

These instructions use the top element of the stack plus a as a displacement, and 
push or pop the field described by fj. There are also versions which use the top 
two elements of the stack as a long pointer. 

A field descriptor is an eight-bit byte. The left four bits give the position of the 
field in a word. the right four bits indicate its size. If pos"size is a field descriptor, 
the first bit of the field it describes is bit (16-pos-size), the last bit is (15-pos), 
i.e. pos indicates the amount by which a word must be right-shifted to extract the 
field, and size indicates the width of the mask which must be applied to the word. 
Operations which read a field leave it right justified on the stack; Operations which 
write a field store the rightmost size bits in the correct position in the word, and 
leave the remaining bits unchanged. 

Read Field 
RF (3): 

pop[pointer] 
temp .. (mds+pointer+a) 

mask" 2"fj[4:7]-1 
push[(temp rshift fj[O:3]) and mask] 

Read Field Long 
RFL (3): 

pop[lpointerh] 
pop[lpointerl] 
temp .. (Ipointer+a) 

mask" 2"fj[4:7]-1 
push[(temp rshift fj[O:3]) and mask] 

This instruction is similar to RF, except that the pointer is in local zero, and the 
field size and field position are taken from two four bit fields of a. 

Read Indirect Local a Field 
RILF (2): 

pointer .. (mds+L+localbase) 
temp .. (mds+pointer> 
mask .. 2' 'a[ 4:7]-1 

push[(ternp rshift a[O:3]) and mask] 

This instruction is a combination of RILP and RF. 

Read Indirect Local Pair Field 
RILPF (3): 

pointer .. (mds+L+localbase+a[0:3]> 

temp" (mds+pointer+o:[4:7]> 

mask" 2"fjr4:7]-1 
push[(temp rshift fj[0:3.l) and mask] 

XEROX 
PRIVATE 
DATA 



Write Field 
WF (3): 

pop[pointer] 
pop[data] 
temp .. (mds+pointer+a) 

mask" (2",8[4:7]-1) Ishift ,8[0:3] 
data .. data Ishift ,8[0:3] 
(mds+pointer+a) .. (temp and not mask) or (data and mask) 

Write Field Long 
WFL (3): 

pop[lpointerh] 
pop[lpointerl] 
pop[data] 
temp .. <Ipointer+a) 

mask .. (2"P[ 4:7]-1) Ishift P[0:3] 
data .. data Ishift ,8[0:3] 
<Ipointer+a> .. (temp and not mask) or (data and mask) 
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The Write Swapped Field instruction is similar'to WF, except that the operands are 
reversed on the stack so that the pointer may be recovered by a Push instruction: 

Write Swapped Field 
WSF (3): 

pop[data] 
pop[pointer] 
temp .. <mds+pointer+a) 

mask .. (2",8[4:7]-1) Ishift ,8[0:3] 
data .. data Ishift ,8[0:3] 
<mds+pointer+a> .. (temp and not mask) or (data and mask) 

The Put Swapped Field instruction is similar to WF, except that the operands are 
reversed on the stack and the pointer is left on the stack for a subsequent 
instruction: 

Put Swapped Field 
PSF (3): 

pop[data] 
pop[poinler] 
temp .. <mds+pointer+a> 

mask ... (2",8[4:7]-1) Ishift ,8[0:3] 
data ... data Ishift ,8[0:3] 
<mds+pointer+a> .. (temp and not mask) or (data and mask) 
stkp .. stkp + 1 

Read Field 0 
RFO (2): 

pope pointer] 
temp· .. <mds+pointer) 
mask'" 2"a[4:7]-1 
push[(temp rshift a[O:3]) and mask] 

XEROX 
PRIVATE 
DATA 
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The Read Bit instructions are similar to RF, except that the size portion of the field 
descriptor is implicitly 1. and the offset and field position are taken from two four 
bit fields of a. The pointer may be either on the stack or in local O. 

Read Indirect Local 0 Bit 
RILBIT (2): 

pOinter ... <mds+L+localbase> 
temp ... <mds+pOinter+(X[O:3]> 

push[ (temp rshift a[ 4:7]) and 1] 

Read Bit 
RBIT (2): 

pop[pointer] 
temp ... <mds+pointer+a[O:3]> 

push[(temp rshift a[4:7]) and 1] 

~t~':"':;. XEROX 
t~S7?} PRIVATE 
-<.jLiV OAT A 
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Data Modification Instructions 

These instructions pop their operands from the stack, perform an operation, and push 
the result. 

Add 
ADD (1): 

pop[x] 

pop[y] 

push[x+y] 

The top two elements of the stack taken as two's complement numbers are 
added. The result is pushed onto the stack. 

Subtract 
SUB (1): 

pop[x] 

pop[y] 
push[y-x] 

The top element of the stack is subtracted from second element using two's 
complement arithmetic. The result is pushed onto the stack. 

Double Add 
DADD (1): 

pop[x] 

pop[y] 

Pop[l] 
pop[u] 

push[u+y] (cl<-carry) 
push[ t+x+c 1] (c2<-carry) 

push[c2] 

stkp" stkp-l 

The two doublewords on the stack are added and pushed. The carry resulting from the 
32-bit addition is left above the top of the stack (in bit 15), so that it may be recovered 
by a Push instruction if required. 

XEROX 
PRIVATE 
DATA 



Double Subtract 
DSUB (1): 

pop[x] 

pop[y] 

pop[t] 

pop[u] 

push[u-y] (c1 +-carry) 

push[t-x-c1] (c2+-carry) 
push[C2] -

stkp+- stkp-1 
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The doubleword on the top of the stack is subtracted from the doubleword in the 
second stack position, and the result is pushed. The carry resulting from the 32-bit 
subtraction is left above the top of the stack (in bit 15), so that it may be recovered by 
a Push instruction if required. 

Multiply 
MUL (1): 

pop[x] 

pop[y] 

push[(x'y)[16:31 ]] 

push[(x·y}[O:15]] 
stkp .. stkp-1 

The top two elements of the stack are multiplied, and the result, which is a 32-bit 
quantity, is pushed onto the stack with the most significant 16 bits in the top element, 
and the least significant 16 bits in the second element. The stack pointer is then 
decremented, so that the least si gnificant 16 bits occupy the top of stack. In most 
cases a 16-bit product will be desired, which is the result. If a full 32-bit product is 
needed, a Push instruction may be used to recover the most significant bits. The 
operands and the result are treated as two's complement numbers, and the sign of the 
result is calculated according to the rules of algebra. 

Unsigned Multiply 
UMUL (1): 

pop[x] 

pop[y] 

push[(x·y)[16:31 ]] 
push[(x·y)[O:15]] 

stkp .. stkp-1 

The top two elements of the stack are multiplied. and the result. which is a 32-bit 
quantity, is pushed onto the stack with the most significant 16 bits in the top element, 
and the least significant 16 bits in the second element. The stack pOinter is then 
decremented, so that the least significant 16 bits occupy the top of stack. In most 
cases a 16-bit product will be desired, which is the result. If a full 32-bit product is 
needed, a Push instruction may be used to recover the most significant bits. The 
operands and the result are treated as unsigned numbers. 

XEROX 
PRIVATE 
DATA 



Double 
DBL (1): 

pop[x] 

push[x Ishift 1] 

The top element of the stack is left shifted by 1. 

Divide 
DIV (1): 

pop[x] 

pop[y] 

quot"rem ... y/x 

push[quot] 

push[rem] 

stkp"stkp-1 
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The top element of the stack is used as a 16-bit signed divisor, the second 
element is taken as a 16 bit signed dividend. The division 'is performed, and the 
16-bit quotient is pushed onto the stack. The remainder is left above the top of 
stack. Divisor and dividend are treated as two's complement numbers, and the 
signs of the quotient and remainder are calculated according to the following rules: 

ldiYlc1eJJQQivisor QyotLent Remairuler 
positive positive positive positive 
positive negative negative positive 
negative positive negative negative 
negative negative positive negative 

The division is not performed and the trap ZeroDivisor is generated if the divisor is zero. 

Long Divide 
LDIV (1): 

pop[x] 

pop[y] 

pop[z] 

quot"rem ... y .. z/x· 

push[ quot] 
push[rem] 
stkp ... stkp-1 

The top element of the stack is used as a 16-bit signed divisor, the second and third 
elements are used as a 32-bit signed dividend (with the least signific2nt bits in the third 
element). The division is performed, and tile i6-bit quotient is pushed onto the stack. 
The remainder is left above the top of stack. Divisor and dividend are treated as two's 
complement numbers, and the signs of the quotient and remainder are calculated 
according to the rule for DIV. 



33 

If the magnitude of the most significant half of the dividend is greater than that of the 
divisor, the trap DivideCheck is generated, indicating that the quotient will not fit into a 
single word. If the divisor is zero, the trap ZeroDivisor is generated. If either t~ap 
occurs, the division is not performed. 

Unsigned Divide 
UDIV (1): 

pop[x] 
pop[y] 
pop[z] 
quot..rem .. y.,z/x 

push[quot] 
push[rem] 
stkp"stkp-1 

The top element of the stack is used as a 16-bit unsigned divisor, the second and third 
elements are used as a 32-bit unsigned dividend (with the least significant bits in the 
third element). The division is performed, and the 16-bit quotient is pushed onto the 
stack. The remainder is left above the top of stack. Divisor and dividend are treated as 
unsigned numbers. 

If the magnitude of the most significant half of the dividend is greater than that of the 
divisor, the trap DivideCheck is generated, indicating that the quotient will not fit into a 
single word. If the divisor is zero, the trap ZeroDivisor is generated. If either trap 
occurs, the division is not performed. 

The following instruction negates (2's complement) the value on top of stack. 

Negate 
NEG (1): 

pop[x] 
push[-x] 

The following instruction adds 1 to the value on top of the stack. 

Increment 
INC (1): 

pop[x] 
push[x+1] 

The following instruction adds 2 to the value on top of the stack. 

ADD 2 
ADD2 (1): 

pop[lemp] 
push[temp+2] 



The following instruction subtracts one from the value on top of the stack. 

DECrement 
DEC (1): 

pop[temp] 
push[temp-1) 
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The following instruction adds sign-extended a to the value on top of the stack. 

ADD Sign-extended Byte 
ADDSB (2): 

pop[temp] 
push[temp + (if a[O] = 1 then a + 1774008 else a)] 

The following instruction calculates and pushes the bitwise logical and of the top two 
elements of the stack. 
And 
AND (1): 

pop [x] 

pop[y] 

push[x and y] 

The following instruction calculates and pushes the bitwise logical or of the top two 
elements of the stack. 
Or 
OR (1): 

pop[x] 

pop[y] 

pUSh[x or y] 

The following instruction calculates and pushes the bitwise exclusive or of the top two 
elements of the stack. 

Exclusive OR 
XOR (1): 

pop[x] 

pop[y] 

push[x xor y] 
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The following instructions compute the maximum or minimum of the top two elements of 
the stack, respectively. 

signed MAXimum 
MAX (1): 

pop[temp1] 
pop[temp2] 
IF temp1 > temp2 THEN push[temp1] ELSE push[temp2] 

signed MINimum 
MIN {1}: 

pop[temp1 ] 
pop[temp2] 
IF temp1 < temp2 THEN push[temp1] ELSE push[temp2] 

Unsigned MAXimum 
UMAX (1): 

pop[temp1 ] 
pop[temp2] 
IF temp1 > lemp2 THEN push[lemp1] ELSE push[temp2] 

Unsigned MINimum 
UMIN (1): 

pop[temp1 ] 
pop[temp2] 
IF temp1 < temp2 THEN push[temp1] ELSE push[temp2] 
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Jump Instructions 

All Jump instructions are PC relative. The program counter is a 16-bit byte 
displacement relative to the code segment base. The even byte is in bits 0-7 of a 
word, the odd byte is in bits 8-15 of a word. During the execution of an 
instruction, the PC points to the instruction, so that if a trap occurs, the pc does 
not have to be backed up before it is stored. The effect of this is that the PC is 
incremented, then an instruction byte is accessed. 

Unconditional Jumps 

These instructions obtain a displacement from the opcode, a, or ap, and add it to 
the PC value. 

Jump +n, n=2-g 
In (1): 

Jump Byte 
JB (2): 

PC<-PC+a (a is sign extended, providing a range 

of -128 to +127 bytes relative to the J8) 

Jump Word 
JW (3): 

pc<-pc+ap 

Conditional Jumps 

These instructions compare the top element of the stack with the second element, 
and branch to a location determined by the opcode or IX if the comparison is true. 
The operators assume two's complement operands, and the comparisons are 
signed. 

Jump Equal +n, n=2-9 
JEQn (1): 

pop[y] 

pop[x] 

if x=y then PC+-PC+n 
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Jump Equal Byte 
JEQB (2): 

pop[y) 
pop [x] 
if x=y then PC"PC+a 

Jump Not Equal +n, n=2-9 
JNEn (1): 

pop[y] 
pop[x] 
if x#y then PC"PC+n 

Jump Not Equal Byte 
JNEB (2): 

pop[y] 
pop[x] 
if x#y then PC"PC+a 

Jump Less Byte 
JLB (2): 

pop[y] 
pop [x] 
if x(y then PC"pc+a 

Jump Greater Equal Byte 
JGEB (2): 

pop[y] 
pop [x] 
if x>=y then PC"PC+a 

Jump Greater Byte 
JGB (2): 

pop[y] 
pop[x] 
If x>y then PC"PC+a 

Jump Less Equal Byte 
JLEB (2): 

pop[y] 
pop[x] 
if x=(y then PC"PCHX 

~,":7"". XEROX 
~'lf~j PRIVATE 
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These instructions compare the top element of the stack with the second element, 
and branch to a location determined by the a jf the comparison is true. The 
comparisons are unsigned. 

Jump Unsigned Less Byte 
JULB (2): 

pop[y] 
pop[x] 
if x<y then PC+-PC+a 

Jump Unsigned Greater Equal Byte 
JUGEB (2): 

pop[y] 
pop[x] 
if x)=y then PC+-PC+a 

Jump Unsigned Greater Byte 
JUGB (2): 

pop[y] 
pop[x] 
if x)y then PC+-PC+a 

Jump Unsigned Less Equal Byte 
JULEB (2): 

pop[y] 
pop[x] 
if x=<y then PC+-PC+a 

The following instructions compare the top of stack with zero, and branch to the 
location given by a if the comparison is true. 

Jump Zero Byte 
JZB (2): 

pop[x] 
if x=o then pC+-PC+a 

Jump Not Zero Byte 
JNZB (2): 

pop[x] 
if x#o then PC+-PC+a 
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PRIVATE 
DATA 



39 

The following instructions compare the top of stack with NIL (177777B), and 
branch to the location given by a if the comparison is true. 

Jump Nil Byte 
JNB (2): 

pop[x] 
if x=-1 then PC~PC+a 

Jump Not Nil Byte 
JNNB (2): 

pop[x] 
if x#-1 then PC~PC+a 

The following instructions compare the top of stack with a, and branch to the 
location given by fJ if the comparison is true. 

Jump EQual Byte Byte 
JEQBB (3): 

pop[x] 
if x=a then PC~PC+fJ 

Jump Not Equal Byte Byte 
JNEBB (3): 

pop[x] 
if x#a then PC~PC+fJ 

The following instructions compare the top of stack with the first four bits of a, and 
branch to the location given by the second four bits if the comparison is true. 

Jump Greater Pair 
JGP (2): 

pop[x] 
if x>a[O:3] then PC~PC+a[ 4:7] +2 

Jump Less Pair 
JLP (2): 

pop[x] 
if x< a[O:3] then PC"PC+a[ 4:7] +2 

The following instructions combine tile effects of RBITF and JZ. 

Jump Bit EOual Pair Byte 
JFEQB (3): 

pop[pointer] 
temp ... (mds+pointer+a[O:3]> 

temp ~ (temp rsl1ift a[ 4:7]) and 1 

if temp = 0 then PC<-PC+fJ 
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Jump Bit Not Equal Pair Byte 
JFNEB (3): 

pop[pointer] 
temp +- <mds+pOinter+(x[O:3]> 
temp +- (temp rshift a[ 4:7]) and 1 

if temp # 0 then PC+-PC+/J 
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Jump Indexed Byte/Word 

These instructions provide a space and time-efficient method of doing the 
dispatch needed by a case statement when the density of cases is high. 

The top element of the stack defines the upper limit of a range of values, the 
second element contains a value to be tested. If the value is in the range (Le. 
stk[stkp-1]<stk[stkp] unsigned), it is used to index a table of PC displacements 
in the code segment, and a PC relative jump is done using this displacement. The 
JIB instruction uses a table of byte displacements, JIW uses a table of word 
displacements. 

Jump Indexed Byte 
JIB (3): 

pop[y] 
pop[x] 
if x < y then do 

disp .. <C+a{3+x/2> --get the table entry from the code segment 

if x and 1 = 0 then disp .. disp rshift 8 --select the appropriate byte 

else disp .. disp and 3778 

PC<-PC+disp 

Jump Indexed Word 
JIW (3): 

pop[y] 
pop[x] 
if x < y then do 

disp .. <C+a/1+x> --get the table entry from the code segment 

PC"PC+disp 
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FOR Loop Control Instructions 

The following instructions are used for the inner-most FOR loop. They use a 2-word 
block to hold the PC and end-condition. STFOR initializes the block and ENDFOR uses 
it to test for termination. The 2 and 3 byte variations of STFOR exist so the compiler 
can simply test to see if it is compiling the innermost loop rather than waiting to see if 
the scope of the loop is sufficiently small to allow use of the 2 byte variant. Local zero 
is always the loop control variable. 

STart FOR loop Byte 
STFORB (2): 

(mds+L+localbase+8> 4- PC+2 
pop[mds+L+localbase+93 end condition 
pop [temp] 
<mds+L+localbase> 4- temp-1 
PC"PC + a 

STart FOR loop Word 
STFORW (3): 

<mds+L+localbase+8> 4- PC+3 
pop[mds+L+localbase+9'1 end condition 
pop[temp] 
<mds+L+localbase> ... temp-1 
PC"PC + afJ 

signed END FOR loop 
ENDFOR (1): 

temp ... <mds+L+localbase> 
temp ... temp+ 1 
if temp < <mds+L+localbase+9> then 

begin (mds+L+localbase> .. temp; PC .. (mds+L+localbase+8>; end 

Unsigned END FOR loop 
UENDFOR (1): 

temp .. <mds+L+localbase> 
temp .. temp+1 
if temp < <mds+L+localbase+9> then 

begin <mds+L+localbase> .. temp; PC .. <mos+L+localbase+8>; end 

XEROX 
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Miscellaneous Instructions 

The PUSH instruction allows an item which was previously popped to be recovered: 

Push 
PUSH (1): 

stkp 4- stkp+ 1 

The POP instruction discards the top value on the stack: 

Pop 
POP (1): 

stkp 4- stkp-1 

The EXCH instruction exchanges the top two items on the stack: 

Exchange 
EXCH (1): 

pop[x] 

pop[y] 
push[x] 

push[y] 

The DUP instruction duplicates the item on the top of the stack: 

Duplicate 
DUP (1): 

pop[x] 

push[x] 
puSh[x] 

The following instructions add G and L respectively to a. 

Global Address Byte 
GADRB (2): 

push[G+a] 

Local Address Byte 
LADRB (2): 

push[l+a] 
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The following instruction is provided to support the Mesa signalling machinery. It 
is a 2-byte instruction, but the value of a is ignored by the hardware: 

Catch 
CATCH (2): 

noop 

Allocate 
ALLOC (1): 

pop[temp] 

push[alloc[temp]] 

This instruction takes a frame size index (see "Frame Allocation") and returns a 
pOinter to a frame of the requested size from the heap in the main data space. 

Free 
FREE (1): 

pop[temp] 

freeframe[ temp] 

This instruction takes a pointer to a frame and returns the frame to the list given by 
<temp-1> (see "Frame Allocation") 

Shift 
SHIFT (1): 

pop[count] 

pop[data] 

If count < a then 

push[ data rshift count] 

else do 

push[ data Ishift count] 

The first element of the stack contains a shift count, the second element contains 
the data to be shifted. A positive count implies a left shift. Bits which shift off the 
end of the word are lost, and zeroes are shifted into the word as necessary. 



45 

The BL T instruction takes a destination address, word count, and source address 
from the top three elements of the stack. It copies the source block to the 
destination block. Low addresses are transferred first. and no check is made for 
overlap of the source and destination blocks. If a process switch or trap occurs 
during a BL T, the stored PC paints to the BL T instruction, so that it will resume 
correctly. 

Block Transfer 
BLT (1): 

while stack[stkp-1] > 0 do 
(mds+stack[stkp]> .. (mds+stack[stkp-2]> --destination .. source 
stack[stkp] .. stack[stkp]+l --increment destination 
stack[stkp-2] .. stack[stkp-2]+1 --increment source 
stack[stkp-1] .. stack[stkp-1 ]-1 --decrement count 
(test for process switch) 

stkp .. stkp-3 

The BL TR instruction has the same effect as the BL T instruction but the operands 
are reversed on the stack. 

BLock Transfer Reversed 
BLTR (1): 

while stack[ stkp-1] > 0 do 
<mds+stack[stkp-2]> .. (mds+stack[stkp]> --destmation .. source 
stack[stkp-2) .- stack[stkp-2]+1 --increment destination 
stack[stkp] .. stack[stkp]+1 --increment source 
stack[stkp-1] ... stack[stkp-1 ]-1 --decrement count 
(test for process switch) 

stkp ... stkp-3 

Block Transfer Long 

This instruction is similar to BLT, except that the first and third elements on the 
stack are long pointers. 

Block Transfer Long 
BLTL(1): 

while stack[stkp-2] > 0 do 
(stack[ stkp ]..stack[ stkp-l ) > ... (stack[ stkp-3) .. stack[ stkp-4] > --destination 
'-source 

stack[stkp) .. stack[stkp-l) .. (stack[stkp) .. stack[stkp-l ])+1 --increment 
destination (doubleword Increment) 

stack[stkp-3) .. stack[stkp-4) .. (stack[stkp-3] .. stack[stkp-4 ])+ 1 --increment 
source (double word increment) 

stack[stkp-2] .. stack[stkp-2]-1 /-decrement count 
(test for process. switch) 

stkp .. stkp-5 
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PRIVATE 
DATA 



46 

The RR and WR instructions allow access to the static registers of the processor. 
The register to be accessed is determined by a: 

a: register: 

1 glt 
2 WW 
3 AP 
4 RP 
5 CPN 
6 woe 
7 mds 
8 Restart 

Write Register 
WR (2): 

pop[reg[a]] 

Read Register 
RR (2): 

push[reg[ a]] 

meaning: 

Global Frame Table 
Wakeups Waiting 
Active Processes 
Ready Processes 
Current Process Number 
Wake ups Disabled Counter 
Main Data Space 
Reason for System Restart 

The ROR and RAND instructions are provided to eliminate race conditions in the 
software when changing the contents of the registers associated with the process 
switching system. These instructions must be atomic, i.e. no change can occur to 
the register between the time it is read and written. 

Register OR 
ROR (2): 

pop[temp] . 
push[reg[a]] 
reg[a] +- reg[a] or temp 

Register AND 
RAND (2): 

pop[tcmp] 
push[reg[a]] 
reg[a] ... rcg[a] and temp 

The following instructions manipulate the m,¥tp. See "Operations on the Map" 

Associate 
ASSOC (1): 

poprtempr] -- bits 0-2 contain I (i.e. W.D.Ref). Bits 4-15 contain a real page number 

pop[tempv] -- a 16-bit virtual page number 
AssiGn rca I page r to virtual page v in the map. Set the flag bits in the map entry to I. 
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SetFlags 
SETF (1): 

popr vp] --a virtual page number 

pop[tempf] --flag bits in tempf[O:2] 
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tempr .. Map entry for virtual page vp. If there is no such entry. tempr[O:2] ... 6 (vacant) and 

tempr[ 4:15] .. O. If the entry exists. bits 0:2 are the flags, bits 4:15 are the real page number. 

If a non-vacant map entry exists for virtual page vp. set its flag bits from tempf[O:2] 

push[tempr] --return old flags and real page number 

Operations which might modify the map entry must be disallowed between the time. the entry is 

read and the time it is subsequently updated (the operation must be atomic). 

XEROX 
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Bit Boundary Block Transfer 

The BitBL T (Bit Boundary Block Transfer) instruction has two primary uses: The 
first is to move regions of storage containing a rectangular area of a display bitmap 
from one location in memory to another. This corresponds to moving a portion of 
an image on a display screen. The second principal application is character scan 
conversion, in which a region of a font (a data structure containing the bitmap 
representation for characters) is transferred to a particular location in a region of 
storage containing a display bitmap. The instruction has a number of other 
potential applications, but these two are expected to dominate. 

Display Bitmap Format 

The format of a display bitmap in storage is shown in figure 4a. By convention, the 
origin is at the upper left corner of the screen. The x coordinate increases to the 
right, y increases downward (this corresponds to the direction of scan in the 
display). The bitmap is composed of w pixels horizontally, h pixels vertically. 
Each pixel is represented by a single bit in storage. Although w need not be a 
multiple of 16, each scan line must start on a word boundary (the final 16-(w mod 
16) bits of the last word of a scan line are not used). If the bitmap starts at 
location a, and the number of words per scan line is k, the second scan line starts 
at location a+k, the third at location a+2*k, etc. If x,y is the coordinate of a pixel, 
the address of the pixel is a+k*y+x/16, and its bit number is x mod 16. This 
assumes square pixels, i.e. equal vertical and horizontal resolution. If the display 
controller supports variable resolution, adjustment is necessary. Also, the display 
will usually be interlaced (all even scan lines displayed first, then all odd scan 
lines). It is the responsibility of the display controller to deal with this - the bitmap 
does not represent the interlace in any way. 

Font Format 

Figure 4b shows the bitmap representation for a single character. There are 
several methods available for packing the required information into a font; One 
representation is shown in figure 4c. In addition to the packed bit image, the font 
includes information which allows the software to find the bitmap for a particular 
character given its ASCII code, and determine the height, width and baseline of the 
character. Exact details of the font format are unimportant for the present 
discussion, and will be omitted. 

XEROX] 
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BitBLT 

An item is a contiguous string of bits of width w. The BitBL T instruction fetches an 
item from a source address sallsb (a bit address consisting of a source word 
address and a bit number), then stores it at a destination address da"db (a bit 
address). The instruction also allows specification of a function to be performed 
on the source and destination data before storing. Possibilities are {this list is not 
exhaustive}: 

f Operation 
0 dest ... source 
1 dest .. dest ar source 
2 dest .. dest and source 
3 dest .. dest xar source 
4 dest .. dest and nat source 

After each item is transferred, the source and destination addresses are 
incremented by two quantities sai and dai, which are the (signed) bit offsets for 
accessing the next source and destination items. The instruction also requires 
specification of the total number of items to be transferred. 

To deal with the situation in which the source and destination blocks overlap, we 
adopt the convention that if the item width is negative, sa"sb is the bit address of 
the bit following the last bit of the item, and the items are transferred from high 
addresses to low addresses (see Figure 4d). 

BitBLT takes its arguments from the stack, and the Mesa compiler must ensure that 
the stack is empty except for these arguments at the time the instruction is 
executed, The arguments and their positions on the stack are: 

stack[ stkp]: 
stack[stkp-1 ]: 
stack[stkp-2]: 
stack[ stkp-3). 
stack[stkp-4 ]: 
stack[ stkp-5]: 
stack[stkp-6]: 
stack[ stkp-7]: 
stack[stkp-S]: 

nitems (16 bit unsigned item count) 
bits 0:3 = sb, bits 8:15 sa[O:7] 
sa[8:23] 
bits 0.3 = db, bits 8: 15 '" da[0:7] 
da[8:23] 
sai (16 bit 2's complement) 
dai (16 bit 2's complement) 
bits 0:3 '" function, bits 4: 15 '" item width in bits (2's complement) 

intermediate state (must be initialized to 0 by the program) 

After transferring each item, the instruction updates the parameters on the stack: 

nitems ... nitems-1· 
sa .. sa+sai 
da .. da+dai 

The word containing intermediate state is provided to allow a process switch or 
page fault to occur during the transfer of a'multiword item. This word will contain 
the number of bits processed for the current item if the instruction is interrupted, 
and will allow the instruction to continue from its point of interruption when control 
returns. 
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BitBL T Examples 

To copy the rectangular area A in figure 4a to the origin of the screen, the 
parameters for BitBL Tare: 

sa: a+6'k+3, sb = 12 
da : a, db = 0 
sai = dai = 16*k 
nitems = 4, width : 75 

To scan convert the character in figure 4a at the display origin, the parameters are: 

sa = start address in font, sb = 0 
da = a, db=O 
sai = 6, dai = 16'k 
nitems = 8, width = 6 

Extensions to BitBL T 

Since the BitBLT instruction has significant setup overhead if the number of words 
transferred is small, we may wish to provide additional instructions which set up its 
arguments given some amount of higher level information (e.g. an ASCII character 
and a pointer to a font), in a manner analogous to the way the XFER primitive is 
used. Neither the necessity for these instructions nor their format has been 
determined. 

'-.. 
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Control Transfers 

Control Links 

Most of the control transfer instructions take as an argument a 16 bit Control 
Link. The least significant two bits of the control link determine its type: 

Bits 14: 15 Meaning 
o The control link is a frame pointer (an mds pointer). This convention forces 

frames to lie on 4-word boundaries. 
1,3 Bits 0:15 are a Procedure Descriptor (see below). 
2 The control link is an indirect pointer (an mds pointer) 

Objects must be allocated in storage such that indirect and frame pointers 
automatically have the correct F field, i.e. frames must be at addresses which are 
o mod 4, indirect words must be at addresses which are 2 mod 4. This convention 
is enforced by the software. 

Procedure Descriptors 

A procedure descriptor is used in many control transfer operations to obtain the 
global frame pointer G, the code segment pointer C, and the PC value for a 
procedure. It consists of two fields: 

Bits 0:10 Global Frame Table Index (gfti) 
Bits 11:14 entry number (en) 

The GFT index is used to retrieve the global frame pointer from the Global Frame 
Table in the main data space. Since the global frame must be located on a 
four-word boundary, the least significant two bits of the GFT entry are not used to 
point to the Global Frame. Instead they are used in conjunction with the entry 
number to obtain an index into the entry vector of the code segment associated 
with the glooal frame. This allows code segments to contain up to 64 procedures. 
The entry vector contains the starting PC value for the procedure (in C-relative 
form), and the frame size index for the frame required by the procedure. 

Precisely: 

G .. <mds+gft+gfti>[O:13]'4 -- global frame pointer (an mds pointer) 
C ... <mds+G+4> .. <mds+G+3> -- 24-l?it code pointer 
evx .. <mds+gft+gfti>[14:15]"16 + en +2 -- entry vector Index 
The PC value depends on whether the short or long form of an entry vector item is used: 
evi .. <tC+evx> --the entry vector item 
if evi <0 then do 

IPC .. evo[1:15]"2 --program counter 
fsi (- <tC·HPC/2-1>[4:15] --frame size index or frame size 

else do 
tPC .. eVi[5: 15] 
fsi .. evi[l:4] 
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Stored Program Counters 

All control transfer instructions except RET and LSTF begin by storing the PC at 
L[ 1] in the local frame. The PC is the byte offset relative to the code segment 
base C of the instruction which is to· be executed when the local frame is 
resumed. This convention limits the size of a code segment to 32K words. 

Frame Allocation 

Some of the control transfer instructions and the ALLOC instruction allocate and 
free frames from the heap accessed via the allocation vector avo These 
instructions make use (conceptually) of two primitive operations. alloc[fsi], and 
freeframe[frame]. The former takes a frame size index and returns a frame of the 
requested size (or larger if indirection occurs) from the heap in the main data 
space. If alloc cannot satisfy the request, it causes a trap. Freeframe takes a 
frame pointer and returns the frame to the appropriate list in avo The structure of 
av and the heap is shown in figure 2b. 

The allocation vector begins at location av in all MDS's. It contains a vector of 
pointers to the various frame sizes made available by the software. Since by 
convention frames begin on four word boundaries the last two bits of these 
pointers are not needed for painting to a frame. Instead, they are used as a flag 
according to the following conventions: 

Flag Meaning: 

0: This is a normal frame pointer. 
1: The list for this size frame is empty. 
2: This entry is an indirect pointer in the form of an av-relative displacement of the frame 
size which shOUld be used instead of this size. (This is customarily placed in the last 
entry of a list of a given size if it is desired to lise a larger frame size should this frame 
size list be exhausted.) 
3: Pointer to a normal frame. and decrement Wakeup Disable Counter when encountered. 

Bits 0:13 of an allocation vector entry are the fp field; fp*4 usually points to the 
frame which will next be allocated when an allocation request for a frame of the 
appropriate sile is received. The frames for each size are arranged in a linked 
list. (Note that the pointers are· to what is apparently the second word of the 
frame in figure 2b. Since these pointers become the frame pointers, the frame 
which is used by the firmware and software actually begins at this location. The 
word which contains the frame size index actually precedes the frame, hence may 
be thought of as being in location -1 relative to the beginning of the frame. This 
word must be preserved by the software so that it is available for use by the 
freeframe primitive. Hence, although it is not strictly speaking part of the frame, it 
must be preserved as long as the frame exists.) When cln allocation occurs fp*4 
is returned to the requester, and the contents of the word to which it pointed 
(including the flag bits) are brought into the allocation vector. Thus, frames are 
allocated from. and ultimately returned to, the head of the linked list, and tile 
allocation vector entry usually points to the next frame to be allocated. The last 
frame in a list either contains an end of list flag (f = 1) or an indirect flag' (f = 2). 
When this frame is finally painted to by the allocation vector and an allocation 
occurs for this frame size. it is allocated, and its pointer is stored in the allocation 
vector. Should another request for a frame of this size be 'received before a 
freeframe operation occurs for a frame of this size, this flag will tllen take effect. If 
it is an indirect flag (f CI 2) fp is used as a frame size index to access another 
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(presumably larger) frame size for allocation. If it is an end of list flag (f = 1) a trap 
occurs. 

The intention is that av will contain a limited number of frame sizes which will be 
sufficient for the majority of requests. To support (infrequent) requests for frames 
which are larger than the size normally accommodated by av, it is possible for the 
fsi to contain the frame size directly. If fsi is greater than MaxAllocSlot-1 (a 
constant whose value has not yet been determined), an attempt is made to allocate 
the frame from av[MaxAllocSlot]. This av slot is usually empty, and the allocation 
attempt will cause the trap AlloeationListEmpty[fs;; FrameSizelndex]. The 
allocation trap handler (software) will note that the request is for a 'large frame', 
acquire storage for the frame, and add it to the list av[MaxAllocSlot]. The trap 
handler will then return, restarting the instruction which did the original alloe, which 
will now succeed. To ensure that av[MaxAllocSlot] remains empty, the software 
will arrange large frames such that they are freed onto the list , , 
av[LargeReturnSlotJ. (LargeReturnSlot is another as-yet-undetE;rmined t :~y :k., 
parameter). This slot is never used for allocation, and it is the responsibility of the' V:';i, ',' 
software to deal with the frames which are freed onto this list. 

Since a number of processes may share the same main data space (and thus share 
the same av and heap), it is necessary to disable wakeups when an allocation trap 
occurs to ensure that the trap handler will not be preempted before it has made 
more frame space available. Wakeups must be disabled between the time the 
al/oe fails and the time its subsequent reexecution succeeds (after the trap handler 
has provided more frame space). The mechanism specified here accomplishes 
this goal without complicating the trap mechanism, i.e. the allocation trap handler 
does not need to be aware of the previous state of the process switching system 
(wakeups enabled or disabled). It is possible for nested allocation traps to occur 
to a reasonable level, providing that the trap handler sets up another frame of a 
size suitable for itself before taking any action which might cause another 
allocation trap. 

Wakeups are disabled when the (hardware) counter woe is nonzero (WOe 
contains a count of the number of reasons wakeups are disabled). When the alloc 
primitive cannot satisfy a request, it increments woe and causes a trap in the 
normal manner. When the trap handler supplies more frame storage, it arranges av 
so that a subsequent attempt to allocate a frame of the size indicated by fsi will 
yield a frame pointer with a flag field of 3 (rather than 0, which is the normal case 
-- refer to figure 2). Whenever alloe encounters a type 3 flag. it returns the frame 
to the requester, but also decrements woe, which will reenable wake ups if they 
were originally enabled (and the trap was not nested). 

In detail, the al/oe and free frame primitives do: 

alloc: 
ofsi .. fsi --save original fsi for possible trap 
if fsi > MaxAllocSlot-1 ihen .fsi .. Maxi\llocSlot --request is for a 'large' frame 
frame .. (ll1ds+av+f~'H> --tha head of the list 
while framer 14:15] = 2 do frame .. (mds+av+frmne/4> --indirection 
if framer 14: 15] = 1 then do 

if WDC = 255 then trap[WakelJpError] --counter would overflow 
WDC"WDC+ 1 --disable wakcups 
trap[AlJocationUsIEmpfy.ofsi] --olsi IS the tr~1P parameter 
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else do --flag- = 0 or 3 

(mds+av+fsi> +- (mds:,"(frame and 1777748» --note that if the reference to the 
frame causes a page fault, the store _ into av will not occur, and the ins!ru~tion 
which inCludes the alloc will be restarted after the fault is fixed. 

free frame: 

if frarne[14:15] = 3 then 

if WOC :: 0 then Jrap(WakeupError] --counter would underflow 
WOC +- WOC-1 --reenable wakeups 

return (frame and 1777748) 

fsi +- (mds+frame-1 > --fsi is stored one location before the frame 
(mds+frame> /- <mds+av+fsi> --add the frame to the head of the list 
<mds+av+fsi> /- frame 
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XFER 

Most of the control transfer instructions, the trap mechanism, and the processing 
switching facility make use of the primi.tive operation: 

XFER[ dest: control link, source: control link,xtype: xfertype. TrapParameter: integer) 
where: 
xfertype: TYPE = {freetype, nofreetype. traptype. pswitchtype) 

The differences between instructions have to do with the way in which the source 
and destination links are generated, whether or not the local frame is to be freed, 
the handling of the source and destination links, and whether the trap parameter 
(which is required only if xtYP&=traptype) is stored into the local frame. 

The idea of XFER is that the basic primitive may be used to construct a variety of 
control disciplines which can work together, since they all use the same primitive 
operation and data structures. 

In detail, the XFER primitive does: 

(In what follows, tX is used to designate a temporary value for register X, used in 
situations in which X cannot yet be modified due to the possibility of a trap) -

XFER: 
tdest +- dest 
while dest[14:15]=2 do dest +- <mds+dest> --destination link is indirect 
if dest[15] = 1 then do --destination link is a procedure descriptor 

gfti +- dest[O:10] -- extract the two fields of the procedure descriptor 
en +- dest[11:14] 
tG +- <mds+gft+gfti>[0:13]*4 -- obtain global frame pointer 
tC +- (mds+tG+4),.(mds+tG+3> -- obtain 24-bit code pointer 

if tC is odd then trap[ CodeMappedOut.tdest] --code segments normally start on an 
even word boundary. This trap implies that the code is not in the virtual space, 
and is not related to the VMS's page fault traps. 

evx +- (mds+gft+gfti)[14:15]*16+en+2 -- obtain entry vector index 
evi +- (tC+evx> --the .entry vector item _ " . 
if evi <0 then do I,i,' (; ,-

tPC +- evi[1: 15]*2 --program counter (byte displacement from tC) 
fsi +- (tC+tPC/2-1>[4:15] --frame size index or frame size 

else do 
tPC +- evi[5:15] 
fsi. +- elti[1:4] 

tL +- alloc[fsi] --memory references beyond this point cannot page fault. since 
alloc references the first location of the frame. and the first four iocations of the 
frame Will not cross a page boundary (since frames are placed on four word 
boundaries by the system softwarQ) 
<mds+tL> +- tG --initialize new frame's static link 
(mds+tL+2> ,. source --store return link 

else do --destination link is a frame pointer 

if dest[O:13]=O then trap[NuIlDestinationUnk.tdest] 
tL +- dest 
tG +- <mds-HL> --the first location in the frame 
tPC +- <mds+tL+1> --the second location in the frame 
tC ... <mds+tG+4> .. <mds+tG+3> --24-bit code painter 

~V"I" :XEROX 
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if tC is odd then trap[ CodeMappedOut,tdest] --code segments normally start .on an 
even word boundary. This trap implies that the code is not in the virtual space, 
and is not related to the VMS's page fault traps. 

tesl for a breakpoint return (see "Breakpoints") 
SELECT xlype FROM 

=freelype :: )BEGIN; freeframe[L]; slack[ stkp+ 1] <- source; slack[ stkp+2] +-Idest; END; 
=nofreetype ,,)BEGIN; stack[stkp+ 1 ]+-source; stack[stkp+2]+-tdest; END; 
=traptype =)L[3]"'TrapParameter; 

ENDCASE; 
L--tL --update processor registers 
G ... tG 
PC<-tPC 
C ... tC 

In the normal case, the source and original destination links are left above the top 
of the stack so that the context which is getting control can use them if it wants 
to. 

XEROX 
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Control Transfer Instructions 

The L1NKB instruction is executed on entry to nested procedures to establish the 
back link to the enclosing context. It recovers the destination link of the -last 
XFER, subtracts a, and stores the result in local O. 

Link Byte 
L1NKB (2): 

(mds+L+localbase) <- stack[stkp+2] - a 

The following instruction is used to create local procedure descriptors and signal 
descriptors. It constructs a 16-bit descriptor from the global frame index of the current 
frame and a. G[GFTloffset] contains the GFT index of the current global frame in 
procedure descriptor form, i.e., with GFTI in bits 0:10. 

Descriptor 
DESCB (2): 

push[ < mds+G+GFTloffset) + a] 

The following instructions create procedure descriptors and signal descriptors. They 
construct a 16-bit descriptor from the global frame index of the frame on top of the 
stack and a. 

Descriptor Stack 
DESCBS (2): 

pop[poinler] 
push[ <mds+poinler+GFTloffsel) + a] 

Call Descriptor Stack 
FDESCBS (2): 

L[1]<-PC+2 
pop[poinler] 
XFER[ <mds+pointer+GFTloffset) + a, L, nofreetype] 
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Local Function Calls 

These instructions are used to call a procedure in the current code segment. The 
local function call' instructions are optimizations of the XFER mechanism made 
possible by the fact that a code segment is compiled as a single entity. The 
compiler can thus build the information necessary to find the procedure to be 
called into the code itself, rather than having to wait until the context is bound, as 
is the normal case. n is the entry number: 

Local Function Call 0, 0=1-8 
LFCn (1): 

LFC: 
L[ 1] .. PC+ 1 --store the PC 

evi .. <C+n+2) --the entry vector item 
if evi (0 then do 

else do 

IPC .. evi[1:15]·2 --program counter (byte displacement from C) 
fsi .. <tC+IPC/2-1>[4:15] --frame size index or frame size 

tPC .. evi[5:15] 
fsi .. evi[1:4] 

tL +- alloc(fsi] --get a frame. No page faults call occur beyond this point. 
<mds+tL> .. G --save stalic link in the new frame 
<mds+tL+2> .. L --save return link in the new frame 
L .. tL 
PC +- IPC 

Local Function Call Byte 
LFCB (2): 

L[ 1} +- PC+2 --store the PC 
n .. a 
go 10 LFC 

Global Function Calls 

These instructions access a control link in the global frame, and do an XFER using 
it: 

Global Function Call nJ n=0-15 
GFCn (1): 

L[ 1] .. PC+ 1 --Store the PC 
XFER[ <mds+G+22+1l).L.nofreelype] --The (22+n)th global contains the destination link. the 
source Ifnk IS the frame pointer 

Global Function Call Byte 
GFCB (2): 

L[ 1] .. PC+2 --Store the PC 
XFER[ < mds+G+a) .l.nofreetype} --the a-th global contains the destination link. the source 

link is the frame pointer 



Stack Function Call 

This instruction XFERs via the control link on the top of the stack. 

Stack Function Call 
SFC (1): 

L[ 1] ... PC+ 1 --Store the PC 
pop[temp] 
XFER[ temp,L,nofreetype] 

59 

,.-,t'" ....... , XEROX 
, •• ~ .5' 

t::.:~<?~~ PRIV A TE 
't"iljv DATA 



Kernel Function Call 

This instruction XFERs to the function whose control link is in the a-th position of 
the system dispatch table. The system dispatch table sd (which starts in the same 
location in all main data spaces) contains contains control links for these kernel 
procedures. The offsets in sd of control links for commonly used Mesa runtime 
procedures are known to the compiler, which allows it to build non-local linkage 
information into the code. 

Kernel Function Call Byte 
KFCB (2): 

Return 

L[1] to PC+2 --Store the PC. 
XFER[ (mds+sd+a>.L.nofreetype] 

These instructions are used to return from a procedure. 

Return 
RET (1): 

XFER[ (mds+L+2>.O.freetype] 

The following instructions return -1 and 0 respectively. 

RETurn NIL 
RETNIL (1): 

push[-1] 
XFER[ (mds+L+2>.O.freetype] 

RETurn Zero 
RETZ (1): 

push[O] 
XFER[ <mds+L+2>.O.freetype] 

Port Out 

This instruction is used to transfer control through a Port, which is a two word area 
in the main data space. PORTO instructions are always immediately followed 
statically by PORTI instructions, as shown in figure 5. Ports are lIsed to provide, 
among other things. a coroutine control discipline. Port calls are compatible with 
procedure calls, in that control can leave a context using the port discipline and 
enter a context which uses a procedure discipline and vice versa; the various 
cases are shown in figures 5a-5c. There are two PORTO instructions, with 
different opcodes but identical effects. The purpose of this is to allow the 
software to determine the intended usage of the PORTO when a control fault 
occurs. 
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The instruction does: 

Port Out 
PORTO (1): 
PORTOS (1): 

Port In 

L[l] .. PC+1 --Store the PC 
pop[temp] --get pointer to port 
(mds+temp> +- L --set the inport to point to the current context. 
XFER[ <mds-+temp+ 1) .temp.nofreetype] 

This instruction saves the return link (which was left above the stack by the 
PORTO) in the outport, and clears the inport: 

Port In 
PORTI (1): 

<mds+stack[stkp+2]> +- 0 --clear the inport . 
If stack[stkp+l] # 0 then <mds+stack[stkp+2]+1> +- stack[slkp+1] --save the source link 
in the outport unless the XFER was a procedure return 
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Traps 
(" 

Traps indicate the occu~nce of infrequent exceptional conditions encountered in 
the course of instructio"(, access or execution. Unlike process wakeups, traps 
notify the software of internal conditions which require special action, rather than 
external conditions. In some cases, the trap indicates that an error which 
precludes continued execution has occurred (e.g. Unimplementedlnstruction). In 
other cases, the trap will cause the system software to take some action and 
continue the normal execution sequence. To avoid complexity in the software, we 
have adopted the view that when a trap occurs, the machine state will be brought 
(as nearly as possible) to the value it had at the start of the instruction which 
caused the trap. In particular, the stack will have its initial values, except in the 
case of an interruptible instruction such as BLT, which may have made 
considerable progress and then trapped. These instructions will stop in such a 
way that they can be restarted, in a manner identical to the situation on a process 
switch. When a page fault occurs on a single word store or the first word of a 
doubleword store, main storage will be unaffected. If a page fault occurs on the 
second word of a doubleword store, the first word may have been placed in 
memory (the result of this case is unpredictable). 

Types of Trap 

The following list is a summary of the traps which may be generated by the 
processor. The number preceding the trap name is the trapnumber, which is used 
as an index into the System Dispatch table to select the proper procedure to 
handle the trap. The quantity in parentheses, if present, is the trap parameter, 
which provides the handler with additional information concerning the trap. The 
possible traps are: 

o Breakpoint 
1 WnteProtect (virtual page number being accessed) 
2 PageFault (virtual page number being accessed) 
3 AllocationListEmpty (frame size index) 
4 NullDestinatlOnLink (original destination link) 
5 Unimplemented Instruction 
6 StackError 
7 WakeupError 
8 ZeroDiyisor 
9 DivideCheck 
10 B/ockError 
11 CodeMappedOut (original destination link) 
12 HardwareError'1 
13-23 Reserved for Expansion 
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Trap Processing 

When a trap occurs, the action invoked is very similar to the XFER operation, with 
the following differences: 

The trap mechanism stores the trap parameter into the fourth word (L[3]) of the handler's 
frame, rather than passing it on the stack as do normal XFERs. This is done because some 
instructions leave information above the stack and therefore the entire stack must be 
preserved when a trap occurs. Note that this convention implies that the control link in sd 
cannot be a pointer to a global frame, since this word is used to hold the code pOinter C in 
this case. 

The precise actions which must be taken by the processor to cause a trap are: 

Instructions which do a pop followed by a push must abort the push. Le. the stack must be 
restored to Its condition at the start of the trapped instruction. 

Restore the stackpointer to the value it had at the start of the instruction. 

if PC # 0 then L[ 1] .. PC --The stored PC points to the instruction which was in execution 
when the trap condition was detected. or to the instructior) which was about to be executed 
if the trap occurred as a result of an instruction fetch. Normally, PC can never be zero 
during normal instruction execution. However if a trap occurs during a process switch, the 
processor may not have acquired a valid local frame. and storing the PC in this case would 
not make sense. This situation is discussed more fully under "Process Switching". 

XFER[ dest,L,traptype,trap parameter] 

Since .the processor will roll instructions back, either to their starting pOint or to a 
well-defined intermediate state, all traps appear to occur between instructions. If 
a given instruction causes more than one type of trap, the traps will occur 
sequentially, and the processor will attempt to restart the instruction when the 
handler for each type of trap returns. Because instructions are restarted, rather 
then being continued from the point at which a trap condition is detected, there is 
no necessity to consider the effects of multiple traps on a single instruction, nor 
does the trap handler need to concern itself with the continuation of particular 
instructions. 

The first instruction executed by the trap handler will be a Dumpstack, which will 
save the trapped instruction's stack in the local frame of the "'handler: 

Dumpstack 
DSTK (2):" 

pstate ... mds+LHX 
(pstate) ... stkp --store the stack and stkp into the local frame 
for i 1 to stkmax do (pstate+i) ... stk[i]. 
Stkp ... 0 --reset the stackpointer 
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When the handler is ready to continue execution of the interrupted program, there 
are two types of Loadstate instructions available for this purpose, one which frees 
the handler's frame, and one which does not: 

Load State 
LST (2): 

L[ 1] +- PC+2 --Store the PC 
pslate .. mds+L+a --pointer to the state in the local frame 
stkp +- <pstale) 
for i '" 1 to stkmax do stk[i] .. (pstate+i) 
x +-<pstate+stkmax+ 1) --a control link 
y"<pstate+stkmax+2) --also a control link 
XFER[x,y,nofreetype] 

Load State and Free 
LSTF (2): 

pstale .. mds+L+a 
slkp .. <pslate) --pointer to the slate in the local frame 
for i = 1 to stkmax do Slk[i] .. <pslate+i) 
x+-(pstate+slkmax+1) --a control link 
y+-(pstate+stkmax+2) --also a control link 
XFER[x,y,freelype] 

Breakpoints 

The single byte Break instruction provides a unique trap when it is encountered in 
the instruction stream: 

Break 
BRK (1): 

trap[ Breakpoint] 

The Mesa debugger (software) sets a breakpoint by replacing an instruction with a 
BRK instruction. When the processor attempts to execute this instruction, a trap 
results. 

When the debugger continues execution from a breakpoint, it does so with an 
LSTF or LST instruction. The PC of the broken context will pOint to the BRK 
instruction. Before resuming this context, the debugger will store the bytecode to 
be executed (the bytecode which was replaced by the BRK) in the most 
significant byte of the saved stackpointer (a normally unused field). It is the 
responsibility of the LSfF or LST instruction whIch resumes the brol\en context to 
inspect this byte and cause it to be executed in place of the BRK instruction if it is 
nonzero. 
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Process Switching 

The processor is capable of switching control among sixteen Mesa processes. 
Priority scheduling of these processes _ is done by the hardware. It is expected 
that the processes scheduled by the hardware will be used for device handlers 
which require low latency, and that one of the levels will be used to implement a 
more general software scheduler for a larger number of processes. 

Process States 

Each of the sixteen processes which are scheduled by the hardware is described 
by an entry in the Process State Vector (see Figure 2a). Each psv entry is a 
pointer to the state information required by the processor when it runs the process. 

A process from which no work is required is blocked. A blocked process does 
not compete for the use of the processor. When an external event occurs which 
requires service from a process, it requests a wakeup. If the process is active, i.e. 
permitted to run, the wakeup causes it to become ready. The sixteen processes 
supported by the hardware have fixed priorities; The highest priority ready 
process will acquire the processor, its state will. be loaded into the machine 
registers from the information in psv, and it will run. When.it finishes its work, it 
will block itself, which will relinquish the processor to a lower priority process 
providing that no new wakeups have been requested for the process since it last 
became ready. 

External events which may cause wakeups include signals from device controllers 
implemented in hardware or microcode, and instructions explicitly executed by a 
program. The precise electrical and timing requirements for signalling an external 
wakeup must be a part of the functional specification of a particular processor 
model. The instruction ROR is provided to allow a program to generate a wakeup. 
This instruction may be used to or a bit mask into WW, and is provided so that this 
operation can be done atomically, i.e. with the assurance that no other activity may 
affect the WW register from the time this instruction initiates until it completes. 

While a process has control of the processor, it may be preempted by a higher 
priority process. Preemption does not affect the state of the process, but only 
suspends it until it again has highest priority. 

To avoid losing wakeups, a wakeup-waiting flag is associated with each process. 
When a blocked, active process receives a wakeup, it becomes ready, and its 
wakeup-waiting flag remains cleared. If a ready process receives a wakeup, the 
wakeup-waiting flag is set. When the process subsequently attempts to block 
itself, the wakeup-waiting flag will be cleared and the process will remain ready. 
This mechanism is provided by a scheduler implemented in hardware or microcode . 

. 
The eight-bit counter WOC is provided to'- disable process switching. If WDC#O, 
process switching is disabled. Instructions are provided to increment and 
decrement WOC, and it is automatically incremented and decremente9 by the 
frame allocation mechanism (see "Frame Allocation"). The instructions which 
manipulate WOC are: 
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Increment Wakeup Disable Counter 
IWOC (1); 

if WOC = 255 then trap[ WakeupError] 
WOC f- WOC+1 

Decrement Wakeup Disable Counter 
DWOC (1): 

if WOC = 0 then trap[ WakeupError] 
WOC .. WOC-1 

WOC is initialized to 1 by system reset (wakeups are disabled). An attempt to 
decrement it beyond zero or increment it beyond 255 will fail and cause the trap 
WakeupError. 

Registers 

The scheduler uses three sixteen bit registers: 

RP: Contains bits corresponding to processes which are ready. 

AP: Contains bits for processes which are active, Le. permitted to run. 
Processes which have zeros in AP never run. 

WW: Bits in this register are set by device controllers or by the processor 
to request wakeups. 

The most significant bit (bit 0) of these registers corresponds to the lowest 
priority process (number 0); the least significant bit (bit 15) corresponds to the 
highest priority process (number 15). 

In addition, there is a four bit register CPN which holds the number of the process 
which is currently running on the processor, and the eight-bit counter WOC which 
contains a count of the number of reasons wakeups are disabled. 

Scheduler 

In the description which follows, HPMASI<[n] = 2"(15-n)-1, i.e. a mask with ones in bit 
positions corresponding to processes of higher priority than process n, and 
BITNUM[x] is the bit number (0-15) of the leading one bit in x. 

When an external agent (Le. a device controller, or other process) wish"es to 
awaken a process, it ORs one or more bits into WW. At the beginning of every 
Mesa instruction, WW and AP and HPM,t\SI<[CPN] is tested, and if it is nonzero and (Le. 
if a process switch is to occur), control is diverted to tile sCheduler. 

The hardware sclleduler will not be activated unless a wakeup occurs for an active 
process of higher priority than the one which is running, or a BLOCK instruction is 
executed. In the latter case, if' no wakeups are pending in WW and no process is 
ready, control will remain in the scheduler and no process will be run. If a wakeup 
is received for a process of lower priority than the running process, it will be 
saved in WW until the running process blocks. 
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The scheduler does: 

Schedule: 

temp ... WW and AP and not RP --processes which are about to become ready •.. 

RP to RP or temp --do so ... 

WW .. WW and not temp --and their wakeup is cleared 

Go to Schedule if RP=O --Nothing to do, wait for a wakeup 

temp to BITNUM[RP and AP] --The number of the highest priority ready active process 

Continue running the current process if temp = CP --this can occur only if control entered 
the scheduler from the BLOCK instruction and there was a wakeup waiting for the process. 

L[1] to PC --store the PC in the local frame of the process being preempted 

psvp = psv·256 + <psv·256 + CPN) --painter to the state block for the process being 
preempted 
<psvp) .. stkp --dump the state of the current process 
for i = 1 to stkmax do <psvp+i> ... stk[i] 
<psvp+stkmax+1) .. L --store the local frame pointer 
<psvp+stkmax+2) .. mds 

PC .. 0 --clear the PC so that if a trap occurs before control gets to the new process, the 
trap machinery will not store the PC 

CPN to temp 

psvp = pS',,·256 + <psv'256 + CPN) --pointer to the state block for the new process 
stkp .. <psvp) --load the state of the new process 
for i = 1 to stkmax do stk[i] .. <psvp+i) 
L .. <psvp+stkmax+1) --load the destination link. Usually, this will be a frame pointer, but 
it may be an arbitrary control link. The destination link is placed in L so that if a trap occurs 
before the new process has acquired a legitimate frame and PC, the trap handier will return 
properly. 

mds .. <psvp+stkmax+2) 

XFER[L,O,pswilchtype] 

When a process has completed its work, it executes a Block instruction, which 
does: 

Block 
BLOCK (1): 

if WDC It 0 then trt:p[ 810ckError] - -i! is an error to execute a BLOCK while wakeups are 
disabled 
RP .. RP and not 2"(15-CPN) 
go to Schedule 

If no new wakeups have come in since the last wakeup was recognized, the 
process will be suspended. 
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Interruptible Instructions 

Most instructions are uninterruptible, with process switching occurring between 
instructions. Some instructions (e.g. BLT) which are potentially time consuming, 
must be capable of being interrupted. These instructions must be implemented 
such that their intermediate state is indistinguishable from their initial state. When 
an interruption occurs during an interruptible instruction, the PC is adjusted to 
point to the interrupted instruction. When the process containing the interruptible 
instruction is re~tarted, the instruction will resume from the point at which it was 
suspended. 
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Errors and Error Handling 

This section describes the facilities which must be provided in the processor for 
logging and reporting hardware-related errors detected by the processor and the 
memory system (device or controller detected errors are not described in this 
section). Although this specification does not enumerate all possible errors (since 
this will depend on the implementation), it does provide a reporting standard to 
which all portions of the system capable of detecting errors are expected to 
conform. 

Types of Errors 

Hardware errors are divided into three categories depending on their severity: 

Type 1: Soft errors which do not result in loss of data. These errors are logged, but no 
further action is taken. Means are provided to disable the processing of type 1 errors so 
that a permanent error will not consume excessive time due to the logging and 'reporting 
activity. 

Type 2: Hard errors which result in data loss, but from which the software may be able to 
recover. These errors are logged, and the source of the error is notified, so that recovery 
may be attempted. 

Type 3: Hard errors from which no recovery is possible. These errors cause an immediate 
system restart. A type 2 error which occurs during the logging of another type 2 error is a 
type 3 error, as are type 2 errors which encounter a full logging buffer while attempting to 
record the state of the error. 

The presently identified errors are: 

Error 

Main storage single bit error 
Main storage double bit error 
1/0 bus parity error 
Control store parity error 
Internal bus parity error 

Error Logging 

Type 

2 
2 
3 
3 

Type 1 and type 2 errors are logged in two ring buffers which are located in the 
first 641< of the virtual space. The software will set up these buffers at 
initialization time. The (fixed) locations Type1ErrorBuffer and Type2ErrorBuffer 
will contain pointers to two ring buffer descriptors, each of which contain four 
16-bit pointers: 

first: pOinter to the first location in the buffer 
last: pointer to the last location in the buffer+1 
in: locntion into which the next log entry will be written 
out: location from which the next log entry will be read 

A buffer is empty if in::out. Error log entries are of vari8ble length, and may wrap 
around the end of the buffer. The least significant byte of the first word of a log 
entry will contain the length of the entry in words, but all other information in a log 
entry, including an indication of the error type, is error-specific, and must be 
specified in detail for each type of error a particular implementation can detect. 

If the hardware attempts to log a type 1 error and there is insuffici8n~p4l.C'" in thr> 
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buffer, the entry is discarded and no further action is taken. If the hardware 
attempts to log a type 2 error and there is no room in the buffer, a type 3 error is 
generated and the system is restarted. 

Software Notification of Errors 

The software is not notified of the occurrence of type 1 errors, but is expected to 
poll the error buffer at appropriate intervals and empty the buffer if any errors are 
present. 

The software is notified of type 2 errors in one of two ways. If the error arose as 
a result of the execution of Mesa code, the error is logged and the parameterless 
trap HardwareError is generated. The trap handler may inspect the log entry and 
take whatever action it deems necessary. If an error ·is detected by the system 
but arose as a result of an I/O operation which does not involve the processor, it 
is logged and the controller which caused the error is notified. The controller is 
expected to take the appropriate action. Usually this will involve halting any data 
transfer in progress, but in all cases, the controller will report the error in its next 
status report to the processor. Errors which arise solely as a result of I/O activity 
and which are detected by the controllers are also sent to the processor as status 
information (and are not logged). 
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Restart Register 

The system may be restarted (bootstrapped) for a number of reasons: 

The power has been turned on and has stabilized 
The user has pressed the 'start' button 
The software has initiated a restart 
The watchdog timer has expired 
A type 3 error has occurred 

To allow the software (and perhaps the firmware) to take the appropriate action 
after a restart, a machine register (Restart) is provided to save the reason for the 
restart across the bootstrap activity. Bits in this register are set by hardware (or 
firmware) when various conditions which cause a restart are detected. The 
specific standard bit assignments for this register are: 

Bit Description 

o Power-on Restart 
1 Start Button Pressed 
2 Watchdog Timer Expired 
3 Software Restart 
4 Type2 Error became Type3 
5 Control Memory Parity Error (Type3 Error) 
6 Internal Bus Parity Error (Type3 Error) 

As a part of its initialization, the processor will check the status of the power 
system, and set Power On and clear the other bits if this is the first restart after 
power has stabilized. If power was stable across the restart, the register will 
correctly reflect the reason for the restart. 

The software which initializes the system is expected to read the contents of the 
restart register, take whatever action is appropriate, and clear the register in 
anticipation of the next restart. 
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Input-Output 

Introduction 

The input/output system provides facilities which accommodate a diverse set of 
I/O devices with significant performance differences and complexities and a large 
degree of configuration flexibility. 

The input/output system is implementation-independent from the point of view of 
the software. The intent is to achieve software compatibility across processor 
configurations. 

The performance differences and complexities of devices leads to deVice-specific 
I/O facilities, primarily in the amount and kind of information being transmitted 
between software and the I/O system. However, the facilities to effect the transfer 
are not device-specific. The above does not preclude the possibility that similar 
devices will be handled by the software in a similar fashion. 

The portability of 110 handling software also depends on software which is 
essentially timing independent and which can adjust itself to the various device 
configurations. 

Common I/O Handling 

The facility consists of two types of I/O, Direct and Channel I/O. 

In the case of 010 the input or output operation is simply the execution of an 
INPUT or OUTPUT instruction involving the transfer of a word of data from the top 
of stack to the controller or from the controller to the top of the stack. 

The CIO operation is composed of a sequence of activities which are summarized 
here and described in detail below: 

Setting up control information (software) 
Starting the operation (software) 
Transferring data between the device and memory 

(Hardware and/or firmware) 
Initiating a wakeup upon completion (Hardware and/or 

firmware) 
Reading status (software) 

The concept of an implementation independent I/O facility makes it necessary to 
specify only those facilities which are accessible to the software while maintaining 
implementation flexibility at the processor and controllers. 

The facilities for implementing CIO are the INPUT and OUTPUT instructions, a 
dedicated I/O address space of 256 locations, a dedicated page of virtual memory 
(I/O page), and process wakeups which occur as a result of specific events 
relative to the CIO operation. 

Controllers and Devices 

The software performs I/O operations through device controllers. Controllers 
connect devices to the processor and memory. 

72 

<'I~.'" XEROX 

t~d/J PRIVATE 
o(jl..Sv DATA 



The complexity of the controllers varies to support the needs of devices and 
particular processor and memory implementations. Various processor 
configurations may implement controllers for similar devices in different ways, 
depending on the device, memory, and processor bandwidths. 

1/0 Addresses, Priorities and the I/O· page 

The 1/0 system contains up to 256 independently addressable I/O registers which 
can be read and "loaded through INPUT and OUTPUT instructions at the Mesa level. 
The I/O address is an eight-bit quantity. Bits 0-3 address a controller and bits 4-7 
address one of 16 possible registers within that controller. 

Controller address 0 has been assigned to the processor and any special device 
controllers which are considered to be part of the processor. Controller address 
15 has been assigned to an error handling function. The remaining 14 controller 
addresses are available for device controllers. 

The mechanism for reading and loading 110 registers through INPUT and OUTPUT 
instructions can also be used by microprograms to read and load the registers. 

The controller address assignment, except for addresses 0 and 15, is a function 
of the priority relationship of the controllers in a given configuration. Address 15 
has the highest priority and address 0 the lowest. 

Virtual memory page 0 is permanently assigned to the I/O system and is allocated 
to device controllers in the same manner as I/O addresses. These locations hold 
control information prior to the start of an 1/0 operation and status which reflects 
the result of the I/O operation at its completion. The table below shows the 
relationship between I/O registers, priorities and locations in the 1/0 page. 
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The assignment 'of the 16 1/0 registers and 16 words of memory for a controller is 
device-specific and is defined for each device controller separately. 

1/0 Assignment 
Address 

0- 15 processor 
16- 31 controller 1 
32- 47 controller 2 
48- 63 controller 3 
64- 79 controller 4 
80- 95 controller 5 
96-111 controller 6 

112-127 controller 7 
128-143 controller 8 
144-159 controller 9 
160-175 controller 10 
176-191 controller 11 
192-207 controller 12 
208-223 controller 13 
224-239 controller 14 
240-255 fault handling 

function 

Input/Output Instructions 

1/0 Virtual 
Memory Page 
address 

0- 15 
16- 31 
32- 47 
48- 63 
64- 79 
80- 95 
96-111 

112-127 
118-143 
144-159 
160-175 
176-191 
192-207 
208-223 
224-239 
240-255 

Priority 

o (lowest) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 (highest) 

The INPUT and OUTPUT instructions transfer a single word of data between an liD 
register and the stack. The 1/0 register address is the top element of the stack. 

INPUT(1 ): 
pop[temp] 
push[ <I/O register temp)] 

OUTPUT(1 ): 
pop[temp] 
pop [I/O register temp] 

Process Wakcups 

The processor must provide a means for controllers to generate process wakeup 
requests for the sixteen Mesa processes scheduled by the processor. 

A 16-bit mask loaded into a controller register via 8n OUTPUT instruction or stored 
into one of the sixteen locations in the 1/0 page assigned to the controller 
specifies the process(es) to which wal<eups are to be directed when specific 
events such as 110 completion or device faults occur. 

The mechanism for initiating the process wakeup is controller and p'rocessor 
implementation dependent. 
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Channt>1 I/O Operation 

This section describes a typical Channel I/O (CIO) operation. The functional 
specification of the controllers defines the number and use of I/O registers, I/O 
page locations, and wakeups. 

Control Information 

The collection of I/O control information is stored in an 1/0 Control Block (IOCB). 
The 10CB information must be established prior to the initiation of an 1/0 operation 
and made available to the specific controller. The size and content of the 10CB is 
device-specific and may include information such as 

Pointer to next control block if chaining is implemented 
I/O command (i.e.read, write) 
Pointer to buffer 
Size of buffer 
Process wakeup mask for 1/0 completion and fault handling 
Unit address for multi-unit device controllers 
Data address 

This information is made available to the controller by OUTPUT instructions which 
directly load registers in the controller, or by storing the information into locations 
in the 1/0 page known to the controller. At minimum, the software must provide a 
pointer to the 10CB in a word in the 1/0 page prior to initiating the' 1/0 operation. 

Initiation 

The state and availability of a controller can be obtained by reading the controller 
status word stored in an 1/0 register or in the 1/0 page. The initiation of an 1/0 
operation is reflected in the controller status after some implementation-dependent 
amount of time. Timing-independent software must avoid sensing the status 
immediately after initiation. 

I/O initiation can occur in two ways: 

If the controller is idle after an 1/0 operation. the setting of a specific bit(s) in an 1/0 
register with an OUTPUT instruction may start the 1/0 operation. 

If the controller is never idle but performs some housekeeping at periodic intervals. then the 
1/0 initiation may be accomplished by storing the 10CB painter into a specific word of the 
I/O page. When the controller finds a non-zero value in that location. it will initiate the 1/0 
operation. An example of such a controller is a disk controller which does some amount of 
processing on every sector pulse. The controller updates the current sector address and 
examines a specifiC location for an 1/0 initiation. 

Data Transfer 

The data transfer between the device and nlemory is controlled by the contents of 
the 10CB. 

The handling of fixed and variable length blocks, byte, word, and multi-word 
boundary processing, detection of incorrect length and data chaining is 
controller-specific. The 110 facility does not preclude the implementation of such 
features. 
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During the data transfer, memory related faults may occur which must be handled 
by the controller. The action taken by the controller depends on the nature of the 
device. Immediate termination and the setting of the appropriate status bits 
followed by a process wakeup is the· normal mode of fault handling as described 
under "Error Handling". If data transfer must continue to prevent loss of media 
position, for example on magnetic tapes, a suitable alternative fault handling 
approach must be implemented. 

Termination and Process Wakeups 

Unless periodic software polling is preferred for some devices, normal and 
abnormal termination of an I/O operation will be signalled via process wakeups 
after the ending status is stored in the appropriate I/O registers or locations in the 
I/O page. 

The processes which shall receive wakeup requests upon termination are under 
software control. 

Status Information 

Termination status must provide the software at the Mesa level with sufficient 
information to identify the kind of termination (normal or abnormal), what software 
recovery steps are necessary and what user intervention actions are required. 

The status described above is summary status in support of software I/O handling. 
Every controller must also maintain detailed diagnostic status which identifies the 
specific failures which led to an abnormal termination. The software shall be able 
to sense the fault status for error logging. 
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Dedicated Addresses and Functions 

This section describes the assignment of block 0 and block 15 1/0 registers and 
words in the I/O page and the associated functions. As indicated above, these 
blocks are reserved for the processor and special device controllers which are 
part of the processo~ 

1/0 page Block 0 

The assignment of block 0 (words 0 through 15) of the 1/0 page is as follows: 

Word Description 

0-1 Time of Day 
The processor maintains a 32-bit time value which is incremented at one millisecond 
intervals. 

2 MaxVM 
3 MaxRM 
These locations are loaded as part of initialization with the maximum size of the virtual and 
real address spaces. The size is expressed in pages (0 indicates 2""16). 

4-15 Unassigned 

1/0 page Block 15 

The assignment of block 15 (words 240 through 255) of the I/O page is as 
follows: 

Word 
240-243 

Description 
110 Controller addresses 

These locations contain a left-justified 56 bit value for establishing 1/0 controller 
addresses during boot and 1/0 reset. Each set of four bits define the address for a 
controller. Bits 0 through 3 define the address for the first controller, bits 4 through 7 for 
the second etc. 

244 Type1 Error Buffer Pointer - see "Error Logging" 

245 Type2 Error Buffer Pointer - see "Error Logging" 

246-255 Unassigned 
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Block 0 1/0 Registers 

The assignment of 1/0 registers 0 through 15 is as follows: 

110 
Address 

Description 

0-1 Processor Identification Input Register 
These registers contain a unique 32 bit processor identification number. The particular 
implementation for attaching the identification numbers to the processor must be specified in 
the design specification. 

2 Character Printer Input Register 
3 Character Printer Output Register 
One input and one output register have been assigned to the character printer. The 
software is expected to poll the input register at the appropriate intervals and determine 
from the state information obtained from the input register when the next command may be 
sent to the printer via the output register. The specific assignment of bits must be 
described in the design specification based on the selected printer implementation. 

4 
5 

RS 232 Input Register 
RS 232 Output Register 

One input and one output register have been assigned to the RS 232 commu'lication 
interface. The specific bit assignment must be described in the design specification. 

6-15 Unassigned 

--
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Block 15 1/0 Registers 

The assignment of I/O addresses 240 through 255 is as follows: 

1/0 Description 
Address 

240-253 Unassigned 

254 Diagnostic Readout Register (output) 
This register is available to the firmware and software to display error conditions detected 
by diagnostics, during system bootstrapping. or when the control program is unable to 
communicate to the user via other means. This register will drive a set of indicators. 

255 System Control Register (output) 
The system control output register is assigned to system control functions as specified 
below: 

Bit Description 

0: 110 Reset. Setting this bit will cause a global 110 reset to all controllers. I/O 
controller addresses are reestablished during. 1/0 reset from the 1/0 Page. words 240 
through 243. 

1; Restart Watchdog Timer. Setting this bit will restart the watchdog timer. The 
software must restart the watchdog timer at appropriate intervals in order to avoid a 
watchdog timer system restart. 

2: Software Boot. Setting this bit will cause a software initiated system boot. 

3: Disable processing of type 1 errors (this bit is set during initialization). 

Block 1 through 14 1/0 Registers 

The assignment and use of 1/0 registers within a block is controller-specific with 
the exception of register 0 in every block. Register 0 contains the controller type 
identification number as well as indicators of installed optional features. 

The software shall be able to issue INPUT instructions to these 1/0 registers. i.e. 
16.32,48 ... 208, and 224 and determine from the registers the number and type of 
controllers connected to the processor. 

I/O Controller Configuration 

In addition to special device controllers which are considered to be part of the 
processor, up to 14· 1/0 controllers may be connected to the processor 1/0 bus. 

The processor 1/0 bus provides a common signal, timing and protocol interface to 
which all controllers which are part of a specific processor implementation must 
adhere. Based on this approach, a given controller may be connected to anyone 
of the available controller positions. 

Configuration flexibility is achieved through soft controller addressing (bits 0 - 3 of 
the 1/0 address). Tentative controller addresses are established at system 
initialization time for the purpose of locating potential load devices by reading 
register 0 of every controller. The load sequence may then modify these 
addresses once the physical arrangement of the controllers is known, and load the 
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software. 

Once the software is loaded, the controller address assignment may be changed 
by the software (via I/O reset) to order the priority of the I/O controllers 
appropriately. 
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APPENDIX A 
Mesa Instruction Set Summary 

Numeric values for opcodes have not been assigned at this time. 

Values of Processor Constants (*= value not determined - value given is approximate) 

Name 

av 
MaxAllocSlot 
LargeReturnSlot 
sd 
gft 
stkmax 
psv 
localbase 
globalbase 

Value 

0" 
20" 
Determined 
22" 
46* 
8" 

4" 
10* 

by software 
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Figure 3: A Mesa String 
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Context P 

PC: 

Pl: PORTO 

P2: PORTI 

Context P 

Pori p Pori q 
inport '"port 

0 l-r1 0 
q p 

oulporl 

(a) 0 has transferred to P via the PORTO at 01. 

Control is in p. bul nol yel al P1 

a is pend,ng on q. 

Port p 

oulporl 

Pori q 

:> 

:> PC: 

inporl ,nport 

r-P2_-I ~<------C~~=::::lt=JE--Fd~:§:~=:::r-7 

P1: PORTO 

P2: PORn 

Contexl P 

PC: P2 < 

Pl' PORTO 

P2: PORTI 

oulporl oulporl 

(b) P has execuled thl! PORTO al Pl, and conlrol has passed 10 O. 

o has nol yel execuled Ihe PORTI al 02. 

P is pending on p. 

Port p Port q 
inporl inport 

P 1< LJ 0 
q p 

oulporl oulport 

(e) 0 ha:. executed Ihe POrlfl ai 02. saY,ng the I."k I,m '!lei.rccl Ionk) 

Context 0 

PC: 02 

01: PORTO 

02: PORTI 

Conlext 0 

PC: 

01: PORTO 

02: PORn 

Conlext 0 

PC: 

01' PORTO 

02: PORn 

in q o"tporl. Any allcnJ;J1 10 transfer 10 0 through CJ will bult, s,nce q .nporl 0 

P is pending on p, 

Figure Sa: Port to Port Control Discipline 
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Context P 

pc: 

PI: PORTO 

P2: PORTI 

Conle~t P 

PC: P2 

PI: PORTO 

P2: PORTI 

Conlext P 

pc: 

PI: PORTO 

P2: PORTI 

Pori p 
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(a) Control is in P, before PI 

Port p 
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RET 
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Pori p 
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o 
o 

oulport 
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Figure 5b: Port to Procedure Control Discipline 
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P: 

Pl: 

P: 

Pl: 

P: 

P1: 

Conlexl P (il procedure) 
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RET 

Conlext P 

SFC 

RET 

a > pc: 

oulpor! 00: 

01: 

02: 

03: 

(il) Conlrol is in P, about to execute the SFC at Pl. 

The slack contains an indirect control link poinllng to q. 

a is pending on q. 

(a procedure) 
Pori q 

inport 

< 
a pc: 
P 

outport 

(0) Conlrol has passed 10 0, and Ihe PORTI at 01 has been execuled. 

q.oulporl conlains P (a frame pOlnler) 

00: 

01: 

02: 

03: 

Conlcxt P (a procedure) 
Port q 

inport 

src 

RET 

Q > 
P 

outporl 

(c) 0 has execuled Ihe PORTO at 02, ~nd control has relu,,,,,d to P. 

o is aU;)tn pcndlll9 On q. 

Figure 5c: Procedure to Port Control Discipline 
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