
DORADO

MIDAS MANUAL

26 November 1979

by

Edward R. Fiala

Xerox Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto, CA. 94304

Filed on: [Ivy]<DoradoDocs>DoradoMidas.press
Sources on: [Ivy]<DoradoSource>DoradoMidasManual.drn

This manual describes a largely machine-independent loader/debugger for microprocessors originally developed
for the Maxc2 computer and since used for the Dorado, DO, and M68 microprocessors. This manual is
specialized for the Dorado version of Midas.

TIlis manual is the property of Xerox Corporation and is to be used solely for evaluative purposes. No part
thereof may be reproduced, stored in a retrieval system, transmited, disseminated, or disclosed to others in any
form or by any means without prior written permission of Xerox.

Dorado Midas Manual Edward R. Fiala 26 November 1979 2

TABLE OF CONTENTS

1. Introduction .. 4
2. Storage Requirements. .. 4
3. Starting and Exiting from Midas. 5
4. Midas Display and the Mouse. .. 6
5. Name-Value Menus. .. 7
6. Command Menu 9
7. Keyboard 11
8. Command Files 12
9. Syntax of Command-file Actions 15

10. Registers and Memories Known to Midas 17
11. The 1M Memory and Virtual Addresses. 19
12. Registers and Memories that Contain Microinstructions. . .. 19
13. Task-Specific Registers. .. 22
14. BR Addressing Kludge 22
15. STKX Kludge. 22
16. Memory System Registers and Memories. 22
17. Memories and Registers Associated With the DMux 24
18. Interface Registers : 25
19. Config ... ~ 25
20. SetClk................................. 25
21. Reset..................................... ... 26
22. Loading Programs 28
23. Dump and Cmpr . 29
24. Brk and Unbrk .. 29
25. Go, SS, Proceed, as, and Call. 30
26. When Registers are Read/Written

Restrictions on Continuing 31
27. Hardware Failure Reporting 33
28. Hardware Checkout Facilities 34
29. Parity-Error Scanning 34
30. Testing Directly From Midas 34
31. LDRtest 37
32. Scope Loop Actions: Fields, RepGo, RepSS, RepT2 37
33. H\-VChk 38
34. DMux Consistency Checker 38
35. Poking: Tl, T2, and T3 . 40
36. Passive Mode 40
37. MIRdebug Feature 41
38. Failure Diagnosis 41
39. Baseboard Microcomputer Stuff 42
40. Command Files Used With "RdCmds" 45
41. DMux Signal Assignments 46

Dorado Midas Manual

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:

Edward R. Fiala 26 November 1979

LIST OF TABLES

Command Menu Actions. 10
Command File Name-Value Actions. 14
Command File Command Actions. 15
Memories 17
Registers . 18
Test Data Pattern Actions . 35
Test Items in the Name-Value Display 36
Other Test Actions. 37
Command Files . 45
Control Section DMux Signals 46

Table 11: BaseBoard DMux Signals. 48
Table 12: Processor DMux Signals '.' 49
Table 13: MemC DMux Signals 52
Table 14: MemD DMux Signals 54
Table 15: MemX DMux Signals 56
Table 16: Disk Controller DMux Signals 60
Table 17: Ethernet Controller DMux Signals 61
Table 18: IFU DMux Signals 62
Table 19: Display Controller DMux Signals 64
Table 20: Other DMux Stuff 65

Figure 1: Midas Display

3

Dorado Midas Manual Edward R. Fiala 26 November 1979

l. Introduction

Midas is a loader/debugger that runs on an Alto and controls its target machine remotely. It can
load/dump microprograms assembled by Micro, examine and modify storage, and tcst hardware in
an assortment of ways. V ersions e~ist for Maxc2, Dorado, DO, and M68 microprocessors.

Midas is coded about 95% in Bcpl and 5% in assembly· language. The Maxc2 version was
implemented by E. R. Fiala and H. E. Sturgis. The Dorado, DO, and M68 versions consist of
machine-independent modules implemented by E. Fiala (Overlay and LoadRAM packages
implemented by L. Deutsch and Alto microcode by E. Taft are also used) and machine-dependent
sections implemented by E. Fiala for Dorado; D. Swinehart and P. Baudelaire for M68; and D.
Charnley, C. Thacker, B. Rosen, C. Hankins, and E. Fiala for DO.

An internal description of Midas is available to anyone interested in adapting Midas to a new
hardware system (see [Ivy]<DoradoDocs)MidasInternal.Press).

2 S.torage Requirements

Midas requires about 500 Alto disk pages, using the following files:

Midas.Run
Midas.Syms
Midas.Errors
Midas.Programs
Midas. UserPrograms
*.Midas
*.mb
Midas.RunProg
Midas.Dtach
Midas.Fix Ups
Midas.Compare

-350 pages
-40 pages
-8 pages
-2 pages
-2 pages
- 2 pages each

-31 pages
-31 pages
-2 pages
-2 pages

Error message strings for Midas swat calls
(Discussed below)
(Discussed below)
Command files for "RunProg" and "RdCmds" actions
Assorted micro-binary files loaded by command files
Built by Midas/I
Built by Midas/I
Created by Midas/! (used when loading .MB files)
Created by Midas/I, written when "Cmpr" action fails

Dorado Midas can be obtained by loading [Ivy]<Dorado)DoradoMidasRun.Dm and retrieving
<Dorado)Midas.Programs with Ftp. You must do Midas/I to initialize Midas on your disk after
retrieving these. Subsequently, new versions of Midas can be retrieved by executing the
NewMidas.cm command ~le from the Alto Executive. Midas runs only under OS versions 17 or
later.

To setup an Alto disk for use in Dorado microcode development or hardware debugging, you can
install the Alto OS on a blank disk using the long installation dialog and erase the disk. When
this finishes, fetch [Ivy]<Dorado)DoradoUnbugDisk.cm and execute this command file from the
Alto Executive; it will retrieve Midas and a number of other files that are needed when using an
Alto to control Dorado.

4

Dorado Midas Manual Edward R. Fiala 26 November 1979

3. Starting and Exiting from Midas

Midas may be started from the Alto Executive in the following ways:

midas/i
midas
midas debug

initi.alizes (required when any Midas files move or change);
simply fires up Midas;
starts Midas and immediately reads commands from the
"Debug.Midas" command file

Dorado Midas may attach to any of up to 20 machines accessible through its Diablo Printer
interfac:e. If only one machine is accessible, it immediately connects to it; if more than one
machine is there, it first puts up a 1:r1enu of accessible serial numbers, and then connects to the
one selected by the user. After connection, subsequent actions affect only the connected machine.

Midas will seize the hardware only if the connected machine is halted; if running, Midas waits for
the machine to halt or for yoU' to execute "Abort" or "Dtach" actions. "Dtach", equivalent to
exiting to the Executive and restarting Midas, also appears in the main command menu and in the
submenu put up by "Go", so you can start a microprogram running with "Go" on one Dorado,
then "Dtach", connect Midas to another machine, and do something else (However, if you Dtach
and later reattach to a machine, you will have lost the display configuration and address symbols,
which might be inconvenient).

Note that there are two different arrangements for the initial Midas display. For both
arrangements the left-hand display column. shows the principal Dorado registers, and the middle
column shows several other items. When you initially attach to a machine, the right-hand column
will show voltage, temperature, and current readings collected by the baseboard microcomputer;
after a "RunProg" action, the right-hand column will show items used by Midas hardware testing
actions.

To exit from Midas type SHIFT -SWAT (Le., simultaneously depress the left-hand shift key and
the right-most, lowest unmarked key); this will close any open output files prior to exit and
disconnect the Alto from the Dorado it was controlling. Note that on "Dtach" or exit, if the
Dorado was running, it will not be disturbed, but if halted, Midas first restores the hardware state
as though it were about to continue, so it will be possible later to reattach and continue a program
that was stopped at a breakpoint.

5

Dorado Midas Manual Edward R. Fiala

4. Midas Display and the Mouse

The Midas display is arranged as follows:

Blank area at the top (unused);
20 lines x 3 columns of name-value menus;
Blank line;
Program and elapsed time line;
Blank line;
Two command comment lines;
Blank line;
Three lines of command menu;
Blank line;
Input text line;
Blank area a the bottom (unused).

26 November 1979

The program line will show the Midas release date or the name of the last program loaded. The
right-most part of this line will show elapsed time during long-running actions such as "Go" or
"Test"; it shows the execution time of Midas initialization, the last command file, or the last action
at other times.

Midas uses the two comment lines to report results of actions that it executes.

When you move the niouse over a name-value menu or the command menu, the selected item (if
any) inverts black and white. Mouse actio'ns ef(ecute when you RELEASE all mouse buttons, so
you can move the mouse with buttons depressed without causing damage. If the mouse has
moved off of the menu that was selected when the first button went down, nothing will happen
when the buttons are released.

Some menus have additional actions "underneath" the ones normally displayed which will appear
when you depress appropriate button combinations, as discused below. In other words, when you
DEPRESS buttons, the menu may change; when you RELEASE ALL BUTTONS the selected
action will get executed. On Dorado Midas, only name-value menus have actions underneath the
ones normally displayed.

Since you can neither depress a button combination simultaneously nor release the buttons
simultaneously, Midas accumulates the union of all buttons that go down. This button-union
governs the "underneath" menu displayed, if any, and is the argument passed to the action
procedure when all buttons are finally released.

6

Dorado Midas Manual Edward R. Fiala 26 November 1979

5. Name-Value Menus

A name-value menu may contain a register or memory address in the name area and its contents in
the value area. A memory address may be specified as the memory name and word number, or as
the name of an address symbol define<! in a microprogram you have loaded. The address symbol
may be followed by + 1- displacement. If a number (default radix 8) is examined, the memory
name is defaulted to "VM," so examining "1234" will cause "VM 1234" to be displayed.

Name-value areas are of different sizes. Smaller menus on the left are already filled in when you
fire-up Midas; others are empty. Any item can be put in any menu, but larger menus on the
right are better for items with long names or v.alues. If an item overflows its menu, the right-most
characters of its name get truncated, then the left-most characters of its value.

To display a new item, type its name (which will appear on the input text line), move the mouse
over the name field in a name-value menu; and push-and-release the left (top) mouse button.
Memory addresses in your microprogram may optionally be followed by a displacement" +n" or
"-n"; " nIt is the same as "+ n". Midas will obtain the value of the item from the hardware and
display it.

If the command line is empty, the selected menu will be cleared when the button is released.

The address and data items in a name-value menu are affected by the radix and display mode for
the item, initially defaulted from a table indexed by the register or memory number. The address
offset and value radices are always identical--Midas does not allow these to be independently
specified. On Dorado, octal radix is used for everything except the microcomputer memories
($ABSOLUTE and $ABS), where hexadecimal is used. The user may change the radix with the
actions discussed below.

The djsplay mode for a value may be either numeric, search, or symbolic.

Numeric mode shows the value as a sequence of numbers (in the chosen radix) separated
by blanks; this is the default for almost all items.

Search mode shows tlle value as an address symbol plus offset; this is illegal except for
registers or memories that normally contain pointers into some other memory (e.g., on
Dorado, search mode for TPC, TLINK, etc. shows the nearest 1M address symbol less­
than-or-equal to the value plus an offset; for MEMBASE, BR address symbols are
shown; for TIOA, DEVICE address symbols are shown.). Search mode is not the default
for any memory or register because it is slightly slower than numeric mode due to
symbol table access and because more screen area is required to accommodate long
address symbols; however, you may find search mode convenient for some of the items
mentioned above.

Symbolic mode results in a special procedure being called to print the value for the item.
Symbolic mode is illegal except for the MSTA T memory and the UPTIME and
TGLITCH registers on Dorado; for these it is the default; special procedures do not exist
for any other items.

7

Dorado Midas Manual Edward R. Fiala 26 November 1979

When Midas thinks that the value in a register may have changed, it reads its value from the
hardware and updates the display; the times when Midas does this are discussed later. Names are
sometimes preceded by *, indicating that the value has changed, or by -, indicating that Midas
was unable to read the value for some reason (e.g., the machine was running). For an item
marked with , the old value, which might be wrong, is displayed.

Once some register or memory address has been put into a name-value menu, various mouse
button combinations over the name or value may be used to modify the way it is displayed,
sequence through words in a memory, pretty-print the value on the comment lines, or show
address equivalences. These are summarized in the table below:

Buttons Name-field Value-field

Left Examine Change value
Middle Alternate printout Pretty-print value on comment lines
Right A+l, A-I menu Append value to input line
Left + Middle Radix menu Radix menu
Middle + Right Fill column menu Display mode menu

When a button combination selects an alternate menu, the alternate menu will replace the
standard menu while the mouse buttons are depressed; if you release the buttons over an alternate
menu item, it will be executed; if you are outside the menu when the buttons are released, the
standard menu will be restored and nothing will happen.

The "A+l", "A-I" menu appears for memory addresses, but not for registers; these increment or
decrement the memory address in the menu, displaying the successor or predecessor. The "FillC"
menu allows you to examine successors '(A + 1, A + 2, etc.) in the menus below the selected one;
the whole column is filled with successors, if the input text line is blank; otherwise, the input text
line is evaluated to a number N, and N lines are filled in with successors. The last address
examined is left on the input text line, so you can iterate the examine and fill column actions to
achieve scrolling.

Releasing the left button over a value stores the value of the input text (or 0 if no text typed) in
the selected register. For memories and registers whose values are displayed as several fields, the
input text must also be divided into fields; omitted fields are zeroed. Each field may consist of
numbers or memory addresses separated by + /-; expressions are evaluated using the radix for the
item.

Note: On DO and Dorado, 1M memory words show an absolute address with each value; it is impossible to
modify this address from Midas--the correspondence between virtual and absolute addresses can only be
established by loading a microprogram. Several other items also have read-only fields that cannot be
written, as discussed later.

Provision is made for special input evaluation based upon the register or memory; whenever the
input text cannot be evaluated as a sequence of fields, the special input procedure (if any) is
called. At the present time, special input procedures are implemented for registers and memories
that contain microinstructions (MIR, IM, IMX, IMBD, and LDR on Dorado) and for 16-bit
registers. These are discussed later.

8

Dorado Midas Manual Edward R. Fiala 26 November 1979

Releasing the middle button over a value pretty-prints the value on the command comment lines.
The alternate for registers that nOlmally hold 1M addresses is the nearest 1M address tag less-equal
to the value + offset. Registers and memories that contain microinstructions may also be printed
symbolically. Other pretty-print information is detailed later.

Releasing the right button over a value item appends the text of the value to the input text line.
This is primarily used in command files to move values from one register to another or to display
a memory address that is pointed to by the value in some other register.

6. Command Menu

The command menu holds a list of actions that Midas can execute. The basic menu is modified
under some conditions. For example, the "Dump" menu item only appears after you have done a
"Ld". During execution, some actions show alternate menus.

For almost all actions in the command menu, mouse buttons are equivalent. On Dorado, the
"Go" and "SS" actions are an exception; executing one of these with the right button is
interpreted as "proceed," left button as "new go." The "DMux" action is also an exception.

Many common actions may alternatively be initated by keyboard command characters, as given in
the action table below.

9

Dorado Midas Manual Edward R. Fiala 26 November 1979 10

Table 1: Command Menu Actions

Input Char Menu Item Comments

Actions (potentially) available on all implementations of Midas

[File]
[File]

File
Files
Files
[File]

[File]
Addr
IMaddr
[IMaddr]
[IMaddr]
[IMaddr]

[IMaddr]
IMaddr

IMaddr
IMaddr

LDRaddr

;L

.;D

;C
=
;B
;K
;G
;P

}

;R
;S

RunProg
RdCmds

ShowCmds
WrtCmds
Ld
LdSyms
Dump

Cmpr

Brk
UnBrk
Go
Proceed

SS

Reset
Test

TestAli
Rep Go
RepSS
PEscan

Fields
LDRtest
Virt
Abs

Actions peculiar to Dorado Midas

SetClk

[IMaddr]

[IMaddr]

T1

T2

T3

RepT2
Dtach
Config

DMux
OS

SimGo
SimTest
HWChk
Active
Update

Reset symbol table and display, then do RdCmds.
Executes command file (def. ext ".Midas") on input text line or from
submenu.
Shows command file text for selected menu items.
Write subsequent commands on File.
Loads .MB files (names separated by ", ").
Loads only addresses from .MB files.
Dumps compacted .MB file using the .MB file(s} of the previous load
to control what's dumped.
Compares hardware data to that in .MB file.
Prints value of an address (illegal in com-file)
Inserts break point
Removes breakpoint (default address = last break).
* Start at address (continue if nothing typed).
* Start at address without 10Reset or control section reset (continue from
break if nothing typed).
Single-step at address (continue-step if nothing typed).
Call subroutine with args (e.g., "FOO(Al,A2)").
Reset the machine; assorted options from a submenu.
* Test register, memory, or other test with data pattern and item selected
from submenus.
Test everything.
* Go at address, repeatedly restart after halts.
* Repeatedly SS at address.
Scan local memories for parity errors (IMX, IFUM, RM, STK,
CACHEA, and CACHED on Dorado).
* For scoping.
* Manually-constructed test sequences.
Changes 1M address interpretation to be virtual
Changes 1M address interpretation to be absolute.

Set the clock speed from a submenu.
Clocks MIR through tl, reads the DMux, then clo.cks through t2 and
restores MIR (so display shows DMux values read after tl).
Clocks MIR through 12, reads the DMux, and restores MIR (so display
shows DMux values read after t2).
Clocks MIR through t3. reads the DMux, then clocks through t4 and
restores MIR (so display shows DMux values read after t3).
* Repeatedly does t2 (for scope loops).
Disconnects Midas and repeats the connection procedure.
Modify board configuration, cache, map, storage, and 1M parameters
from submenus and adapt Midas to these.
Modify display of DMux items as discussed later.
* "Opcode step" = SS program until a halt condition occurs or an
IFUJump has been executed.
* Uke "Go" invoking the DMux checker after each step.
* Random instruction test using MIR and the DMux checker.
* Displays submenu of tests and scope loops for hardware checkout
Active, PrePassive, and Passive modes discussed later.
Read registers and display new values (used while passive)

* = requires preceding "TimeOut" action in command file
requires confirmation with <cr>, "Y", or (or by preceding "Confirm" command in com-file)
[...] = optional input text

Dorado Midas Manual Edward R. Fiala 26 November 1979 II

Some actions in the preceding table are replaced with complementary actions after execution;
these are ShowCmds by StopShow, WrtCmds by StopWrt, Virt by Abs. The Active, PrePassive,
and Passive actions are in a "ring"; the current hardware mode is shown in the menu; bugging it
will change to the next mode. The DMux action will be displayed as "DMux", "OldDMux",
"DWrong" , or "DChk" according to which DMux table is currently displayed. All of these
actions are discussed later.

General philosophy on mixing keyboard and mouse button control is that, when possible, a
command involving some typing is carried out completely at the keyboard, whereas commands
involving mouse buttons are carried out completely with the mouse.

For example, to start a microprogram at some address, you normally type an address; then you
could bug "Go" in the command menu, but probably "address;G" is more convenient because
you won't have to lift your hand from the keyboard; ";G" are the command characters equivalent
to bugging "Go".

Many commands are executed in overlays. When these get executed, the register display will turn
off (The code for overlays resides where the display bit buffers would otherwise be.). During
loading or execution of command files, the display is turned off to make the machine run faster.

Long-running commands normally display an "Abort" menu item. When this is bugged or when
control-C is typed, the action terminates.

7. Keyboard

"=", "+", "-", "#", and "!" are legal symbol constituents in microprograms but will cause
trouble for Midas if they appear in address symbols. " =" is an action character that will
prettyprint the memory name and offset and the nearest address symbol less-than-or-equal to the
value of the string on the input text line. "+" and "-" have their usual sum and difference
meanings in evaluating input expressions. "# " (octal), "!" (decimal), and "%" (hexadecimal) may
be inserted anywhere in a number to overrule the default radix; e.g., "#123" or "123#" will
force the evaluation of the number "123" to be in octal. The default input/output radix for
almost everything on Dorado Midas is 8 (octal).

Exceptions are UPTIME and TGLITCH, which show hr:min:sec in decimal and the $ABS and
$ABSOLUTE memories, which use hexadecimal for both the address and value.

Lower case typein is converted to upper case by Midas, so avoid lower case characters in
microprogram address symbols. You should write microprograms with the shift-lock key
depressed or assemble them with the convert-to-upper-case assembly switch.

Typing ahead is legal until the character you type would cause execution of an action. After that,
Midas will flush input and blink at you until the current action finishes.

At the end of an action, input text typed for that action is displayed on the input text line. This
text remains valid and can be used as the arg for another mouse action. However, if you type any
character (except control-A or backspace), the old input will be flushed before inserting the new
character.

Dorado Midas Manual Edward R. Fiala 26 November 1979 12

Keyboard editing characters are as follows:

control-A
backspace
control-Q
del

delete last character
delete last character
clear text line
clear text line

Other special keyboard characters are as follows:

control-C

control-Z
escape
return
control-D
controi-O
shift-swat

abort the current action--equivalent to bugging the "Abort" command (only defined for
actions that display "Abort")
abort a command file
repeat previous aclion (special for "Test" and "TestAll")
special following "Test" or "TestAll"
turns on the display (used during command files)
turns off the display (used during command files)
exit cleanly from Midas

The interrupt characters above are ineffective during loading, dumping, or comparing, which
typically take between 2 and 20 seconds. Indefinite duration commands, such as "Go", "Test",
etc. always monitor the keyboard, so control-C can be used. to terminate them.

Control-Z, control-D, and control-O are intended for use during command files. However, these
characters do not take effect until the command file executes a command such as "Go" which
monitors the keyboard. There is no way to abort a command file and give control back to Midas
safely except during a "Go" or other long-running commaI).d. This is not expected to be a
problem because commands are 'executed quickly.

After interrupting a "Go" with control-C or control-Z, proceeding with ";P" or ";G" will succeed
except when you have smashed the machine state by doing a "test", "reset", etc. action or have
displayed a register that Midas cannot examine non-destructively (e.g., IFUM on Dorado can only
be. examined destructively) or have interrupted an instruction from which continuation is
impossible.

Although command menu items "SS", "Go", "Brk" , "UnBrk", "RepSS", and "RepGo" are
provided, the keyboard character equivalent to these is usually more convenient.

8. Command Files

Command files (default extension ".Midas") are normally executed either by typing "Midas
filename" to the Executive or by bugging a file name in the subsidiary menus put up by
"RunProg" or "RdCmds". Alternatively, you may type a file name fii'st, then bug one of these
actions (If you type a file name after the subsidiary menu is put up and then bug "Abort", the
command file will also be executed; it is not clear whether this is a bug or a feature.).

File names in these sub-menus are contained in the files Midas.Programs and Midas.UserPrograms, each of
which has a list of file names separated by blanks, commas, or carriage-returns. Midas.Programs is part of
the standard Midas release; Midas.UserPrograms is an optional file that a user of Midas can prepare with
his own sluff. The names must be UPPER-CASE. These lists serve two purposes: building file FP's to
speed OpenFile, and preparing the menu items for "RunProg" and "RdCmds".

If the file name contains no extension, then hint FP's will be built for both name.Mil and
name. MIDAS and name will be put in the "RunProg" menu. (However, the hint FP's are not

Dorado Midas Manual Edward R. Fiala 26 November 1979

built unless the file exists, and the file name will not be put in the "RunProg" menu unless
name.MIDAS exists).

If the name ends in "*", a quick OpenFile table entry is made for name.midas and the name
wiII appear in the "RdCmds" menu.

If the file name contains an extension, then it will be put in the quick OpenFile table, but won't
appear in the "RunProg" or "RiiCmds" menus.

Since Midas builds a table of file FP's during its initialization, when you edit a command file or modify a
.MB file, you should reinitialize Midas by typing "MidaS/I". When you add new command files or .MB
files you should update the "Midas.UserPrograms" file appropriately and do "Midas/I".

13

"RdCmd~" executes the actions stored in the command file; it is frequently used to modify the
display in various ways by executing command files that show collections of items that are of
interest.

"RunProg" first clears the symbol table and restores the display to its initial arrangement; then it
executes 'the actions in the selected command file; "RunProg" is used to completely change
contexts--to run a new microprogram, for example.

Generally, there is one "RunProg" command file for each hardware diagnostic, with the same name as the
diagnostic, e.g.:

dgbasic.mb
dgbasic.midas

the diagnostic;
the command file.

A command file following this convention loads the diagnostic into the microprocessor and displays various
registers of interest when the micropro~ram is in use.

The command-file facility is actually an (awkward and limited) programming language. The
collection of actions dIscussed below is being developed so that command files can monitor
diagnostic microprograms, collect and report error information on an output file, or direct the
sequence of diagnostic microprograms according to hardware failures that are observed.

For system microcode, command-files can be used to control auto-restart and failure diagnosis.

Command files can be nested with "RunProg" and "RdCmds" subject to the following
RESTRICTIONS:

(1) [Maxc2 only] "AltIO" terminates command files (Le., upon return to Midas from AitlO the
command file will not be continued).

(2) Nesting is limited to 8 levels (a parameter that could be increased if more levels are needed).

Dorado Midas Manual Edward R. Fiala 26 November 1979 14

A number of commands that can never occur when Midas is run interactively are useful in
command files. These, not given in the table earlier, are shown below. The first table is for
actions that operate on name-value menus (AO ... C19); the second table for command menu (X)
actions.

Text Arg Action

Address Addr
Value Val

A+l
A-I

NCols FillC

Oct
Dec
Hex
Num
Sym
Search

Value SkipE

Value SkipG

'value SkipL
Value SkipNE
Value SkipLE
Value SkipGE

Table 2: Command File Name-Value Actions

Comments

Button actions as discussed earlier.
Button actions as discussed earlier.
Increment memory address, as discussed earlier.
Decrement memory address, as discussed earlier.
Fill name-value menus beneath the one selected with consecutive addresses starting at
the address contained in the selected menu.
Display address offset and value in octal.
Display address offset and value in decimal.
Display address offset and value in hexadecimal.
Display value numerically.
Display value symbolically.
Display value as an address symbol plus offset in the appropriate memory.
Skip the next command if the input text evaluates equal to the contents of the
register or memory word displayed. The input text is evaluated exactly as though it
were to be stored into the register displayed in that name-value menu, so if the
value displayed has several fields, the input text must also have several fields.
Skip if input text greater than the contents of the item in the name-value menu
(unsigned compare).
Skip if input text less than name-value item.
Skip if input text unequal to name-value item.
Skip if input text less than or equal name-value item.
Skip if input text greater than or equal to name-value item.

Dorado Midas Manual

Text Arg

Octal no.
. Tag
Octal no.
.Tag
Octal no.

Octal no.

File name
File name

[text]

text

text

File name

Action

Skip
Skip
BackSkip
BackSkip
Return
DisplayOn

DisplayOff
TimeOut

Confirm

OpenOutput
AppendOutput
CloseOutput
WriteMessage

WriteDT
ShowError

DumpDisplay
PrettyPrint

WriteS tate

Edward R. Fiala 26 November 1979 15

Table 3: Command File Command Actions

Comments

Skip N following commands, where N is the value of the input text.
Skip following commands until one is encountered with the label ... Tag" .

Reset to byte 1 of the command file, then skip.
Return out of current command file, then skip (... Tag" form is illegal for Return.).
Turn on the display, so that effects of subsequent commands can be observed. The
display is initially off for a command file.
Turns off the display.
Input text is evaluated to a 32-bit octal number of msec at which to abort the
immediately following command, if it has not finished by then. This is intended for
use before "Go" and other commands which might hang indefinitely. If the timeout
occurs, Midas will skip the comman.d after the "Go". TimeOut also turns on the
display, necessary because the machinery which checks for timeout is only active with
the display on. Note that TimeOut is required before the actions *'ed in the table
on page 4 and is illegal before other commands; Midas will complain if you do not
use TimeOut appropriately.
Supplies confi,rmation for the command which follows (which should be one of the
commands requiring confirmation).
Opens an output file (default extension ".Report") on which text can be written.
Append to an output file (default extension ".Report")
Closes the output file.
Writes the contents of the input text buffer on the output file. Note that if any text
follows the WriteMessage, that text up to but not including the <cr> is what gets
written. However, if <cr> immediately follows WriteMessage, then the contents of
the input text buffer left by the previous command get written. "-" is translated
into <cr> and .. ,.. into a blank.
Appends the current date and time to the output file.
Displays the text arg on the command line, turns on the display if it was off, and
queries with "Abort" and "Continue" menu items.
Writes t\:le current display image on the output file.
Evaluates text to a memory address, register name, or memory name; writes this
name on the output file; then pretty-prints the value on the output file exactly as it
would be pretty-printed on the comment lines if the item were displayed in one of
the name-value menus and middle-buttoned.
Used by Midas initialization to create the Midas.Dtach and Midas.RunProg files-­
users shouldn't use this action.

9. Syntax of Command-file Actions

The syntax of a command-file action is as follows:

[..... <tag>]$.. "]<buttons>$" "<menu>$" "<action>[$" "<text>][";"<comment>]<cr>

where the "U" denote that the ". tag" , input text, and ";comment" are optional. $"" denotes a
sequence of one or more blanks and tabs.

If the first character on the line is a ".", then the characters after that are a label or tag which may
be used as the argument for the "Skip" or "BackSkip" actions given in .the table earlier.

<buttons) may be any combination of the letters "L" (left-button), "M" (middle-button), and
"R" (right-button); these are the buttons released to execute the action. These may appear in any
order.

Dorado Midas Manual Edward R. Fiala 26 November 1979

<menu> is the menu name in which the action is executed ("X" for the command menu,
"AO" ... "A19", "BO" ... "B19", and "CO" ... "C19" for name-value menus).

<action> is the text name for one of the- actions (upper/lower case must match the definition).

<text> is the text typed on the command line, which may be anything except a n;n.

"." ,

Note that if a single blank tenninatcs <action> and if no input text argument is given, then input text left­
over from the preceding action will be used. This allows text from a right-button action over a value to be
used in a following action (e.g., in WriteMessage or to store the value into another reigster). However, one
or more extra blanks will reset the input text, so the action is executed with null input text

begins a comment, which may be omitted.

<cr> (carriage-return) terminates the action.

16

To find out what text .shquld be put in command files, you can bug "ShowCmds" in the
command menu. This will cause .the command file text for each command to be displayed on the
command comment line as the mouse selects it (You don't have to execute the command to see
the equivalent text.). This text is complete except that the mouse button which executes the
command isn't shown unless you depress the mouse button. To terminate "ShowCmds", bug
"StopShow" (which appears only when "ShowCmds" is in progress.).

You can prepare a command file (default extension ".Midas") by typing a file name and bugging
"WrtCmds". This causes text for subsequent commands to be put on the file. When you are
done with this, bug "StopWrt" to close the file. ("StopWrt" is in the command menu only when
a command file is being written.). Exiting from Midas also closes the output file.

You will probably want to edit out your goofs with Bravo after the command file is written.

In addition, you will have to insert "Confirm" before actions which require confirmation and
modify the "TimeOut" stuff which Midas uses to surround actions which might ~lang indefinitely
(See the table given earlier for the actions that require this.).

Here is a sample command file:

LX Ld dgl;
L AO Addr TASK;
LAO Val 0;
L Al Addr RTEMP;
L Al SkipEq\ FOO+3;
L X ShowError RTEMP not
L A2 TLINK 0;
L X TimeOut 2000;
L X Go START;
L X Skip 1;
LX ShowError START;G failed;

Equivalent to typing "dgl" and bugging "Ld" in the command menu
Examine the "TASK" register in name-value menu AO
Change the value in TASK to 0
Examine the address "RTEivIP" in menu Al
Skip the next command if RTEMP contains the value FOO + 3

loaded correctly
Examine the Link register for task 0 in menu A2
Abort the following command if it hasn't finished in 1.024 sec.
Begin microprogram execution at address "START"
Skip the next command if "Go" halts before timeout
Show an error message

Dorado Midas Manual Edward R. Fiala 26 November 1979 17

10. Registers and Memories Known to Midas

Memory Width
(octal)

!MBD 44

IMX 44
1M 100
TIC 20
TLINK 20
OLINK 20

. ALUFM 10
RM 20
STK 20

". STKX 20
T 20
RBASE 4
TIOA 10
MEMBASE S

MD 20
PIPE 40
BR 30
ROW
CACHEA 23
CACHED 20
MAP 20
~ 20

IFUM 40

DMUX 20
DRIST S4
VH 40

$ABSOLUTE 10
$ABS 20
MSTAT 40

LDR 44
MDATA und.
MADDR 40
TASKN 0
DEVICE 0

1. Task-specific

Length
(octal)

10000

10000
10000

20
20
20

20
400
400
77
20
20
20
20

20
20
40

100
400

10000
216
228

2000

200
40
40

216

21S
24

200
10
14
20

400

2. VirtuaVabsolute stuff applies

Table 4: Memories

Notes

4,S,6

6,7

1,2,6,7
1,2,6,7
1,2,3,9

6,7
6,7
6,7

1,6,7
1,6,7
1,6,7
1,6,7

1,9
8,9
6,7,11

6,7,11
6,7,11
6,11
6,11

6,7.10

4,9
3,4
3,4,9

6
9

3
3
3
3
3

Comments

Control store (via mufflers, manifold ops.--for
testing only)
Control store (absolute).
Control store (virtual).
Shows CIA for current task.
Shows Link for selected task.
Shows address of last call (if any).

o and 16 smashed and restored by Midas.

:::: STK[STKP-addressj
Waystation for A or Mar registers.
Used in read-write of RM.

Shows PipeD to PipeS (all signals high true)

Shows 4 cols and Victim/NextV of a cache row
Length is 2000 with 16k cache
Length is 40000 with 16k cache
Length is 216 or 218 with larger map ic's

Discussed in the "DMux" section.
Discussed in the "DMux" section.

Includes all state of microcomputer.
$ABSOLUTE shown in 20 bit units
Low words of $ABSOLUTE shown symbolically

Holds microinstructions used by Midas.
BITS-CHECKED etc. for testing.
LOOP-COUNT etc. for testing.
Symbolic task definitions
Symbolic device address definitions

3. Fake memory--artifact of stuff in Midas
4. Readout via DMux, so value shown is correct in passive mode.
S. Resets the control section, so "Continue" from b.p. illegal.
6. Appears in Test menu.
7. Appears in TestAll menu.
8. SRN addressed.
9. Read-only to Midas.
10. Resets the IFU, so "Continue" from b.p. illegal.
11. Smashes the fault task pipe entry to access the item, so "Continue" from task 17 b.p. illegal.

Dorado Midas Manual Edward R. Fiala 26 November 1979 18

Table 5: Registers

Register Width Notes Comments
(octal)

CPREG 20 2,3 Alto-baseboard interface register, freely smashed by Midas except in

MIR 44
IMOUT 44
TASK 4
Q 20
CNT 20
SHe 20
MEMBX 2
STKP 10
PROCSRN 4
MCR 20
CONFIG 20
TESTSYN 10

PCX 20
1NSSET 5

UPTIME 60
TGLITCH 60
STROBE 20
mOUT 20
EVCNTA 20·
EVCNTB 20
ESTAT 20
AATOVA 20

1. Read-only to Midas.

passive mode.
2,3,6 Microinstruction register, used ubiquitously by Midas.
1,6 Direct 1M outputs
5 Discussed in the "Task-Specific Register" section.
2,3 Waystation for write of registers on external BMux.
2,3
2,3 Special tests for RF(-, WF(-, and FF-controlled shifts.
2,3
2,3
2,3,6 Must be 0 on a "Go" to operate memory system normally.
2,3,6 Several bits are not testable; smashed and restored for memory stuff.
1
7 Must be 200 (error correction on) or 0 (error correction ofj) to operate

storage normally
1,2,3
2,3 Shows the (-Id count and instruction set (only the instruction set is

writeable)
1 Time since boot-button pushed from microcomputer
1 Time of worst power glitch seen by microcomputer
5,7 Discussed in the "Passive Mode" section.
5,7 Discussed in the "Passive Mode" section.
1 EventCntA register
2,3 EventCntB register
2,6 Read-write error halt enables, read error conditions
5 Translate absolute address to virtual

2. Appears in Test menu.
3. Appears in TestAlI menu.
4. Virtual/absolute stuff applies
5. Fake register--artifact of stuff in Midas
6. Readout via DMux, so value shown is correct in passive mode.
7. Write-only

Most registers and memories listed above correspond to ones discussed in the "Dorado Hardware
Manual". Others are discussed in the sections which follow.

MDATA and MADDR memories contain words used to report or control the activity of the
"Test" and "TestAll" actions discussed later. MADDR also contains DW ATCH (used to control
the DMux address for scoping), MIR-PES (error-reporting), and COM-ERRS (error-reporting),
which will be discussed later.

TASKN. and DEVICE are fake memories used to pass symbolic information from the assembler to
Midas in the .mb file, as discussed in the "Dorado Microassembler" document. Their only
purpose is to provide symbolic equivalents to task and device numbers for ease of debugging.

For approximately all registers and memories that contain 16-bit quantities, Midas will evaluate
input of the form "m"n", storing the value of "m" into bits 0:7 of the word and the value of "n"
into bits 8:15.

On Dorado, the items that accept "mun" are Q, CNT, SHC, EVCNTB, T, STK, STKX, CACHED, VM,
DMUX, and $ABS.

Dorado Midas Manual Edward R. Fiala 26 November 1979 19

11. The 1M Memory and Virtual Addresses

Because the placement transformations performed by MicroD make it difficult to correlate
microstore locations with positions in microprogram source files, the Dorado and DO
implementations of Midas use a map t~ transform virtual addresses produced by Micro into
absolute microstore locations produced by MicroD.

Two memories, IMX and 1M, each show the microstore. IMX is absolutely addressed; 1M
virtually addressed. When you fire up Midas, 1M is "empty"; when you load a microprogram, 1M
is filled with consecutive instructions from your source file, irrespective of where MicroD decides
to place these; the value displayed for an 1M address includes both the absolute address assigned
to it, the microinstruction, and some other information discussed in the next section.

In other words. if your microprogram is 10 words 100ig. the meaningful part of 1M is only 10 words long.
In this case. if you examine 1M addresses greater than 7. the printout will show an absolute address of 7777
and zeroes for the rest of the value.

'Midas will not allow you to modify the mapping between virtual and absolute addresses intcractively--you
can only do this by loading a microprogram.

To facilitate dealing with virtual/absolute correspondences, Midas has a mode switch that controls
the way in which registers and memories that normally contain microstore addresses are handled.
When you fire up Midas, the display is in absolute mode and the "Abs" action appears in the
command menu; when you lo.ad a microprogram, the display switches to virtual mode and the
"Virt" action appears in the command menu. Test actions will switch to absolute mode. The
current mode always appears in the command menu.

In virtual mode, the display shows the virtual equivalent for the value in any register that
normally contains a microstore address. When the value is outside the virtual memory, it prints as
7777. To find the absolute value in this case, you have to switch to absolute mode.

On Dorado the registers affected by this are CIA. ClAINC. TNlA. BNPC. TPC. TLINK. and OLINK.

A fake register called AATOV A converts absolute addresses to virtual. For example, copying the
value in some RM word into AATOVA will show the virtual equivatent; this' is useful when
return links are saved in RM words.

The general idea is that, if you suspect a hardware problem in the control section, you might work
in absolute mode, but in all other situations when a program is loaded you will work in virtual
mode, and the complications created by scrambled instruction placement will be concealed.

12. Registers and Memories that Contain Microinstructions

The MIR and IMOUT registers and the IMBD, IMX, 1M, and LDR memories all contain
microinstructions. A middle-button action over the value will print these symbolically on the
comment lines.

The value for an 1M address is shown as five fields on the display:

two PE bits (pE020 and PE2141);

Undef and Emu bits;

Dorado M idas Manual Edward R. Fiala 26 November 1979

148-bit absolute address;
bits 0-218 of microinstruction (RSTK, ALUF, BSEL, LC, ASEL);
bits 228-418 of microinstmction (BLOCK, FF, lCN).

20

A "I" in PE020 indicates a parity error in bits 08-208 of the value; a "I" in the second bit means
PE in 218-418. Both bits "I" normally indicates a breakpoint. Midas will store the data with bad
parity, if you request it. Note that these are parity-bad bits; on a write, Midas will compute
correct parity for each half of the microinstruction and xor that with the parity-bad bit; on a read,
Midas will determine whether or not the location has correct parity and report accordingly.

The "Under' bit is set when no absolute address is assigned to this virtual address--in this case the
absolute address should print as 7777. The "Emu" bit tells the pretty-print routine to show the
instmction as though it were being executed by the emulator (task 0).

IMX, IMBD, MIR, IMOUT, and LDR have a three-field printout in which the two PE bits are
left-most followed by the left and right halves of the microinstruction.

IMX and IMBD each address the microstore absolutely and differ only in the way data is read
and written. IMX is read and written by executing multi-cycle microinstructions that write the
microstore from the BMux and read the data into Link. This requires that both ContA and
ContB boards be present (plus ProcH and ProcL to compute parity). IMBD uses manifold
operations to address and directly write the microstore and uses the muffler system to read out the
microstore; this requires only ContB; however, the addressing method for IMBD makes
continuation from a break impossible, so users should normally display IMX in preference to
IMBD.

The IMOUT register contains the 448 DMux signals which are the direct outputs of the
micros tore, as addressed by the complicated stuff in the control section. At a breakpoint (to)
IMOUT shows the bits that will be loaded into MIR at t2, provided that the state of tlle branch
condition does not change at t1.

The LDR memory is an array in Alto core that ~ontains microinstructions used by Midas when
operating the hardware; it should ordinarily be of no interest to users, although the "LDRtest"
action allows use of instmctions stored in this memory for low-level hardware debugging.

Note that a bit pattern in LDR identical to one in IMX, 1M, or IMOUT in general is not the same
instnlction because the ALUFM memory may contain different contents when the LDR
instmction is executed. The pretty-print procedures account for this difference and show different
stuff for these two cases. However, if you copy an LDR instruction into 1M or IMX, watch out!
In debugging regular microcode (Le., any microcode that doesn't test ALUFM itselt), this
incompatibility is usually avoided because ALUFM 0 and 16 are assembled with the "B" and
"NOT A" alu operations, which are identical to the operations used by Midas.

Also note that the microinstruction pretty-print procedure does not have available all of the
infonnation that the microassembler had when you assembled your program, so the printout is not
always beautiful. The following are deficiencies you should be aware of:

From the hardware manual, you will remember that the interpretation of the BLOCK bit
depends upon whether or not tlle task executing the instruction is the emulator, and
memory references are interpreted differently for the fault and emulator tasks than for io

Dorado M idas Manual Edward R. Fiala 26 November 1979

tasks, so Midas will disassemble this stuff correctly only when it is able to deduce the
task that executes the microinstruction. Midas does have available the Emu bit for
instructions in 1M, and if you pretty-print an 1M address or an IMX or IMBD address
that also appears in 1M, Midas will be able to distinguish between. emulator and non­
emulator instructions; however, Midas cannot distinguish fault task microinstructions
from other non -emulator instructions, so fault-task memory references will be pretty­
printed erroneously. However, Midas very cleverly deduces the task for microinstructions
in MIR and IMOUT in most cases, so the pretty-print will usually be correct for these.

Midas is not clever enough to figure out what will be in RBASE when an instruction is
executed, so RM addresses from your program are not nOlTIlally pretty-printed; Midas
instead uses the generated names RO to R17 for RM references.

There are many possible assembler macros that you might use to generate constants to
control the shifter; for an instruction that does this, Midas will pick one of the forms,
probably not the one you used in the source file.

Midas sometimes pretty-prints control clauses differently from the assembler. IFUJump's
and IM/TPC read-write clauses are the same; the decision to print Return or CoReturn,
LocBr or LocCall, LongBr or LongCall, GBr or GCall is dependent upon Midas
deducing the virtual location for the instruction being printed and finding . + 1 in the
virtual space at . + 1 in the absolute space, so this might be wrong sometimes.
Conditional branches are always printed like "LocBr[addrl,addr2,BC)".

21

Modifying 1M words in octal is inconvenient, so you will normally want to use the symbolic
method below for patching 1M.

Writeable registers and memories that contain microinstructions (MIR, 1M, IMX, 1MBD, and
LDR) evaluate a special form of input as follows: The first character on the input text line should
be "(" to change the values of several fields in the instruction without clobbering other fields, or
"[" to reconstruct the value beginning with a no-op microinstruction. This is followed by a
number of clauses of the fooo "Field f-integer" separated by bianks and/or commas. The legal
field names are RSTK, ALUF, BSEL, LC, ASEL, BLOCK, FF, JCN, PE020, PE2141, and
EMUL. EMUL, the emulator mode bit affecting pretty-printing of the microinstruction is only
defined for 1M.

In addition to "field f-value" clauses, Midas interprets the standalone clause RETURN, and several
other items with "[]" enclosing a following argument. GO[va] (local branch), LONGGO[va] (long
branch), and GCALL[va] (global branch) evaluate the argument enclosed in brackets and treat this
as a virtual address in virtual mode or an absolute address in absolute mode; then they store a
branch of the selected type in the JCN field of the microinstruction; 1FUJUMP[n] evaluates n
which should result a number in the range 0 to 3, and stores an IFUJump instruction in JCN.
When you modify a microstore word (1M, IMX, or 1MBD memories), Midas will error-check that
the target for GO is, in fact, on the same page; Midas will always error-check that the argument
of a GCALL is at a global address. Arguments to GO, LONGGO, and GCALL will usually be
simple integers in absolute mode but may be expressions such as Faa + 3, where Faa is an 1M
address, in virtual mode.

Dorado Midas Manual Edward R. Fiala 26 November 1979 22

13. Task-Specific Registers

Midas treats all task-specific registers (T, RBASE, TLINK, OLINK, TPC, TIOA, MEMBASE, and
MD) as 20-word memories. In other words, "T 6" is the T-register for task 6.

In addition, a special kludge allows you to display the 21st word (Le., "T 20", "RBASE 20", etc.)
and have that be interpreted as the register for the currently selected task. The currently selected
task is the value in TASK; the TASK register is an artifact of Midas that is initialized to CTASK
(Le., to the "current task") at breakpoints.

In other words, when a microprogram halts at a breakpoint or because of a mouse-abort, CT ASK
is read from the DMux--suppose that it contains 6. This value is copied into TASK. If "T 20",
"TLINK 20", etc. appear on the display, these will show values for task 6. The idea is that you
can change the display for all eight task-specific registers by storing a new value into TASK. The
task selected by TASK is also the one started by "00", "SS", etc. as discussed later.

The hardware's LINK register, suppressed by Midas, is shown as' the current task's TLINK word.
The OLINK memory shows the absolute value in TLINK less 1. When microstore addresses are
displayed in absolute mode, this is useless. However, in virtual mode OLINK will usually show
the location that last did a CALL. This is useful in diagnostics which do BRANCH[ERROR],
where ERROR is at a global call location. After one of these branches, OLINK shows the
location that made the error branch, while TLINK shows an unrelated location.

14. BR Addressing Kludge

BR 40 is another addressing kludge used to represent the "currently selected" base register, or BR
MEMBASE[T ASK) (Le., the BR location pointed at by MEMBASE for the currently selected
task).

15. STKX Kludge

In debugging emulators, it is frequently desirable to view the STK entries relative to STKP rather
than relative to STK 0 (Le., relative to the top-of-stack rather than the bottom-of-stack). To aid in
this, Midas defines STKX as an alternate memory for STK. STKX[n) shows STK[STKP-n], where
valid values for n are 0 to STKP-l; hence, tlle top stack entries are STKX 0, STKX 1, etc.

STKX does not allow you to view entries on the wrong side of the stack pointer, and the display
will preface those names with "~", indicating unreadable, if they appear on the display.

16. Memory System Registers and Memories

The cache, map, and storage arrangement may vary from one Dorado to another but Midas can
deduce the configuration by reading the mufflers and looking at the CONFIO register; Midas
does this automatically when you attach to a new machine or when you execute the "Config"
action. Midas adjusts to the configuration by varying the lengths of its ROW, CACHEA,
CACHED, and MAP memories and adapting its algorithms for reading and writing these.

Midas always uses task 17 (the fault task) and srn 1 (the fault task srn) to access BR, ROW,

Dorado Midas Manual Edward R. Fiala 26 November 1979 23

CACHEA, CACHED, MAP, and VM. Consequently, pipe entry 1 is smashed and (for CACHED
and VM) MD is smashed, which may prevent continuing from a breakpoint, as discussed later.

ROW shows the cache flags and address bits in each of the four columns of a cache row and the
victim and next-victim for the row on five consecutive lines of a display column. The length of
the ROW memory is adjusted to the number of rows in the cache. Displaying an address in
ROW is nOlmally the most convenient way to view the cache; you can prettyprint the cache flags
and address bits for each column independently, and this also shows the 16 data words in the
associated munch (if any).

CACHEA is a memory of length equal to 4 times the number of cache rows; it shows tl1e cache
flags and address bits for a single entry in the cache. In a 100-row cache, the entries for the four
columns in row i are CACHEA i, CACHEA H100, CACHEA i+200, and CACHEA i+300.
CACHEA is intended primarily for the "Test" and "TestAll" actions; on the display, it will
usually be more convenient to look at ROW.

CACHED is a memory containing all the data words in the cache; word m in the munch for row
r and column c is at CACHED 208 *nrows*c + 208 *r + m. CACHED is intended primarily for
"Test" and "TestAll".

Addresses in the MAP memory are displayed with the MapPE and PgFault bits in a 2-bit field
followed by wp, dirty, and ref bits in a 3-bit field followed by the 16-bit ra field on the display.
When a MAP address is written, ref is zeroed and map parity is always written correctly; dirtyb
(the copy of dirty) and MapParityare not readable (they appear in CONFIG in other situations).
Changes pending

VM accesses the virtual memory using Fetch ~ and Store~ with the current contents of the map
and cache; map and data error faults are not detected or indicated in any way, and the
"RunRefresh" and "EnRefreshPeriod" clock enables must be true for storage to work properly.
Midas sets the length of VM to the largest limit imposed by the map and cache geometries.
Although VM appears in the "Test" menu, the user must setup the cache and map reasonably and
select a suitably small sub-range of addresses in LOW-ADDR, HIGH-ADDR, and ADDR-INC
before attempting to test VM.

In looking at VM, it is sometimes desirable to determine the MAP and ROW entries through
which a VM word is accessed; if you middle-button any VM address, these will be displayed on
the comment lines.

Midas does not provide any direct method of accessing storage; the user has to setup CACHEA
and MAP with appropriate values and then use VM to do this.

Note: The code for accessing CACHEA and CACHED is complicated and unlikely to work
unless the memory system is functional; these can be tested with "Test" and "TestAU" but the
more basic "ProcVA" test, which exercises VA paths in the memory system, may be more helpful
in isolating problems.

Dorado Midas Manual Edward R. Fiala 26 November 1979 24

17. Memories and Registers Associated With the DMux

At those times discussed later, the 40008 DMux signals (or mufflers) are read from the hardware
and stored in the first 2008 words of a table. These are arranged so that hardware DMux address
o corresponds to bit 0 of word 0 in Midas' DMUX memory, hardware address 178 to bit 178 of
word 0, .. , up to hardware address 37778 in bit 178 of word 1778. Then the value on the BMux
and the error status, which can also be read passively, are appended to the table. Finally, table
data is rearranged, so that the DMUX memory looks as shown in the tables later.

Inside Midas associated with the DMUX memory are four separate tables. Regular DMux
readout is stored in DMuxTab. The "SimGo" and "SimTest" discussed later use three other
tables:

OldDMuxTab (previous DMux readout);
DChk (signals checked by the simulator);
DWrong (errors detected during simulation).

In other words, when one of these actions halts, OldDMuxTab holds the to DMux readout,
DMuxTab the ~ readout, and DWrong the errors that were detected in DMuxTab. DChk is
initialized by Midas to values that are reasonable for the boards that are plugged in, and the
"Config" action also initializes DChk to reasonable values; the user may manually modify DChk,
as discussed below, in order to disable checking of signals that are incorrectly simulated (This
won't be partic~lar1y use~l after the simulator is thoroughly debugged).

Nonnally, DMux addresses and registers derived directly from DMux readout (Le., MIR,
IMOUT, MCR, IMBD, DHIST, VH) show . values taken from DMuxTab. However, the user may
execute the "DMux" action with various button combinations to view the other three tables; the
name printed for this action in the command menu will be "DMux", "DWrong", "DChk", or
"OldDTab" according to which table is currently viewed. When the action is executed with the
right (bottom) mouse button, OldDMuxTab valu~s are viewed; both left and right buttons shows
DChk; middle button shows DWrong. The symbolic names of the first 11 errors in DWrong will
also be printed on the comment lines when the middle button is released.

DMUX prettyprinting (middle button over value) of regular (DMuxTab or OldDMuxTab) values
works differently from DWrong and DChk pretty-printing. Regular printout of single-bit items
shows symbolic names of "true" signals; "false" signals are not printed. In other words, low-true
signals are printed when 0, high-hue when 1. Multi-bit items (e.g., foo.O, foo.l, foo.2) are always
printed (e.g., foo = 3).

You should note that modified printout of DMUX also affects registers whose values are obtained
by reading the DMux; this includes MIR, MCR, and IMOUT (but not IMBD). The DMUX
memory itself and IMOUT are read-only except when DChk is being shown. MIR and MCR are
writeable when DMuxTab is viewed but read-only when OldDMuxTab or DWrong is viewed;
writing modifies DChk when DChk is viewed.

The DHIST memory contains a DMUX bit address in bits 408 to 538 (displayed left-most by
Midas) and a history of the last 408 values read from the DMux in bits 0 to 378 (displayed as the
two right-hand fields by Midas). This memory may be useful in checkout of multi-state stuff in
the memory and IFU sections of the machine when the DMux simulator is unable to detect

Dorado Midas Manual Edward R. Fiala 26 November 1979 25

problems. Each time the DMux is read the 408-bit data field of each word in DHIST is left­
shifted 1 and the new value brought into the low bit

The VH memory provides another view of DHIST. Word 0 in VHIST shows the 408 DHIST
signals at to' word 1 at t-l, word 2. at t 2, etc.

When it is done reading the mufflers or done with a manifold operation, Midas loads the DMux
address register with the value contained in DW ATCH, an address in the MADDR memory. This
means that during a "00" or when Midas is not reading the mufflers, a scope probe attached to
the DMux data line on the backpanel will show the DMux signal selected by the low-order 11 bits
of DWATCH. However, if DWATCH contains 0, Midas will be turning control of the
muffler/manifold system over to the baseboard at regular intervals, and the microcomputer will
smash the DMux address.

18. Interface Registers

CPREG is one of the central interface registers used by the Alto in loading information into
Dorado. It can be tested, but should not otherwise be of interest except in passive mode. Midas
freely smashes the value in this register.

MIR is also special. It is loaded directly from the Alto and read via the DMux; Midas faithfully
restores MIR after executing instructions.

19. Config

Midas automatically determines· the hardware configuration when it connects to a particular
dorado by means of DMux signals that it can read from each board. The configuration consists of
the following parameters:

which boards are plugged in--debugging is frequently carried out with some boards disconnected;
Map ic size;
stomge ic size;
cache size (4K words or 16K words);
whether the 16th bit in a cache entry is used as a parity bit or an address bit;
number of stomge modules.

Midas automatically adjusts its length parameters for VM, CACHEA, CACHED, ROW, MAP,
etc., enables and disables various tests in the Test and TestAll actions, and modifies the behavior
of SimTest and SimOo according to which boards are plugged in.

The automatic determination of the hardware configuration should not fail, but if it does, the
Con fig action can be executed to manually set the configuration by means of actions in a
subsidiary menu. Manually controlling the configuration may also be useful when testing with
SimTest or SimOo.

20. SetClk

The baseboard microcomputer presently initializes the clock to a 30 nsec period (= 60 nsec
instruction cycle) when the boot button is pushed. The current clock period can be determined by
pretty-printing the value of the CLKRUN DMux word which normally appears on the Midas

Dorado Midas Manual Edward R. Fiala 26 November 1979 26

display.

The "SctClk" action allows the clock period of the mainframe to be specified from a subsidiary
menu. You will probably be able to continue from a break after changing the clock speed, but
Midas warns you that continuation is impossible.

21. Reset

The "Reset" action shows an elaborate subsidiary menu with many options. The options are: run
enables for different stuff; parity-error enables for the different data paths that are parity-checked;
and initialization of memories.

The general ideas that determined exactly how "Reset" is implemented are as follows: First,
memories and registers should be reset only if they have to be for some reason. For example,
memories that are parity-checked, such as T, RM, and STK, have to be reset to prevent parity
errors when you start nmning a program; TIOA has to be reset in case some io device has variant
behavior when TIOA contains its device number (building an io device that did this would be a

. poor idea); it is desirable to reset IMX and IFUM before loading a program, so that run-away
branches and out-of-control programs will be trapped. However, other memories and registers
such as RBASE, MEMBASE, Q, CNT, etc. need not be reset--your microprogram should contain
code to initialize these, so Midas doesn't have to.

Next, memories that require a long time to initialize, such as MAP (9 seconds now, 35 or 140
seconds with larger ic's in the Map), should be optionally reset so that you won't have to wait for
their initialization unnecessarily.

Also, memories loaded by a microprogram (1M, IFUM, RM, ALUFM, and STK) should be
optionally reset, if at all; if they are optional, you will be able to reset other parts of the machine
without smashing your program. However, there does not seem to be any advantage in initializing
ALUFM, so this memory is never initialized.

Each option is of an on-off form. The current state of the option is shown on the comment lines,
while the other state appears in the command menu. The options as originally chosen are
reasonable for a total reset, such as you would carry out at the onset of a "RunProg" command
file; you. may also ·want to turn on MAP initialization.

To carry out a reset, you bug the sequence of options you want, then bug the "Do-It" menu item.

When you bug "Do-It", initialization is carried out as follows (not exactly in this sequence since
some initialization is done twice):

Run enables (RunRefresh and EnRefreshPeriod) are set as chosen;

Parity-error halt enables and MIRDebug are set as chosen; Midas remembers the halt enable settings so that
they can be simulated for "SimOO" (discussed later) and remembers the setting of MIRDebug, so that it
can warn against continue after breaks with MIRDebug true;

Manifold stuff used for testing IMBD is cleared;

Midas error counters MIR-PES and COMM-ERRS are cleared;

Hold and task simulators are cleared;

ALUFM 0 and ALUFM 16 are loaded with the "B" and "NOT A" alu controls needed by Midas;

Dorado Midas Manual Edward R. Fiala 26 November 1979

The IFU is reset;

TestSyndrome is loaded for normal error-correction;

Several IOFetch+-'es are done in task 2 to make sure that Asrn is .ge. 2 after power up;

Tasking is turned on;

Junk io, the fault task, and io devices are reset;

If MAP initialization is selected, each MAP address is loaded with Dirty and a pointer to the corresponding
absolute page;

If MD initialization is selected, then CACHEA is loaded to map the first 4k (or 16k) of virtual memory, BR
and CACHED are zeroed, and, for each task, the MD tag is reset, T and TIOA are zeroed, TLINK and
TPC are loaded with 7777;

RM and STK arc optionally zeroed;

If 1M initialization is selected, then absolute mode is selected, 1M is made empty, and every IMX address is
loaded with "Branch[.], Breakpoint" except that 7776 is loaded with "Return, FreezeBC, Breakpoint" for the
"Call" action;

If IFUM initialization is selected, then the Reschedule condition is turned off, and each IFUM address is
loaded with the deSCriptor for a two-byte regular opcode with no operand, using MemBase 0 and RBase 1,
starting at IMX O.

MCR is loaded with NoRef and ProcSRN with 0;

The test control stuff BITS-CHECKED, LOW-ADDR, HIGII-ADDR, ADDR-INC arc reinitialized;

27

After the reset is complete, Midas reads the DMux and checks the run-enable initialization, most
of the control section initialization, and halt-enable initialization; if any failures are found, the
errors are reported on the comment lines.

The "Go" action performs a subset of "Reset" prior to starting at a new address, as discussed
later; parity-error halt enables can be modified without resetting anything else by writing an octal
number into the EST A T register.

Dorado Midas Manual Edward R. Fiala 26 November 1979 28

22. Loading Programs

The "Ld", "LdSyms", and "LdData" actions are used to load micro-binary files into the machine.
These actions are executed by first typing a list of file names (default extension" .mb") separated
by commas, then bugging "Ld" or "LdS)'ms" (typing ";L" is equivalent to bugging "Ld"). These
actions require confirmation by <cr>, "Y", or "." iff a previously-loaded program is being
overwritten; in a command file where. it is not known whether or not another program is being
overwritten, a "Confirm" action should precede the load action, as discussed earlier.

"Ld" loads the entire .mb file--symbols into the Midas symbol table and data into the hardware.

"LdSyms" loads only the address symbols and 1M mapping table from the .mb file. This may be
useful when reattaching Midas to a machine that is already running a microprogram.

"LdData", (in command files but not available interactively), loads only the data blocks from the
.mb file. "LdData" is provided so that a microprogram can be loaded without cluttering the
symbol table--this is primarily for Midas initialization and should not be of frequent use to users.

On Dorado, the DMUX, MADDR, MDATA, $ABSOLUTE, $ADS, and MSTAT memories are treated as
exceptions by "LdData"--symbols for these are loaded anyway.

Midas uses several 1024-word core buffers (about 8 on Dorado Midas) and the Swatee file to
manage its symbol table and virtual memory mapping information; the largest existing programs
use 10 buffers for VM information and about 25 more (out of 64 available on Swatee) for
symbols. For nearly all symbol and VM accesses, Midas will reference only one or two symbol
blocks, so there should be no appreciable slow down when handling large programs.

The symbol table management algorithm used by Midas is an extremely fast merge that works well when
the symbol table is nearly empty at the onset of a load but suffers somewhat from block fragmentation
when the initial symbol table has many items.

To avoid fragmentation, don't load one microprogram on top of another--use "RunProg" to reset the symbol
table, then do the "Ld". It is also a good idea to assemble microprograms as a single .MB file. Although
Midas can load multiple .MB files (typed as a list separated by commas), this will fragment the symbol table
and cause extra thrashing.

These recommendations follow because Midas takes advantage of alphabetical address ordering in .MB files
to pack its symbol buffers nearly full. But when subsequent files are loaded, the symbol buffers will
fragment to about half-full, symbol buffer swapping will result, and symbol searches will be longer.

Midas uses the symbol table in two ways: looking up the value of a symbol, requiring at most one disk
access; and searching for the symbol in a particular memory which best matches a value, requiring at most
one access for RM, DR, DEVICE, and TASK address symbols, or at most two accesses for 1M address
symbols; the best matching value for addresses in all other memories is determined by scanning every block.
Searching every block requires about (.22 seconds * no. symbol blocks) - (.15 seconds * no. blocks in core)
or about 4.7 seconds for the largest program thus far. 'However, since best matches for the five most
important memories are obtained quickly, it will rarely be necessary to wait for a search.

In most situations where a "Ld" is going to be done, many other actions will also be carried out
to setup the display appropriately for the program and to initialize the hardware by doing "Reset"
or whatever. For this reason, you will ordinarily want to define a command file that does all these
other actions as well as the "Ld" and you will ordinarily do "RunProg" on this command file;
direct use of "Ld" in the command menu will be rare.

Dorado Midas Manual Edward R. Fiala 26 November 1979 29

23. Dump and Cmpr

Both "Dump" and "Cmpr" require confimation by <cr>, Y, or "." They accept the name of a
microprogram (default extension ".mb") on the input text line. If the input text line is empty,
then the file name is defaulted to the name of the program last loaded.

"Dump" deletes forward reference fixups left by Micro (which never occur on Dorado or DO
because MicroD does these) and compacts both data and addresses to use less disk space and load
more quickly later.

Also, if undumped .MB files contain forward references, they cannot be used with "Cmpr" (no
problem on Dorado or DO).

Note that only memory words loaded by Load are dumped--you cannot patch unused locations,
dump the program, and expect the patches to survive. (Suggestion: assemble extra locations as a
patch area with your microprogram, so that you can patch and dump during debugging.)

"Cmpr" compares data currently in storage against data in the file and reports differences on the
Midas.Errors file.

In microprograms, avoid loading initial values into memory words modified during execution. The
usefulness of "Cmpr" is enhanced when programs are clean, because no fictitious errors will be reported.

For diagnostics, "Cmpr" can report what has been smashed when something goes off the deep end--this has
frequently been helpful.

Following system microcode crashes, "Cmpr" may provide the only clue about the nature of an intermittent
storage failure.

24. Brk and UnBrk

On Dorado breakpoints are created by deliberately storing bad parity in both halves of a
microinstruction. Since double parity failures are highly unlikely, there is usually no ambiguity
between deliberately set breakpoints and hardware failures.

Since Dorado does not halt until t2 of the instruction containing a parity failure, the break will
occur after the instruction containing it has been executed.

Since the two parity-bad bits are part of the value displayed for an instruction, it would be
possible to insert or remove a breakpoint by examining an instruction and storing 3 or 0 into the
parity-bad field; however breakpoints are inserted and removed often enough to warrant an easier
method for doing this. The "Brk" and "UnBrk" actions are provided for this purpose.

"Brk" inserts a breakpoint in the 1M or IMX address typed on the input text line. The address
must be typed--there is no default break address. You will normally find it faster to type
"address; B" to insert a breakpoin~.

"UnBrk" removes a breakpoint. ,If no text is typed, the address defaults to the breakpoint that
caused the last program halt or to the address of the last breakpoint inserted~ You will normally
find it faster to type "address;K" or ";K" to remove a breakpoint. '

Dorado Midas Manual Edward R. Fiala 26 November 1979 30

25. Go, SS, Proceed, as, and Call

These are actions that result in the microprocessor executing instructions from the control store
starting at the selected address; "SimGo", which will be discussed later, also does this. Each of
these accepts an input argument (optional except on "Call") that must evaluate to an 1M or IMX
address; a simple number is defaulted to an IMX address in absolute mode or an 1M address in
virtual mode. If the optional argument is omitted, Midas will continue from the last break.

When you start at a new address, the value in TASK (lower left-hand corner of the normal
display) is the task activated. TASK is initialized to the value in CTASK (Le., to the task for
which an instmction was about to be executed) when Dorado halts or when you abort. You must
change TASK on the display to initiate execution for a different task.

The distinctions among these actions are as follows:

"Go" and "Proceed" will start the machine running and wait either for it to halt or for
you execute the "Abort" or "Dtach" actions which are displayed during the "Go".
When going or proceeding at a new address (as opposed to continuing from the last
break), "Go" will reset io devices and the control section, while "Proceed" does not do
this; in other respects these actions are identical.

"SS" (single-step) executes one microinstruction.

Although "Go" and "SS" (single-step) appear in the command menu, you will probably discover
that it is faster to type "address;G" to Midas, an alternative to "Go", or "address:", an
alternative to "SS"; "Proceed" is only executable by typing "address;P." Similarly, ":" is
equivalent to a continue-"SS" and ";G" or ";P" (proceed) to a continue-"Go".

"OS" (opcode-step) keeps single-stepping the machine until either you execute the
"Abort" action, a halt condition occurs, or an IFUJump has been executed. In other
words, it simulates a "Go" with repeated single-steps, but stops after the next IFUJump.
This is intended to facilitate debugging emulators that use the IFU.

There are some hardware restrictions on single-stepping discussed in the next section. The most
serious of these is that it is illegal to single-step across an instruction that does Fetch+- and +-Mel.
Since this is expected to be common in emulators, there will be many times when OS doesn't
work.

"Call" allows a microprogrammed subroutine to be called with an optional argument
passed in T. By convention both the microassembler and the "Reset" action plant a
"FreezeBC, Breakpoint, Return" microinstmction at IMX 7776. A call is initiated by
typing "SUBR(ARG)" or "SUBRO". This causes ARG (if any) to be evaluated and
stored in T; LINK is loaded with 7776; then "SUBR;G" is done. If the subroutine
returns (to 7776) Midas prints an appropriate message.

Note that subroutines called this way need not start at "call" locations in the microstore because
link is loaded prior to jumping to the starting address.

"SimGo" (simulated-go) is a variation of single-step that keeps single-stepping the
machine until either a halt condition occurs or the DMux consistency checker finds an
error, as discussed later.

Before stepping or going at a new address (as opposed to continuing or proceeding), Midas carries

Dorado Midas Manual Edward R. Fiala 26 November 1979

out an extensive reset sequence, as follows:

10 devices and fault task are reset.

Ready flip flops, CTASK, CTD, etc. are cleared by executing "TaskingOn", "No-op", and
then "Ooto[7777], Block" for each task. Your microprogram should probably load IMX
7777 with some instruction to handle bogus task wakeups.

TPC is set to 7777 for every task except the one being started.

Memory "tag" mechanism is NOT reset.

The IFU and Reschedule condition are NOT reset.

31

When the microprocessor halts after a breakpoint, due to an error, or because you aborted, Midas
prints the location of and reason for the halt and saves the information that it needs to continue.
The form of the printout is '.'task:address". Subsequently, if you attempt to continue, Midas
restores the hardware as nearly as possible to its state at the break before continuing.

The primary error indicators for a break are in ESTAT; Midas analyzes these and other DMux
signals such as "Task2Back", "Task3Back", "+- MDSaved", etc. and pretty-prints a message about
the reason for halting and the task that executed the instruction that caused the halt.

There are many complications surrounding Midas' ability to restore the state of the program, after
doing other things, so that continuation is possible. These are discussed in the next section.
When these complications are insurmountable, "passive mode" may be used as discussed later.

26. When Registers are Read/Written"" Restrictions on Continuing

When a microprogram halts at a breakpoint or due to a mouse-halt, Midas has two objectives: to
read the contents of registers and memory addresses so that they may be shown to the user, and to
be able to continue from the interrupt or breakpoint. The methods for reading machine state are
detailed in the "Dorado Debugging Interface" document and outlined here.

Midas first reads the DMux (which includes MIR, MCR, and some other items), BMUX, and
EST AT (error status); these are read first to capture their values before they change. Since all of
these items are readable without issuing any clocks to the Dorado microprocessor, Midas can still
continue execution of the microprogram in ordinary situations. In passive mode (discussed later),
these are the only items which Midas reads from the hardware.

In active (i.e., normal) mode, Midas next executes a no-op, clears the hold and task simulator,
does 30 no-op's, and then saves values of (current task) registers as follows: LINK, T, Q, TIOA,
STKP, ALUFM 0, ALUFM 16, RBASE, MEMBASE, PROCSRN, and RM 0; these might get
smashed while reading registers that the user has put or will put on the display.

Finally, Midas reads all registers displayed going top-to-bottom through the name-value menu
lines and left-to-right through the columns within each line. In passive mode, only those items
whose values were obtained passively will be updated; others will be marked with a "~,,

indicating that Midas couldn't obtain the current value. In active mode, many microinstructions
will be executed to correctly address each item, route its value onto BMux, where Midas can read
it, and then restore registers smashed while doing this.

Dorado Midas Manual Edward R. Fiala 26 November 1979 32

When Dorado is not running, Midas loads ALUFM 0 and 16 with the "B" and "NOT A" alu
operations, and TPC (Le., CIA) is always in a smashed state. If one of these three items is
displayed, the value in the Alto static is read; if written, the static is written. The value in the
static is not written into the hardware until either a "Go", "SS", "OS", etc. action occurs or the
"Dtach" or "RunProg" actions are executed. ALUFM 0 and 16 are effectively untestable from
Midas (sorry). TPC will get read for the new task and restored for the old task whenever Midas
has to do a SelectTask, as discussed in the "Dorado Debugging Interface" document. Midas has
no trouble testing TPC, but if you examine a particular TPC register several times on the display,
there is no guarantee that the values displayed will be ones independently read from the hardware.

With the exception of these three items and the DMux, Midas always reads values from the
hardware--other saved values are only used for restoration purposes. In other words, if "SHC" is
displayed 10 times, it will be read 10 times from the hardware.

MIR, MCR, Q, T, RBASE, MEMBASE, TLINK, STKP, RM 0, and PROCSRN are smashed and
restored while reading other stuff; these are read from the hardware independently each time they
appear on the display, but Midas might rewrite these registers from the saved values, so if one of
these isn't working correctly, the exact nature of the failure may be obscured.

Several memories and registers are "always updated" when tlley appear on the display, which
means that they will be reread at frequent intervals by the Midas main loop, and if the value has
changed the display will be updated. The UPTIME and TGLITCH registers and the MSTAT
memory, which show items continuously recomputed by the baseboard microcomputer, are treated
tllis way; and COMM-ERRS and MIR-PES (in the fake MADDR memory), which report errors
detected by the Midas hardware interface, are always updated.

Values in other registers and memories are only reexamined when you do some "dirty" action.
When you write a value into some register on the display, for example, Midas tries to restore any
other registers and memories that were clobbered as a side effect; then it rereads the DMux and
all registers on the display.

There. are a number of situations that may prevent continuation from a breakpoint or interrupt;
Midas warns you about some of these when you try to continue but does not warn you about
otllers. Some of the ones that Midas does not warn you about are as follows:

The machine stopped at ~ of an instruction that both started a new fetch and either read Md onto A or B
or used Md in a shift-and-mask operation; the value of Md for the new fetch will be erroneously used in
completing the Md read.

The break occurred at ~ of an instruction doing a dispatch.

The break occurred immediately after an 1M or TPC read instruction--the value read will be garbage if you
continue;

You were using the hold simulator--Midas resets the hold simulator at breakpoints;

Your microprogram was using the muffier/manifold system--Midas smashes the DMux address and resets
some of the manifold stuff at breakpoints;

Input/output tasks were not serviced properly due to the delay at the breakpoint, so these are not continued
correctly;

Your microprogram is relying upon the exact timing of the memory system to write the cache flags for a
reference--the moment will have passed when continuation occurs (There are probably other situations when
the memory system is operated in unusual ways that will prevent continuation.).

Dorado Midas Manual Edward R. Fiala 26 November 1979

Some situations that Midas does warn you about are as follows:

You have displayed some address in BR, ROW, CACHEA, CACJlED, MAP, or VM; Midas will use task
17 and pipe entry 1 to access these, and if the break occum~ in task 17, Midas will warn you that
continuation is impossible because Pipe entry 1 and (for CACHED and VM) task 17 MD are smashed.

Some address in IFUM is displayed; Midas has to reset the IFU to read IFUM and will warn you that
continuation from a breakpoint is impossible.

Some address in IMBD is displayed; Midas has to reset some of the control section to access IMBD.

You broke on or single-stepped across an instruction that did both a Fetch +- and either aT+-Md or
RM/Stk +- Md; if you continue. data from the new fetch rather than data from the preceding fetch will be
used to complete the T+-Md or RM/Stk+-Md operation.

A breakpoint on or single-step through an instruction that does NewPC+- is illegal (??).

27. Hardware Failure Reporting

33

Midas checks for several kinds of hardware errors and reports them in MIR-PES and COMM­
ERRS, which are addresses in the MADDR memory; these are shown in the upper left-hand
name-value menus by the normal Midas display. MIR-PES is shown on the display as two 16-bit
fields; the first field counts parity errors detected in MIR[O:20] and the second, parity errors in
MIR[21:41]. MIR-PE's is zeroed when you start Midas, "Dtach", or "Reset", or when you start a
"Ld". Whenever Midas loads a microinstruction into MIR, it checks for good parity in MIR
before executing it and counts MIR-PES if the parity is no good; however, even if the parity is
bad, Midas goes ahead and executes the microinstruction. If any MIR parity errors occur during a
load, the message "**MIR-PE's occurred**" is printed on the comment lines after the load;
however, except for that message, Midas does not print any special messages after these errors--the
user will have to notice when MIR-PES changes at other times.

COMM-ERRS is also shown as two 16-bit fields. The first field counts glitches in the "Stopped"
line, which Midas samples repeatedly during "Go" (The serial 1 Dorado seemed to report

. "Stopped" when the microprocessor did not have any reason for stopping, so some glitch detection
software was added to Midas to detect this situation.); the second field counts microcomputer
timeouts. Midas initializes these error counters to 0 after initially connecting to a Dorado, during
"Reset", and during "Dtach". Midas allows about 2 msec for the baseboard microcomputer to
service interrupt requests; if this timeout is exceeded, the right-hand field of COMM-ERRS is
counted.

Midas also shows a number of hardware conditions collected by the baseboard microcomputer;
these include power supply information summarized in PROBLEMS, OUTOFSPEC,
BADSUPPLYSPEC, and TGUTCR as discussed later.

Dorado Midas Manual Edward R. Fiala 26 November 1979

28. Hardware Checkout Facilities

Midas checkout facilities fall into the following categories:

Observation

Poking

Testing

Scope loops

Diagnosis

Observe registers and signals invisible to the microprogrammer (DMux
stuff, print routines, passive mode).

Trying out elementary actions to observe what happens (T1, T2, T3,
Poke stuff).

Exercise various hardware sections, verifying that they work correctly or
reporting the nature of failures (Test, TestAll, SimGo, SimTest,
LDRtest).

Repeatedly do something to observe failures with the scope (RepGo,
RepSS, RepT2, Fields, HWChk, test actions).

Relate failures to particular hardware components (SimGo, SimTest).

34

The LDRtest action must be preceded by the "Debug" command file (in the "RunProg"
submenu), which loads the LDR memory addresses needed for LDRtest. The "Debug" command
file should not be needed in any other cases.

With diagnostic microprograms, you can use the PROC, CONTROL, MMC, MMD, MMX,
IFUD, DSKETH, and DSP command files (in tlle submenu put up by RdCmds) to display DMux
address~s for various hardware sections.

29. Parity·Error Scanning

The "PEscan" action scans memories and reports parity errors. It presents a submenu consisting
of "Scan-and-report" and "Scan-for-totals" actions followed by the names of the memories that
can be scanned for errors. The user interacts with the submenu, selecting and deselecting
memories to be scanned; then he bugs either "Scan-and-report" or "Scan-for-totals".

On Dorado, the memories that can be parity scanned are IMX, RM, STK, lFUM, CACHEA, and
CACHED.

"Scan-and-report" will sequence through all tlle words in the selected memories, reporting on the
comment lines the first 20 addresses that have parity errors and the total number of parity errors
for each memory. "Scan-for-totals" reports only the parity error count for each memory.

In general, very long memories such as main storage are not included in the "PEscan" submenu
because Midas cannot scan them fast enough to report results in a reasonable time.

30. Testing Directly From Midas

"Test" and "TestAll" allow the target machine to be tested directly from Midas. Although
diagnostic firmware can test faster and more' thoroughly than is practical from Midas, Midas direct
testing permits the hardware to be checked out well enough to get basic diagnostics loaded and
started. On Maxc1, which had no direct testing in Midas, many hardware failures of the "nothing

Dorado Midas Manual Edward R. Fiala 26 November 1979 35

works" variety were harder to fix than on Maxc2 and Dorado, where Midas test software is
available. However, on DO and M68 implementations of Midas, the test features in Midas are of
doubtful usefulness because the hardware is accessed through communication with a small
"kernel" microprogram that only works when most of the hardware is functional.

Data patterns for test actions are determined from the first subsidiary menu, as follows:

ZEROES
ONES
SHOULD-BE
CYC1

CYCO
RANDOM
SEQUENTIAL
ALTZO
ALT 'SHOULD-BE

Table 6: Test Data Pattern Actions

All-zeroes data
All-ones data
Constant test pattern equal to value in SHOULD-BE
Vector of the same size as the register containing zeroes with a single one-bit cycled left
one position each iteration
Cycled zero in vector of ones
Random numbers
0, 1, ... , sequential numbers
Alternating all-ones and all-zeroes patterns
Alternating contents of SHOULD-BE with its ones-complement

The CYCO, CYC1, and SEQUENTIAL patterns vary according to the size and arrangement of the
data vector for the item being tested. CYCO" for example, starts off with leading 1's and a 0 in
the right-most bit of the data vector. The 0 is shifted left (bringing in 1's to its right) each
iteration; when the 0 is shifted out of the left-most bit in the data vector, the vector is reinitialized
to leading 1's and a 0 in the 'right-most bit. The CYC1 pattern is like CYCO with 1's and O's
interchanged. The SEQUENTIAL pattern is initialized to 0 and is incremented by 1 in the right­
most bit of the data vector each iteration.

This treatment of CYCO, CYC1, and SEQUENTIAL patterns is conceptually correct for items that
are described inside Midas by dense, left-justified data vectors whose bits are displayed left-to­
right on the screen. Most, but not all, items are handled this way.

On Dorado, the exceptions are as follows: IMX, IMBD, and MIR have the parity-bad bits displayed left­
most but stored internally right-most in the data vectors. The parity bits do not participate in determining
the data pattern for CYCO, CYC1, and SEQUENTIAL patterns; Le., the two parity-bad bits will always be
tested with 1's (i.e., bad parity) for CYCO or always with O's (Le., good parity) for CYC1 and
SEQUENTIAL patterns.

ALUFM, CACHEA, MAP, BR, and MCR have holes between bit ° and the right-most bit of the data
vector. The CYCO, CYC1, and SEQUENTIAL patterns for these are generated as though these holes didn't
exist. I.e., ALUFM has an 8-bit data vector in which bits'1:2 are unused; CACHEA has flags in bits 0:3
and VA[4:n] in subsequent bits, but the leading bits of VA are not actually stored in the address section for
most cache configurations, so the unstored bits are a hole; MAP has RP in bits 16:31 of the data vector and
various flags in bits 12:15, so bits 0:11 are a hole; BR uses 4:31 of the data vector, so bits 0:3 are a hole;
and MCR uses 0:15 with several unused bits in its interior.

Testing is controlled/described by 12 addresses on the display as follows:

Dorado Midas Manual

SHOULD-BE
DATA-WAS
BITS-CHECKED
I3ITS-PICKED

BITS-DROPPED

LOOP-COUNT
NFAILURES

Memory tests only

LOW-ADDR
HIGH-ADDR
CURRENT-ADDR
ADDR-INC

ADDR-INTERS
ADDR-UNION

Edward R. Fiala 26 November 1979 36

Table 7: Test Items in the Name-Value Display

On a failure, the correct data; after control-C or Abort, the next pattern.
On a failure, what the data was; after control-C or Abort, the data read last time.
Mask of bits checked (see below).
Union of bits that should have been 0 but were erroneously 1 during testing. This
accumulates failure' information when you continue a Test using <escape> or <cr>.
Union of bits that should have been 1 but were erroneously O.

32-bit iteration count at which failure occurred or after which the test was aborted.
32-bit count of test failures.

32-bit addresses: If ADDR-INC (normally 1) is positive, the test starts at LOW-ADDR
and advances through the memory in steps of ADDR-INC until CURRENT-ADDR is
greater than HIGH-ADDR. If ADDR-INC is negative, the test starts at HIGH-ADDR
and goes by steps of ADDR-INC until CURRENT-ADDR is below LOW-ADDR.
CURRENT-ADDR cont4ins the last address tested.
Intersection of address bits where failures were detected.
Union of address bits where failures were detected.

SHOULD-BE, DATA-WAS, BITS-CHECKED, BITS-PICKED, and BITS-DROPPED are
addresses in the MDATA memory; LOOP-COUNT, NFAILURES, LOW-ADDR, etc. are
addresses in the MADDR memory. These two memories (which are tables in Alto storage) exist
on all versions of Midas that implement the test actions.

The handling of the MDATA memory is complicated by the fact that items in this memory have
to be shown in the same format as the memory or register being tested. This is accomplished as
follows: When the selected test item is different from the last, the width and print-format of
MDA TA are set to be identical to the new item; in this case BITS-CHECKED is initialized to test
all bits in the new item. Then when the test is aborted or halts due to a failure, the display of
BITS-CHECKED, etc. is identical to that of the item tested. The user may then modify BITS­
CHECKED and continue, restart, or free-run the test, as discussed below; in this case the item
tested is identical to the last item tested, so BITS-CHECKED is not reset.

The handling of MADDR is also tricky. ADDR-INC is allowed to be any value except 0; if it is
0, Midas will reset it to 1 before testing. When HIGH-ADDR is initially greater than the largest
legal address in the memory, it is reset to memlength-l prior to testing. Then if LOW-ADDR is
greater than HIGH-ADDR, it is reset to 0 before testing. When the selected memory differs from
the last item tested, and when the length of the memory is less-than-or-equal to 100008 words
long, Midas will reset LOW-ADDR to 0 and HIGH-ADDR to memlength-1 prior to testing. This
is done because a common operational error is failure to reset the address range when switching
from one memory test to another. However, Midas does not reset the address range for very long
memories because they are normally tested with small address ranges that cannot be predicted in
advance--full-length testing of long memories from the Alto is so slow as to be impractical.

"Test", after showing the data-pattern menu, shows a menu of register and memory names and
other test names, and executes a test of the one you select until the test fails or you halt the test
from the keyboard.

The testable registers and memories appear in the second sub-menu for the "Test" action. This

Dorado Midas Manual Edward R. Fiala 26 November 1979 37

menu also includes several other machine-dependent test programs.

On Dorado, the additional tests are as follows:

Table 8: Other Test Actions

Shmv Tests the output of the shift-control ROM's on the ProcH and ProcL boards against
correct values.

WF
RF
ProcVA

Tests loading ShC via WF""
Tests loading ShC via RF""
Tests BR + Mar via DummyRef""

<esc> will continue a register or memory test that has halted; it restarts an OtherTest that has
halted.

<cr> will continue a register or memory test that has halted but will free-run the test rather than
halting on the next failure. While free-running, LOOP-COUNT and NFAILURES are reported

. continuously on the display, and BITS-DROPPED, BITS-PICKED, ADDR-INTERS, and ADDR­
UNION accumulate failure information. When you stop the test by bugging "Abort" or typing
control-C, the accumulated failure information is displayed in these registers.

"TestAll" automatically loads BITS-CHECKED with a full-sized comparison mask prior to testing
each item; memories are tested with LOW-ADDR = 0, HIGH-ADDR = memory length-I, and
ADDR-INC = 1. It tests each register 200 times and makes 4 passes through each memory and
each OtherTest. It is a good idea to run "TestAll" whenever the hardware is in a suspicious state.

31. LDRtest

On Dorado and Maxc2, the "LDRtest" action should only be used when the "DEBUG" command
file has been executed. This requires a sophisticated understanding of the hardware and of the
innards of Midas and is not recommended for novices.

Dorado Midas stores many microinstructions in a fake memory called LDR (see LOADER.MC). These are
used by various actions to operate the hardware. "LDRtest" allows these to be executed in non-standard
sequences to beat on particular hardware problems.

"LDRtest" accepts a list of LDR addresses separated by commas as input text If only one LDR address is
typed, the CPREG register is loaded once with the selected data pattern, then the LDR instruction is
repeatedly executed with UseCPReg true for a scope loop.

When two, three, etc., up to five LDR addresses are typed, a test loop occurs whereby CPREG is loaded
with the next data pattern, the first instruction is executed with UseCPReg true, then the rest of the
instructions are executed, and then the BMux is read back and compared against the original data under
control of BITS-CHECKED. The loop stops when (data-read-back xor data-sent-out) & BITS-CHECKED is
non-zero.

32. Scope Loo}) Actions: Fields, RcpGo, RepSS, RepT2

The "Fields" action exercises signal decoding for particular fields of the microinstruction for scope
loops. A microinstruction is fabricated from a no-op microinstruction in which the field selected
from the first sub-menu is replaced by various values. The second subsidiary menu allows the
value in the selected field to be incremented, decremented, and shifted.

"RepGo" starts the microprocessor at the address typed on !he command line, waits for it to halt

Dorado Midas Manual Edward R. Fiala 26 November 1979 38

at a breakpoint or parity error, then restarts it at the original address.

"RepSS" repeatedly single-steps the microprocessor at the address typed on the command line.

On Dorado, the task for the original Go or SS is taken from the TASK register; subsequent restarts do not
reselcct the task. The control section's Ready register is reset before the first Go or SS, but is not reset
each time through the loop.

On Dorado, "RepT2" endlessly executes the instmction in MIR and reloads that value into MIR.
Unlike "RepSS", "RepT2" doesn't issue extraneous clocks while looping, so it is ordinarily more
convenient for scoping.

33. HWChk

The "HWChk" action puts up a submenu that contains several test and scope loop actions. Once
started, one of these actions runs until you abort it; the iteration count will be in LOOP-COUNT
when the test is abolted. The HWChk submenu currently contains the following actions:

"Read-DMux-Signal" requires a non-zero value in DW ATCH; a scope loop is generated in which
the DMux address selected by DWATCH is strobed out to the hardware and then the value read.
A count of the number of times the value is 0 and the number of times it is 1 are showed on the
comment lines. Microcomputer DMux reading is disabled during this action.

"Read-All-DMux" repeatedly rereads all 40008 DMux signals, accumulating in DWrong the union
of signals which had inconsistent readout. I~ displays a count of the number of inconsistent
signals (Some of these signals will be legitimately inconsistent.). Microcomputer DMux reading is
disabled during this action.

"Connect-Disconnect" first evaluates the input text line, which must contain a valid Dorado serial
number (0 to 3778), A scope loop is generated in which Midas alternately connects to the selected
serial number and to that serial number xor 3778 (= disconnects). A count of successful and

. unsuccessful connects is displayed on the comment lines.

"Alto/MC-control" generates a scope loop in which the Alto and the microcomputer alternately
are given control of the muffler/manifold system.

34. DIVlux Consistency Cllecker

The DMux consistency checker, or simulator, used with the "SimGo" and "SimTest" actions
examines all of the DMux signals (or mufflers), checking for inconsistencies. The simulation
verifies consistency of signals from the previous readout (call this "to") to the current readout (call
this "~").

In aU cases, only passively-accessible DMux signals and BMUX and ESTAT are involved in the
simulation--registers that can be read only by issuing clocks to the hardware are not checked.

The simulation subroutine behaves differently based upon the time at which the DMux was read
(t even or t odd) and upon whether or not the DMux readout at tn-2 is available. Currently, the
simulator is only caned by "SimOo" and "SimTest", and for these the simulation subroutine is
always called with the to and t2 DMux tables; I might add variant actions to operate the simulator

Dorado M idas Manual Edward R. Fiala 26 November 1979 39

with t1 and t3 tables later.

"SimTest" is executed with IOReset, RunRefresh, and EnRefreshPeriod false. It loads MIR with
a randomly chosen microinstruction (except that some illegal microinstructions are weeded out-­
presently, the Outputf-, UseDMD, MidasStrobef-, and IFUTestf- functions are illegal; also, the
Block bit in the next microinstruction is chosen to equal whatever was coming from IMX just
before S, of the last microinstruction t9 avoid screwing up the control section); then it reads the
DMux and steps the microinstruction through S,. This is repeated, and after each repetition the
previous and current DMux readout are checked for consistency.

"SimGo" is similar, but a microprogram stored in 1M is executed one step at-a-time rather than
random microinstructions; there are no illegal microinstructions for SimGo. When a diagnostic or
other microprogram is known to fail, it can be run full speed up to a breakpoint a little before the
sequence tlIat fails; then the program can be continued with "SimGo" which might pinpoint the
hardware failure. However, since RunRefresh and EnRefreshPeriod are false during "SimGo",
any microprogram that uses Storage or the Map might not run correctly. "SimGo" continues until
either a simulation error is detected or EST AT contains a halt condition; the halt conditions for
"SimGo" are identical to those for "Go" (The halt conditions can be modified by the user with
the "Reset" action.).

For the most part, mufflered signals in the different hardware sections relate to control paths
rather than to data paths, so the consistency checker will be less effective in finding failures in
data paths. However, Midas register and memory tests and diagnostic firmware can usually
pinpoint data failures, so this limitation is not too serious.

The ContA/B, ProcH/L, MemC/DIX, and IFU sections are presently simulated.

How to Interpret Simulator Failures

When the simulator detects one or more failures, it reports a message like "2 DMux errors" . You
can find out which signals are believed wrong by executing the "DMux" action in the command
menu with the middle button. When the middle button is released, the names of the first 11
signals that were incorrect are printed on the comment lines; each name is followed by a suffix
such as "I A" indicating the section in which the error was detected; possible suffices are IB
(Baseboard), I A (ContA), IB (ContB), IL (ProcL), IH (ProcH), II (IFU), IC (MemC), ID
(MemD), IX (MemX), IK (Disk controller), IE (Ethernet controller), or IV (Display controller).
Currently, there is no simulation of the baseboard or io controllers.

The next step is to display the DMux words associated with one of the hardware sections that
failed; this is done by executing the "RdCmds" action and selecting the command file that
displays that section (PROC, CONTROL, MMC, MMD, MMX, IFUD, DSKETH, or DSP).

Then find the source for a signal that failed in the hardware drawings; you will probably be able
to deduce its dependency upon otller DMux signals and can then determine where the failure
occurred. You can view the signals relevant to the simulation by viewing the OldDMuxTab or
DMuxTab signals on the display, as was discussed in the "Memories and Registers Associated
With the DMux" section.

Dorado Midas Manual Edward R. Fiala 26 November 1979 40

35. Poking: Tl, T2, and T3

The "Tl", "T2", and "T3" actions allow the instruction currently in MIR to be executed exactly as
though it were spliced into the execution flow of the program. The DMux is read after t1, 12, or
13 of the instruction, then, for "tI" and "t3", the machine is clocked once more (to ~ or t~. MIR
is restored after execution.

36. Passive Mode

Passive mode suppresses automatic readout of registers that require clocks to be issued by Midas.
This allows scope observation without interference from automatic parts of Midas.

Midas implements three "states" called active, prepassive, and passive. The command menu
always prints the current state; bugging active will change the state to prepassive; bugging
prepassive will change to passive; and bugging passive will change to active-Min other words, these
three states are in a "ring."

In active mode, Midas will jam instructions into M~R and execute them to obtain the contents of
various Dorado register or memory words or to restore registers incidentally smashed while doing
something else; as discussed earlier, there are some situations when continuation is impossible
after doing this, and some hardware problems are difficult to observe when Midas is interfering to
this extent

PrePassive mode is identical to active mode, but if you start the machine with "Go," "88," or
whatever, then Midas will automatically flip into passive mode the next time the machine halts.

When you enter passive mode from the keyboard action, the state of the hardware is restored as
though it were about to continue from a step or breakpoint and T A8K is restored to its value at
the last step or breakpoint. After this, no further clocks are given to the hardware except those
explicitly initiated by the user.

After becoming passive, Midas doesn't update registers on the display unless their values can be
read without issuing clocks. Since only DMux locations (includes MIR, IMOUT, IMBD, MCR,
TESTSYN, PROCSRN, TASK) can be read without clocks, only their values change while
passive.

Further, if you display a new non-passive register on the display, its value will not be read from
the hardware and garbage will be displayed as the value.

Items on the display for which the displayed value is doubtful will be flagged with a "~" as
discussed earlier.

Similarly, only registers whose values can be modified without issuing clocks may be written while
passive--tllese are MIR, CPREG, STROBE, and DI0UT (plus the fake registers and memories).
Midas rejects attempts to modify other registers on the display. Of the writable registers, only
MIR, CPREG, and IMBD can be read and only MIR can be read passively. Consequently, if you
write into CPREG, STROBE, or DI0UT by clicking the mouse over its value, it will be written
but the display will show the contents of a static, not something read from the hardware--since
other parts of Midas don't update the statics, tlle value displayed only means something
immediately after the write.

Dorado Midas Manual Edward R. Fiala 26 November 1979 41

The command menu is drastically altered while passive; only actions which can be executed while
passive are shown.

"Update" reads the machine state actively and then becomes passive again.

While passive, "SS" and "Go" at new addresses work as usual, so extra clocks are issued to do
these. However, "SS" and "Go" to continue a program do not issue any extraneous clocks--all of
the setup to continue took place at the time passive mode was entered; or after a step or
breakpoint, no clocks are issued to readout the machine state, so it is possible to continue simply
by modifying Stop, SetRun, and SetSS.

To do the most primitive kind of debugging while passive, it is expected that users will work as
follows: First, the POKE command file will be executed to become prepassive and display
STROBE, D10UT, and CPREG, not ordinarily on the display. The user will then either do a Go
or SS, becoming passive at the break, or will bug prepassive to become passive immediately.
Next, MIR and CPREG will be written by modifying the displayed value. Then the Clock and
Control registers and Strobe can be manipulated by storing values into STROBE and DIOUT.

STROBE is displayed as two fields and D10UT as three fields; when storing into these, you must
partition the input into fields as well. For STROBE the two fields are the address field (3 bits)
and data field (9 bits). Storing into STROBE will give a three-step strobing sequence using the
value of address and data you have selected. For D10UT the three fields are the Strobe bit,
address, and data. (Note: The DMux will be read after writing MIR, CPREG, STROBE, or
D10UT, and this smashes the Clock register, so can't really use STROBE for the Clock register)

37. MIRdebug Feature

During ordinary operation, an IMX parity error or breakpoint halts Dorado after t2 of the
instruction affected by the parity error. Since MIR is loaded at ~, the MIR value with bad parity
has been overwritten when the machine stops, so if the path between the microstore and MIR is
experiencing intermittent failures, it will be difficult to diagnose what has gone wrong.

To aid checkout in this case, the control section has a debugging aid called MIRdebug, which will
disable the clock to MIR at S of an instmction with bad parity. When this aid is enabled, MIR
will still contain the bad data after the error-halt. This feature can be invoked by enabling
"MIRdebug" in the sub-menu put up by the "Reset" action. If a parity error halt occurs while
MIRdebug is enabled, then Midas will print the value read from IMX[CIA] so that you can
compare this with the value in MIR on the display to find out which bits are not propagating
from IMX into MIR.

The liability of this debugging aid is that you will not be able to continue from a breakpoint or
IMX parity error halt, so you should not enable MIRdebug unless you are searching for this type
of hardware failure.

38. Failure Diagnosis

Some actions to analyze test failures and report the hardware components involved have been
considered, and are likely to be implemented for IMBD, IMX, IFUM, RM, and STK.

Dorado Midas Manual Edward R. Fiala 26 November 1979 42

Storage, Map, and cache failure analysis programs are essential, but should be provided outside
Midas.

39. Baseboard Microcomputer Stuff

The Alto can communicate directly with the Baseboard section of any Dorado connected to it
through its Diablo Printer interface as' detailed in the "Dorado Debugging Interface" document.
It can:

(a) select anyone of the connected Dorados;
(b) control the muffler/manifold system or allow the baseboard microcomputer to control
it;
(c) interrupt the baseboard microcomputer;
(d) pass information to the microcomputer through CPREO; and
(e) read 8 bits of information from the microcomputer through the DoradoIn mechanism.

Midas does (a) and (b) during initialization and during the "Dtach" action, as discussed in the
"Starting Midas" section; Midas uses (c), (d), and (e) together with a large set of communication
conventions to exchange information with a program running on the baseboard microcomputer.

$ABSOLUTE is the fundamental microcomputer memory, 8 bits wide. It contains all information
other than mufflers which Midas can access on the baseboard. This memory is divided into a
RAM (addresses 0 to 7778 or 0 to 1FF16) and a ROM (addresses 1000008 to 1777778 or 800016 to
FFFF l~' The amount of ROM is adjustable; current Doradoes have storage only for addresses
1400008 to 1777778, The microcomputer stores its internal registers and other information of
interest in the lowest approximately 2008 bytes of $ABSOLUTE.

The $ABS memory is identical to $ABSOLUTE except that it shows the information 16 bits wide
rather than 8 bits wide. The MSTAT memory and the UPTIME and TOUTCR registers present
special information from $ABSOLUTE in human-readable form. The initial Midas display shows
this information. The information in the main display is easily interpretable once you get used to
it, or you can pretty-print the values in expanded form.

UPTIME is a six-byte counter that counts time in 102.4 msec ticks, starting at 0 after a boot.
TOUTCH holds the value that was in UPTIME at the end of the last power transient in which
some voltage or current was outside its specified range. Midas prints these items like "1 day
2:23:32", i.e., in standard day hours:minutes:seconds form, when they appear on the display.

MST AT contains the current, maximum, minimum, and first values for each of the four power
supply voltages and currents and for temperatures on each of the 12 boards in the main frame.
The "first" items are recorded at completion of the power-up sequence; the maximum (minimum)
items are initialized to 0 (infinity) and then increased (decreased) when the current values exceed
(are less than) the previous maximum (minimum); the current values are updated repetitively by
the microcomputer main program. Each word in MSTAT contains four one-byte items: Voltage
and Current items have one byte for each of the four power supplies, and the printout is in volts
or amperes; temperature items are shown in degrees centigrade, and there is one of these for each
of the 12 boards in the main frame, arranged four-per-word in MST A T.

Midas repetitively updates displayed values for UPTIME, TOUTCH, MSTA T, and the
PROBLEMS, OUTOFSPEC, and BADSUPPLYSPEC addresses in $ABSOLUTE that appear on

Dorado Midas Manual Edward R. Fiala 26 November 1979 43

the display.

The microcomputer can update power supply information and temperatures for itself and for
ContB irrespective of whether or not it controls the muffler/manifold system, but other board
temperatures can only be determined when the microcomputer controls the muffler/manifold
system. Board temperatures can only be read when the -5 volt power supply is up.

When Dorado is running (Le., SetRun is true), Dorado controls the muffler/manifold system and
neither Midas nor the microcomputer can access it; when the boot button is pushed or when
Midas detaches from a particular Dorado, the microcomputer controls the muffler/manifold
system, so its main program can read temperatures unless that Dorado is running. Finally, when
Midas is attached to a machine, it controls the muffler/manifold system but releases control to the
baseboard at regular intervals unless DWATCfI is non-zero; when DWATCH (an address in the
fake MADDR memory) is non-zero, Midas will retain control of the muffler/manifold system and
arrange to select the muffler signal whose number is in DW A TCH whenever possible.

The main breaker switch on th~ Dorado environmental carrier (near the floor) will turn on the 5
volt supply and one fan. The baseboard microcomputer a\ltomatically boots itself from ROM
whenever this main breaker is turned on, and then follows (approximately) the sequence discussed
below to bootstrap the rest of Dorado into operation:

turn on disk logic power and wait 20 seconds;
turn on disk spindle motor. and wait 20 seconds;
turn on fans and + 12, -5, and -2 volt supplies and wait 20 seconds;
initialize machine status information (discussed below);
load and execute Dorado boot microcode, which loads and starts the system microcode.

During this sequence and afterwards, the microcomputer reports what is happening on its status
light, which will repeat a sequence of blinks followed by a pause during any problem condition.
The light sequences are interpreted as follows (the light blink information is also in PROBLEMS
on the Midas display):

1 blink normal wait

2 blinks boot failed

3 blinks transient power problem

4 blinks power problem

5 blinks powered down

6 blinks over temperature

Wait for disk, power supplies, stable clock, etc. You
shouldn't see anything happening but don't worry about it

Tried to boot Dorado microcode but didn't get the
appropriate handshake.

Power supply voltages went bad, now good again (details in
BADSUPPLYSPEC on display; TGLITCH shows the time
when this transient ended; MAXVOLTS or MINVOLTS
reveals the magnitude of the transient). Presently, only
voltage variations cause this condition, but eventually
amperage variations may also cause it (MAXAMPS and
MINAMPS on the display).

Voltages are now out-of-spec (details in OurOFSPEC and
VOLTS on the display); eventually amperages may also
cause this condition (AMPS on the display).

Get this after powering down with a four button-push
sequence (see below).

Powered down because the temperature on some board went
over 600 C (MAXTEMP, MAXTEMP+l, and
MAXTEMP+2 show details).

Dorado Midas Manual

7 blinks can't get CP control

solid green AOK

light off microcomputer down

Edward R. Fiala 26 November 1979

Can't get muffler/manifold control because Midas is hogging
it.

power is off, the microcomputer crashed, or the light burned
out (unlikely because LED's are long-lasting)

44

Under normal conditions, in response to the boot button being pushed or the main breaker being
turned on, the microcomputer will show 1 blink for about 60 seconds and then show solid green;
if Midas attaches to the machine, the status light will usually show solid green, but will show 7
blinks (Midas hogging CP bus) during long-running Midas actions.

When the user depresses the boot button for at least 0.2 seconds and not more than 2.5 seconds,
the microcomputer records an event called a "button push"; depressing for less than 0.2 seconds
or longer than 2.5 seconds is ignored; depressing for longer than 2.5 seconds will nullify the entire
boot sequence. The microcomputer will count button pushes until 1.5 seconds has elapsed with
the button up; then it will carry out an action as follows:

1 push--ignored; the. standard emulator also monitors the raw boot button and may take
some action (should synchronize with microcomputer algorithm).

2 pushes--stops and resets the microprocessor and starts it in task 0 with tasking turned
off at location 10678 (which is "1nitMap" for the Alto emulator--**Should pick a better
location**).

3 pushes--load 1M from the Dorado boot loader and start it running as for 2 pushes.

4 pushes--power down; all of the supplies except the 5 volt supply are powered down in
a safe sequence. The 5 volt supply can then be shut down from the main breaker
switch; avoid turning off the main breaker switch until the microcomputer has completed
shutting down the disk and other supplies because you will invoke the power failure safety
circuits in the disk drives.

5 or more pushes--ignored; the user does this when he makes a mistake and wants to
start over.

Note: if the Dorado was powered down at the onset of a button push sequence, any number of
pushes from 1 to 3 will do a total (3 push) boot.

Note: it is unsafe to turn on disk power when the -5 volt, -2 volt and + 12 volt supplies are on
because, the resulting power surge will blow breakers in the building wall circuits. For this
reason, be sure to power down the Dorado logic supplies (4 push sequence discussed above)
before turning on the disks; then go through the complete power up sequence with a normal boot
sequence (1 to 3 pushes).

Note: Since the microcomputer uses the + 5 volt supply itself, it will crash if that supply fails and
might subsequently auto-boot itself if the + 5 volt supply starts working again. An over­
temperature shutdown never turns off the + 5 volt supply

Dorado Midas Manual Edward R. Fiala 26 November 1979 45

40. Command Files Used With "RdCmds"

At the time this was written, the following command files were in use:

poke

normal

tests
svcrash

proc
control
mmc
mmd
mmx
ifud
dsketh
dsp

tpc

dink
alufm

t
rbase

membase
tioa

md

brio
brhi
hist
vh

Table 9: Command Files

show CPREG, STROBE, and. DIOUT in the right column and become passive for manual hardware
poking.
restore "normal" Midas display with the baseboard voltages, temperature, and currents in the right
display column.
restore "normal" Midas display with the hardware testing items in the right display column.
write the Midas display followed by a pretty-print of all DMux registers on the file Crash. Report

show ProcH/L DMux signals in middle column.
show ContA and ContB DMux signals in middle column.
show MemC DMux and other signals in middle column.
show MemD DMux signals in middle column.
show MemX DMux signals in middle column.
show IFU DMux signals in middle column.
show disk and ethernet contro\1er DMux signals in middle column.
show display contro\1er DMux signals in middle column.

show 2°8 TPC registers in middle column.

show 2°8 TLINK registers in middle column.

show 2°8 ALUFM locations in the middle column.

show 2°8 T registers in middle column.

show 2°8 RBASE registers in middle column.

show 2°8 MEMBASE registers in middle column.

show 2°8 TIOA registers in middle column.

show 2°8 MD registers in middle column.

show BR ° to BR 17 in middle column.
show BR 20 to BR 37 in middle column.
show first 2°8 DMux histories in right column.

show first 2°8 DMux vertical histories in middle column.

Dorado Midas Manual Edward R. Fiala 26 November 1979 46

41. DMux Signal Assignments

Table lOA: Control Section DMux Signals

*Original addresses 0-77 and 260-377 are from ContA. 100-257 from ContB. Midas rearranges
many signals for convenient viewing. The second column shows the way Midas displays them.

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

0 Stop CJNKO 0 0 Stop Always
1 preStaitCyclea 1 preStarlCyclea Always
2 dStartCycle 2 dStartCycie Always
3 PhaseO 3 PhaseO Always
4 Phase4 4 Phase4 Always
5 R\VfPCorRWIM 5 RWfPCorRWIM Always
6 BigBDispatch 6 BigBDispatch Tn gc 2 & switch'
7 Dispatch 7 Dispatch Tn ge 2 & switch'

10 WIM' 10 WIM' Always
11 RIM' 11 RIM' Always
12 WTPC' 12 WTPC' Always
13 RTPC' 13 RTPC' Always
14 FF=Notify' 14:17 0
15 FF=MulStep
16 FF=BDispatch
17 FF = BigBDispatch

20:37 CIAlnc[0:15] CIAINC 1 20:37 CIAlnc[0:15] Tn ge 1

40:57 CIA[0:15] CIA 2 40:57 CIA[0:15] Tn ge 2

60 * CABIock BNT 3 60:73 0
61:70 * bFF[0:7] 74:77 Bnt[0:3] Tn ge 2
71:74 * JCN[0:3]
75:77 * bJCN[4:6]

100:117 * MIR[l:l6] PENC 4 100:113 0
114:117 bPEnc[0:3] Always

120:121 TNIA 5 120:121
122:137 TNIA[2:15] 122:137 TNIA[2:15] Unless return or IFUJump

140:141 BNPC 6 140:141
142:157 BNPC[2:15] 142:157 BNPC[2:15] Never

160 CBTempSense CTASK 7 160:173 0
161 bSWd' 174:177 CTASK[0:3] Tn ge 2
162 * IMLH
163 * bRSTK.O
164 * bdRSTK.O
165 * bdIMLH
166 * bdIMRH
167 * bdJCN.7

170:173 CTASK[0:3]
174:177 CTD[0:3]

* Midas extracts the 44 MIR and 44 bdIM signals and arranges these as registers (MIR and IMOUT). This information
resides in DMuxTab in the peculiar MIR-Ioading format discussed in the "Dorado Debugging Interface" document, but is
viewed by users in the standard 1M format

Dorado Midas Manual Edward R. Fiala 26 November 1979 47

Table lOB: Control Section DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

200:217 * bdxx for IM[1:16] NEXT 10 200:203 0
214:217 Next[0:3] Always

220:237 * bdxx for IM[17:32] CfD 11 220:233 0
234:237 CfD[0:3] Tn ge 1

240:243 CS[0:3],BDb RA 12 240:243 CS[0:3],BDb Always
244:245 RAQuad[O:I]i 244:245 RAQuad[0:1]i Never
246:257 RA[I:10] 246:257 RA[I:10] Always

260 Call TOPE 13 260 0
261:277 ToPE[I:15] 261:277 ToPE[I:15] Always

300 * bICN.7 CJNKI 14 300 Call Usually
301 *IMRH 301 bSWd' Always
302 GND 302 GND Always
303 LocalBr'a 303 LocalBr'a Always
304 IFUNext'a 304 IFUNext'a Always
305 LongJump'a 305 LongIump'a Always
306 Return'a 306 Return'a Always
307 CondBr'a 307 CondBr'a Always
310 bFFok'c 310 bFFok'c Always
311 FA=O' 311 FA=O' Always
312 FA=l' 312 FA=l' Always
313 bDoCBr 313 bDoCBr Never
314 FF=UseDMD 314 Link +- BMuxa Tn ge 1
315 FF=TOfflsOK 315 B+-Link' Tn ge 1
316 RIMorRTPCdly 316 RIMorRTPCdly Tn ge 2
317 MulStep 317 MulStep Tn ge 2 & no switch

320 FF=TaskingOn FFEQ 15 320 FF= TaskingOn Always
321 FF=TaskingOff 321 FF=TaskingOff Always
322 FF=MidasOn 322 FF=MidasOn Always
323 Link+-BMuxa 323 0
324 FF=WriteLink 324 FF= WriteLink Always
325 FF=Link+-CPReg 325 FF=Link+-CPReg Always
326 FF= ReadLink 326 FF = ReadLink Always
327 B+-Link' 327:331 0

330:333 Bnt[0:3] 332 FF=UseDMD Always
334:337 bPEnc[0:3] 333 FF=TOfflsOk Always

334 FF=Notify' Always
335 FF=MulStep Always
336 FF= BDispatch Always
337 FF = BigBDispatch Always

* Midas extracts the 44 MIR and 44 bdlM signals and arranges these as registers (MIR and IMOUT). This information
resides in DMuxTab in the peculiar MIR-loading format discussed in the "Dorado Debugging Interface" document, but is
viewed by users in the standard 1M format

Dorado Midas Manual Edward R. Fiala 26 November 1979 48

Table tOe: Control Section DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

340:343 pNext{0:3] CJNK3 16 340:343 0
344 Next=O 344 Next=O Always
345 Cfask=O 345 Cfask=O Always
346 PEncGtTrueNext' 346 PEncGtTrueNext' Always
347 PEncLtTrueNext' 347 PEncLtTrueNext' Always
350 StopTasks 350 StopTasks Tn ge 2
351 PEnc=CT' 351 PEnc=CT' Always
352 TPCBypass 352 TPCBypass Tn ge 2
353 PreEmpting' 353 PreEmpting' Always
354 bHoldA 354 bHoldA Always
355 RepeatCurz 355 RepcatCurz Always
356 bSwitch'a 356 bSwitch'a Tn ge 2
357 bSwitchUp' 357 bSwitchUp' Tn ge 2

360 READY 17 360
361:377 Ready[1:15] 361:377 Ready[1:15]

MIR 166:171 MIR[0:35] in MIR format

IMOUT 172:175 bdIM[0:35] in MIR format

Table 11: BaseBoard DMux Signals

DMux Signal "Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

2200:2207 ClkRate CLKRUN 110 2200:2207 ClkRate Never
2210 ECLup 2210 ECLup Never
2211 EnRefreshPeriod' 2211 EnRefreshPeriod' Never
2212 IOReset' 2212 10 Reset' Never"
2213 RunRefresh 2213 RunRefresh Never
2214 MASync 2214 MASync Never
2215 TBascTempSense 2215 0

2216:2217 -- 2216:2217 --

Dorado Midas Manual Edward R. Fiala 26 November 1979 49

Table 12A: Processor Section DMax Signals

*Processor DMux addresses (400 to 777) are arranged so that the first lOs in each group of 208 are
from ProcH, the last 108 from ProcL. Signals are frequently duplicated (one from each board).
Midas does not rearrange any signals from the processor section.

Midas
Word

Midas
Word

Name Number

ALUB 20

ALUA 21

ABeON 22

PERR 23

SHMV 24

MAR 25

DMux Signal
Address Name

400:417

420:437

440
441

442:443
444
445

446:447
450:457

460
461

462:463
464
465
466
467
470
471
472
473

474:477

500:517

520:537

alub

alua

MarMuxAEn'
AmuxEn'
AmuxO to 1
IOBout
BmuxEn'
BmuxO to 1
=440:447

EMU'
CkMdParity'

IOPerr
MdPerr
RmPerr
TmPerr
StkSela
StkSelSaved
10 BoutSaved
"MDSaved
=464:467

shmv

MAR.O' to MAR.15'

26 540:557

PRFA 27 560
561
562
563

564:566
567

570:577

Last = Curr'
Curr=Next'
Shift'
lOBin'
FA=O'a to FA=2'a
FA=3'
=560:567

Simulation
Condition

if driven from BMux or from constant

Tn ge 1 driven from small constant & not shift

Tn ge 1
Tn ge 1
Tn ge 1
Tn ge 1
Tn ge 1
Tn ge 1
Tn ge 1

Always
Tn ge 2

Never
Never
Never
Never
Always
Never
Tn ge 2
Never
Never

Pmux odd or shift'

Tn ge 1 driven from processor, no shift,
Tn eq 2 bits S:15 when driven by IFU,
Tn eq 2 when not driven

Tn ge 2
Always
Always
Tn ge 1
Always
Always
As above

Dorado Midas Manual Edward R. Fiala 26 November 1979 50

Table 12B: Processor Section DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

SCCON 30 600
601 RepeatCurrC Always
602 Holda Always
603 LdTaskSim' Always
604 FFshift' Always
605 ShcWriteEn' Tn ge 1
606 LoadCnt' Always
607 PropCnt' if DecCnt is false
610

611:612 = 601:602 Always
613 LdHoldSim' Tn ge 1

614:616 =604:606 As above
617 DecCnt' Always

QPDCON 31 620 QshiftL' Tn ge 1
621 QshiftR' Tn ge 1
622 RmaskEn' Tn ge 1
623 LmaskEn' Tn ge 1
624 ShiftBitsEn' Tn ge 1

625:627 PmuxO to 2 Tn ge 1
630:633 =620:623 Tn ge 1

634 ALUFWriteEn' Always
635:637 = 625:627 Tn ge 1

ALUCON 32 640 Pdata.OO Tn ge 1 if source is ALU barring shifter
641 Pdata.04 Tn ge 1 if source is ALU
642 TIOA WriteEn' Tn ge 1
643 TIOABypass Always
644 MBWriteEn' Tn ge 2
645 MBBypass Always

646:647 MBMuxO to 1 Tn ge 1
650 aluCin Never
651 Pdata.08 Tn ge 1 if source is ALU
652 Pdata.12 Tn ge 1 if source is ALU

653:656 aluFO to 3 Never
657 aluM Never

NEXTCL 33 660:663 LastNextO' to .3' Tn ne 1
664:667 CurrLast.O' to .3' Tn ne 1
670:677 =660:667 Tn ne 1

RADDR 34 700:703 Task2Back.O' to 3' Tn ge 2
704:707 Task3Back.O' to 3' Tn ge 2
710:713 RbWadr.O' to 3' Sometimes Tn ge 2
714:717 RbWadrA to 7 Tn ge 2

Dorado Midas Manual Edward R. Fiala 26 November 1979 51

Table 12C: Processor Section DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

STKRB 35 720 BCWriteEn' Tn ge 2
721 Cnt=Zero' Never**
722 Ioatta Never*
723 ResEqZero' Never"''''
724 ResLtZero' Never**
725 ALUCarry Never**
726 Overflow' Never**
727 RmLtZero' Never**
730 RBaseBypass' Tn ge 1
731 SelRBase Wadr' Always
732 RBase WriteEn' Tn ge 1
733 BumpRBase Always
734 BumpRSTK Always
735 StkPMuxl Always
736 StkPWriteEn' Always
737 RmOdd' Never**

RTSB 36 740 ReSchedWrEn' Always
741 NextMacro Always
742 RbWriteEn' Tn ge 2
743 RbSelMd Tn ge 2
744 RbBypassDly Never**
745 TbWriteEn' Tn ge 2
746 TbSelMd Tn ge 2
747 TbBypass Tn ne 1
750 StkPSaveEn' Tn ge 1
751 StkError Never**

752:757 = 742:747 As above

PJUNK 37 760 FFok'a Always
761
762 NextData' Always
763 B+-Ext Always
764 FF.Omem Always
765 FF.lmem Always
766 RisIFdata Always
767 TisIFdata Always
770 FFok'b Always
771 +-MD Always
772 +-MDl Always
773 B+-Ext Always

774:775 SbTskDly.O' to l' Never
776 RisIFdata Always
777 TisIFdata Always

Dorado Midas Manual Edward R. Fiala 26 November 1979 52

Table 13A: MemC DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

1000 ProcVA.04 PVAH 40 1000:1003 0
1001 true 1004:1017 ProcV A04 to 15 Tn ge 2 & no elk
1002 WantCHdly'

1003:1017 ProcVA.07 to 19

1020 McmB.O PVAL 41 1020:1037 ProcVA.16 to 31 Tn ge 2 & no clk
1021:1022 ProcVA.05 to 06

1023 MemB.1
1024:1037 ProcVA.20 to 31

1040:1047 Aad.Oa to 7a MAPAD 42 1040:1046 0
1050:1057 MapAd..1 to 8 1047:1057 MapAd.O to 8 Never**

1060 dVA~Vic

1061 ForceDirtyMiss
1062 UseMcrV
1063 DisBR
1064 DisCflags
1065 DisHold
1066 NoRef HIT 43 1060:1066 0
1067 MiscPCHP' 1067 MiscPCHP' Tn ge 2

1070:1071 CoIVic.O to 1 1070:1071 CoIVic.O to 1 Sometimes
1072 HitColV Apar 1072 HitCoIVA.par 0 on miss
1073 HitCoIDirty 1073 HitCoIDirty 0 on miss
1074 Hita 1074 Hita o on ForceMiss if Tn ge 2

1075:1077 MemB.2 to 4 1075:1077 0

1100:1101 Victim.O' to l' HOLD 44 1100:1101 0
1102:1103 NextV.O' to l' 1102 true

1104 MiscHold' 1103 WantCHdly' Tn ge 1
1105 MDhold' 1104 MiscHold' Tn ge 2
1106 RefHold' 1105 MDhold' Tn ge 2
1107 BLretry 1106 RefHold' Tn ge 2 & not ForceMiss
1110 AwasFree' 1107 BLretry If forced to 0
1111 Dbusy 1110 AwasFree' Tn ge 2
1112 Dbuffiusy 1111 Dbusy Tn ge 2
1113 AtookST 1112 Dbuffiusy Tn ge 2
1114 SomeExtHold' 1113 AtookST Tn ge 2
1115 Afree' 1114 SomeExtHold' On StkError % CHoldReq
1116 StartMap' 1115 Afree' if EcHasA
1117 AwantsMapFS' 1116 StartMap' Always

1117 AwantsMapFS' Always

Dorado Midas Manual Edward R. Fiala 26 November 1979 53

Table 13B: McmC DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

1120 Store~InA PAIR 45 1120 Store~InA Tn ge 2 % EcHasA
1121 IoStoreInA 1121 IoStoreInA Tn ge 2 % EcHasA
1122 Map ~ InPair' 1122 Map~ InPair' Tn ge 2
1123 F1ushInA 1123 F1ushlnA Tn ge 2 % EcHasA
1124 PrefetchInA 1124 PrefetchInA Tn ge 2 % EcHasA
1125 IfuReflnA 1125 IfuRcflnA Tn eq 2 % EcHasA
1126 IoReflnA' 1126 IoReflnA' Tn ge 2 % EcHasA
1127 CacheRcflnA 1127 CacheReflnA Tn ge 2 % EcHasA
1130 MapAd.O 1130 0
1131 PrivReflnPair 1131 PrivReflnPair Tn ge 2
1132 VicInPair' 1132 VicInPair' Tn ge 2 sometimes
1133 FSinPair' 1133 FSinPair' Tn ge 2 sometimes
1134 bEcHasA 1134 bEcHasA Tn ge 2
1135 KillIfuRef 1135 KillIfuRef Always
1136 ~PrVArow 1136 ~PrVArow Tn eq 2
1137 PairFull' 1137 PairFull' Tn ge 2

1140:1143 PipeAd.O to 3 PIPEAD 46 1140:1143 PipeAd.O to 3 Tn eq 2
1144:1145 CacheConfig[O:I] 1144:1145 CacheConfig[O:I] Never
1146:1147 PageConfig[O:I] 1146:1147 PageConfig[O:l] Never
1150:1157 -- 1150:1157 --

MCR 57 3760 dVA+-Vic Never
3761 ForceDirtyMiss Never
3762 UseMcrV Never

3763:3764 Victim[O:l] Never
3765:3766 NextV[O:lj Never

3767 DisBR Never
3770 DisCflags Never
3771 DisHold Never
3772 NoRef Never

3773:3774 0
3775 WakeOnCL Never
3776 ReportSE' Never
3777 NoWakeups Never

AAD 161 3660:3663 0
3664:3673 Aad.Oa to 7a Never
3674:3677 0

MEMB 162 3700:3712 0
3713:3717 MemB.O to 5 Never

Dorado Midas Manual Edward R. Fiala 26 November 1979 54

Table 14A: MemD pMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

1200 SinD.OO MEMDO 50 1200 SinD.OO Never
1201 CD.OO 1201 CD.OO Never
1202 DOin.OO 1202 DOin.OO
1203 Dlin.OO 1203 Dlin.OO
1204 EcSoutOO' 1204 EcSoutOO'
1205 EcInD.O 1205:1206 0
1206 Dbuf+-'
1207 1207
1210 D.OO 1210 D.OO
1211 dMD.OO 1211 dMD.OO
1212 DlBCE'c 1212 FoutOO
1213 WriteDl'd 1213:1217 0
1214 DontWriteMDM

1215:1217 Dadl.10b to 12b

1220 DOBCE'c
1221:1222 Dad.OOf to Olf DAD 51 1220:1221 Dad.OOf to Olf
1223:1231 Dad.02'c to 08'c 1222:1230 Dad.02'c to 08'c

1232 Dad.09' 1231 Dad.09'
1233:1235 DadO.10c to 12c 1232:1234 DadO.10c to 12c

1236 DOACE'c 1235:1237 Dadl.lOb to 12b
1237 WriteDO'e

1240 F+-D FD 52 1240 F~D Tn ge 2
1241 D+-Dbuf 1241 D~Dbuf Tn ge 1
1242 Sout~D 1242 Sout+-D Tn ge 1
1243 Fout+-D 1243 Fout+-D Tn ge 1
1244 D+-CD 1244 D~CD Tn ge 1
1245 Md+-D 1245 Md+-D Tn ge 1
1246 MakeMDM~D' 1246 MakeMDM~D' Always
1247 bFastD~ Dbuf 1247 bFastD~ Dbuf Always
1250 FoutOO 1250 Dbuf~' Tn ge 1
1251 DadH~' 1251 DadH~' Tn ge 2
1252 DontLoadl 1252 DontLoadl Always
1253 GenPhl 1253 GenPhl Tn ge. 2 & EnEcGen

1254:1257 - 1254 DontWriteMDM Tn eq 2
1255:1257 --

Dorado Midas Manual Edward R. Fiala 26 November 1979 55

Table 14B: MemD DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Ad(lress Name Word Word DMux Name Condition
(Octal) Name Number Address

1260:1263 MDMad.O' to 3' EC 53 1260:1263 0
1264 StartEcChk' 1264 StartEcChk' Always
1265 StartEcGen' 1265 StartEcGen' Always
1266 DlACE'c 1266 0
1267
1270 EclnD.1 1267:1270 EclnD.O to 1 Never
1271 WordlnError' 1271 WordlnError' When DisableEc true
1272 DisableEc' 1272 DisableEc' Never**
1273 ChkPh1 1273 ChkPh1 Tn ge 2 & preEcEn
1274 ChkPM' 1274 ChkPH4'
1275 ChkLastPh6' 1275 ChkLastPh6'
1276 DoubleError' 1276 DoubleError'
1277 ChkErrEn' 1277 ChkErrEn'

1300:1306 tSynO to 6 TSYN 54 1300:1306 tSynO to 6
1307 tSyn7x 1307 tSyn7x

l310:l317 - 1310:1317 --

MDMAD 55 3540:3553 0
3554:3557 MDMad.O' to 3' Tn ge 2

DADE 56 3560 DOACE'c Two chip enables always
3561 DOBCE'c predicted false, other two
3562 DlACE'c if (TlTransport & (Tn ge 2»
3563 DlBCE'c
3564 WriteDO'e Tn ge 2
3565 WriteDl'd Tn ge 1

3566:3577 0

Dorado Midas Manual Edward R. Fiala 26 November 1979 56

Table 15A: MemX DMux Signals

* = moved elsewhere (ProeSrn[0:3] and 3 bits for MerE- are moved)

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

MAPBUF 60 1400:1417 Mapbuf{O:l5] Tn ge 2

P34INEC 61 1420:1421 Mapbuf.l6 to 17 Tn ge 2
1422 ProeTagInA Tn ge 2
1423 PrivRefInPair Always

1424:1427 Pipe34Ad.0 to 3 Tn ge 2
1430 WPinEel Tn ge 2
1431 MapTroublelnEel Tn ge 2
1432 TagInEe2 Never
1433 CaeheRefInEe2 Never
1434 StoreE-InEe2' Never
1435 IFURefInEc2 Never
1436 MapPElnEe2 Never
1437 MapTroubielnEe2 Tn ge 2

MCDTSK 62 1440:1443 MDMtagAd.O to 3 Always
1444:1447 CurTask.O to 3 Always

1450 ProeTag Always
1451 MDMtag' If CaeheReflnPair & (Atask eq CurTask)
1452 At = Curt' Always
1453 Dt=Curt' Always

1454:1457 Dtask[0:3] Never

STA 63 1460 VietimInST Tn ge 2
1461 STidle' Always
1462 StartST Always
1463 STWait-Mem' Tn ge 2

1464:1467 STState[0:3] Tn ge 2
1470 STfree' Tn ge 2
1471 VietimlnA Always
1472 MapRfshDly Tn ge 1
1473 RefUsesDInEeI Tn ge 2 & StartEcl
1474 AWordReIToD Always
1475 MapWantsPipe Tn ge 2
1476 MapFree Tn ge 2
1477 UseAsrn Tn ge 2

APESRN 64 1500:1503 Asrn.O to 3 Tn ge 2
1504:1507 ProeSrn.O to 3 Tn ge 2

1510 MapIs16K Never
1511 MapIs64K Never
1512 MapIs256K Never
1513 RfshAd.O Never

1514:1517 Ee2Srn[0:3] Tn ge 2

Dorado M Mas Manual Edward R. Fiala 26 November 1979 57

Table 15B: MemX DMux Signals

* = moved elsewhere (3 bits for Mer+- are -moved)

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

STOll 65 1520 LoadEn' Never
1521 EcLoadEn' Never
1522 ShiftEn' Tn ge 2
1523 EnEcGen' Tn ge 2
1524 MapWait-ST' Tn ge 2
1525 STPerrNow' Never
1526 EnableAllMods Never
1527 StartEcl Never
1530 ~airFull Always
1531 Transporta Always
1532 EcFault' Never
1533 MemError' Never
1534
1535 ChipsAre256/16K Never
1536 ChipsAre64K Never
1537 VicSTPerr-. Never

TAGAT 66 1540 MemColSela Never
1541 EcHasA Tn ge 2
1542 Ptag Never
1543 MapWait-Ec2 Tn ge 2
1544 Dtag' Tn ge 2
1545 sHold Always
1546 MapWait-MemState' Always
1547 MapRfsh Always
1550 AcanHaveD Tn ge 2
1551 CaeheRefInPair' Tn ge 2
1552 EcWordReIToD Always
1553 ChkLastPh6 Tn ge 2

1554:1557 Atask.O to .3 Tn ge 2

MEMST 67 1560 MapWait-MemD Never.
1561 MapWait-McmIO Always
1562 Memldle' Always
1563 MemFree Tn ge 2

1564:1567 MemState.O to 3 Tn ge 2
1570 FinNext Tn ge 2
1571 MemRfsh Tn ge 2
1512 StopFinTaskLoad Tn ge 2
1573 DdataGood' Tn ge 2
1574 MakeSout+-D Tn ge 2

1575:1577 MakeTransport[0:2] Never**

70 1600:1607

Dorado Midas Manual Edward R. Fiala 26 November 1979

Table 15C: MemX DMux Signals

* = moved elsewhere (ProcSm[O:3] and 3 bits for Mcr~ are moved)

Midas
Word

Midas
Word

Name Number

FLTMEM 71

RFSSRN 72

ECIMAKE 73

MAPCTRL 74

DMux
Address

* 1620
* 1621
* 1622

1623
1624
1625
1626 .
1627
1630
1631
1632
1633
1634
1635
1636
1637

1640
1641
1642
1643
1644
1645
1646
1647

1650:1653
654:1657

1660
1661
1662

1663:1664
1665:1667

1670
1671
1672
1673
1674
1675
1676
1677

1700:1701
1702
1703
1704
1705
1706
1707
1710
1711
1712

1713:1714
1715:1717

Signal
Name

WakeOnCL
ReportSE'
NoWakeups
ProcSm~'

Faults
LoadFltSm
ReportFault
MapPElnMem
MapTroublelnMem
RfshlnMem
WriteInMem'
MemWP
IOFetchInMem'
RefUsesD10InMem'
RefUsesDInMem
DirtylOFetchlnMem

STPerr
MapPerr
HitPerr
WantRfsh
NeedRfsh
StartMema
StkWake
~ FaultInfoDly'
MapSm.O to 3
MemSm.O to 3

StartEc2'
EclFree'
EclIdle
EclFunc.O to 1
EclState.O to 2
EcWantsAa
FoutNext
MakeFout~D

MakeD~CD

MakeD~Dbuf

MakeF~D

MakeMD~D

MakeMDM~D'

MapbufHLO to 1
MapRAS'
MapCAS'
MapWE'
RefWE'
DirtyWE'
o
MapWait
WantMapWait'
VaiidMapFltlnEc2'
MapFnc.O' to l'
MapState.O to 2

Simulation
Condition

Tn ge 1
Never
If independent of FaultSm eq 0
Always
Never
Never
Tn ge 2
Tn ge 2
Never
Tn ge 2
Tn ge 2
Tn ge 2
Tn ge 2

Never
Never
Never
Tn ge 2
Always
Tn ge 2
Never
Never
Tn ge 2
Tn ge 2

Tn ge 2
Tn ge 2
Always
Tn ge 2
Tn ge 2
Tn ge 2
Tn ge 2 usually
Tn ge 2 usually
Tn ge 2 usually
Always
Always
Always
Tn ge 2

Never
Tn ge 2 when forced high
Tn ge 2 when forced high
Tn ge 2 % StartMap
Tn ge 2
Tn ge 2 % StartMap

Always
Always
Tn ge 2
Tn ge 2
Tn ge 2

58

Dorado Midas Manual Edward R. Fiala 26 November 1979

Table 15D: MemX DMux Signals

* = moved elsewhere (proeSrn[0:3] and 3 bits for Mer+- are moved)

Midas
Word
Name

PEEC

INMAP

Midas DMux
Word Address
Number

75 1720:1723

76

1724:1727
1730
1731
1732

1733:1734
1735:1737

1740
1741
1742
1743
1744
1745
1746
1747

1750:1757

Signal
Name

PEsrn.O to 3
Ec1Srn.0 to 3
CaeheLoad'
Ec2Free
Ec2Idie
Ec2Fune.O to 1
Ec2State.0 to 2

RelUsesDinMap'
RelUsesD10InMap'
DirtyIOFetehInMap'
WriteInMap'
IOFetehInMap'
+-MaplnMap
Store +- InMap'
EcWantsPipe4'

Simulation
Condition

Always
Tn ge 2
Always
Tn ge 2
Always
Tn ge 2
Tn ge 2

DirtyIOFetchInMap % «Tn ge 2) & StartMap)
Tn ge 2
Never
Tn ge 2
Tn ge 2
Never
Tn ge 2
Tn ge 2

59

· Dorado Midas Manual Edward R. Fiala 26 November 1979 60

Table 16: Disk Controller DMu.'{ Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

KSTATE 100 2000 0
2001 IndexTW
2002 SectorTW
2003 SeekTagTW
2004 RdFifoTW
2005 WrFifoTW
2006 ReadData
2007 WriteData
2010 EnableRun
2011 DebugMode
2012 RdOnlyBlock'
2013 WriteBlock'
2014 CheckBlock'
2015 Active

20]6:2017 Select[O:l]

KSTAT 101 2020 SeekInc
2021 HeadOvfl
2022 DevCheck
2023 NotSelected
2024 NotOnLine
2025 NotReady
2026 SectorOvfl
2027 FifoUnderflow
2030 FifoOverflow
2031 ReadDataErr
2032 ReadOnly
2033 CylOffset
2034 IOBParityErr
2035 FifoParity Err
2036 WriteError
2037 ReadError

KRAM 102 2040:2043 RarnAddr[0:3]
2044:2057 Ram[4:15]

KTAG 103 2060 DriveTag
2061 CylinderTag
2062 HeadTag
2063 ControlTag
2064 Tag.Ooo
2065 Tag.OO

2066:2077 Tag[0:9]

KFIFO 104 2100 ShiftIn
2101 ShiftOut
2102 ComputeECC
2103 NextBlock
2104 LoadTag
2105 CntDone'
2106 OutRegFull
2107 InRegFull

2110:1113 FifoWaddr[O:3]
2114:2117 FifoRaddr[0:3]

Dorado Midas Manual Edward R. Fiala 26 November 1979 61

Table 17: Ethernet Controller DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

ERXO 105 2120 PDNew
2121 PDOJd

2122:2125 PDCnt[0:3]
2126 PDCntCtrl
2127 ReportCollisions
2130 RxWakeupsOn
2131 EthData.lB
2132 RxCRCError
2133
2134 RxDataLate
2135 RxBusRegFull
2136 RxFifoFull
2137 RxFifoEmpty

ETX 106 2140:2142 TxState[O:2]
2143 TxEOP
2144 TxBusRegFull'
2145 TxGone
2146 TxSREmpty'
2147 TxCntDwn'
2150 TxCRCEnbl
2151 TxGo
2152 TxData

2153:2154 TxSRCtr1[O:I]
2155 PEOutput
2156 TxFifoFull
2157 TxFifoEmpty

ERXI 107 2160:2162 RxState[0:2]
2163 RxCollision
2164 PDCanier

2165:2166 PDEvent[O:I]
2167 RxSRFull'
2170 RxEOP
2171 RxSync'
2172 RxlncTrans
2173 RxCRCReset
2174 RxCRCClk
2175 RxData

2176:2177 RxSRCtrl[O:I]

Dorado Midas Manual Edward R. Fiala 26 November 1979 62

Table 18A: IFU DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

MEMRQ 120 2400:2407 PcF[8:15] Tn eq 2 & Testing'
2410 NewF Tn eq 2 & Testing'
2411 KiIlResponse Tn ge 1 & Testing'
2412 Pause Tn ge 2 & Testing' unless IFUM write
2413 RefDutstanding Never
2414 IncPcF Never
2415 IncPcFG' Always
2416 WantIfuRef Always
2417 ThreeOutO fFive Always

LOADS 121 2420 ValidRam Always
2421 Jj-OddF Always
2422 RealPcFG.15 Tn eq 2 & Testing' unless IFUM write
2423 FDv Tn eq 2 & Testing' unless IFUM write
2424 GDv Tn eq 2 & Testing' unless IFUM write
2425 HDv Tn eq 2 & Testing' unless IFUM write
2426 JDv Tn eq 2 & Testing' unless IFUM write
2427 MDv' Tn eq 2 & Testing' unless n'lJM write
2430 EnableFG' Always
2431· XLd Always
2432 AlphaXLd Always
2433 BrkLd Tn ne 1
2434 MLd Always
2435 InstrAddrLd Tn ge 2
2436 JLda Always
2437 GLd' Always

HJ 122 2440:2447 H[0:7] Never
2450:2457 J[0:7]b Tn ge 2 & Testing' unless IFUM write when no clock or

on Jj-H the 1's are checked

MX 123 2460 TwoAlphaX Tn ge 2 & Testing'
2461 JFault Tn ge 2 & Testing' unless IFUM write
2462 HFault' Tn eq 2 & Testing'
2463 NM=17 Tn ge 2 & Testing'
2464 TwoAlphaM Tn ge 2 & Testing'
2465 TypeJumpM' Tn ge 2 & Testing'

2466:2467 LengthM[O:l] Tn ge 2 & Testing'
2470:2471 DScl[O:I] Tn ge 2 & Testing' unless XShift with DSel eq 0
2472:2473 LengthX[O:I] Tn ge 2 & Testing'
2474:2477 NX[0:3] Tn ge 2 & Testing' when unclocked or NM eq 17

Dorado Midas Manual Edward R. Fiala 26 November 1979 63

Table 18B: IFU DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

JMPEXC 124 2500 Exception Always
2501 SayNotReady Always
2502 WantRcsched Tn ge 2 & Testing'
2503 SawRamParityErr Only during Reset
2504 SawFGParityErr Only during Reset or when testing
2505 ReschedPending Tn ge 2 & Testing'
2506 KReady Always
2507
2510 ZapFGH Always
2511 ZapJ Always
2512 NewJ Tn ge 2 & Testing' unless IFUM write
2513 DoJump Tn ge 2 & Testing' unless IFUM write
2514 TumOffAlu Tn even
2515 NewGo Always
2516 BMuxEnable Tn even
2517 FGFauit Never

PCJ 125 2520:2527 PcJ[8:15] Tn eq 2 & Testing' unless lFUM write
2530 MLdDly' Tn ge 2 & Testing'
2531 BetaInM Tn ge 2 & Testing'
2532 FGErrDly Tn ge 2
2533 RamErrDly Tn ge 1

2534:2535 InstrSet Never**
2536 OneByteJumplnJ Tn ge 2 & Testing'
2537 OneByteJumplnJd Tn ge 2 & Testing'

FFK 126 2540 Test+- Tn ge 1
2541 GenOut+-' Tn ge 1
2542 NewPC+- Tn ge ~ & Testing'
2543 IfuReset Tn ge 2
2544 BrkIns+- Tn ge 2 & Testing'
2545 Testing Tn ge 2
2546 SignX' Never
2547 BrkPending Tn eq 2 & Testing'

2550:2552
2553 TypeJumpK' Never
2554 TypePauseK' Never

2555:2556 LengthK[O:l] Never
2557 SignK Never

Dorado Midas Manual Edward R. Fiala 26 November 1979 64

Table 19: Display Controller DMux Signals

Midas Midas Midas Signal Simulation
Word Word DMux Name Condition
Name Number Address

APTRS 140 3000 ACurrentWCBFlag Never
3001:3007 AReaderPtr.1 to 7 Never

3010 ANextWCBFlag Never
3011:3017 A WriterPtr.1 to 7 Never

BPTRS 141 3020 BCurrentWCBFlag Never
3021:3027 BReaderPtr.1 to 7 Never

3030 BNextWCBFlag Never
3031:3037 BWriterPtr.1 to 7 Never

ITEMS 142 3040:3047 AItem.O to 7 Never
3050:3057 BItem.O to 7 Never

SPSIZE 143 3060:3063 AServicePtr.1 to 4 Never
3064:3067 BServicePtr.1 to 4 Never

3070 AFifoFull Never
3071 BFifoFull Never
3072 ASize8 Never
3073 ASize8-4 Never
3074 ASize8-4-2 Never
3075 BSize8 Never
3076 BSize8-4 Never
3077 BSize8-4-2 Never

RES ON 144 3100 AOn Never
3102 BOn Never

3103:3104 ARes.O to 1 Never
3105:3106 BRes.O to 1 Never

3107 OISRcvdData Never
3110:3117

Dorado M idas Manual Edward R. Fiala 26 November 1979 65

Table 20: Other DMux Stuff

* BMUX and ESTAT signals are obtained from the four-bit slice readout The temperature sensing signals are moved
from the position in which the hardware reads them out

Midas Midas Midas Signal Simulation
Word Word DMux Name Condition
Name Number Address

TEMP 160 3500 CBTemp Never
3501 BaseTemp Never
3502 ProcHTemp Never
3503 ProcLTemp Never
3504 lFUTemp Never
3505 DskEthTemp Never

3506:3517

BMUX 163 BMux[0:17] if driven from ALUB

ESTAT 164 4020 PEIMrh
4021 PEIMIh
4022 MdPE
4023 RAMPEen
4024 IOBPE
4025 RAMPE
4026 MemPE
4027 MemPEen
4030 CIMPErh
4031 CIMPElh
4032 Stopped
4033 MdPEen
4034 IMrhPEen
4035 IMlhPEen
4036 IOBPEen
4037 MIRDebugen

CONFIG 0 PROBLEMS 0 UPTIME o days 3:24:42
CLKRUN 1040 OUTOFSPEC 0 TGLITCH o days 1:2:31
ESTAT 0 BADSUPPLYSP-EC 0 COMM-ERRS 0
INSSET 2 MIR-PES 0
OUNK 20 344 ,VOLTS +12.07 +4.93 -1.98 -5.36
TUNK 20 345 AMPS 6 27 75 150

* TPC 20 346 TEMPO +27 +35 ?? +27
RBASE 20 17 TEMPO+l +27 +33 ?? ??
MEMBASE 20 14 TEMPO+2 +25 +23
T 20 177767 *RTEMP 133747 MINVOLTS +12.07 +4.93 -1.97 -5.18
TIOA 20 0 *LTEMP 122001 MAXVOLTS +12.07 +4.93 -1.98 -5.36
CNT 1 MINAMPS 5 26 73 86
STKP 1 MAXAMPS 34 55 109 154
MEMBX 3 BMUX 177777 MAXTEMPO +27 +35 ?? +27

*Q 177766 MAXTEMPO+l +27 +33 ?? ??
'" SHC 0 MAXTEMPO+2 +25 +23

PCX 0
PROCSRN 0 PIPE 0 0 DWATCH 0
MCR 0 0 IMOUT 321747 023457
TASK 0 0 MIR 124576 035777

Loaded: KERNEL

Go at O:BEGIN, BrkP after 0:QERR+1 at 0:QERR+2

RunProg RdCmds Brk UnBrk Go SS OS Passive Ld LdSyms Cmpr Dtach Reset SetClk
Config PEscan TestAll Test SimTest SimGo T1 -T2 T3 RepGo RepSS RepT2 Fields
LDRtest ShowCmds WrtCmds Virtual DMux -

BEGIN;

Sample Midas Display

MidasPicture.sil
8/1/79

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66

