
PDP-11 /34 Ethernet Software 

BY Gregory L. Thomas 

September 6, 1979 

Filed on: [MAXC]<ASDSoftware>PDP-Software.press 

XEROX 
XBS I ADVANCED SYSTEMS DEPARTMENT 
701 Aviation Boulevard I El Segundo I California 90245 



Copyright Xerox Corporation 1979 

PDP-11 /34 Ethernet Software 
The software which is provided to support the Ethernet hardware consists of five 
distinct levels: 

Services --- This is a collection of routines for memory allocation, queuing, timing, 
tasking, and moving data. 

PUP Level 0 --- These routines provide the user's interface to the Ethernet hardware. 
They output and input PUP's to arid ·rrom queues and handle interrupts. 

PUP Level 1 --- The routines at this level provide for building PUP's, calculating 
·checksums, routing via gateways, decommutating to sockets, socket management, and 
PUP validity checking. · 

EFTP Protocol --- A single-ACK-per-packet reliable protocol is provided in this 
package along with mechanisms for transferring data to and from packets. This 
protocol is compatible with EFTP on the Alto. 

Applications Programs --- Two programs are provided. The first is a test routine 
which tests the correct operation of the hardware and software by forwarding a PUP 
from one host to another. The second is a file transfer routine (usable under RT-11 
only) which allows for the transfer of files between PDP-ll's and Altos . 

.. 
Applications Programs 

EFTP Protocol 

PUP Level 1 B I Pup10Cj ~ I PupRtel I PupoGI 

PUP Level 0 

Services 

2 



Copyright Xerox Corporation 1979 

The Ethernet software was written to be run in one of three modes: standalone, 
under RT-11, or under RSX-llM. ln order to accomplish this it was necessary to 
provide multiple versions of those routines which access the hardware or make 
monitor calls. In addition, RSX-llM loadable drivers are provided with the 
software. 

The PDP-11 Ethernet software is composed of and was generated from the following 
Alto packages: 

EFfP Protocol 
PUP Levels 1 & 0 
Context 
Queue 
Timer 

All of these packages are documented in a manual entitled "Alto Software Packages" 
which is stored in two sections at: 

[MAXC]<ALTODOCS>PACKAGESl.PRESS 
[MAXC]<ALTODOCS>PACKAGES2.PRESS 

In addition, the modules "OSA", which contains some of the routines and functions 
of the Alto operating system, and "Alloc" are documented in the "Alto Operating 
System Reference Manual" at: 

[MAXC]<ALTODOCS>OS.PRESS 

All Alto BCPL code was syntactically modified to conform to the requirements and 
limitations of the PDP-11 DOS compiler, but is· otherwise unchanged. The BCPL 
compiler generated MACR0-11 source code with the name *.PAL. All assembly 
language code was rewritten in MACR0-11 and given the name *.MAC, *.RT, or 
*.RSX.· Because the code is virtually unchanged from the Alto implementation, the 
Alto documentation is totally definitive and trustworthy with two exceptions: 

(1) Because of a PDP-11 BCPL limitation, defaulted arguments must be set to 
zero (rather than omitted). 
(2) Timer increments were changed from .01 seconds to .1 seconds because of 
the resolution available from a 60-cycle clock. 

The module OSA. *, which simulates the Alto operating system, contains the entry 
point for the program and sets up memory areas for the allocation of stacks and 
dynamic memory pools. It also provides procedures to increment the variable 
BINCLK every 100 milliseconds. These two functions must be modified as a 
function of the operating system and the hardware clocks available to the system. 

The module PUPTST. * contains a test routine which will forward a pup from one 
host to another using EFTP protocol. The destination host is predefined as being 
344#. Two Altos using EFf P.RUN can be used to perform this test 

3 



Copyright Xerox Corporation 1979 

Source File Information 

The source code is available in three forms: (1) as a dump file on a file server, (2) on 
an R T-11 floppy, and (3) on an RSX-llM floppy. 

The dump file is located at [MAXC]<ASDSoftware>PDP-Ethernetdm and consists of 
the following files: 

DESCRIPTION 

Applications 
Programs 

EFTP Protocol 

PUP Level 1 

PUP Level 0 

Services 

1/0 Ori vers 

BCPL 

DUB .HOR 
PUPTST.BPL 
EFTPDR. BPL 

EFTP . HOR 
EFTP . BPL 

LEVELl.HDR 
PUP11 . BPL 
PUP10C.BPL 
PUP1B .BPL 
PUPRTE.BPL 
PUPDG .BPL 

LEVELO.HDR 
PUPOB .BPL 

PUPLIB. HOR 
ALLOC .BPL 

MACR011 

PUPTST. PAL 
EFTPDR.PAL 
EFTPSB.MAC 

EFTP . PAL 

PUP11 . PAL 
PUP10C.PAL 
PUP1B .PAL 
PUPRTE. PAL 
PUPDG .PAL 

PUPOB .PAL 
PUPOA .MAC 
PUPOA .RSX 

ALLOC .PAL 
QUEUE .MAC 
QUEUE .RSX 
TIMER .MAC 
CONTXT.MAC 
OSA .MAC 
OSA .RT 
OSA .RSX 

ENDRV .RSX 
E"NTAB .RSX 

COMMENTS 

RT-11 Subroutine for EFTPDR. 

Standalone or RT-11 
RSX-UM 

Standalone or RT-11 
RSX-UM 

Standalone 
RT-11 
RSX-UM 

RSX-UM 
RSX-11M 

4 



Copyright Xerox Corporation 1979 

The RT-11 floppy consists of the following files: 

DESCRIPTION 

EFTP Run Module 

Applications 
Programs 

EFTP Protocol 

PUP Level 1 

PUP Level 0 

Services 

BCPL, etc. 

EFTP . SAV 
EFTP .COM 

DLIB . HOR 
PUPTST.BPL 
EFTPOR.BPL 

EFTP . HOR 
EFTP . BPL 

LEVEL1.HOR 
PUP1I . BPL 
PUP10C. BPL 
PUP1B . BPL 
PUPRTE.BPL 
PUPDG .BPL 

LEVE LO. HOR 
PUPOB .BPL 

PUPLIB. HOR 
ALLOC .BPL 

MACR011 

PUPTST.PAL 
EFTPOR. PAL 
EFTPSB.MAC 

EFTP . PAL 

PUP1I . PAL 
PUP10C.PAL 
PUP1B . PAL 
PUPRTE.PAL 
PUPDG .PAL 

PUPOB .PAL 
PUPOA .MAC 

ALLOC . PAL 
QUEUE .MAC 
TIMER .MAC 
CONTXT.MAC 
OSA .RT 

COMMENTS 

Executable Load Module 
LINK Command File 

RT-11 Subroutine for EFTPDR 

5 



Copyright Xerox Corporation 1979 

The RSX-llM floppy consists of the following files: 

DESCRIPTION 

EFTP Run Module 

Applications 
Programs 

EFTP Protocol 

PUP Level 1 

PUP Level 0 

Services 

I/O Dr.~vers 

BCPL, etc. 

EFTP . TSK 
EFTP .COM 

DLIB .HOR 
PUPTST.BPL 

EFTP .HOR 
EFTP . BPL 

LEVELL HOR 
PUP1I . BPL 
PUP10C.BPL 
PUP1B .BPL 
PUPRTE .BPL 
PUPDG .BPL 

LEVELO. HOR 
PUPOB .BPL 

PUPLIB. HOR 
ALLOC .BPL 

EN 
EN 

.TSK 

.COM 

MACR011 

PUPTST.PAL 

EFTP . PAL 

PUP1I .PAL 
PUP10C.PAL 
PUP1B .PAL 
PUPRTE. PAL 
PUPDG .PAL 

PUPOB .PAL 
PUPOA .RSX 

ALLOC .PAL 
QUEUE .RSX 
TIMER .MAC 
CONTXT.MAC 
OSA . RSX 

ENDRV .RSX 
ENTAB .RSX 

COMMENTS 

Executable Load Module 
LINK Command File 

Loadable Driver 
LINK Command File 

6 



Copyright Xerox Corporation 1979 

BCPL System Information 

1. Register Allocation 

The BCPL stack register is general register zrro, the system stack register (the SP) 
and the program counter(the PC) are necesarily registers six and seven. On function 
entry registers one to four are used to pass the first four arguments, on function 
return register one holds any result. The only use of the system stack by the BCPL 
system is on function entry to hold temporarily the return link. 

2. BCPL Stack ·Arrangement 

As noted the runtime stack grows down store, and 1s allocated as shown. 

HI store LO store 
stack ptr 

I -----------------------------------1-----------------
1 I I old frame I I I current frame 

------------~-~------------------~-~-----------------
I I 

debug I 
I 

previous 
routine 
link 

I I 
debug I 

I 
current. 
routine 
link 

The 'savespace-size' holding the static links of function entry is of size two, one of 
which is used for the code address linking, and hence also the previous frame size, 
and the other for debugging information or for use with the Intcode Interpreter. 

Vectors are arranged to run up store, according to the BCPL definition. However 
the "vector" of arguments to a routine does not follow the definition - it grows down 
store! 

3. Global Vector Linking 

The Global Vector is known at link time as the Named Csect 'GLOBAL', linking of 
BCPL programs with this Csect is automatic. At the machine code .level the 
conventional mechanism of accessing this Csect is by assigning a variable G to the 
address of global zero and offsetting from this address. Thus: 

.CSECT GLOBAL 
G=. 
• =G+lO 1. +101. 
FUNC 

;enter Csect Global 
;G = address of global zero 
;at global one hundred and one 
;insert the value FUNC 

7 



Copyright Xerox Corporation 1979 

The variable G must only be assigned to once per assembler segment 

4. Function calling Sequence 

JSR 
. 
PC,@G+N 

M 

5. Function Entry Sequence 

SUB 
MOV 
MOV 
MOV 
MOV 

@O(SP),RO 
(SP)+,-(RO) 
RO,R5 
R1,-(R5) 
R2,-(R5) 

6. Function Exit Sequence 

MOV (RO)+,R5 
ADD (R5)+,RO 
JMP (R5) 

7. BCPL Addresses 

;calling through global N/2 
;frame size M+2 bytes 

;standard entry code 
;end of entry sequence 
;copy known args to the stack · 
;first arg on 
;second on, etc up to four args 

;code of the routine 

;code of the routine 

;result, if any, must be in Rl 

;return completed 

At all times it must be remembered that BCPL manipulates addresses as integers. 
These integers are the addresses of consecutive sixteen bit fields in store and hence 
must be word addresses. To convert a BCPL address to a machine address one must 
thus convert to a byte address, which is most easily performed by a single left shift. 

8. BCPL Strings 

BCPL strings are vectors, considered as a sequence of bytes, the less significant half 
of each word preceeding the more significant, and these pairs being treated in their 
order of appearance in the vector. The value of the first byte of the string is the 
number of bytes in the string, excluding itself. 

8 


