
XEROX Internal Memo

To From

Ted Strollo Greg Thomas

Subject Date

Ethernet Software June 15, 1979

The accompanying disk contains an RT-n Operating System along with all of the source
(BCPL and MACROll), binary, load, and command files required for the operation and
maintenance of the Ethernet software.

The PDP-ll Ethernet software is composed of the following Alto packages:

EFTP Protocol & Program
PUP Levels 1 & 0
Context
Queue
Alloc
Timer

All Alto BCPL code was syntactically modified to confonn to the requirements and
limitations of the PDP-ll DOS compiler, but is otherwise unchanged. All assembly
language code was rewritten in MACROn. Because the code is virtually unchanged from
the Alto implementation, the Alto documentation is totally definitive and trustworthy;
however because of a PDP-ll BCPL limitation, defaulted arguments must be set" to zero
(rather than omitted). The documentation for the assembly language interface to BCPL
routines is attached to this letter along with a definition of the NDB which has been
changed for compatibility with the Ethernet hardware. All files of the fonn *.PAL are
MACRon code which was generated by the BCPL compiler running under the DOS
Operating System, and all fIles of the form *.MAC were hand coded in MACROn.

All code is independent of the operating system except for EFfP Program and a routine
called OSA.MAC. EFfP Program uses monitor functions (contained in RTll.MAC) to
read/write the operator's console and the system disk. OSA.MAC . sets up the stacks,
initializes the timer, and allocates memory for the use of the Alloc package; it also contains
routines which were a part of the Alto Operating System (MoveBlock, Zero, Noop.
SetBlock, CallSwat, SysErr, Usc, GetFixed, and FixedLeft).

Greg Thomas
/aIm

·bCpl.txt 22-Mar-79 17:58:39

Basic System Notes

1. Store Allocation

The code of compiled BCPL programs and libraries
resides in high store, immediately above the BCPL global
vector. The PDP system stack, which is only allocated
enough space to perform monitor tasks. is below the global
vector and below the system stack is the BePL runtime stack,
which runs down store.

HI store

LO store

1-------1
1 I
I I
I code I
1 I
1=======\
Iglobals\
1=======
1 SP
1=======
1
I
I BCPL
I stack
1
I
I
I
I
1=======
I
I DOS
I
1-------

(----

I
I

linker
output

I
I

(----

(- top of DOS buffers

(- top of resident DOS

The DEC DOS monitor lives at the bottom of store and
acquires transient space from the store immediately above
itself. The BCPL I/O library also obtains space for stream
buffers from this area, which is administered dynamically by
DOS.

2. Register Allocation

The BCPL stack register ;s general register zero,
the system stack register (the SP) and the program co;unter
(the PC) are necesarily registers six and seven. .

On function entry registers one to four are ~sed to
pass the first four arguments, on function return re~ister
one holds any result. The only use of the system stack by
the BePl system is on function entry to hold temporarily the
return link.

3. BePl Stack Arrangement

t'age

bcpl.txt 22-Mar-79 17:58:39

As noted the runtime stack grows down store, and is
allocated as shown.

HI store LO store
stack ptr

I
---------~--~----------------------I-----------------

I " old frame I I , current frame
------------t-t------------------t-t-----------------

I ,
debug\

\
previous
rout i ne
link

I I
debug'

I
current
routine
link

The 'savespace-size' holding the static links of
function entry is of size two, one of which is used for the
code address linking. and hence also the previous frame
size, and the other for debugging information or for use
with the Intcode Interpreter.

Vectors are arranged to run up store, according to
the BCPL definition. However the "vector" of arguments to a
routine does not follow the definition - it grows down store!

4. Global Vector Linking

The Global Vector is known at link time as the Named
Csect 'GLOBAL', linking of BCPL programs with this esect is
automatic. At the machine code level the conventional
mechanism of accessing this Csect is by assigning a variable
G to the address of global zero and offsetting from this
address. Thus:-

.CSECT GLOBAL
G=.

.=6+101.+101.
FUNC

;enter Csect Global
;G = address of global zero

;at global one hundred and one
;insert the value FUNC

The variable G must only be aSSigned to once per assembler
segment.

5. Function calling Sequence

JSR PC,@G+N
M

6. Function Entry Sequence

;calling through global Nil
;frame size M+2 bytes

Page

bcpl.txt 22-Mar-79 17:58:39

SUB
MOV
MOV
MOV
MOV

@O{SP).RO
(SP)+,-(RO)
RO,R5
Rl.-(R5)
R2,-(R5)

7. Function Exit Sequence

MOV
ADD
JMP

{RO)+.R5
(R5)+.RO
(R5)

B. Code for Debugging Aids

;standard entry code
;end of entry sequence
;copy known args to the stack
;first arg on
;second on. etc up to four args

;code of the routine

;code of the routine

;result, if any, must be in Rl

;return completed

On function entry the address of the called routine
can be saved on the runtime stack in the link; the eptry
code then becomes.

.BYTE
• BYTE
.BYTE
.BYTE
SUB
MOV
MOV

7 ,'A'
'B' • • C'
• D' • 'E'
• F' • 'G'

@O(SP),RO
PC.(RO)
(SP)+,-(RO)

;a BCPL string which is
;the name of th. function .
;the string, if present. is
;always of length seven chars .
; as normal
;save the PC on the stack
;as normal

;etc

Profile counting is performed by the sequence

INC (PC)+
o

;add one to the current count
;the current count

Further facilities are under development. (e.g.
trace.routines)

9. BCPL Addresses

At all times it must be remembered that BCPLi
manipulates addresses as integers. These integers are the
addresses of consecutive sixteen bit fields in store and
hence must be word addresses. To convert a BCPL address to a
machine address one must thus convert to a byte address.
which is most easily performed by a single left shift.

page o

bcpl.txt 22-Mar-79 17:58:39

10. BCPL Strings

BCPL strings are vectors. considered as a sequence
of bytes. the less significant half of each word preceeding
the more significant. and these pairs being treated in their
order of appearance in the vector. The value of the first
byte of the string is the number of bytes in the string.
excluding itself.

May 1974
SRL

Page 7

Data Structures
Queue Structu res

The Ethernet Software makes extensive use of queues. PBI's exist on any of three
queues: an input queue (PbilQ). an Output queue (oQ), and a free queue (pbiFreeQ).
There is also a queue of Network Data Block's (NDB): these exist on ndbQ. At the present
time the only NDB is for the Ethernet (EtherNDB). Another queue in the system is the
packet filter queue (pfQ); it is a queue of the names of programs which are to be used in
detennining the validity of received packets. The queue heads for oQ and ptQ are located
within an NDB. The structure of a queue is a follows:

OueueHead

bead
tail

Oueue Item

link

EtherNDB Structu re
•

pointer to first item in queue (0 if empty)
pointer to last item in queue (0 if empty)

pointer to next item in queue (0 if last item)

The EtherNDB contains all the information necessary for the operation of the Ethernet
and its hardware:

EtherNDB

link
10caiNet
local Host
netType/deviceNum
numGPSI
pfO; head

tail
pupPF: link

predicate
queue

encapsulatePup
levelOT ransmit
levelOStats
iCommand: count

iPSI

address
status

oCommand: count
address
status
delay

load
xmtTimeout
oPSI
00: head

tail

pOinter to next NDB
tocal net number· zero if unknown
local host number
type of network/address of hardware
PSI's allowed to gateway for this net
queue of packet filters . first item

. last item
PUP packet filter . pointer to next filter

• address of EtherPupFilter
• addre$s of pbilQ

address of EncapsulateEtherPup
address of SendEtherPacket
address of SendEtherStats (reserved)
2's comp of input word count
input buffer location
input control & status word
input PBI being processed
2's comp of output word count
output buffer location
output control & status word
random number for output delay
load mask for random countdown
transmitter timeout
output PBI being processed
output queue • first item

• last item

15 'v/

PSI Structure

A PSI is a buffer that contains a PUP and information pertaining to it.

PSI

link
queue
socket
ndb
status
timer
packetLength
dest/src
type
length
transport/type
id(1)
id(2)
dPort: net/host

socket(1)
socket(2)

sPort: net/host
socket(1)
socket(2)

words

Context Structu re

pointer to next PSI
address of xmitted·PSI queue
address of owning socket
address of NOS for this PSI
PSI control info
retransmission timer
no. of words in packet
dest host / src host
packet type
length of PUP (bytes)
PUP control/PUP type
sequence no. (1)
sequence no. (2)
dest net / host
dest socket id(1}
dest socket id(2) .
src net / host
src socket id(1)
src socket id(2)
data words in PUP

\

I
I
I
I·····
I
I
I
J
/

. PUP

A context exists on a context queue and is used by the context package to control the
execution of tasks on a round·robin basis. The context contains a stack pointer, some
space reserved for the user, and a stack (which contains a resume execution address).

Context

link
sp
exspac
stack

pointer to next Context
current stack pointer
space reserved for user
stack used by task

16

