

XEROX Interlisp-D:
A Friendly Primer

3102300
November. 1986

ii

Copyright (e) 1986 Xerox Corporation

All rights reserved.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

This primer was developed for Xerox Artificial Intelligence
Systems by Computer Possibilities, a company dedicated to
making advanced computer systems available to businesses and
organizations. For more information, contact Computer
Possibilities, 320 South Pacific Avenue, Pittsburgh, PA. (412)
441-8949.

iii

[This page intentionally left blank]

iv

PREFACE

PREFACE

It was dawn and the local told him it was down the road a piece,
left at the best fishing bridge in the county, right at the apple
tree stump, and onto the dirt road just before the hill. At
midnight he knew he was lost.

-Anonymous

Weicome to the interlisp-D programming environment! The
Interlisp-D environment truly must be one of the most
sophisticated and powerful tools in use by human beings.
Overall, it is flexible, well thought out, and full of pleasant
surprises: "Wow, here are exactly the set of functions I thought
I'd need to write." Unfortunately, along with the power comes
mind-numbing complexity. The Inter/isp Reference Manual
describes the functions and some of the tools available in the
Interlisp-D environment. To do this takes three large volumes.
Other volumes are needed to document the library packages and
other newly written tools. Needless to say, it is very difficult to
learn such a huge amount of material when there is no way to
determine where to start!

We developed this primer to provide a starting point for new
Interlisp-D users, to enhance your excitement and challenge you
with the potential before you. We assume you know a little
about LISP, most likely received from taking a survey course in
Artificial Intelligence (AI), and have seen a demonstration of
how Interlisp-D runs on your 1186 or 1108. We further assume
that your machine is not on a network system with a file server -
thou.gh this is addressed, and that you will be working· from
floppy disks and the hard disk that is part of the machine. If this
describes your situation, you are ready to sit down in front of
your machine and follow the step-by-step examples provided in
this primer.

The primer is broken into many small chapters, and these
chapters are organized into five parts. You may want to read
Parts 1 through 3 straight through, since they describe the basics
of using the machine. Each chapter in Sections 4 and 5, however,
can be used to learn a specific skill whenever you are ready to for
it.

Part one, "Introduction", includes Chapters 1 and 2. Part two,
"Getting Into/Out of Interlisp", includes Chapters 3 through 5.
Part three, "The Interlisp-D language and Programming
Environment", includes Chapters 6 through 15. These chapters
discuss primary elements in Interlisp-D, and orient you in relation
to those elements. Part four, "Important Other Things to Know
to Work Successfully", includes Chapters 16 through 31. Part
five, "More Language and Environment and Packages", includes
Chapters 32 through 44.

v

PREFACE

VI

Through out we make reference to the Interlisp-D Reference
Manual by section and page number. The material in the primer
is just an introduction. When you need more depth use the
detailed treatment provided in the manual.

While only you can plot your ultimate destination, you will find
this primer indispensable for clearly defining and guiding you to
the first landmarks on your way.

Acknowledgements The early inspiration and model for this primer came from the
Intelligent Tutoring Systems group and the Learning Research
and Development Center at the University of Pittsburgh. We
gratefully acknowledge their pioneering contribution to more
effective artificial intelligence.

This primer was developed by Computer Possibilities, a company
committed to making AI technology available. Primary
development and writing was done by Cynthia Cosic, with
technical writing support provided by Sam Zordich.

At Xerox Artificial Intelligence Systems, John Vittal managed and
directed the project. Substantial assistance was provided by
many members of the AIS staff who provided both editorial and
systems support.

PREFACE

TABLE OF CONTENTS

1. A Brief Glossary 1. 1

2. The Mouse and the Keyboard 2.1

2.1. The Mouse 2.1

2.1.1. 2 and 3 Button Mice 2.1

2.2. The Keyboard 2.2

2.2.1. The 1186 Keyboard 2.2

2.2.2. The 1108 Keyboard 2.2

3. Turning On Your Lisp Machine 3.1

3.1. Turning on the 1108 3.1

3.2. Turning on the 1186 3.2

3.3. loading Interlisp-D from the Hard Disk 3.3

3.4. After Booting Lisp 3.5

3.5. Restarting Lisp After loggi ng Out 3.5

4. If You Have a Fileserver 4.1

4.1. Turning on your 1108 4.1

4.2. Turning on your 1186 4.1

4.3. location of Files 4.2

4.4. The Timeserver 4.2

5. Logging Out And Turning the Machine Off 5.1

5.1. logging Out 5.1

5.2. Turning The Machine Off 5.2

6. Typing Shortcuts 6.1

6.1. If you make a Mistake 6.3

7. Using Menus 7.1

7.1. Making a Selection from a Menu 7.2

7.2. Explanations of Menu Items 7.2

7.3. Submenus 7.3

8. How to use Files 8.1

8.1. Types of Fi les 8.1

TABLE OF CONTENTS TOCl

...... DL.I: ur ~VI'll1 1:1'111::>

8.2. Directories 8. 1

8.3. Directory Options 8.2

8.4. Subfile Directories 8.3

8.5. To See What Files Are Loaded 8.3

8.6. Simple Commands for Manipulating Files 8.3

8.7. Connecting to a Directory 8.4

8.8. File Version Numbers 8.4

9. FileBrowser 9.1

9.1. Calling the FileBrowser 9.1

9.2. FileBrowser Commands 9.3

10. Those Wonderful Windows! 10.1

10.1. Windows provided by Interlisp-D 10.1

10.2. Creating a window 10.2

10.3. The Right Button Default Window Menu 10.2

10.4. An explanation of each menu item 10.3

10.5. Scrollable Windows 10.3

10.6. Other Window Functions 10.5

10.6.1. PROMPTPRINT 10.5

10.6.2. WHICHW 10.6

11. Editing and Saving 11.1

11.1. Defining Functions 11. 1

11.2. Simple Editing in the Interlisp-D Executive Window 11.2

11.3. Using The List Structure Editor 11.4

11.3.1. Commenting Functions 11.6

11.4. File Functions and Variables - How to See Them and Save Them 11.7

11.5. File Variables 11.7

11.6. Saving Interlisp-D on Files 11.7

12. Your Init File 12.1

12.1. MakinganlnitFile 12.2

13. Flexibility and Forgiveness: (LISP and DWIM 13.1

13.1. CLiSP 13. 1

13.2. DWIM 13.2

14. Break Package 14.1

14.1. Break Windows 14.1

14.2. Break Package Example 14.1

TOC2 TABLE OF CONTENTS

TABLE OF CONTENTS

14.3. Ways to Stop Execution from the Keyboard, called "Breaking Lisp" 14.3

14.4. Programming Breaks and Debugging Code 14.4

14.5. Break Menu 14.4

14.6. Returning to Top Level 14.5

i5. On-line Heip with Interiisp-D: HELPSYS and DINFO 15.1

15.1. HelpSys 15.1

15.2. Dlnfo 15. 1

16. Floppy Disks 16.1

16.1. Buyi ng Floppy Disks 16.1

16.2. Basic Floppy Disk Information 16.1

16.3. Care of Floppies 16.2

16.4. Write Enabling and Write Protecting Floppies 16.3

16.4.1. Write Enabling an 1108's Floppy Disk 16.3

16.4.2. Write Protecting an 1186's Floppy Disk 16.3

16.5. Inserting Floppies into the Floppy Drive 16.3

16.6. Functions for Floppy Disks 16.4

16.6.1. Formatti ng Floppies 16.4

16.6.2. Available Space on a Floppy Disk 16.4

16.6.3. The Name of a Floppy Disk 16.4

16.6.4. FLOPPY. MODE 16.5

17. Duplicating Floppy Disks 17.1

17.1. Supplies 17.1

1702= Preparation 17. 1

17.2.1. Handling Floppy Disks 17.1

17.2.2. Setup 17.1

17.3. Copying Floppy Disks 17.2

18. Sysout Files 18.1

18.1. LoadingSYSOUTFiles 18.1

18.1.1. Loading a SYSOUTfile on the 1108 18.1

18.1.2. Loading a SYSOUTfile onthe 1186 18.2

18.2. Making Your Own SYSOUT File 18.3

19. Using the Epson FX80 Printer 19.1

19.1. Initializing the RS232 Port. 19.1

19.2. Power upthe Printer 19.1

19.3. To Align Top of Page 19.1

TABLE OF CONTENTS TOC3

TABLE OF CONTENTS

19.4. Functions To Print Files and Bitmaps 19.2

19.4.1. RS232.Print 19.2

19.4.2. FX80STREAM 19.2

19.4.3. Printing a Portion of the Screen 19.3

20. RS232 File Transfer With a VAX 20.1

20.1. Prerequisites 20.1

20.2. Using Chat to Transfer Files 20.1

21. Ethernet File Transfer 21.1

21.1. Prerequisites 21.1

21.2. File Transfer 21.1

22. What To Do If ... 22.1

23. The Text Editor, TEdit 23.1

23.1. Using TEdit 23.1

23.2. Managing the TEdit Window 23.2

23.3. Selecting Text 23.3

23.4. Deleting. Copying. and Movi ng Text with TEdit 23.4

23.5. TEdit Menus

23.4.1. Deleting Text From a File 23.4

23.4.2. Copying Text 23.4

23.4.3. Moving Text 23.5

23.6

23.5.1. Finding and Substituting Text with TEdit 23.7

23.5.1.1. Finding Text 23.7

23.5.1.2. Substituting Text 23.8

23.5.2. Text Formatting 23.10

23.5.2.1. Choosi ng Fonts 23.10

23.5.2.2. Paragraph Formatting 23. 11

23.5.3. Adding Bitmaps and Sketches to your TEdit File 23.13

23.5.3.1. Adding a Bitmap to your TEdit file 23.13

23.5.3.2. Adding a Sketch to your TEdit file 23.14

23.5.4. Getting and Including Files 23.14

23.5.4.1. Get 23. 14

23.5.4.2. Include 23.14

23.5.5. Saving and Printing Files 23.15

24. Records May Be Your Favorite Data Structure! 24.1

24.1. Interlisp Record Primitives 24. 1

TOC.4 TABLE OF CONTENTS

TABLE OF CONTENTS

24.2. Example 24.3

24.3. A Few Ti ps 24.4

25. Local Variables - Using LET and PROG 25.1

25.1. LET 25.1

25.2. PROG 25.3

25.3. Parallel versus Sequential Variable Binding 25.6

25.3.1. lET* 25.6

25.3.2. PROG * 25.7

26. iterative statements 26.1

26.1. General Structure and Use 26.1

26.2. local Variables 26.2

26.3. Iteration On Lists 26.3
.

26.4. Parallel Iteration 26.4

26.5. Conditional Iteration 26.5

26.6. More Iteration 26.6

27. Windows and Regions 27.1

27.1. Windows 27.1

27.1.1. CREATEW 27.1

27.1 .. 2. WINDOWPROP 27.2

27.1.3. Getting windows to do things 27.3

27.1.3.1. BUnONEVENTFN 27.4

27.1.4. looki ng at a window's properties 27.5

21.2. Regions 27.5

28. What Are Menus? 28.1

28.1. Displaying Menus 28.1

28.2. Getting Menus to DO Stuff 28.2

28.2.1. The WHENHElDFN and WHENSElECTEDFN fields of a
menu 28.4

28.3. looking at a menu's fields 28.5

29. Bitmaps 29.1

30. Displaystreams 30.1

30.1. Drawing on a Displaystream 30.1

30.1.1. DRAWLINE 30.1

30.1.2. DRAWTO 30.2

30.1.3. DRAWCIRClE 30.3

TABLE OF CONTENTS TOCS

TABLE OF CONTENTS

30.1.3.1. FILLCIRCLE 30.3

30.2. Locating and Changing Your Position in a Displaystream . 30.4

30.2.1. DSPXPOSITION 30.5

30.2.2. DSPYPOSITION 30.5

30.2.3. MOVETO 30.5

31. Fonts 31.1

31.1. What makes up a FONT? 31.1

31.2. Fontdescriptors, and FONTCREATE 31.2

31.3. Display Fonts - Their files, and how to find them 31.3

31.4. Interpress Fonts - Their files, and how to find them 31.4

31.5. Functions for Using Fonts 31.4

31.5.1. FONTPROP - Looki ng at Font Properties 31.4

31.5.2. STRINGWIDTH 31.5

31.5.3. DSPFONT - Changing the Font in One Window 31.6

31.5.4. Globally Changing Fonts 31.7

31.5.5. Personalizing Your Font Profile 31.7

32. The Inspector 32.1

32.1. Calling the Inspector 32.1

32.2. Using the Inspector 32.2

32.3. Inspector Example 32.2

33. Masterscope 33.1

33.1. The SHOW DATA command and GRAPHER 33.2

33.2. Databasefns: Automatic Construction and Upkeep of a Masterscope
Database 33.3

34. Where Does All the Time Go? Spy 34.1

34.1. How to use Spy with the Spy Window 34. 1

34.2. How to use Spy from the Lisp Top level 34.2

34.3. Interpreting SPY's Results 34.2

35. SKETC H 35.1

35.1. Starting Sketch 35.1

35.2. Selecting Sketch elements 35. 1

35.3. Drawing with Sketch 35.2

35.3.1. Simple Shapes: Circles, Ellipses. and Boxes 35.3

35.3.1.1. Drawing Circles 35.3

35.3.1.2. Ellipses 35.3

TOC6 TABLE OF CONTENTS

35.3.1.3. Boxes

35.3.1.4. Changing a Box's Filling

35.3.2. lines, Curves, and Arcs

35.3.2.1. A Singie Line

35.3.2.2. A Series of Lines

35.3.2.3. Drawing an Open Curve

35.3.2.4. An Arc

35.3.3. Closed Curves and Polygons

35.4. Adding a Bitmap to a Sketch

35.5. To Add Text to a Sketch

35.5. i. Editing Text

35.6. Editing a Sketch

35.7. Saving Your Work

35.8. To Continue a Sketch That Has Been Saved on a File

36. Free Menus

36.1. An Example Free Menu

36.2. Parts of a Free Menu Item

36.3. Types of Free Menu Items

37. The Grapher

37.1. Say it with Graphs

37.2. Making a Graph from a List

37.3. Incorporating Grapher into Your Program

37.4. More of Grapher

38. Virtual Keyboards, and the Keyboard Editor

38.1. Using the Virtual Keyboards Package

38.2. Using the Keyboard Editor

39. IconW

40. TELERAID

41. Resource Management

41.1. Naming Variables and Records

41.2. Some Space and Time Considerations

41.2.1. Global Variables

41.2.2. Circular Lists

41.2.3. When You Run Out Of Space

TABLE OF CONTENTS

TABLE OF CONTENTS

35.3

35.4

35.4

35.4

:U:: 11
JJ.~

35.5

35.5

35.6

35.7

35.8

35.10

35.11

35.11

36.1

36.1

36.2

·36.3

37.1

37.1

37.4

37.5

37.5

38.1

38.1

38.2

39.1

40.1

41.1

41.1

41.3

41.3

41.4

41.4

TOC?

TABLE OF CONTENTS

42. Simple Interactions with the Cursor, a Bitmap, and a Window 42.1

42.1. An Example Function Using GETMOUSESTATE 42.1

42.2. Advising GETMOUSESTATE 42.2

42.3. Changing the Cursor 42.2

42.4. Functions for "Tracing the cursor" 42.3

42.5. Running the Functions 42.6

43. Glossary of Global System Variables 43.1

43.1. Directories 43.1

43.2. Flags 43.2

43.3. History Lists 43.3

43.4. System Menus 43.3

43.5. Windows 43.4

43.6. Miscellaneous 43.4

44. Other References that will be Useful to You 44.1

Toca TABLE OF CONTENTS

A BRIEF GLOSSARY

advising

1. A BRIEF GLOSSARY

The following definitions will acquaint you with general terms
used throughout this primer. You will probably want to read
through them now, and use this chapter as a reference while you
read through the rest of the primer.

An Interlisp-D facility for specifying function modifications
without necessarily knowing how a particular function works or
even what it does. Even system functions can be changed with
advising.

argument An argument is a piece of information given to an Interlisp-D
function so that it can execute successfully. When a function is
explained in the primer, the arguments that it requires will also
be given. Arguments are also called parameters.

atom The smallest structure in Lisp; like a variable in other
programming languages, but can also have a property list and a
function definition.

Background Menu The menu that appears when the mouse is not in any window
and the right mouse button is pressed. A typical background
menu is shown in Figure 1.1.

mmr:;:;:;:;:~:~:~;i~;~;:;:;:;:;:;:lt

::::::: L - - psi ~ - n , :::::

1IIIFi;~{~er>11
1:lj':L::I~~f~::::::!il:'1
Figure 1.1. The Menu that appears when the mouse is not in any window, and
the right mouse button is pressed. Your background menu may have some
different items in it

binding The value of a variable. It could be either a local or a global
variable. See unbound.

bitmap A rectangular array of "pixels," each of which is on or off
representing one point in the bitmap image.

BREAK An Interlisp function that causes a function to stop executing,
open a Break window, and allow the user to find out what is
happening while the function is halted.

Break Window A window that opens when an error is encountered while
running your program (i.e., when your program has broken).
There are tools to help you debug your program from this
window. This is explained further in Chapter 14, Page 14.1.

browse To examine a data structure by use of a display that allows the
user to "move" around within the data structure.

button

1.1

A BRIEF GLOSSARY

1.2

(1) (n.) A key on a mouse.

(2) (vot.) To depress one of the mouse keys when making a selection.

CAR A function that returns the head or first element of a list. See
CDR.

caret The small blinking arrowhead that marks where text will appear
when it is typed in from the keyboard. An example of the caret
in the Interlisp-D Executive Window is shown in Figure 1.2.

CDR

CLiSP

cr

datatype

nterlfsp-D Executive VVlnaow

NIL
80 {PLUS 3 A

Figure 1.2. The caret is to the right of the nurn ber 3. When a character is typed
at the keyboard, it will appear at the caret

A function that returns the tail (that is, everything but the first
element) of a list. See CAR.

A mechanism for augmenti ng the standard lisp syntax. One such
augmentation included in Interlisp is the iterative statement.
See Section 13. 1.

Please press your carriage return key.

(1) The kind of a datum. In Interlisp, there are many system-defined
datatypes e.g. Floating Point, Integer, Atom, etc.

(2) A datatype can also be user-defined. In this case it is like a record
made up from system types and other user-defi ned datatypes.

DWIM II Do-what-I-mean ... Many errors made by Interlisp users could be
corrected without any information about the purpose of the
program or expression in question (e.g. misspellings, certain
kinds of parenthesis errors). The DWIM facility is called
automatically whenever an error occurs in the evaluation of an
Interlisp expression. If DWIM is able to make a correction, the
computation continues as though no error had occurred;
otherwise, the standard error mechanism is invoked.

error Occasionally, while a program is running, an error may occur
which will stop the computation. Interlisp provides extensive
facilities for detecting and handling error conditions, to enable
the testing, debugging, and revising of imperfect programs.

evaluate or EVAL Means to find the value of a form. For example, if the variable X
is bound to 5, we get 5 by evaluating X. Evaluation of a Interlisp
function involves evaluating the arguments and then applying
the function.

file package A set of functions and conventions that facilitate the
bookkeeping involved with working in a large system consisting
of many source code files and their compiled counterparts.
Essentially~ the file packa9~ keeps track of where things are and

A BRIEF GLOSSARY

A BRIEF GLOSSARY

what things have changed. It also keeps track of which files have
been modified and need to be updated and recompiled.

form Another way of saying s-expression. An Interlisp-D expression
that can be eval uated.

function A Lisp function is a piece of lisp code that executes and returns a
value.

history The programmer's assistant is built around a memory structure
called the history list. The history functions (e.g. FIX, UNDO,
REDO) are part of this assistant. These operations allow you to
conveniently re-work previously specified operations.

History List As you type on the screen, you will notice a number followed by
a prompt arrow. Each number, and the information on that line,
is sequentially stored as the History List. Using the History List,
you can easily reexecute lines typed earlier in a worksession. See
Chapter 6.

icon A pictorial representation, usually of shrunken window.

Interlisp-D Executive Window This is your main window, where you will run functions and
develop your programs. See Figure 1.3. This is the window that
the caret is in when you turn on your machine and load
Interlisp-D.

Interllsp·D Executive 'NInOOW

NIL
80~(PROMPTPRINT "HELLO" A

Figure 1.3. TTY Window

inspector An interactive display program for examining and changing the
parts of a data structure. Interlisp-D has inspectors for lists and
other data types.

iterative statement (also called i.s.) A statement in Interlisp that repetitively executes
a body of code. (E.g. (for x from 1 to 5 do (PRINT x)) is an i.s.)

iterative variable (also called i.v.) Usually, an iterative statement is controlled by
the value that the i.v. takes on. In the iterative statement
example above,

x

is the iterative variable because its value is being changed by
each cycle through the loop. All iterative variables are local to
the iterative statement where they are defined.

LISP Family of languages invented for "list processing." These
languages have in common a set of basic primitives for creating
and manipulating symbol structures. Interlisp-D is an
implementation of the LISP language together with an
environment (set of tools) for programming, an a set of packages
that extend the functionality of the system.

list A collection of atoms and lists; a list is denoted by surrounding
its contents with a pai r of parentheses.

A BRIEF GLOSSARY 1.3

A BRIEF GLOSSARY

1.4

Loading LISP This is the process of bringing Interlisp-D from floppy disks, hard
disks, or some other secondary storage into your main, or
working, memory. You will need to load (i.e., install, and boot)
Interlisp-D if you have not logged off the machine at the end of a
session. The process of loading Interlisp-D is explained in
Chapter 3.

Maintenance Panel Codes Should you have a problem with your equipment, these codes
will indicate the status of your processor. On the 1108, these are
the red LED numbers under the floppy drive door. There is a
cover over these numbers. Pull down the cover located
immediately under the floppy door button. The code numbers
are defined for the 1108 in the 1108 User's Guide, in the MP
Codes Chapter.

If there is a problem with the 1186, the mouse cursor will change
from its normal arrow to the code number that describes the
problem. The code numbers are defined for the 1186 in the 1186
User's Guide in the Cursor Codes subsection of the Diagnostics
Chapter.

Masterscope A program analysis tool. When told to analyze a program,
Masterscope creates a data base of information about the
program. In particular, Masterscope knows which functions call
other functions and which functions use which variables.
Masterscope can then answer questions about the program and
display the information with a browser.

menu A way of graphically presenti ng the user with a set of options.
There are two kinds of menus: pop-up menus are created when
needed and disappear after an item has been selected;
permanent menus remain on the.screen after use.

mouse The Mouse is the box to the right of your keyboard. It controls
the movement of the cursor on your screen. As you become
familiar with the mouse, you will find it much quicker to use the
mouse than the keyboard. See Figure 1.4. (Note: Some mice
have three buttons; the button in the center is known as the
middle mouse button. If your mouse has only two buttons, you
can simulate a middle button by pressing the left and right
buttons simultaneously.).

Mouse Cursor

Mouse Cursor Icons

Figure 1.4. Mouse

The small arrow on the screen that points to the northwest. See
Figure 1.5.

Figure 1.5. Mouse Cursor

A BRIEF GLOSSARY

A BRIEF GLOSSARY

SIl'J~
ING

m
LJ

--,
I I L __

tt~

.------,
I .

I ' I 1

, '
I ' 1

6-----1

NIL

A BRIEF GLOSSARY

Wait. The processor is busy.

The processor is saving a anpashot or your current system session.
This is usuaHy done when the processor has been idle for a while.

The :: Mouse Confi rm Cursor". It appears when you have to
confirm that the choice you just made was correct. If it was, press
the left button. If the choice was not right, press. the right
button to abort.

This means "sweep out" the shape of the window. To do this,
move the mouse to a position where you want a corner. Press
the ieft mouse button! and hold it down. Move the mouse
diagonally to sketch a rectangle. When the rectangle is the
desired size and shape, release the left button .

This is the "move window" prompt. Move the mouse so that the
large "ghost" rectangle is in the position where you want the
window. When you click the left mouse button, the window will
appear at this new location.

NIL is the Interlisp-D symbol for the empty list It can also be
represented by a left paren followed by a right paren: O. It is the
only expression in Interlisp-D that is both an atom and a list.

pixel Pixel stands for Picture Element. The screen of your Lisp Machine
is made up of a rectangular array of pixels. Each pixel
corresponds to one bit. When a bit is turned on, i.e. set to 1, the
pixel on the screen represented ,by this bit is black.

pretty printing Pretty printing refers to the way Interlisp-D functions are printed
with special indentation, to make them easier to read. Functions
are pretty printed in the structure editor, DEdit (See Section 11.3,
Page 11.4). You can pretty print uncompiled functions by cailing
the function PP with the function you would like to see as an
argument, i.e. (PP function-name). For an example of this, see
Figure 1.6.

Ilr:;~;~::::::::::::::::::::::::::::::::::~::::::::::::::::::::~:::::::::::::::~::::~::111111

::;:;: [LArnBDA (LST) (* edited: "28·Jun·86 1 :3:35") :;:::;:

~r~ (CAR LST])' , j:~:~:~
'.:.:. (HEAD 'I .:.:.:.

!lll1~ 9
7 ~A • l!j:l!~

Figure 1.6. An example useofthe pretty printing function, PP

1.5

A BRIEF GLOSSARY

Programmer's Assistant The programmer's assistant accesses the History list to allow you
to FIX, UNDO, andlor REDO your previous expressions typed to
the Interlisp-D executive window. (See Chapter 6.)

Prompt Window The skinny black window at the top of the screen. It displays
system prompts, or prompts you have developed. (See Figure
1.7.)

Pt·v do

Figure 1.7. Prompt Window

property list A list of the form (< property-name 1 > < property-value 1 >
<property-name2> <property-value2>) associated with
an atom. It accessed by the functions GETPROP and PUTPROP.

record A record is a data-structure that consists of named "fields".
Accessing elements of a record can be separated from the details
of how the data structure is actually stored. This eliminates
many programming details. A record definition establishes a
record template, describing the form of a record. A record
instance is an actual record storing data according to a particular
record template. (See datatype, second definition.)

Right Button Default Window Menu This is the menu that appears when the mouse is in a window,
and the right mouse button is pressed. It looks like the menu in
Figure 1.S. If this menu does not appear when you depress the
right button of the mouse and the mouse is in the window, move
the mouse so that it is pointing to the title bar of the window,
and press the right button.

Close
Snap
Paint
Clea.r
Bury

Redisplay
Hardcopy?­

~lIove
Shape
Shrink

Figure 1.8. The Right Button Default Window Menu

s-expression Short for "symbolic expression." In lisp, this refers to any
well-formed collection of left parens, atoms, and right parens.

stack A pushdown list. Whenever a function is entered, information
about thatspecific function call is pushed onto (i.e. added to the
front of) the stack; this information includes the variable- names
and their values associated with the function call. When the
function is exitted, that data is popped off the stack.

storage devices Information is stored for your Lisp machine on floppy disks, or on
the hard disk. They are referred to as {FLOPPY} -and {DSK}
respecti vel y.

sysout A file containing a whole lisp environment: namely,lnterlisp-D,
everything the user defined or loaded into the environment, the

1.6 A BRIEF GLOSSARY

TRACE

unbound

window

A BRIEF GLOSSARY

A BRIEF GLOSSARY

windows that appeared on the screen~ the amount of memory
used, and so on. Everything is stored in the sysout file exactly as it
was when the function SYSOUT was called).

A function that creates a trace of the execution of another
function. Each time the traced function is called, it prints out the
values of the arguments it was called with, and prints out the
value it returns upon completion.

Without value; an atom is unbound if a value has never been
assigned to it.

A rectangular area of the screen that acts as the main display
area for some Interlisp process.

1.7

A BRIEF GLOSSARY

[This page intentionally left blank]

1.8 A BRIEF GLOSSARY

2.1 The Mouse

2.1.1 2 and 3 Button Mice

THE MOUSE AND THE KEYBOARD

2. THE MOUSE AND THE KEYBOARD

The mouse is the small box with buttons beside the keyboard.
See Figure 1.4 in Chapter 1, Page 1.4. It moves around on a
mouse pad, a small piece of plastic for a mechanical mouse, or
grey paper for an optical mouse. The pad keeps the mouse from
picking up dirt and oils from other surfaces, and shouid be
placed squarely on the desktop. The cord to the mouse, its "tail",
should always be directed perpendicular to and towards the
back of the mouse pad. With the tail in this direction, you can
always be sure that when you move the mouse, the mouse cursor
will move in the same direction. The mouse and the mouse cursor
should always move together in the same direction.

If the mouse is at the end of the pad, pick up the mouse and
move it to the center of the pad. As long as the metal balls of a
mechanical mouse do not move, or the sensors of an optical
mouse cannot detect the grey and white blocks of the mouse
pad, the mouse cursor on the screen will not move.

Your mouse may have 2 or 3 buttons. If there are two buttons on
the mouse, they are referred to as the left and right mouse
buttons. It may, however, have three buttons; the button in the
center is known as the middle mouse button. If your mouse has
only two buttons, you can simulate a middle button by
simultaneously pressing the left and right buttons.

When you press the mouse buttons, hold the buttons down until
you are sure of what you want to do. Menus are displayed by
pressing the mouse buttons, and choices are made by releasing
the mouse buttons. Careful! - Don't click the mouse buttons too
fast, or you may· make a choice from a menu that you didn't even
get a chance to see!

2 1

THE KEYBOARD

2a2 The Keyboard

2.2.1 The 1186 Keyboard

2.2.2 The 1108 Keyboard

22

Most of the keys on the keyboard ·of the 1108 and the 1186 are
arranged like those on a typewriter. Some keys, however, are
different. Some have special functions for editors or other
programs, and will be explained when they are needed for the
program. The rest will be explained here, so that you can
acquaint yourself with them before going on.

On the 1186 Keyboard, the control key is the one marked "CTL"
at the bottom of the leftmost group of keys. This key will may be
marked II EDIT. II

The "back arrow" (~) is the shifted "_" (hyphen) key (hoid down
the shift key, and press "_"), and is labelled with a"-".

The function keys are those in the top row of the keyboard. They
are numbered F1 through F10, from left to right. When one of
these is needed, such as when turning on the machine, and
booting Interlisp-D, you will betold which one to press.

On the 1108 Keyboard, the control key is the one marked either
"PROPS" or "CTL" at the bottom of the leftmost group of keys.

The backslash key is labelled with a small forward pointing
arrow, and is located above the tab key.

Type a vertical bar by holdi ng down the shift key and pressi ng
the key labelled with a small forward pointing arrow, located
above the tab key.

The" up arrow II key is the shifted 6 key (hold down the shift key,
and press 6); it is labelled with a cent-sign.

The "back arrow" (~) is the shifted "_" (hyphen) key (Hold down
the shift key, and press "-" .).

THE MOUSE AND THE K E Y80ARD

3.1 Turning on the 1108

TuRNING ON YOUR LISP MACHINE

3. TURNING ON YOUR LISP
MACHINE

The focus of this chapter is the steps that must be done between
turning the machine on and actually beginning to use
Interlisp-D. In particular, it is necessary to get a copy of the
Interlisp-D sysout (complete stored version of the Interlisp-D
environment) into your machine. This chapter assumes that you
do not have a fiie server. if your machine is connected to a
network with a fileserver, see Chapter 4, Page 4.1

To load Interlisp-D from the hard disk, your hard disk must be
larger than 10 megabytes. If you have a 10 megabyte disk you
must reload Lisp from floppies. (See Section 3.3, Page 3.3, or
Section 18.1.2, Page 18.2.

If your disk is larger than 10Mb, then Interlisp-D should already
be loaded on the hard disk. If it isn't, refer to Section 3.3, Page
3.3, or Section 18.1.2, Page 18.2.

(1) Pull down the cover of the maintenance panel, and expose the
four digit LED display.

(2) Insert the floppy disk labeled "INSTALLATION UTILITY" into the
floppy drive. (If you have never handled floppy disks before, be
sure to read "Care Of Floppys", Section 16.3, Page 16.2.)

(3) To turn the machine on, simultaneously press both the B RESET
and the AL T B buttons, then push the rocker switch to the 1
position.

(4) Release only the B RESET button, and watch the red numbers
count up 0000, 0001, 0002. As soon as it reads 0002 release the
ALT B button. This is called a "2 BOOT".

If you accidentally kept the AL T B button depressed when 0002
rolled around, just continue to hold it down, and the machine
will count around to 0002 again.

(5) When the question "Time offset from Greenwich?" appears,
type "-5" for Eastern Standard Time (subtract one for each time

zone westward), and press cr. See Figure 3.1.

(6) For the next 3 questions, simply type cr after each prompt.

3 1

TURNiNG ON THE 1108

(7) You will be requested to enter the date and time. Use the
MM/OO/YY HH:MM:SS format. For example, if the date was
June 24,19865 PM, enter: 6/24/86 17:00.

(8) A menu will appear I as in Figure 3.1. Choose number 12, Boot
SystemTools Volume.

rin:t'il1,3tlon IJtllHyo ;3,0
c.CIf)':/i" I('~ht i."G) 19:31, 1982, 1'~8'3, 1'~84 bv ':~r(I·.· C!jrp~)rjt:'ljn
tij II r 11~ht:: r~e!:~rve(J.
t T H:1P?- i: n .. :.t 5:':-1':

Tinh~ !,)ne .:,ff~et. ft")n1 Greem .• ,,:h[-12 ,1::J, -'>
r.1intJ,e offse~[IL.'591: 13
FHot ,j.3Y ,)f O.3yli9ht :::,3",ir,,); Tinle[0 ,:8E.] , 1:::1
L.:.,' d,'lY of O.:Jy·light 8.;vlnq5 T101e[0. ,::66J 31)'0
Ple,''!:-e Entet' t.he dat,e '''nil tiMe: t;i~4i:::t; 9'16

': e t t 1.'1 e t (I .]I.lne ~4. :::6 9: 16: L313
f.t. j' ~ ('i /N:': '

Ur ~ 1 .1" I)ptl(tf)'::':

1 P,jt"t.ltl0n :31~ Mb (t,~~ :'1:c':'t'(flr"J tl, U:::EP ,'t.:-f1r11f:'l(tf"l

P.'it'C.lt_l0rl 10 rotb ,jn~ f'Jt' 1 Ll~P ·,,.-,jhHd€' ~nd 1 Ll:F)F,l€,: "',)lume(lSO~f P'~9€'~)
P.:;rt,tl0n 29 r.tb ,:ln~ for ~ Lnp ""'jlunle,(:3 r.tt,! ,:;nd 1 LEpFl1€'" ·"olI.lMe(<:5I:H31ii P·;ge~:,

~.:~~~~~~:~ ~~ :~ :~~~~ ~:~~ ~ t~~~ ::,:~;:::::~:t/'~~. ;~;~ ~b~1~~~~11~~1~'~~'~~:~ -~~~~m~~~~~1;13 ~,.;qes)
P.:;t'tlt;.='f! 42 Mb .:11;~ f'Jr 2 Ll'p '-iol'H,le:,'H. ~tb. ,:; ~".: .. , ,n.:1 1 L,;pFl1e" ·· ... olu01e(1701C113 p,"qe,.)
P."rtH.l0tl 4:: Mb d's~ f'Jr 3 Lnp ','.:,ll.lfll€':!::: Mh.:: r,th. (\ r"b:, ;1',,:1 1 Llq)Fl1~o "i'Jlume(-~H'13@ p·'lge,)

~.:~~~~:~~:~ ~~ ~i~ :~~~~ ~:~~ 1 t~~~ :;:~~:;;::~:t! ;.~:~: :::~:: ~ :~~: ~~;~/'l~':I'~F~;~~'F<~;~rd~'~';~~~?l~~~;~r' ~~1l~1:' ~:';'W'
i.l) P,'iftlt.lon :::13 /.!b dl"~ f'Jf 4 L1SP '1"lur"~;' . .18 r,1b. t"; r.1t" 1':'; Mh. 4Mb) ·;n.:! ~ L1'?pFl1~, ·"ol"nl~(l'5l:lliH:', -')1,11" P,:;<I,,:'
t1 [nlt"',]1Z~ 'A'or~,t.:Jtl.Jt\ ::lo steIllTo,'13 \Ic.luflle
l~ e.':lIjt 8 'stt?mToc,': VI) lUl'le

g ~~::~: h~~~~~~~ l.~o ~;~~~lIIe
1'0 Er·;se Lisp volUMe
113 [nst.;ll L EP Ml,:r')Co.:le Flle

g j;;~.~.;~:~; t~ ~.~~~ I ~~j~:~7:~:e
19 SC.3ve-n(1e 81·/!t~mrQcll: '.,·',jlllme

Enter:- .: h" lce n,jMber. n',en Pt''; s:: P.ETIJRN: 12

3.2 Turning on the 1186

3 2

Figure 3.1. The 1108 screen when booting the machine

(9) After a few minutes, you will get a black screen with a white
bouncing rectangle like the one in Figure 3.2.

(1)

(2)

(3)

Tuesl:l.~'l

24-Jl./n-86 9~26:46 EDT
***** XEROX INTERLISP-O ~****

Click Left button for System Tool
Both Buttons for Profile Tool

Riaht Button (or Online Diaanostics Tool
- STOP Ke~.· fc)r selected L {sp "lolume

Press Space Bar for Online Diagnostics Tool

Figure 3.2. The Bouncing White Rectangle

This is the idle state of the machine. Move ahead to Section 3.3
to boot Interlisp-D from this state,

Insert the floppy disk labeled II I NSTALLA TION UTILITY" into the
floppy drive. (If you have never handled floppy disks before, be
sure to read "Care Of Floppys" I Section 16.3.)

Turn on the machine by pressi ng the rocker switch to the
position, and pressing the red button labelled "B Reset" below
the rocker switch.

A group of icons will appear at the bottom of the screen. Choose
the second icon from the left, the one with a picture of a floppy,

TURNING ON YOUR LISP MACHINE

I t-. I" ~ ~ I r: r e r- ::: 1 (I n 1, 0

TURNING ON THE 1186

by pressi ng the key labeled F2. This will boot the 1186 from the
INSTALLATION UTILITY floppy.

(4) When the question "Time offset fr()m Greenwich?" appears,
type "-5" for Eastern Standard Time (subtract one for each time

zone westward), and cr. (See Figure 3.3.)

(5) You will then be given three more questions. Answer them by

hitting cr after each prompt.

(6) When the 1186 prompts for the date and time, enter them in the
MM/OOIYY HH:MM:SS format. For example, if the date was June
24, 19865 PM, you would enter: 6/24/86 17:00. This is illustrated
forthe 1186 in Figure 33-

::L'r'~.', i·H',t :::'1 1!~:34, 19:31) b~i :<er~o''': Co:rpor·-3~.10n. All r '9r'It.:: r·,::.:;E'!r··· ... ed.
;:r ,',(_:- :"tJr ;3AA4i:::44EH = '::S:::i.3::::::1i6B = ,2-i3S6-'3gS-;:::S4
M~n(lr :: 1: ': 3r:::::4~;. bvt.e:::

:...'- d~ ~nt.J ~ lrll~ ':'::f?r·· .. ·er ,. r1rne 1.:::. not. !~t
:- F11'=' :i')n~ I,ff:: o?r:. fr I)m Gr·~enl.·.'l ch[-1:: .. 1~] : -13
;,"t-",r". orf:",r[0 .. 59]: ~I
F~,"::::': (:.3\: 0f O.3.yl1gtlJ:. :~a··/ing~ Time[t3 .. 366]: 121
La', ;!';".' of o'3V119t-,t :0!'3v1n9S Tlme[Jil. ::6E,j' ::05
F'l"..~;". ErH.~r the r.late '3nd :::4 ho'.w r.lla", 1n forfll

f,IM/oo/y· ... · HH:Wrt::0!8
T1f11e: 6/24/86 13: '16
~:::e1': r: 'm~ to :::4-.Jun-;38 9: 16: ~10
I),," ~~/.~. ("/ iN) : Y

MA IN ~IENU:
1 L i :plnn'3l1'3r1ort

Ch01C~~ /1·· ... "1 lab le:
1 Par'tltlon ll~ Mil ;t1:~. ror 1 LI,p

Partlt10n :::(1 Mil rtE~ for- 1 L ':p
'3 F'arcHlon 4L~ Ml, ;j1:~ rOt .~ LEP
<l P.~rrHlOn 4L'1 Mil ;Il'~ fot ~ LI'I'

F'<3rr:~T:1L"n cl~1 ~H.) r"ll::~ f.,r :. Ll:P
P.~r r 11: 1 on :::~1 r,ll' rl1: ~ f I)" 4 L 1 :1)

Par r H lOr"! ::aCt r,ll' rI1:~ rl)' <1 L l;p
Inlr ~.'311!'=' Ih'urL'':~'3t '/In >.,..::t,="ftlr"C 1
Boor :::' :r~rnT,:,ol, io1ume

t~) Ei'·3::.!? :>'i!temTocl:: ,ol!Jme
11 Er-.Ee L-';pF1le: ''''olume
t::: PtV s:1C.31 '/D1IJiI1E- '::c.3'"enqe
13 ~:c ·3 E'ng~ ~ 1:: pr 1 1 e: '11'(, ll-Hll~
14 ~:c.)··.'·".n(le >'/cremfoo 1·: ·,."ol'.!file
1S 80ryr fr:Onl L l::p ',.,'0 ljJrt1~
H [,,:rall L1:P r"1crocr:)(I~ :)nJo.,
1" p~r'.Jrn to MAIN [,IENIJ -

l'l!\I~\ 1<l0~1~1 P'3qe:', 'lnLi 1 L npF11",; ·,.'·.,1'.me(15@@ p'3ge:)
llJm~'.:3r.1b:' .)rod 1 Ll:pFl1E>: '/olum",,>10900 pilg~~)
l'I~I~,,: lL:lr,H), 10Mb, a net 1 L npF1l",: '"'OlUOl~('-1;S0~ p'-Iqe:)

; : :~:::: : t ~;:~~;: 1:~:~:~.' ~ ;~~~, 1 ~~ (~ : iF 2 ~ ~ f~F ~ ~ :'~ m~ ~ ; t ~:;H~S~'3 ~;~,~~ >)
lo.lI,le" :::::Mb. :::Mh. ,::r.1b, 4Mb:' 3nd ::: L ,,:pFile~ ·.,.ol'HR"'~': 70€llil, -"(lL:lL~ p.~qe')
l'lf~"'·:'~lt.r.1~), br,m, lE;r.1~J, :3Mb) ~nd ~ Ll'pF1l<:os ... ")1ItmE>~("0L3~1, --'L:lI"~1 p.3q~,::,

' .. ·('I1Ufl1~

Figure 3.3. The 1186 screen when booting the machine

(7) A menu will appear, as in Figure 3.3. Choose number 9, Boot
SystemTools Volume.

(8) After a few minutes, you will see a black screen with a white
bouncing rectangle like the one in Figure 3.2. This is the idle
state of the machine. Move ahead to Section 3.3 to boot
Interlisp-D from this state.

3.3 Loading Interlisp-D from the Hard Disk
(1)

fURNING ON YOUR LISP MACHINE

Starting from the idle state of the machine, the black screen with
the white bounci ng rectangle, click the left button to get the
Lisp Installation Tool. The screen wiH look like Figure 3.4

3 3

LOADING INTERLlSP-D FROM THE HARD DISK

DocIA.en~ : {!"¥iiN.", E r t~ 0) r' r.1 ::;: 9}
File: L i :sp , :~::,.o::;:OIJt.
Yo lu.e llenu: L i :5: p
Yolu.e Password:
Yoluwe Boot. file:
User:
Organiza~ion:

SYSln! Erase!

I
Sysin a Boo~! Re.o~e lis~!
8oo~! Help!
Fe~ch Lisp licrocode! ,

Device: {PUP-FS, N8-FS, iIii!iWli, LOC.31Disk.}

Yolulle Size = 32~1t!lId Free Pages = HI
lax. Y.e. Size = 31969 Y.e. Size = 13309

User Password: Oo.ain:

lake Script.!
Scavenge! Floppy!

L-. __ ~

3Ll.

Figure 3.4. The Lisp Installation Too!- With the mouse pointing to Copy Vmem

(2) Choose CopyVMem by positioning the mouse over the word and
clicking the left mouse button. Only click the left mouse once. If
the screen clears, and the maintenance panel code reads 0915,
you have made a mistake and need to do a 1 BOOT and start
again at the beginning of this section.

(3) Another window will appear over the in the lower left hand
corner of the screen, like the one shown in Figure 3.5.

Source Volu.e: Lisp2 Dest. inat. 10n Voluae: L E:P
Source VoJu.e Password: Dest. 1 nat. 10n Volu.e Password:

st.art.!~
QUlt.!

Figure 3.5. The window that will open when Copy Vmem! is chosen, with the
mouse pointing to Start!

It may have values already filled in for Source and Destination. If
so, skip this step, and the next one. Otherwise, position the
mouse over the word Source. Press the middle mouse button (on
two button mice, push the left and right buttons simultaneously)
and hold it down. Choose LlSP2 from the menu that will appear.
This selection will display the name of the chosen Interlisp-D
Volume after the word "Source" .

(4) Move the mouse cursor over the word" Dest. Volume." Press the
middle mouse button and hold it down. Choose the volume
where you want to reload lisp. If you are unsure which volume
you want, choose LISP.

(5) Move the mouse over the word "START!" and click the left
mouse button. Click the left mouse button again when you get

(6)

h f · m t e mouse con Irm cursor: [J.

When the copy completes, you will be asked if you want to boot
the destination volume. Click the left button if you do.
Continue with After Booting Interlisp-D, Section 3.4.

TURNING ON YOUR LISP MACHI:\JE

3a4 After Booting Lisp

AFTER BOOTING LISP

At this point, you will be prompted to "Enter my pu p host
number in octal:". If there is no pup host number associated
with your machine, simply type any number between 0 and 277,

I rr . t- .1 II I' 11.1 • q , ..

ana press '-'. IT Inere alreaay IS a numoer Inere, simply type '-'.

3 .. 5 Restarting Lisp After Logging Out

TURNING ON YOUR LISP MACHINE

To use this section, your machine should be in the idle state (the
black screen with the white bounci ng rectangi~)_ If it is off, start
at the beginning of the chapter. If it is white with windows, you
are already in Lisp. If there is a bouncing Interlisp-D logo, just
press the space bar to get back into Lisp.

(1) Starting from the white bouncing rectangle (the idle state of the
machine), click the left mouse button to start the Install LispTool.

(2) Choose the volume you want by moving the mouse cursor over
the words "Volume Menu:". (See Figure 3.4.) Press the middle
mouse button and hold it down. Choose the desired volume
from the menu that appears. If you are unsure which volume
you want, choose LISP. The menu will disappear, and the you
chose will be displayed after the word "Volume:" .

(3) Start the volume by positioning the mouse cursor over the word
"Boot" (This is one of the choices in Figure 3.4) and clicking the
left button. Confirm this by clicking the left button once more.
You have now booted Interlisp-D. Continue with After Booting
LISP, Section 3.4, Page 3.5.

3 5

RESTARTiNG LISP AFTER LOGGING OUT

[This page intentionally left blank]

36 TURNING ON YOUR LISP MACHINE

4. IF YOU HAVE A FILESERVER

If your lisp machine is connected to a network and a fileserver,
there are some important differences that you need to be aware
of. This chapter will point them out.

4.1 Turning on your 1108
(1) Pull down the cover of the maintenance panel, and expose the

four digit LED display.

(2) To turn the machine on, simultaneously press both the B RESET
and the AL T B buttons, then push the rocker switch to the 1
position.

(3) Release only the B RESET button, and watch the red numbers
count up 0000,0001. As soon as it reads 0001 release the ALT B
button. This is called a II 1 BOOT".

If you accidentally kept the AL T B button depressed when 0001
rolled around, just continue to hold it down, and the machine
will count around to 0001 again. (After counting to 0009 it goes
back to 0001.)

(4) Continue with the instructions for Turning on your 1108 on
Section 3.1, Page 3.2, beginning with choosing number 12, "Boot
SystemTools Volume" from the menu that appears.

4.2 Ttlrning on your 1186
(1)

(2)

(3)

IF YOU HAVE A FILESERVER

Turn on the machine by pressing the rocker switch to the 1
position, and pressing the red button labelled "B Reset" below
the rocker switch.

A group of icons will appear at the bottom of the screen. Choose
the third icon from the left, the one with a picture of a network,
by pressi ng the key labeled F3. This will boot the 1186 from the
network.

Continue with the instructions for Turning on the 1186 on
Section 3.2, Page 3.3, beginning with choosing number 9, "Boot
SystemTools Volume" from the menu that appears.

4.1

LOCATION OF FILES

4,,3 Location of Files

4.4 The Timeserver

42

Both your files and system files could be located either on the
local hard disk, on floppy, or on the file server. You can use files
from the file server using the instructions in Section 21.2, Page
21.1.

Fileservers cannot give you "random access" to your files. That
means that, unlike the files on your local hard disk or on your
floppy, a file from the fileserver that is not random access cannot
be used by some functions. For example, TEdit (see Chapter 23)
cannot use files that are not random access. This also means, for
example, that if both your compiled and uncompiled program
files are on the fileserver, and you need to make a change to one
of the functions that is compiled, the system cannot load only
this function for editing. Instead, you will have to load the
whole uncompiled file.

Because you are connected to a network, you are using a
network utility called the timeserver. The timeserver sets the
date and time on your lisp machine by getting it from another
machine running on the network. This means that you do not
have to set the time when booting your machine, but it also
means that if the time was set incorrectly by another user, your
machine will also have the incorrect time. You can always reset
the time on,your machine with the SETTIME function. To use it,
type (SETTIME date), where date is a string such as the one
shown in Figure 4.1.

Interlisp-D Executive window

NIL
97~ (SETT I ME II 10-.JeJ 1-86 15: ~18 : 22")
II 10-.JIj 1-86 15: 08 : 22 EDT"
98~

Figure 4.1. Using the SETTIME function to set the date and time

IF YOU HAVE A FILESERVER

Sa 1 Logging Out

5.LOGGING OUT AND TURNING THE
MACHINE OFF

Logging out is the process of cleanly exiting from Interlisp-D.
When you logout you greatly simplify starting Interlisp-D for
your next session, because the entire current state of the system
is saved. If you do not logout, you will need to reload Interlisp-D
when you next login. If you logout improperly, you could lose all
your work.

(1) Make sure you have saved all your work using the MAKEFILES
command. (See Section 11.6, Page 11.7.)

(2) Before turning the machine off, remove the floppy from the
floppy drive. Be sure to do this even if you need to reload LISP.

(3) Log out by typing: (LOGOUT).

(4) Wait until you see the bouncing white rectangle. The rectangle
will look like the one in Figure 5.1.

T ue:~: o:l.:J ~/
24-Jun-86 9:26:46 ~DT

~**** XEROX INTERLISP-O ~** ••
Click Left button for System Tool

Bo~h Bu~tons for Prof,le Tool
Riaht Button for Online Oiaanos~ics Tool

. STOP Key for selected L'~p Volume
Press Space Bar for Onllne Olagnoetlcs Tool

Figure 5.1. The white rectangle that will bounce around the screen

If you have not set the time, the 1108 will not let you log out.
This has happened if the screen is grey and the number on the
maintenance panel is 0937. Wait at least 2 minutes to be sure
that there is a problem. If nothing has happened, then:

(1) Reenter LISP (do a a Boot by pressi ng both the B-RESET and the
ALT-B buttons, immediately releasing the B-RESET button, and
holding the ALT-B button until the maintenance panel reads
0000 and then releasing the ALT-B button.)

(2) Set the tim~ by typing

(SETTIME date)

where date is a string such as the one shown in Figure 5.2.

LOGGING OUT AND TURNING THE MACHINE OFF 5 1

LOGGING OUT

lt1terlls:p-D Executive WInC!ow

NIL
97~(SETTIME ~10-Jul-86 15:08:22")
"10-Jul-86 15:08:22 EDT"
'3i3~

Figure 5.2. Using the SETTIME function to set the date and time

(3) Logout again, and wait forthe bouncing white rectangle.

5.2 Turning The Machine Off

5.2

Do not turn off the machine until you have successfully logged
out. To turn the machine off, push the rocker switch to the 0
position. According to both the 1108 User's Guide and the 1186
User's Guide, you should wait at least 3 minutes before turni ng
the processor back on.

LOGGING OUT AND TURNING THE MACHINE OFF

TYPING SHORTCUTS

6. TYPING SHORTCUTS

Once you have logged in as per Chapters 3 or 4, you are in
Interlisp-D. The functions you type into the Interlisp-D executive
window will now execute, that is, perform the designated task.
Please note that Inter! isp-D is case-sensitive; often it matters
whether text is typed in capital- or lower-case letters. The
shiftlock key is above the left shift key; when it is pressed (on the
1186; the red LED will be on; on the 1108, the key wi!! be
depressed), everything typed is in capital letters.

You must type all Interilsp-D functions in parentheses. The
Interlisp-D interpreter will read from the left parenthesis to the
closing right parenthesis to determine both the function you
want to execute, and the arguments to that function. Executing
this function is called evaluation. When the function is
evaluated it returns a value, which is then printed in the
Interlisp-D executive window. This entire process is called the
read-eval-print loop, and is how most LISP interpreters, including
the one for Interlisp-D, run.

The prompt in Interlisp-D is a number followed by a left pointi ng
arrow (see Figure 6.3). This number is the function's position on
the History List -- a list that stores your interactions with the
Intedisp-D interpreter. Type the function (PLUS 3 4), and
notice the number the History List assigns to the function (the
number immedi.ately to the left of the arrow). Interlisp-D reads
in the function and its arguments, evaluates the function, then
prints the number 7.

In addition to this read-eval-print loop, there is also a
"programmer's assistant". It is the programmer's assistant that
prints the number as part of the prompt in the Interlisp-D
executive window, and uses these numbers to reference the
function calls typed after them.

When you issue commands to the programmer's assistant, you
will not use parentheses as you do with ordinary function calls.
You simply type the command, and some specification that
indicates which item on the history list the command refers to.
Some programmer's assistant commands are F IX, REDO, and
UNDO. They are explained in detail below.

Programmer's assistant commands are useful only at the
Interlisp-D top level, that is, when you are typing into the
Interlisp-D executive window. They will not work in user-defi ned
functions.

As an example use of the programmer's assistant, use REDO to
redo your function call (PL US 3 4)_ Type REDO (Note:
programmer's assistant commands can be typed in either upper ..___/

6 1

TYPING SHORTCUTS

6.2

or lower case) at the prompt, then specify the previous
expression in one of the following ways:

(1) When you originally typed in the function you now want to refer
to, there was a History List number to the left of the arrow in the
prompt. Type this number after the programmer's assistant
command. This is the method illustrated in the following figure:
....
:::: 24-0:- (PLtl:3 :3 4) ',', 7 I ~5~F.:EDO 24
:::: "
:::: 2E;~A
::::+ .• "', ' P"P, ,.P"P, •• "" ""." '"",. •• "" ""'.'"" p"p •• "", , "'.,

::::::::;:;:::;:;:::;:;:::;:::::::::::::::;:::::::;:::;:;:;:;:;:::;:;:::::::::::;:::;:;:;::::::::::::::
Figure 6.1. Using the programmer's assistant to REDO a function, when you
know the its number on the history list

(2) A negative number will speci fy the function call typed in that
number of prompts ago. In this example, you would type in -1,
the position immediately before the current position. This is
shown in the following figure:

::::
:::: 26~':: PLUS :3 4)
.',' 7
.:1,:1 .',' 27~REDO -1
:::: 7
:::: ,-;. :-=:
:.:.~ '"""""""'" .. """'" :::::.:.:.:.:.:::.:.:.:.:.:.:.:.:::_:.:::.:.:e:.:.:.:.:.:.:::.:.:.:.:.:.:':.:::.:.:.:.:.:.:.:.:.:.:
~:::

Figure 6.2. Typing a negative number after the programmer's assistant
command will cause it use the function found on the History List that many
positions before the current one.

(3) You c~n also specify the function for the programmer's assistant
with one of the items that was in that function call. The
programmer's assistant will search backwards in the History List,
and use the first function it finds that includes that item. For
example, type REDO PLUS to have the function (PLUS 3 4)
reeval uated.

(4) If you type a Programmer's Assistant command without

specifying a function (i.e., simply typing the command, then a cf),
the Programmer's Assistant executes the command using the
function entered at the previous prompt.

Here are a few more examples of using the programmer's
assistant:

TYPING SHORTCUTS

6.1 If you make a Mistake

Interlisp-D ExecLltive Win'dow '-, .

NIL
54.:-(PLU8 4 5)
9
55~F:EOO
9

54, .;.(PLUS 4 5)
9

57.:-e.
e,o"!"
58.:-UNOO SETQ
SETQ undone.
5g~el

UNe.OUNO ATOr.,
e.

60.:-REOO 56
e.OY
61.:-B
e.OY
62.;.

Figure 6.3. Some Applications of the Programmer's Assistant

TYPING SHORTCUTS

Editing in the Interlisp-D Executive Window is explained in
Section 11.2, Page 11.2. In this section, only a few of the most
useful commands will be repeated.

To move the caret to a new place in the command being typed,
point the mouse cursor at the appropriate position, and press the
left mouse button.

To move the caret back to the end of the command being typed,
press CONTROL-X. (Hold the CONTROL key down, and type "X"_)

The way you choose to delete an error may depend on the
amount you need to remove. To delete:

The character behind the caret simply press the backspace key

The word behind the caret press CONTROL-W. (Hold the? CONTROL key down, and type
"W".)

Any part of the command,

TYPING SHORTCUTS

first move the caret to the appropriate place in the command.
Hold the right mouse button down and move the mouse cursor
over the text. Ail of the blackened text between the caret and
mouse cursor is deleted when you release the right mouse
button.

63

IF YOU MAKE A MISTAKE

The entire command

6.4

press CONTROL-U. (Hold the CONTROL key down, and type II U ".)

Deletions can be undone. Just press the UNDO key.

To add more text to the line, move the caret to the appropriate
position, and just type. Whatever you type will appear at the
caret.

TYPING SHORTCUTS

USING MENUS

7. USING MENUS

The purpose of this chapter is to show you how to use menus.
Many things can be done more easily using menus, and there are
many different menus provided in the Interlisp-D environment.
Some are "pop-up" menus, that are only available until a
selection is made, then disappear until they are needed again.
An example of one of these is the "background menu", that
appears when the mouse is not in any window and the right
mouse button is pressed. A background menu ;s shown in Figure
7.1. Yours may have different items in it.

~~j~j~j;:;:::;:;:·~;:~::;:~~~~:~;:::;:::;:::~ml

/i!i LOI~P3.\ Icon ~::'!I
....... ._H T

I~l~ File~,~tff~,·v3erl~::·l~~~l
:.:.:.: S~.··I·le\ll\.I·' .:.:-
:.' ;':;:"~'.: 1: .. 1,.:1 Sn:::..p

. ~:~::!: Ha~~~py }!:!~:
::::::: TEcHt :::::
: ~:; :;:;:;:;: ~:; :;: ~:;:;:;:;:;:;:;:;:;:;: ;:;:;:;:; :;:;
Figure 7.1. A background menu.

Another common pop-up menu is the right button default
window menu. This menu is explained more in Section 10.4,
Page 10.3.

Other menus are more permanent, such as the menu that is
always available for use with the Interlisp-D Filebrowser. This
menu is shown in figure Figure 7.2, and the specifics of its use
with the filebrowser is explained in Chapter 9).

FB CommandS ~:; :
[;elete ;::: :!::

1_lt-leJelete). ::::
f:: CI p Y :~:~

F:en~3.me ::::
HarcicoPY ::::

~~~ ;::: 
LO~.(1 ::. :::: 

':c,rnpile }- :::: 
E:x:punqe. :::: 

:~:~:~:~;:~~~::~'~~;:~~t::~l~l 
Figure 7.2. The menu that IS available when uSing the Filebrowser 

7 1 



MAKING A SELECTION FROM A MENU 

7m 1 Making a Selection from a Menu 

To make a selection from a menu, point with the mouse to the 
item you would like to select. If one of the mouse buttons is 
already pressed, the menu item should blacken. If it is a 
permanent menu, you must press the left mouse button to 
blacken the itemo When you release the button, the item will be 
choseno Figure 703 shows a menu with the item "Undo" chosen . 

. l:..fter 
Before 
Delete 

Repla.ce 
S··.·vitch 

o 
(' J lJut .1." Find 
S·.i .... a.p 

Reprint 
Edit 

EctitCorn 
Break 
E·y·~3.1 

E>::it 

Figure 7.3. A menu with the item "Undo" chosen 

702 Explanations of Menu Items 

72 

Many menu items have explanations associated with them. If 
you are not sure what the consequences of choosing a particular 
menu item will be, blacken the menu item, and do not release 
the left button. If the menu item has an explanation associated 
with it, the explanation will be printed in the prompt window. 
Figure 7.4 shows the explanation associated with the item 
"Snap" from the background menu. 

Figure 7.4. The explanation associated with the chosen item, "Snap", IS 

displayed in the prompt window 

uSING MENUS 



• 
• 

USING MENUS 

SUBMENUS 

Some menus items have submenus associated with them. This 
means that, for these items, you can make even more precise 
choices if you would like to. 

A submenu can slso be found in one of two ways. One is to point 
to the item with the mouse cursor, and press the middle mouse 
button. If there is a submenu associated with that item, it will 
appear. (See Figure 7.5.) 

( 1 c1ut 
Ijncle 
Finel 

'~; ......... a.p 
F:eprint 

Edit 
EditCorn 

8t'e'1k 
E·· ... ·3-1 

Figure 7.5. The submenu associated with the menu Item EXit - It appeared when 
the mouse cursor pointed to the menu item, and the middle mouse button was 
pressed. 

A submenu can be indicated by a gray arrow to the right of the 
menu item, like the one to the right of the II Hardcopy" choice in 
Figure 7.1. To see the submenu, blacken the menu item, and 
move the mouse to follow the arrow. An example of this is 
shown in Figure 7.6. Choosing an item from a submenu is done 
in the same way as choosing an item from the menu. Any 
submenus that might be associated with the items in the 
submenu are indicated in the same way as the submenus 
associated with the items in the menu. 

Delete ""·, ........ ,., .. ';.;.; ....... 1 
Unc!elete } .•.......... ·.·.· .. :.:.1 

COP''/ 
F=:en8.rne 

H;.2t.t'dcopy 
:3ee 
Edit ~ 
Lo~.cl 

Figure 7.6. The submenu associated with thE' menu Item Edit· It aopeared when 
the menu item was blackened, and the mouse was moved to follow the gray 
arrow. 

In summary, here are a few rules of thumb to retTIEmber about 
the interactions of the mouse, and system menus: 

Press the left mouse button to select an item of a menu 

Press the middle mouse button to get more options - one of the 
ways to find a submenu 

,7 3 



SUBMENUS 

• 

71l 

Press the right mouse button to see the default right button 
window menu, and the background menu 

uSING MEN:;) 



8 .. 1 Types of Files 

Interlisp-D expressions, 

compiled code, 

a Sketch, 

text, 

8.2 Directories 

HOW TO USE FILES 

HOW TO USE FILES 

A program file; or lisp file, contains a series of expressions that 
can be read and evaluated by the Interlisp-D interpreter. These 
expressions can include function or macro definitions, variables 
and their values, properties of variables, and so on. How to save 
interlisp-D expressions on these files is explained in Section 11.6, 
Page 11.7. Loading a file is explained below, in Section 8.6, Page 
8.4. 

Not all files, however, have Interlisp-D expressions stored on 
them. For example, TEdit files (see Chapter 23) store text; 
sketches are stored on files made with the package Sketch (see 
Chapter 35), or can be incorporated into TEdit files. These files 
are not loaded directly into the environment, but are accessed 
with the package used to create them, such as TEdit or Sketch. 

When you name a file, there are conventions that you shouid 
follow. These conventions allow you to tell the type of a file by 
the extension to its name. If a file contains: 

it should not have an extension. For example, a file called 
"MYCODE" should contain Interlisp-D expressions; 

it should have the extension" .DeOM". For example, a file called 
"MYCODE.DCOM" should contain compiled code; 

then its extension should be ".SKETCH". For example, a file 
called "MOUNTAINS.SKETCH" should contain a Sketch; 

it should have the extension" .TEDIT". For example, a file called 
"REPORT.TEDIT" should contain text that can be edited with the 
editor TEDIT. 

Th;s section focuses on how you can find files, and how you can 
easily manipulate files. To see all the files listed on a device, use 
the function DIH. For example, to see what files are stored on 
the hard disk, type 

{OIR {OSK}) 

8 1 



DIRECTORIES 

8.3 Directory Options 

8.2 

To see what files are stored on the floppy disk inside of the 
floppy drive, type 

(DIR {FLOPPY}) 

Partial directory listings can be gotten by specifying a file name, 
rather than just a device name. The wildcard ,.*,. can be used to 
match any number of unknown characters. For example, the 
command 

(DIR {DSK}T$) 

will list the names of all files stored on the hard disk that begin 
with the letter T. An example using the wildcard is shown in 
Figure 8.1 

> ~~ +. ( D I R '{ D::;, r;: } < LIS P F I L E S ~:, P R Jr.1 E R ) T+ ) 
','. 

:,':,':,::,' {DSh}< L I SI'F I LES> PR H1EF:> 
1 AGF:EFS , TED IT; 2 

j f[,lIJCONT, TED IT; 1 
:::: r·J 1 L 
u: :::4~A 
' ,-, 
~: ~: :: ~:~:~: ~: j:::~: l: ~:~ :1: ~:.: :~: ~:~: 1: ~:~: j:~: j: 1: j:j :1: ~:j: 1:~: j :j: j =j: j: j=j: j: j:j: j: j=l :j: l= l: j: l:j: j: j:l :1: 1: j :j: l=l :j: l:l: j: l: 
Figure 8.1. Using the function DIRwith a wildcard 

Various words can appear as extra arguments to the DIR 
command. These words give you extra information about the 
files. 

(1) SIZE displays the size of each file in the directory. For example, 
type 

(OIR {OSK} SIZE) 

(2) DATE displays the creation date of each file in the directory. An 
example of this is shown in Figure 8.2 

:.: 
;:; :35~(OIF: {08K}<LI8PFILES>PRIMER)T* DATE) 
.:. 
::: CF:EATIOt'~DATE ',' 
::: 
~:~ -r08K}< L I SPF I LES) PF; I t,1ER> 
;:: TAI;F-:EF8', TEO IT; 2 28-.JI.m-86 19: ~11Z1: ~12 
::: Te.LOCOtH. TEO It; 1 26-.JI.m-86 19: 58: 37 
::: NIl. 

i:i:::::::~~::}!::::::::{:::::::::!:::::::::::}!:}}!:!:::!:::!:::::!:::::!:::::!:::::!:::::::::!:!:::::::::}!:::!:::!:!:::): 
Figure 8.2. An example using the directory option DATE 

(3) DEL rJeletes all the files found by the directory command 

HOW TO USE FILES 



8.4 Subfile Directories 

SUBFILE DIRECTORIES 

Subfi!e directories are very helpful for organizing files. A set of 
files that have a single purpose, for example all the external 
documentation files for a system, can be grouped together into a 
subfile directory. 

To associate a subfile directory with a filename, simply include 
the desired subfile directory as part of the name of the file. 
Subfile directories are specified after the device name and before 
the simple filename. The first sibfile directory should be 
between less-than and greater-than signs < >, with nested 
subdirectory names only followed by a greater-than sign >. For 
example: 

{DSK}<Directory)SubOirectory)SubSubOirectory) ... )filenarne 

8.5 To See What Files Are Loaded 

If you type FIlElST < CR>, the names of all the files you loaded 
will display. 

Type SYSFIlES<CR>, to see what files are loaded to create the 
SYSOUT. 

8.6 Simple Commands for Manipulating Files 

The following commands will work with the {FLOPPY} and other 
devices, but have been shown with {DSK} for simplicity. 

To have the contents of a file displayed in a window: 

To copy a file: 

To delete a file: 

To rename a file: 

HOW TO USE FILES 

(SEE '{DSK}filename) 

(COPYFIlE '{DSK}oldfilename '{DSK}newfilename) 

An example of this is shown in Figure 8.3 

j:j:l 4:3~ (COPVF I LE 'TAI3REF:::. TEO IT' PF: I MEF:F:EF8 . TEO IT) 
;:;:; {D8K}< L I SPF I LES> PF: I MER> PF: I MERF:EFS . TEO I T ~ 1 . 
:~:~; 44.:. . . 

~~~ ~~: :;: ;:; :;: ;:; :;:::; :;: ;:; :;: ;:; :;:;:; :;: ;:; :;: ;:;:;: ;:;::: ;:; :;: ;:; ::: ;:; :;:;:;: ;:;: ;:; :;:;:; :;: ;:; :;: ;:; :;: ;:;:;:;:; :;: ;:;:;: ;:; :;:;:;:;: ;:; :;:;:; :;: ;:; :;: ;:; :;: ;:; :;: 

Figure 8.3. An example of the use of the function COpy FILE

(DEI.FIl£ '{DSK}filename)

An example of this is shown in Figure 8.4.

ID
:: 4:3.:. (OELF I LE ' SAMPLE. TEO IT;'
~ {OS~}<LI8PFILE8)PRIMER)8AMPLE.TEOIT;1

I:::::~:~:;":::::::::::::::}::::}::::::::::;;:::::::::::::::::::::::::::::::::::::::t::::::::::::::::::::::{:::::::::::
Figure 8.4. The function DELFILE

(~ENP~EfIlE '{DSK}oldfilename '{DSK}newfilename)

8 3

SIMPLE COMMANDS FOR MANIPULATING FILES

"LOAD" a file: Files that contain Interlisp-D expressions can be loaded into the
environment. That means that the information on them is read,
evaluated, and incorporated into the Interlisp-D environment.
To load a file, type:

(LOAD '{DSK}filename}

'vVhen using these functions, always be sure to specify the full
filename, including subfile directories if appropriate.

8.7 Connecting to a Directory

8aS File Version Numbers

84

Often, each person or project has a subdirectory where their files
are stored. If this is your situation, you will want any files you
create to be put into this directory automatically. This means you
should "connect" to the directory.

CONN is the Interlisp-D form that connects you to a directory. For
example, CONN in the following figure:

Interlisp -0 Executive Window
29.(CONN '{D8Kl<LI8PFILES)PRIMER)IM»)
·.-0':.· .. :·, L I ·:"F'F· I LE:::' PR' I ~'ER\ I M\ . I. 1 \ .r ". ,_, ,~ .. ' ',II , ,.' III,'

:30~

Figure 8.5. CONNecting to the subdirectory "PRIMER"s subsubdirectory "1M"

connects you to the subsubdirectory iM, in the subdirectory
PRIMER, in the directory LlSPFILES, on the device DSK. This
information, the device and the directory names down to the
subdirectory you want to be connected to, is called the "path" to
that subdirectory. CONN expects the path to a directory as an
argument.

Once you are connected to a directory, the command OIR will
assume that you want to see the files in that directory, or any of
its subdirectories.

Other commands that require a filename as an argument (e.g.,
SEE, above) will assume, if there is no path specified with the
filename, that the file is in the connected directory, This will
often save you typing.

Wh~n stored, each file name is followed by a semicolon and a
number,

MYFILE.. TEDIT; 1

The number is the version number of the file. This is the system's
way of protecting your files from being overwritten. Each time
the file is written, a new file IS created with a version number one

HOW TO USE FILES

HOW TO USE FILES

FILE VERSION NUMBERS

greater than the last. This new file will have everything from
your previous file, plus all of your changes.

In most cases, you can exclude the version number when
referenci ng the file. When the version is not specified, and there
is more that one version of the file on that particular directory,
the system generally uses your most recent version. An exception
is the function DElFIlE, which deletes the oldest version (the
one with the lowest version number) if none is specified.

85

FILE VERSION NUMBERS

[This page intentionally left blank]

86 HOW TO USE FiLES

9D 1 Calling the FileBrowser

FILEBROWSER

9. FILEBROWSER

The FileBrowser is a Lisp Library Package that works with files
stored on disk and floppy devices, and can be used as a fi Ie
directory editor.

Calling the FileBrowser with the device name, calls up the files
stored on the device:

(FB '{DSK})

Another way to call a FileBrowser is to choose II FileBrowser"
from the Background menu. You will be prompted for a
description of the files to be included. (See Figure 9.1.) Simply

type an asterisk ("*"), then cr, to see all the files in the connected
directory.

Fi 1€" gr·olJp d€":::~r·ipt.ion: A

'=:opy
Ren;.3.rne

H;'3.t'Ctcopy
See
Edit

Figure 9.1. Prompt for the files to be included in the FileBrowser fype an

asterisk ("*''') and then cr to see all the files In the connected dire~tory

These show a directory of the device in a window you can leave
on the screen at all times. The parts of the FileBrowser window
are shown below:

9 1

CALLING THE FILEBROWSER

The Prompt window. The FileBrowser uses
this area to prompt you to enter information.

F 11 €- gr'oup d€-sc:r' i pt ion: A

92

File list. The files will
be listed in this area
of the FileBrowser

J

Copy
Rename

H;;:t.t'dcopy
See
Edit

L03.d
Cornpile

~.~. ~ .?~ P ~~~ r.~ ~ e

The command
menu. These
commands are

explained
~. below.

Figure 9~2. The parts of a FileBrowser

Now you do not need to continually type the directory
command.

To use the FileBrowser, choose a file by pointing to the file with
the mouse, and pressing the left or the middle mouse button. A
small dark arrow will appear to the left of the file name. Choose
a command from the menu at the right. In Figure 9.3, the files
OCH11.MSS;2, OCH12.MSS;2, and OCH13.MSS;2 have been
selected.

The left mouse button only allows you to choose one file at a
time. Even if you choose other files, only the last file you picked
with the left mouse button will remain marked as chosen. When
you use the middle mouse button to choose a file, the file is
added to those already picked.

To unpick an already chosen file, hold the CONTROL key while
pressing the middle mouse button. On the 1186, the control key
is the one marked EDIl or ell to the left of the keyboard. On
the 1108, the CONTROL key is also to the left of the keyboard,
and is marked PROPS.

~ILE:BROW5ER

9.2 FileBrowser Commands

Delete

FILEBROWSER

CH11.M:::::::: 2
CH12. M:::::::: .:::.
CH13.M:::::::: 3
CH14.M:::::::: 3
CH1S.M:::::::: 4
CH1S.M:::::::: 3
CH17.~1:::::::: 1
CH18.~1::::8 2
CH19.M::::8 4
CH20. ,.,::::8 1
CH21.M88 1
CH22 . t,,88 2
CH23.M88 1
CH24 . ,,'88 1
CH2S.M88 1
CH26.to188 2
CH:3.r.188;
CH4.M88;
GH5. tli88;
CH6.r.188;
CH7.r.188;

Figure 9.3. Files Chosen

7
7
7
3

CALLING THE FILEBROWSER

A summary of the FileBrowser commands is shown below.

In the Fi!eBrowser, this command marks a file, or files, for
deletion. (See Figure 9.4). These files are marked by a black line
crossing through them. You may select and mark any number of
files for deletion. De 1 ete does not actually remove these files
from the device. The Expunge command actually wipes out the
files previo'usly marked for deletion (see Figure 9.5).

93

FILEBROWSER COMMANDS

Undelete

Copy

Renalle

Hardcopy

See

Edit

Load

COIWpile

9.4

OClli1.MCC,'::
OClli':' . MOG; .:.
OOlliJ . MGa,:)

.OCH14.M8S~3
OCH15.MSS;4
OCH16.MSS;3
OCH17.r.tSS;1
OCH18 . ~lSS; 2
OCH19 . hlSS; 4
OCH20 . tllSS; 1
OCH21.r.t88;1

Figure 9.5. Files Marked For Deletion And Not Yet Expunged

undoes the delete command for one or more files. Unde 1 ete
erases the black line through a file marked for deletion.

This command copies the chosen file. The destination fiiename
should be typed at a prompt that appears in the window above
the FileBrowser. Wildcards do not work for this prompt. You
must type the whole unquoted filename. If more than one file is
chosen to be copied, you will be prompted for a directory name.
The files will be copied into the directory you give, but with the
same filenames as the ones they have in their original location.

This command works much like the Copy command, but does
not leave the original file. The chosen file will be renamed to the
destination filename. You will be prompted, in the prompt
window, for the destination filename. Give the complete
unquoted filename. If more than one file is chosen to be
renamed, you will be prompted for a directory name. The files
will be moved into the directory you give.

If you do not have a laser hardcopy device, using this command
will cause an error. Otherwise, it gives a hardcopy of the file.

Shows you a file in a window. To use this command, choose a
single filename, then the See command. You will be prompted
for a window. Each time the See command is chosen, a new
window is opened to display the file.

Calls the editor with the file as input. If the file is an executable
one, (i.e. Lisp code as opposed to a documentation file), only the
FILECOMS list will be edited. The FILECOMS list is the list of
variables, lists, and functions that are contained on that file.
FileBrowser will first load it and then allow you to edit the
FILECOMS.

Choose a file with the left mouse button, or a group of files with
the middle mouse button. Once the filenames have been
blackened, choose the Load command to load them all into
Interlisp-D.

This command calls the file compiler TCOMPL, with the (/1osen
filename(s) as arguments. TCOMPL compiles a file found on a
storage device ({FLOPPY} or {DSK}}, not the functions d~?fined
in the Interlisp-D image. If any functions on a loaded file nave
been changed, run the function (MAKE fILE 'fi 1 ename) to

~!L EBROV'lSER

Expunge

Recompute

FILEBROWSER

FILEBROWSER COMMANDS

write the current version before compiling it. Files do not have
to be loaded to use the compile command.

Expunge completely deletes all the marked files from the
directory. This allows you to remove unwanted files from your
floppy.

Choose this command when you know that the directory has
been changed and should be reread, for example, after inserting
a new floppy disk.

95

FILEBROWSER COMMANDS

[This page intentionally left blank]

9_6

10. THOSE WONDERFUL WINDOWS!

A window is a designated area on the screen. Every rectangular
box on the screen is a window. While Interlisp-D supplies many
of the windows (such as the Interlisp-D executive window), you
may also create your own. Among other things, you will type,
draw pictures1 and save portions of your screen with windows.

10.1 Windows provided by Interlisp-D

. -
THOSE WONDERFUL ',,'VII\ICOWS I

Two important windows are available as soon as you enter the
Interlisp-D environment. One is the Interlisp-D executive
window, the main window.where you will run your functions. It
is the window that the caret is in when you turn on your
machine, and load Interlisp-D. It is shown in Figure 10.1.

: .

Figure 10.1. Interlisp-D Executive Window

The other window that is open when you enter Interlisp-D is the
"Prompt Window". It is the long thin black window at the top of
the screen. It displays system prompts, or prompts you have
associated with your programs. (See Figure 10.2.)

Figure 10.2. Prompt Window

Other programs, such as the editors, also use windows. These
windows appear when the program starts to run, and close (no
longer appear on the screen) when the program is done running .

10 1

(REA TING A WINDOW

10a2 Creating a window

To create a new window, type: (CREATEW). The mouse cursor
will change, and have a small square attached to it. (See Figure
10.3.)
--..,
I I L __

~"a" ,\"::.1

Figure 10.3. The mouse cursor asking you to sweep out a window.

There may be a prompt in the prompt window to create a
window. Press and hold the left mouse button. Move the mouse
around, and notice that it sweeps out a rectangle. When the
rectangle is the size that you'd like your window to be, release
the left mouse button. More specific information about the
creation of windows, such as giving them titles and specifying
their size and position on the screen when they are created, is
given in Section 27.1.2, Page 27.2.

10.3 The 'Right Button Default Window Menu

10.2

Position the cursor inside the window you just created, and press
and hold the right mouse button. A menu of commands should
appear (do not release the right button!), like the one in Figure
10.4. To execute one of the commands on this menu, choose the
item. Making a choice from a menu is explained in Section 7.1,
Page 7.2.

ChJse
Snap
P:;.int
Clear
81_~r"'"

Redisplay
Har'cicopy)'

rvl0·· ... e
Shape
~::; t-I ri n k

Figure 10.4. The Right Button Default Window Menu

As an example, select "Move" from this menu. The mouse cursor
will become a ghost window Oust an outline of a window, the
same size as the one you are moving), with a square attached to
one corner, like the one shown in Figure 10.5 .
.-----1
I I
I I
I I
I I
I I
~ ____ I

Figure 10.5. The mouse cursor for moving a window

Move the mouse around. The ghost window will follow. Click
the left mouse button to piace the window in a new iocation.

THOSE WONDERFUL WINDOWS'

THE RIGHT BUTTON DEFAULT WINDOW MENU

Choose "Shape", and notice that you are prompted to sweep out
another window. Your original window will have the shape of
the wi ndow you sketch out.

10.4 An explanation of each menu item

Close

Snap

Paint

Clear

Bury

Redisplay

Hardcopy

Move

Shape

Shrink

Expand

10.5 Scrollable Windows

THOSE WONDERFUL VVI i'J DOWS ,

The meaning of each right button default window menu item is
explained below:

removes the window from the screen;

copies a portion of the screen into a new window;

allows drawing in a window;

clears the window by erasing everything within the window
boundaries;

puts the window beneath all other windows that overlap it;

redisplays the window contents;

sends the contents of the window to a printer or to a file;

allows the window to be moved to a new spot on the screen;

repositions andlor reshapes the window;

reduces the window to a small black rectangle called an icon.
(See Figure 106.)

Figure 10.6. An example icon

changes an icon back to its original window. Position the mouse
cursor on the icon. depress the right button i and select Expand.
Or, just button the icon with the middle mouse button.

These right-button default window menu selections are
available in most windows, including the Interlisp-D Executive
window. When the right button has other functions in a
window (as in an editor window), the right button default
window menu should be accessible by pressing the Right button
in the black border at the top of the window.

Some windows in Interlisp-D are "scrollable". This means that
you can move the contents of the window up and down, or side
to side, to see anything that doesn't fit in the window.

Point the mouse cursor to the left or bottom border of a
window. If the window is scroll able, a "scroll bar" will appear.

'03

SCROLLABLE WINDOWS

104

The mouse cursor will change to a double headed arrow. (See
Figure 10.7.)

Figure 10.7. The scroll bar of a scrollable window. The mouse cursor changes to
a double headed arrow.

The scroll bar represents the full contents of the window. The
example scroll bar is completely white because the window has
nothing in it. When a part of the scroll bar is shaded, the amount
shaded represents the amount of the window's contents
currently shown. If everything is showing, the scroll bar will be
fully shaded. (See Figure 10.8.) The position of the shading is
also important. It represents the relationship of the section
currently diplayed to the the full contents of the window. For
example, if the shaded section is at the bottom of the scroll bar,
you are looking at the end of the file.

The amount of shading in
t.he scroll bar represents
the amount of the file
shown in the window. Most
of the file is visible,
Because the thading is at
t.he top of the scroll bar,
vou know vou are lookinQ
~t the tci~ of the file.-

Figure 10.8. The amount of shading In the scroll bar represents the amount of
the file shown in the window. Most of the file IS VISible. Because the shading IS at
the top of the scroll bar, you know you are looking at the top of the file.

When the scroll bar is visible, you can control the section of the
window's contents displayed:

• To move the contents higher in the window (scroll the contents
"up" in the window), press the left button of the mouse, the
mouse cursor changes to look like this:

t
Figure 10.9. Upward scrolling cursor.

The contents of the window will SCioli up, making the line that
the cursor is beside the topmost line in the window.

THOSE WONDERFUL WINDOWS I

SCROLLABLE WINDOWS

• To move the contents lower in the window (scroll the contents
"down" in the window), press the right button of the mouse,
and the mouse cursor changes to look like this:

+
Figure 10.10. Downward scrolling cursor.

The contents of the window scroll down, moving the line that is
the topmost line in the window to beside the cursor.

• To show a specific section of the window's contents, remember
that the scroll bar represents the full contents of the window.
Move the mouse cursor to the relative position of the section you
want to see (e.g., to the top of the scroll bar if you want to see
the top of the window's contents.). Press the middle button of
the mouse. The mouse cursor will look like this:

Figure 10.11. Proportlonai scrolling cursor.

When you release the middle mouse button, the window"s
contents at that relative position will be displayed.

1 0.6 Other Window Functions

1 0.6.1 PROMPTPRINT

THOSE WONDERFUL WiNDOWS I

Prints an expression to the black prompt window.

For example, type

(PROMPTPRINT -THIS WIll BE PRINTED IN THE PROMPT WINDOW-)

The message will appear in the prompt window. (See Figure
10.12.)

NIL
43.{PROMPTPRINT "THIS WILL BE PRINTED IN THE
PROMPT l,o,IlNDCP'~")
NIL .
44~A

Figure 10.12. PROMPTPRINTing

10.5

OTHER WINDOW FUNCTIONS

10.6.2 WHICHW

10.6

Returns as a value the name of the window that the mouse
cursor is in.

(WHICHW) can be used as an argument to any function
expecting a window, or to reclaim a window that has no name
(that is not attached to some particular part of the program.).

THOSE WONDERFUL WINDOWS'

11.1 Defining Functions

EDITING AND SAVING

11. EDITING AND SAVING

This chapter explains how to define functions, how to edit them,
and how to save you r work.

OEFINEQ can be used to define new functions. The syntax for it
is:

(OEFINEQ «functionname> «parameter-list»
<body-of-function»)

New functions can be created with OEFINEQ by typing directly
into the Interlisp-D executive window. Once defined, a function
is a part of the Interlisp-D environment. For example, the
function EXAMPLE -ADDER is defined in Figure 11.1.

rmti!j'Wii.Ii¥!l#3imn-~
~~L 'O~~-t'E'J '~·n.t~PL~ "--I-R ,.,~ E I""" '+_'''''~ cr l'~ ' •. I •. C.'·.R' C.-I"'IULt.·, ~.I"'I I _.)

(PRINT ~THE SUM OF THE
THREE N~MBERS [S ~)

(I PLUS A B I~:)))
(E:=<AMPLE -ADDER)
47~A

Figure 11.1. Defining the function EXAMPLE-ADDER

Now that the function is defined, it can be called from the
Interlisp-D executive window:

Interlisp -D Executive

NIL
49~(EXAMPLE-AOOER 3 4 5)
II THE SUM OF THE THREE NUMe,EF:S
12
'Sfl~

I ,~, "
'-'

Figure 11.2. After EXAMPLE-ADDER is defined, it can be executed

The function returns 12, after printing out the message.

Functions can also be defined using the editor DEdit described
above. To do this, simply type

(OF funtion-name)

111

DEFINING FUNCTIONS

You will be asked whether you would like to edit a Dummy
definition. A dummy definition is a standard template for your
function definition. Answer by typing Y for Yes, and you will be
able to define the function in the editor. (See Figure 11.3. The
use of the editor is explained in Section 11.3, Page 11.4.)

E",f,:.t·",
[ir:-Iet ,::­

Pt:-p!~:.,~ t:"

-: · /ir,:h

... :, out
'In(iC'
Fin.:!

.::.'· ... ·,'d.P

c..:-nl'"inr
Edit

Edit'=,~'rr'l

::::::::::::;::::: Bt·.".j!··
::: ::=:=:=:=:=:=:=:=:=:=:=:=:= E""'~I

::;: E;,lt.

Figure 11.3. Using DEdit to define a function

11.2 Simple Editing in the Interlisp-D Executive Window

11.2

First, type in an example function to edit:

51+-(DEFINEQ (YOUR-FIRST-FUNCTION (A B)
(if (GREATERP A B)

then '(THE FIRST IS GREATER)
else '(THE SECOND IS GREATER»»

To run the function, type (YOUR-FIRST-FUNCTION 3 5).

52+-(YOUR-FIRST-FUNCTION 3 5)
(THE SECOND IS GREATER)

Now, let's alter this. Type:

53+-FIX 51 cr

Note that your original function is redisplayed, and ready to edit.
(See Figure 11.4.)

EDITING AND SAVING

EDITING AND SAVING

SIMPLE EDITING IN THE INTERLlSP-D EXECUTIVE WINDOW

Interlisp -0 Executive

NIL
5:3..;.F I::.:: 51
;;.(OEFINEO
'[YOUR-~IRST-FUNCTION

(A B) (* edited:

"31-0ec-00 19:28")
(IF (GREATERP'A B)
, fHEN (QUOTE (THE FIRST IS

13REATER))
ELSE (QUOTE (THE SECOND IS"

13REATER] ;~

Figure 11.4. Using f IX to edit a function

Move the text cursor to the appropriate place in the function by
positioning the mouse cursor and pressing the left mouse
button.

Delete text by moving the caret to the beginning of the section to be
deleted. Hold the right mouse button down and move the
mouse cursor over the text. All of the blackened text between
the caret and mouse cursor is deleted when you release the right
mouse button.

If you make a mistake deletions can be undone. On an 1108, press the OPEN key to
UNDO the deletion. On an 1108, press the UNDO key on the
keypad to the left of the keyboard.

Now change GREATER to BIGGER:

(1) Position the mouse cursor on the G of GREATER, and click the left
mouse button. The text cursor is now where the mouse cursor· is.

(2) Next, press the right mouse button and hold it down. Notice
that if you move the mouse cursor around, it will blacken the
characters from the text cursor to the mouse cursor. Move the
mouse so that the word "GREATER" is blackened.

(3) Release the right mouse button and GREA "fER is deleted.

(4) Without moving the cursor, type in BIGGER.

(5) There are two ways to end the editing session and run the
function. One is to type CONTROL-X. (Hold the CONTROL key
down, and type "X".) Another is to move the text cursor to the

end of the line and cr. In both cases, the function has been
editedf

Try the new version of the function by typing:

59+-(YOUR-FIRST-FUNCTION 8 9)
(THE SECOND IS BIGGER)

and get the new result, or you can type:

59+-REDO 52cr

(THE SECOND IS BIGGER)

113

USING THE LIST STRUCTURE EDITOR

11 a3 Using The List Structure Editor

114

If the function you want to edit is not readily available (i.e. the
function is not in the Interlisp-D Executive window, and you can't
remember the history list number, or you simply have a lot of
editing), use the List Structure Editor, often called DEdit. This
editor is evoked with a call to OF:

81+-(DF YOUR-FIRST-FUNCTION)

Your function will be displayed in an edit window, as in Figure
11.5.

If there is no edit window on the screen, you will be prompted to
create a window. As before, hold the left mouse button down,
move the mouse until it forms a rectangle of an acceptable size
and shape, then release the button. Your function definition
will automatically appear in this edit window.

..~

I: u::.r,1BDA (A B:' c+ ,;,IJlt,;,lJ: ··~1·0,;,c;·OO 17::38", .':'.ffer
• (IF (GREA TE'RP A B:' 6efore

THEN (QUOTE (THE FIRST IS ~)) Delete
ELSE {QUOTE (THE SECOND 18 BIGGER)))) Repi;,;.ce

Figure 11.5. An EditWindow

·::::··,,·,.itcf-,

.: :' uut
UnCl':'
Find

·::.·····i;:i.p
Re>-,rir·t:

E,jit
E ,j It(: c, "n

E;re:;:r.I<
E','al
E"it

Many changes are easily done with the structure editor. Notice
that by pressing the left mouse button, differ'ent expressions are
underlined. Underline BIGGER as in Figure 11.5. Release the left
mouse button.

To add an expression that doesn't appear in the edit window,
(i.e. it can't simply be underlined), just type it in. Doing this will
create an edit buffer below the DEdit window. For example,

type LARGER and hit cr. (Remember to cr, You won't be able to

do anything in the editor until you cr - this can fool you at first,
so beware.) A new window opens up at the bottom for the new
expression. (See Figure 11.6.)

LARGER now has the bold line underneath it, while BIGGER has
a dotted line.

EDITING AND SAV!NG

After

Before

Replace

Switch

Find

EDITING AND SAVING

USING THE LIST STRUCTURE EDITOR

(LA~1BDA (A B) (* 'dite':l: ":;:1·0eo;·00 17::;:~")
(If (GREATEF:P A B)

THEN (OUOTE (THE FIR8T 18 e,fGGER))
ELSE (QUOTE (TH'E ::;EGOND r8 eo fG-13-ERY:::":i)

ait Ouff@r

Figure 11-6. Edit Window with Edit Buffer

Delete
Replace I
S'·,vitch

.:. :/oiut I
Unclo
Find

S··,..· ... ;3.f)
Reprint

Edit
EClitCarn

8re",l,
E· ... ·:;I
E::::it

DEdit keeps track of items you have chosen by using a stack. The
underlines tell you the order of the items on the stack. The solid
underline indicates the item on the top of the stack; the dotted
underline indicates the second to the top. (BIGGER was pushed
on first. When LARGER was pushed on, BIGGER became the
second element in the "stack", and LARGER the first.)

Many commands operate with two items on the stack. Some of
them are listed below:

pops the stack, and adds this top item (in this example, LARGER)
to the edit window after the second item on the stack(in this
example, BIGGER). The item that was at the top of the stack,
LARGER, will now appear in both the original and the new
position.

pops the stack, and adds this top item (in this example, LARGER)
to the edit window before the second item on the stack. (See
Figure 11.7.)

Edit of function YOUR·FiRST·FUNCTION

(LAMBDA (A B -:. (* e·me':l: ":;:1 ·0.".;.00 , 7:3~"J
. (If (GREA TE'RP A B)

THEN (QUOTE (THE FIR:H 13 L.ARGER !HGGER))
ELSE (QUOTE (THE 8ECOND I::: B IGI3ER)))) .

ait buffer

LARGER

.:::'.fter·
8efot"e
C'elete

Repla.ce
S··.'··.'·itc~-'

.: ;. :.ut
Un,:Jo
Find

S·· ... · ... ;3.p
F:eprint

E.:Jit
EditCor·n

8re",l,
E'''' a!
E::·::it

Figure 11.7. The command Before IS chosen; the word LARGER appears
before the word B I GG E R

pops the stack, and substitutes this top item for the second item
on the stack.

changes the position of the first and second items on the stack in
the edit window.

pops the stack, and searches this top expression for an occurance
of the second item on the stack. If the item is found, it is
underlined with a solid line, that is, pushed on the stack. To find
the next occurance, simply choose "Find" again. If the
expression is not found, the prompt window will blink, and a

11 5

USING THE.LlST STRUCTURE EDITOR

Swap

Delete

Undo

11.3.1 Commenting Functions

11.6

message that the item was not found will appear. (See Figure
11.8 for an example of an item, the atom TH I RD, not appeari ng
in the function, YOUR-FIRST -FUNCTION .

. : : . : ; : ; : ; : ; :. : . : . : ; : ; : ; : . : . : . : . : ; : . : . : . : ; : ; : ; : ~ i: :: : :. :: .. : : : : . : • : : : : .. : : : :
Prom t Wit1(Jow

Cant: THIRD Not found I
I

I

Figure 11.8. The atom THIRD is not In the function being edited

.;.:.:.,.:;::.::;:::.:,'

,'-: '.',',' :<:;:>::;.;."
. '. . . , .'.','
;".',"

changes places, on the stack, of the fi rst and second items on the
stack. The edit window does not change, except that the
expression that had a solid underline now has a dotted
underline, and vice versa.

works on only the top item of the stack. Delete removes the
solid underlined expression from the edit window.

undoes the last editor command.

Completing the example begun earlier, here's how to have the
word LARGER that you typed into the edit buffer appear in place
of the BIGGER that you selected from the DEdit window: select
the SWITCH command. Notice that the two items are switched,
and the stack is popped. Now select EXIT and to leave the
editor, and your function will again be redefined.

Text can be marked as a comment by nesting it in a set of
parentheses with a star immediately after the left parenthesis.

(* This is the fon. of a comaent)

Inside an editor window, the comment will be printed in a
smaller font and may be moved to the far right of the code.
Sometimes, however, centered comments are more appropriate.
To center a comment, type"* *,. after the left parenthesis.

(* • This ca..ent will not be .aved to the far right of the
code, but will be centered)

It is also possible to insert linebreaks within a comment. A dash
should be placed in the comment wherever a carriage return is
needed. This feature allows several comments to be placed
inside one set of parentheses.

(* This comment will be typed onto two lines. -

EDITING AND SAVING

USING THE LIST STRUCTURE EDITOR

especially useful if you want to space your comments)

There are other editor commands which can be very useful. To
learn about them, read to the inter/isp-D Reference Manuai,
Volume 2, Section 16, on DEDIT.

11.4 File Functions and Variables - How to See Them and Save Them

11.5 File Variables

With Interlisp-D, all work is done inside the "Lisp Environment".
There is no "Operating System" or "Command Level" other than
the Interlisp-D Executive Window. All functions and data
structures are defined and edited using normal Interlisp-D
commands. This section describes tools in the Interlisp-D
environment that will keep track of any changes that you make
in the environment that you have not yet saved on files, such as
defining new functions, changing the values of variables, or
adding new variables. And it then has you save the changes in a
file you specify.

Certain system-defined global variables are used by the file
package to keep track of the environment as it stands. You can
get system information by checking the values of these variables.
Two important variables follow.

• FILELST evaluates to a list, all files that you have loaded into
the Interisp-D environment.

= filenameCOMS (Each file loaded into the Lisp environment has
associated with it a global variable, whose name is formed by
appending "COMS" to the end of the filename.) This variable
evaluates to a list of all the functions, variables, bitmaps,
windows, and so on, that are stored on that particular file.

For example, if you type:

MYFIlECOMS

the system will respond with something like:

«FNS YOUR-fIRST-FUNCTION
(VARS))

11.6 Saving Interlisp-D on Files

EDITING AND SAVING

The functions (FILES?) and (MAKEFILE 'filename) are
useful when it is time to save function, variables, windows,
bitmaps, records and whatever else to files.

11 7

SAVING INTERLlSP-D ON FILES

(fILES?) displays a list of variables that have values and are not already a
part of any file, and then the functions that are not already part
of any file.

Type:

(FILES?)

the system will respond with something like:

the variables: MY.VARIABlE CURRENT.TURTlE ... to be dumped.
the functions: RIGHT lEFT FORWARD BACKWARD ClEAR-SCREEN ... to
be dUliped.
want to say where the above go?

If you type V, the system will prompt with each item. There are
three options:

(1) To save the item, type the filename (unquoted) of the file where
the item should be placed. (This can be a brand new file or an
existing file.)

(2) To skip the item, without removing it from consideration the

next time (fILES?) is called, type cr. This will allow you to
postpone the decision about where to save the item.

(3) If the item should not be saved at all, type]. Nowhe re will
appear after the item.

Part of an example interaction is shown in the following figure:

Interl!sp-D Executive Win(]Qw

NIL
:::l~(FILES'7)
the 'y'.3r i at) 1 es: W'" -"lAR ... t.o ~)e eJul'I1peej.
the functions: MY-8ECONO-FUNCTfON,

YOUR-FIRST-FUNCTION
... to be .Jumped.
~ant.to say where the above go ? Yes
1.··.··.3rlables,J
r~Y-'y'AR Not,.Jhere
(functions)
MY-SECONO-FUNGTION File name: EXAMPL~

Figure 11.9_ Part of an interaction using the function fILES?

(fILES?) assembles the items by adding them to the
appropriate file's COMS variable. (See Section 11.5, Page 11.7.)
(fILES?) does NOT write the file to secondary storage (disks or
floppies). It only updates the global variables discussed in
Section 11.5.

(MAKEflLE 'filename) actually writes the file to secondary storage. Files should only be
writen when the time is set. If the time is not set, you will run
into problems, such as not being able to copy your file. To check
the time, type

11.8

(DATE)

If the date is correct, you can safely use MAKEFILE. If it is not
correct, set the time with the function SETTIME. To use it, type
I SETTTME nata) \A.hera n::::.ta ic ::::. c+rinn cllrh as +he ",n.o ch"' 'n
\ • iIIj", -... , ••• , t" ltwIu _J, ~ ~1frt.o''''.1 - VI."- •. »I'V •• '

in Figure 11.10.

EDITING AND SAVING

EDITING AND SAVING

SAVING INTERlISP-D ON FILES

Il'1tet'li:sp-D Executive Window

NIL
97.:-(8ETTIME "10-.Jul-i36 15: 0i3: 22!!)
II 10-.JtJ l-i36 15: ~1i3 : 22 EDT II

Figun: 11.10. Using the SETT IME function to set the date and time

Once the time is set correctly, use the function MAKEFILE. Type:

(MAKEFIlE 'MY.FIlE.NAME)

and the system will create the file. The function returns the full
name of the file created. (i.e. {DSK}MY.FILE.NAME.; 1).

Note: Files written to {DSK} are permanent files. They can be
removed only by the user deleting them or by reformatting the
disk.

Other file manipulation functions can be found in Section 8.6,
Page 8.3.

119

SAVING INTERlISP-D ON FILES

[This page intentionally left blank]

11.10 EDITING AND SAVING

YOUR IN IT FILE

12. YOUR INIT FILE

Interlisp-D has a number of global variables that control the
environment of your 1108 or 1186. Global variables make it easy
to customize the environment to fit your needs. One way to do
this is to develop an :t INIT" file. This is a file that is loaded when
you log on to your machine. You can use it to set variables, load
files, define functions, and any other things that you want to do
to make the Interlisp-D environment suit you.

Your Init file (ould be called INIT, INIT.L1SP, INIT.USER, or
whatever the convention is at your site. There is no default name
preferred by the system, it just looks for the files listed in the
variable USERGREETFIlES, (see below). Check to see what the
preference is at your site. Put this file in your directory. Your
directory name should be the same as your login name.

The INIT file is loaded by the function GREET. GREET is normally
run when Interlisp-D is started. If this is not the case at your site,
or you want to use the machine and Ir:"lterlisp-D has already been
started, you can run the function GREET yourself. If your user
name was, for example, TURING, then you would type:

(GREET 'TURING)

This does a number of things, inciuding undoing any previous
. greeting operation, loading the site init file, and loading your

init file. Where GREET looks for your INIT file de-pends on the
value of the variable USERGREETFIlES. The value of this
variable is set when the system's SYSOUT file is made, so check its
value at your site! For example. its value could be:

Interlisp -0 Executive Window .
NIL
:3"USERI3REETF I LES
«{OSK}<LISPFILES) USER)INIT.LISP)

({OSK}<LISPFILES)INIT.LISP)
({FLOPPV}INIT.LISP)
(~OSK}<LisPFILES) ~SER)[NIT.USER)
(~OSKt<LISPFILES)INIT.USER)
(~FLO~PV}INIT.USER) .
(~OSK}(LiSPFILE8~ ~SER)INIT)
(~OSKt(LISPFILf8~[NIT)
({FLO~PV}INIT») .

4 ...

Figure 12.1. A possible value of USERGREETFIlES.

In each place you see, "> USER >", the argument passed to
GREET is substituted into the path. This is your login name if you
are just starting Interlisp-D. For example, the first value in the list
would have the system check to see whether there was a file,
{DSK}<USPFILES>TURING>INIT.LlSP. No error is generated if
you do not have an INIT file, and none of the files in
USERGREETF ILES are found.

12 1

MAKING AN INIT FILE

12" 1 Making an Init File

12.2

As described in Section 11.5, Page 11.7, each Interlisp-D program
file has a global variable associated with it, whose name is
formed by appending "COMS" to the end of the root filename.
For any of the standard INIT file names, the variable INITCOMS is
used. To set up an init file, begin by editing this variable. First,
type:

(SETQ INITCOMS '«VARS»)

Now, to edit the variable, type:

(DV INITCOMS)

A DEdit window will appear. This DEdit window is the same as
the one called with the function OF, and described in Section
11.3, Page 11.4. This chapter will assume that you know how to
use the structure editor, DEdit.

The COMS variable is a list of lists. The first atom in each internal
I.ist specifies for the file package what types of items are in the
list, and what it is to do with them. This section will deal with
three types of lists: VARS, FILES, and P. Please read about others
in the Interlisp-D Reference Manual, Volume II, Chapter 17.

The list that begins with "VARS" allows you to set the values of
variables. For example, one global variable is called DEditLinger.
Its default value is T, and means that the DEdit window won't
close after you exit DEdit. If it is set to NIL, then the DEdit
window will be closed when you exit DEdit. To set it to NIL in
your INIT file, edit the VARS list so that it looks like this:

DEdit of variable INITCOMS EditOps
«VARS lOEditLinger NIL))) After

E:efore
Delete

Replace
:3"Nitch

()
(lout
Undo
Fincl

S'·/vap
~------------...II Reprint

Eclit
EditCorn

8r'e.:;,k
EV8.1
E::dt

Figure 12.2. Setting the variable DEdi tl i nge r In INITCOMS.

Notice that inside the vars list, there is yet another list. The first
item in the list is the name of the variable. It is bound to the
value of the second item. There are many other variables that
you can set by adding them to the VARS list. Some of these
variables are described in Chapter 43, and many others can be
found in the Interlisp-D Reference Manual.

If you want to automatically load files, that can be done in your
init file also. For'example, if you always want to load the Library
file SPY.DeOM, you car. load it by editing the INITCOMS variable
to list the appropriate file in the list starting with FILES:

YOUR INIT FilE

YOUR INIT FILE

(VARS (OEditLlnger NIL)
£ FILES ::;:PYL)

Ilu.l,m
.L!..fter

Before
Delete I

R.-:-p.I.'lce
·:;;··i\o·I1:Ct-, I

()
(.:' out
Unc~o
Find

:3·· ... ·.··01p
..... --------------1 Reprint

Edit
EclitCom

Sre'lk
EV'3.1
E::<it

Figure 12.3. INITCOMS (hanged to load the file SPY.DCOM

MAKING AN INIT FILE

Other files can also be added by simply adding their names to
this FilES jist.

Another list that can appear in a CaMS list begins with "P". This
list contains Interlisp-D expression.s that are evaluated when the
file is loaded. Do not put DEFINEQ expressions in this list.
Define the function in the environment, and then save it on the
file in the usual way (see Section 11.6, Page 11.7).

One type of expression you might want to see here, however, is a
FONTCREATE function (see Section 31.2, Page 31.2). For
example, of you want to use a HelvetiCa 12 BOLD font, and there
is not a fontdescriptor for it normally in your environment, the
appropriate call to FONTCREATE should be in the "P" list. The
INITCOMS would look like this:

DEdit of variable .INITeOMS EditOps
(VARS (OEditLinqer NIL)) After
. (: F I L E:3 . :3 P Y) - . . 8 efo re

i.E (FONTCREATE i QUOTE Delete
HEL"lET I CA Repla.ce·
1 S··,'vitct1

12 ()
(QUOTE BOLQ)"))) () out

Unclo
Find

:::;··/·/01p ---------------11 F:eprint
Edit

EclitCorn
SteaJ::
EV;:o1
E::<it

Figure 12.4. I~~ITCOMS edited to include a call to FONTCREATE. The form will
be evaluated when thelNIT file IS loaded.

To quit, exit from DEdit in the usual way. When you run the
Junction MAKEFILES (See Section 11.6, Page 11.7.), be sure that
you are connected to the directory (see Section 8.7, Page 8.4)
where the INIT file should appear. Now when GREET is run, your
init file will be loaded.

12 3

MAKING AN INIT FILE

[This page intentionally left blank]

12.4 YOUR INIT f:lLE

13.1 (LISP

FLEXIBILITY AN:) FORGIVENESS. CLISP AND DWIM

13. FLEXIBILITY AND FORGIVENESS:
CLISPAND DWIM

CLlSP, (Conversational Lisp), and DWIM, (Do What I Mean), are
two Interlisp utilities that make life easier.

CLiSP allows the machine to understand and execute commands
given in a non-standard way. For example, Figure 13.1 contains
an example expression (4 + 5).

InterllSp,o Executive wlnaow
NIL
B4,,-(4 + 5)
~3

:35"-A

Figure 13.1. CLiSP allows the use of infix notation

Without CLlSP, you would need to type this using the notation
(PLUS 4 5). CLISP allows you to use expressions such as (4 +
5) for all arithmetic expressions.

CLiSP also allows you to use more readable forms instead of
standard Lisp control structures. Expressions like IF-THEN-ELSE
statements can replace COND statements. For example, instead
of:

{COND ({GREATERP A 8) (PLUS A 10»
{ T (PLUS 8 10»)

the following can be used:

{if (A) 8) then (A + 10) else (8 + 10»

The system translates this CLiSP code into Interlisp-D code.
Setting flags will allow you to either save the CLiSP code, or save
the translation. One such flag is ClISPIFTRANFlG; if it is set to
NIL, all the IF statements will be replaced with the equivilent
COND statements. This means that when you DEdit the function,
the IF will be removed and replaced with the CONDo Typically,
flags such as this one are set in your INIT file. These flags are
discussed in the Interlisp-D Reference Manual in Volume 2,
Section 21.

i 3 1

DWIM

13.2

DWIM tries to match unrecognized variable and function names
to known ones. This allows Lisp to interpret minor typing errors
or misspellings in a function, without causing a break. Line 87 of
Figure 13.2 illustrates how the misspelled BANNANNA was
replaced by BANANA before the expression was evaluated.

Intertlsp.-O Executive WII100W

NIL
87~(SETQ BANANA 'FRUIT)
FF:U IT
aa.;.e,A~jNANNA

=f,ANANA
FRUIT
;:;~3';'A

Figure 13.2. Examples of CLiSP and DWIM features

Sometimes DWIM may alter an expression you didn't want it to.
This may occur if, for example,a hyphenated function name (eg.
(MY-FUNCTION» is misused. If the system doesn't recognize it,
it may think you are trying to subtract II FUNCTION II from II MY".
DWIM also takes the liberty of updating the function, so it will
have to be fixed. However, this is as much a blessing as a curse,
since it points out the misused expression!

FLEXIBILITY AND FORGIVENESS: CLiSP AND DWIM

A4 A I • I Break't,tifidows

14.2· Break Package Example

BREAK PACKAGE

14. BREAK PACKAGE

The Break Package is a part of Interlisp that makes debugging
your programs much easier.

A break is a function either called by the programmer or by the
system when an error has occurred. A separate window opens
for each break. This window works much like the Interlisp-D
Executive Window, except for extra menus unique to a break
window. Inside a break window, you can examine variables,
look at the call stack at the time of the break, or call the editor.
Each successive break opens a new window, where you can
execute functions without disturbing the original system stack.
These windows disappear when you resolve the break and return
to a higher level.

This example illustrates the basic break package functions. A
more complete explanation of the breaki ng functions; and the
break package will follow.

The correct definition of FACTORIAL is:

(DEFINEQ (FACTORIAL (X)
(if (ZEROP X) then 1

else (ITINES X (FACTORIAL (SUBt X]

To demonstrate the break package, we have edited in an error:
DUMMY in the IF statement is an unbound atom, it lacks a value.

(DEFINEQ (FACTORIAL (X)
(if (ZEROP X) then DUMMY

else (ITINES X (FACTORIAL (SUB! X]

The evaluated function

(FACTORIAL 4)

should return 24, but the above function has an error. DUMMY
is an unbound atom, an atom without an assigned value, so Lisp
will "break". A break window appears (Fjgure 14.1), that has all
the functionality of the typing Interlisp-D expressions into the
Interlisp-D executive window (The top level), in addition to the
break menu functions~ Each consecutive break will move to
another level "down" .

14 i

BREAK PACKAGE EXAMPLE

5E ACTORIAL Fra.me
FACTORIAL

5 .. ;x; 0

DUMMY· UNBOUND ATOM Ore8.K: 1

~ 51~(PP FACTORIAL)

: (FACTORIAL
: [L~~,e[~::.: :") **Gor~MEtH"'*

'.If I ... ERUP :-::)
. then OUMW{

: else (!TU,eS :-: (FACTORIAL (SUBl :-::])
!: (F ACT (I RIP, L)
!~ 5 2 ~ (F ACT Jj R I A L 4,)

t:
:;:::;:;: .:.:.'.'.;.:,:

1111111 f~::::~ ~:::::: OR I AL} in;! ZEW " ["",'~'I! [lil[111

:I:!:~!::i:::!~:::~:::::;::::::i:~:::': ::;:'~::;;::i~:: ::!ii;:::::i:i:i,::: i: :!;:' ,'.':".' •• U.· · ., .• ",.'.:::.,··::.:::l. i: l:·:;::. l:::. ;:::'.: i:l:'::!.; •• i

UMMY· UN60UND ATOM Orea.l<.; 1 ... ,. " '.

Figure 1401. Break Window

Move the mouse cursor into the break window and hold down
the middle mouse button. The Break Menu will appear. Choose
8T. Another menu, called the stack menu, will appear beside the
break window. Choosing stack items from this menu wi" display
another window. This window displays the function's local
variable bindings, or values. (See Figure 14.2) This new window,
titled FACTORIAL Frame, is an inspector window. (See Inspector
Chapter 32).

in ((ZEROP X) DUMMY)

EF:RORSET
BRE,LIIo::.1
CONO
F'~:trjR:IAI.:.:
(;ljNO···· ..

broken)

14.2

Fp[.ffiRIPL
COHO
F,YCrORIPL
COHO
FpfrORIPL
CI)H[I

Figure 14.2. Back Trace of the System Stack

From the break window, you can call the editor for the function
FACTORIAL by typing

(OF FACTORIAL)

Underline X. Choose EVAl from the editor menu. The value of
X at the time of the break will appear in the edit buffer below
the editor window. Any list or atom can be evaluated in this way
(See Figure 14.3.)

BREAK PACKAGE

BREAK PACKAGE EXAMPLE

nmJ!:IZZ.Emca5EI!J(L~~1e,[:~ (>~) (:1< ;e')lte,): ":31·Coe(:·OO 17':14")
1,If I, .:::.ERuP ::.,1

.i:..fter
Before
Delete

Repl;'3.ce
SV'litch

. UNBOUND ATOr.l
DUMMY {in FACTORIAL

(DU~'M'y' broken)
59: (OF FACTORIAL)

then DUMMY
e~e (ITIMES X (FACTORIAL (SUBl X»)))

Edit buffer

()
(;. out
IJn,jo
Fincl

:3·· ... ·lap
Reprint

Edit

Figure 14.3. Editing from the Break Window

Replace the unbound atom DUMMY with 1. Exit the editor with
the EXIT command on the editor menu.

The function is fixed, and you can restart it from the last call on
the stack (It does not have to be started agai n from the Top
Level) To begin again from the last call on the stack, choose the
last (top) FACTORIAL call in the 8T menu. Select REVERT from
the middle button break window, or type it into the window.
TIhe break window will close, and a new one will appear with
the message: FACTORIAL broken;

To start execution with this last call to FACTORIAL, choose OK
from the middle button break menu. The break window will
disappear, and the correct answer, 24/ will be returned to the top
level.

14.3 Ways to Stop Execution from the Keyboard, called" Breaking Lisp II

Control-G

Control-B

BREAK PACKAGE

There are ways you can stop execution from the keyboard. They
differ in terms of how much of the current operating state is
saved:

provides you with a menu of processes to Interrupt. Your process
will usually be "EXEC". Choose it to break your process. A break
window will then appear.

causes your function to break, saves the stack, then displays a
break window with all the usual break functions.

For information on other interrupt characters, see the Interlisp
Reference Manual, volume III, page 30.1.

143

PROGRAMMING BREAKS AND DEBUGGING CODE

14.4 Programming Breaks and Debugging Code

(BREAK functionname)

Setting a break in the editor

14.5 Break Menu

BT

14.4

Programming breaks are put into code to cause a break when
that section of code is executed. This is very useful for
debugging code. There are 2 basic ways to set programming
breaks:

This function call made at the top level will cause a break at the
start of the execution of "functionname". This is helpful in
checking the values of parameters given to the function.

Take the function that you want to break into the editor.
Underline the expression that should break before it is
evaluated. Choose BREAK on the editor command menu. Exit
the editor. The function will break at this spot when it is
executed.

Once the function is broken, an effective way to use the break
window for debugging is to put it into the editor window. (See
Section 14.2, Page 14.2.) All the local bindings still exist, so you
can use the editor's EVAL command to evaluate lists, variables,
and expressions individually. Just underline the item in the usual
way (move the mouse to the word or parenthesis and press the
left mouse button), then choose EVAl from the command menu.
(See Section 14.2 for more detail.)

Both kinds of programmed breaks can be undone using the
(UNBREAK) function. Type

(UN8REAK functionna.e)

Calling (UNBREAK) without specifying a function name will
unbreak all broken functions.

Move the mouse cursor into the break window. Hold the middle
button down, and a new menu will pop up, like the one in Figure
14.4.

!EV,t.,L
EV',6,L
EDIT
revert
t

()!o<.

8T
8T!
.? =
Figure 14.4. The middle button menu in the Break Window

Five of the selections are particularly important when just
starting to use Interlisp-D:

Back Trace displays the stack in a menu beside the break
window. Back Trace is a very powerful debugging tool. Each
function call is placed on the stack and removed when the
execution of that function is complete. Choosing an item on the
stack will open another window displaying that item's local

BREAK PACKAGE

BREAK MENU

variables and their bindings. This is an inspector window that
offers all the power of the inspector. (For details, see the section
on the Inspector, Chapter 32).

?::: Before you use this menu option, display the stack by choosi ng
BT from this menu, and choose a function from it. Now, choose

i

REVERT

1;. !t '-A.til! display the current values of the arguments to the
function that has been chosen from the stack.

Move back to the previous break window, or if there is no other
break window, back to the top level, the Interlisp~D Executive
Window.

Move the point of execution back to a specified function call
before the error. The function to revert back to is, by defauit,
the last function call before the break. It, however, a different
function cal! is chosen on the HT menu, revert ,,'vi!! go back to the
start of this function and open a new break window. The items
on the stack above the new starting pla(e will no longer exist.
This is used in the tutorial example. (See Section 14.2, Page 14.1.)

OK Continue execution from the point of the break. This is useful if
you have a simple error, i.e. an unbound variable or a
nonnumeric argument to an arithmetic function. Reset the
variable in the break window, then select OK. (See Section 14.2.)

(Note: In addition to being available on the middle button menu
of the break window, all of these functions can be typed directly
into the window. Only BT behaves differently when typed. It
types the stack into the trace window instead of opening a new
window.)

14.6 Returning to Top Level

BREAK PACKAGE

Typing Control-D will immediately take you to the top level from
any break. window. The functions called before the break will
stop, but any side effects of the function that occurred before
the break remain. For example, if a function set a global variable
before it broke, the variable will still be set after typing
Control-D.

145

RETURNING TO TOP LEVEL

[This page intentionally left blank]

14.6 BREAK PACKAGE

15.1 HelpSys

15.2 Olnfo

ON-LINE HELP WITH INTERLlSP-D: HELPSYS AND DINFO

15. ON-LINE HELP WITH
INTERLISP-D: HELPSYS AND DINFO

HELPSYS and DINFO access the on-line Interlisp-D Reference
Manual for answers to your questions. The Interlisp-D Reference
Manual must be on the hard disk ({DSK}) or on a file server. The
manual is contained in the files Chap*.IRM. In addition, the file
IRM.HASHFILE is required. They can all be found on the Library
floppies, and shouid be stored together in a singie directory.

Set the value of the variable IRM.HOST&DIR to this directory.
Load the file HELPSYS.DCOM (type (FILESLOAO
HELPSYS.DCOM» to run Helpsys, and DINFO.DCOM (type
(FILESLOAO OINFO.OCOM) to run Dlnfo.

Helpsys gives ?C r a meaning. When you type it before finishing
the function call (i.e., before you type the arguments to the
function, or before typing the closing right parenthesis), the
manual entry for that function will be displayed.

Another way to see the manual entry for a function is to type
HELP <keyword).

If you do not know the name of a function, you can use the
function IRM. SMART • LOOKUP to see manual entries. Type

(IRM.SMART . LOOKUP keyword)

The character * can be used as a wildcard. For example, type:

(IRM.SMART.LOOKUP 'PRIN-)

to see the manual entries for the functions that begi n with the
letters "PRIN".

Dlnfo supplies the same information as HELPSYS, but in a
different form. It represents the Interlisp-D Reference Manual as
a tree structure. Dlnfo will appear on the background menu.
Choose it to use the package.

A menu will appear (see Figure 15.1) that has the items Graph!,
Node:, Top!, Parent!, Previous!, Next!, display:, Lookup!, and

15 1

DINFO

IF:~'ll Top

15.2

Find!. The selections on this menu allow you to traverse the
Dlnfo graph.

Graph! I RM
Node: Saving Virtual Memory State
Top! IRr.1 Top
Parent! Miscellaneious
Previous! Idle Mode
Next! Date and Time Functions
D i sp 1 a~.,1 : Graph .enu mEl! History
Lookup! *8"1"8*
Find! FILE

Figure 15.1. A Segment ofthe DINFO Menu

The help text appears in a window below the menu, as in Figure
15.2.

Il1fO

17, FILE P,~O<.,A,GE

\,·,larning: Tile :5ub:~: ... stem ', .. vithin the Interli::.p·D environrnent
ue~d for m;a.nagi.ng collection:3 of (lefi~-,itj.:'rr~ (of function:~,
varl~~blee, e::c.;. 13 k:aO"lvn a:3 the "File P:3:c~<:a~e." Ttw:;
termlnohJ!;JY 1:3 cOnftBlng, t,ecau:3e the 'y"lord "fIle" IS .::;.150 u:::eej
in the more c'Jn'o,le~tion:3.1 ::.~nee ae meaning a '?O,lIection of C~'3.t.).
stored some pt-I~"':5Ical mecll;.)., Unfortun;.::tteJy, It I::; not po:::sltde
to ch.).nge tt-.i:3 terminolo~ty at this time, becatJ:3e rn".ny
function::: ;.1nci '· ... at·i.3.t:des ,~r....'1.AJ(EFILE, FILEPI-(,:3T'-{PE:3, etc.)
incorp'Jra.te the ',,·vorc~ "file" in their name::;. Eventw3.IIV. tt-.e
system ;a.nel the clocument;.:;.tion v'lill tIe rev.::;.rnpeci to-,
consista.ntly u:~e the term "t"rj'Jclule" or "clefinition ~H'OUP II or
"c!efgroup. "

Mo:::t implernent;).tion::: of Li:::p tre;;r.t :::ymtll:,lk file::: ;;r.:::

Figure 15.2. Part of the text associated with the File Package Dlnfo node.

The graph itself also appears in a separate window, as shown in
Figure 15.3.

Figure 15.3. A Portion of the Dlnfo Graph.

You can select what part of the manual to display by buttoning a
nnrlo in tho ,.,r:3nh ""n,.j t't"rnllin,.. thrt"\1,,..h th.o +.0,,+ +h ... +: .. ,..1: 1,,"',..1
•• y"" II '!:tIl"""..," ""'J"-.v ~ ".iIVU~11 "II~ ",'4;;;A" "'.IUIL. • .;»ul.;JfJo.yeu

ON-LINE HELP WITH INTERLlSP-D: HELPSYS AND DINFO

Graph!

Node:

Top!

Parent!

Previous!

Next!

Display!

•

•

•

•

DINFO

for the topic that was just buttoned, or by using the menu. The
meaning of the commands in the menu is as follows:

the only Graph! available is iRM (Intei-lisp-D Reference Manuai;)

the node currently being visited;

The IRM Top;

the current node's parent;

is the node visited prior to the current node;

the node below this one in the graph

Choosing either Parent!, Previous!, Next! or Top! will visit that
node.

The display command determines how the information will be
presented. The items to the right of display: are Graph: Menu;
Text, and History.

Graph will display a graph local to the current node, and if one
of the nodes of the graph are chosen, that node will be visited.

Menu shows a menu of the subnodes of the current node. If one
of these items are selected, that node will be visited.

Text displays the text of the current node. If you are searching
for a particular node, do not turn this feature on during the
search. It will slow down your progress through the tree. Turn it
on when you have found the node you are looking for.

Histroy records and displays a history of the nodes visited.
Revisiting a node is done by chosing one of the items in this
menu

Lookup! has Dlnfo look up a term in the index of the IRM, and display the
node that contains it.·

Find! will try to find a term in the Inter/isp-D Reference Manuai entry
for the current node

ON-LINE HELP WITH INTERLlSP-D: HELPSYS AND DINFO 15 3

DINFO

[This page intentionally left blank]

154 ON-LINE HELP WITH INTERLlSP-D: HELPSYS AND DINFO

14:. 1
I v .. SII\I="- FI ___ y O=sks

u ~ III~ IVt't' I

16. FLOPPY DISKS

The 1108 uses double density, double sided, unformatted, 8 inch
floppy disks.

The 1186 uses double density, double sided, unformatted,S 1/4
inch floppy disks.

16.2 Basic Floppy Disk Information

FLOPPY DISKS

• The terms "floppy disk", "diskette", and "floppy" are
synonymous.

• The black plastic square is called the jacket. It permanently
protects the disk inside from oils, scratches and dust. (See Figure
16.1 and Figure 16.2)

The Floppy Label

Figure 16.1. A 5 1/41nch Floppy

~--Jacket

See Disk
Here

Bottom Notches

16 1

BASIC FLOPPY DISK INFORMATION

16.3 Care of Floppies

The Floppy Label

Jacket

See Disk
Here

Bottom Notches

Figure 16.2. An 81nch Floppy

• Information is magnetically stored on the inner portion
protected by the jacket. You can see a bit of the disk through the
ring in the middle.

• The paper cover that comes with a floppy disk is called the sleeve.

• When you look at a floppy, the side with the label is the front,
and the edge with the notches the bottom. (On a 5 1/4 inch
floppy disk, the bottom is the side with 2 small notches; the right
side has one large notch.)

Here are some suggestions for how to take care of floppy disks:

• Floppies are very delicate and will become useless if bent, folded,
scratched, left sitting in the sun er on your floppy drive, or if
thi ngs are stacked on them.

• Avoid touching anything but the jacket of the floppy, and be
sensitive even at that.

• Keep the floppy in its sleeve when not in use.

• Store the floppy in an upright position, preferably in a rigid box
with a lid.

• When labeling floppies, use a felt pen, and press VERY SOFTL Y,
or write on the floppy label first, then attach it to the floppy.

• Never take a floppy out of the floppy drive when the drive's red
light is on.

16.2 FLOPPY DISKS

WRITE ENABLING AND WRITE PROTECTING FLOPPIES

16.4 Write Enabling and Write Protecting Floppies

16.4.1 Write Enabling an 1108's Floppy Disk

You can choose to allow the 1108 to write new information to,
or alter stored information on, the floppy; or you can choose to
protect the floppy's stored information.

The 1108 floppies have three notches on the bottom. When the
right notch is UNcovered, the floppy is WRITE PROTECTED, and
the 1108 cannot write to the floppy. If this notch is covered, the
fioppy is WRITE ENABLED, and the 1108 can write to the floppy.
(Note that the 1186 and the 1108 are opposite!)

To Write Enable a Floppy Cover the rightmost notch on the bottom of the disk with half of
a write-enable adhesive tab. Fold the tab around to cover the
back of the notch with the other haif of the tab.

To Write Protect a Floppy Disk Remove the write enable adhesive tab carefully from the disk. If
there is not a tab over the rightmost notch of the floppy, the
floppy is already write-protected.

'16.4.2 Write Protecting an 1186's Floppy Disk

You can choose to allow the 1186 to write new information to,
or alter stored information on, the floppy; or you can choose to
protect the floppy's stored information.

The 1186 floppies have a notch on the right. When the right
notch is UNcovered, the floppy is WRITE ENABLED, and the 1186
can write to the floppy. If this notch is covered, the floppy is
WRITE PROTECTED, and the 1186 cannot write to the floppy.
(Notice that the 1186 and the 1108 are opposite!)

To Write Enable a Floppy Disk Carefully remove the write protect adhesive tab from the disk. If
there is not a tab over the notch on the right side of the floppy, it
is already write enabled.

To Write Protect a Floppy Cover the notch on the right of the disk with half of a
write-enable adhesive tab. Fold the tab around to cover the
back of the notch with the other half of the tab.

16.5 Inserting Floppies into the Floppy Drive

FLOPPY DISKS

Open the floppy door and slide the floppy disk in - label side up,
the bottom in first. If it is a new floppy, you cannot read or write
to it until you format it. (Read the next section for formatting
instructions.)

163

FUNCTIONS FOR FLOPPY DISKS

16.6 Functions for Floppy Disks

16.6.1 Formatting Floppies

Before use, a new floppy must be formatted. Formatting a
floppy is also a quick way to erase all of its files. To format a
floppy, insert the floppy into the floppy drive and type:

(FLOPPY. FORMAT)

For a new floppy, this will take 2 to 5 minutes.

WARNING! When you format a floppy, you lose anything that
was on it previously. Reformat used floppies only if you want to
completely change everything on the floppy_ (Reformatting is a
quick way to recycle floppies.)

16.6.2 Available Space on a Floppy Disk

16.6.3 The Name of a Floppy Disk

16.4

You can check to see how much space is left of your floppy disk
with the function FLOPPY. FREE. PAGES.

Just type:

(FlOPPY.FREE.PAGES)

By checking to see how much space is left on your floppy, you
will know when it is filling up, and it is time to format another
one for the rest of your files.

Another way to keep track of your floppies is to give them
names. This can be done when you format the floppy, by giving
the name of the floppy as an argument to FLOPPY. FORMAT, or
by using the function FLOPPY. NAME. The syntax of
FLOPPY. NAME is

(FlOPPY.NAME nar.ne)

If FLOPPY. NAME is not given an argument, the current name of
the floppy is returned, as in the figure below:

Top level -- Gonnected to {DSK}<lISPFllE
NIL
40~(FLOPPY,NAME)
NEI,'IPR I tl1ERl
41~

Figure 16.3. If FLOPPY. NAME is not given an argument, the current name of
the floppy is returned.

FLOPPY DISKS

16.6.4 FlOPPY.MODE

FLOPPY DISKS

FUNCTIONS FOR FLOPPY DISKS

The function FLOPPY. MODE sets the way the system reads and
writes on a floppy. A floppy has one of four modes, either PILOT,
HUGEPiLOT, SYSOUT, or (PM. This primer wiii cover PILOT,
HUGEPILOT, and SYSOUT. For more information, see the
interiisp-D Reference Manuai, Voiume III, pages 24.24 to 24.26.

The usual mode of a floppy is PILOT. You do not need to run the
function FLOPPY. MODE before the function FLOPPY. FORMAT if
you want to format a floppy that should have the PILOT mode.

HUGEPILOT floppies hold a file (other than a SYSOUT file) that is
too large to fit on one floppy. If you have a file that is this large,
set the mode of the floppies to HUGEPILOT by typing:

(FlOPPY.MODE 'HUGEPllOT)

When an output file is created, you will be prompted to insert a
new floppy as needed. Each time you will be asked whether the
system can erase and format the new floppy. REMEMBER to
change the FLOPPY.MODE back to PILOT when you are done!

SYSOUT mode is used for storing SYSOUT files on multiple floppy
disks. It is set automatically when the function SYSOUT is called.
As with HUGEPILOT floppies, you will be asked to insert new
floppies as needed.

165

FUNCTIONS FOR FLOPPY DISKS

[This page intentionally left blank]

16.6 FLOPPY DISKS

17.1 Supplies

17.2 Preparation

17. DUPLICATING FLOPPY DISKS

Have on hand:

• Source Floppy Disk (original)

• Destination Floppy Disks (the ones you want to copy onto.)

• Labels (Copy the information from the source floppy label to
new labels. Don't attach them to the floppy disk yet.)

• Small blank white or metalic colored adhesive tabs to write
enable the 1108 floppy or write protect the 1186 floppy.)

17.2.1 Handling Floppy Disks

17.2.2 Setup
Source

Destination

DUPLICATING FLOPPY DISKS

If you have never used a floppy disk before, please read Section
16.3; Page 16.2 "Care of F!oppy Disks". When speak! ng of a
floppy disk, we call the edge with the notches the bottom, and
the side with the label the front.

For the 1108: remove the small tab on the bottom of the source
disk.

For the 1186, attach a small tab to the right side notch of the
source disk.

Now your original diskette cannot be erased or inadvertently
overwritten.

For the 1108: attach a write enable tab over the notch on the
bottom (See Section 16.4.1, Page 16.3, or Section 16.4.2, Dag~
16.3.) Be certain tthat the entire notch, both front and back, ;s
completely covered by the tab.

For the 1186: There must not be a tab covering the ~,ot(h.

Remove the tab if it is there.

17 l

PREPARATION

Labels

17 .. 3 Copying Floppy Disks
(1)

(2)

(3)

(4)

(5)

(6)

(7)

172

Now the destination diskettes can take information.

Duplicate the source floppy label for each destination copy you
intend to make. Include the date of the copy, and the word
"COPY", to indicate that it is a copy and not the original. Don't
attach them to the floppies until the copy is finished. This will
help to keep track of the ones that are finished and the ones 5til:
to be copied.

Follow the supplies and preparation information from Section
17.1 and Section 17.2, on Page 17.1.

Insert the source floppy into the floppy disk drive. Close the disk
drive door.

Type the function (FLOPPY. TO. FILE 'f i 1 ename) to read ali
the information from the floppy found in the floppy drive to the
hard disk.

Once this function has completed, insert the destination floppy
disk into the floppy drive, then close the door.

Type the function (FLOPPY.FROM.FILE 'filename) using
the same filename as before to write the information onto the
destination floppy found in the floppy disk drive.

The function FLOPPY. FROM. FILE formats the floppy, then
copies the information.

To make more than one copy of your original diskette, insert
another destination floppy into the floppy drive, close the door,
and call the function (FLOPPY.FROM.FILE 'filename).
(The source floppy does not need to be read onto the hard disk
for additional copies.)

DUPLICATING Fi_OPpy DISKS

18.1 Loading SYSOUT Files

18. SYSOUT FILES

A SYSOUT is a file of the whole Interlisp-D environment and
everything that you have defined or loaded into it. The file is
very large, and takes many floppies to store. When you load the
file, the exact environment at the point of the sysout is restored.
To make SYSOUT's of your own environment, see Section 18.2.

18.1.1 Loading a SYSOUT file on the 1108

Sysouts must be loaded from the Insta"ation Menu. This is the
menu that appears when you do a 2-BOOT with the Installation
Utility floppy disk in the drive. (refer to Section 3.1, Page 3.2 of
this primer.) Any sysout from floppy, new software releases, or
sysouts made by you must be loaded with the following
instructions.

(1) Do a 2-BOOT with the floppy labeled INSTALLATION UTILITY in
the floppy drive. (A 2-BOOT is done by pressi ng both the B RESET
and the AL T B buttons on the front panel and immediately
releasing the B RESET button. Release the AL T B button when
the panel reads 0002. Then wait about two minutes.)

(2) When the question Time offset from G reenwi ch?
appears, type -5 for Eastern Standard Time (subtract one for

each time zone westward), and cr.

(3) For the next three more questions, simply type cr.

(4) At this point, the machine will do one of two things. It will either
prompt you to enter the date and time, (See Figure 3.1 in Section
3.1.), or it will ask you if you want to change the time (to which

you.can just respond NO cr).

(5) When the Insta"ation Menu appears, choose Install
Interlisp-O on IISP Volume.

(6) Insert the floppy "SYSOUT #1 " into the drive and answer YES to
the ready question. (If you have the wrong floppy in the drive,
the machine will tell you - simply put in the correct one.)

(7) The processor will take a few minutes to read the floppy. Just
wait. When it is done, a high pitched tone will signal you to
insert "SYSOUT #2" into the floppy drive. When the red light is
out, insert "SYSOUT #2".

SYSOUT FILES 18 1

LOADING SYSOUT FILES

(8) Do the same for "SYSOUT #3".

(9) After "SYSOUT #3" is finished loading, you will be asked if there
are any more floppies to load. If you have another, insert

SYSOUT 114 into the drive and answer Y cr. When the last sysout

is loaded, answer Ncr.

(10) At this point you should be back at the Installation Menu. Do a
1~BOOT. This gives you the screen with the bouncing white
recotangle.

(11) Press the left button to start the I nsta 11l i sp Too 1.

(12) Click the left mouse button over Volume Size. You will get a
blinking black caret. Move the caret (by pressing the left mouse
button over it and holding it down) to the end of the number.
Press backspace to erase the num ber, then type 15100 in its
place.

(13) Now choose SetVMell with the left mouse button. Confirm with
the left button when you get the confirm mouse cursor. This
takes a minute or two. As long as the words SetVMell are black,
it is not finished.

(14) When DONE is printed on the screen, choose QUIT with the left
mouse button. Now go to Chapter 3 and choose one of the
methods for "Getting into LISP."

18.1.2 Loading a SYSOUT file on the 1186

182

Any sysout from floppy, new software releases, or sysouts made
by you must be loaded with the following instructions.

(1) Insert the Installation Utility floppy disk in the drive.

(2) Press the B Reset button on the front of the processor.

(3) When the Boot Icons appear at the bottom of the screen, press
the F2 key, to choose the icon with a picture of the floppy on it.

(4) When the question Tille offset frail G reenwi ch?
appears, type -5 for Eastern Standard Time (subtract one for

each time zone westward), and cr.

(5) For the next three more questions, simply press cr after each
prompt.

(6) At this point, the machine will do one of two things. It will either
prompt you to enter the date and time, (See Figure 3.3 in Section
3.2, Page 3.3.), or it will ask you if you want to change the time

(7)

(8)

(9)

(10)

(to which you can just respond NO cr).

When the next menu appears, choose 1 Inter1 isp-O.

When the next menu appears, type 3 "System Utilities
(Installation etc.)"

When the system prompts you to insert the "Installation Files"

floppy, do so and press cr.

At this next menu, choose item 1 "Lisp Installation".

$YSOUT i=iLES

LOADING SYSOUT FILES

(11) Next, type 12 "Installinterlisp-D on Lisp Volume"

(12) Insert the floppy SYSOUT #1 into the drive and answer YES to
the ready question. (If you have the wrong floppy in the drive,
the machine will tell you = simply put in the correct one.)

(13) The processor will take a few minutes to read the floppy. Just
wait. When it is done, you will be prompted to insert SYSOUT #2
into the floppy drive. Before opening the floppy drive door, wait
until the red light on the floppy door goes out. When the red
light is out, insert SYSOUT #2.

(14) Do the same for SYSOUT #3.

(15) After SYSOUT #3 is finished loading, you will be asked if there
are any more floppies to load. If you have another, insert

SYSOUT #4 into the drive and answer y cr. 'vVhen the last sysout

is loaded, answer Ncr.

(16) This process will take approximately 30 minutes

(17) After the floppies have been loaded, type 16 "Copy from Lisp
Volume to Lisp2 Volume" to save a back up copy of the sysout.

(18) Type 13 "Expand Lisp Vmem" before you boot the sysout.

(19) Type 17 "Boot from Lisp volume" to boot the volume

(20) The icons should reappear at the bottom of the screen. Press the
F1 key to choose the icon with the picture of the computer on it.
This will boot Interlisp-D, and the Interlisp-D windows will
appear on you r screen.

18.2 Making Your Own SYSOUT File

SYSOUT FILES

(1) For the 1108: have about 5 floppy disks avai!able to store your
SYSOUT file.

(2)

(3)

(4)

(5)

(6)

For the 1186: have about 10 floppy disks available to to store
your SYSOUT file.

The exact number you will need depends on how much you have
loaded or defined in the Lisp environment.

Make sure the floppy disks are write enabled (See Section 16.4.1,
Page 16.3, or Section 16.4.2, Page 16.3).

The floppy disks do not need to be formatted.

Type(SYSOUT '{FLOPPY})

The machine will prompt you by ringing bells and typing the
message Insert the next floppy disk in the Interlisp-D
Executive Window at the appropriate times.

The machine will type NIL then the number prompt followed by
a left pointing arrow when the entire SYSOUT has been written
onto your floppies.

18 3

MAKING YOUR OWN YOUT FILE

(7)

184

Storing your SYSOUT file was only an interruption, like going to
answer the phone, and you may continue to work where you left
off.

SYSOUT r:!LES

19. USING THE EPSON FX80 PRINTER

The FX80 printer is only connected to the machine you are using.
You cannot access this printer from any other machine that may
be in the room. The software to use with the pri nter comes from
Xerox, and can be found on the file named FXPRINTER.DCOM.
This file should be loaded into Lisp. To do this; type
(FIlESLOAO FXPRINTER).

19.1 Initializing the RS232 Port
Initialize the RS232port by typing into the Interlisp-D Executive
Window:

(RSl32C.INIT 9600 8 NIL I)

The printer is now ready to receive information from your lisp
machine.

19.2 Power up the Printer
(1) Insert the paper so that you just see the perforated edge by the

metal bar with numbers. This sets the top of the page in the
correct position.

(2) Turn the printer on. (There is probably a rocker switch on the left
side of the machine)

(3) A light labeled "ON LINE" should be lit on your printer panel. If
this light is not on, push the "ON LINE" switch, and it should turn
on.

(4) To use the Form Feed, push "ON LINE" so that the "ON LINE"
light will go out, then push form feed. Remember to push "ON
LINE" again (to turn the "ON LINE" light back on) after the form
feed.

19.3 To Align Top of Page
(1) Push the "ON LINE" button, to turn the "ON LINE" light out.

USING THE EPSON FX80 PRI.NTER 19.1

TO ALIGN TOP OF PAGE

(2) Turn the knob on the right side of the printer so that the dividing
line between the sheets of paper is just visible at the silver bar on
the paper feed.

(3) Push the "ON LINE" button again to turn the green lights back
on.

19 .. 4 Functions To Print Files and Bitmaps

19.4.1 RS232.Print

19.4.2 FX80STREAM

One function to print files, bitmaps, and windows is
RS232. PRINT. Here are some examples of its use:

• (RS232 0 PRINT filename) to print an entire file. The file does
not have to be loaded; printing directly from a floppy works
well.

• (RS232. PRINT bitmapname) to print an existing bitmap.

• (RS232. PRINT windowname) to print what is displayed on a
window.

Another set of functions that can be used to print files, bitmaps,
and windows are found in the library package FX80STREAM.
Here are some examples of using this package to print a TEdit
file, and do the other operations shown above for RS232.PRINT:

In TEd it, select (blacken the item, but do not release the mouse
button) Hardcopy from the default right button menu. Move
the mouse cursor to the point of the arrow at the side of that
selection. Another menu will appear. Choose To a f i 1 e, and
release the button. At the prompt, type {RS232}. FX80

foil owed by a cr.

To print what is displayed on a window, or print a bitmap, first
type

{SETQ rX80 (OPENlMAGESTREAM '{RS232}FOO.FX80))

Then:

• (BIT8lT (WHICHW) NIL NIL FX80 0 0) to print the
contents of the wi ndow that the mouse is in, or

• (BITBLT bitmapname NIL NIL FX80 0 0) to print an
existing bitmap, bound to bitmapname.

192 USING THE EPSON FX80 PRINTER

FUNCTIONS TO PRINT FILES AND BITMAPS

19.4.3 Printing a Portion of the Screen

USING THE EPSON FX80 PRINTER

To send a portion of what is on the screen to the printer, you will
need a function that copies that part of the screen bitmap onto
a smaller bitmap that you can send to the printer. The function is
FX. SNAP. Here are instructions for how to define and use this
function:

(1) To define it, type exactly what is printed below.

(OEFINEQ (FX.SNAP

(2)

(3)

[lAMBDA NIL
(PROG (REG BMTEMP)

])

(SETQ REG (GETREGION»
(SETQ BMTEMP

(BITMAPCREATE
{fetch (REGION WIDTH) of REG)
lfetch (REGION HEIGHT) of REG»)

(BITBlT (ScREENBITMAP)

~~:~~: l:~~ig: ~~i~}fo:'E~JGj
BMTEMP 0 0)

(RS232.PRINT BMTEMP NIL T)

Once you have typed this, the function is in the environment,
and can be used as often as you like. If you save this function on
a file, you can load it each time you need it, and will not have to
retype it.

Type (FX. SNAP) to send a picture of the screen to the printer.
You will be prompted to sweep out the section of the screen
with the shape window prompt. Once you have used the mouse
to sweep out the section of the screen to be printed, the printer
will automatically start printing.

193

FUNCTIONS TO PRINT FILES AND BITMAPS

[This page intentionally left blank]

'.

194 USING THE EPSON FX80 PRINTER

20 .. 1 Prereq u isites

20. RS232 FILE TRANSFER WITH A
VAX

This file transfer chapter is for VAXes not connected to the 1108's
and 1186's with an Ethernet. To do file transfers with a VAX, your
1108 or 1186 must have a connection from the RS232 Port to the
VAX, and the VAX must have the MODEM or KERMIT transfer
protocol available (installed as a system utility). The following
files also need to be loaded: RS232CHAT, KERMIT.DCOM, and
KERMITMENU.DCOM. The file KERMIT.DCOM contains both the
MODEM and KERMIT protocols. Refer to Section 8.6, Page 8.4,
for loading instructions.)

20.2 Using Chat to Transfer Files

(1) Use a 1108 or a 1186 with a connection to the VAX

(2) To begin, type:

(RS232C.INIT 4800\
(RS232CHAT) I

(3) You will be prompted to sweep out a window. This is the new

"CHAT" window. Type cr after the blinking caret appears in it.
The VAX will respond by printing a login prompt into the
window.

(4) Log onto the VAX in the usual way.

(S) You are responsible for starting the MODEM or KERMIT program
on the remote machine. If both MODEM and KERMIT are
available, use KERMIT, since it is more flexible. Most KERMIT
programs have a "server" mode so that you do not have to
request the host to send or receive each file individually.

(6) To transfer a file to or from the VAX, press the middle button of
the mouse with the mouse in the CHAT window. A menu will
appear; choose KERMIT. Another menu will pop up, as in Figure
20.1

RS232 FILE TRANSFER WITH A VAX 20 1

USING CHAT TO TRANSFER FilES

20.2

(7)

Transfer Mode

Localfile

Remotefile

Filetype

End-of-I i ne Conventi on

(8)

Send!

Receive!

(9)

(10)

(11)

(12)

(13)

Send! Receive! Exit!
Transfer .ode=. Walliij r.1odem
Local file: iOSK~<LISPFILE8>FILE.TXT
Re.ot.e file: . fi;e.t::<t .
File type: Text End-of-line Convention: CRLF

Figure 20.1. The Menu for File Transfer to the Vax

Before the file is transfered, you must give the variable items in
the window the correct values. To set up this menu, follow the
instructions below, given for each item:

with the mouse, choose either KERMIT or MODEM, to match the
file transfer package on your VAX.

The name of the file that is being sent from or received by your
1108 or 1186. Use the mouse to position the caret, then type the
fiiename into the window.

The name of the file that is being sent from or received by the
VAX. Use the mouse to position the caret, then type the
filename into the window.

To set this parameter, point to Fi/etype and press a mouse
button. A menu will appear. Choose text to transfer an ASCII
file.

To set this parameter, point to Fi/etype and press a mouse
button. A menu will appear. Choose the item that is
appropriate for your VAX, usually CRLF.

The commands for using KERMIT or MODEM are those at the top
of the menu. Choose the one that is appropriate for your job:

This function will move a file from the 1108, or 1186, to the VAX.
The remote file transfer program must be prepared to receive
the file.

Moves a file from the VAX to the 1108 or 1186. The remote file
transfer program must be prepared to send the file.

As long as bells are not continuously ringing, the transfer is
running normally.

Choose Ex it! to close the file transfer menu.

Move the mouse cursor to the "CHAT" window and press the left

button. Type cr. LOGOUT when you get the VAX system
prompt.

Press the middle mouse button in the "CHAT" window and
choose "BYE" from the menu.

SHRINK or CLOSE the "CHAT" window.

RS232 FilE TRANSFER WITf-< A VAX

')1 1 Dreraqllisi+es "" •• 1 II '" _

21.2 File Transfer

ETHERNET FILE TRANSFER

21. ETHERNET FilE TRANSFER

Both the sending and receiving machines must be connected to
an Ethernet. .

If the communication is between two lisp machines,

(1) They must both be running lnterlisp-D.

(2) The file FTPSERVER.DCOM must be loaded; type

(FILESLOAD FTPSERVER)

(3) The receiving lisp machine must be running an FTPSERVER
process. This process allows the receiving machine to give the
sending machine access to the files on the its disk. To make sure
that the receiving machine is running this process, call the
function

(ADD.PROCESS '(\FTPSERVER»

on that machine.

If you want to communicate with either a fileserver or a VAX,
don't worry about the file FTPSERVER.DCOM or the FTPSERVER
process. The functions will still work as described below.

The File Transfer process allows you to call the D I R. LOAD.
and COPYFILE functions.

To address another machine (lisp machine, VAX, Fileserver) on
the Ethernet, replace the device name {DSK} or {FLOPPY} with a
number that uses the other machine's host number. For
example, {l}fi/ename. If you have a Xerox file server with a
clearinghouse on it, which validates users and resolves names of
servers to thei r host numbers, you can use the name of the
machine instead of its host number.

Some examples of functions addressing other machines.

(OrR {3}OSK:(U5PFILES»

(COPYFILE '{3}oldfi/ename '{DSK}newfilename)

(LOAD f{2}filename)

21 1

FILE TRANSFER

212

(OIR {RoseBowl}<Primers>Interlisp>*.ip SIZE CREATIONDATE)

You can copy files to or from other machines. If you do not call a
specific directory of the other machine, you will access the
directory that the other user is connected to.

. ETHERNET FILE TRANSFER

The Executive window turns black

You closed the Executive Window

The mouse disappears

A second window appears

WHAT TO DO IF

22. WHAT TO DO IF ...

An example is shown in Figure 22.1.

Press any key to unfreeze the window and continue. This pause
happens when the command you just typed causes enough
information to be printed to fill the window it gives you a
chance to read that one windQ'.,'\I of text before rnoving on.

. . :- ~ . ': .. : ... ~ : -:

Figure 22.1. The Interlisp-D Executive Window, filled, and waiting for a character
to be typed to continue

Just type any character on the keyboard, it will reopen
automatically.

Type (CURSOR T) in the Interlisp-D Executive window. The
cursor will reappear.

This probably happens because you made a typing mistake, as in
Figure 22.2.

37~(UNOEFINED-FUNCTION 'ARG! 'ARG2)
=uN6EFINEO-(FUNCTION (QUOTE ARG1) (QUOTE

No
i!F:G2 i i j

UNDEFINED-FUNCTION· UNDEFINED CAR OF FORM oreal(: 1

~jii~:~:~ UNOEF I NED CAF: OF FOF-:M
::::::::: UNOEF I NED-FUI-lCT ION

iill::::1 ~~~~'EF I NED -FU >JGTI ON b r ok e nJ

::::~;t.,,:.:.:.:.;.:.:.:.:.:.:.:.:.:.::.:.:.:.:.:.;.:.;.:.:.:.::.:.:.;.:.:.:.:.:.:.:::::.:.::.:.:.::.:::.:.;.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.;,:.: .. ',
Figure 22.2. The Break Window has appeared aiter a typ:r~g el ror

22 ,

WHAT TO DO IF ..

A break while writing to a floppy

You keep getting beeped at

You can't delete the first letter

Your function is just sitting there

The mouse cursor won't move

A break window appears

22.2

Type a Control-D By simultaneously pressing the control key (see
Section 2.2, Page 2.2 for the proper key on your machine) and
the II 0". This aborts the error condition, returni ng control to the
executive window.

Now retype the previous command.

If the problem is not simply a typing error, please see Section
14.2.

If the break window has a title NIL, check to make sure that the
floppy is not write protected The "WRITEPROTECTED" message
will be printed in the promptwindow.

Usually the beeping means that Interlisp-D .wants input from
you. Look for the flashing caret. It will usually be preceeded by
some kind of prompt, indicating what you should type.

of the filename you are typing to (FILES?). Type Control-E
(error). You will get a linefeed and +--E-~ printed to the
window. Now type the correct filename.

not returning a value, and you think that your program may be
in an infinite loop or is having some other major problem. You
can see what process is currently running by typing Control-T, or
you could interrupt the process by typing Control-E.

and there is no response from the keyboard. If you have an 1108
check the Maintenance Panel code. On the 1186, the mouse
cursor itself should be a number. If the number is in the 9000s,
Interlisp-D has crashed.

For the 1108: Press the UNDO key on the top right of the right
keypad. The mouse cursor should now say "Teleraid". If not, try
typing Control-Shift-Delete (Yes, press all three keys at once!),
and the mouse cursor should now say "Teleraid". Now type
Control-D.

For the 1186: Press the UNDO key on the leftmost keypad. The
mouse cursor should now say "Teleraid". If not, try typing
Control-Shift-Delete (Yes, press all three keys at once!), and the
mouse cursor should now say "Teleraid". Now type Control-D.

If this doesn't work, you must reload Interlisp-D. Remember,
save early and save often. (See Section 3.3).

If the break window looks something like this:

{DSK}<lISPFllES)OAYBAEAK)IM)AEGOADS.IM;4 ~ FILE S

FILE SYSTEM RESOURCES EXCEEDED
{DSI": }.: L I ::::PF I LES :. DAve.FEAt-;. •. I M\ F:EC(IFD::: i M; .:.I

(DOPt,1AP br·oke.n)
37:A

Figure 22.3. The Break Window when there IS not enough spi'.lCe to save your file.

You are trying to save a file, but there is not enough space on the
hard disk.

Exit from the break window by typing an "up arrow" (i)

followed by a cr, Delete old versions of files, and any other files
you don't need, then try again to save the file

WHAT TO DO iF

You have ru n out of space

WHAT TO DO IF ...

Generally, a BREAK window has appeared. The GAINSPACE
function allows you to delete non-essential data structures. To
use it, type:

(GAINSPACE)

into the Interlisp-D Executive Window. Answer "N" to all
questions except the following.

• Delete edit history

• Delete history list.

• Delete values of old variables.

• Delete your MASTERSCOPE datadase

• Delete information for undoing your greeting.

Sav:e your work and reload Lisp as soon as possible.

A redef i ned message appears The message (Some. Crucial. Function. Or. Variable redefi ned),
as in Figure 22.4. The function, variable, or property has been
"smashed" (i.e. its original definition has beer. changed). If this
is not what you wanted, type UNDO immediately!

UNBOUND ATOM

UNDEFINED CAR OF FORM

You have traced APPL Y

WHAT TO DO IF

Interlisp -0 Executive . ,

NIL
92~(OEFINEQ (CAR (A) (SomeOtherFn A)))
(CAR r·edefine,j)
(CAR)
9:3~UNOO

OEF I NEO I.mdone.
94~A .

Figure 22.4. CAR redefined! Type UNDO immediateiy

If this occurs, you probably just typed something wrong, or you
passed an argument that should have been quoted to a function.

First, look at what caused the error. If the CAR of the form is a
list, then you typed something wrong. If it is an atom, then
perhaps that atom does not have a function associated with it. If
it is a CLISP word like if, for, or the like, then OWIM (see Section
13.2, Page 13.2) may have been turned off. Type (OWIM 'C) to
reenable OWIM.

and your screen is spewing out information about everything
going on in the environment. Type Control-E, and type
(UNBREAK 'APPLY) before returning to the Interlisp-D
Executive.

223

WHAT TO DO IF ...

[This page intentionally left blank]

224 \i\i~A T TO DO iF

23.1 Using TEdit

THE TEXT EDITOR, TEDiT

23. THE TEXT EDITOR,TEDIT

TEdit is the Interlisp-D text editor. It is a "what you see is what
you get" editor; what you see on the screen closely simulates
what will be printed on paper. Besides normal text editing,
using this editor allows you to move text, insert bitmaps,
sketches, or snapshots of the screen into your text, format the
document, and more. This chapter will only cover editing text,
however. For more information, see the Library Packages
Manuai.

The file, TEDIT.DCOM, must be loaded before you can use TEdit.
(See Section 8.6, Page 8.4.) You can start the editor in one of
three ways:

(1) Choose TEdit from the Background menu. (If you are not
familiar with the background menu, See Chapter 1 and Chapter
7.)

(2) Type (TEOIT)

(3) Type (TEOIT 'filename) to edit a specific file.

Open a TEdit window in one of the three ways. You will be
prompted to sweep out an area of the screen for the text editor
window. When the window appears; note the extra white area
above the window's title bar. This area is used for prompts from
the editor.

You can now type - what you type will appear in the window at
the caret. (Shown in Figure 23.1.)

After you type, notice the II *" that appears before the title in the
title bar of the TEdit window. That means that the file contains
information that has not been saved. Remember to save your
files often!

23.1

USING TEDIT

This is the text in the TEdit window.
Note the ~*" before the title in the
title bar. It means that the file
contains changes that need to be saved.

Figure 23.1. Text typed in the TEditwindow

To position the caret, hold down the left mouse, and while
holding the mouse button down move the mouse until the caret
is flashing where you would like the caret to be. Then, release
the mouse button.

Carriage returns are used in TEdit to delimit paragraphs. Within
a paragraph, TEdit will automatically break the text into lines
with a ragged right margin. (If you prefer justified margins, see
Section 23.5.2.2, Page 23.12.) In order to insert a carriage return
without starting a new paragraph (for the 1108) hold down the

OPEN key while pressing cr, or (for the 1186) hold down the

META key while pressing cr.

23.2 Ma'naging the TEdit Window

Close

Clear

Redisplay

Hardcopy

232

While you are in theTEdit window, the mouse buttons have
special meanings. However, you can still access the right button
default window menu by pointing the mouse cursor at the TEdit
window's title bar and pressing the right mouse button, Be
aware that even some of the right mouse button default menu
choices have special meaning in TEdit. For instance:

Stops the editing session. If there are changes that have not
been saved, you will be asked to confirm this choice by pressing
the left mouse.

Clears the window, but does not change the contents of the file.
You will not delete any text by choosing this item from the
menu. To have the contents reappear, choose Redispl ay.

Will redraw the contents of the window. Remember this if you
choose Clear by mistake.

Will send a copy of the TEdit file to the printer. Before printing
the file, however, it will be correctly formatted for the printer
(i.e. length of lines within paragraphs will be made the correct
length for the paper, etc.). This process can take some time.

THE TEXT EDITOR, TEDIT

Shrink

MANAGING THE TEDIT WINDOW

Shrinks the window into the TEdit icon without stopping the
editing session. This icon is a closed book with TEdit on the
spine, and the name of the file on the front. (See Figure 23.2.)

{DSK}
'1-:. (lISPflLES>
:; DAVBREAK
~)IM>
~-. REPORT.

TEDlT;1

Figure 23.2. The TEdit Icon

The other choices of the default right button menu, snap, bury,
move, and shape, work as described in Section 10.4, Page 10.3.

23.3 Selecting Text

THE TEXT EDITOR, TEDIT

A character

A word

"Selecting" a block of text for some modification is a common
TEdit task. You will need to select text for a variety of
commands, including copying and moving text. To select:

Point to the character and press the left mouse button. The
character selected will be underlined.

(1) Point to the word with the mouse cursor.

(2) Press the middie mouse button and the word is selected
(underlined).

Aline

(1) Point to the far left of the line with the mouse cursor. The mouse
cursor will change from pointing to the northwest to pointing to
the northeast.

(2) Press the left mouse button and the line is selected (underlined).

A paragraph

(1) Point to the far left of a line in the paragraph with the mouse
cursor. The mouse cursor will change from pointing to the
northwest to poi nti ng to the northeast.

(2) Press the· middle mouse button and the paragraph is selected
(underlined).

Any block of text

(1)

(2)

(3)

(4)

(5)

Move the caret to the beginning of the block of text to be
chosen.

Select the starting place using one of the methods from above.

Press and hold the right mouse button.

Move the mouse until the entire block of text is selected. The
text will be marked by inverse video (see Figure 23.3.)

release the mouse button and the indicated text is selected.

23 3

DELETING, COPYING, AND MOVING TEXT WITH TEDIT

23.4 Deleting, Copying, and Moving Text with TEdit

23.4.1 Deleting Text From a File

23.4.2 Copying Text

23.4

Text can be deleted in a number of ways. The one you choose
may depend on the amount to be deleted. If it is a very small
amount, backspace to delete the character just behind the caret,
or Control-W to delete the word just behind the caret.

For deleting a larger block of text,

(1) Choose the section to be deleted. Select the last two sentences
of the example file, as shown in Figure 23.3.

(2) Press the De 1 ete key to remove the highlighted area.

(1)

(2)

(3)

This 18 the text In the TEdlt w1ndow.
Note the ~*" before the title in the
title bar. It means that the file
contains changes that need to be saved.

Figure 23.3. The text in reverse video is chosen, and will be deleted

To copy a block of text from one place in the file to another,

Position the caret where you want the copied block of text to
appear. For the example file, move it to the beginning of the
file.

press and hold the COPY key, or the shift key;

choose the text to be copied. For the example file, choose the
words "the text in the TEdit window". (See Figure 23.4.)

THE TEX T E DI TOR :E DIT

23.4.3 Moving Text

THE TEXT EDITOR. rED::-

DELETING, COPYING, AND MOVING TEXT WITH TEDIT

Figure 23.4. The underlined text has been chosen. It will be copied to appear
before the cursor.

(4) Release the COpy key. The underlined text will now appear both
in its original position, and at the caret.

Note: To abort the copy procedure, release the COpy key before
completing the text selection (i.e. before releasing the right
mouse button).

To move a block of text from one place in the file to another,

(1) Position the caret where you want the moved block of text to
appear. In the example text, position it at the beginning of the
file.

(2) press and hold the MOVE key.

(3) choose the block of text to be moved. In this example, choose
the words "This is ". (See Figure 23.5.)

(4)

the text in the TEdlt
Athe t.ext· in t.he TE,jit

Figure 23.5. The highlighted text will be moved to the caret.

Release the MOVE key_ The highlighted text will appear in its
new positi on at the caret.

235

DELETING. COPYING. AND MOVING TEXT WITH TEDIT

23.5 TEdit Menus

Basic Commands menu

236

Note: To abort the move procedure, release the MOVE key
before completing the text selection (i.e. before releasing the
right mouse button).

Text can be moved and copied not only within a single TEdit
window, but also between them. The same instructions apply in
either case.

The sections that follow explain commands you can chose from
menus specific to TEd it.

The Basic Commands menu appears when you point the mouse
at the title bar of the TEdit Window, and press the middle mouse
button. (See Figure 23.6.)

the text in the TEdit wlndow.

Figure 23.6. The TEditwindow, with the Basic Commands Menu

Choosing the final item on the Basic Commands menu
permanently positions the Expanded Menu above the TEdit
Prompt Window. Do that and you will see something like Figure
23.7. The expanded menu provides many standard commands.

THE TEXT EDITOR, TEDIT

Qui't Page layout: Char looks Para looks All
Unforroat:t:ed
Get: f} Put: f} Include {}
Find {} Subst:it:ut:e {} for {} Confirm

;+; Edit Window· for: {DSK}<LlSPFllES}DAY
This is the text in the TEdit wlndow.
the text in the TEdit window.

Figure 23.7. The TEd it window, with the Expanded Menu above It.

TEDIT MENUS

Note that some of the menu items are followed by "{}". These
commands require you to type information between the the
brackets before choosing the command. To do this:

(1) Point with the mouse to the space between the curly brackets;

(2) press and release the left mouse button. The caret will appear
between the brackets;

(3) type the necessary information. The same edit commands are
used to change the text between the curly brackets as the text in
the TEdit window.

(4) execute the command by choosing the command with the
mouse.

Both menus are very useful; some of thei r functions are
described below, but please refer to the Library Packages
Manual for more detai Is.

23.5.1 Finding and Substituting Text with TEdit

23.S.1.1 Finding Text

THE TEXT EDITOR, TEDIT

(1)

(2)

There are times when you will want to find a certain word, or
words, in your TEdit file. You do this with the Fi nd command.

To use the Fi nd command with the Basic commands menu, or
the Fi nd key on the left keypad:

Position the caret in the file where the search should begin;

Press the Find key on the keypad to the left of the keyboard, or
choose Find from the Basic Commands menu described above;

237

TEDIT MENUS

23.5.1.2 Substituti ng Text

23.8

(3) You will be prompted to enter the search string. (See Figure
23.8.) If there is a special character in the string, such as a
carriage return, type a Control-V before entering it

(4) Type cr to begin the search

(1)

(2)

(3)

(1)

(2)

Text. t.o fin(~: A

This is the text in the TEdit window.
the text in the TEdit window,

Figure 23.8. The prompt for the search string from the Find command

To use the Find command from the Expanded Menu:

Type the word to find between the curly brackets beside the
Fi nd command. You do not need to type Control-V before
special characters here;

Position the caret in the file where the search should begin
:r

Choose Find from the Expanded Menu.

Note: To abort the search, type either a Control-E or press the
STOP key.

Sometimes you will want to delete a piece of text, and put
something new in its place. You can do this with the
Subst itute command.

To replace a large body of text, select the text that needs to be
changed. The highlighted text is deleted when you begin to
type the replacement text.

To find and replace one or more occurance of a smaller text
string within a selected block of text, use the Subst i tute
command from either the expanded menu, or the basic
commands menu.

To use the Subst i tute command from the Expanded Menu,

Choose the text that contains the string(s) to be replaced. For
the example, choose the second sentence.

Type the new text string between the curly brackets following
the word Subs t i tute. For the example, type "text editor's".

THE TEXT EDITOR, TEDIT

THE TEXT EDITOR, TEDIT

TEDIT MENUS

(3) Type the old text string, the one that is to be replaced r betvveen
the curly brackets following the word for. For this example,
type ITEdit".

(4) Choose Confi rIB if you would like to verify each substitution.
Confirm will then appear in reverse video. (See Figure 23.9.)

(5) Choose Subs t i tute. If you have chosen Conf i rm, you will
have to approve each substitution. (See Figure 23.10.)
Otherwise, every instance of the old string in the chosen text will
be replaced by the new string automatically.

(1)

This 15 the text 1n the TEdit w1ndow.
the text in the TEdit window.

Figure 23.9. Using the Subst i tute command from the Expanded Menu

TEdit Menu .
Quit: Page Layout: Char Looks Para Looks All
Unformat:t:ed
Get: {} Put: {} Include {}
find {}f1THjUm§ {ti!:-:t ~ditl)r':.} for {TEdit} min

OK to replace? ['q' quits] Ve;

* Text Editor Window
Th1S is the text in the TEdit window.
the text in t.he II!!ID '.,,1 i nc~ol,.,1 ,

Figure 23.10. Asked to confirm a substitution in the TEdit window

To use the Substitute command from the Basic Commands menu,

Choose the text that contains the instance(s) of the string to be
replaced

239

TEDIT MENUS

23.5.2 Text Formatting

23.5.2.1 Choosi ng Fonts

23.10

(2) Choose the Subst i tute command from the Basic Commands
menu

(3) You will be prompted for the search string and the replace
string, and asked whether you would like to confirm each
substitution

Note: To stop the Substitute command, type either Control-E,
STOP, orO.

TEdit offers a wide range of possibilities for document
formatting. This section explains only the most basic ones. Refer
to the Library Packages Manual for information on others.

You can choose the fonts used in a TEdit file. To do this from the
Basic Commands Menu:

(1) Choose the text that you would like to see in a different font;

(2) Choose Looks from the Basic Commands menu;

(3) A series of three menus will appear, one after the other. The first
will offer a choice of fonts (see Figure 23.11.), the second a
choice of the properties of the font (e.g. italics, or bold), and the
third, the font size. Either choose one of the items, or click the
left mouse button outside of the menu to leave the default
setting unchanged

(iact1.::t.
Hel'· ... etic;.3.

e {t€:~tE:ditt)r':.} for .: TEdit} Confirm

Time:; F:orn.::t.nJ-----------------t
t rJE:lde, Clt~-Iet'

* Text Editor Window
This is the text in the TEdit window.
the text in the text editor's window.

Figure 23.11. The font choices from the Looks command

THE TEXT EDITOR, TEDIT

23.5.2.2 Paragraph Formatting

THE TEXT EDITOR, TEDI!

TEDIT MENUS

The fonts can also be changed by choosing Char LOOKS from
the expanded menu. This will cause another menu to appear.
(See Figure 23.12.)

To see the font currently being used in a selected block of text,
choose SHOW from the menu.

To use this menu to change the fonts in the selected text,

(1) Choose the text you would like to see in a different font. For this
example, choose the second sentence.

(2) Choose from the Cha racte r Looks Menu the type of font,
and the type of font from the" props II choices. If you do not
choose a font, or a font pr<;>perty, the current one is used. For the
example, choose "Italic". (See Figure 23.12.)

(3) Choose APPLY and the font will be changed.

Character Looks Menu
APPl V ~HOW NEUTRAL
P r,:, p':': !lent JZm:a !!o.derfffie ~tcik-e-"f1U-u Q~r
Time~RoJoan Helve1:ica Gacha Modern Cla~5ic

Terminal Ot:her

TEdit Menu
Quit: Page Layout: Char Look5 Para Looks All
Unfor,oat:t:ed
Get: {::- Put: I:· Include -::::
Find {}Subst:it:ut:e {t~~t.:dit(lr'·::: f,:,r {TEdit} Confirm

* Text Editor Window
This is the text in the TEdit window.
the text in t~e text editor~s window.

(I

Figure 23.12. Ready to change the font of the second sentence to "Italic"

You can format paragraphs with the Parag raph-Looks Menu,
shown in Figure 23.13 To bring up this menu, choose Pa ra
LOOKS from the Expanded Menu. Although the new menu looks
complicated, the basics are easy to learn.

To see the current settings for some paragraph, first select the
paragraph. Choose SHOW from the top line of the menu.

To change the settings, begin by choosing a piece of text to work
with.

23 ' ,

TEDIT MENUS

Paragraph -Looks Men'u :.: .. , ~ .
APPl V SHOW NEUTRAL
Left Right Centered Ju!;tifiet.i ~~Meillliil9 t'lD'::: If
Linele::.ding: {}Dt,. P::.nL~::.ding: -::·pt·: ::p~(i::.ILt).;n: ::< r:~,i(::.·:, ',' {}pio;
f'J€!w P::.g~: ~.:hr'e ~n-er' Di~pl::.\o· r",(td~: !:fJll"~Y
T'3b T~t'pe: Left Right Centered Decimal Dotted Leader Deh'.lIt T'3b Si:;:e: {}

I~ "
TEdit Menu .. , .' . ".": ... ,.

Quit Page Layout Char Looks Para Looks All
Get {l· Put {} Include {}
Find {} Substitute {} f,) r {} Confirm
Hardcopy ~€!"lo:r: {} «(,pi.::·,. : (

* Text Editor Wi~w~, . ;;. :,' .. ' ,'.
This is the te:t in the TEdit window,
,:./ indc:.·:·/ ,

Line Justification

Page Breaks

23 12

iii

36

Unformatted

~he text in the text editor's

Figure 23.13. The Paragraph Looks menu is above the TEdit Expanded Menu

To determine how each line of the chosen text is placed on the
page, choose one of the following items from the second line of
the Parag raph-looks Menu. left gives a ragged right
margin, Ri ght gives a ragged left margin, Cente red centers
each line, and Justified gives both'left and right justification
so neither margin is ragged. Choose one with the mouse. When
your choice is in reverse video, choose APPl V to see how the
chosen text is affected.

You can break your text into pages both before and after a
paragraph. First, move the caret to the appropriate paragraph.
Choose either Befo re or Afte r from the fourth line of the
Parag raph-looks Menu. When you choose APPl V, a grey box
at the front of the paragraph marks a page break. (See Figure
23.14.)

THE TEXT EDITOR, TEDIT

illlhis is the text in the TEdit window.
the text in the text editor's window.

TEDIT MENUS.

Figure 23.14. The grey box on the far left side of the TEdit vvindo'v·y mad,s a page
break.

23.5.3 Adding Bitmaps and Sketches to your TEdit File

TEdit allows you to easily add snapshots of the screen, and
Sketches to your files. Sketch is a Xerox package that was
developed for constructing pictures. Unlike bitmaps, (See
Chapter 29.) you do not need to draw every pixel for the shape
you want. For instructions on how to use Sketch, see Chapter 35.

23.5.3.1 Adding a Bitmap to your TEdit file

THE TEXT EDITOR. TEDIT

To add a snapshot of the screen to your file,

(1) Position the caret in the TEdit file where you want the snapshot
to appear.

(2) Press and hold the shift key. Move the mouse cursor into the
grey background of the screen, and press the right mouse
button. A menu with a single choice, SNAP, will appear. Release
the shift key. Choose S~AP from the menu;

(3) The mouse cursor will change to the prompt to sweep out a
window:

Figure 23.15.

Position the mouse cursor at a corner of the region you would
like to snap;

(4) Press and hold the left mouse button. Sweep out the snapshot
window. When you are satisfied with the snapshot, release the
left mouse button, and'it will appear in your TEdit file.

Once the bitmap is in your file, it is treated like a single character.
That means that you can move, copy, or delete it just like you do
any other character. There are also various operations you can
perform on bitmaps in your TEdit file (e.g. trimming and
editing). For more information about these, please see the
Library Packages Manual.

23 13

TEDIT MENUS

23.5.3.2 Adding a Sketch to your TEdit file

As mentioned above, Sketch is explained in this primer in
Chapter 35. For even more information, see the A User's Guide
to Sketch. To add a Sketch to a TEdit file,

(1) Position the caret in the TEdit file where you want the snapshot
to appear.

(2) Press and hold the shift key. Move the mouse cursor into the
Sketch window. The control boxes of the Sketch will appear.
Click the left mouse button twice in any control box to copy the
entire Sketch into your TEdit file.

Like bitmaps, once the Sketch is in your file, it is treated like a
single character. That means that you can move, copy, or delete
it just like you do any other character.

Once the Sketch is in your file you can still edit it. Simply point to
the Sketch with the mouse cursor, and press the right mouse
button. A menu with the single item, Edit sketch, will appear.
When you choose this item, a Sketch window will open for you
to make any changes. For more information, see A User's Guide
to Sketch.

23.5.4 Getting and Including Files

23.5.4.1 Get

23.5.4.2 Include

23.14

The Get and Inc 1 ude commands address files of text.

Get opens a file you want to edit, and brings it into the TEdit
window. A file brought into the TEdit window with the
command Get replaces any file that was previously being edited.
Get appears in both the Expanded and Basic Commands menus.

When you choose Get from the Basic Commands menu, you will
be prompted. for the file name.

To use Get from the Expanded Menu, type the filename
between the curly brackets following the word Get. Choose
Get.

In either case, if you have not saved the file you are currently
working on, you will have to confirm the Get by clicking the left
button. Click the left button only if you want to begin work on
the new file without saving the changes made to the file that is
currently in the window.

Inc 1 ude also appears in both menus. It adds a file to the TEdit
window, but unlike Get it does not affect the file that is being
Included in any other way_ Include simply reads in the
specified file, and adds it to the current document at the caret.

THE TEXT EDITOR, TEDIT

23.5.5 Saving and Printing Files

THE TEXT EDITOR, HOlT

TEDIT MENUS

If you chosen it from the Basic Commands menu, you will be
prompted for the file name.

If it is chosen from the Expanded Menu, the filename must be
typed between the curly brackets following the word Inc 1 ude
before choosi ng it.

Save your files often to decrease the chances of accidentally
losing pieces of your work.

To save the fiie, choose Put from either the Basic Commands
menu, or the Expanded Menu. Once again, if the command is
chosen from the Basic Commands menu you \tvill be piompted
for the file name. If you choose it from the Expanded Menu, first
type the file name between the curly brackets to the right of the
command.

To print your file, choose Hardcopy from either the default
right button menu, or from the Expanded Menu. If it is chosen
from the right button menu, there is the further choice of
sending the formatted output to a file, or to a printer. If the file
is to be printed often, you may want to send the output to a file.
It takes time to format the document for printing, and if the
formatted file is saved, you will not have to wait each time.

Alternatively, using the Hardcopy command in the Expanded
Menu gives you some other options. You can send the output to
any printer availabie, not just the default printer, and you can
specify the number of copies to print. As usual, these
specifications must be typed between the curly brackets before
choosing this command.

Sending a file to the Epson FX80 printer is covered in Chapter 19.

23 15

TEDIT MENUS

[This page intentionally left blank]

23.16 THE TEXT EDITOR rEDIT

24. RECORDS MAY BE YOUR
FAVORITE DATA STRUCTURE!

A record is a data structure that consists of numerous fields. Each
field, can have a simple value such as a list or an atom, or a more
complex value, such as a window or a' menu (which is also a
record), or a function.

There are two parts to worki ng with records. The fi rst part
involves giving the record a name, and deciding the field names
contained in the record. This is referred to as creating a record
definition. The second part involves using the record definition
as a template, and giving each of the record's fields a specific
value. The second part is referred to as creating a record
instance.

Consider this example: you want to buy a car. Your record
would be named car, and you would define a record using this
list of fields: make; model; year; mileage; sticker price.

Now you go out and do your research. The first car you find is a
Plymouth, Champ, 1979,87,500 miles, $1700. When you input
these values into a copy of the record fields, you have created a
record instance.

Next you find an Oldsmobile, Cutlass, 1986, 0 miles, $16,000.
When you input these values into a copy of the record definition,
you have created a second record instance.

24.1 Interlisp Record Primitives

-
RECORDS MAY BE YOUR FAVOR:;t DATA STRUl TUREI

The function RECORD creates a record definition. This record
definition can be considered a template for creating, accessing
and storing into record instances.

(RECORD record-name (/istoffields)

To declare a record definition for an employee, you might need
his name and social security number. Declaring a record is done
with the function RECORD. (See Figure 24.1.)

241

INTERLISP RECORD PRIMITIVES

242

Interlisp·o Executive Winaow
NIL
33~(RECORO EMPLOYEE (NAME SSN))
EMPLO"!"EE
34.,.

Figure 24.1. Record Definition of Record Named EMPLOYEE

RECORD does not create any record instances, however. It only
makes the interpreter aware that you will be using a record
definition called EMPLOYEE that contains two fields.

c reate is the function that actually creates record instances.

(create record-name < field value
field value ... >)

c reate takes the name you gave to the record definition and
returns an instance of that record. After the record definition
name, you will specify the values for each field. (See Figure 24.2.)

Interlisp -0 Executive Window
NIL
32.;.(SETQ WORKER (create EMPLOVEE

NA~1E .;. "Bill Smith"
SSN ~ 123456789))

("Bi 11 Smit.h" 1234567:39)
:3:3~

Figure 24.2. Creating and Initializing a Record

To initialize a field, type the field name, followed by left arrow
(+-) (the left arrow should be surrounded by spaces), followed
by the given value. Note that standard evaluation rules for
Interlisp-D are not followed by the function c reate. The values
supplied for the record's fields are evaluated, but the record
name and the field names are not evaluated. (See Figure 24.5.)
c reate was written this way to be convenient to use. The
functions or atoms supplied as values for the fields are
immediately evaluated, and the field contains only the result of
that evaluation.

The code in Figure 24.2 returned a new instance of the record
definition EMPLOYEE for Bill Smith .. Note that in the example,
the atoms EMPLOYEE, NAME, and SSN were not evaluated.
However, "Bill Smith" and 123456789 were evaluated. Any fields
which are not given values in the c reate expression are
assigned the value NIL.

In general c reate should appear inside an assignment
expression such as SET, SETQ, or PUTPROP. It may also appear in
a PROG's temporary variable lists or when binding argument lists
to f~Jn(tions

RECORDS MAY BE YOUR FAVORITE DATA STRUCTURE'

24.2 Example

RECORDS MA Y BE YOUR FAVORITe DA TA STRUCTURE I

INTERLISP RECORD PRIMITIVES

fetch is an Interlisp-D command that allows you to access the
contents of a field in a record. The syntax of the fetch
command is:

(fetch fieldname of record-instance)

The fieldname argument will not be evaluated; the
record-instance argument will be evaluated. Figure 24.3
demonstrates the use of fetch with the WORKER example used
earlier. The field names NAME and SSN are never evaluated and
therefore not quoted. In fact, using QUOTE will cause an error!
WORKER was evaluated, which is what we want. WORKER is
bound to the desired record instance.

rrnGi'f1.etli£l44i1@41mtti.W __
NIL I
34.(fetch NAME of WORKER)
"e,;ll 8mit.h"
35~(fetch SSN of WORKER)
123456789
36..,..

Figure 24.3. fetch from Records

rep 1 ace is an Interlisp command that allows you to modify the
contents of the record-instance's fields. rep 1 ace works similar
to fetch, except that it requires a new value in order to
overwrite the old value. This extra argument is placed last:

(replace fieidname of record instance with newvalue).

An example is shown in Figure Figure 24.4.

Inter lisp -0 Executive Window
NIL
37~(replace SSN of WORKER with 987654321)
.-, ""'" ..., ,-. ~ "' -. '-1 ...
~o t o~,,,,.j':::'.l.

3 8..,..1,',. OR~: ER
("ei 11 Srnit'-." 9:37654321)
~9~(fetch SSN of WORKER)
987t;54321
4~1~

Figure 24.4: Using rep 1 ace and fetch with Records

Following is a line by line explanation of the example in Figure
24.5, which demonstrates the record package facilities:

24 3

EXAMPLE

24.3 A Few Tips

244

Line 43

Line 44

Lines 45 - 47

Line 48

Interlisp -D Executive Window
NIL
43~(RECORO ISOTOPE

'(SYMBOL ISOTOPENUMBER ISOTOPEWEIGHT))
I :::-:0 TOPE
44~(SETO CARBON (create ISOTOPE

, ·S"{MBOL ~', C
ISOTOPENUMBER ~ 6
ISOTOPEWEIGHT ~ 12]

(G 6 12)
45~(fet~h SYMBOL of CARBON)
C
46~(fetch ISOTOPENUMBER of CARBON)
6
47~(fetch ISOTOPEWEIGHT of GARBON)
12
48~(replace ISOTOPEWEIGHT of CARBON

IIJit.h 14)
14
49~(fetch ISOTOPEWEIGHT of CARBON)
14
50~(fetch SYMBOL of CARBON)
c
51~(fetch ISOTOPENUMBER of CARBON)
6
52~CAReON

(G 6 14)
53~

Figure 24.5. Use of RECORD. create. fetch. and rep 1 ace,

declares a record definition called ISOTOPE. Each record instance
will contain three fields representing the symbol, isotope
number, and isotope weight of the isotope. The system responds
by saying that ISOTOPE is now a recognized record definition.

assigns CARBON a value: a record instance with the properties of
Carbon 12. Since SETQ returns its second argument, the
resulting list shows how a record is stored in list form.

demonstrate fetch. The contents of the field being fetched
are returned.

replaces the ISOTOPEWEIGHT with 14, so now CARBON
represents a new isotope.

Line 49 verifies that the change in CARBON's ISOTOPEWEIGHTwas made

Lines 50 and 51 show that the change to one field of a record did not change any
other fields of that record.

Line 52 . shows the value of the atom CARBON. This result is the record
instance that fetch and rep 1 ace actually act on. The instance is
stored as the value of the CARBON.

If you are using several record definitions, avoid using the same
field name in two record definitions until you become familiar
with the manual. otherwise the system will try to access things in
a way that can cause a break. If it is necessary to use the same

RECORDS MAY BE YOUR FAVORITE DATA STRUCTURE'

RECORDS MA Y BE YOUR FAVC:~I TE DA T A 5T Ru(TI)RE ~

A FEW TIPS

field name, refer to your record definition name before you
reference the field. So, for example, (fetch (ISOTOPE
SYMBOL) OF CARBON) says"! want the SYMBOL field from the
record instance CARBON of the record definition ISOTOPE."

Although you may create lists which can be properly handled by
the record package or vice versa, it is a geed idea te only use
c reate, fetch and rep 1 ace when working with records. This
improves readability of your code, and ensures that changes in
the Interlisp-D record package or changes you may make to your
record definition will not affect your code.

A record is really just a special list. There is no implicit
type-checking in the record package, so a list you gjve to fetch
and rep 1 ace will be destructively modified as if it were a record
instance, regardless of whether or not it has anything to do with
records. Figure 24.6 shows poor programming even though no
fatal errors result. The example assumes the EMPLOYEE record
that was defined earlier in the chapter is a part of the Interlisp-D
envi ronment.

Interlisp -0 Executive Window
NIL
60~(fetch NAME of '(1 2 3))
1
61~(SETO TEMP '(1 2 3))
(1 :2 3) . .

~2~(fe~ch NAME TEMP)
1
63~(replace SSN TEMP 5)
5
64~TEMP

1
~.1 5 3)

.05+

Figure 24.6. Sloppy Use of Records and Lists

You can type-check your records by using the command
TYPE RECORD instead of RECORD. When record definitions are
declared with the command TYPIRECORD, the create.
fetch, and rep 1 ace functions are the same as for regular
records. There is also a function TYPE? which determines if its
argument is of the right type. If EMPLOYEE had been created as
a TYPERECORD, you could find out if WORKER is an instance of
the EMPLOYEE record definition by asking:

(TYPE? EMPLOYEE WORKER)

which returns a non-NIL value if WORKER is an EMPLOYEE
record instance. Typically it will be used this way:

(AND (TYPE? EMPLOYEE WORKER) (fetch SSM WORKER»

If the type check fails, the fetch is not evaluated; if it succeeds,
the fetch is evaluated and a value is returned. As in create,
the record definition name (EMPLOYEE in this example) is not
evaluated. (See Figure 24.7.)

245

A FEW TIPS

24.6

Interlisp -0 Executive Window
NIL
67~(TVP~RECORO PLAYER

, (PIECECOLOR BOAROPOSITION)
PLAYER
6a~ (SETI) PU"Rl

, -(create PLAYER
. P[ECECOLOR ~ 'REO

BOAROPOSITION ~ 'SQUARE1]
(PLAVER REO SQUAREl)
69~(TVPE? PLA~ER PL~Rl)
T
70~CTVPE? PLAVER WORKER)
NIL' '
71~(ANO (TYPE? PLAYER PLYR1)

(replace BOARoPOSIT~ON of PLYRl
I •• } i t.b ' SQUAF:E2))

8QUARE2
72~PU"Rl
(PLAYER REO SQUARE2)
7:::~

Figure 24.7. TYPERECORO and Explicit Type Checking

Other variations on record definitions are in the Interiisp
Reference Manual, Volume 1, Section 8.

RECORDS MAY BE YOUR FAVORITE DATA STRUCTURE'

25.1 LET

LOCAL VARIABLES· USING LET A.I\ID :JROG

25. LOCAL VARIABLES - USING LET
ANDPROG

Local variables are variables created within a function, and
accessed and changed only within that function. Contrast a local
variable and a global variable:

• Local variables are handled more efficiently by the interpreter
and the compiler;

• local variables, especially when well named, can make your code
easier to understand, and to change;

•. it is better style to use local variables, and to minimize the Use of
global variables.

This chapter will explain the use of Interlisp-D forms for creating
local variables.

Interlisp-D provides several ways to create local variables. One is
LET. Its use will be illustrated with an· example, the function
MY • ADOPROP. This function maintains a list of values for each
property of an atom. When a new value is added with
MY • ADOPROP, the function first checks to see whether the new
value is a member of the list of values. If it is, the current list of
values is returned. If it is not already a member of the list, it is
added to the list of values for that property.

Without using LET the function MY • ADOPROP can be written like
this:

DEdit of function MY.ADDPAOP EditOps
(LAMBDA (ATOM PROPERTY VALUE)

l!E. (" MEMBER VALUE {GETPROP ATOM PF:OPEF: TY L~
THEN jGETPROP ATOM PROPERTY~

ELSE (PUTPF:OP ATOt~ PF:OPERTY
-- d (r:fi'N'S",,'ALlIE

----- "TG"E'T'P R 0 PAT (I t,1
P R O'P'E'R TYl LLU

,.::.::ter"
E:efore
Delete

F:epl~3.ce
':::' jtcf-I

,; :1 out
Uncio
Find

·:;;' ".·ap
F:eprint

Edit
EclitCDrn

E:reak
E'y'~3.1

Exit

Figure 25.1. The function MY.ADDPROP can be written like this, without using
the function LET

25 1

LET

25.2

Notice that the function call (GETPROP ATOM PROPERTY)
appears several times. Use the function LET to bind a local
variable to the value returned from this function call, so that it
only needs to be done once. It will be easiest to define this
function in the Interlisp-D Structure Editor, DEdit. To do this,

(1) Type:

(OF MY.ADDPROP)

in the Interlisp-D Executive window. When you are asked
whether you want to edit a dummy definition, type Y. A
standard template for writing functions will appear. (See Figure
25.2.)

This chapter will assume that you know how to use DEdit,
covered in Section 11.3, Page 11.4.

DEdit of function MY.ADDPAOP EditOps
(LAMBDA (ARGS .. ,)

t,OD·'")
.'::'.fter

E:efore
Delete

F:eplace
:3··.· ... itch

I" ,I

(;.out
Unclo
Find

'=::\.'· ... ap
Reprint

Edit
EclitC:orfl

E:re .:;..1<
EV'3.1
E.:':: it

Figure 25.2. The standard template supplied by DEdit for defining functions.

(2) Change the template's formal parameter list so that the function
expect three arguments: ATOM,. PROPERTY, and VALUE.

(3)· The body of the function will be the LET expression. The first
argument that LET expects is a list of lists. Each list is a list
containing a local variable and its initial value.

(4)

In this example, there is only one local variable, OLOVALUES.
This variable's value will be the value returned from the function
call, (GETPROP ATOM PROPERTY). Add this to your function
definition, so that it looks like this:

DEdit of function MY.ADDPAOP EditOps
(LAMBDA (ATOM PROPERTY VALUE)

(LET «OLOVALUES (GETPROP ATOM PROPERTY»)
)

JH1~~YJ)

.i:..ftet"
E:efore
Delete

F:eplace
:3 "i'lite f-,

': ;. out
Unelo
Find

S·· ... ·iap
Reprint

Eclit
EditCorn

E:reak
EV'3.1
E::o::it

Figure 25.3. MY. AOOPROP's LET with its local variable. The body of the
LET has not yet been added.

All forms after the list of local variables and their values make up
the body of the LET. In this example, the body of the LET is the

LOCAL VARIABLES· USiNG LET AND PROG

25.2 PROG

LOCAL VARIABLES USING LU AI\O PROlJ

LET

same as the body of the function without LET, except that the
local variable, OlDVALUES, is used instead of the calls to
GETPROP.

Add the body to your function, so that it looks like this:

DEdit of function MY.ADDPAOP EditOps
(LAMBDA (ATOM PROPERTY VALUE)

(LET ((OLOVALUES (GETPROP ATOM PROPERTY)) . . j .

(~ (MEMBER VALUE OLOVALUESI
. ~hen OLOVALUES
e~e (PUTPROP ATOM PROPERTY

(CONS VALUE OLDVALUES))
) "))

Figure 25.4. MY. AODPROP, written with LET.

,i:.,fter
Eiefore
Delete

F:epl"3.ce
::::" ... · ... itch

Each expression in the body of the LET is evaluated, and like a
LAMBDA, the value of the last expression in the body is returned
as the value of the LET.

(5) Exit from the editor, and try your function. Type:

(MY.AOOPROP 'APPLE 'COLORS 'RED)

and

(MY.AOOPROP 'APPLE 'COLORS 'YEllOW)

Check the value of the property COLORS of the atom APPLE by
typing:

(GETPROP 'APPLE 'COLORS)

Both colors will be in the list. Type:

(MY.ADDPROP 'APPLE 'COLORS 'RED)

again. RED will not be added to the list for the second time.
VVhen you check the value of the piopeity COLORS of the atom
APPLE, the list (YELLOW RED) should be returned, as in the
following figure:

Interlisp -0 Executive Window .
NIL
46~(GETPROP 'APPLE 'COLORS)
('""ELLO',,,' RED)
47~

Figure 25.5. The value of the property COLORS of the atom APPLE

For more information about LET, see the Library Packages
Manual.

The same example can be used to illustrate the use of the
function PROG. There are differences between PROG and LET,

25 3

PROG

25.4

which you should note as you go through the example.
Although LET is the preferred form, there are times when the
extra flexibility probided by PROG is needed.

Once again, it will be easiest to define the example function in
the Interlisp-D Structure Editor, DEdit. To do this,

(1) Type:

(OF MY.AOOPROP2)

in the Interlisp-D Executive window. When you are asked
whether you want to edit a dummy definition, type Y. A
standard template for writing functions will appear. (See Figure
25.2.)

(2) Change the template's formal parameter list so that the function
expect three arguments, ATOM, PROPERTY, and VALUE.

(3) The body of the function will be the PROG expression. Like LET,
the first argument that PROG expects is a list that will allow it to
set up local variables.

In this example, there is only one local variable, OLDVALUES.
This variable's initial value is the value returned from the
function call, (GETPROP ATOM PROPE RTY). Add this to you r
function definition, so that it looks like this:

DEdit of funGtion MY.ADDPAOP2 EditOps
(LAMBDA (ATOM PROPERTY VALUE) After

(PROG «OLDVALUES (GETPROP ATOM PROPERTY) Before
)) Delete

f&QX)) Replace
S·Nitch

I, }

() out
Undo
Fine!

'3 '.".".'a.p
Rept'int

Edit
Ec~itCorn

8rea.J..::.
EV~3.1
E:-::it

Figure 25.6. MY. ADDPROP's LET with its local variable. The body of the
LET has not yet been added.

NOTE: Unlike LET, PROG's local variable list can contain lists or
atoms. Lists contain two items, the first is the local variable's
name, the second is its initial value. Atoms are the local
variables' names, and each one is bound to NIl.

(4) All forms after the list of local variables and their values, make up
the body of the PROG. In this example, the body of the PROG is
almost the same as the body of the function with LET, except
that the if is inside the function RETURN. Add the body to your
function, so that it looks like this:

LOCAL VARIABLES - USING LET AND PROG

LOCAL VARIABLES· USING LET AND ?ROG

DEdit of function MY.ADDPAOP2 EditOps
(ATOM PROPERTY VALUE)
((OLOVALUE::: (13ETPROP II ml,l PROPEfH'.,.';'

.: RETIJR~I
(if .: MEmBER ',/ALUE OLOlii!.LUE:::)

then OLO\il~LUES

else (PUTPP.OP i!. TOr., PROPERn'
. (CONS VALUE OLOliALUES

)):l)j)

a:r::;r:e J
['eie1:e I

~f:.'.i,}co:-I
'::·V'/Itc r.

... '.,',-,', Jt I
iJ'r~lcjO:'
F!nd

-:::'.,...a.p
Hepr'inr L....----------------011 Edit

Figure 25.7. MY .ADDPROP,writtenwith PROG.

EClit'=orn
8 r'.;: ,3 I-'
E'.·.)i
E.<it

PROG

NOTE: Unlike LET, the PROG does not return the value of the
last expression in its body. The expressions in the body of the
PROG are evaluated in order until the function RETURN is
reached.

The function RETURN takes one argument. The value of this
argument is returned as the value of the PROG. RETURN is
needed for the PROG to return a value. Without RETURN, the
PROG returns NIl. No other expressions in the body of the PROG
are evaluated after the RETURN Junction is evaiuated.

(5) Exit from the editor, and try your function. Type:

(MY.AOOPROP2 'GRAPE 'COLORS 'GREEN)

and

(MY.AOOPROP2 'GRAPE 'COLORS 'PURPLE)

Check the value of the property COLORS of the atom GRAPE by
typing:

(GETPROP 'GRAPE 'COLORS)

Both colors will be in the list. Type:

(MY.AOOPROP2 'GRAPE 'COLORS 'PURPLE)

again. PURPLE will not be added to the list for the second time.
When you check the value of the property COLORS of the atom
GRAPE, the list (PURPLE GREEN) should be returned, as in the
following figure:

Interlisp -0 Executive Window
NIL
62~(GETPROP 'GRAPE 'COLORS)
(PURPLE GF:EEN)
63~

Figure 25.8. The value of the property COLORS of the atom APPLE

PROG can also be used for looping, but it is better style to use the
appropriate tnterlisp-D interative statement (See Chapter 26.)
For more information about PROG, see the Interlisp-D Refernece
Manual, Volume I, Page 9.B.

25 ')

PARALLEL VERSUS SEQUENTIAL VARIABLE: BINDING

25 .. 3 Parallel versus Sequential Variable Binding

25.3.1 LET*

256

Both PROG and LET bind their local variables in parallel. This
means that all the variable values are set at once, not one after
the other. When the local variables are initialized, you cannot
compute the value of one local variable using the value of
another local variable.

As an example, see Figure 25.9. It shows a function,
RANOOM-SQRT, that expects one argument, a list of positive
integers. First, a random number between one and the length of
the list of integers is selected. The positive integer at that
position in the list of integers is selected, and its square root
returned.

DEdit of function RANDOM.SQRT EditOps
i LA MB D A i IN T - I::; T) I.i< ~ 'lit~d:' :31 ·-,:~uq ·;:'6 7: 24") ,':::',fte t"
. (~~I (ipos RAND 1 (LENGTH [NT-LIST)) Before

(un AT -P08 (eAF: (NTH I NT -u :~: . pn:=:: Delete

(8QRT INT-AT-POS»))
F:epl~3.ce
S··l· .. ·itch

<:') out
Unclo
Find

S·· ... ·lap
Reprint

'--_________________ ... Edit

E,:litC'Jrn
8re~lk
E'y'~3.1

E::<it

Figure 25.9. The incorrect definition of the function RANDOM.SQRT

Unfortunately, the function is written incorrectly. When the
variables are initialized, the value of INT -AT -POS depends on
the value of POS. When the function is run, an error is
generated, as shown below:

Interlisp -0 Executive Window
~JIL
72~(RANDOM.SQRT '(1 43 6 94))

UNBOUND ATOM
po::: {in RANDOM.SQRT} in (NTH INT-LIST P08

Figure 25.10. The error generated by the Incorrect function definition

The same thing would happen if a PROG was used instead of LET.
What is needed for this function is sequential binding.
Interlisp-D provides LET- and PROG- for this purpose. They
work like LET and PROG, respectively, except that they bind their
local variables sequentially, one after the other, instead of in
parallel.

Write the example function, RANDOM. SQRT using the function
If: '*. As usual, it is easiest to define the function in the
Interlisp-D Structure Editor, DEdit. To do this, type:

LOCAL VARIABLES - USING LET AND PROG

25.3.2 PROG*

LOCAL VARIABLES· USiNG LET AND PROG

PARALLEL VERSUS SEQUENTIAL VARIABLE BINDING

(DF RANDOM.SQRT)

in the Interlisp-D Executive window. When you are asked
whether you want to edit a dummy definition, type Y. A
standard template for writing functions will appear. (See Figure
25.2.)

Change the function template so that your function iooks iike
this:

DEdit of function AANDOM.SQAT EditOps
(LAMBDA (I NT -LI 8T) (t: .;,.jlted: ·:31·"::'U9·;:a317:24"·:,

(h£L~ ((PO::: (RAND 1 (LENGTH INT-LIST)))
(INT-AT-POS (CAR (NTH INT-LIST POS

))))
(SQRT INT-AT-POS»)

.':::'.fter
E:efore
Delete

F:eplace
::::·· ... ···i~ct-I

I ,. ·"':-:'1 jt I
Ut:do
Find

'3·· ... ·/ap
Reprint

Edit
Ecli~Corn

E:reaJ<.
EV'3.1
Exit

Figure 25.11. The example function, RANDOMoSQRT, written with a LET*,
so that the variables are bound one after the other.

Now run the function. Type:

(RANDOM.SQRT '(4 36 81 9»

No error is generated!

Now write the example function again; but this time use the
function PROG·, and call it RANDOM. SQRT2. As usual, it is easiest
to define the function in the Interlisp-D Structure Editor, DEdit.
To do this, type:

(DF RANDOM.SQRT2)

in the Interlisp-D Executive window. When you are asked
whether you want to edit a dummy definition, type Y. A
standard template for writing functions will appear. (See Figure
25.2.)

Change the function template so that your function looks like
this:

DEdit of function AANDOM.SQAT2 ELitOps
.':::'.fter

E:efor'e
Delete

F:epla.ce
::::'o/·,.i~cfl

()
(:. out
Undo
Fine!

·~;·./ ap
Rept'in~

Eclit
EclitCorn

E:rea.k.
Eva.1
E::<it

25 7

PARALLEL VERSUS SEQUENTIAL VARIABLE BINDING

258

Figure 25.12. The example function, RANDOM. SQRT, written with a PROG·,
so that the variables are bound one after the other.

Now run the function. Type:

{RANDOM.SQRT '(4 36 81 9»

No error is generated! For more information about PROG- see
the Interlisp-D Reference Manual, Volume I, Page 9.9.

LOCAL VARIABLES· USING LET AND P~OlJ

26. ITERATIVE STATEMENTS

Iterative statements non-recursively repeat a set of steps. This
section provides different iterative statement examples for you
to follow. Iterative statements are implemented wi th the CLiSP
facility discussed in Section 13.1. For now you don't r,eed to
know anything about CUSP to use iterative statements.

26.1 General Structure and Use

ITERATIVE STATEMENTS

Iterative Statements provide a simple method of looping in
Interlisp-D. Using the statements improves readability of code
and provides standard paradigms for loop organization.

There are three parts to an iterative statement. The first part
specifies the basic structure of the loop. For example, looping
through integers from 1 to 10, or through the elements of a list.
The second part specifies how the values returned by each
iteration are treated. The third part specifies the body ot the
loop.

Consider the following example of a fairly generic loop:

(FOR X FROM 1 TO 10 looping-keyword
body-of-the-Ioop)

In this example, FOR x from 1 to 10 is a loop structure. The
variable x is a local variable, local to the iterative statement. In
the next few paragraphs we discuss ways to use the
looping-keyword and the body-of-the-/oop.

The keywords tell the loop how to return the values:

DO Evaluates the expressions in the body of the loop. Returns NIL

COLLECT

InterllSp·O Executive Win(Jow

NIL
39~{FOR y FROM 1 TO 3 00 (PRINT X))
1

-::.
-'
NIL
4~1";'

Figure 26.1. A FOR loop using the keyword DO

Like ~O, except that the value of each iteration is gathered into a
list and the list is returned.

26 ~

GENERAL STRUCTURE AND USE

26.2 Local Variables

26.2

THEREIS

InterllSp-O Executive WindOW ...

NIL
41~(FOR X FROM 1 TO 3

COLLECT (TIMES v 3))
(3 t; 9)
42

Figure 26.2. A fOR loop with the keywork COLLECT

Stops iteration when the body of the loop evaluates to a
non-NIL value. Returns the value of the local iteraticn variable
when the loop stops.

Intertlsp-o Executive Window .

NIL
43~(FOR X FROM 1 TO 3

THERE I :~: (t3REA TERP (T I t.1E:~: n S) 9'))
,-,
.;::,

Figure 26.3. The Iterative statement fOR with the keyword THERE IS

One more useful feature is having the fOR loop able to count by
steps other than one. This is done with BY.

BY Specifies increments for iteration. Increments can be positive or
negative. BY determines only the increment of the loop counter.
It is used with other keywords that determine the value the loop
returns.

InterllSp-O Executive Window ..
• "1 ! L.

83~(FOR X FROM 1 TO 10 BY 5 00 (PRINT X))
1
6
NIL
39~(FOR X FROM 10 TO 1 BY -S 00

(F'R I NT ;:0)
10
5
NIL
90~

Figure 26.4. The keyword BY used with both a positive and a negative

Increment. Note It is used with the keyword 00

Local variables, unlike global ones, are variables known only in
one expression. The local variable used for iteration, X in the
above examples, need not be declared or initialized. Additional
local variables may be specified within an iterative statement by
using the CLISP word BIND. Initialization of local variubles is
accomplished by using the format

Var 4- Expression

with BIND.

i fERA i iVE 51 A Tt: ,VE ~JTS

26.3 Iteration On Lists

ITERATIVE STATEMENTS

LOCAL VARIABLES

For example, to expand on the example in Figure 26.NIL by
substituting a local constant for the multiplier 5 and the
threshhold 1, see Figure 26.5.

r
Wlr,.e.o .• +~. MWAitmP. It",
54~(FOR X FROM 1 TO 3

BIND (MULTIPLIER ~ 5)
(THRE8HHOLD ~ 9)

,-.
.:::.

55~

THEREIS (GREATERP
. (TIMES X MULTIPLIER)

THRESHHOLD))

Figure 26.5. USing BIND to initialize local variables.

See additional examples in the section on conditional looping at
the end of this chapter, Page 26.8.

The easiest and most widely used iteration is on successive CARs
of a list. (For an example of this type of iteration, see Figure
26.6.)

IN is the eLisP word that sets the iterative variable X to the CAR of
the current tail for each iteration.

ON

Inter lisp -D Executive . . .
NIL
100~(SE 0 MVLIST '(This is a test,»
(This i '03 t.e:H.,) .
l~(FOR IN MVLIST 00 (PRINT X)
This

1:.es1: ..
NIL
,-,
.:::. ... A

Figure 26.6. Iteration on successive CARs of a list with IN

is used to set the iterative variable X to the successive CDRs of a
list. (See Figure 26.7.)

263

ITERATION ON LISTS

26.4 Parallel Iteration

264

Interlisp -0 Executive .'
NIL
4~(FOR X ON MYLIST 00 (PRINT X))
(T~lS is a test.)
(1S a test.) .
(,~ t.e~:t..)
(t.e~:t.,) .
NIL

Figure 26.7. Iteration on successive (DRs of a list with ON.

AS is used between clauses when lists and/or numerical iteration
should happen in parallel. In other words, X has many values,
and N has many values. With AS between the two clauses, when
X changes, so must N, and the two do so independent of the
values of the other.

All iteration will stop when any of the clauses complete. Because
MYLIST in Figure 26.8 has only 4 values, the 1 to 5 iteration is not
finished, and the loop completes after 4 cycles.

Interlisp -0 Executive . ~.

NIL
10~(FOR X IN MYLIST AS Y FROM 1 TO 5 00

(PRINT X) (PRINT V))
This
1
is
2
a
.;:.
.~

test.
4
NIL
11~

Figure 26.8. The loop only iterates through 4 cycles, because there are only 4
items in MYLIST

The iteration will stop at the end of the shortest dause, no
matter what its position in the iterative statement. Note, for
example, that exchanging the position of X and Y in the iterative
statement does not affect how it runs, or when it stops running:

26.5 Conditional Iteration

WHEN

ITERATIVE STA fEMEI\JTS

PARALLEL-ITERATION

Inter lisp -0 Executive Window ..
NIL
77~(FOR Y FROM 1 TO 5 AS X IN MVlIST 00

(PRINT X) (PRINT V))
This
1
; :::

t.e:o:::t,
4
NIL

Figure 26.9. The loop only iterates through 4 cycles.

Note in the following example, that the clauses are really
independent. As is shown in Figure 26.10, you cannot say, for
instance,

(FOR X ON MYLIST AS Y ON (CDR X) DO ...)

Interlisp -0 ExeCutive
NIL
7 <'-M"ll 1ST
(T h 1::: 1::: ,j 1:. e :::: t. ,)
~~(FOR X ON MVLIST AS V ON (COR X) 00

. (PRINT X) (PRINT V))

UNBOUND ATOM

Figure 26.10. The values of the iterative variables are set in parallel. If they
depend on each other, an error can result.

This is described by saying that the local variables are set in
parallel.

can be used inside of an iterative expression when you wish only
certain values to be used in the body of the loop. In the example
(See Figure 26.11.), you are asking that you receive the values of
X when Y is a list.

265

CONDITIONAL ITERATION

26.6 More Iteration

DO

266

InterllSp-O Executive wintlQw
NIL
59~(SETQ MYLIST '(A (6) C (0) E (F) G»
(A (6)

c
(0)
E
(F)
13:)

60~(FOR X FROM 1 TO 5 ~S V IN MVLIST
WHEN (LISTP V) COLLECT (X * X»

Figure 26.11. Conditional Looping, The body of the loop is evaluated Gilly when
the value of Y is a list,

There are many other variations on iterative statements. They
can all be found in the Interlisp-D Reference Manual, Volume 1,
Chapter 9. An iterative keyword such as FOR, BIND, WHILE, or
REPEATUNTIL must be used as the car of the iterative
statement. Other than this restriction, iterative statements are
flexible, other iterative keywords can be put in many different
places in the statement. It is bad style, however, to take too
much advantage of this flexibility. Here are some guidelines for
good looping style: When using the keyword WHEN or UNTIL,
place it before the DO or COLLECT keyword; when using the
keyword REPEATWHILE or REPEATUNTIL, place it after the DO or
COLLECT keyword.

The easiest way the learn to write iterative statements is to
practice with the examples in this chapter.

Interlisp -0 Executive '
NIL
18~(FOR GNT FROM 1 TO 3 00

(PRINl CNT)
(PR I Nl " sqlJar'ed equd 1::: ")
(PRINT (TIMES CNT CNT)))

1 squared equals 1
2 squared equals 4
3 squared equals 9
NIL
19~

Figure 26.12. Numerically controlled FOR loop, Print:; sqlJares ot the number
range

COLLECT

THEREIS

AS

ITERATIVE STATEMENTS

NIL
23+- (FOF: EM IN

, 1 and in the end) 2 but 3)
00 F NUMBERP ITEM) . .

TH N (PRINt ITEM)
(PRINt " is·.j nWl1ber'!")
I~ TERPR I))

(IF (LISTP ITEM)'
. TH~N (PRINT ~TEM)]

1 ;s a number'!
(,jflci ; n t.he en(~)
2 is .j ntHI1~)er'!

:: i:5: .3 number!
NIL
24~

Figure 26.13. List controlled FOR loop.

Inter lisp -0 Executive
NIL
25.:.(FOR ITEM IN

1 ;s
(,jnci
2 i:5:
:3 is
(NIL

'(1 (and in the end) 2 but 3)
COLL~CT'(IF (NUMBERP ITEM)

. T~EN .
(PR HIt ITEM)
(PF: It-J1 " is' ,j number"! ")
(TEF:PRI))

(IF (LI8TP ITEM)
THEN

a nWllber'!
in t.he et-":~)
a number'!
a number'!

(PF:ItH ITEM)]

(" ,jnd in the encf;
~jIL NIL NIL) .

MORE i fERA TION

Figure 26.14. The same as last example except uses COLLECT Instead of 00.

Interlisp -0 Executive
NIL
27~(FOF: ITEt.1 HJ

'(There is a 3 in this list.)
THEREIS (IF (NUMBERP ITEM)

THEN
(PF:lr'IT "I found it")))

II I found it"
....
.)

28~

Figure 26.15. This loop will stop when the body evaluates to a non-N I L value.

26 7

MORE ITERATION

WHEN

UNTIL

BIND

26.8

Inter lisp -D Executive
NIL
29~(FOR ITEM! IN '(1 2 3)

A:3 ITEM2 in
'(is as was shall-be)

AS ITEM3 in '(A BCD E) .
COLLECT (LIST ITEM1 ITEM2 ITEM3»

((1 H: A)
. (2 .~S ~,)
(3 ' .. ,I.=:! 5: b)

·::0~

Figure 26.16. Collects groupings of elements at the same poslt!on within each
list.

Interlisp -D Executive
NIL
34~(FOR ITEM IN '(1 and 2 and 3)

COLLECT (~RINT ITEM)
WHEN (NUMBERP ITEM»

1

(1 2 :3)

Figure 26.17. Conditional in conjunction with a FOR loop. Prir'lts and collects
the numbers in a list.

Interlisp -0 Executive
NIL
3:3+- (FOF: I TEM IN

Ther·e
; 5:
a

. (Ther·e 1~: .=:! 3 in rhls: 11S:t..)
UNTIe (NUMBERP ITEM)
COLLECf (PRINT ITEM))

(Thet~e E· a)
·::9+-

Figure 26.18. Conditional in conjunction with a FOR loop. Pnnts and collects
the numbers in a list.

ITERATiVE: 5T ATEI'v1E\J T S

ITERATIVE STATEMENTS

..
I~ 1 L

66-'" (FOR I TErl,
BIND
00 (P

N '(A B
CNT -'" ~1
IN1 (LI

(TEF-:PF:I))
(Item 1 is NIL)
{Item 2 is NIL)
{It.em :' is NIL)
.~ I t em 4 is NIL :.
(Item :; is NIL)
NIL
67~

C 0 E)

T "It.em"
ETQ CNT (AOOl CNT»

(CAF-: ITEtO») ::;11

MORE ITERATION

Figure 26.19. Independent use of conditional. Also illustrates the use of BIN!)
Prints the numerical positions and elements of a list.

269

MORE ITERATION

[This page intentionally left blank]

2610 iTERATiVE S'ATci'v1Ef\;7"S

27. i Windows

27.1.1 CREATEW

WINDOWS AND REGIONS

27. WINDOWS AND REGIONS

Windows have two basic parts: an area on the scr.een containing
a collection of pixels, and a property list. The window properties
determine how the window looks, the menus that can be
accessed from it, what should happen when the mouse is inside
the window and a mouse button is pressed, and so on.

Some of the window's properties can be specified when a
window is created with the function CREATEW. In particular, it is
easy to specify the size and position of the window; its title; and
the width of its borders.

(CREATEW region title border-width)

Region is a record, named REGION, with the fields 1 eft,
bottoll. width, and height. A region describes a
rectangular area on the screen, the window's dimensions and
position. The fields 1 eft and bot tOil refer to the position of
the bottom left corner of the region on the screen. Wi dth and
height refer to the width and height of the region. The usable
space inside the window will be smaller than the wi dth and
height, because some of the window's region is consumed by
the title bar, and some is taken by the borders.

Title is a string that will be placed in the title bar of the window.

Borderwidth is the width of the border around the exterior of
the window, in number of pixels.

For example, typing:

(SETQ MY.WINDOW (CREATEW
(CREATEREGION 100 150 300 200)
·THIS IS MY OWN WINDOW-)

produces a window with a default borderwidth. Note that you
did not need to specify all the window's properties. (See Figure
27.1.)

27 1

WINDOWS

NIL
5~(SETQ MY,WINDOW (CREATEW (CREATEREGION 100 150 300 200)

"THIS IS MY OWN WINDOW")) .

{WINDOW}#62,65554
6"",,

27.1.2 WINDOWPROP

272

Figure 27.1. Creating a Window

In fact, if (CREATEW) is called without specifying a region, you
will be prompted to sweep out a region for the window. (See
Section 10.2, Page 10.2.)

The function to access or add to any property of a window's
property list is WINDOWPROP.

(WINDOWPROP window property < value>)

When you use WINDOWPROP with only two arguments - window
and property - it returns the value of the window's property.
When you use WINDOWPROP with all three arguments - window,
property and value - it sets the value the window's property to
the value you inserted for the third argument.

For example, consider the window, MY 0 WINDOW, created using
(CREATEW). TITLE and REGION are both properties. Type

(WINDOWPROP MY.WINDOW 'TITLE)

and the value of MY.WINDOW's TITLE property is returned,
"THIS IS MY OWN WINDOW". To change the title, use the
WINDOWPROP function, and give it the window, the property
title, and ttJe new title of the window.

(WINDOWPROP MY.WINDOW 'TITLE -MY FIRST WINDOW-)

automatically changes the title and automatically updates the
window. Now the window looks like Figure 27.2.

WINDOWS AND REGIONS

7 1.'11

I
8 Ilil

" I
9

NDOWPROP MY,WINDOW 'TITLE)
IS MY OWN WINDOW"

WINDOWS

NDOWPROP MY,WINDOW 'TITLE "MY FIRST WINDOW")
IS MV OWN WINDOW"

Figure 27.2. TITLE is a Window Property

Altering the region of the window, MY • WINDOW, is also be done
with WINDOWPROP, in the same way you changed the title.
(Note: changing either of the first two numbers of a region
changes the position of the window on the screen. Changing
either of the last two numbers changes the dimensions of the
window itself.)

27.1.3 Getting windows to do things

WINDOWS AND REGIONS

Four basic window properties will be discussed here. They are
CURSORINfN, CURSOROUTfN, CURSORMOVEDfN, and
BUTTONEVENTfN.

A function can be stored as the value of the CURSORINFN
property of a window. It is called when the mouse cursor is
moved into that windo\,a.:.

Look at the following example:

(1) First, create a window called MY.WINDOW. Type:

(SETQ MY.WINDOW
(CREATEW

(CREATEREGION ZOO ZOO zoo ZOO)
-THIS WINDOW WILL SCREAM!-)}

This creates a window.

(2) Now define the function SCREAMER. It will be stored on the
property CURSORINFN. (Notice that this function has one
argument, WINDOWNAME. All functions called from the
property CURSORINFN are passed the window it was called from.
So the value of MY. WINDOW is bound to WINDOWNAME. When
it is called, SCREAMER simply rings bells.

(3)

(DEFINEQ (SCREAMER (WINDDWNAME)
(RINGBELLS)
(PROMPTPRINT -YAY - IT WORKS!-)
(RINGBELLS»)

Now, alter that window's CURSORINFN property, so that the
system calls the function SCREAMER at the appropriate time.
Type:

273

WINDOWS

(4)

CU RSOROUTFN

CURSORMOVEDFN

BunONEVENTFN

27.1.3.1 BUTTONEVENTFN

274

(WINOOWPROP MY.WINDOW 'CURSORINFN
(FUNCTION SCREAMER»

After this, when you move the mouse cursor into MY.WINDOW,
the CURSORINFN property's function is called, and it rings bells
twice.

CURSORINFN is one of the many window properties that come
with each window - just as REGION and TITLE did. Other
properti es i ncl ude:

The function that is the value of this property is executed when
the cursor is moved out of a window;

the function that is the value of this property is executed when
the cursor is moved while it is inside the window;

the function that is the value of this property is executed when
either the left or middle mouse buttons are pressed (or released).

Figure 27.3 shows MY.WINDOW's properties. Notice that the
CURSORINFN has the function SCREAMER stored in it. The
properties were shown in this window using the function
INSPECT. INSPECT is covered in Chapter 32.

{WINDOW}#fi4,140470 Inspector
8CF-:EEN
1,',1 I NOO','JEN TRYFN
PROCESS
I,\IBOROER
NEWREGIONFN
l,o,IlITLE
~10VEFN
CLOSEFN
HORIZ8CROLLWINOOW
VERT8CROLLWINDOW
8CROLLFN
HORIZ8CROLLREG
VERTSCROLLREG
USERDATA
E:HENT
RESHAPEFN
REPAINTFN
CIJRSORrnOVEDFN
CIJRSOROUTF~J
CIJRSORINFN
RIGHTBUTTONFN
BUTTONE\,'ENTFN
REI::;
SA'vlE
NE:x:T'",1
os!='

NIL
G I ',lE . TT"l" . PROCESS
NIL
4
NIL
"THIS WINDOW WILL SCREAM!"
t-JI L
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
~HL
NIL
~HL
NIL
SCREAtI1EF:
NIL
TOTOP'I,I
,,200 2180 2018 :::1~H3
{BITMAP}#63)1405 6
{WINDOW}#55)1714 0
{STREAM}#55,1144 4

Figure 27.3. Inspecting MY.WINDOW for Mouse-Related Window Properties

You can define functions for the values of the properties
CURSOROUTFN and CURSORMOVEDFN in much the same way as
you did for CURSORINFN. The function that is the value of the
property BUTTONEVENTFN, however, can be specialized to
respond in different ways, depending on which mouse button is
pressed. This is explained in the next section.

BUTTONEVENTFN is another property of a window. The function
that is stored as the value of this property is called when the
mouse is inside the window, and a mouse button is pressed As
an example of how to use it, type:

WINDOWS AND REG'()NS

WINDOWS

(WINDOWPROP MYoWINOOW 'BUTTONEVENTFN
(FUNCTION SCREAMER»

When the mouse cursor is moved into the window, bells will ring
because of the CURSORINFN, but it will also ring bells when
either the left or middle mouse button is pressed. Notice that
the right mouse button functions as it usually does, with the
window manipulation menu. If only the left button should
evoke the function SCREAMER, then the function can be written
to do just this, using the function MOUSESTATE, and a form that
only MOUSESTATE understands, ONLY. For example:

(OEFINEQ
(SCREAMER2 (WINDDWNAME)

{if {MOUSESTATE (ONLY LEFT»
the" (RING8ELLSj»)

In addition to (ONLY LEFT), MOUSESTATE can also be passed
{ONLY MIDDLE}, (ONLY RIGHT) or combinations of these
(e.g. (OR (ONLY LEFT) (ONLY MIDDLE) »). You do not need
to use ONLY with MOUSESTATE for every application. ONLY
means that that button is pressed and no other.

If you do write a function using (ONLY RIGHT), be sure that
your function also checks position of the mouse cursor. Even if
you want your function to be executed when the mouse cursor is
inside the window and the right button is pressed, there is a
convention that the function DOWINDOWCOM should be executed
when the mouse cursor is in the title bar or the border of the
window and the right mouse button is pressed. Please program
your windows using this tradition! For more information, please
see the Interlisp-D Reference Manual, Volume 3, Chapter 28,
Pages 7 and 28.

Please refer to the Interlisp Reference Manual, Volume 3,
Chapter 28, for more detail and other important functions.

27.1.4 Looking at a window·s properties

27.2 Regions

WINDOWS AND REGIONS

INSPECT is a function that displays a list of the properties of a
window, and their values. Figure 27.3 shows the INSPECT
function run with MY • WINDOW. Note the properties introduced
in CREATEW: WBOROER is the window's border, REG is the
region, and WTITLE is the window's title.

A region is a record, with the fields LEFT, BOTTOM, WIDTH, AND
HEIGHT. LEFT and BonOM refer to where the bottom left hand
corner of the region is positioned on the screen. WIDTH and
HEIGHT refer to the width and height of the region.

CREATEREGION creates an instance of a record of type REGION.
Type:

(SETQ MY.REGION (CREATEREGION 15 100 200 450»

275

REGIONS

276

to create a record of type REGION that denotes a rectangle 200
pixels high, and 450 pixels wide, whose bottom left corner is at
position (15, 100). This record instance can be passed to any
function that requires a region as an argument, such as
CREATEW, above.

WINDOWS AND REGiOI\lS

28.1 Displaying Menus

WHAT ARE MENUSJ

28. WHAT ARE MENUS?

While Interlisp-D provides a number of menus of its own (see
Section 7.1, Page 7.2), this section addresses the menus you wish
to create. You will learn how to create a menu, display a menu,
and define functions that make your menu useful.

Menu's are instances of records (see Chapter 24). There are 27
fields that determine the composition of every menu. Because
Interlisp-D provides default vaiues for most of these descriptive
fields, you need to familiarize yourself with only a few that we
describe in this section.

Two of these fields, the TITLE of your menu, and the ITEMS you
wish it to contain, can be typed into the Interlisp-D Executive
window as shown below:

Interlisp -0 Executive Window
NIL
33~(8ETO MV,MENU (CREATE MENU

, TiTLE ~ "PL~ASE CHOOSE ONE OF THE
ITEMS"

ITEMS ~ 'COUIT NEXT-OUESTION
'~EXT-TOPIG 'SEE-TOPICS)))

{MENU}#54,143540 ' , ,
34f-

Figure 28.1. Creating a menu

Note that creating a menu does not display it. MY.MENU is set to
an instance of a menu record that specifies how the menu will
look, but th~ menu is not displayed.

Typing eithe'r the MENU or ADDMENU functions will display your
menu on the screen. MENU implements pop-up menus, like the
Background Menu or the Window Menu. ADOMENU puts menus
into a semi-permanent window on the screen, and lets you select
items from it.

(MENU MENU POSITION) pops-up a menu at a particular
position on the screen.

Type:

(MENU MY.MENU NIL)

to position the menu at the end of the mouse cursor Note that
the POSITION argument is NIL In order to go on, you must
either choose an item, or move outside the menu window and

'::81

DISPLAYING MENUS

press a mouse button. When you do either, the menu will
disappear. If you choose an item, then want to choose another,
the menu must be redisplayed.

(AOOMENU menu window position) positions a permanent
menu on the screen, or in an existing window.

Type:

(AOOMENU MY.MENU)

to display the menu as shown in Figure 28.2. This menu will
remain active, (will stay on the screen) without stoppi ng all the
other processes. Because ADOMENU can display a menu without
stopping all other processes, it is very popular in users programs.

If window is specified, the menu is displayed in that window. If
window is not specified, a window the correct size for the menu
is created, and the menu is displayed in that window.

If position is not specified, the menu appears at the current
position of the mouse cursor.

:'!:!!!'~':~~;"":""'"'''':''''''~'''''''''''''''''''''''''··········::l:!::.!::
!.!:!1! ~~~~~~~~fUN .i!!.!:!!!:
: ~:; :;:;:;:;:;:;:;:;:~:;: ~:;:;:;:;:;:;:::;:;: ~:;:;:;:;:;:::;:;:;: ~:;:;:::;:;: ~:;: ~: ~:;:;: ~:;:;:;:;:;: ~:;::: ~:;: ;:::;: ~
Figure 28.2. A Simple Menu, displayed with ADDMENU.

28.2 Getting Menus to DO Stuff

28.2

One way to make a menu do things is to specify more about the
menu items. Instead of items simply being the strings or atoms
that will appear in the menu, items can be lists, each list with
three elements. (See Figure 28.3.) The first element of each list is
what will appear in the menu; the second expression is what is
evaluated, and the results of the evaluation returned, when the
item is selected; and the third expression is the expression that
should be printed in ttl.e Prompt window when a mouse button is
held down while the mouse is pointing to that menu item. This
third item should be thought of as help text for the user. If the
third element of the list is NIL, the system responds with "Will
select this item when you release the button" .

WHAT ARE MENUS)

GETTING MENUS TO DO STUFF

..
NIL
17 ... {::::FTIl MV. MEWJ2 {eRE ATE MENII

I - '--T;TLE .-~P~E~SE-CH~O~~ ~NE OF THE ITEM:::"

I ITEMS ... '((QUIT
(PR I NT "SHIPPED" 'I

~cH6oSE iHis i6 §TOP")

(NE::<T -QUEST I ON
(PRINT "HERE 1:3 THE NE::-:T QUESTION ... ")
~CHOOSE THIS TO BE ASKED THE NEXT QUESTION")

(NE>~T-TOPIC
-(PRINT "HEF:E F' THE NE>::T TOPIC ... ")
~CHOOSE THIS TO MOVE ON TO THE NExt SUBJECT")

(SEE-TOPICS
-(PRINT "THE FOLLOIIlING HA",1E NOT BEEN LEAF;NED")
~CHOOSE THIS TO SEE THE TOPICS NOT VET LEARN~O"»)

MENU}#55, 75~j 4
8 ... (AbDME~U M .MENU2)
WI~DOW}#54,1 5320
~3 ...

PLEASE CHOOSE ONE OF THE ITEMS
(JUIT

- NE:X:T·(:7;JUE:3TION
NEXT·TOPIC

"---+:3EE. TOPIC:3

WHAT ARE MENUS)

Figure 28.3. Creating a menu that will do things, then displaying it with the
function ADDMENU

Now when an item is selected from MY . MENU2, somethi ng will
happen. When a mouse button is held down, the expressi on
typed as the third element in the item's specification will be
printed in the Prompt window. (See Figure 28.4.)

Figure 28.4. Mouse Button Held Down While Mouse Cursor Selects
NEXT-QUESTION

When the mouse button is released (i.e. the item is selected) the
expression that was typed as the second element of the item's
specification will be run. (See Figure 28.5.)

LEASE CHOOSE ONE OF THE ITEM
QUIT
NE<;T-()_~~'=~_TION ..
NE:. T- TuP Ie -\
SEE-TOPICS

"HERE I S THE NE>::T QUEH ION ... "

Figure 28.5. NEXT-QUESTION Selected

283

GETTING MENUS TO DO STUFF

28.2.1 The WHENHELDFN and WHENSELECTEDFN fields of a menu

Another way to get a menu to do things is to define functions,
and make them the values of the menu's WHENHELDFN and
WHENSELECTEDFN fields. As the value of the WHENHELDFN
field of a menu, the function you defined will be executed when
you press and hold a mouse button inside the menu. As the
value of the WHENSELECTEDFN field of a menu, the function you
defined will be executed when you choose a menu item. This
example has the same functionality as the previous example,
where each menu item was entered as a list of three items.

As an example, type in these two functions so that they can be
executed when the menu is created and displayed:

(DEFINEQ (MY.MENU3.WHENHELD (ITEM.SELECTED MENU.FROM BUTTON.PRESSED)
(SELECtQ ITEM. SELECTED

(QUIT (PROMPTPRINT ·CHOOSE THIS TO STOp·»
(NEXT-QUESTION (PROMPTPRINT -CHOOSE THIS TO BE ASKED THE NEXT QUESTION·»
(NEXT-TOPIC (PROMPTPRINT ·CHOOSE THIS TO MOVE ON TO THE NEXT SUBJECT·»
(SEE-TOPICS (PROMPTPRINT ·CHOOSE THIS TO SEE THE TOPICS NOT YET LEARNED·»
(ERROR (PROMPTPRINT -NO MATCH FOUND·»»)

(DEFINEQ (MY.MENU3.WHENSELECTED (ITEM.SELECTED MENU.FROM BUTTON.PRESSED)
(SELECTQ ITEM. SELECTED

(QUIT (PRINT ·STOPPED·»
(NEXT-QUESTION (PRINT WHERE IS THE NEXT QUESTION ... ·»

!NEXT-TOPIC (PRINT ·HERE IS THE NEXT TOPIC ... ·»
SEE-TOPICS (PRINT ·THE FOLLOWING HAVE NOT BEEN LEARNED ... • »
ERROR (PROMPTPRINT -NO MATCH FOUND·»»)

Now, to create the menu, type:

(SETQ MY.MENU3 (CREATE MENU

284

TITLE ~ ·PLEASE CHOOSE ONE OF THE ITEMS·
ITEMS ~ '(QUIT NEXT-QUESTION NEXT-TOPIC SEE-TOPICS)
WHENHELDFN ~ (FUNCTION MY.MENU3.WHENHELD)
WHENSELECTEDFN ~ (FUNCTION MY.MENU3.WHENSELECTED»)

Type

(ADOMENU MY.MENU3)

to see your menu work.

Now, due to executing the WHENHELDFN function, holding
down any mouse button while pointing to a menu item will
display an explanation of the item in the prompt window. The
screen will once again look like Figure 28.4 when the mouse
button is held when the mouse cursor is pointing to the item
NEXT-TOPIC.

Now due to executing the WHENSELECTEDFN function, releasing
the mouse button to select an item will cause the proper actions
for that item to be taken. The screen will once again look like
Figure 28.5 when the item NEXT-TOPIC is selected.

The crucial thing to note is that the functions you defined for
WHENHELDFN and WHENSELECTEDFN are automatically given
the following arguments:

(1) the item that was selected, ITEM. SELECTED;

(2) the menu it was selected from, MENU.FROM;

(3) and the mouse button that was pressed BUTTON. PRESSED.

Note: these functions, MY • MENU3. WHENHElO and
MY • MENU3. WHENSElCTED, were quoted using fUNCTION
instead of QUOTE both for program readability and so that the

WHAT ARE MENUS)

GETTING MENUS TO DO STUFF

compiler can produce faster code when the program is compiled.
It is good style to quote functions in Interlisp by using the
function FUNCTION instead of QUOTE.

28.3 Looking at a menu's fields

WHAT ARE MENUS?

INSPECT is a function that displays a list of the fields of a menu,
and their values. The Figure 28.6 shows the various fields of
MY • MENU3 when the function (INSPECT MY. MENU) was called.
Notice the values that were assigned by the examples, and all the
defaults.

'/ ~ ~ ~ ~6~;} ~~ L ~ ~5 ~ ~ N': ~ i I:~~:~~~::~~::l~::
.l!::...,JE1!J.ElEE!9IIIi':11D1D1----1IiiiII1iiiIIiiIiIi •...
tC:t(m:;:m~T i!5 ;:

IIIIII11111I ~~mmi~~~~~'Jr' ~,~: NOU'}#bl. 1651"~
...
. ' .

...................... :::AVEU1,!:,I3E rHL

•. !.1.1.1.1:.!11.1.1.:.1..11 i!!!i!i!;::TFUl I;;:::::::::::: ::0:: , ME::6 :oP I C:EE -'j
TITLE ,,' PLEA::;::: CHOIJ::E «"IE .IF THE IT Errc" :;:l

(0 '1) :::j'
MY.~ENU3 WHEN~ELECTEO ~
L3
1
MY. MENU] WHENHELO
~-II L
I~LRF'ROIo1P T
NIL
NIL
NIL

I!ijlijlll~;~~~;~~~~~;~;~i;~;;:~':~;;;~~:~'~)~~~~'~~)~)j~~}~~;'~~i~;i}~})'~:~M
Figure 28.6. The Fields of MY.MENU3

285

LOOKING AT A MENU'S FIELDS

[This page intentionally left blank]

286 WHAT ARE MENUS)

To draw

To erase

To work on a different section

BITMAPS

29. BITMAPS

A bitmap is a retangular array of dots. The dots are called pixels
(for picture elements). Each dot, or pixel, is represented by a
single bit. When a pixel or bit is turned on (i.e. that bit set to 1), a
black dot is inserted into a bitmap. If you have a bitmap of a
floppy on your screen, (Figure Figure 29.1), then all of the bits in
the area that make up the floppy are turned on, and the
surrounding bits are turned off.

Figure 29.1. Bitmap of a Floppy

BIIMAPCREAIE creates a bitmap, even though it can't be seen.

(BITMAPCREATE width height)

If the width and height are not supplied, the system will prompt
you for them.

ED IIBM edits the bitmap. The syntax of the function is:

(EDITBM bitmapname)

Try the following to produce the results in Figure 29.4:

(SETQ MY.BITMAP (BITMAPCREATE 60 40»
(EDITBM MY.BITMAP)

In the bitmap, move the mouse into the gridded section of the
bitmap editor, and press and hold the left mouse button. Move
the mouse around to turn on the bits represented by the spaces
in the grid. Notice that each space in the grid represents one
pixel on the bitmap

Move the mouse into the gridded section of the bitmap editor,
and press and hold the center mouse button. Move the mouse
around to turn off the bits represented by the spaces in the
gridded section of the bitmap editor.

Point with the mouse cursor to the picture of the actual bitmap
(the upper left corner of the bitmap editor). Press and hold the

29 1

BITMAPS

To end the session

29.2

left mouse button. A menu with the single item, Move will
appear. (See Figure 29.2.) Choose this item.

Figure 29.2. Move the mouse cursor to the picture of the bitmap. Press and hold
the left mouse button, and the Move menu will appear.

You will be asked to position a ghost window over the bitmap.
This ghost window represents the portion of the bitmap that you
are currently editing. Place it over the section of the bitmap that
you wish to edit. (See Fi.gure 29.3.)

Bitmap Editor
·.·.·.· ... · ... ·.·,.,w ... ·.·"

@

Figure 29.3. After you choose move, you will be asked to pOSitIOn a ghost
window like this one. Position it by clicking the left mouse button when the
ghost window is over the part of the picture of the bitmap you woul,d like to edit.

Bring the mouse cursor into the upper-right portion of the
window (the grey area) and press the center button. Select OK
from the menu to save your artwork.

BITMAPS

BITMAPS

BITMAPS

7~(SETO MV.BITMAP (BITMAPCREATE 68 40)
MY:BIT~AP reset) .

~

ti·
~-

;~
~

~

!
=

=*-#
~

~!
i±
~

~
a-=

'~\;?=~.t.4j:~

Figure 29.4. Editing a Bitmap

BITBl T is the primitive function for moving bits (or pixels) from
one bitmap to another. It extracts bits from the source bitmap,
and combines them in appropriate ways with those of the
destination bitmap. The syntax of the function is:

(BITBLT sourcebitmap source/eft S0urcebottom
destinationbitmap destination/eft destinationbottom width
height source type operation texture cJippingregion)

Here's how it's done - using MY.BITMAP as the sourcebitmap and
MY.WINDOW as the destinationbitmap:

(BITBLT MY.BITMAP NIL NIL
MY.WINDOW NIL NIL NIL NIL 'INPUT 'REPLACE)

Note that the destination bitmap can be, and usually is, a
window. Actually, it is the bitmap of a window, but the system
handles that detail for you. Because of the NIls (meaning "use
the default")' MY.BITMAP will be BITBL T'd into the lower right
hand corner of MY.WINDOW. (See Figure 29.5.)

293

BITMAPS

sourcebitmap

sourceleft

sourcebottom

desti nati onbitm a p

destinationleft

destinationbottom

width

height

sourcetype

68-(BITBLT MV.BITMAP NIL NIL MV.WINDOW NIL NIL NIL NIL
T

" . . .

Figure 29.5. BITBLTing a Bitmap onto a Window

Here is what each of the BITBL T arguments to the function
mean:

the bitmap to be moved into the destinationbitmap

a number, starting at 0 for the left edge of the sourcebitmap,
that tells BITBl T where to start moving pixels from the
sourcebitmap. For example, if the leftmost 10 pixels of
sourcebitmap were not to be moved, sourceleft should be 10
The default value is o.
a number, starting at 0 for the bottom edge of the
sourcebitmap, that tells BITBl T where to start moving pixels
from the sourcebitmap. For example, if the bottom 10 rows of
pixels of sourcebitmap were not to be moved, sourcebottom
should be 10 The default value is O.

the bitmap that will receive the sourcebitmap. This is often a
window (actually the bitmap of a window, but Interlisp-D takes
care of that for you).

a number, starting at 0 for the left edge of the
destinationbitmap, that tells BITBl T where to start placing
pixels from the sourcebitmap. For example, to place the
sourcebitmap 10 pixels in from the left, destinationleft should be
10. The default value is O.

a number, starting at 0 for the bottom edge of the
destinationbitmap, that tells BITBl T where to start placing
pixels from the sourcebitmap. For example, to place the
sourcebitmap 10 pixels up from the bottom, destinationbottom
should be 10. The default value is O.

how many pixels in each row of sourcebitmap should be moved.
The same amount of space is used in destinationbitmap to
receive the sourcebitmap. If this argument is NIL, it defaults to
the number of pixels from sourceleft to the end of the row of
sourcebitmap.

how many rows of pixels of sourcebitmap should be moved. The
same amount of space is used in destinationbitmap to receive
the sourcebitmap. If this argument is NIL, it defaults to the
number of rows from sourcebottom to the top of the
sourcebitmap.

refers to one of three ways to convert the sourcebitmap for
writing. For now, just use' INPUT.

---29.4 BITMAPS

B!TMAPS

operation

texture

ciippingregion

BITMAPS

refers to how the sourcebitmap gets BITBL I'd on to the
destinationbitmap. • REPLACE will BLT the exact sourcebitmap.
Other operations allow you to AND, OR or XOR the bits from the
sourcebitmap onto the bits on the destinationbitmap.

Just use NIL for now.

just use NIL for now.

For more information on these operations, see the Interlisp-D
Reference Manual, Volume 3, Chapter 27, Page 14.

Sourcebitmap, sourceleft, sourcebottom, destinationbitmap,
destinationleft, destinationbottom, width and height are shown
in Figure 29.6.

Destination Bitmap

Source Bitmap

FL'-'PPII
1....1 T

II fil~ 6 C4C':kL~p - I
II ~:/Sl8b • height

Destination left, Destination Bottom. The "x y"
coordinates in terms of the destination bitmap.
(00 to put the source bitmap in the left bottom
corner of the destination bitmap).

Figure 29.6 .. BITBL T'ed Bitmap of a Floppy

295

BITMAPS

[This page intentionally left blank]

29.6 BITMAPS

30. DISPLA YSTREAMS

A displaystream is a generalized "place to display". They
determine exactly what is displayed where. One example of a
displaystream is a window. Windows are the only displaystreams
that will be used in this chapter. If you want to draw on a bitmap
that is not a window, other than with BITBl T, or want to use
other types of displaystreams, please refer to the Interlisp-D
Reference Manual, Volume 3, Chapter 27.

This chapter explains functions for drawing on displaystreams:
DRAWlINE, DRAWTO, DRAWCIRClE., and FIllCIRClE. In
addition, functions for locating and changing your current
position in the displaystream are covered: DSPXPOSITION,
OSPYPOSITION, and MOVETO.

30.1 Drawing on a Displaystream

30.1.1 DRAWlINE

DISPLA YSTREAMS

Examples will show you how the functions for ·drawing on a
display stream work. First, create a window. Windows are
displaystreams, and the one you create will be used for· the
examples in this chapter. Type:

(SETQ EXAMPLE.WINDOW (CREATEW»

DRAWlINE draws a line in a displaystream. For example, type:

(ORAWLINE 10 15 100 150 5 'INVERT EXAMPLE.WINDOW)

The results should look like this:

Figure 30.1. The line drawn onto the displaystream. EXAMPLE.WINDOW

30 1

DRAWING ON A DISPLAYSTREAM

30.1.2 DRAWTO

302

xl and yl

x2 and y2

width

operation

stream

x

Y

width

operation

stream

The syntax of ORAWlINE is

(ORAWLINE xl yl x2 y2 width operation stream I)

The coordinates of the left bottom corner of the displaystream
are 0 O.

are the x and y coordinates of the beginning of the line;

are the endi ng coordinates of the line;

is the width of the line, in pixels

is the way the line is to be drawn. INVERT causes the line to
invert the bits that are already in the displaystream. Drawing a
line the second time using INVERT erases the line. For other
operations, see the Interlisp-D Reference Manual, Volume III,
Page 27.15.

is the displaystream. In this case, you used a window.

ORAWTO draws a line that begins at your current position in the
displaystream. For example, type:

(ORAWTO 120 135 5 'INVERT EXAMPLE.WINDOW)

The results should look like this:

Figure 30.2. Another line drawn onto the displaystream. EXAMPLE.WINDOW

The syntax of ORAWTO is

(ORAWTO x Y width operation stream I)

The line begins at the current position in the displaystream.

is the x coordinate of the end of the line;

is the y coordinate of the end of the line;

is the width of the line

is the way the line is to be drawn. INVERT causes the line to
invert the bits that are already in the displaystream. Drawing a
line the second time using INVERT erases the line. For other
operations, see the Interlisp-D Reference Manual, Volume III,
Page 2715.

is the displaystream. In this case, you used a window.

DISPLAYSTREAMS

30.1.3 DRAWCIRCLE

30.1.3.1 FI LlCI RCLE

DISPLA YSTREAMS

DRAWING ON A DISPLAYSTREAM

centerx

centery

radius

brush

dashing

stream

ORAWCIRClE draws a circle on a displaystream. To use it, type:

(DRAWCIRCLE 150 100 30 '(VERTICAL 5) NIL EXAMPLE.WINDOW)

Now your window, EXAMPLE. WiNDOW, should look like this:

I
II
Figure 30.3. The circle drawn onto the displaystream, EXAMPLE.WINDOW.

The syntax of DRAWCIRClE is

(DRAWCIRCLE centerx centery radius brush dashing stream)

is the x coordi nate of the center of the ci rcle

is the y coordinate of the center of the circle

is the radius of the circle in pixels

is a list. The first item of the list is the shape of the brush. Some
of your options include ROUND, SQUARE, and VERTICAL. The
second item of that list is the width of the brush in pixels.

is a list of positive integers. The brush is "on" for the number of
units indicated by the first element of the list, "off" for the
number of units indicated by the second element of the list. The
third element specifies how long it will be on again, and so forth.
The sequence is repeated until the circle has been drawn.

is the displaystream. In this case, you used a wi.ndow.

FIllCIRClE draws a filled circle on a displaystream. To use it,
type:

(FILLCIRCLE zoo 150 10 GRAYSHADE EXAMPLE.WINDOW)

EXAMPLE.WINDOW now looks like this:

303

DRAWING ON A DISPLAYSTREAM

centerx

centery

radius

texture

stream

Figure 30.4. A filled circle drawn onto the displaystream, EXAMPLE.WINDOW.

The syntax of FIllCIRClE is

(FILLCIRCLE centerx centery radius texture stream)

is the x coordinate of the center of the circle

is the y coordinate of the center of the circle

is the radius of the circle in pixels

is the shade that will be used to fill in the circle. Interlisp-D
provides you with three shades, WHITESHADE, BLACKSHADE,
and GRA YSHADE. You can also create your own shades. For
more information on how to do this, see the Interlisp-D
Reference Manual, Volume III, Page 27.7.

is the displaystream. In this case, you used a window.

There are many other functions for drawing on a displaystream.
Please refer to the Interlisp-D Reference Manual, Volume ''',
Chapter 27.

Text can also be placed into displaystreams. To do this, use
printing functions such as PRINt and PRIN2, but supply the
name of the displaystream as the "file" to print to. To place the
text in the proper position in the displaystream, see Section 30.2,
Page 30.4.

30.2 Locating and Changing Your Position in a Displaystream

304

There are functions provided to locate, and to change your
current position in a displaystream. This can help you place text,
and other images where you want them in a displaystream. This
primer will only discuss three of these. There are others, and
they can be found in the Interlisp-D Reference Manual, Volume

''', Chapter 27.

DISPLAYSTREAMS

LOCATING AND CHANGING YOUR POSITION IN A DISPLAYSTREAM

30.2.1 DSPXPOSITION .---

30.2.2 DSPYPOSITION

DSPXPOSITION is a function that will either change the current
x position in a displaystream, or simply report it. To have the
function report the current x position in EXAMPlE.\NINDO""J,
type:

(OSPXPOSITION NIL EXAMPLE.WINDOW)

DSPXPOSITION expects two arguments. The first is the new x
position. If this argument is NIL, the current position is not
changed, merely reported. The second argument is the
displaystream.

----------------------~~==~==~~====~------------------------

30.2.3 MOVETO

DISPLA YSTREAMS

x

y

stream

DSPYPOSITION is an analogous function, but it changes or
reports the current y position in a displaystream. As with
DSPXPOSIT10N, if the first argument is a number, the current y

position will be changed to that position. If it is NIL, the current
position is simply reported. To have the function report the
current y position in EXAMPLE.WINDOW, type:

(OSPYPOSITION NIL EXAMPLE.WINDOW)

The function MOVETO always changes your position in the
displaystream. It expects three arguments:

(MOVETO x y stream)

is the new x position in the display stream

is the new y position in the display stream

is the display stream. The examples so far have used a window.

305

LOCATING AND CHANGING YOUR POSITION IN A DISPLAYSTREAM

[This page intentionally left blank]

306 DI$PLAYSTREAM$

31. FONTS

This chapter explains fonts and fontdescriptors, what they are
and how to use them, so that you can use functions requiring
fontdescriptors.

You have already been exposed to many fonts in Interlisp-D. For
example, when you use the structure editor, DEdit, (See Section
11.3.), you noticed that the comments were printed in a smaller
font than the code, and that eLisP words (See Section 13.1, Page
13.1.) were printed in a darker font than the other words in the
function. These are only some of the fonts that are available in
Interlisp-D.

In addition to the fonts that appear on your screen, Interlisp-D
uses fonts for printers that are different than the ones used for
the screen. The fonts used to print to the screen are called
DISPLA YFONTS. The fonts used for prining are called
INTERPRESSFONTS, or PRESSFONTS, depending on the type of
printer.

31.1 What makes up a FONT?

FONTS

Fonts are described by family, weight, slope, width, and size.
This section discusses each of these, and describes how they
affect the font you see on the screen.

Family is one way that fonts can differ. Here are some examples
of how "family" affects the look of a font:

CLASSIC This family makes the word "Able" look like this: Able

MODERN This family makes the word "Able" look like this: Able

TERMINAL This family makes the word "Able" look like this: Ab 1 e

Weight also determines the look of a font. Once again, "Able"
will be used as an example, this time only with the Classic family.
A font's weight can be:

BOLD and look like this: Able

MEDIUM or REGULAR and look like this: Able

ITALIC

REGULAR

The slope of a font is Italic or regular. Using the Classic family
font again, in a regular weight, the slope affects the font like
this:

looks like this: Able

looks like this: Able

31 1

WHAT MAKES UP A FONT?

The width of a font is called its "expansion". It can be
COMPRESSED, REGULAR, or EXPANDED.

Together, the weight, slope, and expansion of a font specifies
the font's "face". Specifically, the face of a font is a three
element list:

(weight slope expansion)

To make it easier to type, when a function requires a font face as
an argument, it can be abbreviated with a three character atom.
The first specifies the weight, the second the slope, and the third
character the expansion. For example, some common font faces
are abbreviated:

MRR This is the usual face, MEDIUM, REGULAR, REGULAR;

MIR makes an italic font. It stands for: MEDIUM, ITALIC, REGULAR;

BRR makes a bold font. The abbreviation means: BOLD, REGULAR,
REGULAR;

BIR means that the font should be both bold and italic. BIR stands
for BOLD, ITALIC, REGULAR.

The above examples are used so often, that there are also more
mnemonic abbreviations for them. They can also be used to
specify a font face for a function that requires a face as an
argument. They are:

STANDARD This is the usual face: MEDIU.M, REGULAR, REGULAR. It was
abbreviated above, MRR;

ITALIC This was abbreviated above as MIR, and specifies an italic font;

BOLD of course, makes a bold font. It was abbreviated above, BRR;

BOLDITALIC means that the font should be both bold and italic: BOLD,
ITALIC, REGULAR. It was abbreviated above, BIR.

A font also has a size. It is a positive integer that specifies the
height of the font in printers points. A point is, on an 1108
screen, about 1/72 of an inch. On the screen of an 1186, a point is
1/80 of an inch. The size of the font used in this chapter is 10. For
comparison, here is an example of a TERMINAL, MRR, size 12
font: Ab 1 e.

3182 Fontdescriptors, and FONTCREATE

312

For Interlisp-D to use a font, it must have a fontdescriptor. A
fontdescriptor is a data type in Interlisp-D that that holds all the
information nt:eded in order to use a particular font. When you
print out a fontdescriptor, it looks like this:

{FONTOESCRIPTOR}H14.45540

Fontdescriptors are created by the function FONTCREATE. For
example,

(FONTCREATE 'HELVETICA 12 'BOLO)

FOI\JTS

FONTDESCRIPTORS, AND FONTCREATE

creates a fontdescriptor that, when used by other functions,
prints in HELVETICA BOLD size 12. Interlisp-D functions that
work with fonts expect a fontdescriptor produced with the
FONTCREATE function.

The syntax of FONTCREATE is:

(FONTCREATE famiiy size face)

Remember from the previous section, face is either a three
element list, (weight slope expansion), a three character atom
abbreviation, e.g. MRR, or one of the mnemonic abbreviations,
e.g. STANDARD.

If FONTCREATE is asked to create a fontdescriptor that already
exists, the existing fontdescriptor is simply returned.

31.3 Display Fonts - Their files, and how to find them

FONTS

Display fonts require files that contain the bitmaps used to print
each character on the screen. All of these files have the
extension .DISPLA YFONT. The file name itself describes the font
style and size that uses its bitmaps. For example:

MODERN12.DISPLAYFONT

contains bitmaps for the font family MODERN in size 12 points.

Initially, these files are on floppies. The files that are used most
often should be copied onto a directory of your hard disk or
fileserver. Usually, this directory is called FONTS.

Wherever you put your .DISPLA YFONT files, you should make this
one of the values of the variable DISPLAYFONTDIRECTORIES.
Its value is a list of directories to search for the bitmap files for
display fonts. Usually, it contains the" FONT" directory where
you copied the bitmap fiies, the device {FLOPPY}, and the
current connected directory The current connected directory is
specified by the atom NIL. Here is an example value of
DISPLAYFONTDIRECTORIES:

Interlisp -D. Executive Window .
NIL
8~OISPLAYFONTOIRECTORIES
.. r 0 .-. 1..' -, .' L I .-. P F I L E .-. ". F n t', T (0 L(-, .' L I FI F I L E '. I.."t .::. I '. J:,. .::. _'of .:,. •• J l .".:,. f '. f···· .".:,. .::;

{FLOPP'Y'} NIL)

Figure 31.1. A value·for the atom OISPLAYFONTDIRECTORIES. When
looking for a .DI$PL.AYFOI\JT file. the system will check the FONT directory on the
hard disk, then the top level directory on the hard disk, then the floppy, then the
current connected directory.

31 3

INTERPRESS FONTS - THEIR FILES, AND HOW TO FIND THEM

31 c4 Interpress Fonts - Their files, and how to find them

Interpress is the format that is used by Xerox laser printers. These
printers normally have a resolution that is much higher than that
of the screen: 300 points per inch.

In order to format files appropriately for output on such a
printer, Interlisp must know the actual size for each character
that is to be printed. This is done through the use of width files
that contain font width information for fonts in Interpress
format. Initially, these files (with extension .WO) are on floppies.
The files should be copied onto a directory of your hard disk or
fileserver.

For Interpress fonts, you should make the location of these files
one of the values of the variable
INTERPRESSFONTDIRECTORIES. Its value is a list of directories
to search for the font widths files for Interpress fonts. Here is an
example value of INTERPRESSFONTOIRECTORIES:

Interlisp -D Executive Window
NIL
12~INTERPRE8SFONTOIRECTORIE8
({OSK})
13.:-

Figure 31.2. A value for the atom INTERPRESSFONTOIRECTORIES.
When looking for a font widths file for an Interpress font, Interlisp-D WIll check
the hard disk.

31.5 Functions for Using Fonts

31.5.1 FONTPROP - Looking at Font Properties

FAMILY

SIZE

31 4

It is possible to see the properties of a fontdescriptor. This is
done with the function FONTPROP. For the following examples,
the fontdescriptor used will be the one returned by the function
(OEFAULTFONT 'DISPLAY). In other words, the
fontdescriptor examined will be the default display font for the
system.

There are many properties of a font that might be useful for you.
Some of these are:

To see the family of a font descriptor, type:

(FONTPROP (OEFAULTFONT 'OISPLAY) 'FAMILY)

As above, this is a positive integer that determines the height of
the font in printer's points. As an example, the SIZE of the
current default font is:

FONTS

31.5.2 STRINGWIDTH

FONTS

ASCENT

DESCENT

HEIGHT

FACE

FUNCTIONS FOR USING FONTS

Inter lisp -D Ex~cu~ve Window
NIL
61~(FONTPROP (OEFAULTFONT 'DISPLAY)

,. t::! T 71=' -'I
i_; .a. ... J- l

Figure 31.3. The value of the font property SIZE ofthe default font

The value of this property is a positive integer, the maximum
height of any character in the specified font from the baseline
(bottom). The top of the tallest character in the font, then, will
be at (BASELINE + ASCENT - 1). For example, the ASCENT of the
default font is:

Interlisp -0 Executive Window ~
NIL
64~(FONTPROP (DEFAULTFONT 'DISPLAY)

'ASCENT)
9
65~

Figure 31.4. The value of the font property ASCENT ofthe default font

The DESCENT is an integer that specifies the maximum number
of points that a character in the font descends below the
baseline (e.g. letters such as "p" and "g" have tails that descend
below the baseline.). The bottom of the lowest character in the
font will be at (BASELINE - DESCENT). To see the DESCENT of the
default font, type:

(FONTPROP (DEFAUlTFONT 'DISPLAY) 'DESCENT)

HE IGHT is equal to {DESCENT - ASCENT).

The value of this property is a list of the form, (weight slope
expansion). These are the weight, slope, and exp~nsion

described above. You can see each one separately, also. Use the
property that you are interested in, WEIGHT, SLOPE, or
EXPANSION, instead of FACE as the second argument to
FONTPROP.

For other font properties, see the Interlisp-D Reference Manual,
Volume III, Pages 27.27 - 27.28.

It is often useful to see how much space is required to print an
expression in a particular font. The function STRINGWIDTH
does this. For example, type:

(STRINGWIDTH WHi there!- (fONTCREATE 'GACHA 10 'STANDARD»

The number returned !s how many left to right pixels would be
needed if the string were printed in this font. (Note that this

3 ~ 5

FUNCTIONS FOR USING FONTS

doesn't just work for pixels on the screen, but for all kinds of
streams. For more informatior;'! about streams, see Chapter 30.)
Compare the number returned from the example call with the
number returned when you change GACHA to TIMESROMAN.

31.5.3 DSPFONT - Changing the Font in One Window

316

The function OSPFONT changes the font in a single window. As
an example of its use, first create a windowto write in. Type:

(SETQ MYoFONT.WlIOOW (CR~ArtW»

in the Interlisp-D Executive window. Sweep out the window. To
print something in the defdult font, type:

(PRINT 'HELLO MY.FOIT.WINDOW)

in the Interlisp-D Executive window. Your window,
MY.FONT.WINDOW, will look something like this:

HELLO

Figure 31.5. HELLO, printed with the default font in MY.FONT.WINDOW

Now change the font in the window. Type:

(DSPFONT (FONTCREATE 'HELVETICA 12 'BOLD) MY.FONT.WINDOW)

in the Interlisp-D. Executive window. The arguments to
FONTCREATE can be changed to create any desired font. Now
retype the PRINT statement, and your window will look
something like this:

lriterlisp -0 Executive Window
NIL
32~(DSPFONT (FONTCREATE 'HELVETrCA

12 'BOLO)
M'y·. ONT, 1,',1 I NDO',',I)

{FONTOESCRIPTOR #70,171~64
~3~(PRINT 'HELL MY,FONT,WINOOW)
HELLO
HELLO
HELLO

Figure 31.6. The font 111 MY .FONT WINDOW, changed

Notice the font has been (hanged!

FONTS

31.5.4 Globally Changing Fonts

FUNCTIONS FOR USING FONTS

There is a library package to globally change the fonts in all the
windows. To use it, first load BIG.DCOM. (See Section 8.6, Page
8.4 for how to !oada file.)

To change fonts in all windows using the package BIG.DCOM,
type

(NEWFONT < keyword>)

There are four keywords for size of fonts to specify. They are
HUGE, BIG, STANDARD, and MEDIUM. For example:

(NEWFONT 'BIG)

sets the fonts in ALL the windO\,A/S to be a larger size. Note: this
package changes the fonts everywhere, including the editor
window and system menus. it is particuiarly useful to change the
size of the font for demos.

31.5.5 Personalizing Your Font Profile

FONTS

Interlisp-D keeps a list of default font specifications. This list is
used to set the font in all windows where the font is not
specifically set by the user (Section 31.5.3). The value of the atom
FONTPROFILE is this list. (See Figure 31. 7.)

A FONTPROFILE is a list of font descriptions that certain system
functions access when printing output. It contains specifications
for big fonts (used when pretty printing a function to type the
function name), smal! fonts (used for printing comments in the
editor), and various other fonts.

31 7

FUNCTIONS FOR USING FONTS

31.8

Inter lisp -0 ExecutiVe .Window
53.;.-ForHPROF I LE
((DEFAULTFONT 1 (GACHA 10)

(13ACHA 8)
(TER~1 r NAL 8))

(BOLDFONT 2 (HELVETICA 10 BRR)
· (H~LVETICA 8 BRR) .

(MODERN 8 BRR) .
(LITTLEFONT 3 (HELVETICA 8
· (H~LVETICA 6 M R)

(MOOEF:N (: tit I R)
(BIGFONT 4 (HELVETICA 12 B R)
· (HELVETICA 10 BRR

(MODERN .H1 !::F:F:'I:'
(USERFONT·BOLDFONT) .
(Cor~ft1ENTFONT L I TTLEFIJN T)
(LAMBDAFONT BIGFONT)
~ SYSTErI1FONT)
(CLISPFONT BOLOFONT,
(CHANI3EFOtH)
(PRETTVCOMFONT BOLOFDNT)
(FONT10EFAULTFONT)
(FONT2 BOLDFONT) .
(FONTS LITTLEFONT)
.: FONT 4 B I GFONT)
(FONTS S (HELvtTICA 10 BIR)

(HELVETICA (: BIR)
(MODERN 8 BIR)) .

(FONTS 6 (HELVETICA 10 BRR)
(HELVETICA 8 BRR)
(MODERN (: BRR) .

(FONT7 7 (GACHA 12)
(I3ACHA 12)
(TER~1INAL 12)))

54~

Figure 31.7. The value of the atom FONTPROFILE

The list is in the form of an association list. The font class names,
(e.g. DEFAUl TFONT, or BOlOFONT) are the keywords of the
association list. When a number follows the keyword, it is the
font number for that font class.

The lists following the font class name or number are the font
specifications, in a form that the function FONTCREATE can use.
The first font specification list after a keyword is the specification
for printing to windows. The list, (GACHA 10), in the figure
above is an example of the default specification for the printing
to windows. The last two font specification lists are for Press and
Interpress file printing, respectively. For more information, see
the Interlisp-D Reference Manual, Volume 3, Chapter 27.

Now, to change your default font settings, change the value of
the variable FONTPROFIlE. Interlisp-D has a list of profiles
stored as the value of the atom FONTDEFS. Choose the profile to
use, then install it as the default FONTPROFIlE.

Evaluate the atom FONTOEFS and notice that each profile list
begins with a keyword. (See Figure 31.8.) This keyword
corresponds to the size of the fonts included. BIG, SMALL, and
STANDARD are sorne of the keywords for profiles on this list -
SMALL and ST.ANDARD appear in Figure 31.8.

FONTS

FONTS

FUNCTIONS FOR USING FONTS

I[[srM~LL (FONTPF:OFILE
(DEFAULTFONT 1 (TERMINAL

I
I

I

8)
(GACHA 8)
(: TERh1I NAt. :3))

(BOLDFONT 2 (MODERN :3 BRR)
(HELVETICA 8 BRR)
(MODERN 8 BRR» .

(LITTLEFONT::i
(t.10DEF:N 8 ~1 I R)
(HELVETICA 8 MIR)
(MODERN 8 MIR» .

(TINVFONT 6 (MODERN 6)
(GACHA e;-,
:: MOOE~:N 6))

(BIGFONT 4 (MODERN 10 BRR)
(HE \.' LET I G A 10 B F: F: ")
(MGOERN 10 BRR» .

(TEXTFONT 5 (CLASSIC 10)
. (TIME8ROMAN 1~)

(C L A 8 S I G 10»)
(TE::nBOLOFONT "

(CLASSIC 10 BF-:R)
(T I MESROh1AN

10 BRR)
(CLASSIC 10 BRR]

[STANDARD (FONTPROFILE
(OEFAULTFONT 1

Figure 31.8. Part ofthe value of the atom FONTDE FS

To install a new profile from this list, follow the following
example, but insert any keyword for BIG.

To use the profile with the keyword BIG instead of the standard
one, evaluate the following expression

(FONTSET 'BIG»

Now the fonts are permanently replaced. (That is, until another
profile is installed.)

319

FUNCTIONS FOR USING FONTS

[This page intentionally left blank]

31 10 FONfS

32 .. 1 Calling the Inspector

THE INSPECTOR

32. THE INSPECTOR

The Inspector is a window-oriented tool designed to examine
data structures. Because Interlisp-D is such a powerful
programming environment, many types of data structures would
be difficult to see in any other way.

Take as an example an object defined through a sequence of
pointers (i.e. a bitmap on the property list of a window on the
property list of an atom in a program.)

To inspect an object named NAME, type:

(INSPECT 'NAME)

If NAME has many possible interpretations, an option menu will
appear. For example, in Interlisp-D, a litatom can refer to both
an atom and a function. For example, if NAME was a record, had
a function definition, and had properties on its property list,
then the menu would appear as in Figure 32, i.

Figure 32.1. Option Window For Inspection of NAME

If NAME were a list, then the option menu shown in Figure 32.2
would appear. The options include:

• calling the display editor on the list;

• calling the TTY editor (the "Typing Shortcuts", Chapter 6);

• seeing the list's elements in a display window. If you choose this
option, each element in the list will appear in the right column of
the Inspector window. The left column of the Inspector window
will be made up of numbers. (See Figure 32.3.)

• inspecting the list as a record type (this last option would
produce a menu of known record types). If you choose a record
type, the items in the list will appear in the right column of the
Inspector window. The left column of the Inspector window wili
be made up of the field names of the record.

Di::;pI8.yEcHt
TtyEfjit
In::.pect

,e,3 -3. re corel

Figure 32.2. OptIon Window For Inspection of List

32 I

USING THE INSPECTOR

3202 Using the Inspector

{INSPECT -ME -TOO 1 INSPECT-
1 INSPECT -tI1E- TOOl
2 INSPECT-ME-T002 a INSPECT-ME-T003

The expression read wl11 be E
VALuatect.
> 'CHANGED -"."ALU~

(INSPEGT -ME -TOO 1 INSPEGT-

1
2

I NSPECT -r~E - TOOl
INSPECT-ME-T002
INSPECT-ME-T003

(INSPEGT -ME -TOO 1 INSPECT-

1
2

INSPECT -h1E - TOOl
INSPECT -h1E- T002

!J CHANI3ED-',lALUE

32.3 Inspector Example

32.2

If you choose to display your data structure in an edit window,
simply edit the structure and exit in the normal manner when
done. If you choose to display the data structure in an inspect
window, then follow these instructions:

• To select an item, point the mouse cursor at it and press the left
mouse button.

• Items in the right column of an Inspector window can themselves
be inspected. To do this, choose the item, and press the center
mouse button.

• Items in the right column of an Inspector window can be
changed. To do this, choose the corresponding item in the left
column, and press the center mouse button. You will be
prompted for the new value, and the item will be changed. The
sequence of steps is shown in Figure 32.3.

The item in the left column is selected, and the middle mouse
button pressed. Select the SET option from the menu that pops
up.

You will then be prompted for the new value. Type it in.

The item in the right column is updated to the value of what you
typ~d in.

Figure 32.3. The sequence of steps involved in changing a value In the right
colum n of an Inspector window.

This example will use ideas discussed in Section 37.1. An
example, ANIMAL.GRAPH, is created in that section. You do not
need to know the details of how it was created, but the structure
will be examined in this chapter.

If you type

(INSPECT ANIMAl.GRAPH)

and then choose the Inspect option from the menu, a disp!ay
appears as shown in Figure 32.4. ANIMAL.GRAPH is bp.ing

THE !NSPECTUR

THE INSPECTOR

INSPECTOR EXAMPLE

inspected as a list. Note the numbers in the left column of the
inspector window.

«((FISH &I NIL NIL NIL.. ••) (BIRD & NIL NIL ••) (ct!>.T &: NI

1 ((F I 3H .:::.: NIL NIL --) (fHRO ~~~: rHL NIL
2 T
3 NIL
4 NIL
5 NIL
6 NIL
7 NIL
n NIL 1:-
~3 NIL
10 NIL
11 NIL

112 NIL

Figure 32.4. Inspector Window For ANIMAL.GRAPH, inspected as a list.

If you choose the "As A Record" option, and choose "GRAPH"
from the menu that appears, the inspector window looks like
Figure 32.5. Note the fieldnames in the left column of the
inspector window.

«FISH 8. NIL. NIL NIL ••) (BIRD 8. NIL NIL ••) (CAT 8. NIL •.) (OOG & _.) (& ••) --

GRAPH.CHANGELABELFN NIL
GRAPH.INVERTLABELFN NIL
GRAPH.INVERTBOROERFN NIL
GRAPH.FONTCHANGEFN NIL
GRAPH.OELETELINKFN NIL
GRAPH.AOOLINKFN NIL
GRAPH.OELETENOOEFN NIL
GRAPH.ADONOOEFN NIL
GRAPH.MOVENOOEFN NIL
DIRECTEDFLG NIL
SIDESFLG T
GRAPHNODE8 «FISH & NIL NIL --) (BIRO & NIL NIL

Figure 32.S. Inspector Window For ANIMAL.G.RAPH, inspected as an instance of a
"GRAPH" record.

The remaining examples will use ANIMAL.GRAPH.inspected as a
list. When the first item in the Inspector window is chosen with
the left mouse button, the Inspector window looks like Figure
32.6.

«(FISH 8. NIL NIL. NIL.. ••) (BIRO & NIL NIL ._) (CAT ;& NI

1

.:­

.J

4
5
6
7
(I

((FISH & NIL NIL --) (BIRD & NIL NI
T
NIL
NIL
NIL
NIL
NIL
NIL
NIL

1~~1 NIL
11 N-I L
12 NIL

Figure 32.6. Inspector Window For ANIMAL.GRAPH With First Element Selected

When you use the middle mouse button to inspect the seiected
list element, the display looks like Figure 32.7.

INSPECTOR EXAMPLE

32.4

1
2 T
::: NIL
4 NIL
5 NIL
6 NIL

1
2
.:> ._'

- .
• - I .

FISH (102 . 44) NIL NIL NIL --)
BIRO (102 . 29) NIL NIL NIL --)
CAT (186 . 22) NIL NIL NIL --)

i NIL
8 NIL
!:t NIL
lL3 NIL

4
5
6

DOG (186 . 7)·NIL NIL NIL --)
(~1AM~'AL DOG CAT) (H1!:t , 14) ~Jl L NIL
(ANIMAL & BIRO FISH) (22 . 29) NIL

11 NIL
1:2 NIL

Figure 32.7. Inspector Window For ANIMAL-GRAPH and For the First Element of
ANIMAL-GRAPH

Now you can see that six items make up the list, and you can
further choose to inspect one of these items. Notice that this is
also inspected as a list. As usual, it could also have been
inspected as a record.

Select item 5 - MAMMAL DOG CAT - with the leh mouse button.
Press the middle mouse button. Choose "Inspect" to inspect
your choice as a list. The Inspector now displays the values of the
structure that makes up MAMMAL DOG CAT. (See Figure 32.8.)

((MAMMAL [JOG CAT) (103 • 14) N

1 (MAMMAL 0013 CA T)
:2 tV19. 14)
::: NIL
4 NIL
5 NIL
6 45
7 15
0:0 (DOG GAT)
~3 ((ANIMAL .~(edRO FISH)
1~1 {FONTGLASS}#70,172764
11 mAM~'AL
12 NIL

Figure 32.S. . Inspector Window for Element 5 'From Figure 32.7 That Begins
((MAMMAL DOG CAT).

THE INSPE(~OR

MASTERSCOPE

33. MASTERSCOPE

Masterscope is a tool that allows you to quickly examine the
structure of complex programs. As your programs enlarge, you
may forget what variables are global, what functions call other
functions, and so forth. Masterscope keeps track of this for you.

Suppose that JVTO is the name of a file that contains many of the
functions involved in a complex system and that L1NTRANS is the
file containing the remaining functionso The first step is to ask
Masterscope to analyze these files. These files must be loaded.
All Masterscope queries and commands begin with a period
followed by a space, as in

• ANALYZE FNS ON JVTO

The ANALYZE process takes a while, so the system prints a period
on the screen for each function it has analyzed. (See Figure 33.1.)

62~. ANALYZE FNS ON JVTO
.......................... clone
63~. ANALYZE FNS ON LINTRANS

Figure 33.1. The Interlisp-D Executive Window after analyzing the files

j

.. (Jonei

If you are not quite sure what functions were just analyzed, type
the file's COMS variable (See Section 11.5, Page 11.7.) into the
Interlisp-D Executive Window. The names of the functions
stored on the file will be a part of the value of this variable.

A variety of commands are now possible, all referring to
individual functions within the analyzed files. Substantial
variation in exact wording is permitted. Some commands are:

• SHOW PATHS FROM ANY TO ANY
• EDIT WHERE ANY CALLS functionname
• EDIT WHERE ANY USES variablename
• WHO CALLS WHOM
• WHO CALLS functionname
• BY WHOM IS functionname CALLED
• WHO USES variablename AS FIELD

Note that the function . is being called to invoke each
command. Refer to the Interlisp-D Reference Manual for
commands not listed here.

Figure 33.2 shows the Interlisp-D Executive Window after the
commands. WHO CAllS Gobb 1 eOullp and • WHO DOES
JVl i nScan CALl.

33 1

MASTER5COPE

IL
!~ WHO CALLS GobbleOump
JVchapterTO JVdgd JVfndefTO JVnilTO OoArgSpec GobbleFlush GobbleString
"/(iumpTO)
8., WHO DOES JVLinScan CALL
LinScan JVCTtable JVTOtable)
g":-A

Figure 33.2. Sample Masterscope Output

33.1 The SHOW DATA command and GRAPHER

-
33.2

When the library package GRAPHER is loaded, (to load this
package, type (FIlESlOAD GRAPHER).) Masterscope's
SHOWPATHS command is modified. The command will be
changed to generate a tree structu re showi ng how the
program's functions interact instead of a tabular printout into
the Interlisp-D Executive window. For example, typing:

• SHOW PATHS FROM ProcessENO.

produced the display shown in Figure 33.3.

ATHS FROM ProcessENO

.llHB"'Q I n T"'.i:.rr In'J --=.: __ 1(,:.r,.: •. tL I':TW1Tto:p~(~: I
. ' ' ---"i'joe T /'IIIIF'r,;.P!

,.../ " ,r='G ... -:'t""-:-::JP=--r,:-',p

'""',"'"' 4~:-C" .. tL j"'"':':=~:::~:::!=t!:,7;,~:~:,'"
\. ~ R ... dE:.l,IIroErod ~,---jlJ"'~(TT 'JP'"

\\ ~··:--:-,··'F·rmt,Err.)r--.-PTOI---1Prlnt.loJ,.;.rr"ro91
\ ".pp1'1

·IPrlnt.Warnm41

Figure 33.3. SHOW PATHS Display Exam pie

All the functions in the display are part of this analyzed file or a
previously analyzed file. Boxed functions indicate that the
function name has been duplicated in another place on the
display,

Selecting any function name on the display will pretty print the
function in a window, (See Figure 33.4,)

MASTERSCOPE

THE SHOW DATA COMMAND AND GRAPHER

PA~.THS FROM Proce~sENO

:::i:::;::::::::
rowser print out wlnaow

~: .:: GetMyProp
:~) [LAMBDA I.propnarne)

1 (G.t'nc •• torProp prop.a •• (CAR TOI.,aCk]1

Ii,

Figure 33.4. Browser. Printout Example.

Ii

Ii

Selecting it again with the left mouse button will produce a
description of the function's role in the overall system. (See
Figure 33.4.>

ATHS FROM ProcessENO

!:::::I;~~~i!~!~:;:lii~:i~:~f:~;:~;i;i;:;;;;;;;;;;~:,::::::i\:::

t.:.:.:.:.:.:.:.:.:.: .. ,.:.::.: :.::.:.: .. '.:'.: .. ','.:.'.' , ,. '.'",' , . ' ... " . ' .. ". '."." '.". " ' .. :
Figure 33.5. Browser DesCrIption Example.

33.2 Databasefns: Automatic Construction and Upkeep of a Masterscope
Database

MASTcRSCOPE

DataBaseFns is a separate library package that allows you to
automatically construct and maintain Masterscope databases of
your files. The package is contained in the DATABASEFNS.DCOM
file.

When DATABASEFNS.DCOM is loaded, a Masterscope database
will be automatically maintained for every file whose .. DATABASE

33 3

DATABASEFNS: AUTOMATIC CONSTRUCTION AND UPKEEP OF A MASTERSCOPE DATABASE

33 4

property has the value YES. If this property's value is not set, you
will be asked when you save the file" Do you want a Masterscope
Database for this file?". Saying YES enables the DabaBaseFns to
construct a Masterscope database of the file you are saving.

Each time the function MAKEFILE is used on a file whose
DATABASE property has a value YES, Masterscope will analyze
your file and update its own database. Each file's masterscop
database is kept in a separate file whose name has the form
FILE. DATABASE. Whenever you load a file with a YES value for
its DATABASE property, you will be asked whether you also want
the database file loaded.

MASTERSCOPE

34.WHERE DOES ALL THE TIME GO?
Spy

Spy is an Interlisp-D library package that shows you where you
spend your time when you run your system. It is easy to learn,
and very useful when trying to make programs run faster.

34.1 How to use Spy with the Spy Window

WHERE DOES ALL THE TIME GO? Spy

The function SPY. BUTTON brings up a small window which you
wiil be prompted to position. Using the mouse buttons in this
window controls the action of the Spy program. When you are
not using SPY, the window appears as in Figure 34.1.

Spy off.}

&1
Figure 34.1. The Spy window when Spy is not being used.

To use SPY, click either the left or middle mouse button with the
mouse cursor in the Spy window. The window will appear as in
Figure 34.2, and means that Spy is accumulating data about your
program.

Spy on

S1
.: .. ' :.:::' ':'.::

Figure 34.2. The Spy Window when Spy is being used.

To turn off Spy after the program has run, again click a mouse
button in the Spy window. The eye closes, and you are asked to
position another window. This window contains SPY's results.
An example of result window is shown in Figure 34.3.

341

HOW TO USE Spy WITH THE Spy WINDOW

0%, 100% C~mUl9.tlye:T

• '.. l~f!lt. INPUT. INTERF:IJP

lOt) \ EV,LJLF OF:
\:,:-.....•.. ;'1 \REf'EATEDL '-.-£VALQ

\"'"",._ .. -1 WL E. o'n1---!~';;:':::~::;;::~:;~::;~,:~:~i
\" 37 ·· .. BilI::rt3ROIJNO. PROCE:3:; :~~.~~_ ':'::::':::::::::::::::::::':':'::::-:':":':"'."-

.... 4 \() IRT'-.'E:ACJo:):lF:OIJND

Figure 34.3. The window produced after running Spy

This window is scrollable in two directions, horizontally, and
vertlcally_ This is useful, since the whole tree does not fit in the
window. If a part that you want to see is not shown, then you
(cJn scroll the window to show the part you want to see.

34.2 How to use Spy from the Lisp Top Level

Spy can also be run while a specific function or system is being
used. To do this, type the function WITH. SPY:

(WITH.SPY form)

The expression used for form should be the call to begin running
the function or system that Spy is to watch. If you watch the Spy
window, the eye will blink! To see your results, run the function
SPY. TREE. To do this, type:

(SPY. TREE)

The results of the last running of Spy will be displayed. If you do
this, and SPY.TREE returns (no Spy sallp 1 es have been
gathe red), your function ran too fast for Spy to follow.

34c3 Interpreting SPY's Results

342

Each node in the tree is a box that contains, first, the percentage
of time spent running that particular function, and second, the
function name. There are two modes that can be used to display
this tree.

The default mode is cumulative. In this mode, each percentage is
the amount of time that function spent on top of the stack, plus
the amount of time spent by the functions it calls.

The second mode is individual. To change the mode to
individual, point to the title bar of the window, and press the
middie :nouse button. Choose Individual from the menu that
appears. In this mode, the percentage shown is the amount of
time that the function spent on the top of the stack.

WHERE DOES ALL THE TIME GO> sPY

WHERE DOES ALL THE TIME GO ~ Spy

INTERPRETING Spy'S RESULTS

To look at a single branch of the tree, point with the mouse
cursor at one of the nodes of the tree, and press the right mouse
button. From the menu that appears, choose the option
SubTree. Another Spy window will appear, with just this branch
of the tree in it.

Another way to focus within the tree is to remove branches from
the tree. To do this, point to the node at the top of the branch
you would like to delete. Press the middle mouse button, and
choose Delete from the menu that appears.

There are also different amounts of II merging II of functions that
can be done in the window. A function can be called by another
function more than once. The amount of merging determines
where the subfunction, and the functions that it calls, appear in
the tree, and how often. (For a detailed explanation of merging.
see the Lisp Library Packages Manual.)

34 3

INTERPRETING Spy'S RESULTS

[This page intentionally left blank]

344 WHERE DOES ALL THE TIME GO) sPy

35.1 Starting Sketch

35. SKETCH

Sketch is a Xerox package that was developed for constructi ng
pictures. Unlike bitmaps, you do not need to draw every pixel for
the shape you want. One example will guide you through
various sketch capabilities. However, not everything that it can
do can be shown here. To learn more about it, refer to A User's
Guide to Sketch: The Interlisp Drawing System. The manual is
very clear, and contains many figures drawn with Sketch to
illustrate its points.

To start sketch, type (FILESLOAO SKETCH) into the Interlisp-D
Executive window. This loads the necessary files, and adds
SKETCH to the right button background menu (the menu that
appears when you press the right button of the mouse outside
any window).

Choose Sketch from this menu. You will be prompted to sweep
out a window. This window will hold the figure that you draw.

35.2 Selecting Sketch elements

SKETCH

A sketch is a picture that consists of sketch elements. Each
element has one or more control points, that determine its
location, its shape, and other properties that determine how it
looks. Many times in the example that follows you will be asked
to select an element. You should first select a command to
perform on an element, then select one or more elements as
arguments for that command.

After a command is selected, each element displays a control box
showing where to click to select that element. To choose one
element, click the left mouse button when it is pointing to the
control box of the element. To choose a group of elements,
move the mouse to a point that is to the upper left of the group.
Press and hold down the left mouse button. Sweep out an area
that contains the control boxes of each element you would like
to select. Release the button to choose this area.

You can always abort a selection by holding the left mouse
button down, moving the mouse cursor outside the Sketch
window, and then releasing the mouse button. Also note that if

SELECTING SKETCH ELEMENTS

35.3 Drawing with Sketch

35 2

you select a command and then press the left mouse button in
the sketch window, when the mouse cursor is not in the control
box of an element, the command is aborted.

If you haven't done so already, choose SKETCH from the
background menu, and sweep out a window. You will be
drawing the fol/owing picture:

Something from the
screen?

Figure 35.1. The completed figure that will be drawn as an example

You will use two menus extensively: the command menu for
sketch, which appears to the right of the sketch window (See
Figure 35.2.); and the default right button window menu, which
appears when you point the mouse cursor to the sketch
window's title bar, and hold down the right mouse button.

Viewer onto a sketch

DRAWING WITH SKETCH

Delete
Move
Copy

Change -j

I'~r I
<n
(IV
w
')
o
o

Group
UnGroup

Undo
Defaults ;-1

I
I Grid ~:-II
Move view;=:-
HardCopy ~:-

I ~~~ 1

Figure 35.2. An example Sketch window, with its command menu

35.3.1 Simple Shapes: Circles, Ellipses, and Boxes

35.3.1.1 Drawing Circles

35.3.1.2 Ellipses

35.3.1.3 Boxes

To draw a circie, choose the circle from the command menu _ You
will be prompted for the point at the center of the circle, then a
point on the circle itself. Do this on your sketch to draw the head
of the man.

To draw an ellipse, choose that shape from the command menu.
You will be promped for three points. T~e first is the center of
the ellipse. The second is the length of its long radius, and the
third is the length of its short radius. Do this twice, once for each
eye, or, if you prefer square eyes (or perhaps the frames of
glasses) see Section 35.3.1.3.

A box can be added to a sketch by choosing the box from the
command menu_ You will be asked to sweep out a box on the
sketch window Do this in the same way you sweep out a
window_

(1) Choose the position of the corner of the box

(2) Point to this spot WIth the mouse, and press and hold down its
left button

DRAWING WITH SKETCH

35.30104 Changing a Box's Filling

35.302 Lines, Curves, and Arcs

A Single Line

3503.2.2 A Series of Lines

35.4

(3) Move the mouse until the box is the correct size and shape.

(4) Release the left button to make this box appear.

If you chose to give your drawing glasses, you may want to make
them sunglasses by changing the filling of the box. To do this,
choose Change from the command menu, then select the boxes.
Choose Filling from the menu that will appeaL Yet another
menu, one that shows the various fillings, will appear. Choose
one of those. Your stick man may now look like this:

Figure 35.3. The SKETCH man's head, with glasses

To add a single line to a sketch, to add the side bars to the
sunglasses for example,

(1) Press and hold down the middle mouse button inside the sketch
window.

(2) Move the mouse cursor so that it is pointing to the place where
the line should start, and release the middle mouse button.

(3) Press and hold the middle mquse button again, and move the
mouse until the mouse cursor is pointing to the place where the
line should end.

(4) When you release the mouse button, the line will be placed
between the two endpoints.

(1)

(2)

For the body of the man, you can draw a series of lines either
singly, or all at once. To add them all at once,

Choose the jagged line from the command menu.

Move the cursor to each point the line should go through, and
click the left button.

35.3.2.3 Drawing an Open Curve

35.3.2.4 An Arc

SKETCH

DRAWING WITH SKETCH

(3) When all of the points have been chosen, click the left button
outside the sketch window, and the line will appear.

Do this to form the body of the man. Your figure may now look
like this:

Figure 35.4. The ivian, with imes for his body, and giasses frames

The nose of the man is drawn with an open curve. To draw an
open curve,

(1) Choose this item from the command menu.

(2) Click the left button at each point that the curve should go
through.

(3) When all the points have been chosen, click the left button
outside the sketch window, and the curve will appear.

(1)

Part of a circle, a simple arc, works well for the mouth. To draw
an arc,

Choose the semi-circle from the command menu.

35 5

DRAWING WITH SKETCH

(2) You will be prompted to choose the center point of the arc first.

(3) The second point to choose determines both the radius and one
end of the arc.

(4) The third point to be selected is the other end of the arc.

To add an arrowhead to the arc, or to change its angle, direction,
or another property,

(1) Choose Change from the command menu;

(2) Select one of the control points of the arc;

(3) Choose the property of the arc that you would like to change
from the menu that appears.

35.3.3 Closed Curves and Polygons

356

Both of these elements make wonderful hands and feet. Select
. the appropriate item from the command menu. The polygon

looks like an angular closed shape (it is not the box), and the
closed curve is a dosed curvey item.

For the polygon, select its vertices by clicking the left mouse
button at the appropriate points. Select them in the order that
the line should be drawn through them to create the structure.

For the closed curve, select the points that the curve should go
through in the same way. You can use either of these elements
to add hands and feet to the figure. It may now look like this:

SI<'ETCH

DRAWING WITH SKETCH

Figure 35.5. The sketch, after the addition of an are, closed curves, and polygons

35.4 Adding a Bitmap to a Sketch

SKETCH

(1)

(2)

(3)

(4)

(5)

To insert a bitmap from the screen,

Make a caret appear by clicking the left button in the sketch
window.

Move the mouse cursor onto the grey background, and hold
down the COpy or the SHIFT key.

Choose Snap from the menu that will appear.

Sweep out the area of the screen that you would like to insert
into the sketch.

After you have done this, you will be prompted to II Move the
picture into place, and press the left button." When you do this,
the bitmap will appear in your sketch.

35 7

ADDING A BITMAP TO A SKETCH

35 .. 5 To Add Text to a Sketch

358

To continue drawing the example picture, do this, and place the
bitmap on top of the figure's raised hand. Your bitmap might
look something like this:

Figure 35.6. The man, holding a bitmap

To edit the bitmap, position the mouse cursor in the bitmap, and
press the left button. A menu will appear. Choose HAND. EDIT,
and you will be placed into the bitmap editor. Use this in the
normal way (for how to edit bitmaps, see Chapter 29).

You can either add text directly to a Sketch window, or you can
place text inside a text box. To add text directly, click the left
mouse button in the window, and a caret will appear. Anything
you type will appear at the caret. If the caret does not appear,
but a vertical line appears instead, you are inside a text element.
(If you type, the text will be added to the text element that
aireadyexists. Another one wdl not be created.) To create a new

SKETCH

TO ADD TEXT TO A SKETCH

text element, move the mouse, and click the left button again, in
an area where there is no text.

If you prefer to begin by creating a box for the text, choose the
TextBox item from the command menu. Sweep out the area fOi
the box, and it will appear. Clicking the mouse inside this box
'v'vi!! cause a vertical bar to appeaL Type, and the text will be
placed at the caret. The text will be centered, and the lines will
wrap automatically.

35.5.1 Editing Text

SKETCH

Moving the caret

Deleting a single character

Deleting the word

Deleting a block of text

(1)

(2)

(3)

Replacing a block of text

The editing commands to change text are much like those used
in TEdit. (see TEdit, Chapter 23).

to a certain point in the text, point the mouse to the new
position for the caret, and click the left button.

can be done with the backspace key. The character before the
caret will be deleted.

behind the caret is done by typing Control-W.

is done with the following set of steps:

Move the caret to one end of the block of text;

Press and hold the right mouse button. Move the mouse so that
it points to the other end of the text. The text will be
highlighted.

Press the delete key.

is done by selecting the text as though it is to he deleted. Instead
of pressi ng the delete key, simply type in the replacement text.

If the text is boxed, you can change either the box, or the text
inside it. To do either,

(1) Choose Change from the Sketch command menu(Figure 35.2)

(2) Choose one of the corners of the box

(3) From the menu that appears, choose "The text" to change the
text inside the box (for example, to change its font). The other
items on the menu are ways to change the box itself. Choose the
appropriate item for the change that you would like to make.

If the text is unboxed, you can choose to box the text, or to
change the entire text item in some·way (for example, to change
the font). To do either,

(1) Choose Change from the Sketch command menu (Figure 35.2)

(2) Select the control point of the text item

(3) From the menu that appears, you can choose the appropriate
change for the text.

The final addition to the drawing then, is to add the little man'c;
words by addi ng a text box. Do this, and perhaps an arc from th~
box to the man, and your bitmap might look something like this:

35.9

TO ADD TEXT TO A SKETCH

35.6 Editing a Sketch

Deleting an Item

To Move an item

To Move multiple Items

35 10

Something from the
screen?

Figure 35.7. The man, speaking

Choose the delete command, then select the item or items to be
deleted. These items will be removed from the sketch.

Select the Move command from the Sketch command menu. To
choose the control point of the element to be moved, press and
hold the left button of the mouse down over one of the control
points of the item. If there is more than one for the sketch item,
when you hold down the left button and move the mouse off of
the control point, the others should darken also. Release the left
button to choose this item. You'll then be prompted to move it
to its new location.

Select the move command, and select the group of control points
in the usual way (see section Section 35.2, above). Once they ar~

Copyi ng items

Changi ng the look of an item

Groupi ng items

35.7 Saving Your Work

EDITING A SKETCH

chosen, you will be prompted to move them to thei r new
location.

First, seiect the Copy command, then choose the item or items
you wish to copy. You will then be prompted to "Move the
figure into place, and press the left button." A copy of the
item(s) will appear at the location you chose.

Choose change, then choose the item(s) that the change should
affect. A menu will appear that includes such items as Size (to
change the thickness of the item) and Dashi ng (to change to a
dashed line from a solid line). Choose the change that you
would like to make.

Select the Group command to treat a set of items like a single
Sketch element. Choose the Sketch elements that should be in
the group. Untii you Ungroup them, this group of eiements wiii
be treated as a single item. When you choose a command, such
as Delete, a single control box will appear for the group.

When you are finished making a sketch, save it in a file by
choosing the PUT command. You will be prompted for a

filename. Type it in, and press cr when you are done. If a
filename already appears after the prompt, and it is the correct

name, simpiy type cr. If it is not the correct fiiename, a back
space will delete a single character, and Control-W will delete
the word behind the cursor.

To stop sketch without saving your work, choose close from the
default right button menu (move the mouse cursor so that it
points to the title bar of the sketch window, and press the right
mouse button). You will be asked to press the left mouse button
to confirm that you want to stop. You will leave sketch without
saving your work. Otherwise, press any other mouse button to
continue without stopping.

To print a copy of your sketch, choose Hardcopy from the default
right button window menu. Often a printer can not accurately
print your drawing; don't be surprised if the hardcopy drawing
differs from the screen drawing.

35.8 To Continue a Sketch That Has Been Saved on a File

SKETCH

To continue a Sketch that has been saved on a file, open a Sketch
window, and choose Get from the command menu. You will be
prompted for a filename. Once it appears, you can continue
your work on the drawing. Using the function GET merges the
file with whatever is currently in the Sketch window. This will be

35 1 i

TO CONTINUE A SKETCH THAT HAS BEEN SAVED ON A FILE

35 12

changed in future versions of Sketch, but for now, be careful
about using this command.

SKETCH

36.1 An Example Free Menu

FREE MENUS

36. FREE MENUS

Free Menu is a library package that is even more flexible than the
regular menu package. It allows you to create menus with
different types of items in them,and will format them as you
would like. Free menus are particularly useful when you want a
"fill in the form II type interaction with the user.

Each menu item is described with a list of properties and values.
The following example wiil give you an idea of the structure of
the description list, and some of your options. The most
commonly used properties, and each type of menu item will be
described in Section 36.2 and Section 36.3.

Free menus can be created and formatted automatically! It is
done with the function FM. FORMATMENU This function takes
one argument, a description of the menu. The description is a
list of lists; each internal list describes of one row of the free
menu. A free menu row can have more than one item in it, so
there are really lists of lists of lists! It really isn't hard, though, as
you can see from the following example: .

{SETQ ExampleMenu
{FN. FORMATMENU

'{«(TYPE TIllE LABEL TitlesDoNothing)
lTYPE 3STATE L~BEL E~a~le3State}}

(~TYPE EDIlSTART LABEL PressToStartEditing
ITENS (EDIlEN»

(TYPE EDIl 10 EDIlEN LABEL WW»
(WINOOWPROPS TITLE wExample Does NothingW»»

The first row has 2 items in it; one is a TITLE, and the second is a
3STATE item. The second row also has 2 items. The second, the
EDIT item, is invisible, because its label is an empty string. The
caret will appear for editing, however, if the EDITSTART item is
chosen. Windowprops can appear as part of the description of
the menu, because a menu is, after all, just a special window.
You can specify not only the title with WINDOWPROPS, but also
the position of the free menu, using the "left" and "bottom"
properties, and the width of the border in pixels, with the
"border" property. Evaluating this expression will return a
window. You can see the menu by using the function OPENW.
The following example iI!ustrates this:

36 1

AN EXAMPLE FREE MENU

aa.{SETQ E~ampleMenu
(FM , FOF:r.tA TttlENU ',' (r PE T ITL LABEL T i t.l e::;OoNo r: tn nlJ)

T PE 3STA E LABEL Example3State))
T FE EDIT TAF:T
L eEL Pre ~ToStartEditina
! EMS (ED TEM)) -

(T PE EdIT 10 ~bITEm LABEL ""1)
(11,1 I DOII,'PROPS

T TLE "E,v:ample Doe:::: ~Jothinl~l"))))

Figure 36.1. An example free menu

The next example shows you what the menu looks like after the
EDITSTART item, PressToStartEditing, has been chosen.
,'.' .','.'.',',',',', ~.' ,', ' .. ,., ... ,., , ... ,'.',,' .'. '." .',',' ,.' ,'. '.'
::::::::::::~ ___ M~
:':'::1; .:.:
',I,

:::: Tlt le:~D(lr'J('tt-litIIJ EX.jftlple3St..:,t.e
:;:: Pt~e:::::: T Ij:::t.ar"t.E(J; t. i t'"1I::1. A :.:.
tl"::TmmmmmmmEmTI:mTIgTI:TIr\~~ ::::;:;:

Figure 36.2. Free menu after the EDITSTART item has been chosen

The following example shows the menu with the 3STATE item in
its T state, with the item highlighted (In the previous bitmaps, it
was in its neutral state.)

Example3State Tit,le:::DoNothi n9
PressToStartEdlting

Figure 36.3. Free menu With the 3STATE Item In Its T state

Finally, Figure 36.4 shows the 3STATE item in its NIL state, with a
diagonal line through the item

Figure 36.4. Free menu With the 3STAfE item In its NIL state

If you would like to specify the layout yourself, you can do that
too. See the Lisp Library Packages Manual for more information.

36a2 Parts of a Free Menu Item

362

There are 8 different types of items that you can use in a free
menu. No matter what type, the menu item is easily described by
a list of properties, and values. Some of the properties you will
use most often ar~:

FREE MENUS

LABEL

TYPE

MESSAGE

10

ITEMS

SELECTEOFN

PARTS OF A FREE MENU ITEM

Required for every type of menu item. It is the atom, string, or
bitmap that appears as a menu selection.

One of eight types of menu items. Each of these are described
below.

The message that will appear in the prompt window if a mouse
button is heid down over the item.

An item's unique identifier. An 10 is needed for certain types of
menu items.

Used to list a series of choices for an NCHOOSE item, and to list
the 10's of the editable items for an EOITSTART item.

The name of the function to be called if the item is chosen

36.3 Types of Free Menu Items

FREE MENUS

Momentary

TOGGLE

3STATE

Each type of menu item is described in the following list,
including an example description list for each one.

This is the familiar sort of menu item. When it is selected, the
function stored with it is called. A description for the function
that creates and formats the menu looks like this:

(TYPE MOMENTARY
LABEL Blink-N-Ring
MESSAGE -Blinks the screen and rings bells·
SELECTEOFN RINGBELLS)

This menu item has two states, T and NIL. The default state is NIL,
but choosing the item toggles its state. The following is an
example description list, without code for the SELECTEOFN
function, for this type of item:

(TYPE TOGGLE
LABEL OwimOisable
SELECTEDFN ChangeDWIMState)

This type of menu item has 3 states, NUETRAL, T, AND NIL
Neutral is the default state. T is shown by highlighti ng the item,
and NIL is shown with diagonal lines. The following is an
example description list, without code for the SELECTEDFN
function, for this type of item:

(TYPE 3STATE
LABEL CorrectProgramAllOrNoSpelling
SELECTEOFN ToggleSpelljngCorrection)

TITLE This menu item appears on the menu as dummy text. It does
nothing when chosen. An example of its description:

NWAY

(TYPE TITLE LABEL -Choices:~}

A group of items, only one of which can be chosen at a time. The
items in the NWAY group should all have an 10 field, and the 10's
should be the same. For example, to set up a menu that would
allow the user to chose between Helvetica, Gacha, Modern, and
C(assic fonts, the descriptions might look like this (Once again,
without the code for the SELECTEOFN):

(TYPE NWAY 10 FONTCHOICE
LABEL Helvetica
SELECTEDFN ChangeFont)

363

TYPES OF FREE MENU ITEMS

36.4

NCHOOSE

EDITSTART

(TYPE NWAY 10 FONTCHOICE
LABEL Gacha
SELECTEOFN ChangeFont)

(TYPE NWAY 10 FONTCHOICE
LABEL Modern
SELECTEOFN ChangeFont)

(TYPE NWAY 10 FONTCHOICE
LABEL Classic
SElECTEOFN Changefont)

This type of menu item is like NWAY except that the choices are
given to the user in a submenu. The list to specify an NCHOOSE
menu item that is analogous to the NWA Y item above might
look like this:

(TYPE NCHOOSE
LABEL FontChoices
ITEMS (Helvetica Gacha Modern Classic)
SELECTEOFN ChangeFont)

When this type of menu Item is chosen, it activates another type
of item, an EDIT item. The EDIT item or items associated with an
EDITSTART item have their 10's listed on the EOITSTART's ITEMS
property. An example description list is:

(TYPE EOITSTART LABEL -Function to add?- ITEMS (Fn»

EDIT This type of menu item can actually be edited by you. It is often
associated with an EDITSTART item (see above), but the caret
that prompts for input will also appear if the item itself is chosen.
An EDIT item follows the same editing conventions as editing in
Interlisp-D Executive window:

Add Characters by typi ng them at the caret.

Move the caret by pointing the mouse at the new position, and
clicking the left button.

Delete Characters from the caret to the mouse by pressi ng the
right button of the mouse. Delete a character behi nd the caret
by pressi ng the back space key.

Stop editing by typing a carriage return, a Control-X, or by
choosing another item from the menu.

An example description list for this type of item is:

(TYPE EDIT 10 Fn LABEL ._)

FREE MENUS

37.1 Say it '.vith Graphs

THE GRAPHER

37. THE GRAPHER

Grapher is a collection of functions for creating and displaying
graphs, networks of nodes and links. Grapher also allows you to
associate program behavior with mouse selection of graph
nodes. To load this package, type

(FIlESlOAD GRAPHER)

Figure 37.1 shows a simple graph.

13~ISHOWGRAPH ANIMAL. GRAPH "ANIMAL GRAPH")
{WI~OOW}#60,151320
14~A NIMAL GRAPH

lilllli 11111 111111111 1I1111I111111111 1111I 11III I11I1 II :llill!!IIII.~.'J:~~.~.:::~i~~:~:::.~~~:!
Figure 37.1. A Simple Graph

In Figure 37.1 there are six nodes (ANIMAL, MAMMAL, DOG,
CAT, FISH, and BIRD) connected by five links.

A GRAPH is a record containing several fields. Perhaps the most
important field is GRAPHNODES - which is itself a list of
GRAPH NODE records. Figure 37.2 illustrates these data
structures. The window on top contains the fields from the
simple graph. The window on the bottom is an inspection of the
node, DOG.

37 1

SAY IT WITH GRAPHS

'3

GRAPH.CHANGELABElFN
GRAPH.INVERTLABELFN
GRAPH.INVERTBOROERFN
GRAPH.FONTCHANGEFN
GRAPH.OELETELINKFN
GRAPH.ADDLINKFN
GRAPH.DELETENOOEFN
GRAPH.ADONOOEFN
GRAPH.MOVENOOEFN
OIRECTEOFLG
8IOESFLG
GRAPHNOOES

NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
T
((F I :;::H

'DOG (136. 7) NIL NIL NIL .•) Inspector

372

NIL
DOG
{FOrHe LA:~:::: }#7~3 , 1727 6 41:\~l:~~~~~:~:~::!:~:1 «MAMMAL DOG CAT» N
NIL
15
24

HADE NIL
I TMAP NIL
ON (H:6 n

DOG

Figure 37.2. Inspecting a Graph and a Node

The GRAPHNODE data structure is described by its text (NODEID),
what goes into it (FROMNODES), what leaves it (TONODES), and
other fields that specify its looks. The basic model of graph
building is to create a bunch of nodes, then layout the nodes into
a graph, and finally display the resultant graph. This can be done
in a number of ways. One is to use the function NOOECREATE to
create the nodes, lAYOUTGRAPH to layout the nodes, and
SHOWGRAPH to display the graph. The primer shows you two
simpler ways, but please see the Library Packages Manual for
more information about these other functions. The primer's first
method is to use SHOWGRAPH to display a graph with no nodes or
links, then interactively add them. The second is to use the
function lAYOUTSEXPR, which does the appropriate
NOOECREATES and a lAYOUTGRAPH, with a list.

The function SHOWGRAPH displays graphs and allows you to edit
them. The syntax of SHOWGRAPH is

(SHOWGRAPH graph window leftbuttonfn middlebuttonfn
topjustifyflg alloweditflg copybuttoneventfn)

Obviously the graph structure is very complex. Here's the easiest
way to create a graph.

(SETQ MY.GRAPH NIL)
(SHOWGRAPH MY.GRAPH 8My Graph- NIL NIL NIL T)

THE GRAPHER

Add a Node

Add a Link

THE GRAPHER

SA Y IT WITH GRAPHS

You will be prompted to create a small window as in Figure
Figure 37.3. This graph has the title My Graph.

Hoid down the right mouse button in the window. A menu of
graph editing operations will appear as in Figure 37.4.

I Move r·'·Jocie I
-m~mm. ,t., c~.j No d r:-
III : "Jj_ Delete r·o.locie

,6,ci.j Link.
Delete Link

Ct-13.n l;le lat.el
label :::rn8.1ler
/;·3beI1r3.t'oer'

<. -> Dir'ec::tecj
< -> Sicje:::

I
<.-> Bor'cier- I
(-> 5:h;3.cie

I STOP

Figure 37_4. A Menu of Graph Editing Operations

Here's how to use this menu to:

Start by selecting Add Node. Grapher will prompt you for the
name of the node (See Figure 37.S.) and then its position.

1

Figure 37.5. Grapher prompts for the name of the node to add after Add
Node is chosen from the graph editing menu.

Position the node by moving the mouse cursor to the desired
location and clicking a mouse button. Figure 37.6 shows the
graph with two nodes added using this menu.

r"Emln

I :::econd-nodej

Figure 37.6. Two nodes added to MY.GRAPH uSing the graph edit;!1g menu

Select Add link: from the graph editing menu. The Prompt
window will prompt you to select the two nodes to be linked.
(See Figure 37.7.) Do this, and the link will be added.

My Grapl1

Iflr·:::t-nodel

Figure 37.7. The Prompt window will prompt you to select the two nodes to link.

373

SAY IT WITH GRAPHS

Delete A Link

Delete A Node

Moving a Node

Select Delete L ink from the graph editing menu. The Prompt
window will prompt you to select the two nodes that should no
longer be linked. (See Figure 37.8.) Do this, and the iink will be
deleted.

y y g n
hen the TO node, : . .-:' ,~-.,
'? . ,!.,. :: .. :: {

.. " •• a

W •• : ~ ••• '::

. ..~.

M)' Grapn

Figure 37.S. The Prompt window will prompt you to select the two nodes that
should no longer be linked

Select Delete Node from the graph editing menu. The Prompt
window will prompt you to select the node to be deleted. (See
Figure 37.9.) Do this, and the node will be deleted.

Pot W'lClO

If i t~:s:t-nlJdel

Figure 37.9. The prompt to delete a node

Select "Delete Node" from the graph editing menu. Choose a
node pointi ng to the it with the mouse cursor, and pressi ng and
holding the left mouse button. When you move the mouse
cursor, the node will be dragged along. When the node is at the
new position, release the mouse button to deposit the node.

The commands in this menu are easy to learn. Experiment with
them!

37.2 Making a Graph from a List

374

Typically, a graph is used to display one of your program's data
structures. Here is how that is done.

LAYOUTSEXPR takes a list and returns a GRAPH record. The
syntax of the function is

(LAYOUTSEXPR sexpr format boxing font motherd
personald familyd)

For example:

(SETQ ANIMAL. TREE '(ANIMAL (MAMMAL DOG CAT) BIRO FISU»
(SETQ ANIMAL.GRAPH

THE GRAPHER-

MAKING A GRAPH F-ROM A LIST

(LAYOUTSEXPR ANIMAL. TREE 'HORIZONTAL»
(SHOWGRAPH ANIMAL.GRAPH -My Graph- NIL NIL NIL T)

This is how Figure 37.1 was produced.

37 .. 3 Incorporating Grapher into Your Program

37.4 More of Grapher

•

•

THE GRAPHER

The Grapher is designed to be built into other programs. It can
call functions when, for example, a mouse button is ciicked on a
node. The function SHOWGRAPH does this:

(SHOWGRAPH graph window leftbuttonfn midd/ebuttonfn
topjustifyf/g alloweditf/g copybuttoneventfn)

For example, the third argument to SHOWGRAPH, leftbuttonfn, is
a function that is called when the left mouse button is pressed in
the graph window. Try this:

(DEFINEQ (MY.lEFT.BUTTON.FUNCTION
(THE.GRAPHNODE THE.GRAPH.WINDOW)

(INSPECT THE.GRAPHNODE»)

(SHOWGRAPH FAMIlY.GRAPH -Inspectable fa.ily·
(FUNCTION MY.LEFT.BUTTON.FUNCTION)
NIL NIL T)

In the example above, MY. LEFT. BUTTON. FUNCTION simply
calls the inspector. Note that the function should be written
assuming it will be passed a graphnode and the window that
holds the graph. Try adding a function of your own.

Some other Library packages make use of the Grapher. (Note:
Grapher needs to be loaded with the packages to use these
fu ncti ons.)

MASTERSCOPE: The Browser package modifies the Masterscope
command,. SHOW PATHS, so that its output is displayed as a
graph (using Grapher) instead of simply printed.

GRAPHZOOM: allows a graph to be redisplayed larger or smaller
automatically.

375

MORE OF GRAPHER

[This page intentionally left blank]

37.6 THE GRAPHER

38. VIRTUAL KEYBOARDS, AND THE
KEYBOARD EDITOR

There are 2 library packages, the Virtual Keyboards Package and
the Keyboard Editor, that make it possible to change the
configuration of your keyboard. You can change the character
of your keyboard to the configuration of another keyboard
provided by the package, or you create an keyboard
configuration that is uniquely yours.

If you don't want to change your keyboard, you can still simulate
having a different keyboard by using your mouse to select from a
keyboard displayed on the screen. Whichever way you choose,
they will work with any software package that requires keyboard
input. The following subsections demonstrate how to use the
Virtual Keyboards package and the Keyboard Editor package.

38.1 Using the Virtual Keyboards Package

VIRTUAL KEYBOARDS. AND THE KEYBOARD EDiTOR

Load the files VIRTUALKEYBOARDS.DCOM and
KEYBOARDEDITOR.DCOM. (See Section 8.6, Page 8.4 for how to
load a file.) The right button background menu will display
another item called Keyboard. At the right of the Keyboard
item, you will notice a grey triangle. Hold down the mouse
button, with the Keyboard item blackened. and move the mouse
to "follow the arrow". Another menu (a submenu) will appear.
Using this submenu (and some of the submenu's of those items)
is an easy and effective way to use this library package, and is
what will be done in this chapter.

To display a keyboard, choose" Display only" from the Keyboard
submenu. A menu of provided virtual keyboards will appear.
Right now, this includes: Default, European Logic, Math, Office,
Dvorak, Greek, Italian, Spanish, French, German, and Standard
Russian. Figure 38.1 shows an example of the Dvorak keyboard,
displayed by using this menu option.

38 1

USING THE VIRTUAL KEYBOARDS PACKAGE

VIrtual Ke~'Doard : DVORl!.K

Ii))
I

Figure 38.1. A Dvorak Keyboard displayed using the Virtual Keyboards Package

To use a key, point to it with the mousecursor , and click the left
mouse button. For upper case letters, hold down the shift key on
the keyboard while you choose the key on the screen with the
mouse.

To replace the character set of your hardware keyboard, choose
either "Switch keyboard" or "Switch and display" from the
submenu of Keyboard on the background menu. Both of these
options replace the keyboard's character set, but "Switch and
display" will also show the keyboard on the screen, so that it can
be referenced .for key placement. With either choice you must
choose the keyboard from a menu of the available keyboards.

38.2 Using the Keyboard Editor

382

If none of the keyboards is exactly what you want, you can use
the keyboard editor to create the keyboard you need. To do this,
notice that the" Edit" item of the submenu of the background
menu item "Keyboard" ALSO has a submenu! This menu's items
are:

• New keyboard, default initial

• New keyboard, other initial

• Existing Keyboard

Choosing" Edit", without looking at its submenu, is the same as
choosing "New keyboard, default initial". Unless you choose
"Existing keyboard" you will be promped for a name for your
new keyboard (existing keyboards have already been assigned
names).

As an example, choose "Edit" from the submenu of "Keyboard".
The keyboard editor will appear on your screen, as in figure
Figure 38.2.

VIRTUAL KEYBOARDS, AND THE KEYBOARD EDITOR

USING THE KEYBOARD EDITOR

l1aracter set 0 _ _

tl 21:1 .:1(1 ':,1;1 hl~1 l~~)

1:1
I

I) IQ.I F
I

i I /". l~

.-.
I B E ..
I

I :t .3 i" 3

.:1 I
:~ 4 [, T

I s
I

% S E U

6 I
~5 F \r I .~~.

i (j. \,~l
I

Hi
I

8 H }(

!
11 I '~i

12 : I .J ,.,.
u

13 I + K

14 --' L

15 1...t

16 ~

~ l'-T

17 1
'-'1

: CINO'fS

14~1

b

d

. :.

h

k

m

71

1) :::~1~1 ~:::':1 ::::h~ 26':1 ~>:11:1 3:2L:l :;4tl 36':1

t~

'1

n

'f

.,.~ ..

:.:

,1/

:t .-E '"
1;- 19

e I~I

¥
1T T.}

::1

'E ;)~

G

.:- 1
:r

t +

l'

h

Figure 38.2. The Keyboard Editor

To change a key, select it from the keyboard with the mouse. It
will be shown with a heavy black border.

To change the upper case character, hold the shift key down
while you select a key. For this example, hold down the shift key,
and select the number 6. The keyboard should look like this:

17 I I I (I 1 I h I
~I __ ~

VIRTUAL KEYBOARDS, AND THE "EYBOARD EDITOR 38.3

USING THE KEYBOARD EDITOR

•
•

•

384

Figure 38.3. The Keyboard after the shifted 6 key is selected.

After you have chosen the key, you want to change, choose a
replacement character from the character menu above. (If you
want a character that is not shown on the character menu,
choose "CharSet" from command menu at the top. You will be
given a menu of the character sets avai lable. Choose one of
these to see other characters.). The character you chose will
appear on the keyboard.

When you are done, choose either:

Define to add this keyboard to the menu of known keyboards.

Quit to exit the editor, and save the changes on the virtual
Keyboard. If you are editing an existing keyboard, the definition
of that keyboard will be changed. If you are editing a new
keyboard, the name you supplied for the keyboard will be added
to the list of known keyboards. You will be able to use the
commands, such as "Display Only", with your new keyboard.

Stop to exit the editor without changing the existing keyboard.

VIRTUAL KEYBOARDS. AND THE KEYBOARD ED' rOR

ICONW

39. ICONW

Each window has a property, ICONW, that determines what icon
is used when you shrink the window. ICONW is a function that
can produce an interesting icon. It is usually called from the
ICONFN of a window and its syntax is:

(ICQf'. image mask j

S~e Section 27.1.2; Page 27.2 for how to include a function in a
window's property list.

Every icon is made from two bitmaps, an image and a mask. The
mask allows the background to show through some parts of the
image bitmap so that the image need not appear to be
rectangular.

As an example, create a bitmap called desk, by typing the
function

(SETQ DESK (EDITBM»

The image for the example bitmap DESK looks like this:

Figure 39.1. The DESK bitmap

Now create the mask. Make the mask black everywhere that you
want to "mask" the background (everywhere the background
should not show through). To do this, type:

{SETQ OESL~ASK (EO!TBM»

The mask for the example bitmap DESKMASK looks like this:

n
Figure 39.2. The DESKMASK bitmap

Now, to see the icon, type

(ICONW DESK DESKMASK)

into the Interlisp-D Executive Window. The resulting icon using
DESK and DESKMA5K above looks like this:

l::::::l'.':~::::::::::::::::::l:j:::
•• ' •..•. - '.',','.1,' .' .•..•..
::::::::",:::::::::::,:::::::::
.' , ' '
::::::::::::::::::::::::::::::::::::

Figure 39.3. The ICON that resulted from executing ICONW with the DESK and
DESKMASK bitmaps.

39 1

I(ONW

392

The Lisp Library Packages Manual describes some images, with
their associated masks, provided in the file STOCKICONS. They
include FOLDER and FOLDERMASK, which make a "file folder"
icon, PAPERICON and PAPERICONMASK, which make an icon
that looks like a piece of paper with the corner folded over, and
FILEDRAWER and FILESRAWERMASK that make an icon that
looks like the front of a filedrawer.

There is also a function to produce icons that include text. See
the Lisp Library Packages {\//anual for more information.

i(ONW

TELERAID

L

Fnum

Control-J

i
Datom

A atom

Patom

U

Q

Control-N

40. TELERAID

Teleraid is a Library package. It has two purposes. One purpose
is to look at the virtual memory of another machine, when both
machines are on a network, and the other is to look inside a
SYSOUT file.

The file, TELERAID.DCOM, needs to be loaded to use Teleraid.
Type (FILESLOAD TELERAID).

'vVhen your i 108 maintenance panel does not say 1108 or 1109,
or your 1186 mouse cursor has changed to a number, you first
need to check your User's Guide to see what to do for your
particular problem. Usually the fix involves entering Teleraid. Do
this either by pressing the UNDO key, or, if that does not work,
press Control-Shift-Delete (all three at once). The mouse cursor
should change to a cursor that says "Teleraid". Follow the
instructions in your User's Guide.

When your 1108 is on a network, you can use teleraid to debug
an 1108 whose maintenence panel does not say 1108 or 1109.
First press the halted machine's UNDO key. This changes the
mouse cursor into "Teleraid", and begins running the teleraid
server.

Run the function TELERAIO, with the host name or pup address
of the machine running the Teleraid server as an argument. The
following teleraid commands are useful:

shows the stack.

shows the frame number num.

shows the next frame of the stack.

shows the previous stack frame.

shows the function definition of atom. Returns 0 if there is none.

shows the top level value of atom.

shows the property list of atom.

displays the screen's bitmap of the machine running the teleraid
server.

quits teleraid without affecting the machine being debugged.

causes the machine being debugged to resume execution. Do
Not use this unless you are sure that the problem has been
solved.

There are many more commands available to you. See the Lisp
Library Packages Manual for more information.

40 i

TELERAID

[This page intentionally left blank]

402 TELERAID

RESOURCE MANAGEMENT

A 1 1 1\.1 ~min" \/~ .. :~hlo~ ~n~ Rec-"~s -r I • I Q. II. ~ V QI IQ"'I"'~ QI \AI UI \AI

RESOURCE MANAGEMENT

You will find times when one environment simu!taneously hosts
a number of different programs. Runni ng a demo of several
programs, or reloading the entire Interlisp-D environment from
floppies when it contains several different programs, are two
examples that could, if you aren't careful, provide a few
problems. Here are a few tips on how to prevent problems:

• If you change the value of a system variable, MENUHELOWAll for
example, or connect to a directory other than
{DSK}<L1SPFILES>, write a function to reset the variable or
directory to its original value. Run this function when you are
finished working. This is especially important if you change any
of the system menus.

• Don't redefine Interlisp-D functions or CLiSP words.

Remember, if you reset an atom's vaiue or function definition at
the top level (in the Interlisp-D Executive Window), the message
(some.Crucial.Function.Or. Variable redef i ned), appears. If
this is not what you wanted, type UNDO immediately!

If, however, you reset the value or function definition of an atom
inside your program, a warning message will not be printed.

• Make the atom names in your programs as unique as possible.

•

To do this without filling your program with unreadable names
that noone, including you, can remember, prefix your variable
names with the initials of your program. Even then, check to see
that they are not already being used with the function BOUNDP.
For example, type:

(BOUNDP 'BackgroundMenu)

This atom is bound to the menu that appears when you press the
left mouse button when the mouse cursor is not in any window.
BOUNDP returns l. BOUNDP returns NIL if its argument does not
currently have a value.

Make your function names as unique as possible. Once again,
prefixing function names with the initials of your program can
be helpful in making them unique, but even so, check to see that
they are not already being used. GElD is the Interlisp-D function
that returns the function definition of an atom, if it has one. If
an atom has no function definition, GElD returns NIL. For
example, type:

(GElD 'CAR)

41 1

NAMING VARIABLES AND RECORDS

41 2

A non-NIL value is returned. The atom CAR already has a
function definition.

• Use complete record field names in record FETCHes and
REPLACEs when your code is not compiled. A Complete record
field name is a list consisting of the record declaration name and
the field name. Consider the following example:

(RECORD NAME (FIRST LAST»
(SETQ MyNa.e (create NAME FIRST ~ 'John LAST ~ 'Smith»
(FETCH (NAME FIRST) OF MyName)

• Avoid reusing names that are field names of Interlisp-D System
records. A few examples of system records follow. Do not reuse
these names.

(RECORD REGION (LEFT BOTTOM WIDTH HEIGHT»
(RECORD POSITION (XCOORD YCOORD»
(RECORD IMAGEOBJ (- BITMAP -)

• When you select a record name and field names for a new
record, check to see whether those names have al ready been
used.

Call the function REClOOK, with your record name as an
argument, in the Interlisp-D Executive Window. (See Figure
41.1.) If your record name is already a record, the record
definition will be returned; otherwise the function will return
NIL.

Interlisp -0 Executive Window

50~{RECLOOK 'POSITION)
(RECORD

POSITION
(XCOORD . VCOORD)
(TYPE? (AND (LIStp DATUM)

(NUMBERP (CA~ DATUM))
(NUMBERP (COR DATUMj'

(SYSTEh1))
51~(RECLOOK 'NewPos)
NIL
52f>

Figure 41.1. RECLOOK returns the record definitIon If Its argument IS already
declared as a record. NIL otherwise.

Call the function FIElOlOOK with your new field name in the
Interlisp-D Executive Window. (See Figure 41.2.) If your field
name is already a field name in another record, the record
definition will be returned; otherwise the function will return
NIL.

RESOURCE MANAGEMENT

NAMING VARIABLES AND RECORDS

lnterlisp -D Executive Window

54~(FIELDLOOK ~XCOORD)
((RECOF-:D

P08ITION
(XCOORD . YCOORD)
(TYPE? (AND (LIstp DATUM)

(NUMBERP (CAk DATUM))
(NUMBERP (COR DATUMj·

{S''r''::::TE~n 'I ')

55~~FI~LDL66~ ~XPos)
r·J I L
,56~

Figure 41.2. FIELDLOOK returns the record definition if Its argument is
already the field of a record, NIL othervvise.

41.2 Some Space and Time Considerations

41.2.1 Global V·ariables

RESOURCE MANAGEMENT

In order for your program to run at maximum speed, you must
efficiently use the space available on the system. The following
section points out areas that you may not know are wasting
valuable space, and tips on how to prevent this waste.

Often programs are written so that new data structures are
created each time the program is run. This is wasteful. Write
your programs so that they only create new variables and other
data structures conditionally. If a structure has already been
created, use it instead of creating a new one.

Some time and space can be saved by changing your RECORD and
TYPE RECORD declarations to DATATYPE. DATATYPE is used the
same way as the functions RECORD and TYPE RECORD. (See
Chapter 24.) In addition, the same FETCH and REPLACE
commands can be used with the data structure DATATYPE
creates. The difference is that the data structure DATATYPE
creates cannot be treated as a list the way RECORDs and
TYPERECORDs can.

Once defined, global variables remain until Interlisp-D is
reloaded. Avoid using global variables if at all possible!

One specific problem arises when programs use the function
GENSYM. In program development, many atoms are created that
may no longer be useful. Hints:

• Use

(OELOEF atom name · PROP)

to delete property lists, and

(OELOEF atomname 'VARS)

41.3

SOME SPACE AND TIME CONSIDERATIONS

41.2.2 Circular Lists

to have the atom act like it is not defined.

These not only remove the definition from memory, but also
change the appropriate fi 1 eCOMS that the deleted object was
associated with so that the file package will not attempt to save
the object (function, variable, record definition, and so forth) the
next time the file is made. Just doi ng somethi ng like

(SETQ (arg ata.naae) 'NOBINO)

looks like it will have the same effect as the second DELDEF
above, but the SETQ doesn't update the file package.

• If you are generating atom names with GENSYM, try to keep a list
of the atom names that are no longer needed. Reuse these atom
names, before generating new ones. There is a (fairly large)
maximum to the number of atoms you can have, but things slow
down considerably when you create lots of atoms.

• When possible, use a data structure such as a list or an array,
instead of many individual atoms. Such a structure has only one
pointer to it. Once this pointer is removed, the whole structure
will be garbage collected and space reclaimed.

If your program is creating circular lists, a lot of space may be
wasted. (Note that many cross linked data structures end up
having circularities.) Hints when using circular lists:

• Write a function to remove pointers that make lists circular when
you are through with the circular list.

• If you are working with circular lists of windows, bind your main
window to a unique global variable. Write window creation
conditionally so that if the binding of that variable is already a
window, use it, and only create a new window if that variable is
unbound or NIL.

Here is an example that illustrates the problem. When several
auxiliary windows are built, pointers to these windows are
usually kept on the main window's property list. Each auxiliary
window also typically keeps a pointer to the main window on its
property list. If the top level function creates windows rather
than reusing existing ones, there will be many lists of useless
windows cluttering the work space. Or, if such a main window is
closed and will not be used again, you will have to break the
links by deleting the relevant properties from both the main
window and all of the auxiliary windows first. This is usually
done by putting a special CLOSEFN on the main window and all
of its auxiliary windows.

41.2.3 When You Run Out Of Space

414

Typically, if you generate a lot of structures that won't get
garbage collected, you will eventually run out of space. The
important part is being able to track down those structures and

RESOURCE MANAGEMENT

RESOURCE MANAGEMENT

SOME SPACE AND TIME CONSIDERATIONS

the code that generates them in order to become more space
efficient.

The Lisp Library Package GCHAX.DCOM can be used to track
down pointer's to data structures. The basic idea is that GCHAX
will return the number of references to a particular data
structurI=_

A special function exists that allows you to get a little extra space
so that you can try to save your work when you get toward the
edge (usually noted by a message indicating that you should save
your work and sysin a fresh Lisp). The GAINSPACE function
allows you to delete non-essential data structures. To use it,
type:

(GAINSPACE)

into the Interiisp-D Executive Window_ Answer "N" to all
questions except the following.

• Delete edit history

• Delete history list.

• Delete values of old variables.

• Delete your MASTERSCOPE datadase

• Delete information for undoing your greeting.

Save your work and reload Lisp as soon as possible.

a 1 S

SOME SPACE AND TIME CONSIDERATIONS

[This page intentionally left blank]

416 RESOURCE MANAGEMENT

42. SIMPLE INTERACTION·S WITH
THE CU.RSOR, A BITMAP, AND A
WINDOW

The purpose of this chapter is to show you how to build a
moderately tricky interactive interface with the various
Interlisp-D display facilities. In particular how to move a large
bitmap (larger than 16 x 16 pixeis) around inside a window. To
do this, you will change the CURSORINFN and CURSOROUTFN
properties of the window. If you would also like to then set the
bitmap in place in the window, you must reset the
BUTTONEVENTFN. This chapter explains how to create the
mobile bitmap.

42.'1 An Example Function Using GETMOUSESTATE

One function that you will use to "trace the cursor" (have a
bitmap follow the cursor around in a window) is
GETMOUSESTATE; This function finds the current state of the
mouse, and resets global system variables, such as lASTMOUSEX
and lASTMOUSEY.

As an example of how this function works, create a window by
typing

(SETQ EXAMPLE.WINDOW (CREATEW»

into the Interlisp-D Executive window, and sweeping out a
window. Now, type in the function

(DEFINEQ (PRINTCOOROS (W)
(PROMPTPRINT -(- LASTMOUSEX -, • LASTMDUSEY .).)
(BLOCK)
(GETMOUSESTATE»)

This function calls GETMOUSESTATE and then prints the new
values of lASTMOUSEX and lASTMOUSEY in the promptwindow.
To use it, type

(WINDOWPROP EXAMPLE. WINDOW 'CURSORMOVEDFN 'PRINTCOOROS)

The window property CURSORMOVEOFN, used in this example,
will evaluate the function PRINTCOOROS each time the cursor is
moved when it is inside the window. The position coordinates of
the mouse cursor will appear in the prompt window. (See Figure
42.1.)

SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP, AND A WINDOW 42 1

AN EXAMPLE FUNCTION USING GETMOUSESTATE

Figure 42.1. ~he current position coordinates of the mouse cursor are shown in
the prompt window

42.2 Advising GETMOUSESTATE

42 .. 3 Changing the Cursor

42.2

For the bitmap to follow the moving mouse cursor, the function
GETMOUSESTATE is advised. When you advise a function, you
can add new commands to the function without knowing how it
is actually implemented. The syntax for advise is

(ADVISE fn when where wha t)

fn is the name of the function to be augmented.

when and where are optional arguments. when specifies
whether the change should be made before, after, or around the
body of the function. The values expected are BEFORE.
AFTER, or AROUND.

what specifies the additional code.

In the example, the additional code, what, moves the bitmap to
the position of the mouse cursor. The function GETMOUSESTATE
will be ADVISEd when the mouse moves into the window. This
will cause the bitmap to follow the mouse cursor. ADVISE will
be undone when the mouse leaves the window or when a mouse
button is pushed. The ADVISEing will be done and undone by
changing the CURSORINFN, CURSOROUTFN, and
BUTTONEVENTFN for the window.

One last part of the example, to give the impression that a
bitmap is dragged around a window, the original cursor should
disappear. Try typing:

(CURSOR (CURSORCREATE (BIrNAPCREATE i i) i i]

SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP, AND A WINDOW

CHANGING THE CURSOR

into the Interlisp-D Executive Window. This causes the original
cursor to disappear. It reappears when you type

(CURSOR T)

When the cursor is invisible, and the bitmap moves as the curso;
moves, the illusion is given that the bitmap is dragged around

42.4 Functions for "Tracing the cursor"

To actually have a bitmap trace (follow) the cursor, the
environment must be set up so that when the cursor enters the
tracing region the trace is turned on, and when the cursor leaves
the tracing region the trace is turned off. The function
Establ ish/Trace/Data will do this. Type it in as it appears
(note: including the comments will help you remember what the
function does later).

(DEFINEQ (Establish/Trace/Data
[LAMBDA (wnd tracebitmap cursor/rightoffset cursor/heightoffset GCGAGP)

(* * This function is called to establish the data to trace
the desired bitmap. "wnd· is the window in which the tracing
is to take place, ·tracebitmap· is the tracing bitmap,
·cursor/rightoffset· and ·cursor/heightoffset· are integers
which detennine the hotspot of the tracing bitmap. .
As "cursor/heightoffset" and ·cursor/rightoffset· increase
the cursor hotspot moves up and to the right.
If GCGAGP is non-NIL, GCGAG will be disabled.)

(PROG NIL
{if {OR (NULL wnd)

(NULL tracebitmap»
then {PLAYTUNE (LIST (CONS 1000 4000»)

(RETURN»
{if GCGAGP

then (GCGAG»

(* * Create a blank cursur.)

(SETQ *BLANKCURSOR*(BITMAPCREATE 16 16»
(SETQ ·BLANKTRACECURSOR·(CURSORCREATE ·BLANKCURSOR*»

(* • Set the CURSOR IN and OUT FNS for wnd to the
following:)

(WINDOWPROP wnd (QUOTE CURSORINFN)
(fUNCTION SETUP/TRACE»

(WINDOWPROP wnd (QUOTE CURSOROUTFN)
(fUNCTION UNTRACE/CURSOR»

(. • To allow the bitmap to be set down in the window by
pressing a mouse button. include this line.
Otherwise, it is not needed)

{WINDOWPROP wnd (QUOTE BUTTONEVENTFN)
(FUNCTION PLACE/BITMAP/IN/WINDOW»

(* • Set up Global Variables for the tracing operation)

(SETQ *TRACEBITMAP* tracebitmap)
(SETQ ·RIGHTTRACE/OFFSET·(OR cursor/rightoffset 0»
(SETQ ·HEIGHTfRACE/OFFSET*(OR cursor/heightoffset 0»
(SETQ ~OLDBIT~APPOSITION*(BITMAPCREATE (BITMAPWIDTH tracebit.8p)

(BITMAPHEIGHT tracebi~p»)
(SETQ *TRACEWINOOW* wnd]»

SIMPLE INTERACTiONS WITH THE CURSOR, A BITMAP, AND A WINDOW 42 3

FUNCTIONS FOR "TRACING THE CURSOR"

When the function Es tab 1 i shIT race/Data is called, the
functions SETUP/TRACE and UNTRACE/CURSOR will be installed
as the values of the window's WINDOWPROPS, and will be used
to turn the trace on and off. Those functions should be typed in,
then:

(DEFINEQ (SETUP/TRACE
[lAMBDA (wnd)

(* • This function is wnd's CURSORINFN.
It simply resets the last trace position and the current
tracing region. It also readvises GETMOUSESTATE to perfon.
the trace function after each call.)

(if *TRACEBITMAp·
then (SETQ *lAST-TRACE-XPOS* -2,000)

(SETQ ·LAST-TRACE-VPOS* -2000)
(SETQ ·WNOREGION· (WINDOWPROP wnd
(WINOOWPROP wnd (QUOTE TRACING)

T)

(* * make the cursor disappear)

(CURSOR *BLANKTRACECURSOR*)
(ADVISE (QUOTE GETMOUSESTATE)

(QUOTE AFTER)
NIL
(QUOTE (TRACE/CURSOR]»

(QUOTE REGION»)

(DEFINEQ (UNTRACE/CURSOR
[LAMBDA (wnd)

(* * This function is wnd's CURSOROUTFN.
The function first checks if the cursor is currently being
traced; if so, it replaces the tracing bit.ap with what is
under it and then turns tracing off by unadvising
GETMOUSESTATE and setting the TRACING window property of
·TRACEWINOOW* TO NIL.)

(if (WINDOWPROP *TRACEWINOOW*(QUOTE TRACING»
then (BITBLT *OLOBITMAPPOSITIQN· 0 0 (SCREENBITMAP)

(IPLUS (CAR -WNDREGION·)-LAST-TRACE-XPOS·)
(IPLUS (CADR -WNOREGION*)-LAST-TRACE-YPOS*»

(WIHDOWPROP -TRACEWINOOW·(QUOTE TRACING)
NIL»

(* - replace the original cursor shape)

(CURSOR T)

(* • unadvise GETMOUSESTATE)

(UNADVISE (QUOTE GETMQUSESTATE]»

The function SETUP/TRACE has a helper function that you must
also type in. It is TRACE/CURSOR:

(DEFINEQ (TRACE/CURSOR
[LAMBDA NIL

(* • This function does the actual BITBlTing of the tracing
bitmap. This function is called after a GETMOUSESTATE. while
tracing.)

(PROG «xpos (IDIFFERENCE (LASTMOUSEX -TRACEWINOOW·)*RIGHTTRACE/OFFSET·»
(ypos (IDIFFERENCE (LASTMOUSEV -TRACEWINOOV*)-HEIGHTTRACE/OFFSET-»)

42.4

(* - If there is an error in the function, press the right
button to uoadvise the function. This will keep the .achine
fro. locking up.)

(if (lASTMOUSESTATE RIGHT)
then (UNADVISE (QUOTE GETMOUSESTATE»)

(if (AND (NEQ xpos *LAST-TRACE-XPOSto)
(NEQ ypos ·LAST-TRACE-YPOS·»

then

(to - Restor~ what was under the old position of the trace
bitmap)

(BITBLT ·Ol08ITMAPPOSITION· 0 0 (SCREENBITMAP)

SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP. AND A WINDOW

(IPLUS (CAR ·WNOREGION·)·LAST-TRACE-XPOS·)
(IPlUS (CADR ·WNOREGION·)·LAST-TRACE-YPOS·)}

(. • Save what will be under the position of the new trace
bitllap)

(BITBLT (SCREENBITMAP)
(IPLUS (CAR ·WNDREGION·)

XDOS\
(IPLUS (CADR ·WNOREGION·)

ypos)·OLDBITMAPPOSITION· 0 O}

(. • BITBLT the trace bitllap onto the new position of the
lIouse.)

{BITBLT ·TRACEBITMAp· 0 0 (SCREENBITMAP)
{IPLUS (CAR ·WNDREGION·)

xpos)
(IPLUS (CADR ·WNDREGION·)

ypos)
NIL NIL (QUOTE INPUT)
(QUOTE PAINT»

(. • Save the current position as the last trace position.)

(SETQ *LAST-TRACE-XPOS· xpos)
(SETQ *LAST-TRACE-YPOS· ypos]»

FUNCTIONS FOR "TRACING THE CURSOR"

The helper function for UNTRACE/CURSOR, called

(DEFINEQ (UNDO/TRACE/DATA
[LAMBDA NIL

UNDO/TRACE/DATA, must also be added to the environment:

(. • Th~ purpose of this function is to turn tracing off and
to free up the global variables used to trace the bitmap9 so
that they can be garbage collected.)

(. • Check if the cursor is currently being traced.
If so, turn it off.)

(UNTRACE/CURSOR)
(WINOOWPROP ·TRACEWINOOW·(QUOTE CURSORINFN)

NIL)
(WINOOWPROP ·TRACEWINOOW·(QUOTE CURSOROUTFN)

NIL)
SETQ ·TRACEBITMAp· NIL)
SETQ ·RIGHTTRACE/OFFSET· NIL)
SETQ ·HEIGHTTRACE/OFFSET· NIL)
SETQ ·OLDBITMAPPOSITION· NIL)
SETQ ·TRACEWINDOW- NIL)

(. • Turn GCGAG on)

(GCGAG T]»

Finally, if you included the WINDOWPROP to allow the user to
place the bitmap in the window by pressing a mouse button, you
must also type this function:

(DEFINEQ (PLACE/BITMAP/IN/WINDOW
[LAMBDA (wnd)

(UNADVISE (GETMOUSESTATE»
(BITBLT ·TRACEBITMAP* 0 0 (SCREENBITMAP)

(IPLUS (CAR *WNDREGION·)
xpos)

(IPLUS (CADR *WNDREGION·)
ypos)

NIL NIL (QUOTE INPUT)
(QUOTE PAINT]

That's all the functions!

SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP. AND A WINDOW 425

RUNNING THE FUNCTIONS

42,,5 Running the Functions

•
•
•

426

To run the functions you just typed in, first set a variable to a
window by typing something like

(SETQ EXAMPlE.WINDOW (CREATEW»

into the Interlisp-D Executive window, and sweeping out a new
window. Now, set a variable to a bitmap, by typing, perhaps,

(SETQ EXAMPlE.BTM (EDITBM»

Type

(Establish/Trace/Data EXAMPlE.WINDOW EXAMPlE.BTM»

When you move the cursor into the window, the cursor will drag
the bitmap.

(Note: If you want to be able to make menu selections while
tracing the cursor, make sure that the hotspot of the cursor is set
to the extreme right of the bitmap. Otherwise, the menu will be
destroyed by the B ITBL Ts of the trace functions.)

To stop tracing, either

move the mouse cursor out of the window;

press the right mouse button;

call the function UNTRACE/CURSOR.

SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP, AND A WINDOW

43.1 Directories

DISPLA YFONTDIRECTORIES

INTERPRESSFONTDIRECTORIES

PRESSFONTWI DTH FI LES

DIRECTORIES

GLOSSARY OF GLOBAL SYSTEM VARIABLES

43. GLOSSARY OF GLOBAL SYSTEM
VARIABLES

As you can tell by now, there are many system variables in
Interlisp that are useful to know the meaning of. The following
sections gathers many of the important variables together into
groups reiating to directory searching, system flags, history lists,
system menus, windows, and, of course, the catchall
miscellaneous category.

Its value is a list of directories to search for the bitmap files for
display fonts. Usually, it contains the "FONT" directory where
you copied the bitmap files, (See Chapter 31.), the device
{FLOPPY}, and the current connected directory. The current
connected directory is specified by the atom NIL. Here is an
example value of OISPLAYFONTDIRECTORIES:

Interlisp -0 Executive Window
NIL
8~OISPLAYFONTOIRECTORIES
({DSK}<LISPFILES>FONTS> {DSK}~LISPFILES)

{FLOPP'y'} NIL)

Figure 43.1. A value for the atom OISPLAYFONTOIRECTORIES. When
looking for a .DI5PlAYFONT file, the system will check the FONT directory on the
hard disk, then the top level directory on the hard disk, then the floppy, then the
current connected directory.

Is set to a list of directories to search for the font width files for
I nterpress fonts.

The value of this variable is a list of files, not directories, to search
for widths for Press fonts. Press font widths are usually large files
named FONTS.WIDTHS.

This variable is bound to a list of the directories you will be using.
(See Figure 43.2.) The system uses this variable when it is trying
to find a file to load - it checks each directory in the list, until the
file is found. NIL in list means to check the current connected
directory.

43 1

DIRECTORIES

LISPUSERSDIRECTORIES

43.2 Flags

DWIMIFYCOMPFLG

SYSPRETTYFlG

CLISPI FTRAN FLG

PRETTYTABFLG

FONTCHANGEFLG

DEditLinger

PROMPT#FLG

AUTOBACKTRACEFLG

432

Interlisp'O Executive Window
NIL
5'3 ... 0 I RECTOR I ES
(NIL {OSK}<LISPFILES)

{OSKt<LISPFILES)LIBRARY)
{OSK}<LISPFILES>LOOPS> {FLOPPY})

Figure 43.2. The value of 0 I RECTOR I ES.

Its value is a list of directories to search for library package files.

This flag, if set to T, will cause all expressions to be completely
dwimified before the expression is compiled. (See Section 13.2,
Page 13.2.) In this state, when the system does not recognize a
function of keyword, it will compare the word to a system
maintained list to determine whether the word is a macro, CLISP
word, or misspelled user-defined variable.

An example of dwimifing before compilation is to convert an IF
call to a CONO. before they are compiled. Undwimified
expressions can cause inaccurate compilation. This flag is set by
the system to NIL. Normally, you want this set to T. For more
information on DWIM, refer to the Interlisp-D Reference
Manual, Volume 2, Chapter 20.

When set to T, all lists returned to the Interlisp-D Executive
window are pretty printed. This flag is originally set by the
system to NIl.

When set to T, keep the IF expression, rather than the CONO
translation in your code.

When set to T, the pretty printer puts out a tab character rather
than several spaces to try to make code align. If NIL, it uses
space characters instead.

If NIL, then when prettyprinting no font changes will happen
(e.g. a smaller font for comments, bold for clisp words, and so
forth). The default is the atom All, so different fonts are used
where appropriate.

Its initial value is T, which means that the DEdit window stays
open after you exit DEdit. Set it to NIL if you want the DEdit
window will be closed when you exit DEdit.

Its initial value is T, so the history list number is printed before
the "~" prompt.

There are many possible values for this variable. They affect
when the back trace window appears with the break window,
and how much detail is included in it. The values of this variable
include:

NIL, its intial value. The back trace window is not brought up
when an error is generated, until you open it yourself.

GLOSSARY OF GLOBAL SYSTEM VARIABLES

•

•

•

•

NOSPELLFLG

43.3 History Lists

LlSPXHISTORY

EDITHISTORY

43.4 System Menus

GLOSSARY OF GLOBAL SYSTEM VARIABLES

FLAGS

T, which means that the back trace, BT, window is opened for
error breaks.

BT! brings up a back trace window with more detail, BT!,
window for error breaks.

ALWAYS brings up a back trace, BT, window for both error
breaks, and breaks caused by calling the function BREAK.

ALWAYS! brings up a back trace window with more detail, BT!,
for both error breaks, and breaks caused by calling the function
BREAK.

is initially bound to NIL, so that DWIM tries to correct all spelling
errors, whether they are in a form you just typed in or within a
function being run. If the variable is T, then no spelling
correction is performed. This variable is automatically reset to T
when you are compiiing a fiie. if it has some other non-NI L
value, then spelling correction is only performed on type-in.

Originally set to the list (NIL 0 30 100), with the following
argument interpretation. The NIL is the list (implemented as a
circular queue) to which the top level commands append, 0 is the
current prompt number, 30 is the maximum length of the history
I ist, and 100 is the highest number used as a prompt. This is a
system maintained iist used by the Programmers Assistant
commands REDO, UNDO, FIX, and 11 use to retrieve past function
calls.

To delete the history list, just reset the variable LISPXHISTORY
to its original value, (NIL 0 30 100).

Setting this variable to NIL, disables all the Programmers
Assistant features.

This is also set to (NIL 0 30 100) and has the same description as
LlSPXHISTORY. This list allows you to UNDO edits. You reset this
the same way as LlSPXHISTORY.

System menus are all bound to global variables and are easy to
modify. If the menu name is set to the NIL value, the menu will
be recreated using an items list bound to a global variable.

To change a system menu, edit the items list bound to the
appropriate global variable (system menus use this items list with
the default WHENSELECTEDFN), then set the value of the menu
name to NIL. The next time you need the menu, it will be created

433

SYSTEM MENUS

Background Menu

from the items list you just edited. The names of system menus
and items lists follow.

This is the variable bound to the menu that displays when you
press the right button in the grey background area of the screen.

BackgroundMenuCommands This list used for the list of ITEMS for the background menu when
it is created.

WindowMenu

WindowMenuCommands

BreakMenu

BreakMenuCommdnds

WindowMenu is the variable bound to the default window
menu displayed when the right mouse button is pressed inside of
a window.

This is the list of ITEMS for the WindowMenu.

The menu displayed when the middle mouse button is pressed in
a break window.

The list of ITEMS for the BreakMenu.

43.5 Windows

PROMPTWINDOW

T

Global name of the prompt window.

Although the value T has several meanings (such as universal
TRU E), it also stands for the standard output stream. As this is
usually the Interlisp-D Executive Window, it may be used as the
name for the TTY Window at the top level. Mouse processes
have thei r own TIY Wi ndows. A reference to the wi ndow Tin a
mouse driven function (e.g. a WHENSELECTEFN, See Section
27.1.2, Page 27.2), will open a "TTY Window for Mouse".

43.'6 Miscellaneous

434

CLEANUPOPTIONS This is a list of options that you set to automate clean up after a
work session. Example options are listing files, or recompilation.
You will want to keep this set to NIL until you become
comfortable with the machine.

FILELST The list of all the files you loaded.

SYSFILES The list of all the files loaded for the SYSOUT file.

INITIALS This is an atom that you can bind to your name. If bound, the
editor will add your name, in addition to the date, in the editor
comment at the beginning of each function.

FIRSTNAM E If this variable is set, the system will use it to greet you personally
when you log on to your machine.

INITIALSLST A list of elements of the form: (USERNAME. INITIALS) or
(USERNAME FIRSTNAME INITIALS). This list is used by the
function GREET to set your INITIALS, and your FIRSTNAME
when you iogin.

GLOSSARY OF GLOBAL SYSTEM VARiABLES

#CAREFU LCOLU M NS

DWIMWAIT

FiXSPELLDEFAU LT

\TimeZoneComp

GLOSSARY OF GLOBAL SYSTEM VARIABLES

MISCELLANEOUS

Is an integer. PRETTYPRINT estimates the number of characters
in an atom, instead of computing it, for efficiency.
Unfortunately, for very long atom names, errors can occur.
#CAREFULCOLUMNS is the number of columns from the right
within which PRETTYPRINT shouid compute the number of
characters in each atom, to prevent these errors. Initially this is
set to zero, (0), PRETTYPRINT never computes the number of
characters in an atom. If you set it to 20 or 30, when
PRETTYPRINT comes within 20 or 30 columns of the right of the
window, it will begin computing exactly how many characters
are in each atom. This will prevent errors.

is bound to the number of seconds DWIM should wait before it
uses the default response, fIXSPELLDEfAUL T, to answer its
question.

is bound to either Y or N. its vaiue is used as the defauit answer
to questions asked by DWIM that you don't answer in
DWIMWAIT seconds. It is initially bound to Y, but is rebound to N
when DWIMiFYing.

This is a global variable set to the absolute value of the time
offset from Greenwich. For EST, \TimeZoneComp should be set
to 5.

43 5

MISCELLANEOUS

[This page intentionally left blank]

436 GLOSSARY OF GLOBAL SYSTEM VARIABLES

44. OTHER REFERENCES THAT Will
BE USEFUL TO YOU

Here are some references to works that will be useful to you in
addition to this primer. Some of these you have already been
referred to, such as:

• The Interlisp-D Reference Manual

• The Library Packages ~l!anua!

• The User's Guide to SKETCH

• The 1186 or 1108 User's Guide

In addition, you can learn more about LISP with the books:

• Interl iSp-O: The language and its usage by Steven
H. Kaisler. This book was published in 1986 by John Wiley and
Sons, NY.

• Essent i a 1 LISP by John Anderson, Albert Corbett, and Brian
Reiser. This book was published in 1986 by Addison Wesley
Publishing Company, Reading, MA. It was informed by research
on how beginners learn LISP.

• The Lit t 1 eLi spe r by Daniel P. Friedman and Matthias
Felleisen. The second edition of this book was published in 1986
by SRA Associate~, Chicago. This book is a deceptively si.mple
introduction to recursive programming and the flexible data
structures provided by LISP.

• LISP by Patrick Winston and Berthold Horn. The second edition
of this book was pubiished in i985 by the Addison Wesiey
Publishing Company, Reading, MA.

• LISP: A Gentle Introduction to Symbolic
COllputat i on by David S. Touretzky. This book was published
in 1984 by the Harper and Row Publishing Company, NY.

Finally, there are three articles about the Interlisp Programming
environment:

• Powe r Tools for P rog rallile rs by Beau Shei I. It appeared
in Datamation in February, 1983, Pages 131 - 144.

• The Interlisp Progralilling Environllent by Warren
Teitelman and Larry Masinter. It appeared in April, 1981, in IEEE
Computer, Volume 14: 1, Pages 25 - 34.

• Progralilling in an Interactive Environllent. the
LISP Expe ri ence by Erik Sandewall. It appeared in March,
1978, in the ACM Computing Surveys, Volume 10: 1, pages 35 -
71.

OTHER REFERENCES THAT WILL BE USEFUL TO YOU

Each of these articles was reprinted in the book Interactive
P rog ralilli ng Env i ronllents by David R. Barstow I Howard E.

441

OTHER REFERENCES THAT WILL BE USEFUL TO YOU

44.2

Shrobe, and Erik Sandewall. This book was published in 1984 by
McGraw Hill, NY. The first article can be found on pages 19 - 30,
the second on pages 83 - 96, and the third on pages 31 - 80.

OTHER REFERENCES THATWILL BE USEFUL TO YOu

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01.01
	01.02
	01.03
	01.04
	01.05
	01.06
	01.07
	01.08
	02.01
	02.02
	03.01
	03.02
	03.03
	03.04
	03.05
	03.06
	04.01
	04.02
	05.01
	05.02
	06.01
	06.02
	06.03
	06.04
	07.01
	07.02
	07.03
	07.04
	08.01
	08.02
	08.03
	08.04
	08.05
	08.06
	09.01
	09.02
	09.03
	09.04
	09.05
	09.06
	10.01
	10.02
	10.03
	10.04
	10.05
	10.06
	11.01
	11.02
	11.03
	11.04
	11.05
	11.06
	11.07
	11.08
	11.09
	11.10
	12.01
	12.02
	12.03
	12.04
	13.01
	13.02
	14.01
	14.02
	14.03
	14.04
	14.05
	14.06
	15.01
	15.02
	15.03
	15.04
	16.01
	16.02
	16.03
	16.04
	16.05
	16.06
	17.01
	17.02
	18.01
	18.02
	18.03
	18.04
	19.01
	19.02
	19.03
	19.04
	20.01
	20.02
	21.01
	21.02
	22.01
	22.02
	22.03
	22.04
	23.01
	23.02
	23.03
	23.04
	23.05
	23.06
	23.07
	23.08
	23.09
	23.10
	23.11
	23.12
	23.13
	23.14
	23.15
	23.16
	24.01
	24.02
	24.03
	24.04
	24.05
	24.06
	25.01
	25.02
	25.03
	25.04
	25.05
	25.06
	25.07
	25.08
	26.01
	26.02
	26.03
	26.04
	26.05
	26.06
	26.07
	26.08
	26.09
	26.10
	27.01
	27.02
	27.03
	27.04
	27.05
	27.06
	28.01
	28.02
	28.03
	28.04
	28.05
	28.06
	29.01
	29.02
	29.03
	29.04
	29.05
	29.06
	30.01
	30.02
	30.03
	30.04
	30.05
	30.06
	31.01
	31.02
	31.03
	31.04
	31.05
	31.06
	31.07
	31.08
	31.09
	31.10
	32.01
	32.02
	32.03
	32.04
	33.01
	33.02
	33.03
	33.04
	34.01
	34.02
	34.03
	34.04
	35.01
	35.02
	35.03
	35.04
	35.05
	35.06
	35.07
	35.08
	35.09
	35.10
	35.11
	35.12
	36.01
	36.02
	36.03
	36.04
	37.01
	37.02
	37.03
	37.04
	37.05
	37.06
	38.01
	38.02
	38.03
	38.04
	39.01
	39.02
	40.01
	40.02
	41.01
	41.02
	41.03
	41.04
	41.05
	41.06
	42.01
	42.02
	42.03
	42.04
	42.05
	42.06
	43.01
	43.02
	43.03
	43.04
	43.05
	43.06
	44.01
	44.02
	xBack

