- Artificial Intelligence
- Systems

_ Interlisp-D: A Friendly Primer

Document No. 31 q2300

XEROX Interlisp-D:
A Friendly Primer

3102300
November, 1986

Copyright (c) 1986 Xerox Corporation
All rights reserved.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

This primer was developed for Xerox Artificial Intelligence
Systems by Computer Possibiiities, a company dedicated to
making advanced computer systems available to businesses and
organizations. For more information, contact Computer
Possibilities, 320 South Pacific Avenue, Pittsburgh, PA. (412)
441-8949.

[This page intentionally left blank]

PREFACE
|

It was dawn and the local told him it was down the road a piece,
left at the best fishing bridge in the county, right at the apple
tree stump, and onto the dirt road just before the hill. At

midnight he knew he was lost.
— Anonymous

VWeicome to the interiisp-D programming environment! The
Interlisp-D environment truly must be one of the most
sophisticated and powerful tools in use by human beings.
Overall, it is flexible, well thought out, and full of pleasant
surprises: "Wow, here are exactly the set of functions | thought
I'd need to write.” Unfortunately, along with the power comes
mind-numbing complexity. The Interlisp Reference Manual
describes the functions and some of the tools available in the
Interlisp-D environment. To do this takes three large volumes.
Other volumes are needed to document the library packages and
other newly written tools. Needless to say, it is very difficult to
learn such a huge amount of material when there is no way to
determine where to start!

We developed this primer to provide a starting point for new
Interlisp-D users, to enhance your excitement and challenge you
with the potential before you. We assume you know a little
about LISP, most likely received from taking a survey course in
Artificial Intelligence (Al), and have seen a demonstration of
how Interlisp-D runs on your 1186 or 1108. We further assume
that your machine is not on a network system with a file server -
though this is addressed, and that you will be working from
floppy disks and the hard disk that is part of the machine. If this
describes your situation, you are ready to sit down in front of
your machine and follow the step-by-step examples provided in
this primer.

The primer is broken into many small chapters, and these
chapters are organized into five parts. You may want to read
Parts 1 through 3 straight through, since they describe the basics
of using the machine. Each chapter in Sections 4 and 5, however,
can be used to learn a specific skill whenever you are ready to for
1t

Part one, “Introduction”, includes Chapters 1 and 2. Part two,
"Getting Into/Out of Interlisp”, includes Chapters 3 through 5.
Part three, "The Interlisp-D language and Programming
Environment”, includes Chapters 6 through 15. These chapters
discuss primary elements in Interlisp-D, and orient you in relation
to those elements. Part four, "Important Other Things to Know
to Work Successfully”, includes Chapters 16 through 31. Part
five, "More Language and Environment and Packages”, includes
Chapters 32 through 44.

PREFACE

PREFACE

Acknowledgements

Through out we make reference to the Interlisp-D Reference
Manual by section and page number. The material in the primer
is just an introduction. When you need more depth use the
detailed treatment provided in the manual.

While only you can plot your ultimate destination, you will find
this primer indispensable for clearly defining and guiding you to
the first landmarks on your way.

The early inspiration and model for this primer came from the
Intelligent Tutoring Systems group and the Learning Research
and Development Center at the University of Pittsburgh. We
gratefully acknowledge their pioneering contribution to more
effective artificial intelligence.

This primer was developed by Computer Possibilities, a company
committed to making Al technology available. Primary
development and writing was done by Cynthia Cosic, with
technical writing support provided by Sam Zordich.

At Xerox Artificial Intelligence Systems, John Vittal managed and
directed the project. Substantial assistance was provided by
many members of the AlS staff who provided both editorial and
systems support.

vi

PREFACE

TABLE OF CONTENTS
]

1. A Brief Glossary 1.1
2. The Mouse and the Keyboard o2
2.1. The Mouse 2.1

2.1.1. 2and 3 Button Mice 2.1

2.2. The Keyboard 22

2.2.1. The 1186 Keyboard 22

2.2.2. The 1108 Keyboard . 2.2

3. Turning On Your Lisp Machine 3.1
3.1. Turningon the 1108 3.1

3.2. Turningon the 1186 B 3.2

3.3. Loading Interlisp-D from the Hard Disk ' 3.3

3.4. After Booting Lisp 35

3.5. Restarting Lisp After Logging Out 3.5

4. If You Have a Fileserver | 4.1
4.1. Turningon your 1108 , 4.1

4.2. Turningon your 1186 ' ' 4.1

4.3. Location of Files 4.2

4.4. The Timeserver 4.2

5. Logging Out And Turning the Machine Off 5.1
5.1. Logging Out 51

5.2. Turning The Machine Off 5.2

6. Typing Shortcuts 6.1
6.1. If you make a Mistake 6.3

7. Using Menus ' 7.1
7.1. Making a Selection from a Menu 7.2

7.2. Explanations of Menu ltems 7.2

7.3. Submenus 7.3

8. How to use Files | » 8.1
8.1. Types of Files 8.1

TABLE OF CONTENTS TOCA

1RADLE UF LUNIENITD

8.2. Directories 8.1

8.3. Directory Options 8.2

8.4. Subfile Directories 8.3

8.5. ToSee WhatFiles Are Loaded 8.3

8.6. Simple Commands for Manipulating Files 83

8.7. Connecting to a Directory 8.4

8.8. File Version Numbers 8.4

9. FileBrowser 9.1
9.1. Calling the FileBrowser 9.1

9.2. FileBrowser Commands 93

10. Those Wonderful Windows! 10.1
10.1. Windows provided by Interlisp-D 10.1

10.2. Creating a window 10.2

10.3. The Right Button Default Window Menu 10.2

10.4. Anexplanation of each menuitem 10.3

10.5. Scrollable Windows 10.3

10.6. Other Window Functions 10.5

10.6.1. PROMPTPRINT 10.5

10.6.2. WHICHW 10.6

11. Editing and Saving 1.1
11.1. Defining Functions - 1.1

11.2. Simple Editing in the Interlisp-D Executive Window 11.2

11.3. Using The List Structure Editor 11.4

11.3.1. Commenting Functions 11.6

11.4. File Functions and Variables - How to See Them and Save Them 1.7

11.5. File Variables 1.7

11.6. Saving Interlisp-D on Files 1.7

12. Your Init File 12.1
12.1. Making an InitFile 12.2

13. Flexibility and Forgiveness: CLISP and DWIM 13.1
13.1. CLISP 131

13.2. DWIM 13.2

14. Break Package 14.1
14.1. Break Windows 14.1

14.2. Break Package Example 14.1

TABLE OF CONTENTS

TOC.2

TABLE OF CONTENTS

14.3. Ways to Stop Execution from the Keyboard, called "Breaking Lisp™ 14.3
14.4. Programming Breaks and Debugging Code 14.4
14.5. Break Menu 14.4
14.6. Returning to Top Level 14.5
15. On-Line Heip with Interlisp-D: HELPSYS and DINFO 15.1
15.1. HelpSys 15.1
15.2. Dinfo 15.1
16. Floppy Disks 16.1
16.1. Buying Floppy Disks 16.1
16.2. Basic Floppy Disk Information 16.1
16.3. Care of Floppies 16.2
16.4. Write Enabling and Write Protecting Floppies 16.3
16.4.1. Write Enabling an 1108's Floppy Disk 16.3
16.4.2. Write Protecting an 1186's Floppy Disk 16.3
16.5. Inserting Floppies into the Floppy Drive 16.3
16.6. Functions for Floppy Disks ‘ 16.4
16.6.1. Formatting Floppies 16.4
16.6.2. Available Space on a Floppy Disk 16.4
16.6.3. The Name of a Floppy Disk 16.4
16.6.4. FLOPPY.MODE 16.5
17. Duplicating Floppy Disks | 17.1
17.1. Supplies 171
17.2. Preparation 171
17.2.1. Handling Floppy Disks 171
17.2.2. Setup 171
17.3. Copying Floppy Disks 17.2
18. Sysout Files 18.1
18.1. Loading SYSOUT Files 18.1
18.1.1. Loading a SYSOUT file on the 1108 18.1
18.1.2. Loading a SYSOUT file onthe 1186 18.2
18.2. Making Your Own SYSOUT File 18.3
19. Using the Epson FX80 Printer 19.1
19.1. Initializing the RS232 Port 19.1
19.2. Power up the Printer 19.1
19.3. To Align Top of Page 191
TOC3

TABLE OF CONTENTS

TABLE OF CONTENTS

19.4. Functions To Print Files and Bitmaps 19.2

19.4.1. RS232.Print 19.2

19.4.2. FX80STREAM 19.2

19.4.3. Printing a Portion of the Screen 19.3

20. RS232 File Transfer With a VAX 20.1
20.1. Prerequisites 20.1

20.2. Using Chat to Transfer Files 20.1

21. Ethernet File Transfer 21.1
21.1. Prerequisites 21.1

21.2. File Transfer 211

22. WhatTo Dolf... 22.1
23. The Text Editor, TEdit 23.1
23.1. Using TEdit 23.1

23.2. Managing the TEdit Window 23.2

23.3. Selecting Text , , 233

23.4. Deleting, Copying, and Moving Text with TEdit 23.4

23.4.1. Deleting Text From aFile 23.4

23.4.2. Copying Text 234

23.4.3. Moving Text 23.5

23.5. TEdit Menus 23.6

23.5.1. Finding and Substituting Text with TEdit 237

23.5.1.1. Finding Text 23.7

23.5.1.2. Substituting Text 23.8

23.5.2. TextFormatting 23.10

23.5.2.1. Choosing Fonts 23.10

2311

23.5.2.2. Paragraph Formatting

23.5.3. Adding Bitmaps and Sketches to your TEdit File 23.13

23.5.3.1. Adding a Bitmap to your TEdit file 23.13

23.5.3.2. Adding a Sketch to your TEdit file 23.14

23.5.4. Getting and Including Files 23.14

23.5.4.1. Get 23.14

23.5.4.2. Include 23.14

23.5.5. Saving and Printing Files 23.15

24. Records May Be Your Favorite Data Structure! 24.1
24.1. Interlisp Record Primitives 24.1

TABLE OF CONTENTS

TOC4

TABLE OF CONTENTS

24.2. Example 243
24.3. A Few Tips 24.4
25. Local Variables - Using LET and PROG 25.1
25.1. LET 25.1
25.2. PROG 253
25.3. Paraliel versus Sequential Variable Binding 25.6
25.3.1. LET*) 25.6
25.3.2. PROG* 25.7
26. Iterative statements 26.1
26.1. General Structure and Use 26.1
26.2. Local Variables 26.2
26.3. Iteration On Lists 26.3
26..4. Parallel Iteration ‘ , 26.4
26.5. Conditional Iteration 26.5
- 26.6. More Iteration 26.6
27. Windows and Regions 27.1
27.1. Windows 271
27.1.1. CREATEW 271
27.1.2. WINDOWPROP _ 27.2
27.1.3. Getting windows to do things 273
27.1.3.1. BUTTONEVENTFN : 27.4
27.1.4. Looking ata window's properties 27.5
27.2. Regions 275
28. What Are Menus?) 28.1
28.1. Displaying Menus 28.1
28.2. Getting Menus to DO Stuff 28.2
28.2.1. The WHENHELDFN and WHENSELECTEDFN fields of a
menu 284
28.3. Looking at a menu's fields 285
29. Bitmaps 29.1
30. Displaystreams 30.1
30.1. Drawing on a Displaystream 30.1
30.1.1. DRAWLINE 30.1
30.1.2. DRAWTO 30.2
30.1.3. DRAWCIRCLE 30.3
TOCS

TABLE OF CONTENTS

TABLE OF CONTENTS

30.1.3.1. FILLCIRCLE 30.3
30.2. Locating and Changing Your Position in a Displaystream .30.4
30.2.1. DSPXPOSITION 30.5
30.2.2. DSPYPOSITION 30.5
30.2.3. MOVETO 30.5
31. Fonts 31.1
31.1. What makes up a FONT? 311
31.2. Fontdescriptors, and FONTCREATE 31.2
31.3. Display Fonts - Their files, and how to find them 31.3
31.4. Interpress Fonts - Their files, and how to find them 31.4
31.5. Functions for Using Fonts 314
31.5.1. FONTPROP - Looking at Font Properties 31.4
31.5.2. STRINGWIDTH 315
31.5.3. DSPFONT - Changing the Font in One Window 31.6
31.5.4. Globally Changing Fonts 31.7
31.5.5. Personalizing Your Font Profile 3.7
32. Thelnspector 32.1
32.1. Calling the Inspector 321
32.2. Using the inspector 32.2
32.3. Inspector Example 32.2
33. Masterscope 33.1
33.1. The SHOW DATA command and GRAPHER 33.2
33.2. Databasefns: Automatic Construction and Upkeep of a Masterscope
Database 333
34. Where Does All the Time Go? SPY 34.1
34.1. How to use Spy with the SPY Window 34.1
34.2. How touse SPY from the Lisp Top Level 34.2
34.3. Interpreting SPY's Results 34.2
35. SKETCH 35.1
35.1. Starting Sketch 35.1
35.2. Selecting Sketch elements 35.1
35.3. Drawing with Sketch 35.2
35.3.1. Simple Shapes: Circles, Ellipses, and Boxes 353
35.3.1.1. Drawing Circles 353
35.3.1.2. Ellipses 353

TOC6 TABLE OF CONTENTS

TABLE OF CONTENTS

35.3.1.3. Boxes 35.3

35.3.1.4. Changing a Box's Filling 35.4

35.3.2. Lines, Curves, and Arcs 35.4

35.3.2.1. ASingleLine 35.4

35.3.2.2. A Series of Lines 354

35.3.2.3. Drawing an Open Curve 355

35.3.2.4. AnArc 355

35.3.3. Closed Curves and Polygons 35.6

35.4. Adding a Bitmap to a Sketch 35.7

35.5. To Add Text to a Sketch 35.8

35.5.1. Editing Text 355

35.6. Editing a Sketch 35.10

35.7. Saving Your Work 35.11

35.8. ToContinue a Sketch That Has Been Saved on a File 35.11

36. Free Menus 36.1
36.1. An Example Free Menu 36.1

36.2. Parts of a Free Menu ltem 36.2

36.3. Types of Free Menu Items 36.3

37. The Grapher 37.1
37.1. Say it with Graphs 371

37.2. Making a Graph from a List 374

37.3. Incorporating Grapherinto Your Program 37.5

37.4. More of Grapher 375

38. Virtual Keyboards, and the Keyboard Editor 38.1
38.1. Using the Virtual Keyboards Package 38.1

38.2. Using the Keyboard Editor 38.2

39. lconW 39.1
40. TELERAID 40.1
41. Resource Management 41.1
41.1. Naming Variables and Records 411

41.2. Some Space and Time Considerations 413

41.2.1. Global Variables 413

41.2.2. Circular Lists 41.4

41.2.3. When You Run Out Of Space 414

TOC.7

TABLE OF CONTENTS

- TABLE OF CONTENTS

42. Simple Interactions with the Cursor, a Bitmap, and a Window 42.1
42.1. AnExample Function Using GETMOUSESTATE 42.1
42.2. Advising GETMOUSESTATE 42.2
42.3. Changing the Cursor 42.2
42.4. Functions for "Tracing the cursor” 423
42.5. Running the Functions 42.6
43. Glossary of Global System Variables 43.1
43.1. Directories 43.1
43.2. Flags 43.2
43.3. History Lists 433
43.4. System Menus 43.3
43.5. Windows 43.4
43.6. Miscellaneous 43.4
44. Other References that will be Useful to You 44.1

TOCS8 TABLE OF CONTENTS

advising

argument

atom

Background Menu

binding
bitmap

BREAK

Break Window

browse

button

1. A BRIEF GLOSSARY
]

The following definitions will acquaint you with general terms
used throughout this primer. You will probably want to read
through them now, and use this chapter as a reference while you
read through the rest of the primer.

An interlisp-D facility for specifying function modifications
without necessarily knowing how a particular function works or
even what it does. Even system functions can be changed with
advising.

An argument is a piece of information given to an Interlisp-D
function so that it can execute successfully. When a function is
explained in the primer, the arguments that it requires will also
be given. Arguments are also called parameters.

The smallest structure in Lisp; like a variable in other
programming languages, but can also have a property list and a
function definition. '

The menu that appears when the mouse is not in any window
and the right mouse button is pressed. A typical background
menu is shown in Figure 1.1.

Sketch
Loops Ican
CHAT
FileBrowser
ldl2

Savayh
Snap
Hardcopy
PSW
TEdit

Figure 1.1. The Menu that appears when the mouse is not in any window, and
the right mouse button is pressed. Your background menu may have some
differentitemsinit

The vaiue of a variable. It could be either a local or a global
variable. See unbound.

A rectangular array of “pixels," each of which is on or off
representing one point in the bitmap image.

An Interlisp function that causes a function to stop executing,
open a Break window, and allow the user to find out what is
happening while the function is halted.

A window that opens when an error is encountered while
running your program (i.e., when your program has broken).
There are tools to help you debug your program from this
window. Thisis explained further in Chapter 14, Page 14.1.

To examine a data structure by use of a display that allows the
user to "move" around within the data structure.

A BRIEF GLOSSARY

1.1

A BRIEF GLOSSARY

CDR

CLISP

cr

datatype
(1)

(2

DWIM

error

evaluate or EVAL

file package

(n.) Akeyonamouse.
(v.t) Todepress one of the mouse keys when making a selection.

A function that returns the head or first element of a list. See
CDR.
The small blinking arrowhead that marks where text will appear

when it is typed in from the keyboard. An exampie of the caret
in the Interlisp-D Executive Window is shown in Figure 1.2.

EﬂTe‘l‘HSF-D Execulive Window
NIL
BB (PLUS 3 ,

Figure 1.2. The caret is to the right of the number 3. When a character is typed
at the keyboard, it will appear at the caret

A function that returns the tail (that is, everything but the first
element) of a list. See CAR.

A mechanism for augmenting the standard Lisp syntax. One such
augmentation included in Interlisp is the iterative statement.
See Section 13.1.

Please press your carriage return key.

The kind of a datum. In Interlisp, there are many system-defined
datatypes e.g. Floating Point, Integer, Atom, etc.

A datatype can also be user-defined. In this case itis like a record
made up from system types and other user-defined datatypes.

"Do-what-I-mean."” Many errors made by Interlisp users could be
corrected without any information about the purpose of the
program or expression in question (e.g. misspellings, certain
kinds of parenthesis errors). The DWIM facility is called
automatically whenever an error occurs in the evaluation of an
Interlisp expression. If DWIM is able to make a correction, the
computation continues as though no error had occurred;
otherwise, the standard error mechanism is invoked.

Occasionally, while a program is running, an error may occur
which will stop the computation. Interlisp provides extensive
facilities for detecting and handling error conditions, to enable
the testing, debugging, and revising of imperfect programs.

Means to find the value of a form. For example, if the variable X
is bound to 5, we get 5 by evaluating X. Evaluation of a Interlisp
function involves evaluating the arguments and then applying
the function.

A set of functions and conventions that facilitate the
bookkeeping involved with working in a large system consisting
of many source code files and their compiled counterparts.
Essentially, the file package keeps track of where things are and

A BRIEF GLOSSARY

A BRIEF GLOSSARY

form
function

history

History List

icon

Interlisp-D Executive Window

inspector

iterative statement

iterative variable

LisP

list

what things have changed. It also keeps track of which files have
been modified and need to be updated and recompiled.

Another way of saying s-expression. An Interiisp-D expression
that can be evaluated.

A Lisp function is a piece of lisp code that executes and returns a
value.

The programmer's assistant is built around a memory structure
called the history list. The history functions (e.g. FIX, UNDO,
REDQ) are part of this assistant. These operations allow you to
conveniently re-work previously specified operations.

As you type on the screen, you will notice a number followed by
a prompt arrow. Each number, and the information on that line,
is sequentially stored as the History List. Using the History List,
you can easily reexecute lines typed earlier in a worksession. See
Chapter 6.

A pictorial representation, usually of shrunken window.

This is your main window, where you will run functions and
develop your programs. See Figure 1.3. This is the window that
the caret is in when you turn on your machine and load
Intertisp-D.

interlisp-0 Executive Window

MIL
50« (PROMPTPRINT “HELLO" ,

Figure 1.3. TTY Window

An interactive display program for examining and changing the
parts of a data structure. Interlisp-D has inspectors for lists and
other data types.

(also called i.s.) A statement in Interlisp that repetitively executes
a body of code. (E.g. (forx from 1to 5do (PRINT x))isani.s.)

(also called i.v.) Usually, an iterative statement is controlled by
the value that the i.v. takes on. In the iterative statement
example above,

X

is the iterative variable because its value is being changed by
each cycle through the loop. All iterative variables are local to
the iterative statement where they are defined.

Family of languages invented for "list processing.” These
languages have in common a set of basic primitives for creating
and manipulating symbol structures. Interlisp-D is an
implementation of the LISP language together with an
environment (set of tools) for programming, an a set of packages
that extend the functionality of the system. '

A collection of atoms and lists; a list is denoted by surrounding
its contents with a pair of parentheses.

A BRIEF GLOSSARY

13

A BRIEF GLOSSARY

Loading LISP

Maintenance Panel Codes

Masterscope

menu

mouse

Mouse Cursor

Mouse Cursor icons

This is the process of bringing Interlisp-D from floppy disks, hard
disks, or some other secondary storage into your main, or
working, memory. You will need to load (i.e., install, and boot)
Interlisp-D if you have not logged off the machine at the end of a
session. The process of loading Interlisp-D is explained in
Chapter 3.

Should you have a problem with your equipment, these codes
will indicate the status of your processor. On the 1108, these are
the red LED numbers under the floppy drive door. There is a
cover over these numbers. Pull down the cover located
immediately under the floppy door button. The code numbers
are defined for the 1108 in the 1708 User's Guide, in the MP
Codes Chapter.

If there is a problem with the 1186, the mouse cursor will change
from its normal arrow to the code number that describes the
problem. The code numbers are defined for the 1186 in the 1186
User's Guide in the Cursor Codes subsection of the Diagnostics

Chapter. -

A program analysis tool. When told to analyze a program,
Masterscope creates a data base of information about the
program. In particular, Masterscope knows which functions call
other functions and which functions use which variables.
Masterscope can then answer questions about the program and
display the information with a browser.

A way of graphically presenting the user with a set of options.
There are two kinds of menus: pop-up menus are created when
needed and disappear after an item has been selected;
permanent menus remain on the screen after use.

The Mouse is the box to the right of your keyboard. It controls
the movement of the cursor on your screen. As you become
familiar with the mouse, you will find it much quicker to use the
mouse than the keyboard. See Figure 1.4. (Note: Some mice
have three buttons; the button in the center is known as the
middle mouse button. If your mouse has only two buttons, you
can simulate a middle button by pressing the left and right
buttons simultaneously.).

t Mouse

Figure 1.4. Mouse
The small arrow on the screen that points to the northwest. See
Figure 1.5.

X

Figure 1.5. Mouse Cursor

A BRIEF GLOSSARY

A BRIEF GLOSSARY

Wait. The processor is busy.

ING The processor is saving a anpashot or your current system session.
This is usuaily done when the processor has been idie for a while.

my L

[The “Mouse Confirm Cursor”. it appears when you have to
confirm that the choice you just made was correct. If it was, press
the left button. If the choice was not right, press the right
button to abort.

_—
| i
k.—- This means "sweep out"” the shape of the window. To do this,

move the mouse to a position where you want a corner. Press
the ieft mouse button, and hold it down. WMove the mouse
diagonally to sketch a rectangle. When the rectangle is the
desired size and shape, release the left button.

This is the "move window" prompt. Move the mouse so that the
large "ghost" rectangle is in the position where you want the
window. When you click the left mouse button, the window will
appear at this new location.

NIL NIL is the Interlisp-D symbol for the empty list. It can also be
represented by a left paren followed by a right paren: (). Itisthe
only expression in Interlisp-D that is both an atom and a list.

pixel Pixel stands for Picture Element. The screen of your Lisp Machine
is made up of a rectangular array of pixels. Each pixel
corresponds to one bit. When a bit is turned on, i.e. set to 1, the
pixel on the screen represented by this bit is black.

pretty printing Pretty printing refers to the way Interlisp-D functions are printed
with special indentation, to make them easier toread. Functions
are pretty printed in the structure editor, DEdit (See Section 11.3,
Page 11.4). You can pretty print uncompiied functions by cailing
the function PP with the function you would like to see as an
argument, i.e. (PP function-name). For an example of this, see
Figure 1.6.

) [LamBDa (LST) (* edited: "28-Jun-38 1135
(CAR L3T])
(HEAD)

97¢,

Figure 1.6. An example use of the pretty printing function, PP

A BRIEF GLOSSARY 15

A BRIEF GLOSSARY

Programmer's Assistant

Prompt Window

property list

record

Right Button Default Window Menu

s-expression

stack

storage devices

sysout

The programmer's assistant accesses the History List to allow you
to FIX, UNDO, and/or REDO your previous expressions typed to
the Interlisp-D executive window. (See Chapter 6.)

The skinny black window at the top of the screen. It displays
system prompts, or prompts you have developed. (See Figure
1.7.)

Figure 1.7. Prompt Window

A list of the form (<property-name1> <property-valuet>
<property-name2> <property-value2>) associated with
an atom. It accessed by the functions GETPROP and PUTPROP.

A record is a data-structure that consists of named "fields".
Accessing elements of a record can be separated from the details
of how the data structure is actually stored. This eliminates
many programming details. A record definition establishes a
record template, describing the form of a record. A record
instance is an actual record storing data according to a particular
record template. (See datatype, second definition.)

This is the menu that appears when the mouse is in a window,
and the right mouse button is pressed. It looks like the menu in
Figure 1.8. If this menu does not appear when you depress the
right button of the mouse and the mouse is in the window, move
the mouse so that it is pointing to the title bar of the window,
and press the right button.

Close
Snap
Paint
Clear
Eury
Fedizplay
Hardcopy#®
Maove
Shape
Shrink
Figure 1.8. The Right Button Default Window Menu

Short for “symbolic expression.” In Lisp, this refers to any
well-formed collection of left parens, atoms, and right parens.

A pushdown list. Whenever a function is entered, information
about that specific function call is pushed onto (i.e. added to the
front of) the stack; this information includes the variable names
and their values associated with the function call. When the
function is exitted, that data is popped off the stack.

Information is stored for your Lisp machine on floppy disks, or on
the hard disk. They are referred to as {FLOPPY} and {DSK}
respectively.

A file containing a whole Lisp environment: namely, Interlisp-D,
everything the user defined or loaded into the environment, the

16

A BRIEF GLOSSARY

A BRIEF GLOSSARY

TRACE

unbound

window

windows that éppeared on the screen, the amount of memory
used, and so on. Everything is stored in the sysout file exactly as it
was when the function SYSOUT was called).

A function that creates a trace of the execution of another
function. Each time the traced functionis called, it prints out the

values of the arguments it was called with, and prints out the
value itreturns upon completion.

Without value; an atom is unbound if a value has never been
assigned to it. :

A rectangular area of the screen that acts as the main display
area for some Interlisp process.

A BRIEF GLOSSARY

1.7

A BRIEF GLOSSARY

[This page intentionally left blank]

18

A BRIEF GLOSSARY

2. THE MOUSE AND THE KEYBOARD

2.1 The Mouse

2.1.1 2 and 3 Button Mice

The mouse is the small box with buttons beside the keyboard.
See Figure 1.4 in Chapter 1, Page 1.4. It moves around on a
mouse pad, a smail piece of plastic for a mechanical mouse, or
grey paper for an optical mouse. The pad keeps the mouse from
picking up dirt and oils from other surfaces, and should be
placed squarely on the desktop. The cord to the mouse, its “tail",
should always be directed perpendicular to and towards the
back of the mouse pad. With the tail in this direction, you can
always be sure that when you move the mouse, the mouse cursor
will move in the same direction. The mouse and the mouse cursor
should always move together in the same direction.

if the mouse is at the end of the pad, pick up the mouse and
move it to the center of the pad. Aslong as the metal balls of a
mechanical mouse do not move, or the sensors of an optical
mouse cannot detect the grey and white blocks of the mouse
pad, the mouse cursor on the screen will not move.

Your mouse may have 2 or 3 buttons. If there are two buttons on
the mouse, they are referred to as the left and right mouse
buttons. It may, however, have three buttons; the button in the
center is known as the middle mouse button. If your mouse has
only two buttons, you can simulate a middle button by
simultaneously pressing the left and right buttons.

When you press the mouse buttons, hold the buttons down until
you are sure of what you want to do. Menus are displayed by
pressing the mouse buttons, and choices are made by releasing
the mouse buttons. Careful! - Don't click the mouse buttons too
fast, or you may make a choice from a menu that you didn't even
get a chance to see! :

THE MOUSE AND THE KEYBOARD

THE KEYBOARD

2.2 TheKeyboard

2.2.1 The 1186 Keyboard

Most of the keys on the keyboard of the 1108 and the 1185 are
arranged like those on a typewriter. Some keys, however, are
different. Some have speciai functions for editors or other
programs, and will be explained when they are needed for the
program. The rest will be explained here, so that you can
acquaint yourself with them before gosing on.

2.2.2 The 1108 Keyboard

On the 1186 Keyboard, the control key is the one marked "CTL"
at the bottom of the leftmost group of keys. This key will may be
marked "EDIT."

The "back arrow" (&) is the shifted "-" (hyphen) key (noid down
the shift key, and press "-"), and is labelled with a "—".

The function keys are those in the top row of the keyboard. They
are numbered F1 through F10, from left to right. When one of
these is needed, such as when turning on the machine, and
booting Interlisp-D, you will be told which one to press.

On the 1108 Keyboard, the control key is the one marked either
“PROPS" or "CTL" at the bottom of the leftmost group of keys.

The backslash key is labelled with a small forward pointing
arrow, and is located above the tab key.

Type a vertical bar by holding down the shift key and pressing
the key fabelled with a small forward pointing arrow, located
above the tab key.

The "up arrow"” key is the shifted 6 key (hold down the shift key,
and press 6); itislabelled with a cent-sign.

The "back arrow" (&) is the shifted "-" (hyphen) key (Hold down
the shift key, and press "—".).

22

THE MOUSE AND TiHE KEYEQARD

3. TURNING ON YOUR LISP
MACHINE

The focus of this chapter is the steps that must be done between
turning the machine on and actually beginning to use
Interlisp-D. In particular, it is necessary to get a copy of the
Interlisp-D sysout (complete stored version of the Interlisp-D
environment) into your machine. This chapter assumes that you
do not have a fiie server. if your machine is connected to a
network with a fileserver, see Chapter 4, Page 4.1

To load Interlisp-D from the hard disk, your hard disk must be
larger than 10 megabytes. If you have a 10 megabyte disk you
must reload Lisp from floppies. (See Section 3.3, Page 3.3, or
Section 18.1.2, Page 18.2.

If your disk is larger than 10 Mb, then Interlisp-D should already
be loaded on the hard disk. Ifitisn't, refer to Section 3.3, Page
3.3, or Section 18.1.2, Page 18.2.

3.1 Turning on the 1108

(1)

(2)

3)

4

(5)

(6)

Pull down the cover of the maintenance panel, and expose the
four digit LED display.
Insert the floppy disk labeled “INSTALLATION UTILITY" into the

floppy drive. (If you have never handled fioppy disks before, be
sure to read "Care Of Floppys", Section 16.3, Page 16.2.)

To turn the machine on, simultaneously press both the B RESET
and the ALT B buttons, then push the rocker switch to the 1
position.

Release only the B RESET button, and watch the red numbers
count up 0000, 0001, 0002. As soon as it reads 0002 reiease the
ALT B button. Thisiscalled a "2 BOOT".

If you accidentally kept the ALT B button depressed when 0002
rolled around, just continue to hold it down, and the machine
will count around to 0002 again.

When the question "Time offset from Greenwich?" appears,
type "-5" for Eastern Standard Time (subtract one for each time

zone westward), and press <. See Figure 3.1.

For the next 3 questions, simply type I after each prompt.

TURNING ON YOUR LISP MACHINE

TURNING ON THE 1108

(7)

(8)

rlnztsllation Urility 3.9
Zopyr ight (0 1931, 1982,
F31 righes regerved.
+Time 12 nor 32
Time zoane offszet fr-;m Bresnwich[-12. .12].
Mirute of fsee[@, .t]
day of Oay W Savings Time(n
day of Daylight 3avings Time(@
Enter the date snd rime: (424
24, 58 9:18:9@

1932, 1933 by

CEran

Carp

tty dptions:

Fartition ¢ accowrding ta USER definitian

= Partition 1 Lizp wolume 3nn‘l L L1:p
3 Partition 2 o
3 Pareation 2 2
5 Partition 42 2
= Partinion 3% fad
¥ Fartition 42 3
3 Partition 42 3
El Farrition 4 .
ia Partiticn 58 4 Lisp volume . LB
il Init1alize '.\'orl-ﬂqrmr\ TrstemTonls volume
12 enTonls wolume
13 aTonls valume
L3 LispFiles voluma
15 aze Lizp volume
18 [nsraH Lisp Micracade File
17 al Yo lume 2 2mye
13 “ra,e 18 LispFiles ¥Yolume
13 Seavenge Sy:remTonl:s Yolume
Enter chatce numbsr, then presc RETURN: 12

(9)

You will be requested to enter
MM/DD/YY HH:MM:SS format.

the date and time. Use the
For example, if the date was

June 24, 1986 5 PM, enter: 6/24/86 17:00.

A menu will appear, as in Figure
SystemTools Volume.

aratian

Filez:

«3 Tume { LE0@ F'a.;ec i
o £]

B BB T B G U nFHa

3 oMb, dMby snd 2
15 Wb,

L

mh, Il b oand Z LizpFale: v

3.1. Choose number 12, Boot

TR pagec
TR page

Figure 3.1. The 1108 screen when booting the machine

After a few minutes, you will get a black screen with a white

bouncing rectangle like the one in

Tuesday
24-Jun-88

Figure 3.2.

9:26:48 EOT

wawnk YERQK INTERLISP-0 ok

"n-.

Click Left button for

Both Buttaons
Right Button for Online Diagnoztics Toal

3TOP Key for zelected Li
Press Zpace Bar for

Figure 3.2. The Bouncing White Rectangle

stem Tool

for Prur11e Tool

zp Yolume
Online Diagnostics Toal

This is the idle state of the machine. Move ahead to Section 3.3

to boot Interlisp-D from this state.

3.2 Turningon the 1186

(M

(2)

(3)

insert the floppy disk labeled "INSTALLATION UTILITY" into the
floppy drive. (If you have never handled floppy disks before, be
sure to read "“Care Of Floppys", Section 16.3.)

Turn on the machine by pressing the rocker switch to the 1
position, and pressing the red button labelled "B Reset" below

the rocker switch.

A group of icons will appear at the bottom of the screen. Choose

the second icon from the left, the one with a picture of a flo

nnsw
[adladd

TURNING ON YOUR LISP MACHINE

TURNING ON THE 1186

Ty Tame ferver .. TIiME 13 nat ser

@ affzer from Greemwch{-12..12]: -S
Frer{d..59]: @

¢ Jaylight 3Za 1

ar Daylight 2avings Time(d. . 366]: 385

Enrer the date and 4 hour time 1n form

MMODAYY HHMM DS

wings Time[@.

Tine: B/23786 9:18
Zer tim 4-Jun-36 3:15:89
Okay? i%ANY: Y

MAIN MENU:
1 Lizplnstallarion
€nter chailce number, rhen pres: PETURN: 1

Choices Avallable:

(4)

(5)

(6)

{LEMb,
i LEMb,
i LENMh,

1 Parcition 19 Wb dizk far 1 Lizp v

2 Partition I8 Mb dizk far L Liip vo?

3 Farrtirion 44 b for 2

4 Parririon b ofar 2

1 b far 2 wnlua

E b ofar 4 <0 lume s
7 k fac 4 Laizp volum

= than Leitenleal:s Walume
gl I snluie

14 T enlume

11 tpF1te: valume

1z lume Icavenye

13 e L1tpFale

14 e TyirtemTool:s valuuwe

15 Saar rram Lizp Yolume

e Inirail Lizp Micracade dnitw

17 Ferurn to MATIH HEMU

Enter chalce number, rhen prez:s RETIURM: 3

@

®

BaR pagesl and 1 LizpFiles
b and L LripFiles wolume
16Mb; and 1 LizpFal
Bl and 1 LitpFaie
b1
. Ak,
R E-101. 0

by pressing the key labeled F2. This will boot the 1186 from the
INSTALLATION UTILITY floppy.

When the question "Time offset from Greenwich?" appears,
type "-5" for Eastern Standard Time (subtract one for each time
zone westward), and <" (See Figure 3.3))

You will then be given three more questions. Answer them by
hitting ¢’ after each prompt.

When the 1186 prompts for the date and time, enter them in the
MM/DD/YY HH:MM:SS format. For example, if the date was June

24, 1986 5 PM, you wouid enter: 6/24/86 17:00. This isillustrated
forthe 1186in Figure 3.3.

rights reserved,
35-354

w0 lume(1539 pages)
esi

dmhy and L LizpFiles va
iMh, aMbY and T LizpFi
16Mb, SMbi and 2 Liipf

Figure 3.3. The 1186 screen when booting the machine

A menu will appear, as in Figure 3.3. Choose number 9, Boot
SystemTools Volume.

After a few minutes, you will see a black screen with a white
bouncing rectangle like the one in Figure 3.2. This is the idle
state of the machine. Move ahead to Section 3.3 to boot
Interlisp-D from this state.

3.3

Loading Interlisp-D from the Hard Disk

(n

Starting from the idle state of the machine, the black screen with
the white bouncing rectangle, click the left button to get the
Lisp Installation Tool. The screen will look like Figure 3.4

TURNING ON YOUR LISP MACHINE

33

LOADING INTERLISP-D FROM THE HARD DISK

{EEREREN, Errortsa}

Lisp. out

Document:
File:

Device: {PUF-FI, M3I-F2, GAEEER, Localbisk}

Fetch Lisp Nicrocode!

Yolume Menu: Li:z Yolume Size = 32044 Free Pages = 148
Yoluze Passvord: Max. V¥Mem Size = I19EY - VYmem Size = 133949
Yoluwe Boot file:

User: User Passwvord: Domain:
Organization:

Sysin! Erase! Set Max Yuem! Nake Script!

Sysin & Boot! Remote List! Copy Ymes! Scavenge! Floppy!
Boot! Help! Quit! K

(2)

(3)

(4)

(5)

(6)

Figure 3.4. The Lisp Installation Tool - With the mouse pointing to Copy Vmem

Choose CopyVMem by positioning the mouse over the word and
clicking the left mouse button. Only click the left mouse once. If
the screen clears, and the maintenance panel code reads 0915,
you have made a mistake and need to do a 1 BOOT and start
again at the beginning of this section.

Another window will appear over the in the lower left hand
corner of the screen, like the one shown in Figure 3.5.

Destination Yoluee: L izp
Destination Yolume Password:

Source Yolume: L[izp2
Source Yolume Password:

Start!
Quit! \

Figure 3.5. The window that will open when Copy Vmem! is chosen, with the
mouse pointing to Start! .
It may have values already filled in for Source and Destination. If
so, skip this step, and the next one. Otherwise, position the
mouse over the word Source. Press the middle mouse button (on
two button mice, push the left and right buttons simultaneously)
and hold it down. Choose LISP2 from the menu that will appear.
This selection will display the name of the chosen Interlisp-D
Volume after the word "Source”.

Move the mouse cursor over the word "Dest. Volume."” Press the
middle mouse button and hold it down. Choose the volume
where you want to reload lisp. If you are unsure which volume
you want, choose LISP.

Move the mouse over the word "START!" and click the left
mouse button. Click the left mouse button again when you get

the mouse confirm cursor: @

When the copy completes, you will be asked if you want to boot
the destination volume. Click the left button if you do.
Continue with After Booting Interlisp-D, Section 3.4.

TURNING ON YOUR LISP MACHINE

AFTER BOOTING LISP

3.4 After Booting Lisp

At this point, you will be prompted to "Enter my pup host
number in octal:". If there is no pup host number associated
with your machine, simply type any number between 0 and 277,

and press <. if there aiready is a number there, simpiy type .

3.5 Restarting Lisp After Logging Out

(1

0]

(3

To use this section, your machine should be in the idle state (the
biack screen with the white bouncing rectangie). If itis off, start
at the beginning of the chapter. If it is white with windows, you
are already in Lisp. If there is a bouncing Interlisp-D logo, just
press the space bar to get back into Lisp.

Starting from the white bouncing rectangle (the idle state of the
machine), click the left mouse button to start the InstallLispTool. -

Choose the volume you want by moving the mouse cursor over
the words "Volume Menu:". (See Figure 3.4.) Press the middle
mouse button and hold it down. Choose the desired volume
from the menu that appears. If you are unsure which volume
you want, choose LISP. The menu will disappear, and the you
chose will be displayed after the word "Volume:".

Start the volume by positioning the mouse cursor over the word
"Boot” (This is one of the choices in Figure 3.4) and clicking the
left button. Confirm this by clicking the left button once more.
You have now booted Interlisp-D. Continue with After Booting
LISP, Section 3.4, Page 3.5.

TURNING ON YOUR LISP MACHINE

35

RESTARTING LISP AFTER LOGGING OUT

[This page intentionally [eft blank]

36 TURNING ON YOUR LISP MACHINE

4. IFYOU HAVE A FILESERVER

If your lisp machine is connected to a network and a fileserver,
there are some important differences that you need to be aware
of. This chapter will point them out.

41 Turningonyour 1108

m

(2)

(3

(4)

Pull down the cover of the maintenance panel, and expose the
four digit LED display.

To turn the machine on, simultaneously press both the B RESET
and the ALT B buttons, then push the rocker switch to the 1
position.

Release only the B RESET button, and watch the red numbers
count up 0000, 0001. As soon as it reads 0001 release the ALT B
button. Thisiscalled a "1 BOOT".

If you accidentally kept the ALT B button depressed when 0001
rolled around, just continue to hold it down, and the machine
will count around to 0001 again. (After counting to 0009 it goes
back to 0001.)

Continue with the instructions for Turning on your 1108 on
Section 3.1, Page 3.2, beginning with choosing number 12, "Boot
SystemTools Volume" from the menu that appears.

4.2 Turning on your 1186

(1

(2)

(3

Turn on the machine by pressing the rocker switch to the 1
position, and pressing the red button labelled "B Reset” below
the rocker switch.

A group of icons will appear at the bottom of the screen. Choose
the third icon from the left, the one with a picture of a network,
by pressing the key labeled F3. This will boot the 1186 from the
network.

Continue with the instructions for Turning on the 1186 on
Section 3.2, Page 3.3, beginning with choosing number 9, "Boot
SystemTools Volume™” from the menu that appears.

IF YOU HAVE A FILESERVER"

41

LOCATION OF FILES

4.3

Location of Files

Both your files and system files could be located either on the
local hard disk, on floppy, or on the file server. You can use files
from the file server using the instructions in Section 21.2, Page
21.1.

Fileservers cannot give you "random access” to your files. That
means that, unlike the files on your local hard disk or on your
floppy, a file from the fileserver that is not random access cannot
be used by some functions. For example, TEdit (see Chapter 23)
cannot use files that are not random access. This also means, for
example, that if both your compiled and uncompiled program
files are on the fileserver, and you need to make a change to one
of the functions that is compiled, the system cannot load only
this function for editing. Instead, you will have to load the
whole uncompiled file.

4.4

The Timeserver

Because you are connected to a network, you are using a
network utility called the timeserver. The timeserver sets the
date and time on your lisp machine by getting it from another
machine running on the network. This means that you do not
have to set the time when booting your machine, but it also
means that if the time was set incorrectly by another user, your
machine will also have the incorrect time. You can always reset
the time on.your machine with the SETTIME function. To use it,
type (SETTIME date), where date is a string such as the one
shown in Figure 4.1.

NIL
97« (SETTIME "18-Ju1-86 15:98:22")
"19-Ju1-36 15:83:22 EDT"

93«

Figure 4.1. Using the SETTIME function to set the date and time

42

IF YOU HAVE A FILESERVER

5.LOGGING OUT AND TURNING THE
MACHINE OFF

Logging out is the process of cleanly exiting from Interlisp-D.
When you logout you greatly simplify starting Interlisp-D for
your next session, because the entire current state of the system
is saved. If you do not logout, you will need to reload Interlisp-D
when you next login. If you logout improperly, you could lose all
your work.

5.1 Logging Out

(1)

(2

(3)
(4)

(1

(2)

Make sure you have saved all your work using the MAKEFILES
command. (See Section 11.6, Page 11.7.)

Before turning the machine off, remove the floppy from the
floppy drive. Be sure to do this even if you need to reload LISP.

Log out by typing: (LOGOUT).

Wait until you see the bouncing white rectangle. The rectangle
will look like the one in Figure 5.1.

Tuezday
24-Jun~36 9:26:46 =07
wkkak (ERON IMTERLISP-0 ###ss
Click Laft button for System Tool
Both Buttons for Profiie Tool

might Button for Online 0ilagnostics Taal o
ATOP kRey for selected Lizp Wo'lume
z Zpace %ar foar Online Diagnoztics Taol

Figure 5.1. The white rectangle that will bounce around the screen

If you have not set the time, the 1108 will not let you log out.
This has happened if the screen is grey and the number on the
maintenance panel is 0937. Wait at least 2 minutes to be sure
that there is a problem. If nothing has happened, then:

Reenter LISP (do a 0 Boot by pressing both the B-RESET and the
ALT-B buttons, immediately releasing the B-RESET button, and
holding the ALT-B button until the maintenance panel reads
0000 and then releasing the ALT-B button.)

Set the time by typing
(SETTIME date)
where date is a string such as the one shown in Figure 5.2.

LOGGING OUT AND TURNING THE MACHINE OFF

51

LOGGING OUT

(3)

NIL
I7«(ZETTIME "18-Jul1-356 16:@3:22")
"1E-Jul-36 15:83:22 EOT"

33«

Figure 5.2. Using the SETTIME function to set the date and time
Logout again, and wait for the bouncing white rectangle.

5.2 Turning The Machine Off

Do not turn off the machine until you have successfully logged
out. To turn the machine off, push the rocker switch to the 0
position. According to both the 1708 User's Guide and the 1186
User's Guide, you should wait at feast 3 minutes before turning
the processor back on.

5.2

LOGGING OUT AND TURNING THE MACHINE OFF

6. TYPING SHORTCUTS

Once you have logged in as per Chapters 3 or 4, you are in
Interlisp-D. The functions you type into the Interlisp-D executive
window will now execute, that is, perform the designated task.
Please note that Interlisp-D is case-sensitive; often it matters
whether text is typed in capital- or lower-case letters. The
shiftlock key is above the left shift key; when it is pressed (on the
1186, the red LED wili be on; on the 1108, the key will be
depressed), everything typed is in capital letters.

You must type all !nteriisp-D functions in parentheses. The
interlisp-D interpreter wiii read from the left parenthesis to the
closing right parenthesis to determine both the function you
want to execute, and the arguments to that function. Executing
this function is called evaluation. When the function is
evaluated it returns a value, which is then printed in the
Interlisp-D executive window. This entire process is called the
read-eval-print loop, and is how most LISP interpreters, including
the one for Interlisp-D, run.

The prompt in Interlisp-D is a number followed by a left pointing
arrow (see Figure 6.3). This number is the function's position on
the History List -- a list that stores your interactions with the
Interlisp-D interpreter. Type the function (PLUS 3 4), and
notice the number the History List assigns to the function (the
number immediately to the left of the arrow). Interlisp-D reads
in the function and its arguments, evaluates the function, then
prints the number 7.

In addition to this read-eval-print loop, there is also a
“programmer’s assistant”. It is the programmer’s assistant that
prints the number as part of the prompt in the Interlisp-D
executive window, and uses these numbers to reference the
function calls typed after them.

When you issue commands to the programmer's assistant, you
will not use parentheses as you do with ordinary function calls.
You simply type the command, and some specification that
indicates which item on the history list the command refers to.
Some programmer's assistant commands are FIX, REDO, and
UNDO. They are explained in detail below.

Programmer's assistant commands are useful only at the
Interlisp-D top level, that is, when you are typing into the
Interlisp-D executive window. They will not work in user-defined
functions.

As an example use of the pregrammer’s assistant, use REDO to
redo your function call {PLUS 3 4). Type REDO (Note:
programmer's assistant commands can be typed in either upper. _

TYPING SHORTCUTS

61

TYPING SHORTCUTS

(1

(2)

(4)

or lower case) at the prompt, then specify the previous
expression in one of the following ways:

When you originally typed in the function you now want to refer
to, there was a History List number to the left of the arrow in the
prompt. Type this number after the programmer’s assistant
command. Thisis the method illustrated in the following figure:

24+(PLUS 3 4)

'S<REDD 2

Figure 6.1. Using the programmer’s assistant to REDQ a function, when you
know the its number on the history hst
A negative number will specify the function call typed in that
number of prompts ago. in this example, you would type in -1,
the position immediately before the current position. This is
shown in the following figure:

&

Srge(PLUS 3 43

ettt ettt e N e e Y

Figure 6.2. Typing a negative number after the programmer’'s assistant
command will cause it use the function found on the History List that many
positions before the current one.

You can also specify the function for the programmer's assistant
with one of the items that was in that function call. The
programmer's assistant will search backwards in the History List,
and use the first function it finds that includes that item. For
example, type REDO PLUS to have the function (PLUS 3 4)
reevaluated.

If you type a Programmer's Assistant command without

specifying a function (i.e., simply typing the command, then a <7),
the Programmer's Assistant executes the command using the
function entered at the previous prompt.

Here are a few more examples of using the programmer's
assistant:

6.2

TYPING SHORTCUTS

TYPING SHORTCUTS

interlisp-0 Executive Window .~

HIL
Ede(PLUZ & B)

EF

D
m

oo

n o m

Be?? -3

Ba<UNDD ZETQ
2ETO undone.
E3+B6

UNBOUND &TON
B

EA<FEDO BB
oY
BL1+B
BOY

B2+«

Figure 6.3. Some Applications of the Programmer’s Assistant

6.1 If you make a Mistake

The character behind the caret
The word behind the caret

Any part of the command,

Editing in the Interlisp-D Executive Window is explained in
Section 11.2, Page 11.2. In this section, only a few of the most
useful commands wiil be repeated.

To move the caret to a new place in the command being typed,
point the mouse cursor at the appropriate position, and press the
left mouse button.

To move the caret back to the end of the command being typed,
press CONTROL-X. (Hoid the CONTROL key down, and type "X".)

The way you choose to delete an error may depend on the
amount you need to remove. Todelete:

simply press the backspace key

press CONTROL-W. (Hold the CONTROL key down, and type
"W)

first move the caret to the appropriate place in the command.
Hold the right mouse button down and move the mouse cursor
over the text. Ail of the blackened text between the caret and
mouse cursor is deleted when you release the right mouse
button. .

TYPING SHORTCUTS

63

IF YOU MAKE A MISTAKE

The entirecommand press CONTROL-U. (Hold the CONTROL key down, and type “U".)
Deletions can be undone. Just press the UNDO key.

To add more text to the line, move the caret to the appropriate
position, and just type. Whatever you type will appear at the
caret.

6.4 TYPING SHORTCUTS

7. USING MENUS

The purpose of this chapter is to show you how to use menus.
Many things can be done more easily using menus, and there are
many different menus provided in the Interlisp-D environment.
Some are "pop-up” menus, that are only available until a
selection is made, then disappear until they are needed again.
An example of one of these is the "background menu”, that
appears when the mouse is not in any window and the right
mouse button is pressed. A background menu is shown in Figure
7.1. Yours may have different items in it.

Figure 7.1. A background menu.

Ancther common pop-up menu is the right button defauit
window menu. This menu is explained more in Section 10.4,
Page 10.3.

Other menus are more permanent, such as the menu that is
always available for.use with the Interlisp-D Filebrowser. This
menu is shown in figure Figure 7.2, and the specifics of its use
with the filebrowser is explained in Chapter 9).

Delete
nddelets
Copy
Renarne
Hardoopmy
See
Edit
Load
Compile
Expunge
Recompute:

Figure 7.2. The menu thatis available when using the Filebrowser

USING MENUS

71

MAKING A SELECTION FROM A MENU

7.1 Making a Selection from a Menu

To make a selection from a menu, point with the mouse to the
item you would like to select. If one of the mouse buttons is
already pressed, the menu item should blacken. If it is a
permanent menu, you must press the left mouse button to
blacken the item. When you release the button, the item will be
chosen. Figure 7.3 shows a menu with the item “"Undo" chosen.

EditOps
&fter
Before
Delete
Replace
Switch
()

(g out

Find
Srap
Reprint
Edit
EditCom
Erealk
Eval
E-. it

Figure 7.3. A menu with the item "Undo™ chosen

7.2 Explanations of Menu Items

Many menu items have expianations associated with them. If
you are not sure what the consequences of choosing a particular
menu item will be, blacken the menu item, and do not release
the left button. If the menu item has an explanation associated
with it, the explanation will be printed in the prempt window.
Figure 7.4 shows the explanation associated with the item
“Snap" from the background menu.

$Saves a snapshot of a region of the screen..

TEdit

Figure 7.4. The explanation associated with the chosen item, "Snap”, Is
displayed in the prompt window

72

USING MENUS

SUBMENUS

7.3

Submenus

Some menus items have submenus associated with them. This
means that, for these items, you can make even more precise
choices if you would like to.

A submenu can slso be found in one of two ways. One is to point
to the item with the mouse cursor, and press the middle mouse
button. If there is a submenu associated with that item, it will
appear. (See Figure 7.5)

EditOps
Lfter
Siefore

i .::-ut
Jrdo
Firm
Twagd
Feprint
Edit
EditCam
Break

Eval TR
TOR

Figure 7.5. The submenu associated with the menu item Exit - it appeared when
the mouse cursor pointed to the menu item, and the middle mouse button was
pressed.

A submenu can be indicated by a gray arrow to the right of the
menu item, like the one to the right of the "Hardcopy" choice in
Figure 7.1. To see the submenu, biacken the menu item, and
move the mouse to follow the arrow. An example of this is
shown in Figure 7.6. Choosing an item from a submenu is done
in the same way as choosing an item from the menu. Any
submenus that might be associated with the items in the
submenu are indicated in the same way as the submenus
associated with the items in the menu. :

Load
Compile
E-punge

Figure 7.6. The submenu associated with the menu item Edit - It appeared when
the menu item was blackened, and the mouse was moved to follow the gray
arrow.

In summary, here are a few rules of thumb to remember about
the interactions of the mouse, and system menus:

Press the left mouse button to select an item of a menru

Press the middle mouse button to get mere cptions - one of the
ways to find a submenu

USING MENUS

73

SUBMENUS

® Press the right mouse button to see the default right button
window menu, and the background menu

7.4 USING MENG

8. HOW TO USE FILES

8.1 Types of Files

Interlisp-D expressions,

compiled code,

a Sketch,

text,

A program file, or lisp file, contains a series of expressions that
can be read and evaluated by the Interlisp-D interpreter. These
expressions can include function or macro definitions, variables
and their values, properties of variables, and so on. How to save
interlisp-D expressions on these files is explained in Section 11.6,
Page 11.7. Loading a file is explained below, in Section 8.6, Page
8.4.

Not all files, however, have Interlisp-D expressions stored on
them. For example, TEdit files (see Chapter 23) store text;
sketches are stored on files made with the package Sketch (see
Chapter 35), or can be incorporated into TEdit files. These files
are not loaded directly into the environment, but are accessed
with the package used to create them, such as TEdit or Sketch.

When you name a fiie, there are conventions that you shouid
follow. These conventions allow you to tell the type of a file by
the extension to its name. If a file contains:

it should not have an extension. For example, a file called
"MYCODE" should contain Interlisp-D expressions;

it should have the extension ".DCOM". For example, a file called
“"MYCODE.DCOM" should contain compiled code;

then its extension should be ".SKETCH". For example, a file_
called "MOUNTAINS.SKETCH" should contain a Sketch;

it should have the extension ".TEDIT". For exampile, a file called
“REPORT.TEDIT" should contain text that can be edited with the
editor TEDIT.

8.2 Directories

This section focuses on how you can find files, and how you can
easily manipulate files. To see all the files listed on a device, use
the function DIR. For example, to see what files are stored on
the riard disk, type

(DIR {DSK})

HOW TO USE FILES

81

DIRECTORIES

To see what files are stored on the floppy disk inside of the
floopy drive, type
(DIR {FLOPPY})

Partial directory listings can be gotten by specifying a file name,
rather than just a device name. The wildcard "*" can be used to
match any number of unknown characters. For example, the
command

(DIR {DSK}T*)
will list the names of all files stored on the hard disk that begin

with the letter T. An example using the wildcard is shown in
Figure 8.1

“22.(0IR " {0SK}<LISPFILES PRIMER:T#)

{OSHF<LISIFILESPRIMER:
TARREF3 . TEDIT; Z
TRLOCONT . TEDIT, L

Figure 8.1. Using the function DIR with a wildcard

8.3 Directory Options
Various words can appear as extra arguments to the DIR
command. These words give you extra information about the
files.
(1) SIZE displays the size of each file in the directory. For example,
type
(DIR {DSK} SIZE)
(2) DATE displays the creation date of each file in the directory. An
example of this is shown in Figure 8.2
EdaEe (0IR {0SKI<LISPFILES:PRIMER>T* DATE)
CREATIONDOATE
" fDEZK < LISPFILESPRIMER>
S TREREFS, TEDIT; 2 28-Jun-86 19: @@ ;A2
S TRLOCAMT . TEDIT; 1 Z26-Jun-86 193:58:37
SANIL
Figure 8.2. An example using the directory option DATE
(3) DEL Aeletes all the files found by the directory command
82 HOW TO USE FILES

SUBFILE DIRECTORIES

84 Subfile Directories

Subfile directories are very helpful for organizing files. A set of
files that have a single purpose, for example all the external
documentation files for a system, can be grouped together into a
subfile directory.

To associate a subfile directory with a filename, simply include
the desired subfile directory as part of the name of the file.
Subfile directories are specified after the device name and before
the simple filename. The first sibfile directory should be
between less-than and greater-than signs < >, with nested
subdirectory names only followed by a greater-than sign >. For
example:

{DSK}<Directory>SubDirectory>SubSubDirectory>...>filename

8.5 To See What Files Are Loaded
If you type FILELST<CR>, the names of all the files you loaded
will display.

Type SYSFILES<CR>, to see what files are loaded to create the
SYSOUT.

8.6 Simple Commands for Manipulating Files

The following commands will work with the {FLOPPY} and other
devices, but have been shown with {DSK} for simplicity.

To have the contents of a file displayed in a window:
(SEE '{DSK}filename)
To copy a file: (COPYFILE '{DSK}oldfilename '{DSK}newfilename)

An example of this is shown in Figure 8.3

S443¢{0OPYFILE ° TRRREFS. TEDIT °PRIMERREFS.TEDIT)
'OSK}CLISPFILES>PRIMER:FRIMERREFS. TEDIT;1

4d«

Figure 8.3. An example of the use of the function COPYFILE
To delete a file: (DELFILE ' {DSK}filename)
An example of this is shown in Figure 8.4.

a8+ (DELFILE ~34MPLE.TEDIT)
H{02r}<LISPFILES PRIMER> SAMPLE. TEOIT;1

&

Figure 8.4. The function DELFILE
Torename a file: (RENAMEFILE '{DSK}oldfilename °‘'{DSK}newfilename)

HOW TO USE FILES) 83

SIMPLE COMMANDS FOR MANIPULATING FILES

“LOAD" afile:

Files that contain Interlisp-D expressions can be loaded into the
environment. That means that the information on them is read,
evaluated, and incorporated into the Interlisp-D environment.
To load afile, type:

(LOAD '{DSK}filename)

When using these functions, always be sure to specify the full
filename, including subfile directories if appropriate.

8.7

Connecting to a Directory

Often, each person or project has a subdirectory where their files
are stored. If this is your situation, you will want any files you
create to be putinto this directory automatically. This means you
should "connect” to the directory.

CONN is the Interlisp-D form that connects you to a directory. For
example, CONN in the following figure:

Interlisp-D Executive Window

29« {COMN °{D3K}<LIZPFILES: PRIMERS LN)
{0SK}<LIZPFILES>PRIMER> IM>

A«

Figure 8.5. CONNecting to the subdirectory "PRIMER"s subsubdirectory "IM"

connects you to the subsubdirectory iM, in the subdirectory
PRIMER, in the directory LISPFILES, on the device DSK. This
information, the device and the directory names down to the
subdirectory you want to be connected to, is called the "path" to
that subdirectory. CONN expects the path to a directory as an
argument.

Once you are connected to a directory, the command DIR will
assume that you want to see the files in that directory, or any of
its subdirectories.

Other commands that require a filename as an argument (e.g.,
SEE, above) will assume, if there is no path specified with the
filename, that the file is in the connected directory. This will
often save you typing.

8.8

File Version Numbers

When stored, each file name is followed by a semicolon and a
number.

MYFILE.TEDIT;1

The number is the version number of the file. Thisis the system's
way of protecting your files from being overwritten. Each time
the fife iIs written, a new file 1s created with a version number one

8.4

HOW TO USE FILES

FILE VERSION NUMBERS

greater than the last. This new file will have everything from
your previous file, plus all of your changes.

In most cases, you can exclude the version number when
referencing the file. When the version is not specified, and there
is more that one version of the file on that particular directory,
the system generally uses your most recent version. An exception
is the function DELFILE, which deletes the oldest version (the
one with the lowest version number) if none is specified.

HOW TO USE FILES

85

FILE VERSION NUMBERS

[This page intentionally left blank]

8.6 HOW TO USE FiLES

9. | FILEBROWSER

The FileBrowser is a Lisp Library Package that works with files
stored on disk and floppy devices, and can be used as a file
directory editor.

9.1 Calling the FileBrowser

Calling the FileBrowser with the device name, calls up the files
stored on the device:

(FB '{DSK})

Another way to call a FileBrowser is to choose "FileBrowser"
from the Background menu. You will be prompted for a
description of the files to be included. (See Figure 9.1.) Simply
type an asterisk (“*"), then T, to see all the filesin the connected
directory.

lFile gqroup deseription: A

File Browser Window
Celete ®

Undeleta #
] 3

Renarms

bt

E diit

g RE i

Figure 9.1. Prompt for the files to be included in the FileBrowser. Type an
asterisk ("*") and then to see all the files in the connected direptory

These show a directory of the device in a window you can leave
on the screen at all times. The parts of the FileBrowser window
are shown below:

FILEBROWSER

~ CALLING THE FILEBROWSER

The Prompt window. The FileBrowser uses
this area to prompt you to enter informatio

n.’_j

File group description:

File Browser Window

File list. The files will
be listed in this area
of the FileBrowser

v

FB Gommands

The command
menu. These
commands are

Delete # explained
Undelete ¥ below.
Copy
Fename
Hardcopy
See ¥
Edit ¥
Load &
B3

Commipile
prunge

Figure 9.2. The parts of a FileBrowser

Now you do not need to continually type the directory
command.

To use the FileBrowser, choose a file by pointing to the file with
the mouse, and pressing the left or the middle mouse button. A
small dark arrow will appear to the left of the file name. Choose
a command from the menu at the right. In Figure 9.3, the files
OCH11.MSS;2, OCH12.MSS;2, and OCH13.MSS;2 have been
selected.

The left mouse button only allows you to choose one file at a
time. Even if you choose other files, only the last file you picked
with the left mouse button will remain marked as chosen. When
you use the middle mouse button to choose a file, the file is
added to those already picked.

To unpick an already chosen file, hold the CONTROL key while
pressing the middle mouse button. On the 1186, the control key
is the one marked EDIT or CTL to the left of the keyboard. On
the 1108, the CONTROL key is also to the ieft of the keyboard,
and is marked PROPS.

92

SILEBROWSER

CALLING THE FILEBROWSER

{GSKI<LISPFILESPRIMERY® ¥,%* Drowse FB Commands

Tot & ¢ 2704 pas Ol &

»OCH11 M3, 2

P OCHLZ . M3

POCHLS.
OCH14.
OCH1S.
OCH1E.
OCH17.
OCH18.

QZHS .
OCHS

OCHS .

SO0 pgs

B2 b T B L

Dejets
Urdelets

Campile
Expunge

Fecormput

Figure 9.3. Files Chosen

A summary of the FileBrowser commands is shown below.

9.2 FileBrowser Commands

e!{ete

In the FileBrowser, this command marks a file, or files, for
deletion. (See Figure 9.4). These files are marked by a black line
crossing through them. You may select and mark any number of
files for deletion. Delete does not actually remove these files
from the device. The Expunge command actually wipes out the
files previously marked for deletion (see Figure 9.5).

P SEHES
ACHLA
OGHLS .

M2 b e iprp

OrHeS Mo

23 pas

T SKIKUSPFILES yPRIMEFR Y% % DFOWSE FB Commands
34 304 pgz el 37

el EIORE IR R VIR VY o)

Delets
Undelete
Copy
Rerame
Hardcopy

Laad
Cormpile
Expunge
Fecompute

Figure 9.4. Files Marked for Deletion

FILEBROWSER

93

FILEBROWSER COMMANDS

Undelete

Copy

Rename

Hardcopy

See

Edit

Load

Compile

{0SK}ICLISPFILESYPRIMER>® ¥** browse F8 Commands
Tot 4F 7 2704 pRs Ol 3 7 23 pgs Delete 3
Undelete
_ _ Copy
e *§ Rername
BEHEE ey | Hardcopy
t"&H‘ﬂ:‘J‘Tﬂf_"}, = = See
POCHLIA MES; 3 7 Edit
ZH1S. 14 3 Load
OCH1E . M33; 3 =1 ':DIT\F'“E
OCHLT MES;1 L ¥ Expunge
OCHLB, ;e 23 Frecomput
OCHLA, 4 42
OCHZA . M28;1 2z
OCHZL . M35 1 15
OCH2Z . M35, 2 3
OCHZ23. 1 13
OCHZ24 . 1 3
OCHSE] i

Figure 9.5. Files Marked For Deletion And Not Yet Expunged

undoes the delete command for one or more files. Undelete
erases the black line through a file marked for deletion.

This command copies the chosen file. The destination fiiename
should be typed at a prompt that appears in the window above
the FileBrowser. Wildcards do not work for this prompt. You
must type the whole unquoted filename. If more than one file is
chosen to be copied, you will be prompted for a directory name.
The files will be copied into the directory you give, but with the
same filenames as the ones they have in their original location.

This command works much like the Copy command, but does

-not leave the original file. The chosen file will be renamed to the

destination filename. You will be prompted, in the prompt
window, for the destination filename. Give the complete
unquoted filename. If more than one file is chosen to be
renamed, you will be prompted for a directory name. The files
will be moved into the directory you give.

If you do not have a laser hardcopy device, using this command
will cause an error. Otherwise, it gives a hardcopy of the file.

Shows you a file in a window. To use this command, choose a
single filename, then the See command. You will be prompted
for a window. Each time the See command is chosen, a new
window is opened to display the file.

Calls the editor with the file as input. If the file is an executable
one, (i.e. Lisp code as opposed to a documentation file), only the
FILECOMS list will be edited. The FILECOMS list is the list of
variables, lists, and functions that are contained on that file.
FileBrowser will first load it and then allow you to edit the
FILECOMS.

Choose a file with the left mouse button, or a group of files with
the middle mouse button. Once the filenames have been
blackened, choose the Load command to load them all into
Interlisp-D.

This command calls the file compiler TCOMPL, with the chosen
filename(s) as arguments. TCOMPL compiies a file found on a
storage device ({FLOPPY} or {DSK}), not the functions defined
in the Interlisp-D image. If any functions on a !oaded file nave
been changed, run the function {MAKEFILE "filename) to

94

FILEBROWSER

FILEBROWSER COMMANDS

Expunge

Recompute

write the current version before compiling it. Files do not have
to be loaded to use the compile command.

Expunge completeily deietes ali the marked files from the
directory. This allows you to remove unwanted files from your
floppy.

Choose this command when you know that the directory has

been changed and should be reread, for exampile, after inserting
a new floppy disk.

FILEBROWSER

95

FILEBROWSER COMMANDS

[This page intentionally left blank]

96 FILEBROWSER

10.THOSE WONDERFUL WINDOWS!

A window is a designated area on the screen. Every rectangular
box on the screen is a window. While Interlisp-D supplies many
of the windows (such as the Interlisp-D executive window), you
may also create your own. Among other things, you will type,
draw pictures, and save portions of yaur screen with windows.

10.1 Windows provided by Interlisp-D

Two important windows are available as soon as you enter the
Interlisp-D environment. One is the Interlisp-D executive
window, the main window where you will run your functions. It
is the window that the caret is in when you turn on your

NIL
13+,

Figure 10.1. Interlisp-D Executive Window

The other window that is open when you enter Interlisp-D is the
"Prompt Window". Itisthe long thin black window at the top of
the screen. It displays system prompts, or prompts you have
associated with your programs. (See Figure 10.2.)

Figure 10.2. Prompt Window

Other programs, such as the editors, also use windows. These
windows appear when the program starts to run, and close (no
longer appear on the screen) when the program is done running.

THOSE WONDERFUL WINCOWS!

101

CREATING A WINDOW

10.2 Creating a window

To create a new window, type: (CREATEW). The mouse cursor
will change, and have a small square attached to it. (See Figure
10.3)

—
! I
|

LA

L)

Figure 10.3. The mouse cursor asking you to sweep out a window.

There may be a prompt in the prompt window to create a
window. Press and hold the left mouse button. Move the mouse
around, and notice that it sweeps out a rectangle. When the
rectangle is the size that you'd like your window to be, release
the left mouse button. Maoare specific information about the
creation of windows, such as giving them titles and specifying
their size and position on the screen when they are created, is
giveninSection 27.1.2, Page 27.2.

10.3 The Right Button Default Window Menu

Position the cursor inside the window you just created, and press
and hold the right mouse button. A menu of commands should
appear (do not release the right button!), like the one in Figure
10.4. To execute one of the commands on this menu, choose the
item. Making a choice from a menu is explained in Section 7.1,
Page 7.2.

Clase
SNap
Paint
Clear
Bury
Redizplay
Hardcopy?
Fowve
Shape
Shirinik,
Figure 10.4. The Right Button Defauit Window Menu

As an example, select "Move" from this menu. The mouse cursor
will become a ghost window (just an outline of a window, the
same size as the one you are moving), with a square attached to
one corner, like the one shown in Figure 10.5.

Figure 10.5. The mouse cursor for moving a window

Move the mouse around. The ghost window will follow. Click
the ieft mouse button to piace the window in a new iocation.

10.2

THOSE WONDERFUL WINDOWS!

THE RIGHT BUTTON DEFAULT WINDOW MENU

Choose "Shape”, and notice that you are prompted to sweep out
another window. Your original window will have the shape of
the window you sketch out.

10.4 An explanation of each menu item

Close
Snap
Paint

Clear

Bury
Redisplay
Hardcopy

Move
Shape
Shrink

Expand

The meaning of each right button default window menu item is
explained below:

removes the window from the screen;
copies a portion of the screen into a new window;
allows drawing in a window;

clears the window by erasing everything within the window
boundaries;

puts the window beneath all other windows that overiap it;
redisplays the window contents;

sends the contents of the window to a printer or to a file;
allows the window to be moved to a new spot on the screen;
repositions and/or reshapes the window;

reduces the window to a small black rectangle called an icon.
(See Figure 10 6.)

Figure 10.6. An example icon

changes an icon back to its original window. Position the mouse
cursor on the icon, depress the right button, and select Expand.
Or, just button the icon with the middie mouse button.

These right-button default window menu selections are
available in most windows, including the Interlisp-D Executive
window. When the right button has other functions in a
window (as in an editor window), the right button default
window menu should be accessible by pressing the Right button
in the black border at the top of the window.

10.5 Scrollable Windows

Some windows in Interlisp-D are "scrollable™. This means that
you can move the contents of the window up and down, or side
toside, to see anything that doesn't fitin the window.

Point the mouse cursor to the left or bottom border of a
window. If the window is scrollable, a “scroll bar” will appear.

THOSE WONDERFUL WINDOWS!

03

SCROLLABLE WINDOWS

The mouse cursor will change to a double headed arrow. (See
Figure 10.7.)

Figure 10.7. The scrolil bar of a scrollable window. The mouse cursor changes to
a double headed arrow.

The scroll bar represents the full contents of the window. The
example scroll bar is completely white because the window has
nothing init. When a part of the scroll bar is shaded, the amount
shaded represents the amount of the window's contents
currently shown. If everything is showing, the scroll bar will be
fully shaded. (See Figure 10.8.) The position of the shading is
also important. It represents the relationship of the section
currently diplayed to the the full contents of the window. For
example, if the shaded section is at the bottom of the scroll bar,
you are looking at the end of the file.

* Text Editor Window

The amount of shading in
the zcroll bar represents
the amount of the file
zhown in the window, Most
of the file iz vwigible,
Becauyse the Thading is at
the top of the zcroll bar,
wou know ywou are looking
at the top of the file.

Figure 10.8. The amount of shading in the scroll bar represents the amount of
the file shown in the window. Most of the file is visible. Because the shading s at
the top of the scroll bar, you know you are looking at the top of the file.

When the scroll bar is visible, you can controi the section of the

window's contents displayed:

To move the contents higher in the window (scroll the contents
"up" in the window), press the left button of the mouse, the
mouse cursor changes to look like this:

t

Figure 10.9. Upward scrolling cursor.
The contents of the window will scroll up, making th

the cursor is beside the topmost line in the window.

®m
@
c*
o
-+

104

THOSE WONDERFUL WINDOWS!

SCROLLABLE WINDOWS

To move the contents lower in the window (scroll the contents
"down" in the window), press the right button of the mouse,
and the mouse cursor changes to look like this:

\

Figure 10.10. Downward scrolling cursor.

The contents of the window scroll down, moving the line that is
the topmost line in the window to beside the cursor.

To show a specific section of the window's contents, remember
that the scroll bar represents the full contents of the window.
Move the mouse cursor to the relative position of the section you
want to see (e.g., to the top of the scroll bar if you want to see
the top of the window's contents.). Press the middle button of
the mouse. The mouse cursor will look like this:

qmp

Figure 10.11. Proporticnal scrolling cursor.

When you release the middle mouse button, the window's
contents at that relative position will be displayed. :

10.6 Other Window Functions

10.6.1 PROMPTPRINT

Prints an expression to the black prompt window.

For example, type
(PROMPTPRINT "THIS WILL BE PRINTED IN THE PROMPT WINDOW")

The message will appear in the prompt window. (See Figure
10.12)

rompt ‘Wwindow

43+ (PROMPTPRINT *THIS WILL BE FRINTED IM THE
ROMPT WINDOW")

Figure 10.12. PROMPTPRINTIng

THOSE WONDERFUL WINDOWS!

10.5

OTHER WINDOW FUNCTIONS

10.6.2 WHICHW

Returns as a value the name of the window that the mouse
cursorisin.

(WHICHW) can be used as an argument to any function
expecting a window, or to reclaim a window that has no name
(that is not attached to some particular part of the program.).

10.6 THOSE WONDERFUL WINDOWS

11. EDITING AND SAVING

This chapter explains how to define functions, how to edit them,
and how to save your work.

—
-—h
—

EDITING AND SAVING

DEFINEQ can be used to define new functions. The syntax for it
is:

(DEFINEQ (<functionname> (<parameter-list>)
<body-of-function>))

New functions can be created with DEFINEQ by typing directly
into the Interlisp-D executive window. Once defined, a function

is a part of the Interlisp-D environment. For example, the
function EXAMPLE-ADDER is defined in Figure 11.1.

Interlisp~D Executive

MIL
$8+{OEFINE] (EXAMPLE-SO00ER (& B)
(PRINT "THE 3SUNM 0OF THE
THREE MUMBERS I3 *)
(IPLUS & B C)))
(E<AMPLE-ADDER)
47«

Figure 11.1. Defining the function EXAMPLE-ADDER

Now that the function is defined, it can be called from the
Interlisp-D executive window:

Interlisp-D Executive '

HIL

49« (EX4MPLE-ADDER 2 4 5)

"THE =UM OF THE THREE MUMBERS I3 *
1z

Efe

Figure 11.2. After EXAMPLE-ADDER is defined, it can be executed
The function returns 12, after printing out the message.

Functions can also be defined using the editor DEdit described
above. Todo this, simply type

(DF funtion-name)

DEFINING FUNCTIONS

You will be asked whether you would like to edit a Dummy
definition. A dummy definition is a standard template for your
function definition. Answer by typing Y for Yes, and you will be
able to define the function in the editor. (See Figure 11.3. The
use of the editor is explained in Section 11.3, Page 11.4))

AT
SNOT-EWIZT, Do wouw wizh to =dit 3 du
CEdit of function DOES-NOT-EXIST
[LARBDS (BEGS L)

B0y)

HereioF -poEs-noT-gx1
Mo FNS defn for 00
Ammy definitiontYes:

Figure 11.3. Using DEdit to define a function

11.2 Simple Editing in the Interlisp-D Executive Window

First, type in an example function to edit:

51¢—(DEFINEQ (YOUR-FIRST-FUNCTION (A B)

(if (GREATERP A B)
then '(THE FIRST IS GREATER)
else '(THE SECOND IS GREATER))))

To run the function, type (YOUR-FIRST-FUNCTION 3 5).

52¢—(YOUR-FIRST-FUNCTION 3 5)
(THE SECOND IS GREATER)

Now, let's alter this. Type:

53¢«FIX 51 €T

Note that your original function is redisplayed, and ready to edit.
(See Figure 11.4.)

EDITING AND SAVING

SIMPLE EDITING IN THE INTERLISP-D EXECUTIVE WINDOW

Move

Delete

If you make a mistake

I

(2

(3
(4)
()

Interlisp-D Executive

HIL
E3«FIx 51
+{DEFINEG
[YOUR-FIRST-FUNCTIOM
(& B)

(% edited:

"31-Dec-B8 19:28")
{(IF [GREATERP & B)
THEN (QUOTE (THE FIR3T IS
SREATER))
ELSE (QUOTE {THE SECOMD IS
BREATER]),

Figure 11.4. Using I LA to edit a function
the text cursor to the appropriate place in the function by

positioning the mouse cursor and pressing the left mouse
button.

text by moving the caret to the beginning of the section to be
deleted. Hold the right mouse button down and move the
mouse cursor over the text. All of the blackened text between
the caret and mouse cursor is deleted when you release the right
mouse button.

deletions can be undone. On an 1108, press the OPEN key to
UNDO the deletion. On an 1108, press the UNDO key on the
keypad to the left of the keyboard.

Now change GREATER to BIGGER:

Position the mouse cursor on the G of GREATER, and click the left
mouse button. The text cursor is now where the mouse cursor.is.

Next, press the right mouse button and hold it down. Notice
that if you move the mouse cursor around, it will blacken the
Move the

characters from the text cursor to the mouse cursor.

mouse so that the word "GREATER" is blackened.
Release the right mouse button and GREATER is deleted.
Without moving the cursor, type in BIGGER.

There are two ways to end the editing session and run the
function. One is to type CONTROL-X. (Hold the CONTROL key
down, and type "X".) Another is to move the text cursor to the

end of the line and <.
edited!

Try the new version of the function by typing:

In both cases, the function has been

59¢—(YOUR-FIRST-FUNCTION 8 9)
(THE SECOND IS BIGGER)

and get the new result, or you can type:

59¢—REDO 52€T
(THE SECOND IS BIGGER)

EDITING AND SAVING

USING THE LIST STRUCTURE EDITOR

11.3 Using The List Structure Editor |

If the function you want to edit is not readily available (i.e. the
function is not in the Interiisp-D Executive window, and you can't
remember the history list number, or you simply have a lot of
editing), use the List Structure Editor, often called DEdit. This
editor is evoked with a call to DF:

8ie—(DF YOUR-FIRST-FUNCTION)

Your function will be displayed in an edit window, as in Figure
11.5.

if there is no edit window on the screen, you will be prompted to
create a window. As before, hold the left mouse button down,
move the mouse until it forms a rectangle of an acceptable size
and shape, then release the button. Your function definition
will automatically appear in this edit window.

DEdJit of funiction YOUR-FIRST-FUNCTION EditOps
TLaMBEDS (& B) ik edited; 31-Dec-00 1739 afte

*{IF (GREATERP & &)
THEN {QUOTE (THE FIRST I3 BIBGER))
ELSE QUOTE {THE SECONG IS BIGGERTI)I

(] o Vnu]
Firvd
Rt <1e]
Regrirt
Edit
EcitComn
Eraak
Eval
E..it

Figure 11.5. An Edit Window

Many changes are easily done with the structure editor. Notice
that by pressing the left mouse button, different expressions are
underlined. Underline BIGGER as in Figure 11.5. Release the left
mouse button.

To add an expression that doesn't appear in the edit window,
(i.e. it can't simply be underlined), just type it in. Doing this will
create an edit buffer below the DEdit window. For example,
type LARGER and hit ¢'. (Remember to €'! You won't be able to
do anything in the editor until you T - this can fool you at first,
so beware.) A new window opens up at the bottom for the new
expression. (See Figure 11.6.)

LARGER now has the bold line underneath it, while BIGGER has
a dotted line.

EDITING AND SAVING

USING THE LIST STRUCTURE EDITOR

After

Before

Replace

Switch

Find

(LAMBDE (A B (% edited: "31-0ec-00 1739 After
(IF (GREATERF & B : Eefore
THEM (QUOTE (THE FIR3T I3 BIG Delets
ELSE (QUOTE (THE 2ECOWD [2 BIGEE Reglace
Switch

i

i | aut

Undao

Find

':‘}*r'-.-“-i[!

Reorint

. Edit
Egitourrer ______[Cene.
LARGER Braak
Evwval

Euxit

Figure 11.6. Edit Window with Edit Buffer

DEdit keeps track of items you have chosen by using a stack. The
underlines teil you the order of the items on the stack. The solid
underline indicates the item on the top of the stack; the dotted
undertine indicates the second to the top. (BIGGER was pushed
on first. When LARGER was pushed on, BIGGER became the
second elementin the "stack”, and LARGER the first.)

Many commands operate with two items on the stack. Some of
them are listed below:

pops the stack, and adds this top item (in this example, LARGER)
to the edit window after the second item on the stack(in this
example, BIGGER). The item that was at the top of the stack,
LARGER, will now appear in both the original and the new
position.

pops the stack, and adds this top item (in this exampie, LARGER)
to the edit window before the second item on the stack. (See
Figure 11.7.)

DECit of function YOUR-FIRST-FUNCTION EditOps
(LAMBD& (A B ‘ CF 2adited 31-Dec-00 17397 aftar
iIF (GREATERP & B} Eefore

THEN (QUDTE (THE FIRST 13 LARBER BIGGER))

m—

ELSE (QUOTE (THE Z2ECOND [3 BIGSERY)}

Undda
Fird
SRR
Reprint
. Edit
EctitCam
LARGER Sraak
- Ewal
Euxit

Figure 11.7. The command Befare is chosen; the word LARGER appears
before the word BIGGER

pops the stack, and substitutes this top item for the second item
on the stack.

changes the position of the first and second items on the stack in
the edit window.

pops the stack, and searches this top expression for an occurance
of the second item on the stack. If the item is found, it is
underlined with a solid line, that is, pushed on the stack. To find
the next occurance, simply choose “Find" again. If the
expression is not found, the prompt window will blink, and a

EDITING AND SAVING

USING THE LIST STRUCTURE EDITOR

Swap

Delete

Undo

11.3.1 Commenting Functions

message that the item was not found will appear. (See Figure
11.8 for an example of an item, the atom THIRD, not appearing
in the function, YOUR-FIRST-FUNCTION.

gCant: THIRD Not found

% ot function YOUR-FIRST-FUNCTION
L¥ edite

d’“— shom———
IF [GREATERE & B)
“= YHEN [OUDTE L THE FIRST I3 PIGEERI]
ELSE {QUIOTE (THE SECOND I3 BIGEER)11

T
ATHIFD

THIRD is not in the function being edited

Figure 11.8. The atom

changes places, on the stack, of the first and second items on the
stack. The edit window does not change, except that the
expression that had a solid underline now has a dotted
underline, and vice versa.

works on only the top item of the stack. Delete removes the
solid underlined expression from the edit window.

undoes the last editor command.

Completing the example begun earlier, here's how to have the
word LARGER that you typed into the edit buffer appear in place
of the BIGGER that you selected from the DEdit window: select
the SWITCH command. Notice that the two items are switched,
and the stack is popped. Now select EXIT and to leave the
editor, and your function will again be redefined.

Text can be marked as a comment by nesting it in a set of
parentheses with a star immediately after the left parenthesis.

(* This is the form of a comment)

Inside an editor window, the comment will be printed in a
smaller font and may be moved to the far right of the code.
Sometimes, however, centered comments are more appropriate.
To center acomment, type "* *" after the left parenthesis.

(* ® This comment will not be moved to the far right of the
code, but will be centered)

It is also possible to insert linebreaks within a comment. A dash
should be placed in the comment wherever a carriage return is
needed. This feature allows several comments to be placed
inside one set of parentheses.

(* This comment will be typed onto two lines. -

116

EDITING AND SAVING

USING THE LIST STRUCTURE EDITOR

especially useful if you want to space your comments)
There are other editor commands which can be very useful. To
learn about them, read to the Interlisp-D Reference Manual,
Volume 2, Section 16, on DEDIT.

11.4 File Functions and Variables - How to See Them and Save Them

With Interlisp-D, all work is done inside the “Lisp Environment".
There is no “"Operating System” or "Command Level" other than
the Interlisp-D Executive Window. All functions and data
structures are defined and edited using normal Interlisp-D
commands. This section describes tools in the Interlisp-D
environment that will keep track of any changes that you make
in the environment that you have not yet saved on files, such as

. defining new functions, changing the values of variables, or
adding new variables. And it then has you save the changes in a
file you specify.

11.5 File Variables

Certain system-defined global variables are used by the file
package to keep track of the environment as it stands. You can
get system information by checking the values of these variables.
Two important variables follow.

® FILELST evaluates to a list, all files that you have loaded into
the Interisp-D environment.

filerniameCONS (Each file loaded into the Lisp environment has
associated with it a global variable, whose name is formed by
appending "COMS" to the end of the filename.) This variable
evaluates to a list of all the functions, variables, bitmaps,
windows, and 50 on, that are stored on that particular file.

For example, if you type:
MYFILECOMS
the system will respond with something like:

((FNS YOUR-FIRST-FUNCTION)
(VARS))

11.6 Saving Interlisp-D on Files

The functions (FILES?) and (MAKEFILE 'filename) are
useful when it is time to save function, variables, windows,
bitmaps, records and whatever else to files.

EDITING AND SAVING 117

SAVING INTERLISP-D ON FILES

(FILES?)

(1

(3)

(MAKEFILE ‘filename)

displays a list of variables that have values and are not already a
part of any file, and then the functions that are not already part
of any file. '

Type:
(FILES?)
the system will respond with something like:

the variables: MY . VARIABLE CURRENT.TURTLE...to be dumped.
the functions: RIGHT LEFT FORWARD BACKWARD CLEAR-SCREEN...to
be dumped.

want to say where the above go?

If you type Y, the system will prompt with each item. There are
three options:

To save the item, type the filename (unquoted) of the file where
the item should be placed. (This can be a brand new file or an
existing file.)

To skip the item, without removing it from consideration the

next time (FILES?) is called, type <. This will allow you to
postpone the decision about where to save the item.

If the item should not be saved at all, type]. Nowhere will
appear after the item.

Part of an example interaction is shown in the following figure:

MNIL :

S1+(FILEZT)

the variables: MYV-Y&E...to he dumped.

the functiong: MY-3ECOND-FUMCTIOM,
YOUR-FIRST-FUNCTIOMN

.ot be dumped.]

Want T3 g3y wheres the above go 7 Ye

(wariablesg)

MY¥-Y&R Nowhers

{functionsg)

MY-SECOND-FUNGCTION Fil2 name: EXAMPLE,

]

Figure 11.9. Part of an interaction using the function FILES?.

(FILES?) assembles the items by adding them to the
appropriate file's COMS variable. (See Section 11.5, Page 11.7.)
(FILES?) does NOT write the file to secondary storage (disks or
floppies). It only updates the global variables discussed in
Section 11.5.

actually writes the file to secondary storage. Files should only be
writen when the time is set. If the time is not set, you will run
into problems, such as not being able to copy your file. To check
the time, type

(DATE)

If the date is correct, you can safely use MAKEFILE. If it is not
carrect, set the time with the function SETTIME. To use it, type
{SETTIME date), where date is a2 string such as the one shown
in Figure 11.10.

EDITING AND SAVING

SAVING INTERLISP-D ON FILES

interlisp-D Executive ‘Window

37+{SETTIME "18-Jul-86 15:83:22")
"18-Ju1-36 16:63:22 EOT"
5«

Figure 11.10. Using the SETT IME function to set the date and time

Once the time is set correctly, use the function MAKEFILE. Type:
(MAKEFILE 'MY.FILE.NAME)

and the system will create the file. The function returns the full
name of the file created. (i.e. {DSK}MY FILE.NAME_; 1).

Note: Files written to {DSK} are permanent files. They can be
removed only by the user deleting them or by reformatting the
disk.

Other file manipulation functions can be found in Section 8.6,
Page 8.3.

EDITING AND SAVING

SAVING INTERLISP-D ON FILES

[This page intentionally left blank]

11.10 EDITING AND SAVING

12. YOUR INIT FILE

Interlisp-D has a number of global variables that control the
environment of your 1108 or 1186. Global variables make it easy
to customize the environment to fit your needs. One way to do
this is to develop an "INIT" file. This is a file that is loaded when
you log on to your machine. You can use it to set variables, load
files, define functions, and any other things that you want to do
to make the interlisp-D environment suit you.

Your Init file could be called INIT, INIT.LISP, INIT.USER, or
whatever the convention is at your site. There is no default name
preferred by the system, it just looks for the files listed in the
variable USERGREETFILES, (see below). Check to see what the
preference is at your site. Put this file in your directory. Your

" directory name should be the same as your login name.

The INIT file is loaded by the function GREET. GREET is normally
run when Interlisp-D is started. If this is not the case at your site,
or you want to use the machine and Interlisp-D has already been
started, you can run the function GREET yourself. If your user
name was, for example, TURING, then you would type:

(GREET ' TURING)

This does a number of things, inciuding undoing any previous

- greeting operation, loading the site init file, and loading your

init file. Where GREET looks for your INIT file depends on the
value of the variable USERGREETFILES. The value of this
variable is set when the system's SYSOUT file is made, so check its
value at yoursite! For example, its value could be:

Interlisp~-D Executive Window .

MIL

S«UZERBREETFILEZ

{C{D2K}<LISPFILES> UZER >IMIT.LIZP)
(f0SK<LIZPFILES>INIT.LIZP)
({FLORPY}IMIT.LIZP)
{({03KY-LISPFILES> USER >IMIT.UZER)
(103K < LIZPFILES>INIT. UZER)
({FLOFPY}INIT, USER)
({0ZK}-LIZPFILES> USER >IMNIT)
({0EK“LIZPFILES>INIT)
({FLOPPYLINIT)

de

Figure 12.1. A possible value of USERGREETFILES.

In each place you see, "> USER >", the argument passed to
GREET is substituted into the path. This is your login name if you
are just starting Interlisp-D. For example, the first value in the list
would have the system check to see whether there was a file,
{DSK}<LISPFILES>TURING>INIT.LISP. No error is generated if
you do not have an INIT file, and none of the files in
USERGREETFILES are found.

YOUR INIT FILE

121

MAKING AN INIT FILE

12.1 Making an Init File

As described in Section 11.5, Page 11.7, each Interlisp-D program
file has a global variable associated with it, whose name is
formed by appending "COMS" to the end of the root filename.
For any of the standard INIT file names, the variable INITCOMS is
used. To set up an init file, begin by editing this variable. First,
type:

(SETQ INITCOMS '((VARS)))

Now, to edit the variable, type:

(DV INITCOMS)

A DEdit window wiil appear. This DEdit window is the same as
the one called with the function DF, and described in Section
11.3, Page 11.4. This chapter will assume that you know how to
use the structure editer, DEdit.

The COMS variable is a list of lists. The first atom in each internal
list specifies for the file package what types of items are in the
list, and what it is to do with them. This section will deal with
three types of lists: VARS, FILES, and P. Please read about others
in the interlisp-D Reference Manual, Volume Il, Chapter 17.

The list that begins with "VARS" allows you to set the values of
variables. For example, one global variable is called DEditLinger.
Its default value is T, and means that the DEdit window won't
close after you exit DEdit. If it is set to NIL, then the DEdit
window will be closed when you exit DEdit. To set it to NIL in
your INIT file, edit the VARS list so that it looks like this:

DEdit of variable INITCOMS EditOps
{(Ww&FR3 (DEditLinger NIL)Y: after
Eefore
Delete
Replace
Switch
)
{jout
Undclo
Fird
Sweap
Reprint
Edit
EditCom
Break
E'v"él.l
Exit

Figure 12.2. Settingthe vanable DEditLingerin INITCOMS.

Notice that inside the vars list, there is yet another list. The first
item in the list is the name of the variable. It is bound to the
value of the second item. There are many other variables that
you can set by adding them to the VARS list. Some of these
variables are described in Chapter 43, and many others can be
found in the Interlisp-D Reference Manual.

If you want to automatically load files, that can be done in your
init file also. For example, if you always want to load the Library
file SPY.DCOM, you car load it by editing the INITCOMS variable
to list the appropriate file in the list starting with FILES:

122

YOURINIT FiLE

MAKING AN INIT FILE

of variabfe INITGOMS EditOps_
COEditlirgsr NILID After
SRV Befare

Unda
Find
Sevap
Reprint
Edit
EditZam
Break
Eval
Exit

Figure 12.3. INITCOMS changed to load the file SPY.DCOM

Other files can also be added by simply adding their names to
this FiLES iist.

Another list that can appear in a COMS list begins with "P". This
list contains Interlisp-D expressions that are evaluated when the
file is loaded. Dc not put DEFINEQ expressions in this list.
Define the function in the environment, and then save it on the
file in the usual way (see Section 11.6, Page 11.7).

One type of expression you might want to see here, however, is a
FONTCREATE function (see Section 31.2, Page 31.2). For
example, of you want to use a Helvetica 12 BOLD font, and there
is not a fontdescriptor for it normaliy in your environment, the
appropriate call to FONTCREATE should be in the “P" list. The
INITCOMS would look like this:

DEdit of variable INITCOMS EditOps |
{(WARS [DEditLinger MNILI) Lfter
(FILES =PY) Sefors
(P (FONTCREATE (QUOTE Celete

’ HELVETICAY Replace

] Switch

-

2]
TQUOTE BOLDIIY) (out
Undo
Find
Swap
Reprint
Edit
EditZom
Ereak
Ewval

Exit

Figure 12.4. INITCOMS edited to include a callto FONTCREATE. The form will
be evaluated when theiNIT file is loaded.

To quit, exit from DEdit in the usual way. When you run the

function MAKEFILES (See Section 11.6, Page 11.7.), be sure that

you are connected to the directory (see Section 8.7, Page 8.4)
where the INIT file should appear. Now when GREET is run, your
init file will be loaded.

YOUR INIT FILE

123

MAKING AN INIT FILE

[This page intentionally left blank]

124 YOURINIT FILE

13. FLEXIBILITY AND FORGIVENESS:
CLISP AND DWIM

CLISP, (Conversational Lisp), and DWIM, (Do What | Mean), are
two Interlisp utilities that make life easier.

13.1 CLISP

CLISP allows the machine to understand and execute commands
given in a non-standard way. For example, Figure 13.1 contains
an example expression (4 + 5).

Figure 13.1. CLISP allows the use of infix notation
Without CLISP, you would need to type this using the notation

(PLUS 4 5). CLISP allows you to use expressions such as (4 +
5) for all arithmetic expressions.

CLISP also allows you to use more readable forms instead of
standard Lisp control structures. Expressions like IF-THEN-ELSE
statements can replace COND statements. For example, instead
of:

(COND {(GREATERP A B) (PLUS A 10))
ir (PLUS B 10)))

the following can be used:

(if (A > B) then (A + 10) else (B + 10))

The system translates this CLISP code into Interlisp-D code.
Setting flags will allow you to either save the CLISP code, or save
the translation. One such flag is CLISPIFTRANFLG; ifitissetto
NIL, all the IF statements will be replaced with the equivilent
COND statements. This means that when you DEdit the function,
the IF will be removed and replaced with the COND. Typically,
flags such as this one are set in your INIT file. These flags are
discussed in the Interlisp-D Reference Manual in Volume 2,
Section 21.

FLEXIBILITY AND FORGIVENESS: CLISP AND DWIM

DWIM

13.2 DWIM

DWIM tries to match unrecognized variable and function names
to known ones. This allows Lisp to interpret minor typing errors
or misspellings in a function, without causing a break. Line 87 of
Figure 13.2 illustrates how the misspelled BANNANNA was
replaced by BANANA before the expression was evaluated.

nteriisp-0 Executive ‘Window

MIL
87+ {3ETQ BANANA FRUIT)
FF

Figure 13.2. Examples of CLISP and DWIM features

Sometimes DWIM may alter an expression you didn't want it to.
This may occur if, for example,a hyphenated function name (eg.
(MY-FUNCTION)) is misused. If the system doesn't recognize it,
it may think you are trying to subtract "FUNCTION" from "MY".
DWIM also takes the liberty of updating the function, so it will
have to be fixed. However, this is as much a blessing as a curse,
since it points out the misused expression!

FLEXIBILITY AND FORGIVENESS: CLISP AND DWiM

14. BREAK PACKAGE

The Break Package is a part of Interlisp that makes debugging
your programs much easier.

A break is a function either called by the programmer or by the
system when an error has occurred. A separate window opens
for each break. This window works much like the Interlisp-D
Executive Window, except for extra menus unique to a break
window. Inside a break window, you can examine variables,
look at the call stack at the time of the break, or call the editor.
Each successive break opens a new window, where you can
execute functions without disturbing the original system stack.
These windows disappear when you resolve the break and return
to a higher level.

14.2 Break Package Example

This exampie illustrates the basic break package functions. A
more complete explanation of the breaking functions, and the
break package will follow.

The correct definition of FACTORIAL is:

(DEFINEQ (FACTORIAL (x;
(if (ZEROP X) then 1
else (ITIMES X (FACTORIAL (SUB1 X]

To demonstrate the break package, we have edited in an error:
DUMMY in the IF statementis an unbound atom, it lacks a value.

(DEFINEQ (FACTORIAL (X)
(if (ZEROP X) then DUMMY
else (ITIMES X (FACTORIAL {SUB1 X]

The evaluated function
(FACTORIAL 4)

should return 24, but the above function has an error. DUMMY
is an unbound atom, an atom without an assigned value, so Lisp
will "break". A break window appears {Figure 14.1), that has all
the functionality of the typing Interlisp-D expressions into the
Interlisp-D executive window (The top level), in addition to the
break menu functions. Each consecutive break will move to
another level "down".

BREAK PACKAGE

BREAK PACKAGE EXAMPLE

Je1-0pr FacTaRIAL;

1 (FAGCTORIAL
q [LANBOA (x) t*COMMENT**
fif (ZEROP)
then DUMMY
: else [ITIMES « (FACTORIAL (2uel X1}
A (FACTORIAL)
52 (FACTORIAL &)

ODUMMY - UNGOUND ATOM

UMBOUND &TOM
OunMy {in FACTORIALY in i {ZERCP ~ OUMNY]

Figure 14.1. Break Window

Move the mouse cursor into the break window and hold down
the middle mouse button. The Break Menu will appear. Choose
BT. Another menu, called the stack menu, will appear beside the
break window. Choosing stack items from this menu will display
another window. This window displays the function's local
variable bindings, or values. (See Figure 14.2) This new window,
titled FACTORIAL Frame, is an inspector window. (See Inspector
Chapter 32).

157 %
|A

DUMMY - UNBOUNO ATOM Dreak: 1

UNBOUND ATOM
pummy {in FACTORIAL} in [(ZEROP

[OUMMY broken)
53:

B e
: F&CTORIAL
5]

A0 OUmRy

EFRORSET
BREAK1

CUND
FACTORIAL
COND

Figure 14.2. Back Trace of the System Stack

From the break window, you can call the editor for the function
FACTORIAL by typing

(DF FACTORIAL)

Underline X. Choose EVAL from the aditor menu. The value of
X at the time of the break will anpear in the edit buffer below

the editor window. Any list or atom can be evaluated in this way
(See Figure 14.3.)

142

BREAK PACKAGE

BREAK PACKAGE EXAMPLE

CEqit of function FACTORIAL Eangps

TUMMY - UNBOLND ATOM i.'_Lﬁ.MElEh‘-'u o . (% oedited; U31-08e-00 17145 Lfrer
UMMY - UNBOUND ATO Gf (ZERUR 0 Before
INBOUND ATOM then OLMMY ' Celete
3 i ool s . (ITIMES « {FACTORIAL {3UBL1 X311 mlace
Joumiy {in FacTORIA else (ITIK AL 335 i;ﬁkgh
J(OUNMY sroken) (‘|IE'*)Uf
E 59: (0F FACTORIAL) i
Finad

Swap
Reprint

Edit

| Eatousrer W}

EdlitCorm
"

Figure 14.3. Editing from the Break Window

Replace the unbound atom DUMMY with 1. Exit the editor with
the EXIT command on the editor menu.

The function is fixed, and you can restart it from the last call on
the stack (It does not have to be started again from the Top
Level) To begin again from the last call on the stack, choose the
last (top) FACTORIAL call in the BT menu. Select REVERT from
the middle button break window, or type it into the window.
TThe break window will close, and a new one will appear with
the message: FACTORIAL broken.

To start execution with this last cali to FACTORIAL, choose 0K
from the middle button break menu. The break window will
disappear, and the correct answer, 24, will be returned to the top
jevel.

14.3 Ways to Stop Execution from the Keyboard, called "Breaking Lisp"

Control-G

Control-B

There are ways you can stop execution from the keyboard. They
differ in terms of how much of the current operating state is
saved:

provides you with a menu of processes to interrupt. Your process
will usually be "EXEC". Choose it to break your process. A break
window will then appear.

causes your function to break, saves the stack, then displays a
break window with all the usual break functions.

For information on other interrupt characters, see the Interlisp
Reference Manual, volume Ill, page 3G.1.

BREAK PACKAGE

143

PROGRAMMING BREAKS AND DEBUGGING CODE

14.4 Programming Breaks and Debugging Code

(BREAK functionname)

Setting a break in the editor

Programming breaks are put into code to cause a break when
that section of code is executed. This is very useful for
debugging code. There are 2 basic ways to set programming
breaks:

This function call made at the top level will cause a break at the
start of the execution of "functionname™. This is helpful in
checking the values of parameters given to the function.

Take the function that you want to break into the editor.
Underline the expression that should break before it is
evaluated. Choose BREAK on the editor command menu. Exit
the editor. The function will break at this spot when it is
executed.

Once the function is broken, an effective way to use the break
window for debugging is to put it into the editor window. (See
Section 14.2, Page 14.2) All the local bindings still exist, so you
can use the editor's EVAL command to evaluate lists, variables,
and expressions individually. Just underline the item in the usual
way (move the mouse to the word or parenthesis and press the
left mouse button), then choose EVAL from the command menu.
(See Section 14.2 for more detail.)

Both kinds of programmed breaks can be undone using the
(UNBREAK) function. Type
(UNBREAK functionname)

Calling (UNBREAK) without specifying a function name will
unbreak all broken functions.

14.5 Break Menu

BT

Move the mouse cursor into the break window. Hold the middle
button down, and a new menu will pop up, !ike the one in Figure
14.4.

IEY AL
WAl
EDIT
revert |
T
Ok
BT
ET!

Figure 14.4. The middle button menu in the Break Window

Five of the selections are particularly important when just
starting to use Interlisp-D:

Back Trace displays the stack in a menu beside the break
window. Back Trace is a very powerful debugging tool. Each
function call is placed on the stack and removed when the
execution of that function is complete. Choosing anitem on the
stack will open another window displaying that item's local

144

BREAK PACKAGE

BREAK MENU

REVERT

oK

variables and their bindings. This is an inspector window that
offers all the power of the inspector. (For details, see the section
on the Inspector, Chapter 32).

Before you use this menu option, display the stack by choosing
BT from this menu, and choose a function from it. Now, choose

?=. It will display the current values of the arguments to the

function that has been chosen from the stack.

Move back to the previous break window, or if there is no other
break window, back to the top level, the Interlisp-D Executive
Window.

Move the point of execution back to a specified function call
before the error. The function to revert back to is, by defauit,
the last function call before the break. !f, however, a different
function call is chosen on the BT menu, revert will go back to the

L [4 4 L it

start of this function and open a new break wmdow. The items
on the stack above the new starting place wiil no longer exist.
This is used in the tutorial example. {See Section 14.2, Page 14.1.)

Continue execution from the point of the break. This is useful if
you have a simple error, i.e. an unbound variable or a
nonnumeric argument to an arithmetic function. Reset the
variable in the break window, then select OK. (See Section 14.2))

(Note: In addition to being available on the middle button menu
of the break window, all of these functions can be typed directly
into the window. Only BT behaves differently when typed. It
types the stack into the trace window instead of opening a new
window.)

14.6 Returning to Top Level

Typing Control-D will immediately take you to the top level from
any break . window. The functions called before the break will
stop, but any side effects of the function that occurred before
the break remain. For example, if a function set a global variable
before it broke, the variable will still be set after typing
Control-D.

BREAK PACKAGE

145

RETURNING TO TOP LEVEL

[This page intentionally left blank]

1456 BREAK PACKAGE

15. ON-LINE HELP WITH

INTERLISP-D: HELPSYS AND DINFO
=

HELPSYS and DINFO access the on-line Interlisp-D Reference
Manual for answers to your questions. The Interlisp-D Reference
Manual must be on the hard disk ({DSK}) or on a file server. The
manual is contained in the files Chap*.IRM. In addition, the file
IRM.HASHFILE is required. They can all be found on the Library
floppies, and shouid be stored together in a singie directory.

Set the value of the variable IRM.HOST&DIR to this directory.
Load the file HELPSYS.DCOM (type (FILESLOAD
HELPSYS.DCOM)) to run Helpsys, and DINFO.DCOM (type
(FILESLOAD DINFO.DCOM) to run Dinfo.

15.1 HelpSys

Helpsys gives 2¢T a meaning. When you type it before finishing
the function call (i.e., before you type the arguments to the
function, or before typing the closing right parenthesis), the
manual entry for that function will be displayed.

Another way to see the manual entry for a function is to type
HELP <keyward>.

If you do not know the name of a function, you can use the
function IRM. SMART . LOOKUP to see manual entries. Type
(IRM.SMART .LOOKUP keyword)

The character * can be used as a wildcard. For example, type:
(IRM.SMART .LOOKUP 'PRIN®)

to see the manual entries for the functions that begin with the
letters "PRIN".

15.2 Dinfo

Dinfo supplies the same information as HELPSYS, but in a
different form. It represents the Interlisp-D Reference Manual as
a tree structure. DInfo will appear on the background menu.
Choose it to use the package.

A menu will appear (see Figure 15.1) that has the items Graph!,
Node:, Top!, Parent!, Previous!, Next!, display:, Lookup!, and

ON-LINE HELP WITH INTERLISP-D: HELPSYS AND DINFO

DINFO

Find!. The selections on this menu allow you to traverse the
Dinfo graph.

6raph! IRM

Mode: Saving Yirtual Memory State

Top! IEH Top

Parent! Hizcellaneious

Previous! Idle Mode

Next! O0Oate and Time Functions

Digplay: 6Graph Menu History
Lookup! *3Syo¥

Find! FILE

Figure 15.1. A Segment of the DINFO Menu

The help text appears in a window below the menu, as in Figure
15.2.

oo |
17, FILE PACKAGE

Warning; The zubsystem within the Interisg-0 snvirorment
used for managing collections of definitions (of functions,
variables, etc.) iz known as the "File Package. " Thiz
terminology iz confusing, because the word "file' is also used
in the mare conventional 3ense a2 meaning a collection of data
ztored some physical medis, Unfortunately, it is not possible
to change this terminalogy at thiz time, because many
functionz amcd wvariables (MEKEFILE, FILEFKGTYPES, et
incorporate the word “file” in their names. Eventually, the

aystem and the documentation will ke revamped to
conzistantly use the term "module” or "definition group® or
"defgroup.

Mozt implementations of Lisp treat symibolic files as

Figure 15.2. Part of the text associated with the File Package Dinfo node.

The graph itself also appears in a separate window, as shown in
Figure 15.3.

16 Tapl,

3=

a3

cnterlizp Exacutive

Errcrz and Breaks

Breaking, Tracing, and Advizing
<List Structure Editor

ormpiler

terzcope

sLoading Files
Storing Files
~Remaking a Symbaolic File

~Loading Files in a Distributed Environment
—Plarking Changes

Floticing File=
-Diztributing Change

" Information
ge T
~File Package Commands
“Functions for Manipulating File Command Lists
“Symbolic File Format

Figure 15.3. A Portion of the Dinfo Graph.
You can select what part of the manual to display by buttoning a
i -3 +

node in the graph and scrolling through t

ON-LINE HELP WITH INTERLISP-D: HELPSYS AND DINFO

DINFO

Graph!
Node:
Top!

- Parent!
Previous!

Next!

Display!

for the topic that was just buttoned, or by using the menu. The
meaning of the commands in the menu is as follows:

the only Graph! available is IRM (Interlisp-D Reference Manuai;)
the node currently being visited;

The IRM Top;

the current node’s parent;

is the node visited prior to the current node;

the node below this one in the graph

Choosing either Parent!, Previous!, Next! or Top! will visit that
node.

The display command determines how the information will be
presented. The items to the right of display: are Graph, Menu,
Text, and History.

Graph will display a graph local to the current nede, and if one
of the nodes of the graph are chosen, that node will be visited.

Menu shows a menu of the subnodes of the current node. If one
of these items are selected, that node will be visited.

Text displays the text of the current node. If you are searching

for a particular node, do not turn this feature on during the

Lookup!

Find!

search. It will slow down your progress through the tree. Turn it
on when you have found the node you are looking for.

Histroy records and displays a history of the nodes visited.
Revisiting a node is done by chosing one of the items in this
menu

has Dinfo look up a term in the index of the IRM, and display the
node that contains it.-

will try to find a term in the Interlisp-D Reference Manuai entry
for the current node

ON-LINE HELP WITH INTERLISP-D: HELPSYS AND DINFO

DINFO

[This page intentionally left blank]

154 ON-LINE HELP WITH INTERLISP-D: HELPSYS AND DINFO

16. FLOPPY DISKS

The 1108 uses double density, double sided, unformatted, 8 inch
floppy disks.

The 1186 uses double density, double sided, unformatted, 5 1/4
inch floppy disks.

16.2 Basic Floppy Disk Information

The terms “floppy disk", “diskette”, and "floppy" are
Ssynonymous.

The black plastic square is called the jacket. It permanently
protects the disk inside from oils, scratches and dust. (See Figure
16.1 and Figure 16.2)

The Floppy Label

me Notch

&——Jacket

A .
’ See Disk

Here

Bottom Notches
Figure 16.1. A5 1/4inch Floppy

FLOPPY DISKS

161

BASIC FLOPPY DISK INFORMATION

The Floppy Label

Jacket

N
\

See Disk
Here

Bottom Notches

Figure 16.2. An 8 Inch Floppy

Information is magnetically stored on the inner portion
protected by the jacket. You can see a bit of the disk through the
ring in the middle.

The paper cover that comes with a floppy disk is called the sleeve.

When you look at a floppy, the side with the label is the front,
and the edge with the notches the bottom. (On a 5 1/4 inch
floppy disk, the bottom is the side with 2 small notches; the right
side has one large notch.)

16.3 Care of Floppies

Here are some suggestions for how to take care of floppy disks:

Floppies are very delicate and will become useless if bent, folded,
scratched, left sitting in the sun or on your floppy drive, or if
things are stacked on them.

Avoid touching anything but the jacket of the floppy, and be
sensitive even at that.

Keep the floppy in its sleeve when not in use.

Store the floppy in an upright position, preferably in a rigid box
with a lid.

When labeling floppies, usé a felt pen, and press VERY SOFTLY,
or write on the floppy label first, then attach it to the floppy.

Never take a floppy out of the floppy drive when the drive's red
light is on.

16.2

FLOPPY DISKS

WRITE ENABLING AND WRITE PROTECTING FLOPPIES

16.4 Write Enabling and Write Protecting Floppies

16.4.1 Write Enabling an 1108's Floppy Disk

To Write Enabie a Floppy

To Write Protect a Floppy Disk

You can choose to allow the 1108 to write new information to,
or alter stored information on, the floppy; or you can choose to

" protect the floppy's stored information.

The 1108 floppies have three notches on the bottom. When the
right notch is UNcovered, the floppy is WRITE PROTECTED, and
the 1108 cannot write to the floppy. If this notch is covered, the
floppy is WRITE ENABLED, and the 1108 can write to the floppy.
(Note that the 1186 and the 1108 are opposite!)

Cover the rightmost notch on the bottom of the disk with half of
a write-enable adhesive tab. Fold the tab around to cover the
back of the notch with the other haif of the tab.

Remove the write enable adhesive tab carefully from the disk. If
there is not a tab over the rightmost notch of the floppy, the
floppy is already write-protected.

16.4.2 Write Protecting an 1186's Floppy Disk

To Write Enable a Floppy Disk

To Write Protect a Floppy

You can choose to allow the 1186 to write new information to,
or alter stored information on, the floppy; or you can choose to
protect the floppy's stored information.

The 1186 floppies have a notch on the right. When the right
notch is UNcovered, the floppy is WRITE ENABLED, and the 1186
can write to the floppy. If this notch is covered, the floppy is
WRITE PROTECTED, and the 1186 cannot write to the floppy.
(Notice that the 1186 and the 1108 are opposite!)

Carefully remove the write protect adhesive tab from the disk. If
there is not a tab over the notch on the right side of the floppy, it
is already write enabled.

Cover the notch on the right of the disk with half of a
write-enabie adhesive tab. Fold the tab around to cover the
back of the notch with the other half of the tab.

16.5 Inserting Floppies into the Floppy Drive

Open the floppy door and slide the floppy disk in - label side up,
the bottom in first. If itis a new floppy, you cannot read or write
to it until you format it. (Read the next section for formatting
instructions.)

FLOPPY DISKS

16.3

FUNCTIONS FOR FLOPPY DISKS

16.6 Functions for Floppy Disks

16.6.1 Formatting Floppies

Before use, a new floppy must be formatted. Formatting a
floppy is also a quick way to erase all of its files. To format a
floppy, insert the floppy into the floppy drive and type:

(FLOPPY . FORMAT)

For a new floppy, this will take 2 to 5 minutes.

WARNING! When you format a floppy, you lose anything that
was on it previously. Reformat used floppies only if you want to

completely change everything on the floppy. (Reformatting is a
quick way to recycle floppies.)

16.6.2 Available Space on a Floppy Disk

16.6.3 The Name of a Floppy Disk

You can check to see how much space is left of your floppy disk
with the function FLOPPY . FREE . PAGES.

Just type:

(FLOPPY .FREE .PAGES)

By checking to see how much space is left on your floppy, you
will know when it is filling up, and it is time to format another
one for the rest of your files.

Another way to keep track of your floppies is to give them
names. This can be done when you format the floppy, by giving
the name of the floppy as an argument to FLOPPY . FORMAT, or
by using the function FLOPPY.NAME. The syntax of
FLOPPY . NAME is

(FLOPPY .NAME name)

If FLOPPY . NAME is not given an argument, the current name of
the floppy is returned, as in the figure below:

Top level == Gonnected to {DSK }<LISPFILE

MIL

4@« FLOPPY . NAME)
NEWPREIMER1

31«

Figure 16.3. If FLOPPY . NAME is not given an argument, the current name of
the floppy is returned.

164

FLOPPY DISKS

FUNCTIONS FOR FLOPPY DISKS

16.6.4 FLOPPY.MODE

The function FLOPPY .MODE sets the way the system reads and
writes on a floppy. A floppy has one of four modes, either PILOT,
HUGEPILOT, SYSOUT, or CPM. This primer wili cover PILOT,
HUGEPILOT, and SYSOUT. For more information, see the
Interlisp-D Reference Manuai, Voiume lll, pages 24.24 to 24.26.

The usual mode of a floppy is PILOT. You do not need to run the
function FLOPPY . MODE before the function FLOPPY . FORMAT if
you want to format a floppy that should have the PILOT mode.

HUGEPILOT floppies hold a file (other than a SYSOUT file) that is
too large to fit on one floppy. If you have a file that is this large,
set the mode of the floppies to HUGEPILOT by typing:

{FLOPPY MODE 'HUGEPILOT)

When an output file is created, you will be prompted to insert a
new floppy as needed. Each time you will be asked whether the
system can erase and format the new floppy. REMEMBER to
change the FLOPPY.MODE back to PILOT when you are done!

SYSOUT mode is used for storing SYSOUT files on multiple floppy
disks. Itis set automatically when the function SYSOUT is called.
As with HUGEPILOT floppies, you will be asked to insert new
floppies as needed.

FLOPPY DISKS

165

FUNCTIONS FOR FLOPPY DISKS

[This page intentionally feft blank]

16.6) FLOPPY DISKS

17. DUPLICATING FLOPPY DISKS

—t

~J

.
-

Supplies

Have on hand:

® Source Floppy Disk (original)
® Destination Floppy Disks {the ones you want to copy onto.)
® Labels (Copy the information from the source floppy label to
new labels. Don't attach them to the floppy disk yet.)
® Small blank white or metalic colored adhesive tabs to write
enable the 1108 floppy or write protect the 1186 floppy.)
17.2 Preparation
17.2.1 Handling Floppy Disks
If you have never used a floppy disk before, please read Section
16.3, Page 16.2 "Care of Floppy Disks". When speaking of a
floppy disk, we call the edge with the notches the bottom, and
the side with the label the front.
17.2.2 Setup
Source For the 1108: remove the small tab on the bottom of the source
disk.
For the 1186, attach a small tab to the right side notch of the
source disk.
Now your original diskette cannot be erased or inadvertently
overwritten.
Destination For the 1108: attach a write enable tab over the notch on the

bottom (See Section 16.4.1, Page 16.3, or Section 16.4.2, Page
16.3.) Be certain tthat the entire notch, both front and back, :s
completely covered by the tab.

For the 1186: There must not be a tab covering the noich.
Remove the tabif it is there.

DUPLICATING FLOPPY DISKS

PREPARATION

Labels

Now the destination diskettes can take information.

Duplicate the source floppy label for each destination copy you
intend to make. Include the date of the copy, and the word
"COPY", to indicate that it is a copy and not the original. Don't
attach them to the floppies until the copy is finished. This will
help to keep track of the ones that are finished and the cnes still
to be copied.

17.3 Copying Floppy Disks

(1

(2)

3)

4

(5

(6)

)]

Follow the supplies and preparation information frcm Section
17.1 and Section 17.2, on Page 17.1.

Insert the source floppy into the floppy disk drive. Close the disk
drive door.

Type the function (FLOPPY.TO.FILE 'filename) to read ali
the information from the floppy found in the floppy drive to the
hard disk.

Once this function has completed, insert the destination floppy
disk into the floppy drive, then close the door.

Type the function (FLOPPY._FROM.FILE ‘filename) using
the same filename as before to write the information onto the
destination floppy found in the floppy disk drive.

The function FLOPPY_.FROM.FILE formats the floppy, then
copies the information.

To make more than one copy of your original diskette, insert
another destination floppy into the floppy drive, close the door,
and call the function (FLOPPY.FROM.FILE ‘filename).
(The source floppy does not need to be read onto the hard disk
for additional copies.)

DUPLICATING FLOPPY DISKS

18. SYSOUT FILES

A SYSOUT is a file of the whole Interlisp-D environment and
everything that you have defined or loaded into it. The file is
very large, and takes many floppies to store. When you load the
file, the exact environment at the point of the sysout is restored.
To make SYSOUT's of your own environment, see Section 18.2.

18.1 Loading SYSOUT Files

18.1.1 Loading a SYSOUT file on the 1108

(1)

(2)

3)

(5

(6)

%)

Sysouts must be loaded from the Installation Menu. This is the
menu that appears when you do a 2-BOOT with the Installation
Utility floppy disk in the drive. (refer to Section 3.1, Page 3.2 of
this primer.) Any sysout from floppy, new software releases, or
sysouts made by you must be loaded with the following
instructions.

Do a 2-BOOT with the floppy labeled INSTALLATION UTILITY in
the floppy drive. (A 2-BOOT is done by pressing both the B RESET
and the ALT B buttons on the front panel and immediately
releasing the B RESET button. Release the ALT B button when
the panel reads 0002. Then wait about two minutes.)

When the question Time offset from Greenwich?
appears, type -5 for Eastern Standard Time (subtract one for

each time zone westward), and .

For the next three more questions, simply type <.

At this point, the machine will do one of two things. It will either
prompt you to enter the date and time, (See Figure 3.1 in Section
3.1)), or it will ask you if you want to change the time (to which

you.can just respond NO €).

When the Installation Menu appears, choose Install
Interlisp-D on LISP Volume.

Insert the floppy "SYSOUT #1" into the drive and answer YES to
the ready question. (If you have the wrong floppy in the drive,
the machine will tell you - simply put in the correct one.)

The processor will take a few minutes to read the floppy. Just
wait. When it is done, a high pitched tone will signal you to
insert "SYSOUT #2" into the floppy drive. When the red light is
out, insert "SYSOUT #2".

" SYSOUT FILES

181

LOADING SYSOUT FILES

8
(9

(10)

(1
(12)

(13)

(14)

Do the same for "SYSOUT #3".

After "SYSOUT #3" is finished loading, you will be asked if there
are any more floppies to load. If you have another, insert

SYSOUT #4into the drive and answer Y T, When the last sysout
isloaded, answer N <.

At this point you should be back at the Installation Menu. Do a
1-BOOT. This gives you the screen with the bouncing white
recotangle.

Press the left button tostart the InstatiLispTool.

Click the left mouse button over Volume Size. You will get a
blinking black caret. Move the caret (by pressing the left mouse
button over it and holding it down) to the end of the number.
Press backspace to erase the number, then type 15100 in its
place.

Now choose SetVMem with the left mouse button. Confirm with
the left button when you get the confirm mouse cursor. This
takes a minute or two. Aslong as the words SetVMem are black,
itis not finished.

When DONE is printed on the screen, choose QUIT with the left
mouse button. Now go to Chapter 3 and choose one of the
methods for "Getting into LISP."

18.1.2 Loading a SYSOUT file on the 1186

(m
(2)
(3

(4)

(5

(6)

7
(8)

9)

(10

Any sysout from floppy, new software releases, or sysouts made
by you must be loaded with the following instructions.

Insert the Installation Utility floppy disk in the drive.
Press the B Reset button on the front of the processor.

When the Boot Icons appear at the bottom of the screen, press
the F2 key, to choose the icon with a picture of the floppy onit.

When the question Time offset from Greenwich?
appears, type -5 for Eastern Standard Time (subtract one for

each time zone westward), and <.
For the next three more questions, simply press ¢ after each
prompt.

At this point, the machine will do one of two things. It will either
prompt you to enter the date and time, (See Figure 3.3 in Section
3.2, Page 3.3.), or it will ask you if you want to change the time

(to which you can just respond NO 7).
When the next menu appears, choose 1 Interlisp-D.

When the next menu appears, type 3 "System Utilities
(Installation etc.)"

When the system prompts you to insert the "Installation Files"
floppy, do so and press .

At this next menu, choose item 1 "Lisp Installation™.

182

SYSOUT FILES

LOADING SYSOUT FILES

(11)
(12)

(13)

(14)
(15)

(16)
(17)

(18)
(19)
(20)

Next, type 12 "Instail Interlisp-D on Lisp Volume"

Insert the floppy SYSOUT #1 into the drive and answer YES to
the ready question. (if you have the wrong floppy in the drive,
the machine will tell you - simply putin the correct one.)

The processor will take a few minutes to read the floppy. Just
wait. When itis done, you will be prompted to insert SYSOUT #2
into the floppy drive. Before opening the floppy drive door, wait
until the red light on the floppy door goes out. When the red
light is out, insert SYSOUT #2.

Do the same for SYSOUT #3.

After SYSOUT #3 is finished loading, you will be asked if there
are any more floppies to load. If you have another, insert

SYSOUT #4 into the drive and answer Y <. When the last sysout
is loaded, answer N<T.
This process will take approximately 30 minutes

After the floppies have been loaded, type 16 "Copy from Lisp
Volume to Lisp2 Volume" to save a back up copy of the sysout.

Type 13 "Expand Lisp Vmem" before you boot the sysout.
Type 17 "Boot from Lisp volume" to boot the volume

The icons should reappear at the bottom of the screen. Press the
F1 key to choose the icon with the picture of the computer on it.
This will boot Interlisp-D, and the Interlisp-D windows will
appear on your screen.

18.2 Making Your Own SYSOUT File

(1)

2

3
4)
(5)

(6)

For the 1108: have about 5 floppy disks available to store your
SYSOUT file.

For the 1186: have about 10 floppy disks available to to store
your SYSOUT file.

The exact number you will need depends on how much you have
loaded or defined in the Lisp environment.

Make sure the floppy disks are write enabled (See Section 16.4.1,
Page 16.3, or Section 16.4.2, Page 16.3).

The floppy disks do not need to be formatted.
Type (SYSOUT ' {FLOPPY})

The machine will prompt you by ringing bells and typing the
message Insert the next flaeppy disk in the Interlisp-D
Executive Window at the appropriate times.

The machine will type NIL then the number prompt followed by
a left pointing arrow when the entire SYSOUT has been written
onto your floppies.

SYSOUT FILES

183

MAKING YOUR OWN SYSOUT FILE

(7) Storing your SYSOUT file was only an interruption, like going to
answer the phone, and you may continue to work where you left
off.

184 SYSOUT FILES

19. USING THE EPSON FX80 PRINTER

The FX80 printer is only connected to the machine you are using.
You cannot access this printer from any other machine that may
be in the room. The software to use with the printer comes from
Xerox, and can be found on the file named FXPRINTER.DCOM.
This file should be loaded into Lisp. To do this, type
(FILESLOAD FXPRINTER).

19.1 Initializing the RS232 Port

Initialize the RS232port by typing into the Interlisp-D Executive
Window:

(RS232C.INIT 9600 8 NIL 1)

The printer is now ready to receive information from your lisp
machine.

19.2 Power up the Printer

(1

(2)

(3

(4)

Insert the paper so that you just see the perforated edge by the
metal bar with numbers. This sets the top of the page in the
correct position.

Turn the printer on. (There is probably a rocker switch on the left
side of the machine)

A light labeled "ON LINE" should be lit on your printer panel. If
this light is not on, push the "ON LINE" switch, and it should turn
on.

To use the Form Feed, push "ON LINE" so that the "ON LINE"
light will go out, then push form feed. Remember to push "ON
LINE" again (to turn the "ON LINE" light back on) after the form
feed.

19.3 To Align Top of Page

(1

Push the "ON LINE" button, to turnthe "ON LINE" light out.

"USING THE EPSON FX80 PRINTER

19.1

TO ALIGN TOP OF PAGE

(2)

(3)

Turn the knob on the right side of the printer so that the dividing
line between the sheets of paper is just visible at the silver bar on
the paper feed.

Push the "ON LINE" button again to turn the green lights back
on.

19.4 Functions To Print Files and Bitmaps

19.4.1 RS232.Print

19.4.2 FX80STREAM

One function to print files, bitmaps, and windows is
RS232.PRINT. Here are some examples of its use:

(RS232.PRINT filename) to print an entire file. The file does
not have to be loaded; printing directly from a floppy works
well.

(RS232.PRINT bitmapname) to print an existing bitmap.

(RS232.PRINT windowname) to print what is displayed on a
window.

Another set of functions that can be used to print files, bitmaps,
and windows are found in the library package FX80STREAM.
Here are some examples of using this package to print a TEdit
file, and do the other operations shown above for RS232.PRINT:

In TEdit, select (blacken the item, but do not release the mouse
button) Hardcopy from the default right button menu. Move
the mouse cursor to the point of the arrow at the side of that
selection. Another menu will appear. Choose To a file, and
release the button. At the prompt, type {RS232}.FX80

followed by a T,

To print what is displayed on a window, or print a bitmap, first
type

(SETQ FX80 (OPENIMAGESTREAM '{RS232}F00.FX80))

Then:

(BITBLT (WHICHW) NIL NIL FX80 0 0) to print the
contents of the window that the mouse isin, or

{BITBLT bitmapname NIL NIL FX80 0 0) to print an
existing bitmap, bound to bitmapname.

19.2

USING THE EPSON FX80 PRINTER

FUNCTIONS TO PRINT FILES AND BITMAPS

19.4.3 Printing a Portion of the Screen

(M

(3

To send a portion of what is on the screen to the printer, you will
need a function that copies that part of the screen bitmap onto
a smaller bitmap that you can send to the printer. The functionis
FX.SMAP. Here are instructions for how to define and use this
function:

To define it, type exactly what is printed below.

(DEFINEQ (FX.SNAP
[LAMBDA NIL
(PROG (REG BMTEMP)
(SETQ REG (GETREGION))
(SETQ BMTEMP
(BITMAPCREATE
(fetch (REGION WIDTH) of REG)
ggetch (REGION HEIGHT) of REG)))
(BITBLT (SCREENBITMAP)
(fetch (REGION LEFT) of REG)

o~ ey Pt N

(RS232.PRINT BMTEMP NIL T)
i)

Once you have typed this, the function is in the environment,
and can be used as often as you like. If you save this function on
a file, you can load it each time you need it, and will not have to
retypeit.

Type (FX.SNAP) to send a picture of the screen to the printer.
You wiil be prompted to sweep out the section of the screen
with the shape window prompt. Once you have used the mouse
to sweep out the section of the screen to be printed, the printer
will automatically start printing.

USING THE EPSON FX80 PRINTER

193

FUNCTIONS TO PRINT FILES AND BITMAPS

[This page intentionally left blank]

194 ‘ USING THE EPSON FX80 PRINTER

20. RS232 FILE TRANSFER WITH A
VAX

20.1 Prerequisités

This file transfer chapter is for VAXes not connected to the 1108's
and 1186's with an Ethernet. To do file transfers with a VAX, your
1108 or 1186 must have a connection from the RS232 Port to the
VAX, and the VAX must have the MODEM or KERMIT transfer
protocol available (instailed as a system utility). The foilowing
files also need to be loaded: R$232CHAT, KERMIT.DCOM, and
KERMITMENU.DCOM. The file KERMIT.DCOM contains both the
MODEM and KERMIT protocols. Refer to Section 8.6, Page 8.4,
for loading instructions.)

20.2 Using Chat to Transfer Files

(1)
(2)

3)

(4)
(5

Use a 1108 or a 1186 with a connection to the VAX

To begin, type:

(RS232C.INIT 4800)
(RSZ32CHAT)

You will be prompted to sweep out a window. This is the new

"CHAT" window. Type T after the blinking caret appears in it.
The VAX will respond by printing a login prompt into the
window.

Log onto the VAXin the usual way.

You are responsible for starting the MODEM or KERMIT program
on the remote machine. If both MODEM and KERMIT are
available, use KERMIT, since it is more flexible. Most KERMIT
programs have a "server” mode so that you do not have to
request the host to send or receive each file individually.

To transfer a file to or from the VAX, press the middle button of
the mouse with the mouse in the CHAT window. A menu will
appear; choose KERMIT. Another menu will pop up, as in Figure
20.1

RS232 FILE TRANSFER WITH A VAX

201

USING CHAT TO TRANSFER FILES

(7)

Transfer Mode

Localfile

Remotefile

Filetype

End-of-line Convention

(8)

Send!

Receive!

9)

(10)

(1

(12)

(13)

3end! Receive! Exit!

Transfer mode: Moden

Local file: {DSKi<LISPFILESFILE.TXT

Remote file: file.txt

File type: Text End-of-1ine Convention: CRELF

Figure 20.1. The Menu for File Transfer to the Vax

Before the file is transfered, you must give the variable items in
the window the correct values. To set up this menu, follow the
instructions below, given for each item:

with the mouse, choose either KERMIT or MODEM, to match the
fite transfer package on your VAX.

The name of the file that is being sent from or received by your
1108 or 1186. Use the mouse to position the caret, then type the
filename into the window.

The name of the file that is being sent from or received by the
VAX. Use the mouse to position the caret, then type the
filename into the window.

To set this parameter, point to Filetype and press a mouse
button. A menu will appear. Choose text to transfer an ASCII
file.

To set this parameter, point to Filetype and press a mouse
button. A menu will appear. Choose the item that is
appropriate for your VAX, usually CRLF.

The commands for using KERMIT or MODEM are those at the top
of the menu. Choose the one that is appropriate for your job:

This function will move a file from the 1108, or 1186, to the VAX.
The remote file transfer program must be prepared to receive
the file.

Moves a file from the VAX to the 1108 or 1186. The remote file
transfer nrogram must be prepared to send the file.

As long as bells are not continuously ringing, the transfer is
running normally.

Choose Exit! to close the file transfer menu.

Move the mouse cursor to the "CHAT" window and press the left
button. Type <. LOGOUT when you get the VAX system
prompt.

Press the middle mouse button in the "CHAT" window and
choose "BYE" from the menu.

SHRINK or CLOSE the "CHAT" window.

20.2

RS232 FILE TRANSFER WITH A vVAX

21. ETHERNET FILE TRANSFER

Both the sending and receiving machines must be connected to
an Ethernet. '

If the communication is between two lisp machines,
(1) They must both be running interiisp-D.

{(2) Thefile FTPSERVER.DCOM must be loaded; type
(FILESLOAD FTPSERVER)

(3) The receiving lisp machine must be running an FTPSERVER
process. This process allows the receiving machine to give the
sending machine access to the files on the its disk. To make sure
that the receiving machine is running this process, call the
function
(ADD.PROCESS ' {\FTPSERVER))
on that machine.

If you want to communicate with either a fileserver or a VAX,

don't worry about the file FTPSERVER.DCOM or the FTPSERVER
process. The functions will still work as described below.

21.2 File Transfer

The File Transfer process allows you to call the DIR, LOAD,
and COPYFILE functions.

To address another machine (lisp machine, VAX, Fileserver) on
the Ethernet, replace the device name {DSK} or {FLOPPY} with a
number that uses the other machine's host number. For
example, {1}filename. If you have a Xerox file server with a
clearinghouse on it, which validates users and resolves names of
servers to their host numbers, you can use the name of the
machine instead of its host number.

Some examples of functions addressing other machines.
(PIR {3}DSK:<1.ISPFILESD)

(COPYFILE '{3}oidfilename '{DSK}newfilename)

(LOAD :{2)filename)

ETHERNET FILE TRANSFER . 211

FILE TRANSFER

(DIR {RoseBowl}<Primers>Interlisp>*.ip SIZE CREATIONDATE)

You can copy files to or from other machines. If you do notcail a
specific directory of the other machine, you will access the
directory that the other user is connected to.

212 - ETHERNET FILE TRANSFER

The Executive window turns black

You closed the Executive Window

The mouse disappears

A second window appears

22. WHATTOCDOIF...

An example is shown in Figure 22.1.

Press any key to unfreeze the window and continue. This pause
happens when the command you just typed causes enough
information to be printed to fill the window it gives you a
chance to read that one window of text before moving on.

Interlisp-D E xecutive

{DSK}{LISPFILES>PRIMER>
CH11DBK,.MSS;2
FIG18.BTM; 1
FIG13.BTM;1
FIG19B8.BTM;1
FIG1SC.BTM;1

2
. i1

FIG22B.8TM;1
FIGE.BTM;1
FIGELO33.BTH;1
FIGNS.BTM;2
FIGN3.BTM;1
FRGLOSS. IM;

JOCTOC. TED
NCHZ, M83; 3
MCH3 . M28;3

2

2
;3
T3

Figure 22.1. The Interlisp-D Executive Window, filled, and waiting for a character
to be typed to continue

Just type any character on the keyboard, it will reopen
automatically.

Type (CURSOR T) in the Interlisp-D Executive window. The
cursor will reappear.

This probably happens because you made a typing mistake, as in
Figure 22.2.

37« (UMOEF IMEC-FUNCTION "&RGL "ARGZ)
| =UMDEF INEQ-(FUNCTION (QUOTE ARGLY (QUOTE RREZ))
H M

UNDEFINED-FUNCTION - UNDEFINED CAR {IF FORM. Dreak: 1

UMDEF IMED CAR QF FOEM
UNDEF INED-FUMNCT TGN

EQMDEFIHED-FUHDTION brokend

WHAT TO DO IF

WHATTODOIF ...

A break while writing to a floppy

You keep getting beeped at

You can't delete the first letter

Your function is just sitting there

The mouse cursor won't move

A break window appears

Type a Control-D By simultaneously pressing the control key (see
Section 2.2, Page 2.2 for the proper key on your machine) and
the "D". This aborts the error condition, returning control to the
executive window.

Now retype the previous command.

If the problem is not simply a typing error, please see Section
14.2.

If the break window has a title NIL, check to make sure that the
floppy is not write protected The "WRITEPROTECTED" message
will be printed in the promptwindow.

Usually the beeping means that Interlisp-D wants input from
you. Look for the flashing caret. It will usually be preceeded by
some kind of prompt, indicating what you shouid type.

of the filename you are typing to {(FILES?). Type Control-E
(error). You will get a linefeed and «<«« printed to the
window. Now type the correct filename.

not returning a value, and you think that your program may be
in an infinite loop or is having some other major problem. You
can see what process is currently running by typing Control-T, or
you could interrupt the process by typing Control-E.

and there is no response from the keyboard. If you have an 1108
check the Maintenance Panel code. On the 1186, the mouse
cursor itself should be a number. If the number is in the 9000s,
Interlisp-D has crashed.

For the 1108: Press the UNDO key on the top right of the right
keypad. The mouse cursor should now say "Teleraid". If not, try
typing Control-Shift-Delete (Yes, press all three keys at once!),
and the mouse cursor should now say "Teleraid". Now type
Control-D.

For the 1186: Press the UNDO key on the leftmost keypad. The
mouse cursor should now say “Teleraid". If not, try typing
Control-Shift-Delete (Yes, press all three keys at once!), and the
mouse cursor should now say "Teleraid". Now type Control-D.

If this doesn't work, you must reload Interlisp-D. Remember,
save early and save often. (See Section 3.3).

If the break window looks something like this:
{DSK }<{LISPFILES>DAYBREAK JIM>REGORDS.IM;4 . - FILE §

FILE 2W2TEM REIOURCES EXCEEDED
A0ZK Y LISPFILES DAYRREMK - IN:RECOFES IM;4

(DOFMEP hroken)

A

Figure 22.3. The Break Window when there 1s not enough space to save your file.
You are trying to save a file, but there is not enough space on the
hard disk.

Exit from the break window by typing an "up arrow” (1)

followed by a ¢'. Delete old versions f files, and any other files
you don't need, then try again to save the fiie

WHAT TO DO IF

WHATTO DO IF ...

You have run out of space Generally, a BREAK window has appeared. The GAINSPACE
function allows you to delete non-essential data structures. To
use it, type:

(GAINSPACE)
into the Interlisp-D Executive Window. Answer "N" to all

Arme A amed bl f T oacactom a

. andy a fa H
YUTOLIUITID TALTUL LT UIIUWII]B.

® Delete edit history

® Delete history list.

® Delete values of old variables.

® Delete your MASTERSCOPE datadase

® Delete information for undoing your greeting.
Save your work and reload Lisp as soon as possible.

A redefined message appears The message (Some.Crucial.Function.Or.Variabie redefined),
as in Figure 22.4. The function, variable, or property has been
“smashed” (i.e. its original definition has been changed). If this
is not what you wanted, type UNDO immediately!

Interlisp-D Executive

MIL

92« [DEFINEQ (C&R (&) (Someltherfrn &30
(CAR rederfined}

(CARD

93«UMDD

DEFIMEDQ undane.

94ﬁh

Figure 22.4. CARredefined! Type UNDQ immediately)
UNBOUND ATOM If this occurs, you probably just typed something wrong, or you
passed an argument that should have been quoted to a function.

UNDEFINED CAR OF FORM First, look at what caused the error. |f the CAR of the form is a
list, then you typed something wrong. If it is an atom, then
perhaps that atom does not have a function associated with it. If
itisa CLISP word like if, for, or the like, then DWIM (see Section

13.2, Page 13.2) may have been turned off. Type {(DWIM 'C) to
reenable DWIM.

You have traced APPLY and your screen is spewing out information about everything
going on in the environment. Type Control-E, and type

(UNBREAK 'APPLY) before returning to the Interlisp-D
Executive.

WHAT TO DO IF 223

WHAT TODO IF ..

[This page intentionally left blank]

224) WHAT TO DO iF

23. THE TEXT EDITOR, TEDIT

TEdit is the Interlisp-D text editor. Itis a "what you see is what
you get” editor; what you see on the screen closely simulates
what will be printed on paper. Besides normal text editing,
using this editor allows you to move text, insert bitmaps,
sketches, or snapshots of the screen into your text, format the
document, and more. This chapter will only cover editing text,
however. For more information, see the Library Packages
Manuai.

23.1 Using TEdit

M

(2)
(3

The file, TEDIT.DCOM, must be loaded before you can use TEdit.
(See Section 8.6, Page 8.4.) You can start the editor in one of
three ways: :

Choose TEdit from the Background menu. (If you are not
familiar with the background menu, See Chapter 1 and Chapter
7))

Type (TEDIT)
Type (TEDIT ' filename) to edit a specific file.

Open a TEdit window in one of the three ways. You wili be
prompted to sweep out an area of the screen for the text editor
window. When the window appears, note the extra white area
above the window's title bar. This area is used for prompts from
the editor.

You can now type - what you type will appear in the window at
the caret. (Shown in Figure 23.1))

After you type, notice the "*" that appears before the title in the
title bar of the TEdit window. That means that the file contains
information that has not been saved. Remember to save your
files often!

THE TEXT EDITOR, TEDIT

231

USING TEDIT

* Edit Window for: {DSK}<LISPFILES>DAYH
Thiz 1z the text in the TEdit window.
Note the "¥" hefare the title in the
title bar. It means that the file
containg changes that ne=d to he saved,

Figure 23.1. Text typed in the TEdit window

To position the caret, hold down the left mouse, and while
holding the mouse button down move the mouse until the caret
is flashing where you would like the caret to be. Then, release
the mouse button.

Carriage returns are used in TEdit to delimit paragraphs. Within
a paragraph, TEdit will automatically break the text into lines
with a ragged right margin. (If you prefer justified margins, see
Section 23.5.2.2, Page 23.12.) In order to insert a carriage return
without starting a new paragraph (for the 1108) hold down the

OPEN key while pressing <7, or (for the 1186) hold down the
META key while pressing <"

23.2 Managing the TEdit Window

While you are in theTEdit window, the mouse buttons have
special meanings. However, you can still access the right button
default window menu by pointing the mouse cursor at the TEdit
window's title bar and pressing the right mouse button. Be
aware that even some of the right mouse button default menu
choices have special meaning in TEdit. Forinstance:

Close Stops the editing session. If there are changes that have not
been saved, you will be asked to confirm this choice by pressing
the left mouse.

Clear Clears the window, but does not change the contents of the file.
You will not delete any text by choosing this item from the
menu. To have the contents reappear, choose Redisplay.

Redisplay Will redraw the contents of the window. Remember this if you
choose Clear by mistake.

Hardcopy Will send a copy of the TEdit file to the printer. Before printing
the file, however, it will be correctly formatted for the printer
(i.e. length of lines within paragraphs will be made the correct
length for the paper, etc.). This process can take some time.

232 THE TEXT EDITOR, TEDIT

MANAGING THE TEDIT WINDOW

Shrink

Shrinks the window into the TEdit icon without stopping the
editing session. This icon is a closed book with TEdit on the
spine, and the name of the file on the front. (See Figure 23.2)

{DSK}
] <LISPFILES >

] DAYBREAK

= i
REPORT.

TEDIT;1

E"

Figure 23.2. The TEditIcon

The other choices of the default right button menu, snap, bury,
move, and shape, work as described in Section 10.4, Page 10.3.

23.3 Selecting Text

A character

A word
(n
{(2)

Aline

(M

(2)
A paragraph
(1

(2)

Any block of text
M

“Selecting" a block of text for some modification is a common
TEdit task. You will need to select text for a variety of
commands, including copying and moving text. To select:

Point to the character and press the left mouse button. The
character selected will be underlined.

Point to the word with the mouse cursor.

Press the middie mouse button and the word is seiected

(underlined). -

Point to the far left of the line with the mouse cursor. The mouse
cursor will change from pointing to the northwest to pointing to
the northeast.

Press the left mouse button and the line is selected (underlined).

Point to the far left of a line in the paragraph with the mouse
cursor. The mouse cursor will change from pointing to the
northwest to pointing to the northeast.

Press the middle mouse button and the paragraph is selected
(underlined).

Move the caret to the beginning of the block of text to be A
chosen.

Select the starting place using one of the methods from above.
Press and hold the right mouse button.

Move the mouse until the entire block of text is selected. The
text will be marked by inverse video (see Figure 23.3.)

release the mouse button and the indicated textis selected.

THE TEXT EDITOR, TEDIT

DELETING, COPYING, AND MOVING TEXT WITH TEDIT

23.4 Deleting, Copying, and Moving Text with TEdit

23.4.1 Deleting Text From a File

(M

(2)

23.4.2 Copying Text

Text can be deleted in a number of ways. The one you choose
may depend on the amount to be deleted. If itis a very smail
amount, backspace to delete the character just behind the caret,
or Control-W to delete the word just behind the caret.

For deleting a larger block of text,

Choose the section to be deleted. Select the last two sentences
of the example file, as shown in Figure 23.3.

Press the Delete key to remove the highlighted area.

* Edit Window for: {DSK}<LISPFILES>DAYE

This 18 the text 1n the TEdiIt window,
“ hefaore the title 1in the
title bar. It means that the file
contains changes that need to be saved.

Figure 23.3. The textin reverse video is chosen, and will be deleted.

(1

(2)
(3

To copy a block of text from one place in the file to another,

Position the caret where you want the copied block of text to
appear. For the example file, move it to the beginning of the
file.

press and hold the COPY key, or the shift key;

choose the text to be copied. For the example file, choose the
words "the text in the TEdit window". (See Figure 23.4.)

234

THE TEXT EDITOR TEDIT

DELETING, COPYING, AND MOVING TEXT WITH TEDIT

* Edit Window for: {DSK}<LISPFILES>DAYR

Thiz iz the text in the TEdit window,
s

Figure 23.4. The underlined text has been chosen. It will be copied to appear
before the cursor.

(4) Release the COPY key. The underlined text will now appear both
inits original position, and at the caret.

Note: To abort the copy procedure, release the COPY key before
completing the text selection (i.e. before releasing the right
mouse button).

23.4.3 Moving Text
To move a block of text from one place in the file to another,

(1) Position the caret where you want the moved block of text to
appear. In the example text, position it at the beginning of the
file. :

(2) press and hold the MOVE key.

(3) choose the block of text to be moved. In this example, choose
the words "Thisis ". (See Figure 23.5.)

* Edit Window for: {DSK}<LISPFILES>DAYH
the text in the TEd1t window . EEENREN
Athe text in the TE4it window.
Figure 23.5. The highlighted text will be moved to the caret.
(4) Release the MOVE key. The highlighted text will appear in its

new position at the caret.

THE TEXT EDITOR. TEDIT

DELETING, COPYING, AND MOVIMNG TEXT WITH TEDIT

Note: To abort the move procedure, release the MOVE key
before completing the text selection (i.e. before releasing the
right mouse button).

Text can be moved and copied not only within a single TEdit
window, but also between them. The same instructions apply in
either case.

23.5 TEdit Menus

The sections that follow explain commands you can chose from
menus specific to TEdit.

Basic Commandsmenu The Basic Commands menu appears when you point the mouse
at the title bar of the TEdit Window, and press the middle mouse
button. (See Figure 23.6.)

Put B
Get E
Inciude
Find
Looks
Substitute

m— . . Quit

* Edit Window for: {DS@OIULCD] Menué‘am
Thiz iz the text in thd&TEdit window,
the text in the TEdit window,

Figure 23.6. The TEdit window, with the Basic Commands Menu

Choosing the final item on the Basic Commands menu
permanently positions the Expanded Menu above the TEdit
Prompt Window. Do that and you will see something like Figure
23.7. The expanded menu provides many standard commands.

236 THE TEXT EDITOR, TEDIT

TEDIT MENUS

(1
(2)

(3)

(4)

TEdit Menu

Quit Page Layout Char Looks Para Looks All
Unformatted

Get {} Put {}Include {}

Find {}Substitute {} for {} Confirm

| —

* Edit Window- for: {DSK}<LISPFILES)DAYE

Thiz 13 the text in the TEJdit window,
the text in the TEdit window,

Figure 23.7. The TEdit window, with the Expanded Menu above it.

Note that some of the menu items are followed by "{}". These
commands require you to type information between the the
brackets before choosing the command. Todo this:

Point with the mouse to the space between the curiy brackets;

press and release the left mouse button. The caret will appear
between the brackets;

type the necessary information. The same edit commands are
used to change the text between the curly brackets as the text in
the TEdit window. ‘

execute the command by choosing the command with the
mouse.

Both menus are very useful, some of their functions are
described below, but please refer to the Library Packages
Manual for more details.

23.5.1 Finding and Substituting Text with TEdit

23.5.1.1 Finding Text

(M
(2)

There are times when you will want to find a certain word, or
words, in your TEdit file. You do this with the Find command.

To use the Find command with the Basic commands menu, or
the Find key on the left keypad:

Position the caret in the file where the search should begin;

Press the Find key on the keypad to the left of the keyboard, or
choose F ind from the Basic Commands menu described above;

THE TEXT EDITOR, TEDIT

TEDIT MENUS

(3) You will be prompted to enter the search string. (See Figure
23.8.) |If there is a special character in the string, such as a
carriage return, type a Control-V before entering it

(4) Type < to beginthe search
Text to find:

* Edit Window for: {DSK}<LISPFILES>DAYB

This is the text in the TEJit window,

the text in the TEdit windaw,
Figure 23.8. The prompt for the search string from the F ind command
To use the Find command from the Expanded Menu:

(1) Type the word to find between the curly brackets beside the
Find command. You do not need to type Control-V before
special characters here;

(2) Position the caret in the file where the search should begin

(3) Choose Find from the Expanded Menu.

Note: To abort the search, type either a Control-E or press the
STOP key. ,

23.5.1.2 Substituting Text
Sometimes you will want to delete a piece of text, and put
something new in its place. You can do this with the
Substitute command.
To replace a large body of text, select the text that needs to be
changed. The highlighted text is deleted when you begin to
type the replacement text.
To find and replace one or more occurance of a smaller text
string within a selected block of text, use the Substitute
command from either the expanded menu, or the basic
commands menu.
To use the Substitute command from the Expanded Menu,

M Choose the text that contains the string(s) to be replaced. For
the example, choose the second sentence.

(2) Type the new text string between the curly brackets following

the word Substitute. For the example, type "text editor's".

238

THE TEXT EDITOR, TEDIT

TEDIT MENUS

—~
w
~—

(4)

(5)

(1

Type the old text string, the one that is to be replaced, between
the curly brackets following the word far. For this example,
type "TEdit".

Choose Confirm if you wouid like to verify each substitution.
Confirm will then appear in reverse video. (See Figure 23.9.)

Choose Substitute. If you have chosen Confirm, you will
have to approve each substitution. (See Figure 23.10.)
Otherwise, every instance of the old string in the chosen text will
be replaced by the new string automatically.

Quit Page Layout Char Looks Para Looks All

Unformatted
Get {} Put {} Inciude {}
Find {}Substitute {textaditar's} for {TEdit}

Mo replacement.s made.

* Text Editor Window
Thiz 1z the text n the TEdit window,

the text in the TEdit window,

Figure 23.9. Using the Substitute command from the Expanded Menu

TEdit Menu .

Quit Page Layout Char Looks Para Looks All
Unformatted
Get {} Put {} Include {}

Find {}ITITIANEY (testaditor's} for {TEJit}
N "
0K to replace? [T9° guits] Yes,

* Text Editor Window

Thiz iz the text 1in the TEJit window,

Figure 23.10. Asked to confirm a substitution in the TEdit window

To use the Substitute command from the Basic Commands menu,

Choose the text that contains the instance(s) of the string to be
replaced

THE TEXT EDITOR, TEDIT

TEDIT MENUS

Choose the Substitute command from the Basic Commands
menu

You will be prompted for the search string and the replace
string, and asked whether you would like to confirm each
substitution

Note: To stop the Substitute command, type either Controi-E,
STOP, or Q.

TEdit offers a wide range of possibilities for document
formatting. This section explains only the most basic ones. Refer
to the Library Packages Manual for information on others.

(2)
(3)
23.5.2 Text Formatting
23.5.21 Choosing Fonts
(1
()
(3)

You can choose the fonts used in a TEdit file. To do this from the
Basic Commands Menu:

Choose the text that you would like to see in a different font;
Choose Loaoks from the Basic Commands menu;

A series of three menus will appear, one after the other. The first
will offer a choice of fonts (see Figure 23.11.), the second a
choice of the properties cf the font (e.g. italics, or bold), and the
third, the font size. Either choose one of the items, or click the
left mouse button outside of the menu to leave the default
setting unchanged

Classic
_lf::‘«:gi]';«‘r:"_jl yout Char Looks Para Looks All
ita)
-t‘j'—: 1}?:1 nclude [} N
H;I‘- fil:"'? te {tzxteditor'zs} far {TEdit} Confirm
Til’r'IE!'E: Foman —
Cither t made,

* Text Editor Window
Thiz iz the text in the TEdit window,

the text 1in the text editor’s window.

Figure 23.11. The font choices from the LOGKS command

23.10

THE TEXT EDITOR, TEDIT

TEDIT MENUS _

23.5.2.2 Paragraph Formatting

(M

(2)

(3)

The fonts can also be changed by choosing Char Looks from
the expanded menu. This will cause another menu to appear.
(See Figure 23.12.

To see the font currently being used in a selected block of text,
choose SHOW from the menu.

To use this menu to change the fonts in the selected text,

Choose the text you would like to see in a different font. For this
example, choose the second sentence.

Choose from the Character Loocks Menu the type of font,
and the type of font from the "props” choices. If you do not
choose a font, or a font property, the current one is used. For the
example, choose “ltalic”. (See Figure 23.12.)

Choose APPLY and the font will be changed.

Gharacter Looks Menu

APPLY SHOW NEUTRAL

Props: Betd JEAS Underitie StrikeThFu Overtsr
TimesRoman Helvetica Gacha Medern Classic
Terminal Other a

Quit Page Layout Char Looks Para Looks All
Unformatted

Get {} Put || Include |}

Find {}Substitute {textzditar's] far {TEdit} Confirm

* Text Editor Window.
Thiz iz the text in the TEdit window.
the text in the text editor’s window.

Figure 23.12. Ready to change the font of the second sentence to “Italic”

You can format paragraphs with the Paragraph-Looks Menu,
shown in Figure 23.13 To bring up this menu, choose Para
Looks from the Expanded Menu. Although the new menu looks
complicated, the basics are easy to learn.

To see the current settings for some paragraph, first select the
paragraph. Choose SHOW from the top line of the menu.

To change the settings, begin by choosing a piece of text to work
with.

THE TEXT EDITOR, TEDIT

TEDIT MENUS

Paragraph-Looks Menu . ..

APPLY SHOW NEUTRAL

Left Right Centered Justified Paga Heafling tpe: |t
Linz leading: {fots Paraleading: {ipw Spedal leon: X {ipicas, ¥ {ipices

Mew Fage: Before Afver
Tab Type: Left Right

Display mode; Hardeopy

Centered Decimal Dotted Leader

TEdit Menu
Quit
Get {} Put |} Include {}
Find {}Substitute {} far

Page Layout Char Looks

Para Looks All

i} Confirm

Hardcopy <2rver: {1 capi=il f

Unformatted

Thiz iz the text in the TEGIL window,

nt_editar’s

Line Justification

Page Breaks

Figure 23.13. The Paragraph Looks menu is above the TEdit Expanded Menu

To determine how each line of the chosen text is placed on the
page, choose one of the following items from the second line of
the Paragraph-Looks Menu. Left gives a ragged right
margin, Right gives a ragged left margin, Centered centers
each line, and Justified gives both-left and right justification
so neither margin is ragged. Choose one with the mouse. When
your choice is in reverse video, choose APPLY to see how the
chosen textis affected.

You can break your text into pages both before and after a
paragraph. First, move the caret to the appropriate paragraph.
Choose either Before or After from the fourth line of the
Paragraph-Looks Menu. When you choose APPLY, a grey box
at the front of the paragraph marks a page break. (See Figure
23.14)

2312

THE TEXT EDITOR, TEDIT

TEDIT MENUS.

* Text Editor Window

#Thi2 12 the text in the TEdit window,

the text i the ftext sditar’s windsw,

Figure 23,14, The grey box on the far lef

he grey tsi
break.

23.5.3 Adding Bitmaps and Sketches to your TEdit File

TEdit allows you to easily add snapshots of the screen, and
Sketches to your files. Sketch is a Xerox package that was
developed for constructing pictures. Unlike bitmaps, (See
Chapter 29.) you do not need to draw every pixel for the shape
you want. Forinstructions on how tc use Sketch, see Chapter 35.

23.5.3.1 Adding a Bitmap to your TEdit file

(1

(2)

(3

(4)

To add a snapshot of the screen to your file,

Position the caret in the TEdit file where you want the snapshot
to appear.

Press and hold the shift key. Move the mouse cursor into the
grey background of the screen, and press the right mouse
button. A menu with a single choice, SNAP, will appear. Release
the shift key. Choose SNAP from the menu;

The mouse cursor will change to the prompt to sweep out a
window:

o)
Figure 23.15.

Position the mouse cursor at a corner of the region you would
like to snap;

Press and hold the left mouse button. Sweep out the snapshot
window. When you are satisfied with the.snapshot, release the
left mouse button, and it will appear in your TEdit file.

Once the bitmap isin your file, it is treated like a single character.
That means that you can move, copy, or delete it just like you do
any other character. There are also various operations you can
perform on bitmaps in your TEdit file (e.g. trimming and
editing). For more information about these, piease see the
Library Packages Manual.

THE TEXT EDITOR, TEDIT

2313

TEDIT MENUS

23.5.3.2

Adding a Sketch to your TEdit file

23.5.4 Getting and including Files

(2)

As mentioned above, Sketch is explained in this primer in
Chapter 35. For even more information, see the A User’s Guide
to Sketch. To add a Sketch to a TEdit file,

Position the caret in the TEdit file where you want the snapshot
to appear.

Press and hold the shift key. Move the mouse cursor into the
Sketch window. The control boxes of the Sketch will appear.
Click the left mouse button twice in any control box to copy the
entire Sketch into your TEdit file.

Like bitmaps, once the Sketch is in your file, it is treated like a
single character. That means that you can move, copy, or delete
it just like you do any other character.

Once the Sketch is in your file you can still editit. Simply point to
the Sketch with the mouse cursor, and press the right mouse
button. A menu with the single item, Edit sketch, will appear.
When you choose this item, a Sketch window will open for you
to make any changes. For more information, see A User's Guide
to Sketch.

23.5.4.1

Get

The Get and Include commands address files of text.

23.5.4.2

include

Get opens a file you want to edit, and brings it into the TEdit
window. A file brought into the TEdit window with the
command Get replaces any file that was previously being edited.
Get appears in both the Expanded and Basic Commands menus.

When you choose Get from the Basic Commands menu, you will
be prompted for the file name.

To use Get from the Expanded Menu, type the filename
between the curly brackets following the word Get. Choose
Get.

In either case, if you have not saved the file you are currently
working on, you will have to confirm the Get by clicking the left
button. Click the left button only if you want to begin work on
the new file without saving the changes made to the file that is
currently in the window.

Include also appears in both menus. It adds a file to the TEdit
window, but unlike Get it does not affect the file that is being
Included in any other way. Include simply reads in the
specified file, and adds it to the current document at the caret.

2314

THE TEXT EDITOR, TEDIT

TEDIT MENUS

23.5.5 Saving and Printing Files

If you chosen it from the Basic Commands menu, you will be
prompted for the file name.

If it is chosen from the Expanded Menu, the filename must be
typed between the curly brackets following the word Inciude
before choosingit.

Save your files often to decrease the chances of accidentally
losing pieces of your work.

To save the file, choose Put from either the Basic Commands
menu, or the Expanded Menu. Once again, if the command is
chosen from the Basic Commands menu you will be prompted
for the file name. If you choose it from the Expanded Menu, first
type the file name between the curly brackets to the right of the

command.

To print your file, choose Hardcopy from either the default
right button menu, or from the Expanded Menu. if it is chosen
from the right button menu, there is the further choice of
sending the formatted output to a file, or to a printer. If the file
is to be printed often, you may want to send the output to a file.
It takes time to format the document for printing, and if the
formatted file is saved, you will not have to wait each time.

Alternatively, using the Hardcopy command in the Expanded
Menu gives you some other options. You <an send the cutput to
any printer available, not just the default printer, and you can
specify the number of copies to print. As usual, these
specifications must be typed between the curly brackets before
choosing this command.

Sending a file to the Epson FX80 printer is covered in Chapter 19.

THE TEXT EDITOR, TEDIT

2315

TEDIT MENUS

[This page intentionally left blank]

23.16 THE TEXT EDITOR. TEDIT

24. RECORDS MAY BE YOUR
FAVORITE DATA STRUCTURE!

A record is a data structure that consists of numerous fields. Each
field, can have a simple value such as a list or an atom, or a more
complex value, such as a window or a menu (which is also a
record), or a function.

There are two parts to working with records. The first part
involves giving the record a name, and deciding the field names
contained in the record. This is referred to as creating a record
definition. The second part involves using the record definition
as a template, and giving each of the record's fields a specific
value. The second part is referred to as creating a record
instance.

Consider this example: you want to buy a car. Your record
would be named car, and you would define a record using this
list of fields: make; model; year; mileage; sticker price.

Now you go out and do your research. The first car you find is a
Plymouth, Champ, 1979, 87,500 miles, $1700. When you input
these values into a copy of the record fields, you have created a
record instance.

Next you find an Oldsmobile, Cutlass, 1986, 0 miles, $16,000.
When you input these values into a copy of the record definition,
you have created a second record instance.

241 Interlisp Record Primitives

The function RECORD creates a record definition. This record
definition can be considered a template for creating, accessing
and storing into record instances.

(RECORD record-name (list of fields))
To declare a record definition for an employee, you might need

his name and social security number. Declaring a record is done
with the function RECORD. (See Figure 24.1.)

RECORDS MAY BE YOUR FAVOR!TE CATA STRUCTURE!

241

INTERLISP RECORD PRIMITIVES

MIL

S3-(RECORD EMPLOYEE (NA&ME 23N
EMFLOYEE

2

Figure 24.1. Record Definition of Record Named EMPLOYEE

RECORD does not create any record instances, however. [t only
makes the interpreter aware that you will be using a record
definition called EMPLOYEE that contains two fields.

create isthe function that actually creates record instances.

(create record-name < fieldvalue
field value...>)

create takes the name you gave to the record definition and
returns an instance of that record. After the record definition
name, you will specify the values for each field. (See Figure 24.2))

Interlisp-D Executive Window

NIL
32« (3ETQ WORKER {create EMFLOVEE
MAME « "8i11 Smith"
33N « 123466733))
("Bi11 Smith" 123456739)
)

1

-

(X

Figure 24.2. Creating and Initializing a Record

To initialize a field, type the field name, followed by left arrow
(<) (the left arrow should be surrounded by spaces), followed
by the given value. Note that standard evaluation rules for
Interlisp-D are not followed by the function create. The values
supplied for the record's fields are evaluated, but the record
name and the field names are not evaluated. (See Figure 24.5.)
create was written this way to be convenient to use. The
functions or atoms supplied as values for the fields are
immediately evaluated, and the field contains only the result of
that evaluation.

The code in Figure 24.2 returned a new instance of the record
definition EMPLOYEE for Bill Smith. - Note that in the example,
the atoms EMPLOYEE, NAME, and SSN were not evaluated.
However, "Bill Smith" and 123456789 were evaluated. Any fields
which are not given values in the create expression are
assigned the value NIL.

In general create should appear inside an assignment
expression such as SET, SETQ, or PUTPROP. It may also appear in
a PROG's temporary variable lists or when binding argument lists
to functions

2422

RECORDS MAY BE YOUR FAVORITE DATA STRUCTURE!

INTERLISP RECORD PRIMITIVES

fetch is an Interlisp-D command that allows you to access the

contents of a field in a record. The syntax of the fetch
command is:

(fetch fieldname of record-instance)

record-instance argument will be evaluated. Figure 24.3
demonstrates the use of fetch with the WORKER example used
earlier. The field names NAME and SSN are never evaluated and
therefore not quoted. In fact, using QUOTE will cause an error!
WORKER was evaluated, which is what we want. WORKER is
bound to the desired record instance.

Interlisp-D Executive Window

The fieldname argument will not be evaluated; the

ch M&ME of WORKER)
Smith"

ch 2EM of WORKER)
29

Figure 28.3. fetch from Records

replace is an Interlisp command that allows you to modify the
contents of the record-instance's fields. replace works similar
to fetch, except that it requires a new value in order to
overwrite the old value. This extra argument is placed last:

{repiace fieidname of record instance with newvaiue).

An example is shown in Figure Figure 24.4.

Interlisp-D Executive Window

NIL

37<(replace 33N of WORKER with 937654321}
957554321

38+«WORKER

{("Bi11 Zmith" 957684321
39« (fetch 23WN of WORKER)
937864321

diae

Figure 24.4. Using replace and fetch withRecords

24.2 Example

Following is a line by line explanation of the example in Figure
24.5, which demonstrates the record package facilities:

RECORDS MAY BE YOUR FAVORITE DATA STRUCTURE! 243

EXAMPLE

Line 43

Line 44

Lines 45 - 47

Line 48

Line 49
Lines 50 and 51

Line 52

Interlisp~D Executive Window

MIL
d3«(RECORD I30TOPE
(EYMBOL TZOTOPEMUMBER ISOTOPEWEIGHT))

[30TOPE
43« (ZETQ CARBON {(create ISOTOPE

SYMBOL « °C

ISOTOPENUMBER « &

[3OTOPEWEIGHT « 12]

(0B 12)

45« (fecch IYMBOL of CARBONM)

I‘:

d6e(fetch ISOTOPENUMBER of CARBOM)

&

47+(fecch ISOTOPEWEIGHT of CARBOM)

12

dG«(replace [SOTOPEWEIGHT of CARBON
with 14)

14

d9«({ferch [Z0TORPEWEIGHT of CARBON]

14

S@«({ferch IYMBOL of CARBON)

C

Bl«({ferch I20TOPEHUMBER of CARBON)
5

BE2<0ARBON

(C 8 14)

o
B3«

Figure 24.5. Useof RECORD, create, fetch, and replace.

declares a record definition called ISOTOPE. Each record instance
will contain three fields representing the symbol, isotope
number, and isotope weight of the isotope. The system responds
by saying that ISOTOPE is now a recognized record definition.

assigns CARBON a value: a record instance with the properties of
Carbon 12. Since SETQ returns its second argument, the
resulting list shows how a record is stored in list form.

demonstrate fetch. The contents of the field being fetched
are returned.

replaces the ISOTOPEWEIGHT with 14, so now CARBON

represents a new isotope.
verifies that the change in CARBON's ISOTOPEWEIGHT was made

show that the change to one field of a record did not change any
other fields of that record.

.shows the value of the atom CARBON. This result is the record

instance that fetch and replace actually act on. The instance is
stored as the value of the CARBON.

24.3 A Few Tips

If you are using several record definitions, avoid using the same
field name in two record definitions until you become familiar
with the manual. otherwise the system will try 1o access things in
a way that can cause a break. If it is necessary to use the same

244

RECORDS MAY BE YOUR FAVORITE DATA STRUCTURE®

A FEW TIPS

field name, refer to your record definition name before you
reference the field. So, for example, (fetch (ISOTOPE
SYMBOL) OF CARBON) says "! want the SYMBOL field from the
record instance CARBON of the record definition ISOTOPE."

Although you may create lists which can be properly handled by

tho narkama
(A L=+

pairayc
create, fetch and replace when working with records. This
improves readability of your code, and ensures that changes in
the Interlisp-D record package or changes you may make to your
record definition will not affect your code.

rarnrd

Nnr uira varsa 5
TSLvI v i

ie a mand idaas ¥ Anlis sioa
VING ¥SiJ2G; 1L 19 YUYW 1UuTa v vy useo

A record is really just a special list. There is no implicit
type-checking in the record package, so a list you give to fetch
and replace will be destructively modified as if it were a record
instance, regardless of whether or not it has anything to do with
records. Figure 24.6 shows poor programming even though no
fatal errors resuit. The example assumes the EMPLOYEE record
that was defined earlier in the chapter is a part of the Interlisp-D
environment.

Iinterlisp-D Executive Window

MIL

BA«{ fetch MAWME of "{(1 2 3))
1

81« ({3ETY TEWP " {1 2 3}
(12 3)

E2+(fetch MAME TEMP)

1

B3« (replace 33N TEMP &)
5

Gd+TEMP

(15 3)

Bh«

Figure 24.6. Sloppy Use of Records and Lists

You can type-check your records by using the command
TYPERECORD instead of RECORD. When record definitions are
declared with the command TYPERECORD, the create,
fetch, and replace functions are the same as for regular
records. There is also a function TYPE? which determines if its
argument is of the right type. If ENPLOYEE had been created as
a TYPERECORD, you could find out if WORKER is an instance of
the EMPLOYEE record definition by asking:

(TYPE? EMPLOYEE WORKER)

which returns a non-NIL value if WORKER is an EMPLOYEE
record instance. Typically it will be used this way:

(AND (TYPE? EMPLOYEE WORKER) (fetch SSN WORKER))
If the type check fails, the fetch is not evaluated; if it succeeds,
the fetch is evaluated and a value is returned. As in create,

the record definition name (EMPLOYEE in this example) is not
evaluated. (See Figure 24.7))

RECORDS MAY BE YOUR FAVCRITE DATA STRUCTURE?

245

A FEW TIPS

Interlisp-D Executive Window
NIL }
E7«(TYPEREQORD FPLAYER
(FIECECOLOR BO&ROPOSITION))
PLAYER
E3+(SETQ PLYR1
{create PLAYER
PIECECOLOR « "RED
BOARDPOSITION « “ZQUAREL]
{FLAYER RED 3QUAREL)
§9«({TYPE? PLAYER PLYRL)

—

7@+ (TYPET PLAYER WORKER)
MIL
F1l+(&ND (TYPE? PLA&YER PLYR1)
(replace BOARDPOZITION of PLYRL
with "ZQUAREZ))
SOUAREZ

TE«FLYRL
(E SYER RED SQUAREZ)

Figure 24.7. TYPERECORD and Explicit Type Checking

Other variations on record definitions are in the Interlisp
Reference Manual, Volume 1, Section 8.

246 RECORDS MAY BE YOUR FAVORITE DATA STRUCTURE!

25. LOCAL VARIABLES - USING LET

AND PROG
L]

Local variables are variables created within a function, and
accessed and changed only within that function. Contrast a local
variable and a global variable:

Local variables are handled more efficiently by the interpreter
and the compiler;

local variables, especially when well named, can make your code
easier to understand, and to change;

it is better style to use local variables, and to minimize the use of
global variables.

This chapter will explain the use of Interlisp-D forms for creating
local variables.

25.1 LET

Iinterlisp-D provides several ways to create local variables. One is
LET. Hs use will be illustrated with an- example, the function
MY .ADDPROP. This function maintains a list of values for each
property of an atom. When a new value is added with
MY . ADDPROP, the function first checks to see whether the new
value is a member of the list of values. If it is, the current list of
values is returned. If it is not already a member of the list, it is
added to the list of values for that property.

Without using LET the function MY . ADDPROP can be written like
this:

DEdit of function MY ADDPROP - EditOps
{L&MBEDA (ATOM PROPERTY WALUE) ater
ﬁﬁ LEEMBEE YALUE ¢(GETPROP ATOM PREOFPERTY)! Eefore
THEN (GETPEOP &TOM FROPERTY 1 Cielate
ELSE (FUTPEOP ATOM PROFEETY Feplace
(LOMS WaLLUE Z -k
TGETFROP TN .
FROPERTY 111101 tyaut
Undo
Fird
Swap
Feprint
Edit
EditZom
Break
Eval
Exit

Figure 25.1. The function MY.ADDPROP can be written like this, without using
the function LET

LOCAL VARIABLES - USING LET AND »ROG

LET

()

(3)

Notice that the function call (GETPROP ATOM PROPERTY)
appears several times. Use the function LET to bind a local
variable to the value returned from this function call, so that it
only needs to be done once. It will be easiest to define this
function in the Interlisp-D Structure Editor, DEdit. To do this,

Type:

(DF MY .ADDPROP)

in the Interlisp-D Executive window. When you are asked
whether you want to edit a dummy definition, type Y. A
standard template for writing functions will appear. (See Figure
25.2)

This chapter will assume that you know how to use DEdit,
covered in Section 11.3, Page 11.4.

DEdit of function MY.ADDPHOP EditOps

(LAMBOS (&RGET ..) sfter
BODY) .

oyt
Unda
Fird
Twwap
Reprint
Edit
EditZom
Ergak
Eval
E it

Figure 25.2. The standard template supplied by DEdit for defining functions.

Change the template's formal parameter list so that the function
expect three arguments: ATOM, PROPERTY, and VALUE.

The body of the function will be the LET expression. The first
argument that LET expects is a list of lists. Each list is a list
containing a local variable and its initial value.

In this example, there is only one local variable, OLDVALUES.
This variable's value will be the value returned from the function
call, (GETPROP ATOM PROPERTY). Add this to your function
definition, so that it looks like this:

DEdit of function MY.ADDPROP EditOps

[LAMBD& (ATOM PROFERTY WALUE) Lfter
(LET ({0OLOVALUES {GETPROP ATOM PROFERTY1) | Before

Undo
Find
Swap
Reprint
Edit
EditZom
Break
Eval
Exit

Figure 25.3. MY _ADDPROP's LET with its local variable. The body of the
LET has not yet been added. ‘

All forms after the list of local variables and their values make up
the body of the LET. In this example, the body of the LET is the

252

LOCAL VARIABLES - USING LET AND PROG

LET

(5)

same as the body of the function without LET, except that the
local variable, OLDVALUES, is used instead of the calls to
GETPROP. '

Add the body to your function, so that it looks like this:

(LAMBDA (ATOM PROPERTY WALUE)
{LET (¢OLDVSLUES (GETPROP ATOM PROFERTY))

J
{if {MEMBER Y&LUE OLDWALUEZ
then OLOVALUES
else (PUTFROP &TOM PEOFERTY
[ZONS YRLUE OLOWALUESY
m Unddo
Find
Swal
Reprint
Eddit
Editizam
greak
Eval
Exit

Figure 25.4. MY _ADDPROP, written with LET.

Each expression in the body of the LET is evaluated, and like a
LAMBDA, the value of the last expression in the body is returned
as the value of the LET.

Exit from the editor, and try your function. Type:

(MY .ADDPROP 'APPLE 'COLORS 'RED)

and

(MY .ADDPROP 'APPLE 'COLORS 'YELLOW)

Check the value of the property COLORS of the atom APPLE by
typing:

(GETPROP 'APPLE ‘COLORS)

Both colors will be in the list. Type:

(MY .ADDPROP 'APPLE 'COLORS 'RED)

again. RED will not be added to the list for the second time.

When you check the value of the property COLORS of the atom

APPLE, the list (YELLOW RED) should be returned, as in the
following figure:

Interlisp-D Executive Window

MIL

46« {RETFROP "&PPLE "COLORZ)
(YELLOW RED)

47«

Figure 25.5. The value of the property COLORS of the atom APPLE

For more information about LET, see the Library Packages
Manual.

25.2 PROG

The same example can be used to illustrate the use of the
function PROG. There are differences between PROG and LET,

LOCAL VARIABLES WUSING LET AND PROG

253

PROG

(1)

(2)

(4)

which you should note as you go through the example.
Although LET is the preferred form, there are times when the
extra flexibility probided by PROG is needed.

Once again, it will be easiest to define the example function in
the Interlisp-D Structure Editor, DEdit. To do this,

Type:
(DF MY .ADDPROP2)

in the Interlisp-D Executive window. When you are asked
whether you want to edit a dummy definition, type Y. A
standard template for writing functions will appear. (See Figure
25.2)

Change the template's formal parameter list so that the function
expect three arguments, ATOM, PROPERTY, and VALUE.

The body of the function will be the PROG expression. Like LET,
the first argument that PROG expects is a list that will allow it to
set up local variables.

In this example, there is only one local variable, OLDVALUES.
This variable's initial value is the value returned from the
function call, (GETPROP ATOM PROPERTY). Add this to your
function definition, so that it looks like this:

DEdit of function MY.ADDPROP2 EditOps
(LaMBOS (oTOM PROPERTY walLUE) After
{(PROG ({OLDW&LUES (SETPROP ATOM PROPERTY) Befare
1 Delete
BO0Y) Feplace
Switch
{3
{ yout
Undo
Find
Swap
Reprint
Edit
EditZom
Ereak
Eval
Exit

Figure 25.6. MY .ADDPROP's LET with its local variable. The body of the
LET has not yet been added.

NOTE: Unlike LET, PROG's local variable list can contain lists or
atoms. Lists contain two items, the first is the local variable's
name, the second is its initial value. Atoms are the local
variables' names, and each oneis bound to NIL.

All forms after the list of local variables and their values, make up
the body of the PROG. In this example, the body of the PROG is
almost the same as the body of the function with LET, except
that the if isinside the function RETURN. Add the body to your
function, so that it looks like this:

254

LOCAL VARIABLES - USING LET AND PROG

PROG

(5

DEdit of function MY .ADDPROP2 EditOps
[LAMBOS (ATOM PROPERTY YALUE] Lfer
(FPOG ((OLDWALUES (GETPROP &TOM PROPERTY) | Befars
et

I Ce

(RETURM
(if [MEMBER YALUE OLDWALUER)
them CLOVALUES
else (FUTPROP &T0M PROPERTY
(oONE YALUE OLDWALUES

Figure 25.7. MY . ADDPROP, written with PROG.

NOTE: Unlike LET, the PROG does not return the value of the
last expression in its body. The expressions in the body of the
PROG are evaluated in order until the function RETURN is
reached.

The function RETURN takes one argument. The value of this
argument is returned as the value of the PROG. RETURN is
needed for the PROG to return a value. Without RETURN, the
PROG returns NIL. No other expressions in the body of the PROG
are evaluated after the RETURN function is evaiuated.

Exit from the editor, and try your function. Type:

(MY .ADDPROP2 'GRAPE 'COLORS 'GREEN)

and _

(MY .ADDPROP2 ‘'GRAPE 'COLORS 'PURPLE)

Check the value of the property COLORS of the atom GRAPE by
typing:

(GETPROP 'GRAPE 'COLORS)

Both colors will be in the list. Type:

(MY .ADDPROP2 'GRAPE 'COLORS 'PURPLE)

again. PURPLE will not be added to the list for the second time.
When you check the value of the property COLORS of the atom

GRAPE, the list (PURPLE GREEN) should be returned, as in the
following figure:

Interlisp-0) Executive Window
NIL

52« GETPROP “GRAPE "COLORZ)
{FURPLE GREEM)

B3«

Figure 25.8. The value of the property COLORS of the atom APPLE

PROG can also be used for looping, but it is better style to use the
appropriate Interlisp-D interative statement (See Chapter 26.)
For more information about PROG, see the Interlisp-D Refernece
Manual, Volume |, Page 9.8.

LOCAL VARIABLES - USING LET AND PROG

PARALLEL VERSUS SEQUENTIAL VARIABLE BINDING

25.3 Parallel versus Sequential Variable Binding

25.3.1 LET*

Both PROG and LET bind their local variables in parallel. This
means that all the variable values are set at once, not one after
the other. When the local variables are initialized, you cannot
compute the value of one local variable using the value of
another local variable.

As an example, see Figure 25.9. It shows a function,
RANDOM-SQRT, that expects one argument, a list of positive
integers. First, a random number between one and the length of
the list of integers is selected. The positive integer at that
position in the list of integers is selected, and its square root
returned.

DEdit of function RANDOM.SQRT EditOps
(LAMBOS (INT-LIST) vk oedited; CE1-AUg-3S 1TIEL) Lfter
PLET ((POZ {RAMD L (LEMGTH INT-LIT)) Before
(INT-8T-POS (0aR (NTH INT-LIZT POS
1100
(20RT IMT-&T-FOS)))
i ::uut
Unido
Fird
Reprint
Edit
EditZom
Break
Eval
Exit

Figure 25.9. The incorrect definition of the function RANDOM SQRT

Unfortunately, the function is written incorrectly. When the
variabies are initialized, the value of INT-AT-P0OS depends on
the value of P0OS. When the function is run, an error is
generated, as shown below:

interlisp-D Executive Window
NIL
F2e(RANDOM.SORT *(1 43 5 947

UMBOLIND ATOM
POE {in RANDOM.ZORTY in (NTH INT-LIZT PO3
)

T3

Figure 25.10. The error generated by the incorrect function definition

The same thing would happen if a PROG was used instead of LET.
What is needed for this function is sequential binding.
Interlisp-D provides LET* and PROG* for this purpose. They
work like LET and PROG, respectively, except that they bind their
local variables sequentially, one after the other, instead of in
parallel.

Write the example function, RANDOM. SQRT using the function
LET* As usual, it is easiest to define the function in the
Interlisp-D Structure Editor, DEdit. To do this, type:

256

LOCAL VARIABLES - USING LET AND PROG

PARALLEL VERSUS SEQUENTIAL VARIABLE BINDING

25.3.2 PROG*

(DF RANDOM.SQRT)

in the Interlisp-D Executive window. When you are asked
whether you want to edit a dummy definition, type Y. A
standard template for writing functions will appear. (See Figure

25.2)

Change the function tempilate so that your function iooks iike
this

DEdit of function BANDOM.SQRT EditOps

(LamMBla (INT-LIST) [adited: "31-2ug-38 17247 sfter

(LET* ((POS (R&MD 1 (LENGTH INT~LISTIi3
{INT-AT-POZ (AR (NTH INT-LI3T PoOZ
11

{Z0RT INT-aT-POS))]

Y 1::1_41:
Unda
Firnd
Sweap

Reprint
Edit
EditZom

Figure 25.11. The example function, RANDOM . SQRT, written with a LET*,
so that the variables are bound one after the other.

Now run the function. Type:
(RANDOM.SQRT '(4 36 81 9))
No error is generated!

Now write the example funciion again, but this time use the
function PROG*, and call it RANDOM. SQRT2. As usual, it is easiest
to define the function in the Interlisp-D Structure Editor, DEdit.
To do this, type:

(DF RANDOM.SQRT2)

in the Interlisp-D Executive window. When you are asked
whether you want to edit a dummy definition, type Y. A
standard template for writing functions will appear. (See Figure
25.2)

Change the function template so that your function looks like
this:

DEdit of function FANDOM.SQRT 2

(LAMBDA (INT-LIST)
(PROG* ((POS (RAMD. 1 (LEMBTH INT-LISTS)
1
(INT-&T-FOS [CAR INTH IMT-LIST
[AEIREN
(RETURN {2QRT IMT-AT-POSY11) £y
f:| gt
Jnda
Find
Sap
Reprint
Edit
EditZar
Break
Eval
Exit

LOCAL VARIABLES - USING LET AND PROG

257

PARALLEL VERSUS SEQUENTIAL VARIABLE BINDING

Figure 25.12. The example function, RANDOM. SQRT, written with a PROG*,
so that the variables are bound one after the other.

Now run the function. Type:
(RANDOM.SQRT '(4 36 81 9))

No error is generated! For more information about PROG* see
the Interlisp-D Reference Manual, Volume |, Page 9.9.

258

LOCAL VARIABLES - USING LET AND PROG

26. ITERATIVE STATEMENTS

Iterative statements non-recursively repeat a set of steps. This
section provides different iterative statement examples for you
to follow. Iterative statements are implemented with the CLISP
facility discussed in Section 13.1. For now you den't rieed to
know anything about CLISP to use iterative statements,

26.1 General Structure and Use

DO

COLLECT

Iterative Statements provide a simple method of looping in
Interlisp-D. Using the statements improves readability of code
and provides standard paradigms for loop organization.

There are three parts to an iterative statement. The first part
specifies the basic structure of the loop. For example, looping
through integers from 1 to 10, or through the elements of a list.
The second part specifies how the values returned by each
iteration are treated. The third part specifies the body ot the
lcop.

Consider the following example of a fairly generic loop:

(FOR X FROM 1 TO 10 /ooping-keyword
body-of-the-loop)

In this example, FOR x from 1 to 10 is a loop structure. The
variable x is a local variable, local to the iterative statement. In
the next few paragraphs we discuss ways to use the
looping-keyword and the body-of-the-loop.

The keywords tell the loop how to return the values: -

Evaluates the expressions in the body of the loop. Returns NIL.

MIL
39«(FOR ¥ FROM L TO 3 00 (PRINT 213

(=%

£2 = DM

5o
L

Figure 26.1. A FOR loop using the keyword DO

Like DO, except that the value of each iteration is gathered into a
list and the list is returned.

ITERATIVE STATEMENTS

GENERAL STRUCTURE AND USE

THEREIS

BY

interlisp-0 Executive Window
MIL

d1«(FOR ¥ FROM 1 T 3
COLLEGT (TIMEZS x 301D

¢

3

Feoo

[nx]
o
-

-

Figure 26.2. A FOR ioop with the keywork COLLECT

Stops iteration when the body of the loop evaluates to a
non-NIL value. Returns the value of the local iteraticn variable
when the loop stops.

Intertisp-D Executive window

NIL
d3«(FOR = FROM 1 TQ 3
THEREIZ (GBREATERF (TIMEZ ¥ =) 970

34+

Figure 26.3. The iterative statement FOR with the keyword THERE IS

One more useful feature is having the FOR loop able to count by
steps other than one. This is done with BY.

Specifies increments for iteration. Increments can be positive or
negative. BY determines only the increment of the loop counter.
It is used with other keywords that determine the value the loop
returns.

interlisp-0 Exacutive ‘Window

1ML

33« (FOR
1

R

HIL
39«{FOR ¥

A FROM 1 70 18 BY 5 DO (PRINT X013

FROM 18 TO 1 8% -5 00
(PRINT =313

1Q

[

MIL

Ie

Figure 26.4. The keyword BY used with both a positive and a negative
increment. Note it is used with the keyword DO

26.2 Local Variables

Local variables, unlike global ones, are variables known only in
one expression. The local variable used for iteration, X in the
above examples, need not be declared or initialized. Additional
local variables may be specified within an iterative statement by
using the CLISP word BIND. Initialization of iocal variables is
accomptlished by using the format

Var « Expression
with BIND.

262

iITERATIVE E{AT{-_;\,'\E'\JTS

LOCAL VARIABLES

For example, to expand on the example in Figure 26.NIL by
substituting a local constant for the multiplier 5 and the
threshhold 1, see Figure 26.5.

Interiisp-D Executive windove

MIL
Fd«(FOR % FROM 1 TO 3
BINOD (MULTIFLIER + &}
{THREZHHOLD « 9)
THEREIZ (GRESTERP
{TIMES ¥ MULTIFLIER)
THRESHHOLOY))

Figure 26.5. Using BIND to initialize local variables.

See additional exampies in the section on conditicnai 'ooping at
the end of this chapter, Page 26.8.

26.3 Iteration On Lists

The easiest and most widely used iteration is on successive CARs

of a list. (For an example of this type of iteration, see Figure
26.6.)

IN is the CLISP word that sets the iterative variable X to the CAR of
the current tail for each iteration.

Interlisp-D Executive i s
MIL

108 {ZETY M¥LIZT " (Thiz ig a test.))
{Thig iz a tezt.) :
1e{FOR % IWN MYLIZT 00 (PRINT X))
This

1

a

test,

MIL

=TA

Figure 26.6. Iteration on successive CARs of alist with IN.

ON is used to set the iterative variable X to the successive CDRs of a
list. (See Figure 26.7.)

ITERATIVE STATEMENTS 263

ITERATION ON LISTS

interlisp-D Executive

MIL

d(FOR < OM MYLIST D0 (PRINT x)}
{This iz a test.)

{12 3 test.)

(a rest.)

[test, }

MIL

E:l—

Figure 26.7. Iteration on successive CDRs of a list with ON.

26.4 Parallel Iteration

AS

is used between clauses when lists and/or numerical iteration
should happen in parallel. In other words, X has many values,
and N has many values. With AS between the two clauses, when
X changes, so must N, and the two do so independent of the
values of the other.

All iteration will stop when any of the clauses complete. Because
MYLIST in Figure 26.8 has only 4 values, the 1 to Siteration is not
finished, and the loop completes after 4 cycles.

Interlisp-D Executive T

MIL

1@« (FOR X IN MYLIST &2 % FROM 1 TO 5 DO
(PRINT X} (PRINT %))

This

=y

o

|l N BV TR S PN
[¥J
s
[

= —
+

Figure 26.8. The loop only iterates through 4 cycles, because there are only 4
items in MYLIST.

The iteration will stop at the end of the shortest clause, no
matter what its position in the iterative statement. Note, for
example, that exchanging the position of X and Y in the iterative
statement does not affect how it runs, or when it stops running:

264

ITERATIVE STATEMENTS

PARALLEL ITERATION

Interlisp~-D Executive Window

NIL

T7<(FOR ¥ FROM 1 TO & &3 % IN MYLIZT OO
{FRINT %3 (PRINT ¥})

Figure 26.9. The loop only iterates through 4 cycles.

Note in the following example, that the clauses are really
independent. As is shown in Figure 26.10, you cannot say, for
instance,

(FOR X ON MYLIST AS Y ON (CDR X) DO ...)

(This 1 a nest,)
COOM MYLIST &% % OM CCOR X)) Da
(PRINT) (PRIMNT %))

LUMBIOLIND ATOM

.
&

[¥u}
T

Figure 26.10. The values of the iterative variables are set in parallel. If they
depend on each other, an error can result. ,

This is described by saying that the local variables are set in
parallel.

26.5 Conditional Iteration

WHEN

can be used inside of an iterative expression when you wish only
certain values to be used in the body of the loop. In the example
(See Figure 26.11.), you are asking that you receive the values of
XwhenY isalist.

ITERATIVE STATEMENTS

CONDITIONAL ITERATION

MIL

B9« [ZETO MYLIZT “(& (BY © (0) E (FY 3})
& (B

H

(0}

E

(F

33
EAe(FOR ¥ FROM 1 T2 5 &3 % IN MYLIZT

WHEN (LISTP ¥) COLLECT (X * %))

(4 18D
El+

Figure 26.11. Conditional Looping. The body of the ioop is evaluated unly when
the value of Y isa list.

26.6 More Iteration

DO

There are many other variations on iterative statements. They
can all be found in the Interlisp-D Reference Manual, Volume 1,
Chapter 9. An iterative keyword such as FOR, BIND, WHILE, or
REPEATUNTIL must be used as the car of the iterative
statement. Other than this restriction, iterative statements are
flexible, other iterative keywords can be put in many different
places in the statement. It is bad style, however, to take too
much advantage of this flexibility. Here are some guidelines for
good looping style: When using the keyword WHEN or UNTIL,
place it before the DO or COLLECT keyword; when using the
keyword REPEATWHILE or REPEATUNTIL, place it after the DO or
COLLECT keyword.

The easiest way the learn to write iterative statements is to
practice with the examples in this chapter.

Interlisp~D Executive ! v

MIL

15« (FOR CMT FROM 1 TO 3 DO
(PRIM1 CNT)
(PRIN1 " sguared equals)
(PRINT (TIMEZ CNT CNT)))

1 squared aquals 1

2 sgquared esgquals 4

3 =squared equals 9

Figure 26.12. Numerically controlled FOR loop. Prints squares ot the number
range

266

ITERATIVE STATEMENTS

MORE I TERATION

Interlisp=D Executive

Z3«(FOF ITEM IN
(1 (and in the end) 2 but 3)
00 {(IF {MUMBERP ITEN;
THEN (PRINM1 ITEMN)

(PRINL " i= a number!")
{TERPRI})
(IF (LISTP ITEM)
THEN (PRINT ITEM)]

1 92 a number!
Cand in the end)
Z g a number!

3 ig 3 numbher!
MIL

29+

Figure 26.13. List controlled FOR loop.
COLLECT

Interlisp~D Executive :
MIL
ZE«(FOR ITEW IN
(1 (and in the end) 2 but 3)
COLLECT (IF {MUMBERP ITEM)
THEN
(PRIM1 ITEM)
(PRIMNL " iz a number!")
(TEREFRI)
(IF (LIZTP ITEM}
THEM
(PREINT ITENM]]
a rnumber!
in the end)
a number!
a number !
MIL fand in the end)
MIL MIL MIL)

1

[vQ

LU wOR Y ()

¢

=a L) 1D #=n

n
i
i
M1

£he

Figure 26.14. The same as last example except uses COLLECT instead of DO.
THEREIS

Interlisp-D Executive :
MIL
27« (FOF ITER IN
"{There iz a 3 in thiz 1izt.)
THEREIS (IF (WUMBERP ITEM)
THEM
(PRIMT "I found it")i)
"I found it”

)

8+«

Figure 26.15. This ioop will stop when the body evaluates to a non-NIL vaiue.
AS

ITERATIVE STATEMENTS

268

MORE ITERATION

WHEN

UNTIL

BIND

Interlisp~-D Executive

NIL

29« (FOR LTEML IN "(1 2 3)
42 ITEMZ in

{1z ag was shall-be)
&2 ITEMS in "(&% B C D E)

list.

Interlisp-D Executive

NIL

344(FOR ITEM IN “{1 and 2 and 3)
COLLECT (PRINT ITEM)

WHEN (NUMBERF ITEM))

1

o

-

2

2

(12 3)
e

A O . -]
oo —

T

Figure 26.17. Conditional in conjunction with a FOR loop. Prints and collects
the numbers in a list.

Interlisp-D Executive

WIL
33« (FOF ITEM IN
"{There 12 a 3 in this 1ist.)
UMTIL (NUMBERF ITEM)
COLLECT (PRINT ITEM))

J]

-
D

i

o
30
=
Ix O
-
i
o

Figure 26.18. Conditional in conjunction with a FOR loop. Prints and collects
the numbers in a list.

ITERATIVE STATEMENTS

Figure 26.16. Collects groupings of elements at the same position w.thin each

MORE ITERATION

i TERFRI)

[Item 1 iz NIL)
{Item 2 iz MIL)
(Item 3 iz NIL)
{Item 4 iz MIL)
(Irem 5% iz NIL)
MIL

7«

Vi
BE«(FOR [TEM IN "(& B C O E)
' BIND (CNT « @)
00 (PRIM1 {LIST "Item"
{RETQ ONT {ADDL CNT)}
“iz" (CAR ITEM}))

Interlisp-D Executive Wwindows

Figure 26.19. Independent use of conditional. Also illust

Prints the numerical positions and elements of a list.

nal
(¥ <]
i
-
o

rates the use of

ITERATIVE STATEMENTS

|

[
(=)}
o

MORE ITERATION

[This page intentionally left blank]

2610 iTERATIVE STATEMENTS

27. WINDOWS AND REGIONS

27.1 Windows

27.1.1 CREATEW

Windows have two basic parts: an area on the screen containing
a collection of pixels, and a property list. The window properties
determine how the window looks, the menus that can be
accessed from it, what should happen when the mouse is inside
the window and a mouse button is pressed, and so on.

Some of the window's properties can be specified when a
window is created with the function CREATEW. In particular, itis
easy to specify the size and position of the window; its title; and
the width of its borders.

(CREATEH region title borderwidth)

Region is a record, named REGION, with the fields left,
bottom, width, and height. A region describes a
rectangular area on the screen, the window's dimensions and
position. The fields 1eft and bottom refer to the position of
the bottom left corner of the region on the screen. Width and
height refer to the width and height of the region. The usable
space inside the window will be smaller than the width and
height, because some of the window's region is consumed by
the title bar, and some is taken by the borders.

Title is a string that will be placed in the title bar of the window.

Borderwidth is the width of the border around the exterior of
the window, in number of pixels.

For example, typing:

(SETQ MY _.WINDOW (CREATEW
(CREATEREGION 100 150 300 200)
*THIS IS MY OWN WINDOW")

produces a window with a default borderwidth. Note that you
did not need to specify all the window's properties. (See Figure
27.1)

WINDOWS AND REGIONS

WINDOWS

27.1.2 WINDOWPROP

Figure 27.1. Creating a Window

In fact, if (CREATEW) is called without specifying a region, you
will be prompted to sweep out a region for the window. (See
Section 10.2, Page 10.2.)

The function to access or add to any property of a window's
property listis WINDOWPROP.

(WINDOWPROP window property <value>)

When you use WINDOWPROP with only two arguments - window
and property - it returns the value of the window's property.
When you use WINDOWPROP with all three arguments - window,
property and value - it sets the value the window's property to
the value you inserted for the third argument.

For example, consider the window, MY . WINDOW, created using
(CREATEW). TITLE and REGION are both properties. Type
(WINDOWPROP MY .WINDOW 'TITLE)

and the value of MY.WINDOW's TITLE property is returned,
"THIS IS MY OWN WINDOW". To change the title, use the
WINDOWPROP function, and give it the window, the property
title, and the new title of the window.

(WINDOWPROP MY .WINDOW 'TITLE "MY FIRST WINDOW")

automatically changes the title and automatically updates the
window. Now the window looks like Figure 27.2.

272

WINDOWS AND REGIONS

WINDOWS

Fe(WINDOWPROP MY WIMDOW "TITLED
"THIS I3 Y OWN WINDOW®

UTHIS I3 MY QWM wIMOOW"

S (WINOOWPROP MY WINDOW “TITLE “MY FIRST WINDOW™)

Figure 27.2. TITLE is a Window Property

Altering the region of the window, MY . WINDOW, is also be done
with WINDOWPROP, in the same way you changed the title.
(Note: changing either of the first two numbers of a region
changes the position of the window on the screen. Changing
either of the last two numbers changes the dimensions of the
window itseif.)

27.1.3 Getting windows to do things

(2)

(3)

Four basic window properties will be discussed here. They are
CURSORINFN, CURSOROQUTEFN, CURSORMOVEDFN, and
BUTTONEVENTFN.

A function can be stored as the value of the CURSORINFN
property of a window. It is called when the mouse cursor is

moved into that window.

Look at the following example:

First, create a window called MY . WINDOW. Type:

(SETQ MY .WINDOW
(CREATEW
(CREATEREGION 200 200 200 200)
*THIS WINDOW WILL SCREAM!"))

This creates a window.

Now define the function SCREAMER. It will be stored on the
property CURSORINFN. (Notice that this function has one
argument, WINDOWNAME. All functions called from the
property CURSORINFN are passed the window it was called from.
So the value of MY .WINDOW is bound to WINDOWNAME. When
itis called, SCREAMER simply rings bells.

(DEFINEQ (SCREAMER (WINDOWNAME)
(RINGBELLS)
(PROMPTPRINT "YAY - IT WORKS!")
{RINGBELLS)))

Now, alter that window's CURSORINFN property, so that the
system calls the function SCREAMER at the appropriate time.

Type:

WINDOWS AND REGIONS

273

WINDOWS

(4)

CURSOROUTEN

CURSORMOVEDFN

BUTTONEVENTFN

27.1.3.1 BUTTONEVENTFN

(WINDOWPROP MY .WINDOW °'CURSORINFN
(FUNCTION SCREAMER))

After this, when you move the mouse cursor into MY WINDOW,
the CURSORINFN property's function is called, and it rings bells
twice.

CURSORINFN is one of the many window properties that come
with each window - just as REGION and TITLE did. Other
properties include:

The function that is the value of this property is executed when
the cursor is moved out of a window;

the function that is the value of this property is executed when
the cursor is moved while it is inside the window;

the function that is the value of this property is executed when
either the left or middle mouse buttons are pressed (or released).

Figure 27.3 shows MY.WINDOW!'s properties. Notice that the
CURSORINFN has the function SCREAMER stored in it. The
properties were shown in this window using the function
INSPECT. INSPECT is covered in Chapter 32.

{WINDOW }#54,140470 Inspector

3CREEN MIL

WINDOWENTRYFN GIYE.TTY.PROCE2S

PROCESS NIL

WBIORDER 4

NEWREGIONFN MIL

WTITLE “THIS WINDOW WILL SCREAM!"
MOYEFH NIL

CLQSEFN HIL

HORTZSCROLLYINDOW MNIL
WERTICROLLWINDOW NIL

SCROLLFN NIL

HORIZSCROLLREG NIL

VERTSCROLLRESG NIL

USERDATA MIL

EXTENT MIL

RESHAPEFN MIL

REPAINTFN NIL

CURSORMOYEDFN NIL

CURSOROUTFNM NIL

CURSORINFN SCREANMER
RIGHTBUTTONFN NIL

BUTTONEVEMTFM TOTOPY

RE®G {289 294 Z08 20@)
20YE {BITMAPL#E3, L4RRZA
HEXTW TWINDOW #5817 1478
nsp {3TREAMM#RE, 114434

Figure 27.3. Inspecting MY WINDOW for Mouse-Related Window Properties

You can define functions for the values of the properties
CURSOROQUTFN and CURSORMOVEDFN in much the same way as
you did for CURSORINFN. The function that is the value of the
property BUTTONEVENTFN, however, can be specialized to
respond in different ways, depending on which mouse button is
pressed. This is explained in the next section.

BUTTONEVENTFN is another property of a window. The function
that is stored as the value of this property is called when the
mouse is inside the window, and a mouse button is pressed As
an example of how to use it, type:

274

WINDOWS AND REG-ONS

WINDOWS

N
~d
-
N
-

(WINDOWPROP MY .WINDOW 'BUTTONEVENTFN
(FUNCTION SCREAMER))

When the mouse cursor is moved into the window, bells will ring
because of the CURSORINFN, but it will also ring bells when
either the left or middle mouse button is pressed. Notice that
the right mouse button functions as it usually does, with the
window manipulation menu. If only the left button should
evoke the function SCREAMER, then the function can be written
to do just this, using the function MOUSESTATE, and a form that
only MOUSESTATE understands, ONLY. For example:

(DEFINEQ
(SCREAMER2 (WINDOWNAME)
(if (MOUSESTATE (ONLY LEFT))
then (RINGBELLS})))

In addition to (ONLY LEFT), MOUSESTATE can also be passed

(ONLY MIDDLE} {ONLY RIGHT) or combinations of these

(e.g. (OR (ONLY LEFT) (ONLY MIDDLE))). You do not need
to use ONLY with MOUSESTATE for every application. ONLY
means that that button is pressed and no other.

If you do write-a function using (ONLY RIGHT), be sure that
your function also checks position of the mouse cursor. Even if
you want your function to be executed when the mouse cursor is
inside the window and the right button is pressed, there is a
convention that the function DOWINDOWCOM should be executed
when the mouse cursor is in the title bar or the border of the
window and the right mouse button is pressed. Please program
your windows using this tradition! For more information, please
see the Interlisp-D Reference Manual, Volume 3, Chapter 28,
Pages 7 and 28. '

Please refer to the Interlisp Reference Manual, Volume 3,
Chapter 28, for more detail and other important functions.

ooking at a window's properties

INSPECT is a function that displays a list of the properties of a
window, and their values. Figure 27.3 shows the INSPECT
function run with MY .WINDOW. Note the properties introduced
in CREATEW: WBORDER is the window's border, REG is the
region, and WTITLE is the window's title.

27.2 Regions

A region is a record, with the fields LEFT, BOTTOM, WIDTH, AND
HEIGHT. LEFT and BOTTOM refer to where the bottom left hand
corner of the region is positioned on the screen. WIDTH and
HEIGHT refer to the width and height of the region.

CREATEREGION creates an instance of a record of type REGION.
Type:
(SETQ MY.REGION (CREATEREGION 15 100 200 450))

WINDOWS AND REGIONS

275

REGIONS

to create a record of type REGION that denotes a rectangle 200
pixels high, and 450 pixels wide, whose bottom left corner is at
position (15, 100). This record instance can be passed to any
function that requires a region as an argument, such as
CREATEW, above.

276

WINDOWS AND REGIONS

28. WHAT ARE MENUS?

While Interlisp-D provides a number of menus of its own (see
Section 7.1, Page 7.2), this section addresses the menus you wish
to create. You will learn how to create a menu, display a menu,
and define functions that make your menu useful.

Menu's are instances of records (see Chapter 24). There are 27
fields that determine the composition of every menu. Because
Interiisp-D provides defauit vaiues for most of these descrintive
fields, you need to familiarize yourself with only a few that we
describe in this section.

Two of these fields, the TITLE of your menu, and the {TEMS you
wish it to contain, can be typed into the Interlisp-D Executive
window as shown below:

Interlisp~D Executive Window
MIL
33<(2ETY MY¥ . MENU (CREATE MENU
TITLE « "FLEASE CHOO3E OME 0OF THE

ITEM2"
ITEMZ « "({QUIT MEXT-QUESTION
MEXT-TOPIC SEE-TORICE)))
{MENUI#54, 143548
34«

Figure 28.1. Creating a menu _

Note that creating a menu does not display it. MY.MENU isset to
an instance of a menu record that specifies how the menu will
look, but the menu is not dispiaved.

28.1 Displaying Menus

Typing either the MENU or ADDMENU functions will display your
menu on the screen. MENU implements pop-up menus, like the
Background Menu or the Window Menu. ADDMENU puts menus
into a semi-permanent window on the screen, and lets you select
items from it.

(MENU MENU POSITION) pops-up a menu at a particular
position on the screen.

Type:
(MENU MY _MENU NIL)

to position the menu at the end of the mouse cursor Note that
the POSITION argument is NIL. in order to go on, you must
either choose an item, or move outside the menu window and

WHAT ARE MENUS?

281

DISPLAYING MENUS

press a mouse button. When you do either, the menu will
disappear. If you choose an item, then want to choose another,
the menu must be redisplayed.

(ADDMENU menu window pasition) positions a permanent
menu on the screen, or in an existing window.

Type:

(ADDMENU MY .MENU)

to display the menu as shown in Figure 28.2. This menu will
remain active, (will stay on the screen) without stopping all the
other processes. Because ADDMENU can display a menu without
stopping all other processes, it is very popular in users programs.

If window is specified, the menu is displayed in that window. If
window is not specified, a window the correct size for the menu
is created, and the menu is displayed in that window.

If position is not specified, the menu appears at the current
position of the mouse cursor.

...
...

B8PLEASE CHOOSE ONE OF THE ITEMSS
AUIT
HEXT-QUESTION
MNEXT-TOPIC
SEE-TOPICS

Figure 28.2. A Simple Menu, displayed with ADDMENU.

28.2 Getting Menus to DO Stuff

One way to make a menu do things is to specify more about the
menu items. Instead of items simply being the strings or atoms
that will appear in the menu, items can be lists, each list with
three elements. (See Figure 28.3.) The first element of each listis
what will appear in the menu; the second expression is what is
evaluated, and the results of the evaluation returned, when the
item is selected; and the third expression is the expression that
should be printed in the Prompt window when a mouse button is
held down while the mouse is pointing to that menu item. This
third item should be thought of as help text for the user. If the
third element of the list is NIL, the system responds with "“Will
select this item when you release the button™.

282

WHAT ARE MENUS?

GETTING MENUS TO DO STUFF

Top-level -- Gannected ta {DSK}<LISPFILES>PRIMER>IMD

NIL
17« (SETQ MY.MENUZ (CREATE MENU

TITLE « "PLEASE CHOO2E OME 0OF THE ITEMS®

ITEMS « " {{QUIT
{PRINT "STOPPEO")
"CHOOSE THIS Ta 3TOP*)

{NEXT-0UESTION
{PRINT “HERE IS THE MEZT QUESTION...")
"CHODSE THIZ TO BE ASKED THE MEXT QUESTION®)

PNEAT-TOPIC
[PRINT "HEFE I3 THE MEXT TOPIGC...")
“CHOOZE THIS TO MOYE ON TQ THE MEXT SUBJECT™)

(3EE-TOPICS
{PRINT "THE FOLLOWING HA&YE NOT BEEN LEARMED"
"CHOOSE THIS TO SEE THE TOPICE NOT YET LEARMED®))))
[MEMUY#55, 75859
15+ (ADDMENU MY . MENUZ)
[WINGOWI#53, 175320

13+

PLEASE GHOOSE ONE OF THE ITEMS
QuIT
AMEXT-QUESTION
NEXT-TOPIC
SEE-TOQRICS

Figure 28.3. Creating a menu that will do things, then displaying it with the
function ADDMENU

Now when an item is selected from MY .MENU2, something will
happen. When a mouse button is held down, the expression
typed as the third element in the item's specification will be
printed in the Prompt window. (See Figure 28.4.)

Window

HERE I8 THE NEXT QUESTION

SEE.TOPICS

Figure 28.4. Mouse Button Held Down While Mouse Cursor Selects
NEXT-QUESTION

When the mouse button is released (i.e. the item is selected) the
expression that was typed as the second element of the item's
specification will be run. (See Figure 28.5.)

rompt Wwindow

HQuIT
HANE X TAQUESTION
HAMEX T-TOPIC k

8 TTY window for MOUSE
"HERE I3 THE MEXT QUESTION..."

Figure 28.5. NEXT-QUESTION Selected

WHAT ARE MENUS? 283

GETTING MENUS TO DO STUFF

28.2.1 The WHENHELDFN and WHENSELECTEDFN fields of a menu

(DEFINEQ

(SELECTQ ITEM.SELECTED

Another way to get a menu to do things is to define functions,
and make them the values of the menu's WHENHELDFN and
WHENSELECTEDFN fields. As the value of the WHENHELDFN
field of a menu, the function you defined will be executed when
you press and hold a mouse button inside the menu. As the
value of the WHENSELECTEDFN field of a menu, the function you
defined will be executed when you choose a menu item. This
example has the same functionality as the previous example,
where each menu item was entered as a list of three items.

As an example, tyvpe in these two functions so that they can be
executed when the menu is created and displayed:

MY .MENU3 .WHENHELD (ITEM.SELECTED MENU.FROM BUTTON.PRESSED)

(QUIT (PROMPTPRINT "CHOOSE THIS TO STOP®))
(NEXT-QUESTION (PROMPTPRINT "CHOOSE THIS TO BE ASKED THE NEXT QUESTION"))
(NEXT-TOPIC (PROMPTPRINT "CHOOSE THIS TO MOVE ON TO THE NEXT SUBJECT"))
SEE-TOPICS (PROMPTPRINT "CHOOSE THIS TO SEE THE TOPICS NOT YET LEARNED"))
ERROR (PROMPTPRINT "NO MATCH FOUND")))))

(DEFINEQ (MY.MENU3.WHENSELECTED (ITEM.SELECTED MENU.FROM BUTTON.PRESSED)
(SELECTQ ITEM.SELECTED

(QUIT (PRINT "STOPPED"))
(NEXT-QUESTION (PRINT "HERE IS THE NEXT QUESTION..."))
NEXT-TOPIC (PRINT "HERE IS THE NEXT TOPIC..."))

SEE-TOPICS (PRINT "THE FOLLOWING HAVE NOT BEEN LEARNED..."))
ERROR (PROMPTPRINT "NO MATCH FOUND")))))

(SETQ MY.MENU3 (CREATE MENU
TITLE « "PLEASE CHOOSE ONE OF THE ITEMS®
ITEMS « '(QUIT NEXT-QUESTION NEXT-TOPIC SEE-TOPICS)
WHENHELDFN « (FUNCTION MY .MENU3.WHENHELD)
WHENSELECTEDFN « (FUNCTION MY.MENU3.WHENSELECTED)))

(1
(2)
(3)

- Now, to create the menu, type:

"~ Type

(ADDMENU MY .MENU3)
to see your menu work.

Now, due to executing the WHENHELDFN function, holding
down any mouse button while pointing to a menu item will
display an explanation of the item in the prompt window. The
screen will once again look like Figure 28.4 when the mouse
button is held when the mouse cursor is pointing to the item
NEXT-TOPIC.

Now due to executing the WHENSELECTEDFN function, releasing
the mouse button to select an item will cause the proper actions
for that item to be taken. The screen will once again look like
Figure 28.5 when the item NEXT-TOPIC is selected.

The crucial thing to note is that the functions you defined for
WHENHELDFN and WHENSELECTEDFN are automatically given
the following arguments:

the item that was selected, ITEM.SELECTED;
the menu it was selected from, MENU.FROM:;
and the mouse button that was pressed BUTTON.PRESSED.

Note: these functions, MY _MENU3 . WHENHELD and
MY _MENU3 . WHENSELCTED, were guoted using FUNCTIOR
instead of QUOTE both for program readability and so that the

284

WHAT ARE MENUS?

GETTING MENUS TO DO STUFF

compiler can produce faster code when the program is compiled.
It is good style to quote functions in Interlisp by using the
function FUNCTION instead of QUOTE.

28.3 Looking at a menu's fields

INSPECT is a function that displays a list of the fields of a menu,
and their values. The Figure 28.6 shows the various fields of
MY .MENU3 when the function (INSPECT MY.MENU) was called.
Notice the values that were assigned by the examples, and all the
defaults. ”

3G« (INEPECT MY . MENIIS

JIMDOW #EL, S465E4

9« 04 pecto

ITEMWIDTH 148

ITEMHEIGHT 1z

IMAGEWIDTH 157

THAGEHE IGHT =

HEMUREGIOMLEFT @

MENUREGIOMBOTTON 4

IMAGE {RINDUW HER L, 1EEL5A
2AVETMABE NIL

ITEMZ (QUIT MEXT-QUESTIOW MEXT-TORIC ZEE-T
HMENUROYWS 4 -
MERUCOLUNNS 1

NMENUGRID (11 135 1:2)
CENTERFLEB MIL
CHANGEOFFIETFLE MIL

MEMUFONT
TITLE
NENUOFFIET (e .
WHEMSELECTEDFN WA
MEMUBORDERSIZE 9
MEHUOUTLIMESIZE 1
WHEMHELDFN MY MEMUS WHENHELD
MENUPOSITION HIL

q WHEMUMHELOFM CLRPROMPT

{ MENUUSERDATA MIL
 MEMUTITLEFONT MIL

RURITEMFN MIL

J MEMUFEEDBALKFLE NIL

{ SHADEDITEMS MIL

CRIPTORT &0, 171269
CHOMZE CME GF THE [TEmE”

WHEMZELECTED

Figure 28.6. The Fields of MY.MENU3

WHAT ARE MENUS? 285

LOOKING AT A MENU'S FIELDS

[This page intentionally left blank]

286 WHAT ARE MENUS?

Todraw

To erase

To work on a different section

29. - BITMAPS

A bitmap is a retangular array of dots. The dots are called pixels
(for picture elements). Each dot, or pixel, is represented by a
single bit. When a pixel or bitis turned on (i.e. that bit setto 1), a
black dot is inserted into a bitmap. If you have a bitmap of a
floppy on your screen, (Figure Figure 29.1), then all of the bits in
the area that make up the floppy are turned on, and the
surrounding bits are turned off.

FLOPPY

file hesckup-
3/5/8b

ON

J

o,

Y

Figure 29.1. Bitmap of a Floppy
BITMAPCREATE creates a bitmap, even though it can't be seen.

(BITMAPCREATE width height)

If the width and height are not supplied, the system will prompt
you for them.

EDITBM edits the bitmap. The syntax of the functionis:

(EDITBM bitmapname)
Try the following to produce the results in Figure 29.4:

SETQ MY.BITMAP gBITHAPCREATE 60 40))
EDITBM MY _.BITMAP)

In the bitmap, move the mouse into the gridded section of the
bitmap editor, and press and hold the left mouse button. Move
the mouse around to turn on the bits represented by the spaces
in the grid. Notice that each space in the grid represents one
pixel on the bitmap

Move the mouse into the gridded section of the bitmap editor,
and press and hold the center mouse button. Move the mouse
around to turn off the bits represented by the spaces in the
gridded section of the bitmap editor.

Point with the mouse cursor to the picture of the actual bitmap
(the upper left corner of the bitmap editor). Press and hold the

BITMAPS

291

BITMAPS

To end the session

left mouse button. A menu with the single item, Mave will
appear. (See Figure 29.2.) Choose this item.

Bitmap Editor

Figure 29.2. Move the mouse cursor to the picture of the bitmap. Press and hold
the left mouse button, and the Move menu will appear.

You will be asked to position a ghost window over the bitmap.
This ghost window represents the portion of the bitmap that you
are currently editing. Place it over the section of the bitmap that
you wish to edit. (See Figure 29.3.)

Figure 29.3. After you choose move, you will be asked to position a ghost
window like this one. Position it by clicking the left mouse button when the
ghost window is over the part of the picture of the bitmap you would like to edit.
Bring the mouse cursor into the upper-right portion of the
window (the grey area) and press the center button. Select 0K
from the menu to save your artwork.

BITMAPS

BITMAPS

BR7«[GETQ MY.B3ITM&P [BITMAPCREATE 5@ 4@))

(MY BITMAF reset)

{BITHMAP}#R3,132R30

S3«(EQITEOM MY.BITHAR)

Bitmap Ed!tor] *

Figure 29.4. Editing a Bitmap

BITBLT is the primitive function for moving bits (or pixels) from
one bitmap to another. It extracts bits from the source bitmap,
and combines them in appropriate ways with those of the
destination bitmap. The syntax of the function is:

(BITBLT sourcebitmap sourceleft sourcebottom
destinationbitmap destinationleft destinationbottom width
height sourcetype operation texture clippingregion)

Here's how it's done - using MY .BITMAP as the sourcebitmap and
MY .WINDOW as the destinationbitmap:

(BITBLT MY.BITMAP NIL NIL
MY WINDOW NIL NIL NIL NIL 'INPUT 'REPLACE)

Note that the destination bitmap can be, and usually is, a
window. Actually, it is the bitmap of a window, but the system
handles that detail for you. Because of the NILs (meaning “use
the default"), MY.BITMAP will be BITBLT'd into the lower right
hand corner of MY WINDOW. (See Figure 29.5.)

BITMAPS

293

BITMAPS

sourcebitmap

sourceleft

sourcebottom

destinationbitmap

destinationleft

destinationbottom

width

height

sourcetype

B3<(BITBLT MY . BITMAP NIL MIL MY @INOOW NIL NIL WIL NIL “IMPUT "REPLACE)
T

CREEM MY SRS T WINDOW

Figure 29.5. BITBLTing a Bitmap onto a Window

Here is what each of the BITBLT arguments to the function
mean:

the bitmap to be moved into the destinationbitmap

a number, starting at 0 for the left edge of the sourcebitmap,
that tells BITBLT where to start moving pixels from the
sourcebitmap. For example, if the leftmost 10 pixels of
sourcebitmap were not to be moved, sourceleft should be 10
The default value is 0.

a number, starting at 0 for the bottom edge of the
sourcebitmap, that tells BITBLT where to start maoving pixels
from the sourcebitmap. For example, if the bottom 10 rows of
pixels of sourcebitmap were not to be moved, sourcebottom
should be 10 The default valueis Q.

the bitmap that will receive the sourcebitmap. This is often a
window (actually the bitmap of a window, but Interlisp-D takes
care of that for you).

a number, starting at 0 for the left edge of the
destinationbitmap, that tells BITBLT where to start placing
pixels from the sourcebitmap. For example, to place the
sourcebitmap 10 pixels in from the left, destinationleft should be
10. The default valueis 0.

a number, starting at 0 for the bottom edge of the
destinationbitmap, that tells BITBLT where to start placing
pixels from the sourcebitmap. For example, to place the
sourcebitmap 10 pixels up from the bottom, destinationbottom
should be 10. The default value is 0.

how many pixels in each row of sourcebitmap shouid be moved.
The same amount of space is used in destinationbitmap to
receive the sourcebitmap. If this argument is NIL, it defaults to
the number of pixels from sourceleft to the end of the row of
sourcebitmap.

how many rows of pixels of sourcebitmap should be moved. The
same amount of space is used in destinationbitmap to receive
the sourcebitmap. If this argument is NiL, it defaults to the
number of rows from sourcebottom to the top of the
sourcebitmap. :

refers to one of three ways to convert the sourcebitmap for
writing. For now, just use ' INPUT.

BITMAPS

BITMAPS

operation

texture

ciippingregion

refers to how the sourcebitmap gets BITBLT'd on to the
destinationbitmap. "REPLACE will BLT the exact sourcebitmap.
Other operations allow you to AND, OR or XOR the bits from the
sourcebitmap onto the bits on the destinationbitmap.

Just use NIL for now.
just use NIL for now.

For more information on these operations, see the Interlisp-D
Reference Manual, Volume 3, Chapter 27, Page 14.

Sourcebitmap, sourceleft, sourcebottom, destinationbitmap,
destinationleft, destinationbottom, width and height are shown
in Figure 29.6.

Destination Bitmap

Source Bitmap

FLOPRY

file b m:kup -
3/5/8b

{OR

~,

Source left, Source bottom. The "xy" coordinates in
terms of the source. (0 0 for the whole source).

Destination left, Destination Bottom. The "x y"
coordinates in terms of the destination bitmap.
(0 0 to put the source bitmap in the left bottom

corner of the destination bitmap).

Figure 29.6. BITBLT ed Bitmap of a Floppy

B8ITMAPS

295

BITMAPS

[This page intentionally left blank]

296 . BITMAPS

30. | DISPLAYSTREAMS

A displaystream is a generalized "place to display”. They
determine exactly what is displayed where. One example of a
displaystream is a window. Windows are the only displaystreams
that will be used in this chapter. If you want to draw on a bitmap
that is not a window, other than with BITBLT, or want to use
other types of displaystreams, please refer to the Interlisp-D
Reference Manual, Volume 3, Chapter 27.

This chapter explains functions for drawing on displaystreams:
DRAWLINE, DRAWTO, DRAWCIRCLE,, and FILLCIRCLE. In
addition, functions for locating and changing your current
position in the displaystream are covered: DSPXPOSITION,
DSPYPOSITION, and MOVETO.

30.1 Drawing on a Displaystream

30.1.1 DRAWLINE

Examples will show you how the functions for drawing on a
display stream work. First, create a window. Windows are
displaystreams, and the one you create will be used for. the
exampies in this chapter. Type:

(SETQ EXAMPLE.WINDOW (CREATEW))

DRAWL INE draws a line in a displaystream. For example, type:
(DRAWLINE 10 15 100 150 5 'INVERT EXAMPLE.WINDOW)
The resuits should look like this:

Figure 30.1. The line drawn onto the displaystream, EXAMPLE. WINDOW

DISPLAYSTREAMS

301

DRAWING ON A DISPLAYSTREAM

x1and y1
x2 and y2
width

operation

stream

30.1.2 DRAWTO

The syntax of DRAWLINE is
(DRAWLINE x1y1 x2 y2 width operation stream 1)

The coordinates of the left bottom corner of the displaystream
are00.

are the x and y coordinates of the beginning of the line;
are the ending coordinates of the line;
is the width of the line, in pixels

is the way the line is to be drawn. INVERT causes the line to
invert the bits that are already in the displaystream. Drawing a
line the second time using INVERT erases the line. For other
operations, see the Interlisp-D Reference Manual, Volume Il
Page 27.15.

is the displaystream. In this case, you used a window.

X

y
width

operation

stream

DRAWTO draws a line that begins at your current position in the
displaystream. For example, type:

(DRAWTO 120 135 5 'INVERT EXAMPLE.WINDOW)
The results should look like this:

Figure 30.2. Another line drawn onto the displaystream, EXAMPLE WINDOW.
The syntax of DRAWTO is

(DRAWTO x y width operation stream 1)

The line begins at the current position in the displaystream.

is the x coordinate of the end of the line;

is the y coordinate of the end of the line;

is the width of the line

is the way the line is to be drawn. INVERT causes the line to
invert the bits that are already in the displaystream. Drawing a
line the second time using INVERT erases the line. For other
operations, see the Interlisp-D Reference Manual, Volume i,
Page 27 15.

is the displaystream. In this case, you used a window.

302

DISPLAYSTREAMS

DRAWING ON A DISPLAYSTREAM

30.1.3 DRAWCIRCLE

centerx
centery
radius
brush

dashing

stream

30.1.31 FILLCIRCLE

DRAWCIRCLE draws a circle on a displaystream. To use it, type:
(DRAWCIRCLE 150 100 30 '(VERTICAL 5) NIL EXAMPLE.WINDOW)
Now your window, EXAMPLE WINDOW, should look like this:

O

Figure 30.3. The circle drawn onto the displaystream, EXAMPLE WINDOW.
The syntax of DRAWCIRCLE is

(DRAWCIRCLE centerx centery radius brush dashing stream)

is the x coordinate of the center of the circle

is the y coordinate of the center of the circle

is the radius of the circle in pixels

is a list. The first item of the list is the shape of the brush. Some
of your options include ROUND, SQUARE, and VERTICAL. The
second item of that list is the width of the brush in pixels.

is a list of positive integers. The brush is "on" for the number-of
units indicated by the first element of the list, "off" for the
number of units indicated by the second element of the list. The
third element specifies how long it will be on again, and so forth.
The sequence is repeated until the circle has been drawn.

is the displaystream. In this case, you used a window.

FILLCIRCLE draws a filled circle an a displaystream. To use it,
type:

(FILLCIRCLE 200 150 10 GRAYSHADE EXAMPLE.WINDOW)

EXAMPLE. WINDOW now looks like this:

DISPLAYSTREAMS

303

DRAWING ON A DISPLAYSTREAM

centerx
centery
radius

texture

stream

Figure 30.4. A filled circle drawn onto the displaystream, EXAMPLE. WINDOW.
The syntax of FILLCIRCLE is

(FILLCIRCLE centerx centery radius texture stream)
is the x coordinate of the center of the circle

is the y coordinate of the center of the circle

is the radius of the circle in pixels

is the shade that will be used to fill in the circle. Interlisp-D
provides you with three shades, WHITESHADE, BLACKSHADE,
and GRAYSHADE. You can also create your own shades. For
more information on how to do this, see the Interlisp-D
Reference Manual, Volume lll, Page 27.7.

is the displaystream. In this case, you used a window.

There are many other functions for drawing on a displaystream.
Please refer to the Interlisp-D Reference Manual, Volume lII,
Chapter 27.

Text can also be placed into displaystreams. To do this, use
printing functions such as PRIN1 and PRIN2, but supply the
name of the displaystream as the "file" to print to. To place the
text in the proper position in the displaystream, see Section 30.2,
Page 30.4.

30.2 Locating and Changing Your Position in a Displaystream

There are functions provided to locate, and to change your
current position in a displaystream. This can help you place text,
and other images where you want them in a displaystream. This
primer will only discuss three of these. There are others, and
they can be found in the Interlisp-D Reference Manual, Volume
Il, Chapter 27.

304

DISPLAYSTREAMS

LOCATING AND CHANGING YOUR POSITION IN A DISPLAYSTREAM

30.2.1 DSPXPOSITION

30.2.2 DSPYPOSITION

DSPXPOSITION is a function that will either change the current
x position in a displaystream, or simply report it. To have the
function report the current x position in EXAMPLE WINDOW,
type:

(DSPXPOSITION NIL EXAMPLE.WINDOW)

DSPXPOSITION expects two arguments. The first is the new x
position. If this argument is NIL, the current position is not
changed, merely reported. The second argument is the
displaystream.

30.2.3 MOVETO

DSPYPOSITION is an analogous function, but it changes or
reports the current y position in a displaystream. As with
DSPXPOSITION, if the first argument is a number, the current y
position will be changed to that position. Ifitis NIL, the current
position is simply reported. To have the function report the
current y position in EXAMPLE.WINDOW, type:

(DSPYPOSITION NIL EXAMPLE.WINDOW)

X

y
stream

The function MOVETO always changes your position in the
displaystream. It expects three arguments:

(MOVETOQ x y stream)
is the new x position in the display stream
is the new y position in the display stream

is the display stream. The examples so far have used a window.

DISPLAYSTREAMS

305

LOCATING AND CHANGING YOUR POSITION iN A DISPLAYSTREAM

[This page intentionally left blank]

306 DISPLAYSTREAMS

31. FONTS

This chapter explains fonts and fontdescriptors, what they are
and how to use them, so that you can use functions requiring
fontdescriptors.

You have already been exposed to many fonts in Interlisp-D. For
example, when vou use the structure editor, DEdit, (See Section
11.3.), you noticed that the comments were printed in a smaller
font than the code, and that CLISP words (See Section 13.1, Page
13.1.) were printed in a darker font than the other words in the
function. These are only some of the fonts that are available in
Interlisp-D.

In addition to the fonts that appear on your screen, Interlisp-D
uses fonts for printers that are different than the ones used for
the screen. The fonts used to print to the screen are called
DISPLAYFONTS. The fonts used for prining are called
INTERPRESSFONTS, or PRESSFONTS, depending on the type of
printer.

31.1 What makes up a FONT?

CLASSIC
MODERN
TERMINAL

BOLD
MEDIUM or REGULAR

ITALIC
REGULAR

Fonts are described by family, weight, slope, width, and size.
This section discusses each of these, and describes how they
affect the font you see on the screen.

Family is one way that fonts can differ. Here are some examples
of how “family" affects the look of a font:

This family makes the word "Able" look like this: Able
This family makes the word "Able" look like this: Able
This family makes the word "Able" look like this: Able

Weight also determines the look of a font. Once again, “Able"
will be used as an example, this time only with the Classic family.
A font's weight can be:

and look like this: Able
and look like this: Able

The slope of a font is italic or regular. Using the Classic family
font again, in a regular weight, the slope affects the font like
this:

looks like this: Able

looks tike this: Able

FONTS

31

WHAT MAKES UP A FONT?

MRR
MIR
BRR

BIR

STANDARD

ITALIC
BOLD
BOLDITALIC

The width of a font is called its "expansion”. It can be
COMPRESSED, REGULAR, or EXPANDED.

Together, the weight, slope, and expansion of a font specifies
the font's "face". Specifically, the face of a font is a three
element list:

(weight slope expansion)

To make it easier to type, when a function requires a font face as
an argument, it can be abbreviated with a three character atom.
The first specifies the weight, the second the slope, and the third
character the expansion. For example, some common font faces
are abbreviated:

This is the usual face, MEDIUM, REGULAR, REGULAR;
makes an italic font. It stands for: MEDIUM, ITALIC, REGULAR;

makes a bold font. The abbreviation means: BOLD, REGULAR,
REGULAR;

means that the font should be both bold and italic. BIR stands
for BOLD, ITALIC, REGULAR.

The above examples are used so often, that there are also more
mnemonic abbreviations for them. They can also be used to
specify a font face for a function that requires a face as an
argument. They are:

This is the usual face: MEDIUM, REGULAR, REGULAR. It was
abbreviated above, MRR;

This was abbreviated above as MIR, and specifies an italic font;
of course, makes a bold font. It was abbreviated above, BRR;

means that the font should be both bold and italic: BOLD,
ITALIC, REGULAR. It was abbreviated above, BIR.

A font also has a size. It is a positive integer that specifies the
height of the font in printers points. A point is, on an 1108
screen, about 1/72 of aninch. On the screen of an 1186, a pointis
1/80 of an inch. The size of the font used in this chapter is 10. For
comparison, here is an example of a TERMINAL, MRR, size 12
font: Able.

31.2 Fontdescriptors, and FONTCREATE

For Interlisp-D to use a fort, it must have a fontdescriptor. A
fontdescriptor is a datatype in Interlisp-D that that holds all the
information needed in order to use a particular font. When you
print out a fontdescriptor, it looks like this:
{FONTDESCRIPTOR}#74,45540

Fontdescriptors are created by the function FONTCREATE. For
example,

{ FONTCREATE 'HELVEVICA 12 'BOLD)

312

FONTS

FONTDESCRIPTORS, AND FONTCREATE

creates a fontdescriptor that, when used by other functions,
prints in HELVETICA BOLD size 12. Interlisp-D functions that
work with fonts expect a fontdescriptor produced with the
FONTCREATE function.

The syntax of FONTCREATE is:

(FONTCREATE famiiy size face)

Remember from the previous section, face is either a three
element list, (weight slope expansion), a three character atom
abbreviation, e.g. MRR, or one of the mnemonic abbreviations,
e.g. STANDARD.

If FONTCREATE is asked to create a fontdescriptor that already
exists, the existing fontdescriptor is simply returned.

31.3 Display Fonts - Their files, and how to find them

Display fonts require files that contain the bitmaps used to print
each character on the screen. All of these files have the
extension .DISPLAYFONT. The file name itself describes the font
style and size that uses its bitmaps. For example:

MODERN12 .DISPLAYFONT
contains bitmaps for the font family MODERN in size 12 points.

Initially, these files are on floppies. The files that are used most
often should be copied onte a directory of your hard disk or
fileserver. Usually, this directory is called FONTS.

Wherever you put your .DISPLAYFONT files, you should make this
one of the values of the variable DISPLAYFONTDIRECTORIES.
Its value is a list of directories to search for the bitmap files for
dispiay fonts. Usually, it contains the "FONT" directory where
you copied the bitmap files, the device {FLOPPY}, and the
current connected directory. The current connected directory is
specified by the atom NIL. Here is an example value of
DISPLAYFONTDIRECTORIES:

Interlisp-D. Executive Window
NIL
a-0IZPLAYVFONTDIRECTORIES
({02K1<LIZPFILEZFONTS> {D3K
{FLOPPY}F MIL

DEK F<LIZPFILES:

'Y 'y

Qs

Figure 31.1. A value for the atom DISPLAYFONTDIRECTORIES. when
looking for a .DISFLAYFONT file. the system will check the FONT directory on the
hard disk, then the top ievel directory on the hard disk, then the floppy, then the
current connected directory.

FONTS

INTERPRESS FONTS - THEIR FILES, AND HOW TO FIND THEM

31.4 Interpress Fonts - Their files, and how to find them

Interpress is the format that is used by Xerox laser printers. These
printers normally have a resolution that is much higher than that
of the screen: 300 points perinch.

In order to format files appropriately for output on such a
printer, Interlisp must know the actual size for each character
that is to be printed. Thisis done through the use of width files
that contain font width information for fonts in Interpress
format. Initially, these files (with extension .WD) are on floppies.
The files should be copied onto a directory of your hard disk or
fileserver.

For Interpress fonts, you should make the location of these files
one of the values of the variable
INTERPRESSFONTDIRECTORIES. Its valueis a list of directories
to search for the font widths files for Interpress fonts. Hereis an
example value of INTERPRESSFONTDIRECTORIES:

Interlisp-D Executive Window

MIL
12+INTERPRESZFONTRIRECTORIESR

(DK}

13+

Figure 31.2. A value for the atom INTERPRESSFONTDIRECTORIES.
When looking for a font widths file for an Interpress font, Interlisp-D will check
the hard disk.

31.5 Functions for Using Fonts

31.5.1 FONTPROP - Looking at Font Properties

FAMILY

SIZE

It is possible to see the properties of a fontdescriptor. This is
done with the function FONTPROP. For the following examples,
the fontdescriptor used will be the one returned by the function
(DEFAULTFONT "DISPLAY). In other words, the
fontdescriptor examined will be the default display font for the
system.

There are many properties of a font that might be useful for you.
Some of these are:

To see the family of a font descriptor, type:

(FONTPROP (DEFAULTFONT 'DISPLAY) 'FAMILY)

As above, this is a positive integer that determines the height of
the font in printer's points. As an example, the SIZE of the
current default fontis:

FONTS

FUNCTIONS FOR USING FONTS

ASCENT

DESCENT

HEIGHT
FACE

31.5.2 STRINGWIDTH

Interlisp-D Executwe Wlnduw

MIL

RL«{FONTPROP (DEFAULTFONT “DISPLAY)
*217ES

18 A

Rre

T

Figure 31.3. The value of the font property SIZE of the default font

The value of this property is a positive integer, the maximum
height of ‘any character in the specified font from the baseline
(bottom). The top of the tallest character in the font, then, will
be at (BASEL!NE + ASCENT - 1). For example, the ASCENT of the

Aafarils Famt ion
getauit ront 13

Interlisp-D Executive Window

MIL

63« (FONTPROP (DEFAULTFOMT "DISPLAY)
"ASCENMT)

9

G5«

Figure 31.4. The value of the font property ASCENT of the default font

The DESCENT is an integer that specifies the maximum number
of points that a character in the font descends below the
baseline (e.g. letters such as "p" and "g" have tails that descend
below the baseline.). The bottom of the lowest character in the
font will be at (BASELINE - DESCENT). To see the DESCENT of the
default font, type:

(FONTPROP (DEFAULTFONT 'DISPLAY) *DESCENT)
HEIGHT is equal to (DESCENT - ASCENT).

The value of this property is a list of the form, {weight slope
expansion). These are the weight, slope, and expansion
described above. You can see each one separately, also. Use the
property that you are interested in, WEIGHT, SLOPE, or
EXPANSION, instead of FACE as the second argument to
FONTPROP.

For other font properties, see the Interlisp-D Reference Manual,
Volume Ill, Pages 27.27 - 27.28.

it is often useful to see how much space is required to print an
expression in a particular font. The function STRINGWIDTH
does this. For example, type: "

(STRINGWIDTH “Hi there!" (FONTCREATE 'GACHA 10 'STANDARD))
The number returned s how many left to right pixels would be
needed if the string were printed in this font. (Note that this

FONTS

FUNCTIONS FOR USING FONTS

doesn't just work for pixels on the screen, but for ail kinds of
streams. For more information about streams, see Chapter 30.)
Compare the number returned from the example call with the
number returned when you change GACHA to TIMESROMAN.

31.5.3 DSPFONT - Changing the Font in One Window

The function DSPFONT changes the font in a single window. As
an example of its use, first create a window to write in. Type:

(SETQ MY_FONT.WINDOW {CREATEW))

in the interlisp-D Executive window. Sweep out the window. To
print something in the default font, type:

(PRINT "HELLO MY.FONT.WINDOW)

in the Interlisp-D Executive window. Your window,
MY .FONT.WINDOW, will look something like this:

HELLO

Figure 31.5. HELLO, printed with the defauit font in MY . FONT. WINDOW
Now change the font in the window. Type:
(DSPFONT (FONTCREATE 'HELVETICA 12 'BOLD) MY.FONT.WINDOW)

in the Interlisp-D Executive window. The arguments to
FONTCREATE can be changad to create any desired font. Now
retype the PRINT statement, and your window will look
something like this:

Interlisp-D Executive Window

MIL
32+iD3PFOMT (FONTCREATE "HELWETICH
12 "soLn)
MY FONT WINDOY)
{FOMTOEACRIPTOR y#78, 1714584
I3«(PEINT “HELLO MY . FONT . WINDOW)
HELLD

HELL
HELLO

Figure 31.6. The font in MY.FONT WINDOW, changed
+ha

Notice the font has been changed!

FONTS

FUNCTIONS FOR USING FONTS

31.5.4 Globally Changing Fonts

There is a library package to globally change the fonts in all the
windows. To use it, first load BIG.DCOM. (See Section 8.6, Page
8.4 for how to load a file.)

To change fonts in all windows using the package BIG.DCOM,
type
(NEWFONT < keyword>)

There are four keywords for size of fonts to specify. They are
HUGE, BIG, STANDARD, and MEDIUM. For example:

(NEWFONT 'BIG)

sets the fonts in ALL the windows to be a larger size. Note: this
package changes the fonts everywhere, including the editor
window and system menus. it is particularly useful to change the

size of the font for demos.

31.5.5 Personalizing Your Font Profile

Interlisp-D keeps a list of default font specifications. This list is
used to set the font in all windows where the font is not
specifically set by the user (Section 31.5.3). The value of the atom
FONTPROFILE is this list. (See Figure 31.7.)

A FONTPROFILE is a list of font descriptions that certain system
functions access when printing output. It contains specifications
for big fonts (used when pretty printing a function to type the
function name), small fonts {used for printing comments in the
editor), and various other fonts.

FONTS

317

FUNCTIONS FOR USING FONTS

Interlisp-D Executive Window

E3+«FONTPROFILE
[(DEFSULTFONT 1 (GACHA 1)
(GHCHA B3
(TERMINAL 323
{BOLOFONT 2 (HELYETICA 1@ BRR)
THELYETICA & BRRE)
(MODERM & BRE))
(LITTLEFONT 3 (HELYETICA 3)
(HELWETIC® & WIR)
(MODERM 2 MIR}
(BIGFONT 4 (HELWETICE 12 BRE)
(HELWETICS LG BRE)
(MODERN 1@ BFREY)
{USERFONT BOLDFONT:
(COMMENTFONT LITTLEFUMT)
(LAMBDAFOMT BIRFONMT:
{3YVITEMFONT)
(CLISPFONT BOLOFOMT
(CHANGEFONT
CPRETTYCOMFONT BOLDFONMT)
(FOMTL DEFAULTFOMT
(FOMTZ BOLODFONMT}
CFONTS LITTLEFONMT
(FOMTY BIGFONMT)
(FONTR & (HELWETICH 1
(HELWETIC® 3 B
(WMODERMN & BIR))
(FOMTE B {HELWETICA 1@ BRR)
{HELYETICA & BRRE)
(MODERMN 3 BRR))
(FONT? 7 (GA&CH& 12)
LEACHA 120

TTERMINAL 1207073

@ BIR)
IR

Fde

Figure 31.7. The value of the atom FONTPROFILE

The list is in the form of an association list. The font class names,
(e.g. DEFAULTFONT, cr BOLDFONT) are the keywords of the
association list. When a number follows the keyword, it is the
font number for that font class.

The lists following the font class name or number are the font
specifications, in a form that the function FONTCREATE can use.
The first font specification list after a keyword is the specification
for printing to windows. The list, (GACHA 10), in the figure
above is an example of the defauit specification for the printing
to windows. The last two font specification lists are for Press and
Interpress file printing, respectively. For more information, see
the Interlisp-D Reference Manual, Volume 3, Chapter 27.

Now, to change your default font settings, change the value of
the variable FONTPROFILE. Interlisp-D has a list of profiles
stored as the value of the atom FONTDEFS. Choose the profile to
use, then install it as the default FONTPROFILE.

Evaluate the atom FONTDEFS and notice that each profile list
begins with a keyword. (See Figure 31.8) This keyword
corresponds tc the size of the fonts included. BIG, SMALL, and
STANDARD are sorne of the kaywords for profiles on this list -
SMALL and STANDARD appear in Figure 31.8.

FONTS

FUNCTIONS FOR USING FONTS

[[SMaLL (FONTPROFILE
(DEFAULTFOMYT 1 (TERMIMAL
3
{GACHA 3)
_ (TERMINAL 3))
(BOLOFONT 2 (MODEREM 3 BRR)
(HELWETICA 3 BRR)
(MODERM 8 BRER)
(LITTLEFZMT 3
{MODERMN S MIR)
{HELWETICS 3 MIE)
(MODERN & MIE))
{TINYFONT & (MODERN &)
(BaCHS B
CMOERM B
(BIGFONT 4 ({#IDERM 10 BRER)
(HEWLETICS 18 BER)
(MOOERM 18 BER)
{TEATFONT & (CLA32IC 197
{ TIMESROMEN 16}
[OLAZSIC 187
(TEATBOLDFONMT 7
(CLASSIC 168 BRR)
{ TIMESROMAN
18 BRR)
(CLASSIC 16 BER]

-

[3TAMDARD (FONTPROFILE
(OEFAULTFONT 1

Figure 31.8. Part of the value of the atom FONTDEFS

To install a new profile from this list, follow the following
exampie, but insert any keyword for BIG.

To use the profile with the keyword BIG instead of the standard
one, evaluate the following expression
(FONTSET 'BIG))

Now the fonts are permanently replaced. (That is, until another
profile is installed.)

FONTS 319

FUNCTIONS FOR USING FONTS

[This page intentionally left biank]

3110 FONTS

32. THE INSPECTOR

The Inspector is a window-oriented tool designed to examine
data structures. Because Interlisp-D is such a powerful
programming environment, many types of data structures would
be difficult to see in any other way.

32.1 Calling the Inspector

Take as an exampie an object defined through a sequence of
pointers (i.e. a bitmap on the property list of a window on the
property list of an atomin a program.)

To inspect an object named NAME, type:
(INSPECT 'NAME)

If NAME has many possible interpretations, an option menu will
appear. For example, in Interlisp-D, a litatom can refer to both
an atom and a function. For example, if NAME was a record, had
a function definition, and had properties on its property list,
then the menu would appear as in Figure 32.1.

FIELDS
Figure 32.1. Option Window For Inspection of NAME

If NAME were a list, then the option menu shown in Figure 32.2
would appear. The optionsinclude:

calling the display editor on the list;
calling the TTY editor (the “Typing Shortcuts”, Chapter 6);

seeing the list's elements in a display window. If you choose this
option, each element in the list will appear in the right column of
the Inspector window. The left column of the Inspector window
will be made up of numbers. (See Figure 32.3.)

inspecting the list as a record type (this last option would
produce a menu of known record types). If you choose a record
type, the items in the list will appear in the right column of the
Inspector window. The left column of the Inspector window wili
be made up of the field names of the record.

DisplayEdit
Tty Edit
Inspeact

A3 arecord

Figure 32.2. Option Window For Inspection of List

THE INSPECTOR

321

USING THE INSPECTOR

32.2 Using the Inspector

(INSPEGT -ME-TOO 1 INSPEGT -
1 INSPECT-ME-TOO1
2 INSPECT-ME-TOOZ
INSPECT-ME-TO03

The expression read will be E
VYalLuated.

" CHAMGED - ALUE,
(INSPEGT -ME-TOO1 INSPEGT -

[M3PECT-ME-TOOL
INSPECT-ME-TOOZ
[NSPECT-ME-TO03

) o =

(INSPEGT -ME-TOO1 INSPEGT ~
1 INSPECT-ME-TOOL

2 IMSPECT-ME-TOOZ
CHANGED-YALUE

If you choose to display your data structure in an edit window,
simply edit the structure and exit in the normal manner when
done. If you choose to display the data structure in an inspect
window, then follow these instructions:

To select an item, point the mouse cursor at it and press the left
mouse button.

Items in the right column of an Inspector window can themselves
be inspected. To do this, choose the item, and press the center
mouse button.

ltems in the right column of an Inspector window can be
changed. To do this, choose the corresponding item in the left
column, and press the center mouse button. You will be
prompted for the new value, and the item will be changed. The
sequence of stepsis shown in Figure 32.3.

The item in the left column is selected, and the middle mouse
button pressed. Select the SET option from the menu that pops

up.

You will then be prompted for the new value. Typeitin.

The item in the right column is updated to the value of what you
typedin.

Figure 32.3. The sequence of steps involved in changing a value in the right
column of an Inspector window.

32

.3 Inspector Example

This example will use ideas discussed in Section 37.1. An
example, ANIMAL.GRAPH, is created in that section. You do not
need to know the details of how it was created, but the structure
will be examined in this chapter.

If you type
(INSPECT ANIMAL.GRAPH)

and then choose the Tnspect option from the menu, a display
appears as shown in Figure 32.4. ANIMAL.GRAPH is heing

THE INSPECTOR

INSPECTOR EXAMPLE

inspected as a list. Note the numbers in the left column of the
inspector window.

(((FISH & NIL NIL NIL --) (BIRD & NIL NIL --) (CAT & M

1 ({FI3H & MNIL NIL --} (BIRD & NMIL NIL
27

3 MIL
4 NIL
5 NIL
& NIL
7 MNIL
3 MIL
9 NIL
1@ MNIL
11 NIL
12 WNIL

Figure 32.4. Inspector Window For ANIMAL.GRAPH, inspected as a list.

If you choose the "As A Record" option, and choose "GRAPH"
from the menu that appears, the inspector window looks like
Figure 32.5. Note the fieldnames in the left column of the
inspector window. ’

(((FISH & NIL NIL NIL --) (BIRD & NIL NIL --) (CAT & NIL --) (BOG & --) (& --) --)
GRAPH. CHANGELABELFN NIL
GR&PH. INYERTLABELFN NIL
GRAPH. INYERTBORDERFM MIL
GRAPH.FOMTCHANGEFM HIL
GRAPH.OELETELIMKFHN MIL

GRAPH. BOOLIMKFM MIL

GRAPH.OELETENODEFNM MIL

GR&PH. 800MOGEFM MIL

GR&PH. MOYENODEFM MIL

DIRECTEDFLG NIL

SIDESFLG T

GRAPHMODES COFIZH & MIL NIL --7 (BIRD & MIL MIL

Figure 32.5. Inspector Window For ANIMAL.GRAPH, inspected as an instance of a
"GRAPH" record.

The remaining examples will use ANIMAL.GRAPH . inspected as a
list. When the first item in the Inspector window is chosen with
the left mouse button, the Inspector window looks like Figure
32.6.

(C(FISH & MNIL NIL MIL --) (BIRD & NIL NIL --) (CAT & NI

1
2 T

3 NIL
a4 MIL
5 MIL
£ MIL
7 MNIL
2 NIL
3 MIL
18 NIL
11 MIL
12 MIL

Figure 32.6. Inspector Window For ANIMAL.GRAPH With First Element Selected

When you use the middle mouse button to inspect the seiected
list element, the display looks like Figure 32.7.

" THE INSPECTOR 2

INSPECTOR EXAMPLE

((FISH (102, 44) NIL NIL NiL --) (BIRD (102 , 2@) NIL NI

1

g NIL 1 {FIEIH §1@2 . 443 MIL MIL NIL —-;.

E NIL 2 I}%_IRU‘!_']JB?. . ‘."_3‘1 MIL MNIL MIL ==

2 NIL 3 (CaT 1_18'§ . 22% NIL MIL MIL --)

& NIL 4 (DOG (1385 . 7 NIL MIL NIL -=1

,3 NIL g {(MAMMSL DOG CAT) (,193.:_14) PJ;L MIL
'lm NIL) ((AMIMAL 4 BIRD FIZH) (22 . Z3) NMIL
11 MIL

12 MIL

Figure 32.7. Inspector Window For ANIMAL.GRAPH and For the First Element of
ANIMAL.GRAPH -

Now you can see that six items make up the list, and you can
further choose to inspect one of these items. Notice that this is
also inspected as a list. As usual, it could also have been
inspected as a record.

Select item 5 - MAMMAL DOG CAT - with the left mouse button.
Press the middle mouse button. Choose "Inspect” to inspect
your choice as a list. The Inspector now displays the values of the
structure that makes up MAMMAL DOG CAT. (See Figure 32.8.)

((MamMMAL DOG CAT) (109, 14) N
(MAMMAL OOG C&T)

(189 . 14)

NIL

MIL

NIL

45

O JR N B o IV SRR Sl S

()
o
3
[l
I=

(T
{(SNIMAL & BIRD FISH)
{FONTCLASS 279, 172764
MMM

12 NIL

[l S)
=

Figure 32.8. Inspector Window for Element 5 From Figure 32.7 That Begins
((MAMMAL DOG CAT).

324

THE INSPECTOR

33. MASTERSCOPE

Masterscope is a tool that allows you to quickly examine the
structure of complex programs. As your programs enlarge, you
may forget what variables are global, what functions call other
functions, and so forth. Masterscope keeps track of this for you.

Suppose that JVTO is the name of a file that contains many of the
functions involved in a complex system and that LINTRANS is the
file containing the remaining functions. The first step is to ask
Masterscope to analyze these files. These files must be loaded.
All Masterscope queries and commands begin with a period
followed by a space, as in

. ANALYZE FNS ON JVTO

The ANALYZE process takes a while, so the system prints a period
on the screen for each function it has analyzed. (See Figure 33.1.)

.......................... done !
B3+, AMNALYZE FN3 OMN LINTEAMS i

... done!

Figure 33.1. The Interiisp-D Executive Window after analyzing the files

If you are not quite sure what functions were just analyzed, type
the file's COMS variable {See Section 11.5, Page 11.7.} into the
Interlisp-D Executive Window. The names of the functions
stored on the file will be a part of the value of this variable.

A variety of commands are now possible, all referring to
individual functions within the analyzed files. Substantial
variation in exact wording is permitted. Some commands are:

. SHOW PATHS FROM ANY TO ANY

. EDIT WHERE ANY CALLS functionname
. EDIT WHERE ANY USES variablename
. WHO CALLS WHOM

. WHO CALLS functionname

. BY WHOM IS functionname CALLED

. WHO USES variablename AS FIELD

Note that the function . is being called to invoke each
command. Refer to the Interlisp-D Reference Manual for
commands not listed here.

Figure 33.2 shows the Interlisp-D Executive Window after the
commands . WHO CALLS GobbleDump and . WHO DOES
JVLinScan CALL.

MA

wy

=4

m

RSCOPE

MASTERSCOPE

NIL

77+, WHO CALLZE GobbhleDump

IvdumpTOo)

73, WHO DOES JVLinIcan CaLL
(Lin3can J¥CTrable JVTOtabhle)
7G9e,

{WchaprerTO I¥dgd JWrndefT0 J¥ni1T0 Oofrg3pes GobbleFlush Sobhleltring

Figure 33.2. Sample Masterscope Qutput

33.1 The SHOW DATA command and GRAPHER

When the library package GRAPHER is loaded, (to load this
package, type (FILESLOAD GRAPHER).) Masterscope's
SHOWPATHS command is modified. The command will be
changed to generate a tree structure showing how the
program's functions interact instead of a tabular printout into
the Interlisp-D Executive window. For example, typing:

. SHOW PATHS FROM ProcessEND.
produced the display shown in Figure 33.3.

. . v T e R
sastBeginTagstr iy == -
N i N G2 TP op

w t Az storProp

T AConeatliztWithipacs
foncatr s tf——floncatlizt]

FrocessEND f'

N, ReadBeq inEnd €

FrantError

PTOI
Toapply

Printiarning

Figure 33.3. SHOW PATHS Display Example

All the functions in the display are part of this analyzed file or a
previously analyzed file. Boxed functions indicate that the
function name has been duplicated in another place on the
display.

Selecting any function name on the display will pretty print the
functionin a window. (See Figure33.4.)

MASTERSCOPE

THE SHOW DATA COMMAND AND GRAPHER

THS FROM ProcessEND

Fr -ﬁces-.:EH[lé'

o~ meErr--r

kb
FrintWarning b
Tapply :

“Frintlarning
S

[Srowser print out window
il {GetMyPro
[LAMBDA {(nropname) Ok adited: “18-MAP-32 014"

[Get&ncestorProp propname (CAR TOIstack])

Figure 33.4. Browser Printout Exampi

Selecting it again with the left mouse button will produc

e a

description of the function's role in the overall system. (See
Figure 33.4.)

Con: "L"'UWH"Q‘“-

hetBeginTagitrang {::::1

G2t PP i i3 T 0 2 5T 0P
ConcatListiithSpaces
{l‘r-nn stbList f——loneatList|

Gt Trupe

T —~ParzeLrzt

FrocessEND f

“Re 3dBé g nEnd -q,__—

fi5eti: Trops]
- T-PrintErrar el Printarning
Tapplu

Brovsser describe window

3 [GetMyProp propnane

B ca GetancestorPropg

called by: CheckPlainEND,FrintE0FMarning,
Godrgipec,GetBaginTagdtring,

GetfyldrFirstProg, ProcessEND
uses frze: TOIlstack

Figure 33.5. Browser Descnptnon Example

33.2 Databasefns: Automatic Construction and Upkeep of a Masterscope

Database

DataBaseFns is a separate library package that ailows you

to

automatically construct and maintain Masterscope databases of
your files. The package is contained in the DATABASEFNS.DCOM

file.

When DATABASEFNS.DCOM is loaded, a Masterscope database
will be automatically maintained for every file whose.DATABASE

MASTERSCOPE

333

DATABASEFNS: AUTOMATIC CONSTRUCTION AND UPKEEP OF A MASTERSCOPE DATABASE

property has the value YES. If this property’s value is not set, you
will be asked when you save the file "Do you want a Masterscope
Database for this file?". Saying YES enables the DabaBaseFns to
construct a Masterscope database of the file you are saving.

Each time the function MAKEFILE is used on a file whose
DATABASE property has a value YES, Masterscope will analyze
your file and update its own database. Each file's masterscop
database is kept in a separate file whose name has the form
FILE.DATABASE. Whenever you load a file with a YES value for
its DATABASE property, you will be asked whether you also want
the database file loaded.

MASTERSCOPE

'34.WHERE DOES ALL THE TIME GO?
SPY

SPY is an Interlisp-D library package that shows you where you
spend vour time when you run your system. It is easy to learn,
and very useful when trying to make programs run faster.

34.1 How to use Spy with the SPY Window

The function SPY .BUTTON brings up a small window which you
wiil be prompted to position. Using the mouse buttons in this
window controls the action of the SPY program. When you are
not using SPY, the window appears as in Figure 34.1.

Figure 34.1. The SPY window when SPY is not being used.

Tc use SPY, click either the left or middle mouse button with the
mouse cursor in the SPY window. The window will appear as in
Figure 34.2, and means that SPY is accumulating data about your
program.

Figure 34.2. The SPY window when SPY is being used.

"To turn off SPY after the program has run, again click a mouse
button in the SPY window. The eye closes, and you are asked to
position another window. This window contains SPY's results.
An example of result window is shown in Figure 34.3.

WHERE DOES ALL THE TIME GO? SPY 341

HOW TO USE SPY WITH THE SPY WINDOW

0%, 100% cumuiative:T)

—fian “-,EUN_F[IFZMg

)

«}.1 " REFEATEDLYEWAL §T]

1 ERR[IRSE_‘I}——

S13 4 SECOND

—F STGCE.um

7 BACKGROUND. PROCESS|

R4 O IRTVEALKGROUNG 4

Figure 34.3. The window produced after running SPY

This window is scrollable in two directions, horizontally, and
vertically. This is useful, since the whole tree does not fit in the
window. [f a part that you want to see is not shown, then you
can scroll the window to show the part you want to see.

34.2 How to use SPY from the Lisp Top Level

SPY can also be run while a specific function or system is being
used. To do this, type the function WITH.SPY:

(WITH.SPY form)

The expression used for form should be the call to begin running
the function or system that SPY is to watch. If you watch the SPY
window, the eye will blink! To see your results, run the function
SPY_.TREE. Todo this, type:

(SPY.TREE)

The results of the last running of SPY will be displayed. If you do
this, and SPY.TREE returns (no SPY samples have been
gathered), your function ran too fast for SPY to follow.

34.3

Interpreting SPY's Results

Each node in the tree is a box that contains, first, the percentage
of time spent running that particular function, and second, the
function name. There are two modes that can be used to display
this tree.

The default mode is cumulative. In this mode, each percentage is
the amount of time that function spent on top of the stack, plus
the amount of time spent by the functions it calls.

The second mode is individual. To change the mode to
individual, point to the title bar of the window, and press the
middie mouse button. Choose Individual from the menu that
appears. In this mode, the percentage shown is the amount of

time that the function spent on the top of the stack.

342

WHERE DOES ALL THE TIME GO? SPY

INTERPRETING SPY'S RESULTS

To look at a single branch of the tree, point with the mouse
cursor at one of the nodes of the tree, and press the right mouse
button. From the menu that appears, choose the option
SubTree. Another SPY window will appear, with just this branch
of thetreeinit.

Another way to focus within the tree is to remove branches from
the tree. To do this, point to the node at the top of the branch
you would like to delete. Press the middle mouse button, and
choose Celete from the menu that appears.

There are also different amounts of "merging" of functions that
can be donein the window. A function can be called by another
function more than once. The amount of merging determines
where the subfunction, and the functions that it calls, appear in
the tree, and how often. (For a detailed explanation of merging,
see the Lisp Library Packages Manual.)

WHERE DOES ALL THE TIME GO? SPY

343

INTERPRETING SPY'S RESULTS

[This page intentionally left blank]

344 WHERE DOES ALL THE TIME GO?> SPY

35. SKETCH

Sketch is a Xerox package that was developed for constructing
pictures. Unlike bitmaps, you do not need to draw every pixel for
the shape you want. One example will guide you through
various sketch capabilities. However, not everything that it can
do can be shown here. To learn more about it, refer to A User's
Guide to Sketch: The Interlisp Drawing System. The manual is
very clear, and contains many figures drawn with Sketch to
illustrate its points.

35.1 Starting Sketch

To start sketch, type (FILESLOAD SKETCH) into the Interlisp-D
Executive window. This loads the necessary files, and adds
SKETCH to the right button background menu (the menu that
appears when you press the right button of the mouse outside
any window).

Choose Sketch from this menu. You will be prompted to sweep
out a window. This window will hoid the figure that you draw.

35.2 Selecting Sketch elements

A sketch is a picture that consists of sketch elements. Each
element has one or more control points, that determine its
location, its shape, and other properties that determine how it
looks. Many times in the example that follows you will be asked
to select an element. You should first select a command to
perform on an element, then select one or more elements as
arguments for that command.

After a command is selected, each element displays a control box
showing where to click to select that element. To choose one
element, click the left mouse button when it is pointing to the
control box of the element. To choose a group of elements,
move the mouse to a point that is to the upper left of the group.
Press and hold down the left mouse button. Sweep out an area
that contains the control boxes of each element you would like
to select. Release the button to choose this area. ‘

You can always abort a selection by holding the left mouse
button down, moving the mouse cursor outside the Sketch
window, and then releasing the mouse button. Also note that if

SKETCH

SELECTING SKETCH ELEMENTS

you select a command and then press the left mouse button in
the sketch window, when the mouse cursor is not in the control
box of an element, the command is aborted.

35.3 Drawing with Sketch

If you haven't done so already, choose SKETCH from the
background menu, and sweep out a window. You will be
drawing the following picture:

Something from the
screen?

_

>
\

Figure 35.1. The completed figure thatwill be drawn as an example

You will use two menus extensively: the command menu for
sketch, which appears to the right of the sketch window (See
Figure 35.2.); and the default right button window menu, which
appears when you point the mouse cursor to the sketch
window's title bar, and hold down the right mouse button.

352 SKeT(H

DRAWING WITH SKETCH

Delete
Move #
Copy #

Change

 Viewer onto a sketch

QoL EIR0};

Group
UnGroup
Undo
Defaults *
Grid 2
|Move view?
HardCopy *
Put
Get

Figure 35.2. An example Sketch window, with its command menu

35.3.1 Simple Shapes: Circles, Ellipses, and Boxes

35.3.11 Drawing Circles

35.3.1.2 Ellipses

To draw a circie, choose the circie from the command menu. You
will be prompted for the point at the center of the circle, then a
point on the circle itself. Do this on your sketch to draw the head
of the man.

35.3.1.3 Boxes

To draw an ellipse, choose that shape from the command menu.
You will be promped for three points. The first is the center of
the ellipse. The second is the length of its long radius, and the
third is the length of its short radius. Do this twice, once for each
eye, or, if you prefer square eyes (or perhaps the frames of
glasses) see Section 35.3.1.3.

(n
(2)

A box can be added to a sketch by choosing the box from the
command menu. You will be asked to sweep out a box on the
sketch window Do this in the same way you sweep out a
window.

Choose the position of the corner of the box

Point to this spot with the mouse, and press and hold down its
left button

DRAWING WITH SKETCH

35.3.1.4

Changing a Box's Filling

(3)
(4)

Move the mouse until the box is the correct size and shape.

Release the left button to make this box appear.

35.3.2 Lines, Curves, and Arcs

If you chose to give your drawing glasses, you may want to make
them sunglasses by changing the filling of the box. To do this,
choose Change from the command menu, then select the boxes.
Choose Filling from the menu that will appear. Yet another
menu, one that shows the various fillings, will appear. Choose
one of those. Your stick man may now look like this:

Figure 35.3. The SKETCH man’s head, with glasses

35.3.21

A Single Line

35.3.2.2

A Series of Lines

(1

(2)

To add a single line to a sketch, to add the side bars to the
sunglasses for example,

Press and hold down the middle mouse button inside the sketch
window.

Move the mouse cursor so that it is pointing to the place where
the line should start, and release the middle mouse button.

Press and hoid the middie mouse button again, and move the
mouse until the mouse cursor is pointing to the place where the
line should end.

When you release the mouse button, the line will be placed
between the two endpoints.

(n
(2)

For the body of the man, you can draw a series of lines either
singly, or all at once. To add them all at once,

Choose the jagged line from the command menu.

Move the cursor to each point the line should go through, and
click the left button.

354

DRAWING WITH SKETCH

35.3.23

Drawing an Open Curve

(3)

When all of the points have been chosen, click the left button
outside the sketch window, and the line will appear.

Do this to form the body of the man. Your figure may now look
like this:

figure 35.4. The Man, with lines for his body, and giasses frames

35.3.24

An Arc

(M
(2)

(3)

The nose of the man is drawn with an open curve. To draw an
open curve,

Choose this item from the command menu.

Click the left button at each point that the curve should go
through.

When all the points have been chosen, click the left button
outside the sketch window, and the curve will appear.

(1

Part of a circle, a simple arc, works well for the mouth. To draw
anarg,

Choose the semi-circle from the command menu.

SKETCH

DRAWING WITH SKETCH

35.3.3 Closed Curves and Polygons

(2)
(3

(M
(2)

You will be prompted to choose the center point of the arc first.

The second point to choose determines both the radius and one
end of the arc.

The third point to be selected is the other end of the arc.

To add an arrowhead to the arc¢, or to change its angle, direction,
or another property,

Choose Change from the command menu;
Select one of the control points of the arc;

Choose the property of the arc that you would like to change
from the menu that appears.

Both of these elements make wonderful hands and feet. Select

" the appropriate item from the command menu. The polygon

looks like an angular closed shape (it is not the box), and the
closed curve is a closed curvey item.

For the polygon, select its vertices by clicking the left mouse
button at the appropriate points. Select them in the order that
the line should be drawn through them to create the structure.

For the closed curve, select the points that the curve should go
through in the same way. You can use either of these elements
to add hands and feet to the figure. It may now look like this:

SKETCH

DRAWING WITH SKETCH

Figure 35.5. The sketch, after the addition of an arc, closed curves, and polygons

35.4 Adding a Bitmap to a Sketch

(M

(2)

(3)
4)

(5

Toinsert a bitmap from the screen,

Make a caret appear by clicking the left button in the sketch
window.

Move the mouse cursor onto the grey background, and hold
down the COPY or the SHIFT key.

Choose Snap from the menu that will appear.

Sweep out the area of the screen that you would like to insert
into the sketch.

After you have done this, you will be prompted to "Move the
picture into place, and press the left button.” When you do this,
the bitmap will appear in your sketch.

SKETCH

ADDING A BITMAP TO A SKETCH

To continue drawing the example picture, do this, and place the
bitmap on top of the figure's raised hand. Your bitmap might
look something like this: ’

Figure 35.6. The man, holding a bitmap

To edit the bitmap, position the mouse cursor in the bitmap, and
press the left button. A menu will appear. Choose HAND.EDIT,
and you will be placed into the bitmap editor. Use this in the
normal way (for how to edit bitmaps, see Chapter 29).

35.5 To Add Text to a Sketch

You can either add text directly to a Sketch window, or you can
place text inside a text box. To add text directly, click the left
mouse button in the window, and a caret will appear. Anything
you type will appear at the caret. If the caret does not appear,
but a vertical line appears instead, you are inside a text element.
(If you type, the text will be added to the text element that
aiready exists. Another one wiil not be created.) To create a new

358 SKETCH

TO ADD TEXT TO A SKETCH

35.5.1 Editing Text

text element, move the mouse, and click the left button again, in
an area where there is no text.

If you prefer to begin by creating a box for the text, choose the
TextBox item from the command menu. Sweep out the area for
the box, and it will appear. Clicking the mouse inside this box

il cause

H . P |
will cause a vertical bar tc appear. Type, an

ype, and the text will be
placed at the caret. The text will be centered, and the lines will
wrap automatically. ‘

Moving the caret
Deieting a singie character

Deleting the word
Deleting a block of text
(1)

(2)

(3
Replacing a block of text

—~
—
~—

(2)
(3)

(M
(2)
(3

The editing commands to change text are much like those used
in TEdit. (see TEdit, Chapter 23).

to a certain point in the text, point the mouse to the new
position for the caret, and click the left button.

can be done with the backspace key. The character before the
caret will be deleted.

behind the caret is done by typing Controi-W.
is done with the following set of steps:
Move the caret to one end of the block of text;

Press and hold the right mouse button. Move the mouse so that
it points to the other end of the text. The text will be
highlighted.

Press the delete key.
is done by selecting the text as though itis to be deleted. Instead

- of pressing the delete key, simply type in the replacement text.

If the text is boxed, you can change either the box, or the text
inside it. Todo either,

Choose Change from the Sketch command menu{Figure 35.2)
Choose one of the corners of the box

From the menu that appears, choose "The text" to change the
text inside the box (for example, to change its font). The other

items on the menu are ways to change the box itself. Choose the
appropriate item for the change that you would like to make.

If the text is unboxed, you can choose to box the text, or to
change the entire text item in some-way (for example, to change
the font). To do either,

Choose Change from the Sketch command menu (Figure 35.2)
Select the control point of the text item

From the menu that appears, you can choose the appropriate
change for the text.

The final addition to the drawing then, is to add the little man’s
words by adding a text box. Do this, and perhaps an arc from the
box to the man, and your bitmap might look something like this:

SKETCH

359

TO ADD TEXT TO A SKETCH

mAHIzTory

a4

Something from the
screen?

Figure 35.7. The man, speaking

35.6 Editing a Sketch

Deleting an Item

To Move anitem

To Move multiple items

Choose the delete command, then select the item or items to be
deleted. These items will be removed from the sketch.

Select the Move command from the Sketch command menu. To
choose the control point of the element to be moved, press and
hold the left button of the mouse down over one of the control
points of the item. If there is more than one for the sketch item,
when you hold down the left button and move the mouse off of
the control point, the others should darken also. Release the left
button to choose this item. You'll then be prompted to move it
to its new location.

Select the move command, and select the group of control points
in the usual way (see section Section 35.2, above). Once they are

3510

SKE™CH

EDITING A SKETCH

Copying items

Changing the look of anitem

chosen, you will be prompted to move them to their new
location.

First, select the Copy command, then choose the item or items
you wish to copy. You will then be prompted to "Move the
figure into place, and press the left button.” A copy of the
item(s) will appear at the location you chase

Choose change, then choose the item(s) that the change should
affect. A menu will appear that includes such items as Size (to
change the thickness of the item) and Dashing (to change to a
dashed line from a solid line). Choose the change that you
would like to make.

Select the Group command to treat a set of items like a single
Sketch element. Choose the Sketch elements that should be in
the group. Untii you Ungroup them, this group of eiements wili
be treated as a single item. When you choose a command, such
as Delete, asingle control box will appear for the group.

35.7 Saving Your Work

When you are finished making a sketch, save it in a file by
choosing the PUT command. You will be prompted for a

filename. Type it in, and press <" when you are done. |If a
filename already appears after the prompt, and it is the correct
name, simpiy type <F. if it is not the correct filename, a back
space will delete a single character, and Control-W will delete
the word behind the cursor.

To stop sketch without saving your work, choose close from the
default right button menu (move the mouse cursor so that it
points to the title bar of the sketch window, and press the right
mouse button). You will be asked to press the left mouse button
to confirm that you want to stop. You will leave sketch without
saving your work. Otherwise, press any other mouse button to
continue without stopping.

To print a copy of your sketch, choose Hardcopy from the default
right button window menu. Often a printer can not accurately
print your drawing; don't be surprised if the hardcopy drawing
differs from the screen drawing.

35.8 To Continue a Sketch That Has Been Saved on a File

To continue a Sketch that has been saved on a file, open a Sketch
window, and choose Get from the command menu. You will be
prompted for a filename. Once it appears, you can continue
your work on the drawing. Using the function GET merges the
file with whatever is currently in the Sketch window. This will be

SKETCH

3511

TO CONTINUE A SKETCH THAT HAS BEEN SAVED ON A FILE

changed in future versions of Sketch, but for now, be careful
about using this command.

3512 SKETCH

36. FREE MENUS

Free Menu is a library package that is even more flexible than the
regular menu package. It allows you to create menus with
different types of items in them, and will format them as you
would like. Free menus are particularly useful when you want a
"fill in the form" type interaction with the user.

Each menu item is described with a list of properties and values.
The foilowing exampie wiil give you an idea of the structure of
the description list, and some of your options. The most
commaonly used properties, and each type of menu item will be
described in Section 36.2 and Section 36.3.

36.1 An Example Free Menu

Free menus can be created and formatted automatically! It is
done with the function FM.FORMATMENU This function takes
one argument, a description of the menu. The description is a
list of lists; each internal list describes of one row of the free

. menu. A free menu row can have more than one item in it, so

there are really lists of lists of lists! It really isn't hard, though, as
you can see from the following example:
(SETQ ExampleMenu

(FM. FORMATMENU

"(((TYPE TITLE LABEL TitlesDoNothing)
TYPE 3STATE LABEL Example3State}))

S

(zTYPE EDITSTART LABEL PressToStartEditing
ITEMS (EDITEM))

(TYPE EDIT ID EDITEM LABEL ""))

(WINDOWPROPS TITLE "Example Does Nothing"))))

The first row has 2 items in it; one is a TITLE, and the second is a
3STATE item. The second row also has 2 items. The second, the
EDIT item, is invisible, because its label is an empty string. The
caret will appear for editing, however, if the EDITSTART item is
chosen. Windowprops can appear as part of the description of
the menu, because a menu is, after all, just a special window.
You can specify not only the title with WINDOWPROPS, but also
the position of the free menu, using the "left" and "bottom™
properties, and the width of the border in pixels, with the
"border" property. Evaluating this expression will return a
window. You can see the menu by using the function OPENW.
The following exampie illustrates this:

FREE MENUS

AN EXAMPLE FREE MENU

38+ (2ETY ExampleMenu
(FH ., FORMATHENU ’||‘f UE TITLE LEBEL TitlesDoNaothing)

N STATE LMBEL Example3itats))
FE E_IIT TarT

LEBEL Fres:sToStartEditing

ITEMS (EQITENM})

(T%FE EOIT ID EDITEM LABEL ""))
(WIMDOWRRORPS

TITLE "Example Does Mathing"il))

(Exampleleny rezer)
TWIHNDOW}#E4,121404
59« (OPENY ExampleMenu)
{WINDOW}#6d, 121484
e,

Example Does’Nothing
TitlesDokothing Examplie3state
PressToltartEdit iny

Figure 36.1. An example free menu

The next example shows you what the menu looks like after the
EDITSTART item, PressToStartEditing, has been chosen.

Example Does Noth1ng
TitlezDaNothing Evample3ltate
Pr odrartEditing ,

Figure 36.2. Free menu after the EDITSTART item has been chosen

The following example shows the menu with the 3STATE item in
its T state, with the item highlighted (In the previous bitmaps, it
was in its neutral state.)

Example Does

JTit1ezDaoNathing [ELRREEREIL

APrezzTostartEditing

Figure 36.3. Free menu with the 3STATE item in its T state

Finally, Figure 36.4 shows the 3STATE item in its NIL state, with a
diagonal line through the item

Examp]e Dues Nath g

Fugure 36.4. Free menu wnth the 3STA TE item in its NiL state

If you would like to specify the layout yourself, you can do that
too. See the Lisp Library Packages Manual for more information.

36.2 Parts of a Free Menu Item

There are 8 different types of items that you can use in a free
menu. No matter what type, the menu item is easily described by
a list of properties, and values. Some of the properties you will

use most often are:

S

FREE MENUS

PARTS OF A FREE MENU ITEM

LABEL

TYPE

MESSAGE

ID

ITEMS

SELECTEDFN

Required for every type of menu item. It is the atom, string, or
bitmap that appears as a menu selection.

One of eight types of menu items. Each of these are described
below.

The message that will appear in the prompt window if a mouse
button is heid down over the item.

An item's unique identifier. An D is needed for certain types of
menu items.

Used to list a series of choices for an NCHOOSE item, and to list
the ID's of the editable items for an EDITSTART item.

The name of the function to be called if the item is chosen

36.3 Types of Free Menu Iltems

Momentary

TOGGLE

3STATE

TITLE

NWAY

Each type of menu item is described in the following list,
including an example description list for each one.

This is the familiar sort of menu item. When it is selected, the
function stored with it is called. A description for the function
that creates and formats the menu looks like this:

(TYPE MOMENTARY
LABEL Bl1ink-N-Ring
MESSAGE "Blinks the screen and rings bells”
SELECTEDFN RINGBELLS)

This menu item has two states, T and NIL. The default state is NIL,
but choosing the item toggles its state. The following is an
example description list, without code for the SELECTEDFN
function, for this type of item:

(TYPE TOGGLE

LABEL DwimDisable

SELECTEDFN ChangeDWIMState)
This type of menu item has 3 states, NUETRAL, T, AND NIL.
Neutral is the default state. T is shown by highlighting the item,
and NIL is shown with diagonal lines. The following is an
example description list, without code for the SELECTEDFN
function, for this type of item:

(TYPE 3STATE
LABEL CorrectProgramAl10rNoSpelling
SELECTEDFN ToggleSpellingCorrection)

This menu item appears on the menu as dummy text.
nothing when chosen. An example of its description:

(TYPE TITLE LABEL "Choices:")

A group of items, only one of which can be chosen at a time. The
items in the NWAY group should all have an ID field, and the ID's
should be the same. For example, to set up a menu that would
allow the user to chose between Helvetica, Gacha, Modern, and
Classic fonts, the descriptions might look like this (Once again,
without the code for the SELECTEDFN):

(TYPE NWAY ID FONTCHOICE

LABEL Helvetica
SELECTEDFN Changefont})

It does

FREE MENUS

363

TYPES OF FREE MENUITEMS

NCHOOSE

EDITSTART

EDIT

(TYPE NWAY ID FONTCHOICE
LABEL Gacha
SELECTEDFN ChangeFont)

{TYPE NWAY ID FONTCHOIC
LABEL Modern
SELECTEDFN Changefont)

(TYPE NWAY ID FONTCHOICE
LABEL Classic
SELECTEDFN Changefont)

This type of menu item is like NWAY except that the choices are
given to the user in a submenu. The list to specify an NCHOOSE
menu item that is analogous to the NWAY item above might
look like this:

(TYPE NCHOOSE
LABEL FontChoices
ITEMS (Helvetica Gacha Modern Classic)
SELECTEDFN ChangeFont)

When this type of menu item is chosen, it activates another type
of item, an EDIT item. The EDIT item or items associated with an
EDITSTART item have their iD’s listed on the EDITSTART's ITEMS
property. An example description listis:

(TYPE EDITSTART LABEL "Function to add?" ITEMS (Fn))

This type of menu item can actually be edited by you. Itis often
associated with an EDITSTART item (see above), but the caret
that prompts for input will also appear if the item itself is chosen.
An EDIT item follows the same editing conventions as editing in
Interlisp-D Executive window:

Add Characters by typing them at the caret.

Move the caret by pointing the mouse at the new position, and
clicking the left button.

Delete Characters from the caret to the mouse by pressing the
right button of the mouse. Delete a character behind the caret
by pressing the back space key.

Stop editing by typing a carriage return, a Control-X, or by
choosing another item from the menu.

An example description list for this type of item is:
(TYPE EDIT ID Fn LABEL "*)

364

FREE MENUS

37. THE GRAPHER

Grapher is a collection of functions for creating and displaying
graphs, networks of nodes and links. Grapher also aliows you to
associate program behavior with mcuse selection of graph
nodes. To ioad this package, type

(FILESLOAD GRAPHER)

Figure 37.1 shows a simple graph.

13« ZHOWGRAPH AMIMaL . GEAPH "AMIMAL GREAPH™)
{WINDOW T #BR, 151350
1d«,

ANIMAL GRAPH

_~FISH
AN IMAL<=——BIRD car b
e MAMMAL ==~ F

RS 2

Figure 37.1. ASimple Graph

In Figure 37.1 there are six nodes (ANIMAL, MAMMAL, DOG,
CAT, FISH, and BIRD) connected by five links.

A GRAPH is a record containing several fields. Perhaps the most
important field is GRAPHNODES - which is itself a list of
GRAPHNODE records. Figure 37.2 illustrates these data
structures. The window on top contains the fields from the
simple graph. The window on the bottom is an inspection of the
node, DOG.

THE GRAPHER

371

SAY IT WITH GRAPHS

19+ INIPECT

AMIMAL GRAPH)
'WINDHW’#bD 146479
PSRy (((FISH & ML MIL NIL --) (BIRD & NiL NIL -

GRAPH,CHANGELABELFN NIL
BR&PH.INVERTLAEELFN NIL
GRAPH. INVERTBORDERFN MIL
GRAPH.FOMTCHANGEFN NIL
GRAPH.DELETEL INKFN MNIL
GRAPH.ADDL INKFN HIL
GRA&FH . DELETENUODEFHN MIL
GRAPH. 20ONQDEFN HIL
GRAPH.MOYENDDEFM MIL
DIRECTEDFLE NIL
SI0ESFLG

GRAPHNODES

-) (CAT & NiL --

) (DOG & --) (& --) -~

NIL
oG

{FONTCLAZS#70, L7
{EMAMMAL ODG T_,

MIL
15
24
MIL
NIL
i1
D06

[]

DOG (138, 7) Nil. NIL NIL --} Inspector

:{ NODEBORDER

| NODELABEL

{ NODEFONT

] FROMNDDES

] TONODES

} NODEHEIGHT

J NODEWIOTH

§ NODELABELZHADE
{ NODELABELBITMAP
4 HODEPUSITION

J MODEID

-2

Figure 37.2. Inspecting a Graph and a Node

The GRAPHNODE data structure is described by its text (NODEID),
what goes into it (FROMNODES), what leaves it (TONODES), and
other fields that specify its looks. The basic model of graph
building is to create a bunch of nodes, then layout the nodes into
a graph, and finally display the resultant graph. This can be done
in @ number of ways. One is to use the function NODECREATE to
create the nodes, LAYOUTGRAPH to lay out the nodes, and
SHOWGRAPH to display the graph. The primer shows you two
simpler ways, but please see the Library Packages Manual for
more information about these other functions. The primer’s first
method is to use SHOWGRAPH to display a graph with no nodes or
links, then interactively add them. The second is to use the
function LAYOUTSEXPR, which does the appropriate
NODECREATES and a LAYOUTGRAPH, with a list.

The function SHOWGRAPH displays graphs and allows you to edit
them. The syntax of SHOWGRAPH is

(SHOWeRAPH graph window leftbuttonfn middlebuttonfn
topjustifyflg alloweditflg copybuttoneventfn)

Obviously the graph structure is very complex. Here's the easiest

way to create a graph.

SETQ MY.GRAPH NIL)
SHOWGRAPH MY .GRAPH "My Graph"™ NIL NIL NIL T)

T (SHOWERAEPH MY, GR&FH
'“[N[]U'.’}#t-!l,l4hl':u

"My Graph® MIL NIL MNIL TG

T ——

Figure 37.3. My Graph

372

THE GRAPHER

SAY IT WITH GRAPHS

Add a Node

Add a Link

You will be prompted to create a small window as in Figure
Figure 37.3. This graph has the title My Graph.

Hoid down the right mouse button in the window. A menu of
graph editing operations will appear asin Figure 37 4.

Cieleta Maode
Ao Link
Defete Link
Change |akbel
lakbel smaller
| label larger
<-» Directed
- Sides
Border

Shade

_=TOP
Figure 37.4. A Menu of Graph Editing Operations

Here's how to use this menu to:

Start by selecting Add Node. Grapher will prompt you for the
name of the node (See Figure 37.5.) and then its position.

MNode labei?

Figure 37.5. Grapher prompts for the name of the node to add after Add
Node is chosen from the graph editing menu.

Position the node by moving the mouse cursor to the desired
location and clicking a mouse button. Figure 37.6 shows the
graph with two nodes added using this menu.

Figure 37.6. Two nodes added to MY .GRAPH using the graph editing menu

Select Add Link from the graph editing menu. The Prompt
window will prompt you to select the two nodes to be linked.
(See Figure 37.7.) Do this, and the link will be added.
Prompt Wwindow . § N
Specify the T1ink by selecting t

_then the TO node,

second-node

Figure 37.7. The Prompt window will prompt you to select the two nodes to link.

THE GRAPHER

SAY IT WITH GRAPHS

Delete A Link

Delete A Node

Moving a Node

Select Delete Link from the graph editing menu. The Prompt
window will prompt you to select the two nodes that should no
longer be linked. (See Figure 37.8.) Do this, and the iink will be
deleted.

K1y Graph

first-node

second-node

Figure 37.8. The Prompt window will prompt you to seiect the two nodes that
should no longer be linked

Select Delete Node from the graph editing menu. The Prompt
window will prompt you to select the node to be deleted. (See
Figure 37.9.) Do this, and the node will be deleted.

Prompt Window
Select node to he deletad.

first-nods

gecond-node

Figure 37.9. The prompt to delete a node.

Select "Delete Node" from the graph editing menu. Choose a
node pointing to the it with the mouse cursor, and pressing and
holding the left mouse button. When you move the mouse
cursor, the node will be dragged along. When the node is at the
new position, release the mouse button to deposit the node.

The commands in this menu are easy to learn. Experiment with
them!

37.2 Making a Graph from a List

Typically, a graph is used to display one of your program's data
structures. Here is how that is done.

LAYOUTSEXPR takes a list and returns a GRAPH record. The
syntax of the function is

(LAYOUTSEXPR sexpr format boxing font motherd
personald familyd)

For example:

SETQ ANIMAL.TREE '(ANIMAL (MAMMAL DOG CAT) BIRD YISH))
SETQ ANIMAL .GRAPH

374

THE GRAPHER"

MAKING A GRAPH FROM A LIST

(LAYQUTSEXPR ANIMAL.TREE 'HORIZONTAL)})
{ SHOWGRAPH ANIMAL .GRAPH "My Graph"™ NIL NIL NiL T)

This is how Figure 37.1 was produced.

37.3 Incorporating Grapherinto Your Program

The Grapher is designed to be built into other programs. It can
call functions when, for example, a mouse button is ciicked on a
node. The function SHOWGRAPH does this:

(SHOWGRAPH graph window leftbuttonfn middlebuttenfn
topjustifyflg alloweditflg copybuttoneventfn)

For example, the third argument to SHOWGRAPH, /eftbuttonfn, is
a function that is called when the left mouse button is pressed in
the graph window. Try this:

(DEFINEQ (MY.LEFT.BUTTON.FUNCTION

(THE .GRAPHNODE THE .GRAPH . WINDOW)
(INSPECT THE .GRAPHNODE)))

(SHOWGRAPH FAMILY.GRAPH "Inspectable family"
(FUNCTION MY.LEFT.BUTTON.FUNCTION)
NIL NIL T)

In the example above, MY_.LEFT_BUTTON.FUNCTION simply
calls the inspector. Note that the function should be written
assuming it will be passed a graphnode and the window that
holds the graph. Try adding a function of your own.

37.4 More of Grapher

Some other Library packages make use of the Grapher. (Note:
Grapher needs to be loaded with the packages to use these
functions.)

MASTERSCOPE: The Browser package modifies the Masterscope
command, . SHOW PATHS, so that its output is displayed as a
graph (using Grapher} instead of simply printed.

GRAPHZOOM: allows a graph to be redisplayed larger or smaller
automatically. :

THE GRAPHER

375

MORE OF GRAPHER

[This page intentionally left blank]

376 THE GRAPHER

38. VIRTUAL KEYBOARDS, AND THE

KEYBOARD EDITOR
L |

There are 2 library packages, the Virtual Keyboards Package and
the Keyboard Editor, that make it possibie to change the
configuration of your keyboard. You can change the character
of your keyboard to the configuration of another keyboard
provided by the package, or you create an keyboard
configuration that is uniquely yours. ‘

If you don't want to change your keyboard, you can still simulate
having a different keyboard by using your mouse to select from a
keyboard displayed on the screen. Whichever way you choose,
they will work with any software package that requires keyboard
input. The following subsections demonstrate how to use the
Virtual Keyboards package and the Keyboard Editor package.

38.1 Using the Virtual Keyboards Package

Load the files VIRTUALKEYBOARDS.DCOM and
KEYBOARDEDITOR.DCOM. (See Section 8.6, Page 8.4 for how to
load a file) The right button background menu will display
another item cailed Keyboard. At the right of the Keyboard
item, you will notice a grey triangle. Hold down the mouse
button, with the Keyboard item blackened, and move the mouse
to "follow the arrow". Another menu (a submenu) will appear.
Using this submenu (and some of the submenu’s of those items)
is an easy and effective way to use this library package, and is
what will be done in this chapter.

To display a keyboard, choose "Display only” from the Keyboard
submenu. A menu of provided virtual keyboards will appear.
Right now, this includes: Default, European Logic, Math, Office,
Dvorak, Greek, Italian, Spanish,French, German, and Standard
Russian. Figure 38.1 shows an example of the Dvorak keyboard,
displayed by using this menu option.

VIRTUAL KEYBOARDS. AND THE KEYBOARD EDITOR

381

USING THE VIRTUAL KEYBOARDS PACKAGE

Figure 38.1. A Dvorak Keyboard displayed using the Virtual Keyboards Package

To use a key, point to it with the mousecursor , and click the left
mouse button. For upper case letters, hold down the shift key on
the keyboard while you choose the key on the screen with the
mouse.

To replace the character set of your hardware keyboard, choose
either “Switch keybhoard” or "Switch and display” from the
submenu of Keyboard on the background menu. Both of these
options replace the keyboard's character set, but "Switch and
display" will also show the keyboard on the screen, so that it can
be referenced for key placement. With either choice you must
choose the keyboard from a menu of the available keyboards.

38.2 Using the Keyboard Editor

If none of the keyboards is exactly what you want, you can use
the keyboard editor to create the keyboard you need. To do this,
notice that the "Edit" item of the submenu of the background
menu item "Keyboard” ALSO has a submenu! This menu's items
are:

New keyboard, defauit initial
New keyboard, other initial
Existing Keyboard

Choosing "Edit", without looking at its submenu, is the same as
choosing "New keyboard, default initial”. Unless you choose
"Existing keyboard" you will be promped for a name for your
new keyboard (existing keyboards have already been assigned
names).

As an example, choose "Edit” from the submenu of "Keyboard".
The keyboard editor will appear on your screen, as in figure
Figure 38.2.

38.2

VIRTUAL KEYBOARDS, AND THE KEYBOARD EDITOR

USING THE KEYBOARD EDITOR

CharSet Stop Quit Define

TNIFT i Y] Tor

LUCEDOLN LOCKIF EvENT

B 0B 4@ W Lo LU LYW TR COW S0B TIR 2RA 398 320 44 360
CEEEE B | oo F NN DU D DR B B B |
I N I IR
=ty - 3z B E b o b1 e | CH
CO N I DN R TR N R CI
SO A N T S R S S N L B |
TN T TR A O T o
R T oo LT u
R I D 2 T B Lo
wif i 3 H X h i 1 i - I
ISRVE I T R S A SR I | I R -
SOl I A N I 1 E -
IEREN I ¥ L ox {1 1 - 1 1 =
SN I | < Lov o1 b=+ _ b1
wip | = M 1 o= ¢ PP T % I I |
I | N 1 11 - i I |
h N I A I B I = 1

Mt

Tag
[
6;
[R50 _
a
SHIET
meTh B SPusE

Figure 38.2. The Keyboard Editor
To change a key, select it from the keyboard with the mouse. it
will be shown with a heavy black border.

To change the upper case character, hold the shift key down
while you select a key. For this example, hold down the shift key,
and select the number 6. The keyboard shouid look like this:

i | | |) I & | !

VIRTUAL KEYBOARDS, AND THE <EYBOARD EDITOR

383

USING THE KEYBOARD EDITOR

Figure 38.3. The Keyboard after the shifted 6 key is selected.

After you have chosen the key, you want to change, choose a
replacement character from the character menu above. (If you
want a character that is not shown on the character menu,
choose "CharSet" from command menu at the top. You will be
given a menu of the character sets available. Choose one of
these to see other characters.). The character you chose will
appear on the keyboard.

When you are done, choose either:
Define to add this keyboard to the menu of known keyboards.

Quit to exit the editor, and save the changes on the virtual
Keyboard. If you are editing an existing keyboard, the definition
of that keyboard will be changed. If you are editing a new
keyboard, the name you supplied for the keyboard will be added
to the list of known keyboards. You will be able to use the
commands, such as "Display Only", with your new keyboard.

Stop to exit the editor without changing the existing keyboard.

-

384

VIRTUAL KEYBOARDS, AND THE KEYBOARD ED!TOR

39. ICONW

Each window has a property, ICONW, that determines what icon
is used when you shrink the window. ICONW is a function that
can produce an interesting icon. It is usually called from the
ICONFN of a window and its syntax is:

(ICONW image mask)

See Section 27.1.2, Page 27.2 for how to include a function in a
window's property list.

Every icon is made from two bitmaps, an image and a mask. The
mask allows the background to show through some parts of the

image bitmap so that the image need not appear to be
rectangular.

As an example, create a bitmap called desk, by typing the
function

(SETQ DESK (EDITBM))

The image for the example bitmap DESK iooks like this:

x

Figure 39.1. The DESK bitmap

Now create the mask. Make the mask black everywhere that you
want to "mask" the background (everywhere the background
should not show through). Todo this, type:

(SETQ DESKMASK {EDITBM))
The mask for the example bitmap DESKMASK looks like this:

I

Figure 39.2. The DESKMASK bitmap
Now, to see theicon, type
(ICONW DESK DESKMASK)

into the Interlisp-D Executive Window. The resulting icon using
DESK and DESKMASK above looks like this:

Figure 39.3. The ICON that resultad from executing TCONW with the DESK and
DESKMASK bitmaps.

ICONW

391

ICONW

The Lisp Library Packages Manual describes some images, with
their associated masks, provided in the file STOCKICONS. They
incilude FOLDER and FOLDERMASK, which make a "file folder”
icon, PAPERICON and PAPERICONMASK, which make an icon
that looks like a piece of paper with the corner folded over, and
FILEDRAWER and FILESRAWERMASK that make an icon that
looks like the front of a filedrawer.

There is also a function to produce icons that include text. See
the Lisp Library Packages Manual for more information.

39.2

ICONW

L

F num
Control-J
T

D atom
A atom

P atom

u

Q
Control-N

40. TELERAID

Teleraid is a Library package. It has two purposes. One purpose
is to look at the virtual memory of another machine, when both
machines are on a network, and the other is to look inside a
SYSOUT file.

The file, TELERAID.DCOM, needs to be loaded to use Teleraid.
Type (FILESLOAD TELERAID).

4AND o ke v o o~ 114NM0 14'

When your 1108 maintenance panel does not say 1108 or
or your 1186 mouse cursor has changed to a number, you flrst
need to check your User's Guide to see what to do for your
particular problem. Usually the fix involves entering Teleraid. Do
this either by pressing the UNDO key, or, if that does not work,
press Control-Shift-Delete (all three at once). The mouse cursor
should change to a cursor that says “Teleraid”. Follow the
instructions in your User’s Guide.

When your 1108 is on a network, you can use teleraid to debug
an 1108 whose maintenence panel does not say 1108 or 1109.
First press the halted machine's UNDO key. This changes the
mouse cursor into “Teleraid”, and begins running the teleraid
server.

Run the function TELERAID, with the host name or pup address
of the machine running the Teleraid server as an argument. The
following teleraid commands are useful:

shows the stack.

shows the frame number num.

" shows the next frame of the stack.

shows the previous stack frame.

shows the function definition of atom. Returns 0if there is none.
shows the top level value of atom.

shows the property list of atom.

displays the screen’s bitmap of the machine running the teleraid
server.

quits teleraid without affecting the machine being debugged.

causes the machine being debugged to resume execution. Do
Not use this unless you are sure that the problem has been
solved.

There are many more commands available to you. See the Lisp
Library Packages Manual for more information.

TELERAID

40 1

TELERAID

[This page intentionally left blank]

40.2 TELERAID

41. RESOURCE MANAGEMENT

4>
-k
Y

Naming Variables and Records

You will find times when one environment simultanecusly hosts
a number of different programs. Running a demo of several
programs, or reloading the entire Interlisp-D environment from
floppies when it contains severai different programs, are two
examples that couid, if you aren't careful, provide a few
problems. Here are a few tips on how to prevent problems:

If you change the value of a system variable, MENUHELDWAIT for
example, or connect to a directory other than
{DSK}<LISPFILES>, write a function to reset the variable or
directory to its original value. Run this function when you are
finished working. This is especially important if you change any
of the system menus.

Don't redefine Interlisp-D functions or CLISP words.

Remember, if you reset an atom'’s vaiue or function definition at
the top level (in the Interlisp-D Executive Window), the message
(Some.Crucial.Function.Or.Variable redefined), appears. |If
this is not what you wanted, type UNDQ immediately!

If, however, you reset the value or function definition of an atom
inside your program, a warning message will not be printed.

Make the atom names in your programs as unique as possible.
To do this without filling your program with unreadable names
that noone, including you, can remember, prefix your variable
names with the initials of your program. Even then, check to see
that they are not already being used with the function BOUNDP.
For example, type:

(BOUNDP 'BackgroundMenu)

This atom is bound to the menu that appears when you press the
left mouse button when the mouse cursor is not in any window.
BOUNDP returns T. BOUNDP returns NIL ifits argument does not
currently have a value.

Make your function names as unique as possible. Once again,
prefixing function names with the initials of your program can
be helpful in making them unique, but even so, check to see that
they are not already being used. GETD is the Interlisp-D function
that returns the function definition of an atom, if it has one. If
an atom has no function definition, GETD returns NIL. For
example, type:

(GETD 'CAR)

RESOURCE MANAGEMENT

411

NAMING VARIABLES AND RECORDS

A non-NIL value is returned. The atom CAR already has a
function definition.

Use complete record field names in record FETCHes and
REPLACEs when your code is not compiled. A Complete record
field name is a list consisting of the record declaration name and
the field name. Consider the following example:

(RECORD NAME (FIRST LAST))
(SETQ MyName (create NAME FIRST « 'John LAST « 'Smith))
(FETCH (NAME FIRST) OF MyName)

Avoid reusing names that are field names of Interlisp-D System
records. A few examples of system records follow. Do not reuse
these names.

(RECORD REGION (LEFT BOTTOM WIDTH HEIGHT))
(RECORD POSITION (XCOORD YCOORD))
(RECORD IMAGEOBJ (- BITMAP -))

When you select a record name and field names for a new
record, check to see whether those names have already been
used.

Call the function RECLOOK, with your record name as an
argument, in the Interlisp-D Executive Window. (See Figure
41.1) If your record name is already a record, the record
definition will be returned; otherwise the function will return
NIL.

Interlisp=-D Executive Window

B@«({RECLOOK "POSITION)
{ RECORD
POSITION
(¥CO0ORD . wCOORD)
[TYPE? (&ND (LISTP DATUM)
{NUMBERP (AR DATUMI)
{NUMBERP (DR DATUM]
(IYSTEM))
1« (RECLOOK “MewPoz)
MIL

bZe

Figure 41.1. RECLOOK returns the record definition if its argument 15 already
declared as a record, NIL otherwise.

Call the function FIELDLOOK with your new field name in the
Interlisp-D Executive Window. (See Figure 41.2.) If your field
name is already a field name in another record, the record
definition will be returned; otherwise the function will return
NIL.

412

RESOURCE MANAGEMENT

NAMING VARIABLES AND RECORDS

Interlisp~D Executive Window

R4« (FIELOLOOK ~XCOORD)
{ (RECORD
POSITION
{XCOORD . YCOORD)
[TYPE? (AND (LISTP DATUM)
(MUMBERF (CaR DATUNMY)
{NUMBERP (COR DATUM]
CSYSTEMY D)
65« (FIELOLOOK *XPasz)

TELDLOOK returns the record definition if its argument is

[| T
a reduia ,HLLULI!CIWI)C

DN
-n

41.2 Some Space and Time Considerations

41.2.1 Global Variables

In order for your program to run at maximum speed, you must
efficiently use the space available on the system. The following
section points out areas that you may not know are wasting
valuable space, and tips on how to prevent this waste.

Often programs are written so that new data structures are
created each time the program is run. This is wasteful. Write
your programs so that they only create new variables and other
data structures conditionally. If a structure has already been
created, use itinstead of creating a new one.

Some time and space can be saved by changing your RECORD and
TYPERECORD declarations to DATATYPE. DATATYPE is used the
same way as the functions RECORD and TYPERECORD. (See
Chapter 24.) In addition, the same FETCH and REPLACE
commands can be used with the data structure DATATYPE
creates. The difference is that the data structure DATATYPE
creates cannot be treated as a list the way RECORDs and
TYPERECORDs can.

Once defined, global variables remain until Interlisp-D is
reloaded. Avoid using global variables if at all possible!

One specific problem arises when programs use the function
GENSYM. In program development, many atoms are created that
may no longer be useful. Hints:

Use
(DELDEF atomname 'PROP)
to delete property lists, and

(DELDEF atomname 'VARS)

RESOURCE MANAGEMENT

413

SOME SPACE AND TIME CONSIDERATIONS

41.2.2 Circular Lists

to have the atom act like it is not defined.

These not only remove the definition from memory, but also
change the appropriate fi1eCOMS that the deleted object was
associated with so that the file package will not attempt to save
the object (function, variable, record definition, and so forth) the
next time the file is made. Just doing something like

{SETQ (arg atomname) 'NOBIND)

looks like it will have the same effect as the second DELDEF
above, butthe SETQ doesn't update the file package.

If you are generating atom names with GENSYM, try to keep a list
of the atom names that are no longer needed. Reuse these atom
names, before generating new ones. There is a (fairly large)
maximum to the number of atoms you can have, but things siow
down considerably when you create lots of atoms.

When possible, use a data structure such as a list or an array,
instead of many individual atoms. Such a structure has only one
pointer to it. Once this pointer is removed, the whole structure
will be garbage collected and space reclaimed.

41.2.3 When You Run Out Of Space

If your program is creating circular lists, a lot of space may be
wasted. (Note that many cross linked data structures end up
having circularities.) Hints when using circular lists:

Write a function to remove pointers that make lists circular when
yau are through with the circular list.

If you are working with circular lists of windows, bind your main
window to a unigue global variable. Write window creation
conditionally so that if the binding of that variable is aiready a
window, use it, and only create a new window if that variable is
unbound or NIL.

Here is an example that illustrates the problem. When several
auxillary windows are built, pointers to these windows are
usually kept on the main window's property list. Each auxillary
window also typically keeps a pointer to the main window on its
property list. If the top level function creates windows rather
than reusing existing ones, there will be many lists of useless
windows cluttering the work space. Or, if such a main window is
closed and will not be-used again, you will have to break the
links by deleting the relevant properties from both the main
window and all of the auxiliary windows first. This is usually
done by putting a special CLOSEFN on the main window and all
of its auxiliary windows.

Typically, if you generate a lot of structures that won't get
garbage collected, you will eventually run out of space. The
important part is being able to track down those structures and

RESOURCE MANAGEMENT

SOME SPACE AND TIME CONSIDERATIONS

the code that generates them in order to become more space
efficient.

The Lisp Library Package GCHAX.DCOM can be used to track
down pointers to data structures. The basic idea is that GCHAX
will return the number of references to a particular data
structure.

A special function exists that allows you to get a little extra space
so that you can try to save your work when you get toward the
edge (usually noted by a message indicating that you should save
your work and sysin a fresh Lisp). The GAINSPACE function
allows you to delete non-essential data structures. To use it,
type:

(GAINSPACE)

into the Interiisp-D Executive Window. Answer "N to all
questions except the following.

Delete edit history

Delete history list.

Delete values of old variables.

Delete your MASTERSCOPE datadase

Delete information for undoing your greeting.

Save your work and reload Lisp as soon as possible.

RESOURCE MANAGEMENT

a1s

SOME SPACE AND TIME CONSIDERATIONS

[This page intentionally left blank]

416 RESOURCE MANAGEMENT

42. SIMPLE INTERACTIONS WITH
THE CURSOR, A BITMAP, AND A
WINDOW

The purpose of this chapter is to show you how to buiid a
moderately tricky interactive interface with the various
Interlisp-D display facilities. In particular how to move a large
bitmap (iarger than 16 x 16 pixeis) around inside a window. To
do this, you will change the CURSORINFN and CURSOROUTFN
properties of the window. If you would also like to then set the
bitmap in place in the window, you must reset the
BUTTONEVENTFN. This chapter explains how to create the
mobile bitmap.

42.1 An Example Function Using GETMOUSESTATE

One function that you will use to "trace the cursor” (have a
bitmap follow the cursor around in a window) is
GETMOUSESTATE. This function finds the current state of the
mouse, and resets global system variables, such as LASTMOUSEX
and LASTMOUSEY.

As an example of how this function works, create a window by
typing
(SETQ EXAMPLE .WINDOW (CREATEW))

into the Interiisp-D Executive window, and sweeping out a
window. Now, type in the function

(DEFINEQ (PRINTCOORDS (W)
(PROMPTPRINT (" LASTMOUSEX ", * LASTMOUSEY *)*)
BLOCK)

GETMOUSESTATE)))

This function calls GETMOUSESTATE and then prints the new
values of LASTMOUSEX and LASTMOUSEY in the promptwindow.
To useit, type

(WINDOWPROP EXAMPLE .WINDOW 'CURSORMOVEDFN ‘PRINTCOORDS)

The window property CURSORMOVEDFN, used in this example,
will evaluate the function PRINTCOORDS each time the cursor is
moved when itis inside the window. The position coordinates of
the mouse cursor will appear in the prompt window. (See Figure
42.1)

SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP, AND A WINDOW) 421

AN EXAMPLE FUNCTION USING GETMOUSESTATE

gPrompt Window
(258, 6577

the prompt window

42.2 Advising GETMOUSESTATE

For the bitmap to follow the moving mouse cursor, the function
GETMOUSESTATE is advised. When you advise a function, you
can add new commands to the function without knowing how it
is actually implemented. The syntax for advise is

(ADVISE fn when where what)
fnis the name of the function to be augmented.

when and where are optional arguments. when specifies
whether the change should be made before, after, or around the
body of the function. The values expected are BEFORE,
AFTER, or AROUND.

what specifies the additional code.

in the example, the additional code, what, moves the bitmap to
the position of the mouse cursor. The function GETMOUSESTATE
will be ADVISEd when the mouse moves into the window. This
will cause the bitmap to follow the mouse cursor. ADVISE will
be undone when the mouse leaves the window or when a mouse
button is pushed. The ADVISEing will be done and undone by
changing the CURSORINFN, CURSOROUTFN, and
BUTTONEVENTFN for the window.

42.3 Changing the Cursor

One last part of the example, to give the impression that a
bitmap is dragged around a window, the original cursor should
disappear. Try typing:

{CURSOR (CURSORCREATE (BITMAPCREATE 1 1) 1 1]

422 SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP, AND A WINDOW

CHANGING THE CURSOR

into the Interlisp-D Executive Window. This causes the original
cursor to disappear. It reappears when you type

(CURSOR T)

When the cursor is invisible, and the bitmap moves as the cursor
moves, the illusion is given that the bitmap is dragged around

thawaniemA e
LT WU Uvv.

42.4 Functions for "Tracing the cursor”

To actually have a bitmap trace (follow) the cursor, the
environment must be set up so that when the cursor enters the
tracing region the trace is turned on, and when the cursor leaves
the tracing region the trace is turned off. The function
Establish/Traces/Data will do this. Type it in as it appears
(note: including the comments will help you remember what the
function does later).

(DEFINEQ (Establish/Trace/Data
[LAMBDA (wnd tracebitmap cursor/rightoffset cursor/heightoffset GCGAGP)

(* * This function is called to establish the data to trace
the desired bitmap. "wnd" is the window in which the tracing
is to take place, "tracebitmap” is the tracing bitmap,
"cursor/rightoffset® and "cursor/heightoffset” are integers
which determine the hotspot of the tracing bitmap.

As "cursor/heightoffset” and “cursor/rightoffset® increase
the cursor hotspot moves up and to the right.

If GCGAGP is non-NIL, GCGAG will be disabled.)

(PROG NIL
(if (OR (NULL wnd)
{NULL tracebitmap)) .
then (PLAYTUNE (LIST (CONS 1000 4000)))
(RETURN))
(if GCGAGP
then (GCGAG))

{* * Create a blank cursor.)

SETQ *BLANKCURSOR*(BITMAPCREATE 16 16))
SETQ *BLANKTRACECURSOR*(CURSORCREATE *BLANKCURSOR*))

(* * Set the CURSOR IN and OUT FNS for wnd to the
following:)

(WINDOWPROP wnd (QUOTE CURSORINFN)
(FUNCTION SETUP/TRACE))

(WINDOWPROP wnd (QUOTE CURSOROUTFN)
(FUNCTION UNTRACE/CURSOR))

(* * To aliow the bitmap to be set down in the window by
pressing a mouse button, include this line.
Otherwise, it is not needed)

{WINDOWPROP wnd (QUOTE BUTTONEVENTFN)
(FUNCTION PLACE/BITMAP/IN/WINDOW))

(* * Set up Global Variables for the tracing operation)

{SETQ *TRACEBITMAP* tracebitmap)

(SETQ *RIGHTTRACE/OFFSET*(OR cursor/rightoffset 0))

(SETQ *HEIGHTTRACE/QFFSET*(OR cursor/heightoffset 0))

(SETQ *OLDBITMAPPOSITION*(BITMAPCREATE (BITMAPWIDTH tracebitmap)
BITMAPHEIGHT tracebitmap)))

(SETQ *YRACEWINDOW* wnd]))

SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP, AND A WINDOW 423

FUNCTIONS FOR "TRAJING THE CURSOR™

When the function Establish/Traces/Data is called, the
functions SETUP/TRACE and UNTRACE/CURSOR will be installed
as the values of the window's WINDOWPROPS, and will be used
to turn the trace on and off. Those functions should be typed in,
then:

(DEFINEQ (SETUP/TRACE
[LAMBOA (wnd)

(* * This function is wnd's CURSORINFN.

It simply resets the last trace position and the current
tracing region. It also readvises GETMOUSESTATE to perform
the trace function after each call.)

(if *TRACEBITMAP*
then (SETQ *LAST-TRACE-XPOS* -2000)
SETQ *LAST-TRACE-YPOS* -2000)
gserq *WNDREGION* (WINDOWPROP wnd (QUOTE REGION)))
WINDOWPROP v?d (QUOTE TRACING)
T

(* * make the cursor disappear)

CURSOR *BLANKTRACECURSOR®)
ADVISE (QUOTE GETMOUSESTATE)
(QUOTE AFTER)
NIL
(QUOTE (TRACE/CURSOR]))

(DEFINEQ (UNTRACE/CURSOR
[LAMBDA (wnd)

(* * This function is wnd's CURSOROQUTFN.

The function first checks if the cursor is currently being
traced; if so, it replaces the tracing bitmap with what is
under it and then turns tracing off by unadvising
GETMOUSESTATE and setting the TRACING window property of
TRACEWINDOW TO NIL.)

(if (WINDOWPROP *TRACEWINDOW®(QUOTE TRACING))
then (BITBLT *OLDBITMAPPOSITION® 0 0 (SCREENBITMAP)
IPLUS (CAR *WNDREGION®)®LAST-TRACE-XPOS*)
IPLUS (CADR *WNDREGION®)*LAST-TRACE-YPOS®))
(WINDOWPROP *TRACEWINDOW®(QUOTE TRACING)
NIL))

(* * replace the original cursor shape)
(CURSOR T)
(* * unadvise GETMOUSESTATE)
(UNADVISE (QUOTE GETMOUSESTATE]))
The function SETUP/TRACE has a helper function that you must
also typein. Itis TRACE/CURSOR:

(DEFINEQ (TRACE/CURSOR
[LAMBDA NIL

(* * This function does the actual BITBLTing of the tracing
bitmap. This function is called after a GETMOUSESTATE, while
tracing.)

(PROG ((xpos (IDIFFERENCE (LASTMOUSEX *TRACEWINDOW®)*RIGHTTRACE/QFFSET®)) .
(ypos (IDIFFERENCE (LASTMOUSEY *TRACEWINDOW®)*HEIGHTTRACE/OFFSET®*)))

{* * If there is an error in the function, press the right
button to unadvise the function. This will keep the machine
from locking up.)

{(if (LASTMOUSESTATE RIGHT)
then (UNADVISE (QUOTE GETMOUSESTATE)))
(if (AND (NEQ zpos *LAST-TRACE-XPOS®
(NEQ ypos ‘LAST—TRACE-YPOS';)
then

(* * Restore what was under the old position of the trace
bitmap)

(BITBLT *OLDBITMAPPOSITION® 0 0 (SCREENBITMAP)

424 SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP, AND A WINDOW

FUNCTIONS FOR "TRACING THE CURSOR"

IPLUS (CAR *WNDREGION*)*LAST-TRACE-XPQS*)
IPLUS (CADR *WNDREGION*)*LAST-TRACE-YP0OS*))

(* * Save what will be under the position of the new trace
bitmap)

{BITBLT (SCREENBITMAP)
(IPLUS (CAR *WNDREGION®)
xpos)
{IPLUS (CADR *WNDREGION®*)
ypos)*OLDBITMAPPOSITION* 0 0)

(* * BITBLT the trace bitmap onto the new position of the
mouse.)

(BITBLT *TRACEBITMAP* 0 0 (SCREENBITMAP)
(IPLUS (CAR *WNDREGION®*)

xpos
{IPLUS (CADR *WNDREGION*)

ypos
NIL NIL (QUOTE INPUT)
(QUOTE PAINT))

(* * Save the current position as the last trace position.)

(SETQ *LAST-TRACE-XPOS* xpos)

(SETQ *LAST-TRACE-YPOS* ypos]))
The helper function for UNTRACE/CURSOR, called
UNDO/TRACE/DATA, must also be added to the environment:

(DEFINEQ (UNDO/TRACE/DATA
[LAMBDA NIL

(* * The purpose of this function is to turn tracing off and
to free up the global variables used to trace the bitmap, so
that they can be garbage collected.)

(* * Check if the cursor is currently being traced.
If so, turn it off.)

{ UNTRACE/CURSOR)
(WINDOWPROP *TRACEWINDOW®*(QUOTE CURSORINFN)
NIL

)
(WINDOWPROP *TRACEWINDOW®(QUOTE CURSOROUTFN)
NIL)

SETQ *TRACEBITMAP* NIL)
SETQ *RIGHTTRACE/OFFSET* NIL)
SETQ *HEIGHTTRACE/OFFSET* NIL)
SETQ *OLDBITMAPPOSITION® NIL)
SETQ *TRACEWINDOW* NIL)

(* * Turn GCGAG on)

(6C6AG T])) _
Finaily, if you included the WINDOWPROP to allow the user to
place the bitmap in the window by pressing a mouse button, you
must also type this function:
(DEFINEQ (PLACE/BITMAP/IN/WINDOW
[LAMBDA (wnd)

UNADVISE (GETMOUSESTATE))

2BITBLT *TRACEBITMAP* 0O 0 (SCREENBITMAP)

(IPLUS (CAR *WNDREGION*)

xpos)
(IPLUS (CADR *WNDREGION®*)

ypos)
NIL NIL (QUOTE INPUT)
(QUOTE PAINT]

That's all the functions!

SIMPLE INTERACTIONS wWITH THE CURSOR, A BITMAP. AND A WINDOW 425

RUNNING THE FUNCTIGNS

42.5 Running the Functions

To run the functions you just typed in, first set a variable to a
window by typing something like
(SETQ EXAMPLE .WINDOW (CREATEW))

into the Interlisp-D Executive window, and sweeping out a new
window. Now, set a variable to a bitmap, by typing, perhaps,

(SETQ EXAMPLE.BTM (EDITBM))
Type
(Establish/Trace/Data EXAMPLE.WINDOW EXAMPLE.BTM))

When you move the cursor into the window, the cursor will drag
the bitmap.

(Note: If you want to be able to make menu selections while
tracing the cursor, make sure that the hotspot of the cursor is set
to the extreme right of the bitmap. Otherwise, the menu will be
destroyed by the BITBLTs of the trace functions.)

To stop tracing, either

move the mouse cursor out of the window;
press the right mouse button;

call the function UNTRACE/CURSOR.

426

SIMPLE INTERACTIONS WITH THE CURSOR, A BITMAP, AND A WINDOW

43. GLOSSARY OF GLOBAL SYSTEM
VARIABLES

As you can tell by now, there are many system variables in
Interlisp that are useful to know the meaning of. The following
sections gathers many of the important variables together into
groups reiating to directory searching, system flags, history lists,
system menus, windows, and, of course, the catchall

ananiic rai‘a
driTUVuIldwcyuty.

43.1 Directories

DISPLAYFONTDIRECTORIES

INTERPRESSFONTDIRECTORIES

PRESSFONTWIDTHFILES

DIRECTORIES

Its value is a list of directories to search for the bitmap files for
display fonts. Usually, it contains the "FONT" directory where
you copied the bitmap files, (See Chapter 31.), the device
{FLOPPY}, and the current connected directory. The current
connected directory is specified by the atom NIL. Here is an
example value of DISPLAYFONTDIRECTORIES:

Interlisp-D Executive Window -

NIL
3¢0I13PLAYFONTDIRECTORIES
(L0SKI<LISPFILES>FONTS> {DSK<LIZPFILER:

{FLOPPR%) MIL;
Je

Figure 43.1. A value for the atom DISPLAYFONTDIRECTORIES. when
looking for a .DISPLAYFONT file, the system will check the FONT directory on the
hard disk, then the top level directory on the hard disk, then the floppy, then the
current connected directory.

Is set to a list of directories to search for the font width files for

Interpress fonts.

The value of this variable is a list of files, not directories, to search
for widths for Press fonts. Press font widths are usually large files
named FONTS.WIDTHS.

This variable is bound to a list of the directories you will be using.
(See Figure 43.2.) The system uses this variable when it is trying
to find a file to load - it checks each directory in the list, until the
file is found. NIL in list means to check the current connected
directory.

GLOSSARY OF GLOBAL SYSTEM VARIABLES

DIRECTORIES

LISPUSERSDIRECTORIES

NIL

f9-0IRECTORIES

[MIL {D3K}<LISFFILES:
{02K}<LIZPFILESXLIBRARY
{OSKY<LISPFILEZ>LOOPSY {FLOPPYY})

T
B
T

Figure 43.2. The value of DIRECTORIES.
Its value is a list of directories to search for library package files.

43.2 Flags

DWIMIFYCOMPFLG

SYSPRETTYFLG

CLISPIFTRANFLG

PRETTYTABFLG

FONTCHANGEFLG

DEditLinger

PROMPT#FLG

AUTOBACKTRACEFLG

This flag, if set to T, will cause all expressions to be completely
dwimified before the expression is compiled. (See Section 13.2,
Page 13.2.) In this state, when the system does not recognize a
function of keyword, it will compare the word to a system
maintained list to determine whether the word is a macro, CLISP
word, or misspelled user-defined variable.

An example of dwimifing before compilation is to convert an IF
call to a COND. before they are compiled. Undwimified
expressions can cause inaccurate compilation. This flag is set by
the system to NIL. Normally, you want this set to T. For more
information on DWIM, refer to the Interlisp-D Reference
Manual, Volume 2, Chapter 20.

When set to T, all lists returned to the Interlisp-D Executive
window are pretty printed. This flag is originally set by the
system to NIL.

When set to T, keep the IF expression, rather than the COND
translation in your code.

When set to T, the pretty printer puts out a tab character rather
than several spaces to try to make code align. If NIL, it uses
space characters instead.

If NIL, then when prettyprinting no font changes will happen
(e.g. a smaller font for comments, bold for clisp words, and so
forth). The default is the atom ALL, so different fonts are used
where appropriate.

Its initial value is T, which means that the DEdit window stays
open after you exit DEdit. Set it to NIL if you want the DEdit
window will be closed when you exit DEdit.

Its initial value is T, so the history list number is printed before
the "«" prompt.

There are many possible values for this variable. They affect
when the back trace window appears with the break window,
and how much detail isincluded in it. The values of this variable
include:

NIL, its intial value. The back trace window is not brougnt up
when an error is generated, until you open it yourself.

432

GLOSSARY OF GLOBAL SYSTEM VARIABLES

FLAGS

NOSPELLFLG

T, which means that the back trace, BT, window is opened for
error breaks.

BT! brings up a back trace window with more detail, 8T!,
window for error breaks.

ALWAYS brings up a back trace, BT, window for both error
breaks, and breaks caused by calling the function BREAK.

ALWAYS! brings up a back trace window with more detail, BT!,
for both error breaks, and breaks caused by calling the function
BREAK.

is initially bound to NIL, so that DWIM tries to correct all spelling
errors, whether they are in a form you just typed in or within a
function being run. If the variable is T, then no speiling
correction is performed. This variable is automatically resetto T
when you are compiiing a file. If it has some other non-NIL
value, then spelling correction is only performed on type-in.

43.3 History Lists

LISPXHISTORY

EDITHISTORY

Originally set to the list (NIL 0 30 100), with the following
argument interpretation. The NIL is the list (implemented as a
circular queue) to which the top level commands append, 0 is the
current prompt number, 30 is the maximum length of the history
list, and 100 is the highest number used as a prompt. This is a
system maintained list used by the Programmers Assistant
commands REDO, UNDOQ, FIX, and ?? use to retrieve past function
calls.

To delete the history list, just reset the variable LISPXHISTORY
toits original value, (NIL 0 30 100).

Setting this variable to NIL, disables all the Programmers
Assistant features.

This is also set to (NIL 0 30 100) and has the same description as

LISPXHISTORY. This list allows you to UNDO edits. You reset this
the same way as LISPXHISTORY.

43.4 System Menus

System menus are all bound to global variables and are easy to
modify. If the menu name is set to the NIL value, the menu will
be recreated using anitems list bound to a global variable.

To change a system menu, edit the items list bound to the
appropriate global variable (system menus use this items list with
the default WHENSELECTEDFN), then set the value of the menu
name to NIL. The next time you need the menu, it will be created

GLOSSARY OF GLOBALSYSTEM VARIABLES

433

SYSTEM MENUS

BackgroundMenu

BackgroundMenuCommands

WindowMenu

WindowMenuCommands

BreakMenu

BreakMenuCommands

from the items list you just edited. The names of system menus
and items lists follow.

This is the variable bound to the menu that displays when you
press the right button in the grey background area of the screen.

This list used for the list of ITEMS for the background menu when
itis created.

WindowMenu is the variable bound to the default window
menu displayed when the right mouse button is pressed inside of
a window.

This is the list of ITEMS for the WindowMenu.

The menu displayed when the middle mouse button is pressed in
a break window.

The list of ITEMS for the BreakMenu.

43.5 Windows

PROMPTWINDOW
T

Global name of the prompt window.

Although the value T has several meanings (such as universal
TRUE), it also stands for the standard output stream. As this is
usually the Interlisp-D Executive Window, it may be used as the
name for the TTY Window at the top levei. Mouse processes
have their own TTY Windows. A reference to the window Tin a
mouse driven function (e.g. a WHENSELECTEFN, See Section
27.1.2, Page 27.2), will open a "TTY Window for Mouse".

43.6 Miscellaneous

CLEANUPOPTIONS

FILELST

SYSFILES

INITIALS

FIRSTNAME

INITIALSLST

This is a list of options that you set to automate clean up after a
work session. Example options are listing files, or recompilation.
You will want to keep this set to NIL until you become
comfortable with the machine.

The list of all the files you loaded.
The list of all the files loaded for the SYSOUT file.

This is an atom that you can bind to your name. If bound, the
editor will add your name, in addition to the date, in the editor
comment at the beginning of each function.

If this variable is set, the system will use it to greet you personally
when you log on to your machine.

A list of elements of the form: (USERNAME . INITIALS) or
(USERNAME FIRSTNAME !INITIALS). This list is used by the
function GREET to set your INITIALS, and your FIRSTNAME
when you iogin.

GLOSSARY OF GLOBAL SYSTEM VARIABLES

MISCELLANEQUS

#CAREFULCOLUMNS

DWIMWAIT

Y N

\TimeZoneComp

Isan integer. PRETTYPRINT estimates the number of characters
in an atom, instead of computing it, for efficiency.
Unfortunately, for very long atom names, errors can occur.
#CAREFULCOLUMNS is the number of columns from the right
within which PRETTYPRINT shouid compute the number of
characters in each atom, to prevent these errors. Initially this is
set to zero, (0), PRETTYPRINT never computes the number of
characters in an atom. If you set it to 20 or 30, when
PRETTYPRINT comes within 20 or 30 columns of the right of the
window, it will begin computing exactly how many characters
are in each atom. This will prevent errors.

is bound to the number of seconds DWIM should wait before it
uses the default response, FIXSPELLDEFAULT, to answer its
guestion.

is bound to either ¥ or N. its value is used as the defauit answer
to questions asked by DWIM that you don't answer in
DWIMWAIT seconds. ltisinitially bound to Y, butisrebound to N
when DWIMIiFYing.

This is a global variable set to the absolute value of the time
offset from Greenwich. For EST, \TimeZoneComp should be set
to 5.

GLOSSARY OF GLOBAL SYSTEM VARIABLES

MISCELLANEOUS

[This page intentionally left blank]

436 GLOSSARY OF GLOBAL SYSTEM VARIABLES

44. OTHER REFERENCES THAT WILL |
BE USEFUL TO YOU

Here are some references to works that will be useful to you in
addition to this primer. Some of these you have already been
referred to, such as:

® The Interlisp-D Reference Manual

® The User's Guide to SKETCH
° The 1186 or 1108 User's Guide
In addition, you can learn more about LISP with the books:

® Interlisp-D: The language and 1its usage by Steven
H. Kaisler. This book was published in 1986 by John Wiley and
Sons, NY.

e Essential LISP by John Anderson, Albert Corbett, and Brian
Reiser. This book was published in 1986 by Addison Wesley
Publishing Company, Reading, MA. It was informed by research
on how beginners learn LISP. .

e The Little Lisper by Daniel P. Friedman and Matthias
Felleisen. The second edition of this book was published in 1986
by SRA Associates, Chicago. This book is a deceptively simple
introduction to recursive programming and the flexible data
structures provided by LISP.

® LISP by Patrick Winston and Berthold Horn. The second edition
of this book was pubiished in 1985 by the Addison Wesiey
Publishing Company, Reading, MA.

o LISP: A Gentle Introduction to Symbolic
Computation by David S. Touretzky. This book was published
in 1984 by the Harper and Row Publishing Company, NY.

Finally, there are three articies about the Interlisp Programming
environment:

® Power Tools for Programmers by Beau Sheil. It appeared
in Datamation in February, 1983, Pages 131 - 144,

® The Interlisp Programming Environment by Warren
Teitelman and Larry Masinter. It appeared in April, 1981, in IEEE
Computer, Volume 14:1, Pages 25 - 34.

® Programming in an Interactive Environment, the
LISP Experience by Erik Sandewall. It appeared in March,
1978, in the ACM Computing Surveys, Volume 10:1, pages 35 -
71.

Each of these articles was reprinted in the book Interactive
Programming Environments by David R. Barstow, Howard E.

OTHER REFERENCES THAT WILL BE USEFUL TO YOU 441

OTHER REFERENCES THAT WILL BE USEFUL TO YOU

Shrobe, and Erik Sandewall. This book was published in 1984 by
McGraw Hill, NY. The first article can be found on pages 19 - 30,
the second on pages 83 - 96, and the third on pages 31 - 80.

442) OTHER REFERENCES THAT WILL BE USEFUL TO YOU

. Xerox Artificial Intelligence Systems
250 North Halstead Street

P.O. Box 7018

Pasadena, California 91109-7018

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01.01
	01.02
	01.03
	01.04
	01.05
	01.06
	01.07
	01.08
	02.01
	02.02
	03.01
	03.02
	03.03
	03.04
	03.05
	03.06
	04.01
	04.02
	05.01
	05.02
	06.01
	06.02
	06.03
	06.04
	07.01
	07.02
	07.03
	07.04
	08.01
	08.02
	08.03
	08.04
	08.05
	08.06
	09.01
	09.02
	09.03
	09.04
	09.05
	09.06
	10.01
	10.02
	10.03
	10.04
	10.05
	10.06
	11.01
	11.02
	11.03
	11.04
	11.05
	11.06
	11.07
	11.08
	11.09
	11.10
	12.01
	12.02
	12.03
	12.04
	13.01
	13.02
	14.01
	14.02
	14.03
	14.04
	14.05
	14.06
	15.01
	15.02
	15.03
	15.04
	16.01
	16.02
	16.03
	16.04
	16.05
	16.06
	17.01
	17.02
	18.01
	18.02
	18.03
	18.04
	19.01
	19.02
	19.03
	19.04
	20.01
	20.02
	21.01
	21.02
	22.01
	22.02
	22.03
	22.04
	23.01
	23.02
	23.03
	23.04
	23.05
	23.06
	23.07
	23.08
	23.09
	23.10
	23.11
	23.12
	23.13
	23.14
	23.15
	23.16
	24.01
	24.02
	24.03
	24.04
	24.05
	24.06
	25.01
	25.02
	25.03
	25.04
	25.05
	25.06
	25.07
	25.08
	26.01
	26.02
	26.03
	26.04
	26.05
	26.06
	26.07
	26.08
	26.09
	26.10
	27.01
	27.02
	27.03
	27.04
	27.05
	27.06
	28.01
	28.02
	28.03
	28.04
	28.05
	28.06
	29.01
	29.02
	29.03
	29.04
	29.05
	29.06
	30.01
	30.02
	30.03
	30.04
	30.05
	30.06
	31.01
	31.02
	31.03
	31.04
	31.05
	31.06
	31.07
	31.08
	31.09
	31.10
	32.01
	32.02
	32.03
	32.04
	33.01
	33.02
	33.03
	33.04
	34.01
	34.02
	34.03
	34.04
	35.01
	35.02
	35.03
	35.04
	35.05
	35.06
	35.07
	35.08
	35.09
	35.10
	35.11
	35.12
	36.01
	36.02
	36.03
	36.04
	37.01
	37.02
	37.03
	37.04
	37.05
	37.06
	38.01
	38.02
	38.03
	38.04
	39.01
	39.02
	40.01
	40.02
	41.01
	41.02
	41.03
	41.04
	41.05
	41.06
	42.01
	42.02
	42.03
	42.04
	42.05
	42.06
	43.01
	43.02
	43.03
	43.04
	43.05
	43.06
	44.01
	44.02
	xBack

