
In this issue

AIS CUSTOMER SUPPORT

Bulletin 8
December 4, 1987

HOTLINE! is published periodically by the Customer Support
group of Xerox Artificial Intelligence Systems to assist its
customers in using the Xerox Lisp environment. Topics covered
include answers to questions that are most frequently asked of
Customer Support, suggestions to help you work in the Xerox
Artificial Intelligence Environment (XAIE) as well as announce­
ments of known problems that may be encountered.

Feel free to make copies of individual bulletin pages and insert
them in the appropriate place(s) in your Interlisp Reference
Manual, Lisp Library Modules manual or other relevant manual.
The documentation reference at the end of each topic can be
used as a filing guide.

For more information on the questions or problems addressed in
this or other bulletins please call us toll-free in the Continental
United States 1-800-228-5325 (or in California 1-800-824-
6449). Customer Support can also be reached via the ArpaNet by
sending mail to AISUPPORT.PASA@Xerox.com, or by writing to:

Xerox AIS Customer Support
250 North Halstead Street
P.O. Box701S
Pasadena, CA 911 09-7018
MIS 591 0-432

In response to user requests we have decided to have HOTLINE!
cover all supported releases of XAIE, instead of Lyric only.
Supported releases include Koto and Lyric. Each item now
contains a "Release" field for any item that is release specific.
The following topics are covered in this issue:

• Porting Common Lisp Files to Lyric

• Compiling Non-Xerox Common Lisp Files in Lyric

• XCL: EXEC Window Property Bug

• XCL:ADD-EXEC Window Property Bug

• Restoring Multiply Advised Functions

• Interpreted and Compiled Macros

HOTLINE'

Terminology

Terminology used in this HOTLINE! bulletin:

UG - Users' Guide

AR - Action Request, a Xerox problem tracking number (e.g.
AR 8321)

IRM - Interlisp Reference Manual

BULLETIN 8.1

Porting Common Lisp Files to Lyric

AIC\ lIJC\TOMER SUPPORT

Release Lyric

Keywords Packages, Files, Portability

Question How do I port a pure Common Lisp source file into the Xerox
environment?

Answer Loading a textual-pure Common Lisp source file from a non­
Xerox environment is supported in Lyric.

However, since the File Manager did not produce the source file,
the user is required to indicate that the file consists of plain
Common Lisp source code. The user must also clearly specify
the Reader-Environment for interpreting the symbols in the file.

Example A user wants to port a pure Common Lisp source file into the XCL
environment, make an edit, and compile the modified code into a
DFASL file.

In the following example, a plain Common Lisp source file F­
TO-C. LSP, contains the following text:

A
;;;A constant
(DEFCONSTANT *CONVERSION-CONSTANT* (/ 5.0 9»

;;;A function to convert Farhenheit to Centigrade
(DEFUN F-TO-~ (DEGREES-F)

(FORMAT T 1I 3,1F degrees F = 3,1F degrees C"
DEGREES-F
(* *CONVERSION-CONSTANT* (- DEGREES-F 32»»

;;;A top-level form
(PRING IIDone Loading File ll

)

The commands below are typed in the XCL Exec.

1. Verify that the source file begins with a semicolon. The
semicolon signals the LOAD function to interpret the file as a
plain Common Lisp source file.

If a semicolon isn't present, it should be added with TEdit, and
saved (PUT) with the "Plain-Text" sub-menu option. The
semicolon may be preceded by an arbitrary amount of white
space. In this example, the text ";;;A constant" provides the
semicolon.

2. Load the source file with the following command:

(LOAD 'F-TO-C.LSP :PACKAGE (FIND-PACKAGE ·XCL-USER"»

If an argument for the :PACKAGE keyword is not specified,
plain Common Lisp source files will be loaded into the USER

HOTLINE'

C:.IS (USTn~Jl:::R SIIOP0 P T

BULLETIN 81

package. The specified package should contain or import all
Common Lisp symbols.

All forms will be executed when the file is loaded.

3. After the LOAD has completed, the function and variable will be
defined in the XCL-USER package.

- The function may be executed in interpreted form.

- The function and variable may be edited with SEdit.

- IL:FILES? will list both the new function and the variable.

4. Call SEdit on the function F-TO-C.

In this example, the user wishes to print the date with the
output of the function. Interlisp functions may be conveniently
used since all symbols in the IL package are external.

(DEFUN F-TO-C (DEGREES-F) (IL:PRINT (IL:DATE)
(FORMAT T u 3,lF degrees F = 3 J 1F degrees Gil

DEGREES-F
(* *CONVERSION-CONSTANT*

(- DEGREES-F 32»»

5. Check the File Manager's default Reader-Environment to
verify that it matches the appropriate environment for the file.
The ReadermEnvironment consists of a package, a read table
and a read base for numbers.

To avoid printing unwanted package prefixes on symbols, the
user should set the Reader-Environment package to the
package specified in the above LOAD command. In this
example, the user would set the read table and package to
correspond to the XCL environment.

Evaluating the variable IL:*DEFAUL T-MAKEFILE-ENVIRON­
MENT* will return the default Reader-Environment for files
created by the MAKEFILE function. If this isn't the desired
environment, it can be changed.

For example, to globally set the MAKE FILE Reader­
Environment:

(SETQ IL:·DEFAULT-MAKEFILE-ENVIRONMENT·
'(:READTABLE "XCL" :PACKAGE "XCL-USER" :BASE 10»

Or, to locally set the Reader-Environment for the file F-TO­
C.LSP:

(IL:PUTPROP 'IL:F-TO-C.LSP 'IL:MAKEFILE-ENVIRONMENT
'(:READTABLE "XCL" :PACKAGE "XCL-USER" :BASE 10»

Note: Changing IL:*DEFAULT-MAKEFILE-ENVIRONMENT*
will not affect files which already exist. If the user wants to
change the Reader-Environment for an existing file, the
IL:PUTPROP form must be used.

BULLETIN 801

6. Call the function IL:FILES? and assign a file name for the
function F-TO-C and the variable *CONVERSION­
CONSTANT* .

If the IL:MAKEFILE-ENVIRONMENT property has been used
to establish the Reader-Environment, then the property list
should also be assigned to the same fiie.

in this example, assume the original source file name is given
as the new file name. The user is still prompted to create a
"new" file since the File Manager hasn't noticed F-TO­
C.LSP. However, the user is not required to use the original
source file name. As long as the same file name is given to
IL:PUTPROP (if used), IL:FILES? and IL:MAKEFILE (below),
the file will be made properly.

7. Call SEdit on the variable IL:F-TO-C.LSPCOMS to add the
top-level form.

Since top-level forms in the source file are not collected by
IL:FILES?, they should be added using P statements. In SEdit,
the expression (P (CL:PRINC "Done Loading File")) is added
to the variable IL:F-TO-C.LSPCOMS.

8. Call the function IL:MAKEFILE on the file F-TO-C. LSP to
make and compile the file:

(IL:MAKEFILE 'F-TO-C.LSP 'IL:C)

In this example, (since the user has not set the IL:FILETYPE
property on F-TO-C.LSP), IL:C points to the compiler
specified by the value of the variable IL:*DEFAUL T­
CLEANUP-COMPILER*. Its value should beo set to
CL:COMPILE-FILE to generate DFASL files.

A new version of F-TO-C.LSP will be created, as well as the
object file F-TO-C.DFASL. The original source file
comments are not preserved in the new source file generated
by IL:MAKEFILE.

9. Load the compiled code. The compiled function may be
executed:

(LOAD 'F-TO-C.DFASL)

References Xerox Lisp Release Notes - Integration of Languages: File
Package, pp. 23-35.
Xerox Lisp Release Notes - Integration of Languages: Compiler,
pp. 35-36.
Xerox Common Lisp Implementation Notes, Lyric Release, File
System Interface, pp. 61.
Xerox Common Lisp Implementation Notes, Lyric Release, The
Compiler, pp. 89-97.
Hotline! No.1, pp. 1-3, 1-4.

AIS CUSTOMER SUPPORT HOTLINE!

BULLETIN 8.2

Compiling Non-Xerox Common Lisp Files in Lyric
•

AIS CUSTOMER SUPPORT

Release Lyric

Keywords Packages, Files, Portability

Question How do I port a pure Common Lisp source file into the Xerox
environment without loading the source file?

Discussion Textual-pure Common Lisp files from non-Xerox environments
can be compiled directly (i.e., without loading the source file)
under Lyric. However, some care must be taken to ensure that
the file definitions will be interned in the desired package when
the compiled file is loaded.

Example The user wants to bring a pure Common Lisp source file into the
XCL environment and compile it into a DFASL file. The user
doesn't plan on making changes to the source code, and is only
interested in generating the compiled file. Assume the same
source file as in the previous question (Bulletin 8.1). The
commands below are typed in at the XCL Exec.

1. Verify that the source file begins with a semicolon. Insert a
semicolon if it's missing.

2. Specify the target package for the file definitions with the IN­
PACKAGE function.

In this example, the user should insert the following statement
after the initial comment in the source file:

(IN-PACKAGE "XCL-USER")

If no package is specified, it will default to the USER package.
Then the function and variable definitions will be interned in the
USER package when the compiled file is loaded. Likewise, all
top-level expressions would be evaluated with *PACKAGE*
bound to USER.

Since the File Manager is being by-passed, the user cannot
establish the package with the IL:MAKEFILE-ENVIRONMENT
file property or with the variable IL:*DEFAUL T -MAKEFILE­
ENVIRONMENT*.

3. Compile the file:

(COMPILE-FILE 'F-TO-C.LSP)

4. Load the compiled code:

(LOAD 'F-TO-C.DFASL)

When loading DFASL files, the :PACKAGE argument cannot be
used to override the file's package environment. It is either
specified by an IN-PACKAGE function in the source file, or it
defaults to the USER package.

HOTLINE!

BULLETIN 8.2

References Xerox Lisp Release Notes - Integration of Languages: File
Package, pp. 23-35.
Xerox Lisp Release Notes - Integration of Languages: Compiler,
pp. 35-36.
Xerox Common Lisp Implementation Notes, Lyric Release, File
System Interface, pp. 61.
Xerox Common Lisp Implementation Notes, Lyric Release, The
Compiler, pp. 89-97.
Common Lisp: The Language, pg. 183.

-.~~~~.~~~---AIS CUSTOMER SUPPORT HOTLINE'

BULLETIN 8.3

EXEC Window Property Bug

AIS (l1<;TOMER SlJPPORT

Release Lyric

Keywords EXEC, WINDOW property, PROCESSES

Problem XCL:EXEC does not use :WINDOW argument

Symptom If you did something in the IL Exec like:

(SETQ MYW (CREATEW))
(XCL:EXEC :WINOOW MYW :PROMPT "MYEXEC" :COMMANO-TABLES
EXEC-COMMANO-TABLE :TITLE "My Test Exec")

You will see the Title appear on the window you created with
CREATEW, but the EXEC process will not be added to that
window. Instead, the IL Exec where you called these functions will
have the command-table information given to it. In this example,
the command prompt changed from 2140 to 2141 MYEXEC.

More simply stated: (EXEC :WINDOW (IL:CREA TEW)) will prompt
you to sweep out a window, but it will not be given the Exec
process

Workaround None

References AR 9310
Lyric Release Notes, Appendix A "The Exec," p. A-18
IRM, Vol. II, section 23.1, pp. 23.2-23.3

HOTLINE'

ADD-EXEC Window Property Bug

Release Lyric

~'"' C:T'Pl' 0 II OULLJ;;I 11'1 U

Keywords ADD-EXEC, WINDOW property

Problem XCL:ADD-EXEC does not set WINDOW property of the new
exec process. (See related Hotline! Bulletin 8.3 on EXEC Window
Property bug.)

Example In Koto and earlier releases, \TopLevelTtyWindow was bound to
the executive window. In Lyric it is bound to the window of the
very first XCL exec that comes up when Lisp is booted. If a user
has multiple exec windows open and desires to programmatically
use TTYDISPLA YSTREAM to printout to the various exec
windows, how do they go about accessing the windows?

Symptom The function XCL:ADD-EXEC adds new execs but returns a
process instead of the window. Using PROCESSPROP on this
process to access the WINDOW property always returns NIL.

Workaround It is necessary to define a new ADD-EXEC function to work
around this problem. Define IL:ADD-EXEC as follows in an
Interlisp Exec, in the Interlisp package. When entering this code,
note the back-quote forms used after ADD. PROCESS.

SEdit ADD-EXEC Package: INTERLISP

(CL:OEFUN ADO-EXEC
(&KEY (XCL: :PROFILE XCL:*PROFILE*) XCL: :REGION XCL: :TTY

(EXEC 'EXEC) XCL: :10 &ALLOW-OTHER-KEYS)
(LET* «XCL: :WINoOW (XCL: :SETUP-EXEC-WINDOW

(XCL: : HANDLE
(ADD.PROCESS

(CREATEW XCL: :REGION "Exec"»)

~(PROGN (TTYDISPLAYSTREAM ',XCL: :WINDOW)
(PROCESSPROP (THIS.PROCESS) 'WINDOW

',XCL: : WINDOW)
,(CASE EXEC

(EXEC ~(EXEC :TOP-LEVEL-P T
:PROFILE
',XCL: :PROFILE :10
',XCL:: 10»

(T (XCL: :ENTER-EXEC-FUNCTI0N
, ,EXEC
, ,XCL: : PROFILE
, , XCL: : 10))))

'NAME 'EXEC 'RESTARTABLE T»)
(AND XCL: :TTY (TTY.PROCESS XCL: :HANDLE))
XCL: : HANDLE))

Reference AR 9311, Lyric Release Notes, Appendix A "The Exec", p. A-17

UI"'ITIIIIICI

BULLETIN 8.5

Restoring Multiply Advised Functions

Release Lyric

Keywords ADVISE, UNADVISE

Problem Can't unadvise a multiply-advised function.

Example When more than one piece of advice is supplied to the same
function (by calling ADVISE two or more times) it is not possible
to restore the function to its unadvised state by calling
UNADVISE, for example:

(ADVISE 'FOO 'BEFORE '(PRINT "Before")

(ADVISE 'FOO 'AFTER '(PRINT "After"»

(UNADVISE 'FOO)
FOO is not advised

Workaround Intertisp functions (defined via DEFINEQ) can be restored with
UNSAVEDEF; e.g., (UNSAVEDEF 'FOO)

Common Lisp functions (defined via DEFUN) can only be restored
by explictly reloading the source definition. For example, if
MAKEFILE was used to save the definiton in file FOOFILE, then
use (LOADFNS 'FOO 'FOOFILE).

Compiled functions can only be restored by explictly reloading the
compiled definition. For example, if the function was compiled with
TCOMPL, then use (LOADFNS 'FOO 'FOOFILE.LCOM).
Otherwise, reload the source definition and recompile the
function.

Reference AR 8687

BULLET!N 8.6

Interpreted and Compiled Common Lisp Macros

Release Lyric

Keywords Macros

Question Do Common Lisp macros get expanded every time they are
called or just the first time they are called?

Background A module which contains a loop that makes several calls to a
macro during the loop was converted from Koto Interlisp to a
Common Lisp iteration and macro construct. When the loop is run
interpreted in Koto it takes only about 15 seconds to complete.
When it was converted to XCL the loop takes 1.5 hours to run
interpreted. It appears that the macro in the loop is getting
expanded during each pass through the loop.

Answer Common Lisp macros get expanded using MACROEXPAND-1
everytime they are called when you run interpreted code. Interlisp
macros get expanded only during the first call to the macro. When
working with Common Lisp macros you should compile the macro
in order to avoid performance problems such as this duri ng
iteration or other similar situations.

~ .. : '\ r' ."! L '

