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Preface 

This publication is one of a family of documents that collectively describe the standards 
underlying Xerox Printing Systems. 

The Interpress standard defines the digital representation of printed material for exchange 
between a creator and printer. A document represented in Interpress can be transmitted to a 
raster printer or other display device for printing, it can be transmitted across a communication 
network as a means of exchanging graphic information, or it can be stored as an archival 
master copy of the material. A document in Interpress is not limited to any particular printing 
device; it can be printed on any sufficiently powerful printer that is equipped with Interpress 
print software. 

The Interpress 82 Electronic Printing Standard defines the digital representation of material 
that is to be transmitted to and printed on an electronic printer. Its primary purpose is to 
provide an accurate specification of the Interpress standard. In doing so it is necessarily terse 
and specific. The primary purpose of this Reader's Guide is to provide explanatory material 
on the details of the Interpress 82 Electronic Printing Standard which were not included in the 
Standard itself. 

Comments and suggestions on this document and its use are encouraged. Please address 
communications to: 

Xerox Corporation 
Printing Systems Division 
Printing Systems Administration Office 
701 South Aviation Blvd. 
El Segundo, California 90245 
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Introduction 

This chapter describes the organization and content of the Interpress™ Electronic Printing 
Standard, Interpress 82 version. 

1.1 Using the documentation 

Interpress 82 documentation includes the lnterpress 82 Electronic Printing Standard and this 
companion manual, the lnterpress 82 Reader's Guide. 

The precise description of the Interpress 82 language is to be found in the formal specification 
titled Inter press 82 Electronic Printing Standard. Such precision requires the elimination of all 
forms of redundancy of information so that concepts are uniquely defined in one and only one 
place; in some instances this results in closely coupled concepts being separated from each 
other in their presentation. The requirement for precision also results in the use of a 
formalized syntax which may be unfamiliar to the reader, and in general demands a rather 
formal style which can be difficult to grasp on first reading. 

All of these factors point to the need for a companion document that presents a 
comprehensive overview of the language, as well as expanded narrative explanation. This 
manual, the lnterpress 82 Reader's Guide, is intended to serve that purpose. Part I of the 
Reader's Guide contains an overview of the basic concepts of Interpress, and Part II provides 
an interpretive reference key that provides expanded descriptions of the more complex 
concepts presented in the specification; Part II has paragraph numbers which are in one-to-one 
correspondence with those of the specification, and can readily be used as a reference source 
for amplification and clarification of the formal document. 

Note: The lnterpress 82 Electronic Printing Standard is the authoritative source for the 
Interpress language definition. Any conflict of interpretation between the companion 
documents and the lnterpress 82 Electronic Printing Standard is to be resolved by reference to 
the latter document. 
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Basic principles 

Interpress 82 is a language that Xerox has created expressly to define the contents of a 
document to a Xerox raster scan type of printing system. It is a concise, accurate, printer 
independent language that can be readily processed by most Xerox printing systems of the 
raster scan type. 

2.1 Interpress characteristics 

Interpress 82 has the following important characteristics which make it particularly useful: 

1. Its structure is simple enough to permit both low end printers driven by microprocessors 
such as the 8086, and high end printers such as the 9700, to absorb and still maintain their 
full throughput capability. 

2. Its language is rich enough to permit the description of an extremely large range of black 
and white images. 

3. Its language is extensible so that new printing constructs may be added over time. 

4. It is supported by most Xerox printers and print generating sources so that documents may 
be exchanged among most Xerox products. 

2.2 Functional concepts 

A document is represented in the Interpress 82 language by a non-pictorial digital program 
called an Interpress master, which, when executed by the printer's software, directs the precise 
imaging and printing of each page of the document. Within this master, each document page 
is independently programmed, so any page of the document may be printed in any order 
without first having to image, or analyze the images of, the preceding pages. 

The function of an Interpress master is to describe precisely the desired appearance of a page 
which has been completely composed by some other process. All font selection decisions, line 
ending decisions, hyphenation decisions, line justification decisions, graphics positioning 
decisions, and any other forms of information positioning decisions must have been made by a 
host processor (referred to as the creator) prior to the invoking of the process which creates the 
Interpress master. The only positioning adjustments the creator may invoke at the printer are 
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minor readjustments to the positions of characters on a line so as to present a line of text 
which has been optimally adjusted to the actual font widths and resolution capabilities of the 
printer. This gives a sophisticated printer the opportunity to take advantage of its own special 
knowledge of its fonts and its resolution accuracies for either of two reasons: to adjust out 
minor differences between the font width information assumed by the creator and the font 
width information actually used within the printer, or to permit the printer to do a reasonable 
job of printing a page when it must substitute a totally different font for the one specified by 
the creator. 

Interpress allows the creator to specify a document's ideal appearance in a printer 
implementation independent fashion. The appearance of the final document is completely 
governed by the creator of the master; the printer software that interprets the master makes no 
formatting decisions, but may make device dependent positioning decisions of the type 
described above. That is, the target printer may not be able to position information to the 
precision called for, or might not possess exact copies of the fonts specified, but it will provide 
output images which are as accurate as it can within the constraints of its capabilities. Files 
containing documents described in the Interpress language may be manipulated by utility 
programs (external to the printer and prior to their transmission to the printer) to provide 
capabilities such as merging the pages of one document with those of another, merging onto 
one page image information from another page image, transforming an image's representation 
so that it is rotated on the page, transforming two images so that they are merged onto a single 
image in a "two-up" format, and so on. 

2.3 The Xerox encoding system 

An Interpress master is encoded in a transmission format that allows it to be communicated to 
Xerox printing systems accurately and efficiently. A formal description of the Xerox Standard 
Encoding System is included with the specification of the Interpress 82 language; however, the 
syntax of the encoding system is separate from and different than that of the language proper. 
lnterpress syntax refers to the structure of the executable language elements; encoding syntax 
refers to the transmission form of the master. 

2.4 Interpress imaging capabilities 
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Interpress 82 is designed to represent all kinds of images within the conventions of one 
standard language. 

The images to be printed on a document page can be generally classified as character coded, 
vector graphic, and pixel arrays, defined as follows: 

Character Coded -- Text; strings of characters in a chosen series of fonts, typically 
created by a document processing system to convey verbal information. 

Vector Graphic -- Line drawings specified via trajectory coordinates. 

Pixel Arrays -- Pictures represented by bit maps, typically created by a raster scanner. 

These classifications are descriptive of a representational mechanism, and are not necessarily 
related to the pictorial characteristics of the printed image. For example, a pixel array could 
be used to represent a page of text. The Interpress language can describe character coded, 
vector graphic, and pixel array images, singly or in combination. 
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2.5 Printer implementation capabilities 

Printers are not universally capable of printing every conceivable kind of image that Interpress 
82 is capable of describing. For example, some printers can handle vector graphics but do not 
support pixel arrays. In order for an Interpress user to be able to anticipate the 
implementational constraints imposed by a particular printer, a method of identifying the 
implementation level of the printer is provided. (See "Support Levels and Mapping" in 
Appendix B.) 

This does not mean that an Interpress master must be tailored for a specific printer; one of the 
key design features of the Interpress 82 language is the ability to default across unsupported 
constructs without unnecessary print interruptions, catastrophic error conditions, or 
unpredictable side effects. 

2.6 Document processing scenario 

The generation of an Interpress document can be traced through the following steps: 

1. The content of a document is established in some host processing system known as the creator. 

2. The creator arranges the content of the document into its final desired appearance, in 
which all of the formatting decisions, page layout decisions, font selection decisions, 
graphic incorporation decisions, and so on, have been determined. 

3. At this point the Interpress language enters the picture. The creator produces an 
Interpress description of the finalized document, thereby providing a precise, device 
independent document master. 

4. In order to send the Interpress description of the document to a printing system, the 
master is encoded into a compact transmission format. Within this encoding, the 
Interpress master is expressed as a series of binary digital sequences, and packaged into 

units of transmission called tokens along with identification information that allows them 
to be decoded upon receipt at the printer. (As a practical matter the conversion of the 
composed document into the Interpress language, and its further conversion from that 
language into its token-encoded form. takes place in a single step within the host 
processor.) Note that Interpress is a language which is intended for machine, not human, 
generation, so no programmer-oriented mnemonic set of literals representing constructs of 
the Interpress language has been defined within the formal language specification. 

S. The encoded Interpress representation of the document is then transmitted to a printing 
system. 

6. Software within the printer receives and decodes the encoded representation of the 
document. It then proceeds to interpret the Interpress language description of the 
document and create the page images called for by that language description. 

Since this software is interpretive in nature it can, if necessary, leave the Interpress 
interpretation process at any time to carry on activities which are printer-related. For example, 
the Interpress description of the document may call for the use of character fonts which it 
presumes to be resident in the printer. When such fonts are called for, the Interpress 
interpreting software in the printer leaves the Interpress interpretation process, goes off to the 
printer's font library to locate the desired fonts. sets them up for use by the Interpress 
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interpreting process, and then returns to that process. Similarly, it can leave the Interpress 
interpretation process to examine printing instructions, to incorporate non-Interpress files, or to 
carry out any other printer related activities. Such activities can be invoked by operations 
within the master itself. 

From the above description it should be clear that the creator of the master and the encoder of 
the results of that creation reside in a host system. The interpretation of the master, and its 
conversion to the printed document which it describes, occurs in the printer. The printer 
software activities are not limited to those of interpreting the master. The master may contain 
operations which invoke the execution of activities outside itself. 

2.7 Error reporting 
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As a document is printed various errors may occur. The user is always informed of an error, 
for example by printing an explanatory message on a header or trailer page that accompanies 
the document. There are four types of errors: 

1. Appearance Warning. The imager had to make an approximation of the ideal image 
represented in the Interpress master, but has been able to preserve the content of the 
image. For example, if a different font has been substituted an appearance warning is 
generated. 

2. Appearance Error. The imager had to make an approximation to the ideal image 
represented in the Interpress master in such a way that the resulting image will not appear 
to be correct. For example, if an imager cannot display a raster scanned image 
represented by a pixel array that is called for in the master, an appearance error is 
generated. 

3. Master Warning. Something is amiss in the specification of the master, but the error is 
not severe. For example, if an arithmetic overflow occurs in the processing of a master, or 
the master attempts to make a reference to a non-existent component of a vector, a master 
warning is generated. 

4. Master Error. These errors signal severe problems in interpreting the master. It may be 
necessary to abandon further effort to print the master, and to simply print a document 
identification page that describes the error. 

The next sections describe the transmission elements of the encoded master, and the executable 
Interpress language elements that are derived from them. Following that is a description of 
the programmatic structure and implementation of the Interpress master. 
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Elements of the 
encoded Interpress master 

This chapter describes the standard Xerox encoding system that is used to encode the contents 
of an Interpress master, and presents the elements of an encoded Interpress master. The 
Xerox encoding system referred to in this context is not to be confused with the Xerox 
Character Encoding Standard. The latter defines a system for encoding a sequence of 16-bit 
codes that uniquely define characters and symbols for imaging. It is used within the Xerox 
encoding system in dealing with the type string described below. 

3.1 Xerox encoding 

When a host processor creates an Interpress master it puts the Interpress language constructs 
and the imaging data that make up the master into an encoded form that can be rapidly 
transmitted and efficiently absorbed by a printer. The Xerox printers that support Interpress 
also support an encoding standard called the Xerox Encoding. This encoding standard is 
precisely defined in the specification along with the Interpress language, but it should be noted 
that the encoding conventions are separate from the Interpress language syntax. 

3.2 Header information 

Alternative encoding systems may be created either by Xerox or by other users of the 
Interpress language, so every master begins with a header which unambiguously identifies the 
encoding standard used within the following document. The header for all encoding systems 
must be expressed in a series of bytes, with each byte containing a character from the ISO 646 
7-bit Coded Character Set for Information Interchange. The high order bit of each such byte 
is a zero. A "space" code acts as the terminator for the header, which therefore cannot contain 
a "space" code as one of its characters. The header for the standard Xerox encoding is the 
following ISO 646 character sequence, each character contained within one byte: 

Interpress/Xerox/1.Ob 

(where the "/" character is part of the header, and the -b stands for the "space" code 
which terminates the header.) 

This string of 21 bytes must be'the first 21 bytes in the document, or a printer expecting the 
Xerox encoding header will reject the document and report an error. 

7 



3 Elements of the encoded Interpress master 

3.3 Tokens 

The standard Xerox header is followed by a series of tokens. Each token is a transmission 
sequence of bytes containing infonnation that the printer's software can decode and build into 
Interpress language constructs and imaging data needed to print the document. The beginning 
of the token contains descriptor fields that allow the printer to correctly decode the token. 
Following the descriptor fields are data bytes containing infonnation used to describe the 
document to the printer. 

3.4 Token formats 
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Each data byte in a token is an 8-bit binary integer in the decimal range of zero to 255. The 
most significant byte of the transmitted token arrives at the printer first, so that if its bytes 
were printed on a page in a left-to-right fashion in the order in which they are received the 
entity would be in its natural reading order in the English language. 

These tokens have five different fonnats, as illustrated in Figure 3.1. The first descriptor field 
within the token identifies the token fonnat to the printer. Three of these fonnats (Short Op, 
Long Op, and Short Number) are of fixed length; the remaining two fonnats (Short Sequence 
and Long Sequence) are of variable length, and are used to transmit long sequences of bytes. 
Both the Short Sequence and Long Sequence tokens contain infonnation encoded in one of 
several different ways according to the source and nature of the data; therefore. these last two 
fonnats contain descriptor fields which define the type of encoding representation used for the 
data byte sequence which the token contains, and define how many data bytes are in that 
sequence. Because of the presence of the length field in the variable length tokens, and the 
fixed length of the other tokens, the exact length of every token in the input stream is known 
by the printer as soon as it has received no more than four bytes of a token. 
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MSB LSB 

Short 

1110101 : 7: : I Op 

Long 

1110111 : : : : + Op 

Short 

Number 101 : : : :+Hb;-
:~e~111101 : H : I length I "data] 

bytes 
~~~~~~~L-_____________ _ 

I ... descriptor ·1 

Idab] bytes 

--~":en,~111111 : H : 1 length 

I ... descriptor ·1 

Figure 3.1 Token formats 

The following paragraphs describe each of the five token formats in detail. 

3.4.1 Short Op and long Op tokens 

The Short Op and Long Op tokens are used to transmit Interpress operators and the codes for 
"BEGIN", "END", "{" , and "}" to the printer. 

The Short Op token is a one-byte token containing a fixed 3-bit token identifier, 100, followed 
by 5 data bits containing any of the 32 most frequently used opcodes. encoded as binary 
integers in the decimal range zero to 31. The Long Op token is a two-byte token containing a 
fixed 3-bit token identifier, 101, followed by 13 data bits containing any of the 8192 possible 
opcodes whose assigned integer codes are in the decimal range of zero to 8191, or any of the 
codes "BEGIN", "END", "{" ,and "}". An operator whose encoding representation is in the 
decimal range of zero to 31 may be encoded in either of these two token types. 

The Interpress 82 Electronic Printing Standard lists the assigned code values for these operators 
and delimiters. 

9 
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3.4.2 Short number tokens 

The Short Number token is used to transmit an integer ranging in decimal value from -4000 to 
28767. It is a two byte token containing a fixed I-bit token identifier, 0, followed by 15 data 
bit locations which contain the encoded integer. 

An integer in this range is encoded by adding the decimal value 4000 to it, and then 
converting the result to an unsigned IS-bit binary integer. Thus, the value -4000 is 
represented by 15 binary zeros, and the value 28767 is represented by 15 binary ones. An 
intermediate value such as -125 becomes the IS-bit binary equivalent of -125 + 4000 = 
3875, which is 111 lOO 100 OIl. An integer outside the range -4000 to 28767 is encoded in 
a Short Sequence or Long Sequence token of type sequencelnteger, described below. 

3.4.3 Short sequence and long sequence tokens 

The Short Sequence and Long Sequence tokens are used to transmit extended sequences of 
data bytes. The Short Sequence token begins with a 3-bit token identifier, 110, followed by a 
5-bit type field which defines the type of encoding representation, and an 8-bit length field, 
which defines the number of encoded data bytes following the descriptor fields. (The length 
field does not include the bytes in the descriptors.) The Long Sequence token begins with a 3-
bit token identifier, 111, followed by a 5-bit type field, and a 24-bit length field. 

Eleven possible types of encoding representations may be used to represent the data 
transmitted within Short Sequence or Long Sequence tokens. The 5-bit type field contains a 
numerical value identifying which encoding representation has been used; these values are 
listed in The Interpress 82 Electronic Printing Standard The content of the data field for each 
type of representation is described below. 

sequenceInteger: Contains an unsigned two's complement binary representation of an integer. 
This type is used to encode an integer outside the range -4000 to 28767. It may also be used 
to encode an integer within that range, but provides a less compact form for doing so. 

sequence Rational: Contains two signed two's complement binary representations of the integer 
numerator and denominator of a rational number. The numerator precedes the denominator 
in the encoding. Each integer is half the length indicated in the token's length field: that is, 
the data field is twice as long as the number of bytes required to hold the longer of the two 
integers. Both integers are padded with high order zeros to fill out their allocated space. 

sequenceldentifier: Contains the characters of an Interpress identifier (which is defined in the 
Interpress language syntax section of this manual), encoded in the same fashion as the 
characters of the header. Each byte contains a character from the ISO 646 7-bit Coded 
Character Set for Information Interchange. 

sequenceLarge Vector: Compactly represents the components of a large vector in the form of a 
set of two's complement binary integers, with each integer representing a component of the 
vector. Each integer in the set is the same length and is represented by a series of bytes. The 
token'S first data byte following the length field contains a value indicating the number of 
bytes in each of the succeeding integers: if the number of bytes is b, and the number of such 
integers is n, then the first data byte will contain the value b, and the length field will contain 
the value n"'b + I (where the additional 1 occurs because of the data byte containing the 
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value b). This set of integers is automatically converted to an Interpress vector (defined in the 
Interpress language syntax section of this manual) at the printer during the token decoding 
process. 

It generally is not practical to transmit an extremely large vector in tenns of its individual 
components; the sequence Large Vector encoding representation forewarns the printer's token 
decoding process that an extended sequence is being transmitted, and packages the vector into 
one token. The decoder can then build the vector as it arrives, store it in internal or external 
memory, and use a pointer technique to represent its location. 

sequenceCompressedPixelVector: Contains a raster which has been compressed in specific 
accordance with the Xerox standard compression algorithm that is, defined in Appendix C. 
(No other algorithms are currently supported.) 

The sequenceCompressedPixelVector represents the compressed raster as a set of 32-bit fixed 
length binary integers, with each integer representing a component of a pixel vector. This 
token has exactly the same structure as the sequenceLarge Vector described above; the value of 
b in this case is 4, representing the four bytes in each 32-bit integer. Its maximum length is 
16777215 (224_1) bytes. The maximum number of 32-bit integers that it can contain is 
therefore 4194303 (222_1). 

sequencePackedPixelVector: Contains an uncompressed raster, each component of which is 
represented as a 32-bit fixed length binary integer. Components are packed according to the 
following specific rules: 

Consecutive pixels along a scan line are stored in consecutive bits within consecutive bytes. 

The end of the scan line is padded with zeros to bring the scan line ending to a byte 
boundary. 
The end of the last scan line is padded with zeros to bring the end of the complete raster 
to a 32-bit boundary. 

(No other packing algorithm is currently supported.) 

This token has exactly the same structure as the sequenceLargeVector; the value of b in this 
case is 4, representing the four bytes in each 32-bit integer. Its maximum length is 16777215 
(224_1) bytes; therefore the maximum number of 32-bit integers it can contain is 4194303 (222_ 
1). 

sequenceContinued: Contains a continuation of the preceding token'S data field. A token of 
the sequenceContinued type may be used regardless of the kind of token preceding it, but it is 
typically used in conjunction with the sequenceCompressedPixelVector or 
sequencePackedPixelVector types. 

The sequenceContinued type is provided because although the encoding system always 
supplies the precise length of each token, the total length of a large set of vector components 
may not always be known at the time that its transmission must begin. This can occur, for 
example, in scanning devices which do not contain buffers large enough to hold a complete 
image. Such a device generally uses a double buffer or ring buffering scheme. At the time it 
begins to transmit the first buffer segment of that image, it knows the length of each buffer 
that it has prepared for transmission, but not the total length of data in the scanned image. 
The first such buffer that is filled is transmitted as a sequenceCompressedPixelVector or 
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sequencePackedPixelVector, with its length field properly set to reflect the buffer size. 
Subsequent buffers that are filled are transmitted using the sequenceContinued type with each 
length field again set to reflect the buffer size. The last segment of the image may not 
completely fill the buffer, but its size in bytes will be known; it is also transmitted with a 
sequenceContinued type, with its length field set to reflect the byte count in the last buffer. 
(The length field of a sequenceContinued type can contain a value of zero.) 

sequeoceStriog: Compresses 16-bit components of a vector into a string of 8-bit values, in 
accordance with a standard compression algorithm. An alternative compression algorithm 
documented in Appendix C can be used for any set of 16-bit components of a vector; 
however, the sequenceString format typically is used to represent characters that are defined by 
16-bit character codes, such as those defined in the Xerox Character Code Standard. (See the 
Xerox Standards Document titled Xerox Character Code Standard.) 

The contents of a sequenceString are 16-bit (two-byte) quantities that are represented in a 
compressed format. The compressed format encodes two-byte quantities into one-byte 
quantities by establishing a constant value for the high order byte. This constant value is then 
concatenated to all succeeding bytes to form two-byte quantities. The constant value high 
order byte is changed to a new value by an escape code sequence. The escape code is a byte 
with the decimal value 255. When the escape code is detected the following byte is established 
as the new value for the constant high order byte. The rules for this process are the following: 
if the token's leading data byte contains all ones (decimal value 255), the next byte designates 
the high order byte of all the two-byte vector components; each of the following series of bytes 
is assumed to be the low order byte of each two-byte component. If the leading byte is not 
255, the upper byte of each component is assumed to contain all zeros. Once the value of the 
upper byte has been defined it remains in effect as the upper byte of all succeeding two-byte 
components until it is changed by the appearance of a byte containing the decimal value 255. 
The upper byte may not be assigned the value 255. 

Xerox supports a standard 16-bit encoding convention for its Xerox Character Code Standard, 
which comprises up to 255 different character code subsets, each containing 255 characters. 
(The 256th character code in each subset, having code value 255, is reserved for the special use 
described above, and may never be used as a code set designator nor as a character code 
within a code set.) The high order byte of this 16-bit character code designates a character 
code subset, and the low order byte designates the character code within that subset 

Xerox also supports a standard set of characters called the Xerox Standard Character Set The 
Xerox Standard Character Set is broken up into as many as 255 different subsets, each 
containing up to 255 characters. Each member of the Xerox Standard Character Set has an 
associated member of the Xerox Standard Character Code by means of which its imaging may 
be invoked. The relationship between the members of the Xerox Standard Character Set and 
the Xerox Standard Character Code is presented in the Xerox Standard titled Xerox Character 
Code Standard. Reference to this document will show that character subset zero includes the 
ISO 646 set. Therefore, a conventional ISO 646 string is represented in a sequenceString 
encoding by a string of bytes corresponding directly to the ISO 646 byte encoding system. 
The first byte of such a string will not contain the value "255", hence all the bytes of the ISO 
646 string will have an implied "0" byte concatenated to them in the creation of their 16-bit 
character codes. 
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sequencelnsertFile: Contains a sequence of 8-bit character codes representing the name of a 
file in an installation dependent character set. For Xerox printers that is the Xerox Standard 
Character Set. 

When a sequencelnsertFile token is received by the printer, the software executing the 
Interpress master in the printer essentially leaves the Interpress domain. It obtains the 
designated file and determines the nature of its content. It can then take any number of 
different actions depending on the content of the file. The file content may be anything the 
installation chooses to support, subject only to one constraint: if the file causes the state of the 
machine to change or causes an image to be created in any manner whatsoever, that image 
must have been definable by an Interpress master, even though it might not be so defined in 
the file. 

Such a file can contain a number of different types of information, including, for example: 

1. A fragment of an Interpress master. The fragment is inserted in the master in place of the 
sequencelnsertFile token and executed as though it were part of the master itself. 

2. A complete Interpress master. The printer software can strip off the header and the 
master's preamble (see 3.S), and execute the rest of the filed master in-line with the master 
currently being transmitted. Alternatively. it might execute the preamble and create a 
special PageFrame for use in the execution of the master contained in this file. At the 
completion of the execution of this file it would have to restore the old PageFrame for the 
continuation of the execution of the original master. 

3. A non-Interpress representation of a page image. Generally, each printer does not 
transform an Interpress master to a raster image format directly; it usually generates some 
intermediate native language to drive its image generating system. Once a master has been 
interpreted and this native language format has been generated, the result may be stored in 
a file for later re-use. The printer software can recognize such a file and place its content 
directly into the native language output stream that it is generating from the Interpress 
master. 

A standard form is an excellent example of the utility of the sequenceInsertFile token. Within 
a given complex of printers there may be many different printers, each with its own native 
language. The same standard form might be contained in a file in each printer. in that 
printer's native language. Each such file could have the same file name. Now a master 
containing a sequenceInsertFile token specifying that file name would create the same image at 
each printer even though the contents of every file would be different. 

This function is one of the most powerful tools available to the creator of an Interpress master. 
In essence, the sequenceInsertFile operation provides a means for escaping momentarily from 
the Interpress language. Its use is analogous to that of escaping from a higher level 
programming language to an assembly language level. 

sequenceComment: Contains an arbitrary sequence of bytes which are ignored by the printer 
when this token is processed. 

13 



3 Elements of the encoded Interpress master 

3.5 Organization of the encoded master 
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Within the Xerox encoding format, the encoded master is organized into groups of tokens 
containing operators and operands that describe the individual pages of the document. 
Constants and procedures common to all pages may be· included in a preamble; except for this 
common information, each page is independently encoded and contains both the procedures 
and the data constants and imaging literals that the printer needs to build that page. Note that 
the master does not provide a central program that loops through a new set of data variables 
for each successive page; rather, each page is a separate program wherein page imaging data is 
included as a fixed collection of literals. (This allows the user to select part of a document or 
a series of nonsequential pages for printing, without requiring the printer to process preceding 
pages that are not to be printed.) 

The tokens of the encoded master are grouped into pages through the use of the special 
delimiter codes represented in this manual by the brace characters { and }; tokens 
containing BEGIN and END codes delimit the master itself. (The Interpress 82 Electronic 
Printing Standard lists the code value of each of these delimiters; they are typically encoded 
using a Long Op token format.) Thus, the structure of a master is as follows: 

header BEGIN{preamble}{page l}{page 2} ... {page n}END 

The primary function of the preamble is to select and store the fonts; it also establishes 
parameters, procedures, and working storage used throughout the printing of the document. 
The preamble is within the first set of brackets following begin. If no preamble information is 
supplied, the preamble's position must be acknowledged with a pair of empty braces, as 
follows: 

header BEGIN{}{page l}{page 2} ... {page n}END 

3.5.1 Order of notation 

An opcode normally must follow its associated operand or operands in the encoded master. 
This is referred to as "postfiX notation", and allows most printers to absorb and execute the 
encoded master efficiently. 

Within the encoding system a very small number of specific opcodes precede a complex 
operand called a body, which in encoded form consists of brace codes delimiting a group of 
opcodes and their associated operands. The entire group is treated as a single operand of the 
body operator. It is encoded as follows: 

Body operator {operand(s) operator ... operand(s) operator } 

The preamble and pages of a master are special instances of this structure, wherein the body 
operator is implied rather than explicit; executing a page body causes the page to be imaged 
and printed. 

(It is important to note that this precedence characteristic of a body operator is an encoding 
convention and does not reflect the syntactic rules of the Interpress language structure itself, as 
described in the following chapter. In fact, Interpress language syntax requires that the body 
operator immediately follow its associated operand, and that no operands or operators occur 
between a body and its associated body operator. It is this syntax restriction which permits the 
body operator to precede its body operand in the encoding system.) 
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Interpress 
language components 

In review, Interpress 82 is a language for representing a previously composed document, 
wherein Interpress operators (procedures) and operands (data constants such as page location 
parameters, and imaging literals such as text characters) form a programmatic master of the 
document. The master is transmitted in encoded form to a printer, which decodes, interprets, 
and executes it, thus producing a printed copy of the composed document. 

This section describes the executable Interpress language components that are derived from a 
transmitted master by the printer's software. 

4.1 Transmitted and created language components 

Transmitted tokens are decoded by the printer and the data they contain is built into an 
executable sequence of Interpress operators and their associated operands. There is not always 
a direct one-to-one correspondence between an encoded token and an Interpress language 
component; some components are built at the printer as a result of the execution of directly 
encoded components. 

A component of the Interpress language is called a transmission type if it can be encoded in a 
token and transmitted to the printer, or a creation type if it is built at the printer as a result of 
the execution of transmission-type components. For example, there is an Interpress language 
component called a trajectory, but an Interpress trajectory cannot be directly represented in the 
encoded data bytes of a single transmission token. However, a number of separate tokens can 
be transmitted which contain encoded operators and operands that cause a trajectory to be 
built at the printer. Thus, a trajectory is a creation-type language component which could not 
have been directly encoded and transmitted, while those which built the trajectory were 
transmission types and were directly transmitted. Language components of the transmission 
and creation types are collectively referred to as execution type components. 
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4 Interpress language components 

4.2 Data types 

16 

An execution component of Interpress 82 carries an internal tag identifying it as one of twelve 
separate data types, according to its form and function. Transmission language components 
may be any of four data types; creation language components, formed within the printer, may 
be any of nine different types. (The Operator data type is used to identify both primitive 
operators, which are transmitted, and composed operators, which are created at the printer.) 

4.2.1 Transmission data types 

The following are the different types of transmission components, each of which may be 
encoded and transmitted in a token. 

Operator: A transmission-type operator is called a primitive operator; it is a basic procedure 
used to build an output image or control the intermediate data used in the process of building 
it. Normally an operator is executed upon receipt; however, it may be contained within a 
complex operand called a body (see below), in which case it might not be immediately 
executed. The. individual operators are described in the specification, along with the number, 
sequence, and type of operands they require; note that when a particular operator requires a 
number as an operand, that operand may be either type Number or type Integer as described 
below. (An operator is encoded as a Short Op or Long Op token.) 

Some operators are created at the printer as the result of the execution of other operators; see 
4.2.2. 

Integer: A 24-bit unsigned mathematical integer that must lie in the range zero to 224_l. 
Whereas a token-encoded integer may be represented by the smallest number of bytes 
possible, it is expanded to a 24-bit form after it is received. (It is encoded as a Short Number 
token, or as a Short or Long sequence Integer token. Note that an Integer as an Interpress 
language type is different from an integer in the encoding system. In the encoding system an 
integer may be negative, and, if it occurs in the definition of a rational, may have a magnitude 
greater than 224-1. Any encoded integer outside the range 0 to 224_1 is converted to a value 
of type Number during the input decoding operation.) 

Number: A Number is an element of a certain subset of mathematical rationals. This subset 
includes every rational which can be represented in the form ix2e, where i is an integer in the 
range _(224_1) to (224_1), and e is an integer in the range -100 to 100. Numbers may be 
transmitted in several ways. If they are integers there are two transmission mechanisms. If 
they are not integers they are transmitted in terms of rationals. A rational is a pair of integers 
named numerator and denominator. Integers used to define rationals are mathematical integers, 
not necessarily Interpress integers. That is, they are not restricted to the range 0 to 224_1, but 
may be signed, and of greater magnitude· range. Most printer implementations will deal with 
integer values in the range -232 to 232_1. The number represented is numerator divided by 
denominator. In the Interpress language rationals or integers may be used wherever the formal 
operand type number is called for. (Numbers are encoded as a Short or Long 
sequenceRational token, or as a Short Number token.) 

Identifier: A sequence of characters used as a constituent of a hierarchical name. Each 
character is encoded within one byte in the ISO 646 7-bit Coded Character Set for Information 
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Interchange, the high order bit of the byte being set to O. An identifier may only include 
lower-case letters, digits, and the "minus" character (-), and must begin with a letter. Upper­
case letters may be included in a token-encoded identifier, but they are mapped to their lower 
case equivalents when they are received. The Interpress language makes no provision for 
decomposing an identifier into its consituent characters; it is treated as an atomic entity. (It is 
encoded as a Short or Long sequence Identifier token.) 

4.2.2 Creation data types 

The following list summarizes the different types of creation language components, which may 
not be transmitted as single corresponding tokens in the encoding system, but may be built at 
the printer using the transmission components described above. 

Body: A complex operand that contains a series of operators and their associated operands. 
When a body is received at the printer it is immediately acted upon by its own associated body 
operator, which must be one of the following: MAKESIMPLECO, DOSA VESIMPLEBODY, IF, 

IFELSE, IFCOPY, CORRECT. (In the encoding system, a body is delimited by beginning and 
ending brace codes and the body operator is encoded preceding the body. In the internal 
language syntax, however, the body operator is required to immediately follow the body. No 
other operator nor operand may be interposed between the body and its associated body 
operator. It is this constraint which permits the body operator to precede its body within the 
encoding system.) 

Operator: A creation-type operator is called a composed operator; it is a procedure composed 
of a body and a set of constants and variables called a frame. (Refer to "composed operators 
and the active frame" for additional details.) It is built as the result of the execution of a 
MAKESIMPLECO operator. 

Vector: A collection of ordered execution language components, built as the result of the 
execution of a MAKEVEC or MAKEVECLU operator. An Interpress operation can access a vector 
element by indexing its position (the first element, the second element, etc.). The elements of 
a Vector are not required to be of the same data type; they may be of any type, including 
vectors. (Exception: a body must already have been acted upon by a body operator before a 
MAKEVEC or MAKEVECLU is received; therefore composed operators, which contain bodies, can 
be elements of a vector, but the bodies themselves cannot.) Special tokens exist for 
transmitting the components of large vectors; refer to "Building a Vector on the Stack" for 
additional details. 

Mark: A delimiter which limits access to a common collection of operands called the stack. 
A mark cannot be directly transmitted, but is built as the result of the execution of a MARK 

operator. A MARK operator is an operator that can be transmitted. (Refer to "The Stack" for 
additional details.) 

17 
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Interpress language components 

Transformation: A special vector of six numbers (of the Number type as defined above), 
which when combined with three fixed numbers forms a transformation matrix which can be 
conceptually represented as: 

a 
b 
c 

d 
e 
f 

o 
o 
1 

The sequence of presentation of the six numbers is in the order a, b, c, d, e, f. (Refer to 
Chapter 8, "Transformations", and D for additional details.) 

Trajectory: Geometric information describing an ordered sequence of connected lines or 
curves called segments. Segments have a start point and an end point. The end point of one 
segment in a trajectory coincides with the start point of the next segment in that trajectory. A 
closed trajectory closes upon itself, i.e., the end point of the last segment in the trajectory 
coincides with the start point of the first segment in the trajectory. 

Outline: Describes a collection of trajectories. Each trajectory of the outline is either closed 
or implicitly closed by a straight line segment linking the end point of its last segment with the 
start point of its first segment. It is built as the result of the execution of a MAKEOUTLINE 

operator. 

PixelArray: Contains a raster image plus image characterizing information. It is built as the 
result of the execution of a MAKEPIXELARRA Y operator. 

Color: Contains a color description, either of a constant color or a sampled black-and-white 
color. Interpress 82 supports only the constant color, gray, which may range from white to 
black, or a sampled black-and-white color which contains a pixel array of ones and zeros. In 
the latter case the ones represent "black", and the zeros may represent either "white" or 
"transparent". Sampled black-and-white color may be used to represent generalized regular 
patterns made up of vertical, horizontal, or diagonal bars, or dots of various sizes and shapes, 
etc. 
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Execution state 

A generalized machine model is described in the specification to conceptually define the 
internal logic followed by a printer's software in executing the transmitted master. In addition 
to the operands, operators, and bodies previously described some key concepts of this model 
are the slack, the frame, the imager variables, and the image. In combination with the 
procedural context, these define the state in which execution is taking place, and facilitate 
describing the functional characteristics of the individual Interpress language components. 

5.1 The stack 

The slack is an ordered collection of operands wherein the last one added to the collection is 
the first one removed. As each encoded operand is received and decoded by the printer, it is 
pushed on top of the stack. When an operator appears in the input sequence, its operands are 
popped off the stack and processed according to the semantics of the operator; some operators 
push resulting values back onto the stack. (Each operator uses a particular number of 
operands of specific types, which must have been pushed onto the stack in a specific order; 
likewise, any results returned by an operator are of a predefined number, type, and order.) 

Operands which have been popped from the stack are discarded after execution. To preserve 
them in the stack, they must be copied before they are executed; special stack-manipulating 
operators are available to do this. 

The process described above is illustrated by the following example. Consider the sequence: 

a b ADD C d SUB e f SUB DIY MULT 

wherein the lower-case letters (a, b, etc.) represent operands, and upper-case mnemonics (ADD, 

SUB, etc.) represent operators. (In this example, each operator uses two operands and returns 
one value to the stack.) 

19 
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Execution state 

With this sequence the successive states of the stack would be as follows: 

a After receipt of a 

b 
a 

a+b 

c 
a+b 

d 
c 
a+b 

cod 
a+b 

e 
cod 
a+b 

f 
e 
cod 
a+b 

e-f 
cod 
a+b 

(c-d)/(e-t) 
a+b 

(a + b)(c-d)/(e-t) 

After receipt of b 

After receipt and execution of ADD 

After receipt of c 

After receipt of d 

After receipt and execution of SUB 

After receipt of e 

After receipt of f 

After receipt and execution of SUB 

After receipt and execution of DIV 

After receipt and execution of MULT 

5.1.1 Building a vector on the stack 

A vector is created by a MAKEVEC or MAKEVECLU operator. Prior to the execution of either of 
these two operators the individual components of the vector are pushed onto the stack; when 
all of the components of the vector-to-be have been assembled in their proper order on the 
stack, an integer which designates the total number of such components (MAKEVEC), or a pair 
of integers designating the lower and upper index value of the vector (MAKEVECLU), is also 
pushed on. 

When the MAKEVEC or MAKEVECLU operator is executed, it uses this sequence of stacked 
operands to create a single vector operand on the stack that can be pushed or popped in one 
operation, rather than requiring a separate operation for each component as before. The 
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created vector is structured to permit the retrieval of any of its components by designating the 
desired component's index number. The only difference between MAKEVEC and MAKEVECLU 

is that MAKEVEC uses zero as the lowest index number, whereas MAKEVECLU assigns a range of 
index numbers that starts with the value I and ends with the value u. 

It is not practical to implement a stack of g'reat size in most printer implementations. For that 
reason it is not practical to make extremely large vectors by pushing an enormous number of 
components onto the stack. and executing a MAKEVEC or MAKEVECLU operator. Special 
techniques are provided within the encoding system to avoid this problem for certain large 
vector structures. (See "Token formats.") 

5.1.2 Complex operands 

The following list of operand types have structures which can be quite complex: 

Vector 
Transformation 
Trajectory 
Outline 
Body 
Operator (composed) 
PixelArray 

Each of these operands can be quite large, and can consist of many component parts. For 
example, a vector can have a large number of elements, and each element can be another 
vector having a large number of elements, and so on. A pixel array can contain millions of 
bits. An outline can contain many trajectories and each trajectory can contain many line 
segments. Any of these operands may be pushed onto the stack, or popped off of it, in 
precisely the same manner as a simple operand such as an integer. (In any printer's particular 
implementation of the Interpress language the operand might not actually be physically moved 
to the stack, but only placed there through the use of a pointer to the operand in memory. 
From the conceptual viewpoint of Interpress, however, the operand is on the stack whether it 
is physically placed there or only represented by a pointer.) Any of these complex operands is 
a single element on the stack; it is sent to or removed from the stack with a single push or pop 
operation. When it is on the stack its components cannot be dealt with by the master on an 
individual basis. 

(A distinction should be made between the Interpress master which describes a document, and 
the printer software which interprets this description and creates the printed image. There are 
many processes available within the interpreter which are not available within the master. The 
interpreter is free to do anything it wishes to decompose the "atomic" entities of the master in 
order to interpret their meaning, but the master cannot perform the equivalent operations; for 
example, the printer could examine the individual characters of an Identifier if it chose to do 
so, but the master cannot.) 
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5 Execution state 

5.1.3 Storina stack elements 

Elements on the stack can be stored in and retrieved from a special vector called a frame, 
using the FSET and FGET operators. This is of special significance when the element stored is 
a composed operator, in that it allows a procedure to be executed later using a 00 type of 
operator rather than being immediately executed upon receipt at the printer. 

Stack elements can also be used to set values in another special vector containing imaging 
variables that have housekeeping functions relating to the page image currently being builL 

S.2 The frame 

22 

The frame is a dynamic working storage area with the structure of a vector that is created by 
the preamble. The FGET and FSET operators may be used in the master's preamble and in 
any of the page bodies to set, retrieve to the stack, or change the values in the frame; an 
individual component of the frame is specified by an index number. 

When the master begins execution, the frame is a vector of fixed size (see topFrameSize in the 
specification), in which all the component values are set to zero. The preamble can store data 
elements from the stack into the frame as new vector component values, to be extracted later 
(in the following page bodies) by using the appropriate index number as the operand of an 
FSET operator; typically some of these frame components are composed operators (see below). 
Subsequent pages can retrieve these data elements from their frame by means of an FGET 

operator. 

When each successive page body begins execution, its frame initially is the same as the original 
frame built by the preamble. (This frame is called the page frame). This allows commonly 
used constants and procedures to be built in the preamble and made available to each 
successive page during execution. Operators in the body of each page can change or add to 
the copy of the page frame during the course of execution of the page body, but cannot make 
these components available to any succeeding page. (In other words, every page is executed in 

.a OOSAVEALL fashion (see below), so nothing can be passed from one page to the next.) 

In the process of executing the page, modifications to the page frame may be made; the frame 
as it exists at the current stage of execution is referred to as the current frame. 

5.2.1 Composed operators and the active frame 

When the printer receives a MAKESIMPLECO body operator and its body (consisting of a 
sequence of operators and their operands), it builds a composed operator by creating a copy of 
the current frame and linking it to the body. Typically the composed operator, including its 
body and frame, is then stored in the current· frame for later retrieval and execution using a 
00 form of operator. 

A copy of the linked frame becomes the composed operator's initial frame: when the 
composed operator is retrieved and executed. this initial frame becomes the active frame, and 
the frame that was active up to the point where the 00 was invoked becomes inactive until 
execution of the 00 is completed, at which time it again becomes active. Each time the 
composed operator is invoked, its active frame is a fresh copy of the frame that was current 
when it was built; at the end of each execution, its frame is discarded. 
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A composed operator may invoke other composed operators, which may in tum invoke others. 
Each has its own initial frame, which becomes the active frame during its execution. The 
FGET and FSET operators affect only the active frame; inactive frames may not be accessed or 
altered. 

From this description it may be seen that the initial frame of a composed operator may 
provide values known to the creator of the composed operator at the time the composed 
operator was built. Alternatively, the creator can cause the composed operator to be contained 
within another composed operator so that it is provided with an initial frame which contains 
values known within that composed operator at the time the second composed operator is 
created. The composed operator can obtain parameters and operands from its initial frame, 
and can store and retrieve local variables in it 

Any invocation of a composed operator must be from the page body or from another 
composed operator. Since composed operators may be nested to any number of levels there 
may be an arbitrary number of composed operators in the midst of execution at a given point 
in time. Since composed operators may be recursively called there may be an arbitrary 
number of instances of the same composed operator in the midst of execution at a given point 
in time. 

The combination of the current frame of a composed operator and its return link back to its 
calling 00 operator is called its context. Each instance of recursively executing composed 
operators has its own context; the page body in execution has a context which includes the 
current state of the page frame. 

5.3 Imager variables 

Imager variables are values which are used to define and control various facets of image 
generation, such as current position on the page, the font currently in control of the character 
printing operations, and the color currently being used. They are contained in an internal 
vector-structured table called the Imager State, and can be accessed or modified using the [SET 

and IGET operators (as well as other "convenience operators" with more specialized functions). 
Each imager variable has a specific location in the vector, and is located by specifying its 
appropriate index number. The imager variables and their positions in the Imager State vector 
are shown in The Interpress 82 Electronic Printing Standard. 

When the Imager State vector is modified during the execution of a composed operator, the 
extent to which the changes are retained once the composed operator has finished execution 
depends on the form of 00 used to invoke the procedure. The imager variables are divided 
into persistent and non-persistent variables. As described later in this document there are three 
different forms of a 00 operator called DO, DOSA VE, and DOSA VEALL which are used to control 
the execution of a composed operator. The general function of these operators is not pertinent 
at this point. What is pertinent about these operators are the terminal state~ in which their 
executions leave the persistent and non-persistent imager variables. If ooSA VEALL is used to 
invoke the composed operator, no changes to the Imager State vector are retained at the end 
of the composed operator's execution, i.e., all imager variables revert to their previous values. 
If OOSA VE is used, changes to persistent imager variables are retained, but non-persistent 
variables are restored to their previous value. If DO is used, all changes persist. This is 
summarized in the following table: 
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5 Execution state 

Operator 

00 

OOSAVE 

OOSAVEALL 

Persistent Variables 

Non-Restore 

Non-Restore 

Restore 

Non-persistent Variables 

Non-Restore 

Restore 

Restore 

Each imager variable is assigned a standard initial value when the interpretation of the master 
commences. The preamble (as well as each page body) is executed by an implicit OOSAVEALL; 

therefore after the execution of the preamble the imager variables are restored to their 
initialized values, preventing the preamble from directly passing any modified imager state 
values on to the page bodies. As a further constraint the preamble is not permitted to leave 
any values on the stack. However, the preamble can store a composed operator in the page 
frame which when executed will modify the imager variables to the desired values. If each 
page body begins with the execution of this composed operator, each page body will reset the 
variables of the Imager State to the values desired by the creator of the master. 

5.4 Alterable and unalterable machine states 

24 

The alterable state of the "machine" which executes Interpress consists of the stack, the 
contexts of all of the composed operators currently in the midst of execution, and the current 
values of the imager variables. The scope of a composed operator, i.e. the extent of things with 
which it can deal, is limited to the state of the machine at the time the composed operator is 
in execution; its scope with respect to the stack may be limited by its caller through the caller's 
use of the MARK operator. 

Executing an operator, either primitive or composed, causes changes in the state of the 
machine, or in its output (the image being created), or both. These changes may (and 
generally do) depend on the current state, but they may not depend on the state of the output. 
That is, the state of the output image can in no way affect the future state of the machine. 
Output is write only. Thus, the meaning of an operator can be completely defined by two 
transition junctions, namely: 

a state transition function, which defines how a new state of the machine will be created 
from its present state as a result of executing the operator. 

an output transition function, which defines how the present state of the output of the 
machine will be modified as a result of executing the operator. 

There exists an unalterable state associated with the "machine" which executes Interpress, 
namely the environment in which it is embedded. In a sense this environment is outside of 
Interpress, but it does impinge on the execution of the Interpress master; it is from this 
environment, for example, that the "machine" which executes the Interpress master obtains the 
fonts called for by the master. The Interpress language itself does not deal with this 
environment, but its utility depends on the support of processes and usage of data from this 
environment, such as font look-up. 
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The imaging model 

Interpress builds the image of a page by sequentially laying down the components of the 
image defined by the master. In doing so it obeys a set of rules that define the imaging model 
to which Interpress adheres. The imaging model involves three objects called the page image, 
the mask, and the color. It is essential that the reader understand this model in order to 
understand the workings of the imaging operators. 

The page image is a two-dimensional image of picture elements (pixels). A pixel is a small 
region of the output image whose color can be controlled by the printing device independently 
of all other regions. The page image is accumulated sequentially through the execution of a 
series of primitive imaging operators. The current state of the page image should be viewed as 
a receiving medium upon which colors have been deposited to build a portion of the final 
image, and to which subsequent colors will be applied to complete that image. In Interpress 
82 a pixel can only contain a single color, gray, which can range through all shades of gray 
from white to black. 

The mask is a stencil which is laid down on the page image. It is first located and oriented so 
that the shape of the object defined by the cut out portion of the stencil is positioned precisely 
where the master desires a copy of that shape to be imaged. 

The color is an ink which is painted through the cut out portion of the stencil in order to add 
the image defined by the stencil to the page image. 

An incremental step in the building of the page image thus consists of establishing a color for 
the ink, defining a mask to be used, locating and orienting it at" the proper position on the 
page image, and painting the color through the mask. 

Although these are fairly straightforward concepts there are some hidden subtleties in their 
functional structures which require elaboration. The mask may be defined in either of two 
ways. One way is in terms of a geometric definition of the outline of the hole in the stencil 
which represents the mask. This works well when the shape of the hole may be geometrically 
represented in a simple fashion. Another way is to represent the shape of the hole in the 
stencil by a pixel array. Such a pixel array could be created to represent the shape of a letter 
in a particular font style. This form of character representation is generally easier to deal with 
than a form defined by a geometric characterization of the character's outline. Alternatively it 
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could be generated from the raster scan conversion of a computer generated graphic, or from 
the raster scanning and half-toning of a continuous tone photograph. Think of a pixel array in 
this context as an area-covering array of binary 1's and D's where a 1 defines a square hole (of 
a dimension corresponding to the size of a pixel) through which ink may be deposited, and a 0 
represents an area of the same size in which no ink may be deposited. A series of adjacent 1's 
represents a contiguous area in which ink may be deposited. Think of a pixel as a square area 
whose sides do not have an associated physical unit of measurement. In an ultimate usage this 
area will be scaled to a desired size (which might be 3 feet on a side or .001 inches on a side). 
The actual scaling applied to pixels in most printers is such that the size of a side of the square 
area represented by each pixel in the array is exceedingly small, generally on the order of 
11200th to 1I1000th of an inch, small enough so that the resolution of the image created by 
depositing ink through such an array is sufficient for the desired print quality. 

The color of the ink which can be deposited through the mask is limited to two varieties in 
Interpress 82. The first variety is called gray, and ranges from white to black. (Note: The 
term "gray" as used here is a true gray. That is, a value of gray ranging from white to black 
may be deposited within a single pixel. Many printers may only permit a single pixel to 
contain a value of black or white. In such printers a single pixel cannot contain a value of 
gray. In this case the printer simulates a gray value by using a regular pattern containing many 
pixels each of which can only contain black or white. In this latter case the human eye 
integrates the pattern of multiple pixels to obtain what appears to be gray. It is not this latter 
case we are speaking of when we say that a pixel can contain a value of gray.) The second 
variety is called sampled black-and-white. 

Interpress 82 is often employed with the printing of images on monochromatic printers, 
generally employing black inks. In such printers a pixel can only contain a single value, black 
or white. (For purposes of the following description we will assume a black ink printer, 
although it could be any single color.) In such printers either of the two varieties of inks is 
made by defining its composition through the use of pixel arrays in a manner which is 
distinctly different from the use of pixel a"ays in defining masks. Either of these inks is made 
by creating an area-covering pattern of binary 1's and D's. In the case of gray ink the structure 
of the area covering pattern is implicit. That is, a shade of gray is defined by a fraction, f, 
whose value represents the fraction of incident light that is to be absorbed. Thus, f=O is 
white, and f= 1 is black. From this fraction the printer creates a regular pattern of 1's and D's 
which will generate a black ink pattern that the human eye will integrate to the desired shade 
of gray. Note that the printer does not actually contain gray ink, it merely generates a black 
and white pattern which simulates gray to the human eye. However, the ink is treated as a 
solid colored ink in the sense that it completely over-writes any image previously placed on the 
page in any area which it overlaps. In the case of sampled black-and-white the creator of the 
master explicitly designates the structure of the ink by creating a pixel array whose 1's and D's 
represent an arbitrary pattern of black and white. 

There are two ways in which such an area-covering ink pattern can be defined. In the first 
method, as described above, the printer creates the area-covering ink pattern for a gray ink 
using a creator supplied parameter which defines the desired gray level. The second way is to 
create an ink "tile", copies of which are automatically abutted to each other by the printer to 
build up the coverage of a desired area. The creation of the ink tile also specifies the location 
of its lower left-hand comer on the page. The abutting process which causes copies of the tile 
to cover the page proceeds from that initial location. Each 1 in the tile pattern represents a 
black area the size of one pixel. Either of two alternative meanings may be assigned to the D's 
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in the tile. In the first of these the O's are considered to contain white ink, in the second they 
are considered to contain transparent ink. An ink defined by such a tile may be deposited on 
the existing page image through either of the two types of masks defined above. In the "0 is 
white" case the areas covered by the O's in the ink in positions corresponding to holes in the 
mask will "white" out any image previously deposited in the page image. In the "0 is 
transparent" case, any image previously deposited in the page image will remain visible in the 
areas covered by the O's in the ink in positions corresponding to holes in the mask. It may be 
seen from this description that a sampled black-and-white ink with the "0 is white" property 
can be created which is identical to a constant color gray ink. The same ink with the "0 is 
transparent" property will behave quite differently from the gray ink, however, because in this 
case it will not obliterate any underlying image in areas corresponding to O's in the ink and 
holes in the mask. 

Usually the tile is designed so that when copies are abutted to each other on any side the 
pattern repeats itself in a continuous fashion throughout the area to be covered, but that 
condition is not enforced by Interpress. If the continuous pattern structure is inherent in the 
design of the tile the abutting process ensures that all objects printed on the page with that ink 
will have a common "phasing" with respect to that ink. That is, the ink pattern on nearby 
objects will visually flow from one object to another without discontinuities in the pattern. 
For example, if the ink is of a "stripe" variety the stripes which cover one object will be 
aligned with the stripes which cover nearby objects, and not offset so as to create visual 
discontinuities between nearby objects. 

In the case of gray ink the pattern of 1's and O's in the area-covering pixel array of the 
standard tile is completely homogeneous in all directions. In the case of sampled-black-and­
white ink it need not be. In this case the pattern of l's and O's could be that of horizontal 
stripes, vertical stripes, diagonal stripes at various angles, dots of various sizes and shapes, and 
so on. Again, for esthetic reasons, it is generally the case that the tile is designed so that a 
series of abutting tiles would present a uniform pattern, e.g. the stripes of each tile would flow 
contiguously into the stripes of its neighbors. 

Finally, a sampled-black-and-white ink could be made from an arbitrarily sized rectangular 
pixel array with an arbitrary distribution of 1's and O's. Such an ink could be generated from 
the raster scan conversion of a computer generated graphic. or from the raster scanning and half 
toning of a continuous tone photograph. The preceding point is italicized to emphasize the fact 
that this method of defining an ink is identical to a previous definition of a method for 
defining a mask. A pixel array can be used to represent either of these elements. 

Visualize that you have an ink well containing any of these type of inks. Then visualize that 
you have a paint brush that you can dip into this ink well. Now visualize that you are going 
to "paint" this ink through a stencil with an 8-112 by 11 inch hole in it onto an 8-112 by 11 
inch piece of paper. You would have an ink well and a paint brush which you would 
otherwise only be able to see in a Walt Disney cartoon. You would be able to cover the paper 
with any shade of gray from black to white, or with a regular pattern of stripes of various 
thicknesses and various angles, or with polka dots, or with a scanned image copy of the Mona 
Lisa, all with a single dipping of the brush. 

Now visualize that instead of having a stencil with an 8-112 by 11 inch hole in it you have a 
stencil of either of the varieties defined above. You locate and orient this stencil on the page 
image, and then you paint the ink in your inkwell through the holes in this stencil. Again, 
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note that in this scenario a pixel array may be used in both of the contexts described above. 
One pixel array may be used to define the mask. A second, completely independent, pixel 
array may be used to define the ink. Nonnally one thinks of the mask as having some regular 
or recognized shape, e.g. a square, a rectangle, a triangle, or a letter or a number. Normally 
one thinks of the ink as white, black, or a shade of gray. The result of depositing the ink 
through the mask is then quite easily visualized. You get an image having the shape of the 
mask, and the shade of the ink. 

Conceptually, the imaging model permits completely flexible combinations of masks and inks. 
The mask can be a rectangle and the ink striped, in which case you can get a nice element of a 
bar chart. The mask can be the pixel array representing the scanned image of the Mona Lisa, 
and the ink can be polka dots, in which case you get whatever a Mona Lisa painted with polka 
dot ink would look like (presumably, a Mona Lisa with Chicken Pox). In any event these 
combinations point out the fact that either the ink or the mask, or both, can be defined by 
means of a pixel array. One can create an image of the Mona Lisa by using her scanned 
image pixel array as the ink, and depositing that ink through a mask which contains a large 
rectangular hole. Alternatively, one can create the same image by using black ink, and 
depositing that ink through a mask which is defined by her scanned image pixel array. It is 
absolutely essential that the reader maintain clearly in his mind at all times the difference 
between the uses of a pixel array in these two roles. 

In the cases of gray ink or sampled black-and-white ink in which "0 is white" there is a special 
problem. If two images which are laid down at different times overlap, which one does one 
see in the area of overlap? Clearly the answer is the last one imaged. Unfortunately it may be 
more convenient for the printer to image objects in a different order from that visualized by 
the creator of the master. If the creator wishes to have his imaging order preserved he must 
tell the printer so by setting the imager variable priority important to a non-zero state. If 
images do not overlap or if ink is used in the "0 is transparent" mode then the order of laying 
down images is irrelevant In this case the imager variable priority important should be set to 
the zero state so that the printer is free to choose its own image generating sequence. 
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Coordinate systems 

It is necessary to introduce the concepts of coordinate systems and transformations between 
coordinate system into Interpress for a number of reasons. They permit the Interpress 
language to be device-independent. They permit the creator of a master to have great 
independence in how he chooses to measure positions on his desired output image, and in the 
units he chooses for these measurements. They also enable a simple means for the 
manipulation of masters created by others without having to make any changes to those 
masters. For example, through the use of transformations one can take two pages which were 
composed for portrait mode printing on an 8-112 by 11 inch page, and print them in a scaled 
down and rotated form in a side-by-side fashion on a landscape oriented 11 by 8-112 inch 
page. The entire process of such a two-up printing can be accomplished through the use of 
transformations without having to modify any of the Interpress description of the content of 
those pages. 

A coordinate system used within Interpress is defined by establishing a pair of orthogonal axes, 
establishing their orientation in some framework, and, generally, establishing a unit of 
measurement which the coordinate system employs. In some instances we will deal with 
coordinate systems or entities which do not have associated physical units. That is, they are 
not measured in inches, meters, printers points, or any other physical units. Although it 
appears to be a contradiction in terms we will say that such a coordinate system or such an 
entity is dimensionless, meaning that it has no physical units of measurement associated with it. 

Interpress deals with four different coordinate systems. These are designated the Master 
Coordinate System (MCS); the lnterpress Coordinate System (ICS); the Device Coordinate 
System (OCS); and the Standard Coordinate System (SCS). 

7.1 Master Coordinate System (MCS) 

Interpress 82 considers any coordinate system used within the master to be a Master 
Coordinate System. The creator of a document is free to change the position, orientation, and 
scale factor of his MCS as often as he finds it convenient to do so. This facility permits the 
creator of a document to choose a coordinate system with orientation with respect to the page 
and with units which best suit his needs in describing the document in a manner that is 
independent of the ultimate printing device. This flexibility permits the MCS to be a 
dynamically changing coordinate system. Thus, when Interpress 82 speaks of the MCS it is 

29 



7 Coordinate systems 

not referring to a fixed coordinate system, but is talking about the current state of a coordinate 
system that may be dynamically changing. Experience has shown that it is easier to think 
about the master if one establishes an initial value for the Master Coordinate System, and then 
refers to other coordinate systems used within the master as being local coordinate systems 
which are related to this initial value. In this Reader's Guide we will refer to the initial 
coordinate system used by the Master as the Base Coordinate System, BeS, and refer to other 
coordinate systems in the master as being local coordinate systems related to the BCS. In 
these terms, then, all coordinate specifications of objects on the page are given in the BeS or 
in coordinate systems related to it by transformations of the type described below. A 
concatenation of all such transformations is used to generate the single transformation which 
converts coordinates in any local coordinate system used by the creator back to the BCS. 
Thus, a particular state of the MCS is always represented by a transformation which brings it 
back to the BCS. 

7.2 Interpress Coordinate System (ICS) 

The ICS is an intermediate coordinate system which is universally known to, and implicitly 
used in the communication of, all Masters. Its purpose is to decouple the arbitrarily chosen 
coordinate systems that the creator of the master uses in describing his images from the 
arbitrary coordinate system which each printer uses in its internal operation. Each creator of a 
master transmits within the master the transformation(s) which is/are required to convert from 
his coordinate system(s) to the Interpress Coordinate System. Each printer carries within its 
implementation the transformation which is required to convert from the Interpress Coordinate 
System to its Device Coordinate System (described in the following section). 

The origin of the ICS is in the lower left-hand comer of a page which, when viewed in its 
normal viewing mode, has its long edge oriented vertically and short edge oriented 
horizontally. (Hereinafter a page printed with this orientation will be said to be printed in 
portrait mode. A page which, in its normal viewing mode, is rotated 90 degrees from such a 
page is said to be printed in landscape mode.) The unit of measurement in the ICS is the 
meter. Implicitly, all coordinates in the BCS are transformed into ICS coordinates for 
representation in the final master. Thus, the master can be expressed in a source independent 
and device independent coordinate system which is universally known by all printers produced 
by Xerox. The actual conversion into ICS coordinates may never explicitly occur. The 
Interpress master constructed by the creator contains the "recipe" and the "ingredients" for 
this conversion to be made, but it may never explicitly be displayed. (See the following 
Section on the Device Coordinate System). 

7.3 Device Coordinate System (DCS) 

30 

The nes is a coordinate system whose orientation and units are appropriate for the device on 
which the image is being created. The master supplies the transformations required to convert 
its coordinate systems into the ICS coordinate system. The printer supplies the transformation 
required to convert from the ICS coordinate system to the nes coordinate system. All 
coordinates in the ICS are transformed into DCS coordinates for the page imaging process. 
The printer maintains a current transformation which represents the concatenation of all 
transformations from any local coordinate systems which the master may choose to create for 
specific local uses on a page to his BCS, and thence from BCS to ICS, and thence from les 
to nes. Thus, original coordinates expressed in the creation of the master are transformed all 
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the way into OCS coordinates by the current transfonnation during the generation of the final 
image at the imaging device. As described below this sequence of transfonnations is expressed 
as a single matrix which is the product of simple matrices. In the case of the type of matrices 
employed by Interpress 82, in the worst case, each such product involves twelve multiplications 
and eight additions. Similarly, in the worst case, the transfonnation of a set of coordinates 
from the BCS to the nes by means of such a matrix involves four multiplications and four 
additions. 

The ultimate transfonnation from the creator's local coordinate systems, back through to his 
BeS, thence to the ICS, and finally into the nes is taken as the concatenation of all of these 
transfonnations. (See the Section 8 on Transfonnations.) In this case the creator's local 
coordinates are transfonned all 'the way to device coordinates without ever having been 
materialized as Interpress coordinates. It is because of this that the ICS is only an implicitly 
utilized intennediate coordinate system. 

Generally, the properties of the OCS are not known to the master creator. However, if he does 
know its properties, and if he chooses to use an identical coordinate system with identical units 
the concatenation of all of the transformation matrices from his BCS to the DCS reduce to the 
identity matrix, and only the master's local transformations remain. If he uses no local 
transformations the transformation operations become the Identity transformation, and effectively 
disappear. 

7.4 Standard Coordinate System (SCS) 

The Standard Coordinate System is a dimensionless coordinate system in which pixel arrays 
and character operators are defined. Its use will be described in later sections devoted to those 
subjects. 
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Transformations 

Transformations are used to map coordinates measured in one coordinate system with its set of 
units to another coordinate system with its set of units. As described above a transformation is 
used to map from the BCS to the ICS, and another is used to map from the ICS to the DeS. 
The creator of the master may find it convenient to use local coordinate systems within a page 
that are different from the BCS. A trivial example is the translation of the origin of the BCS 
to a new location on the page. The use of such coordinate systems merely creates additional 
transformations which describe how to get from those coordinate systems back to the BCS. 
Thus, a coordinate specified in the master may need to be subjected to several transformations 
in order to map it all the way into the DeS. Fortunately, however, the effect of several 
transformations applied in sequence can be expressed as a single, combined, transformation. 

A generalized representation of the coordinates of any point (x, y) in any coordinate system 
makes use of the homogeneous vector form, [x, y, 1]. This form is adopted so that a single 
matrix representation of all admissible transformations can be used. 

(For those not familiar with the handling of matrices a description of the fundamental matrix 
operations utilized by Interpress is presented in Appendix D. It is recommended that even 
those familiar with matrix operations read Appendix D because of the somewhat different 
matrix methods used by Interpress.) 

An admissible transformation in Interpress is represented by a 3x3 matrix, M, having the 
following structure: 

M = a 
b 
c 

d 
e 
f 

o 
o 
1 

A matrix of the form M is used to transform the coordinates of the point ("'from. y from) from 
one coordinate system to the point (x to' y td in another according to the following matrix 
operation: 

[x to Yto 1] = [xfrom yfrom IJ*M 
(where * in this equation stands for Matrix multiplication) 
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In equation form this reduces to the following computations: 

xto = a*xfrom + b*y from + c 
y to = d*Yrom + e*y from + f 

(where * in this equation stands for algebraic multiplication) 

The most general form of Matrix M has the effect of performing a combination of non­
uniform scaling, rotation, reflection about either of the axes, and translation. In Interpress 
specifically constrained forms of M provide for appropriate subsets of these generalized 
operations. These include: 

1. Pure scaling in the same amount in both the x and y directions. 

M= s 0 0 
0 s 0 
0 0 1 

2. Scaling by different amounts in the x and y directions. 

M= Sx 0 0 
0 Sy 0 
0 0 1 

3. Pure rotation. 

M= cos (a) sin (a) 0 
-sin (a) cos (a) 0 

0 0 1 

where a is a counterclockwise rotation of the coordinate axes. 

4. Mirror Image about x-axis. 

M= 1 0 0 
0 -1 0 
0 0 1 

5. Mirror Image about y-axis. 

M= -1 0 0 
0 1 0 
0 0 1 

6. Pure translation. 

M= 1 0 0 
0 1 0 
Tx Ty 1 

Often two transformations are performed in sequence. The same result is achieved if the two 
matrices which represent these transformations are multiplied according to the mathematical 
rules for matrix multiplication in the co"ect order, and the resultant single product matrix 
applied to the original coordinates. The order must be maintained because matrix operations 
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are not generally commutative. A typical instance of the use of matrix multiplication is the 
following: 

The transformation ID represents the transformation from the Interpress Coordinate 
System to the Device Coordinate System. Thus, 

[xDevice y Device 1] = [x lnterpress y lnterpress 1] * ID 

The transformation BI represents the transformation from the Base Coordinate System to 
the Interpress Coordinate System. Thus, 

[xlnterpress Ylnterpress 1] = [xMaster YMaster 1] * BI 

Substituting for [x lnterpress y lnterpress 1] from this second equation into the first we 
obtain: 

[xDevice y Device 1] = [xMaster y Master 1]* BI • ID 

This example demonstrates that the two sequential transformations which take us from BeS to 
ICS and then from les to DCS can by replaced by the single transformation Q which is 
obtained by performing the matrix multiplication HI • ID. Note that matrix multiplications 
are not generally commutative (Le. interchangeable in the order in which they are executed) so 
that the matrix multiplication order BI • ID must be preserved. This example also 
demonstrates that the previously described transformations from the creator's local coordinate 
system, to the BeS, to the leS, to the OCS is implemented by a series of matrix 
multiplications in which the matrices appear in the products in left-to-right sequence relative to 
the order of their occurrence. (See the portion of Appendix D titled lnterpress use of 
coordinate systems and transformations revisited for a complete description of the left 
concatenation principle.) 

The general principle that Interpress 82 adheres to with respect to the use of matrices is the 
following. The ultimate goal of all matrix operations is to produce the coordinates of images 
on the page expressed in the OCS. The way Interpress 82 achieves this is to start from the 
OCS with a series of coordinate system changes that leads to the les. These will certainly 
include a scale changing matrix, and may also involve translations, rotations and reflections. 
At each step of the way the creator views himself as being placed in the new coordinate system 
associated with that step. He then creates the matrix which will take coordinates expressed in 
this new coordinate system forward to the predecessor coordinate system in that sequence of 
steps. In a sense, then, the creator "backs" away from the Des through a series of 
transformations, but as he takes each step in this process he defines the transformation matrix 
which will bring his coordinates forwards towards the Des. This "backing out" process is 
accomplished by a series of left multiplications of matrices. That is, each new matrix is 
concatenated with all of its predecessors by a left multiplication operation. Note that in the 
preceding paragraph the matrix ID carries ICS coordinates into OCS coordinates, and the 
matrix BI carries BeS coordinates into les. Also note that the matrix BI left multiplies the 
matrix ID. If the creator of the master wishes to use a local coordinate system other than BeS 
(call it LCS for reference purposes) he thinks of himself as having stepped into that LCS 
coordinate system and writes the matrix LB that carries LCS coordinates into BCS coordinates. 
He then left concatenates that matrix on the existing matrix product to form LB • BI • ID. 
Note that while he moved from BeS to LCS he wrote the transformation which carries 
coordinates from LCS to BeS. 
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8 Transformations 

8.1 Initial transformations 

At the beginning of each page the current transfonnation, denoted by T, is initialized by the 
printer to the Identity transfonnation, I, defined as: 

I = 1 
o 
o 

o 
1 
o 

o 
o 
1 

The matrix I has the property that for any matrix M, M*I = I*M = M 

At the beginning of each page the Interpress interpreter in the printer automatically 
concatenates the ICS to DCS transfonnation with the Identity transfonnation to create the 
transfonnation that maps the Interpress Coordinate System (lCS) to the Device Coordinate 
System (DCS). This is achieved by setting: 

T:=IO*I=IO 

Generally, although not necessarily, the first operation perfonned for each page by the master 
is to concatenate the MCS to ICS transfonnation with the value of T created by the printer. 
This operation can only be accomplished if each page explicitly invokes the required 
transfonnations. Such invoking may be implemented by having the preamble write and store 
in the page frame a composed operator whose execution carries out the required 
transfonnation. This composed operator can then be executed as the first operation of every 
page. This results in the value for T which will carry master coordinates into device 
coordinates, namely: 

T:= MI * 10 

If the master creator and the printer have the same coordinate system and units of 
measurement the transfonnation, T, is the identity transfonnation 

T = 1 0 0 
010 
001 

which is represented by the rational sequence 1, 0, 0, 0, 1, O. 

8.2 Transformations used in conjunction with masks 

36 

A mask of any type is subjected to the current transfonnation each time that it is used. The 
current transfonnation may change a mask in a wide variety of ways. In their most common 
use transfonnations are applied to: 

1. Translate the mask with respect to the page image. 

2. Rotate the mask with respect to the page image. 

3. Change the size of the mask. That is, change the size of the hole in the stencil through 
which ink will be deposited. The length and width dimensions of the hole may be 
independently changed in size so that the aspect ratio of the shape represented by the hole 
may be changed. Thus, for example, a square can be changed to a rectangle, or the height 
of a letter can be changed proportionately more than its width. Some printers might only 



Interpress 82 Reader's Guide 8 

support limited subsets of this general capability. In particular, those that use pixel array 
representations of character masks will generally not contain such representations for 
characters which have been subjected to such transformations. 

Masks may be defined by the creator of the master, or they may be defined by sources outside 
of the master. If the creator of the master defines a mask he does so within his coordinate 
system, and has complete control over it. He can define transformations which modify the size 
and position of the mask for each time that it is invoked, and include those transformations in 
his master in such a way that each becomes part of the current transformation at the time the 
mask is used at the printer. He knows precisely what the effect of his current transformation 
will be on the mask for each of these invocations. Thus, the creator could take the same mask 
and cause the shape it defines to be printed on a page with different orientations, and with 
different scatings in each orientation. The most common use of a transformation in 
conjunction with a mask is to position the mask at different locations on the page so that the 
same image may be deposited at different locations. 

In some instances masks which the creator of a master wishes to use are defined by others. 
The two most typical instances of this are the masks associated with standard character fonts, 
and the masks defined by pixel arrays generated by input scanning devices or computer 
graphic programs. We will deal with the transformations associated with such masks in the 
following paragraphs. 

8.3 Transformations used in conjunction with character operators 

A character is imaged by a special composed operator called a character operator. We will 
discuss the details of character operators at a later point in this document. At this point we 
will focus our attention on the mask associated with a character operator, and on the role 
transformations play in the modification of such masks. This role is both critical and subtle. 
Understanding it is the key to understanding the use of character operators. 

The mask for a character operator is defined in a Standard Coordinate System which is 
dimensionless. Each character mask has its origin at the origin of the SCS, its y-axis vertical 
and its x-axis horizontal when the character is viewed in the normal viewing position. The 
character is defined within a rectangle which is one unit high. Think of the unit as just that, 
a unit. It is not one inch, one printer's point, one foot, one meter, or any other dimension. 
The unit height rectangle has the characteristic that if such a mask is abutted below itself it is 
in precisely a correct position relative to the next line of text. From a traditional printing 
viewpoint the rectangle is exactly analogous to the "point size" of the type. The creator of the 
master brings such a mask into his coordinate system by applying a transformation which 
scales this unit high rectangle into a rectangle of the height of the point size which he wishes 
to use, expressed in the units of his coordinate system. For example, if he chooses to use 
printer's points as the units of his coordinate system, and wishes to obtain a 10-point character 
mask he scales by the factor 10. This takes the dimensionless unit high rectangle into one that 
is 10 units high in his coordinate system, and thus he obtains a 10-point mask since his unit is 
one point. On the other hand, if the units of his coordinate system are inches he would apply 
a scale factor of 10/72. This takes the dimensionless unit high rectangle into one that is 10172 
units high in his coordinate system, and he obtains a lO-point mask because 10172 inches is 
equal to 10 points. 
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From the viewpoint of the creator of the master the character mask which he has transformed 
into his coordinate system is in the normal viewing position with its y-axis aligned with his y­
axis. If he desires to print a page whose characters are rotated so that their y-axes are not 
aligned with his he must supply a rotation as well as a scaling in the transformation which 
brings the character mask into his coordinate system. 

Once the character mask is in the master creator's coordinate system it may be subjected to 
subsequent transformations in a fashion which is identical to those which he applies to masks 
which he himself creates. As before, the creator of the master has complete control over 
subsequent uses of the mask. He can define transformations which modify the size and 
position of the mask for each time that it is invoked, and include those transformations in his 
master in such a way that each becomes part of the current transformation at the time the 
mask is used at the printer. He knows precisely what the effect of his current transformation 
will be on the mask for each of these invocations. Thus, the creator could take the same mask 
and cause the character mask to be imaged on a page with different orientations, and with 
different scalings in each orientation. Thus, although he might create a lO-point, portrait­
oriented character mask with the transformation which brings the character into his coordinate 
system, he can change the point size and orientation of that mask by means of further 
transformations as he uses it to image different instances of the same character on the page. 

8.4 Transformations used in conjunction with pixel arrays 
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Pixel arrays representing images are generally created by scanners or by computer graphics 
generating programs. We will speak of the initial scan direction as the fast scan direction, and 
the scan direction orthogonal to it as the slow scan direction. The creator of a master thinks of 
a pixel as a dimensionless entity, occupying a square area one unit on a side. For imaging 
purposes this unit area will be scaled to the size required to bring the complete image to its 
desired size. (Note that this concept works even if one were considering skywriting. If one 
wanted an image one mile high of an 8 x 10 photograph, scanned with 3000 pixels along the 
10 inch directon and 2400 pixels along the 8 inch direction, each pixel in the image would be 
scaled to be 1.76 feet on a side.) 

The creator of a master considers the pixel array to be in the Standard Coordinate System 
(SCS) with its y-axis pointing up and its x-axis pointing to the right. The first pixel to appear 
in the scanned information is located at the origin. Subsequent pixels along the first scan line 
are in the positive y-direction, i.e. the fast scan direction is in the positive y-direction. 
Subsequent scan lines proceed in the positive x-direction, i.e. the slow scan direction is in the 
positive x-direction. Assuming a rectangular pixel array of dimension y pixels along the fast 
scan direction by x pixels along the slow scan direction, the corners of the array are located at 
(0,0), (O,Y), (x,y), and (x,O). Note that this orientation in the SCS is determined completely by 
the starting position and direction of the scanning process, and is completely independent of 
the normal viewing orientation of the image being created in a raster format. The image as 
viewed in this coordinate system could be on its side, upside down, mirrored, and so on, 
depending on the starting position and initial direction of scan. For example, if scanning starts 
in the upper left hand comer, fast scan top to bottom, slow scan left to right the image in this 
coordinate system would appear to be upside down and backwards. (See Figure D-2 in 
Appendix D.) 
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The creator of the master provides a transformation which brings the pixel array into his 
coordinate system and normalizes it. A pixel array is considered to be normalized in the Base 
Coordinate System when it has the following properties: 

1. The pixel array is oriented in a meaningful manner. That is, it appears "upright" in the 

BCS. 

2. The lower left hand corner of the array is located at the origin of the BeS. 

3. Assuming a rectangular pixel array y pixels high by x pixels wide, the corners of a 
normalized array are located at (0,0), (0,1), (x/y,l), and (x/y,O). Note that this normalized 
form is a unit high rectangle, independent of the number of pixels along the y-direction. 

To accomplish this normalization the creator of the master must know the following facts 
about the raster scan process which was used to create the pixel" array: 

1. The number of pixels in the array along the x- and y-directions in the array's 
representation in the SCS. 

2. The rotation, translation, and/or reflection relationship from the SCS to his BeS. This is 
equivalent to his knowing the starting point and directions of the fast and slow scans. 

The transformation which brings the pixel array from the SCS to his BeS contains a scaling 
by l/xpixels or l/ypixels, a rotation by the amount required to bring the SCS orientation to 
his BeS orientation, possibly reflections about one (or both) of the axes, and a translation to 
bring the lower left hand corner of the array to the origin of his BeS. Once this 
transformation has been established the normalized pixel array can be scaled, rotated. and 
translated to any size, position, and orientation the master creator desires. It will then be 
subjected to the current transformation whenever it is imaged. (See Appendix D for a detailed 
example.) 

All of this theory must be understood and applied in creating masters. As a practical matter, 
however, most raster scan printers will not have the capability to change the order in which 
pixels are presented to the printer from that in which they were created by the scanner. To do 
so generally requires the relocation of several million bits of information within a memory 
system, and the time to perform that task is generally not compatible with printing speed 
requirements. Therefore, the final transformation which is in effect at the time the pixel array 
is imaged must generally be such that the pixels are presented to the printer in the same order 
as that in which they were created by the scanner. The creator of the pixel array must have 
foreknowledge of the image generating scan sequence of the printer relative to the page 
orientation, and must arrange his scan conversion process to match it appropriately. Thus, in 
general, it is not possible to do page rotation and two-up printing for pages which contain 
scanned images. Interpress provides the concept of easy net transformations to describe the set 
of transformations which result in images which the printer can handle readily. Most printers 
will reject pages which contain images whose associated transformations are not in the easy set. 
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The first eight sections of this document presented a general overview of the Interpress 82 
language, and of its major features and constructs. An understanding of these sections will 
significantly reduce the difficulty of the task of understanding the Interpress 82 language 
specification. There still remains within the presentation of the language a number of subtle 
and complex points which are difficult to grasp because of the concise fonn of presentation. 
Section 9 of the Interpress 82 Reader's Guide provides material which substantially amplifies 
and explains these points. 

Note: The paragraph numbers in this section are in increasing magnitude, but there are gaps 
in their sequence. For ease of reference, the paragraphs in this section of the Reader's Guide 
are numbered in one-to-one correspondence with their correlated sections in the [nterpress 81 
Electronic Printing StIl1uIJurl. The gaps in paragraph numbering occur because not every 
paragraph in the [nterpress 81 Electronic Prin"ng Sta_rrl is commented upon in this section. 

2.2 Types and literals 

In the description of types in this section the statement is made "There are six types in the 
base language: Number, Identifier, Mark, Vector, Body, and Operator." This appears to be in 
contradiction with the number of types presented in Part I of this Reader's Guide where a 
larger number of types were enumerated. The apparent contradiction stems from the use of 
the phrase "base language". Note tha~ Chapter Two of the Interpress 82 language specification 
is devoted to "The Base Language". It is in the context of the Base Language defined in 
Chapter Two that there are six types. In the context of the entire document there are twelve 
types. 

2.2.1 Numbers and integers 

The use of the "/" character to separate the numerator and denominator of a rational is a 
convention of the presentation of infonnation in the Interpress language specification 
document The"/" character is not used in the encoding scheme as part of the mechanism for 
transmitting a rational number. 
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2.2.3 Marks 

A Mark can only be removed from the stack by a matching UNMARK operator, i.e., one 
executed in the same context, or during a mark recovery. Information which will help clarify 
the definition of a matching mark is to be found in Part I of this Reader's Guide under the 
section titled The frame. 

2.2.4 Vectors 

In the definition of the lower bound I and the upper bound u of the indices of a vector the 
statement is made that "I must be less than or equal to u+ J." There appears to be an 
inconsistency here because if, for example, u = 5 then I could be as large as 6. In fact, it is the 
convention that a null vector is defined in precisely this fashion, with its lower bound one 
greater than its upper bound. Note that if, in the above example, both u=5 and 1=5 then the 
vector has precisely one component, designated by the index value 5. 

2.2.5 Bodies and operators 

The examples in the "bullets" in fine print near the end of this section are difficult to absorb 
at this point since the syntax and semantics of the language have not yet been defined. For 
clarity of exposition at this point we will repeat and explain two of the examples here. This 
explanation will also serve as an introduction to the syntax and semantics of the language. 

Example 1 

"Conditional execution is provided by the IF and IFELSE operators, which take a Body and an 
Integer as arguments, and execute the Body if the Integer is non-zero. E.g. 2 FGET 3 GT 

{conditional body} IF." 

The execution of this example proceeds in the following fashion: 

Operator or 
Operand 

2 

FGET 

3 

Stack 

2 

(Frame(2» 

3 
(Frame(2» 

Result 

Push the value 2 onto the stack. 

Pop the value 2 from the top of the stack and 
use it as an index into the current frame. 
Retrieve the value from location 2 in the 
current frame and push it onto the stack. 

Push the value 3 onto the stack. The stack 
now contains the value 3 followed by the 
value obtained from location 2 in the current 
frame. 
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GT 

{conditional body} 

IF 

Example 2 

o or 1 

{cond'l body} 
o or 1 

9 

Pop the top two values off of the stack. If the 
value obtained from location 2 in the frame 
(which must be of type number) is greater 
than the value 3 push a value 1 onto the 
stack, else push a value 0 onto the stack. 

Push the {conditional body} onto the stack. 

Pop the {conditional body} off of the stack, 
pop the result, 0 or 1, of the execution of the 
GT operator off of the stack. If that value is 
not equal to 0 execute the {conditional 
body}, otherwise do nothing. 

{--draw a solid box with size given by the top two stack values-­

TRANS 

0042 ROLL 

MASKRECTANGLE 

} MAKESIMPLECO 

This procedure (composed operator) requires that the width wand height h of the desired 
rectangle be on the stack before it is invoked. 

Operator or 
Operand 

TRANS 

0042 

Stack 

h 
w 

h 
w 

2 
4 
o 
o 
h 
w 

Result 

Moves the origin (0,0) of the MCS to the 
current position in the image. This locates a 
corner of the rectangle at the current position 
in the image. The stack is unaffected. 

The 0, 0, 4, 2 are pushed onto the stack, 
causing the stack to contain 2, 4, 0, 0, h, w. 
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ROLL 

MASKRECfANGLE 

2.4.3 Vector operators 

h 
w 
o 
o 

The 2 and 4 are popped off the stack by the 
roU operator which then proceeds to "roU" 
the top 4 elements on the stack until the 
bottom 2 of the top 4 elements become the 
top 2 elements of the stack. 

This draws a rectangle of width w and height 
h with lower left hand comer at (0,0). 

This note is just a reminder as to the meaning of an asterisk, "*", preceding an operator. The 
*GET operator is the first instance of such a use in the Interpress language specification. The 
asterisk signifies that this operator has been introduced into the description of the language 
solely for the purpose of simplifying the succeeding explanations of other operators. The *GET 

operator is not a primitive operator in the Interpress language. It cannot be used within a 
master. There is no mechanism for transmitting this operator in the Interpress encoding 
system. 

2.4.7 Control operators 

The fine print examples under the IFELSE operators are further clarified below. 

In the text it states that the effect of the conventional computer language statement "if i then 
Bl else B2" is obtained with the Interpress sequence "i Bl IFELSE B2 IF". The following is the 
expansion of the Interpress sequence. 

Operator or 
Operand 

i 

Bl 

IFELSE 

B2 

IF 

Stack 

i 

Bl 
; 

o (if i not 
equal 0) 
or 
1 (if ;=0) 

B2 
1 or 0 
(depending 
on I) 

Result 

Pushes the value i onto the stack. 

Pushes the body Bl onto the stack. 

Pops Bl and ; off of the stack. If; is 
not equal to 0 it executes Bl, and 
pushes a 0 back onto the stack. If ;=0 
it does not execute Bl and pushes a 1 back 
onto the stack. 

Pushes B2 onto the stack. 

Pops B2 and 1 or 0 value pushed by 
ifelse. Executes B2 if that value was 
not a zero. Does not execute B2 if that 
value was a zero. 
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The second example in the text reads "i1 Bl IFELSE { t2 B2 IFELSE B3 IF} IF". This form 
follows from the previous one where the body B2 in the previous example is replaced by the 
body enclosed in the "{" and "}" in this one. The first IFELSE either does or does not execute 
Bl according to the value of iI, and leaves a value of 0 or 1 on the stack. The last IF then 
either does not or does execute the body within the "{" and "}" according to the value of 0 or 
1 left on the stack by the first IFELSE. If it does cause the body enclosed in the "{" and "}" 
to be executed we find another instance of the previous example inside the "{" and "}". 

The description of the IFCOPY operator is somewhat confusing because it does not make clear 
that the testC opy operator, which is an input parameter to the IFCOPY operator, is itself a 
composed operator that must have previously been created in the master. The IFCOPY 

operator description states that testCopy is called with the copy number (an Integer) and a 
copy name (an Identifier). Neither the copy number nor the copy name are defined within 
Interpress 82. This is another example of the concept introduced in Part I of this Reader's 
Guide of the unalterable state, or environment, in which the Interpress interpreter is embedded 
in a given printer. (See the section titled State in Part I.) When IFCOPY is executed the 
Interpress interpreter in the printer essentially leaves the Interpress domain, and enters a 
special procedure which is supplied to the printer outside of the Interpress domain. The 
entire mechanism of the testCopy operator is left open to the installation which uses Interpress 
82. The only requirement imposed by Interpress 82 is that the testCopy composed operator 
return a single integer. If the value of this integer is zero the body operand of the IFCOPY 

operator is not executed. If the value of this integer is not zero the body operand of the 
IFCOPY operator is executed. In a typical application environment the printer might be 
supplied with a list of document recipients together with the number of copies each is to 
receive. The *COPYNAMEANDNUMBER operator alluded to in the description of the IFCOPY 

operator could be implemented so that different copies of the document may be defined by a 
two-level characterization which includes a receiver's name, and within name, a copy number. 
Thus, a copy might be designated as Accounting, Copy 3; or Receiving, Copy 2. The printer 
maintains a record of which copy name and copy number it is currently working on. (This 
record is maintained outside of Interpress 82.) The IFCOPY operator invokes a procedure in 
the printer, and outside the Interpress language domain, which supplies the copy name and 
copy number to the IFCOPY operator. The IFCOPY operator, in tum, supplies these values as 
parameters to the testC opy composed operator. The testC opy composed operator returns a 1 or 
a 0 to the IFCOPY operator which then proceeds to cause, or skip, the execution of its 
associated body operand. 

3.1 The skeleton 

Note the following three facts about the preamble. 

1. It is a body which has precisely the same structure as any page body in the master. 

2. It has a special significance as being a preamble only by virtue of its being the first body 
in the master. 

3. It is not permitted to produce any output to the page image, nor leave any information on 
the stack. ' 

Because it is a body like a page body it is subject to the same constraints as those applied to 
any other page body in the master. Thus. it is executed in a DOSAVEALL fashion. As a result 
it cannot affect the imager state that is seen by any other page body in the master. If the 
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creator of the master wishes every page body in the master to work with an Imager State that 
is different from the one initialized by the system he must take special steps to establish that 
state. The simplest way to accomplish this is to create a composed operator in the preamble 
whose execution will modify the Imager State to the desired condition. This composed 
operator is stored in the page frame that is given to every page body. The master can then 
cause each page body to begin with the execution of this composed operator. 

3.2 Environments and names 

We have already noted that the IFCOPY operator is a link to the outside world in addition to 
the FINDFONT and FINDDECOMPRESSSOR operators and the sequenceInsertFile encoding­
notation. 

3.2.2 Hierarchical names 

The description of a hierarchical naming system is generally clear. The one element which 
might lead to confusion is the use of the "I" character in the descriptive text. Itappears 
repeatedly in forms such as Xerox/, Xerox/Helvetica! ... , XeroxlTimesRomanl ... , and 
MergenthalerlTimesRoman/. ... the use of the "I" in this context is intended to convey the 
concept of hierarchical structure. It has the meaning that the value identified by a name such 
as XeroxlTimesRoman/Italics is to be obtained by locating an element identified by the name 
Xerox, within that element locate an element identified by the name TimesRoman, and within 
that element locate an element identified by the name Italics. The"/" is not a legitimate 
character in an identifier which can consist only of the lower case letters of the alphabet, the 
digits 0 through 9, and the minus (-) sign. The "I" does not itself appear in the hierarchical 
set of identifiers which would be presented in a sequence of tokens in the encoding system. 

4.1.1 Priority 

[n the first paragraph of this section it states that "laying down an object obscures any 
overlapping parts of objects that have been previously placed on the page image unless the 
color is transparent." [f the color is transparent the portions of the ink defined by O's in the 
pixel array are treated as transparent in the sense that they cause no ink to be applied to the 
page. If a first object is imaged with the same ink as the second object the statement still 
holds true. However, if the first object was imaged with a different ink from the second object 
it probably will not remain true. The O's in the pixel array defining the ink for the second 
object may coincide with pixels in the first object which contain ink, and the transparency 
parameter will allow those pixels of the first object to remain unaltered. Thus. although the 
second object may overlap the first object it will not necessarily obscure that first object if the 
first object was imaged with a different ink. 

4.2 Imager state 
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This section states that "The "'SETMEDIUM operator, called at the beginning of a page, alters 
the imager state to reflect the details of the medium selected for printing the page." It should 
be noted that the calling of the "'SETMEDIUM operator is implicit in the printer's 
implementation. It is an asterisked operator which cannot be invoked in a master. The 
creator of the master can assume that this operator is automatically executed at the beginning 
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of each page body. Note that the setting of the medium defines the nonnal orientation of a 
page from the printer. A setting in which the medium dimension in the y-direction of the 
Device Coordinate System is greater than the medium dimension in the x-direction produces a 
portrait page in the nonnal orientation of a page from the printer. Conversely, a setting in 
which the relative size of the medium's dimensions along the two axes is reversed produces a 
landscape page in the nonnal orientation of a page from the printer. It is recommended that 
the portrait orientation be the conventional one if the printer provides that option in its 
implementation. 

4.3 Device coordinate system 

The concepts underlying the *DROUND operator are subtle, and require clarification. This 
operator takes the coordinates (x,y) of a point in the Device Coordinate System as its operands 
and produces the coordinates of another point (X,Y) in the Device Coordinate System. The 
coordinates provided as operands to the *DROUND operator could come from anywhere. 
However, in most applications they will have been created in the master and converted to the 
OCS by means of the current transfonnation. The calculations inherent in this transfonnation 
will generally produce values for (x,y) which are non-integral in the OCS, and therefore the 
point (x,y) will lie between the grid points at which the device can actually lay down pixels. 
The *DROUND operation produces the device coordinates (X,Y) of the grid point best 
representing the point (x,y). The subtlety in this last statement lies in the phrase "best 
representing the point (x,y)". The question *DROUND addresses is the selection of the best 
grid point to use relative to the actual point (x,y). At first glance this appears to be a simple 
round-off question. Merely round-off x and y to their nearest integer values to obtain X and 
Y. Unfortunately this simple algorithm might not result in the selection of the grid point best 
representing the point (x,y). There are many factors which influence that selection, as a 
function of the characteristics of the printer. Each printer has its own imaging "footprint" 
whose characteristics are a function of many parameters. If we use a laser driven Xerographic 
imaging process as an example these parameters might include: 

The wobble in its scanning mechanism 

The optics of the system 

The xerographic properties of the imaging surface 

The properties of the ink depositing mechanism 

The properties of the ink transferring mechanism 

The properties of the ink fusing mechanism 

The combination of all of these properties causes the visible pixel finally reproduced on the 
paper to have a characteristic shape which we have called its footprint. The shape of the 
footprint detennines the grid point best representing the point (x,y). It is based on this shape 
for a particular printer that the *DROUND function is built for that printer. It may be different 
for each class of printer. 

4.4.2 Notation 

This section provides purely mathematical definitions for the concepts of "point" and "vector" 
transfonnations in the following tenns: 
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"Point" transfonnation: Tlx,y,m):(X,Y), where [X,Y,l]:[x,y,l] m. 
"Vector" transfonnation: Tv(x,y,m)-(X,Y), where [X,Y,O]-[x,y,O] m. 

The definition of a point transfomation is straightforward and should be clear. It does 
precisely what we defined transfonnations to do, namely provides the coordinates of the point 
(X,Y) as expressed in one coordinate system in tenns of the coordinates (x,y) of the same point 
as expressed in a second coordinate system where the matrix m represents the transfonnation 
from the second coordinate system to the first. The effect of the vector transfonnation is not 
quite so clear. It is, perhaps, more easily understood if we carry out the matrix operations and 
write them in equation fonn. 

Point Transfonnation: 

[x,y,l] m = [x y 1J * a d 0 
b e 0 
c f 1 

X= ax + by + c 
Y= dx + ey + f 

Vector Transfonnation: 

[x,y,O] m = [x y 0] * a d 0 
b e 0 
c f 1 

X= ax + by 
Y= dx + ey 

In these forms it is clear that the translation tenns, c and f, are missing from the vector fonn 
of transfonnation. Thus, the vector transfonnation behaves as though the two coordinate 
systems had a common origin. It answers the question, "If I had a physical vector in the 
second coordinate system whose components were of magnitude x and y, what would be the 
magnitude, X and Y, of its components in the first coordinate system, given the transfonnation 
m from the second coordinate system to the first?" 

In the discussion of ROTATE the statement is made "The rotation can be viewed in two ways: 
it will rotate the coordinate axes counterclockwise by the angle a, while it will rotate 
geometrical figures clockwise by the angle a." This statement may be confusing to those not 
thoroughly familiar with transfonnation theory. Any transfonnation may be viewed from 
either of two equally valid viewpoints which are referred to as the alias and the alibi 
viewpoint. In the alias viewpoint the points of the plane are fixed and two different 
coordinate frameworks are set down in it. The transformation is viewed as describing how to 
obtain the coordinates of a point in one coordinate system from its coordinates in the other. 
In this view each point has two identities, one as seen from the first coordinate framework, 
the other as seen from the second coordinate framework. It is this viewpoint which is adopted 
in the description of Interpress. From this alias viewpoint a rotation results in the coordinate 
system rotating counterclockwise by the angle a relative to all the points in the stationary 
plane. 

From the alibi viewpoint the coordinate framework stays fixed and each point in the plane is 
moved from a first location to a second location. The transfonnation is viewed as describing 
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how to obtain the new location of a point from its old location. From an alibi viewpoint a 
rotation results in the points of the plane appearing to rotate in a clockwise rotation relative to 
a stationary coordinate system. From this viewpoint, then, it is the geometric figure 
represented by a collection of these points which appears to rotate clockwise by the angle a in 
the plane. 

4.4.5 The current transformation 

This comment is a repeat of a point made in Part I of this Reader's Guide. At the beginning 
of each page the current transfonnation, denoted by T, is initialized by the printer to the 
Identity transfonnation, I, defined as: 

I = 1 0 0 
010 
001 

The matrix I has the property that for any matrix M, M*I = I*M = M 

At the beginning of each page the Interpress interpreter in the printer automatically 
concatenates the ICS to DeS transfonnation with the Identity transfonnation to create the 
transfonnation that maps the Interpress Coordinate System (ICS) to the Device Coordinate 
System (DCS). This is achieved by setting:· 

T:= ID * I = ID 

Generally, although not necessarily, the first operation perfonned for each page by the master 
is to concatenate the MCS to ICS transfonnation with the value of T created by the printer. 
This operation can only be accomplished if each page explicitly invokes the required 
transfonnations. Such invoking may be implemented by having the preamble write and store 
in the page frame a composed operator whose execution carries out the required 
transfonnation. This composed operator can then be executed as the first operation of every 
page. This results in the value for T which will carry master coordinates into device 
coordinates, namely: 

T:= MI * ID 

If the master creator and the printer have the same coordinate system and units of 
measurement the transfonnation, T, created by T: = MI*ID, is the identity transfonnation 

I = 1 0 0 
010 
001 

which is represented by the rational sequence I, 0, 0, 0, I, O. 
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4.4.6 Instancing 

This section describes only a portion of the total process of creating the image of a character 
on a page. It deals with the identification of the character's "shape" and an initial 
establishment of its origin at the "current position". (The remaining portions of the total 
process are described in Sections 4.9, 4.9.1, and 4.9.2. In fact. these sections should be read in 
this Reader's Guide prior to the reading of this section 4.4.6.) 

The imaging of a set of characters is effected by the operator SHOW which takes as an operand 
the vector v. That is, the operator SHOW must find a vector, v, on the top of the stack at the 
time it is called. 

The vector v contains a string of characters. This string of characters will be imaged beginning 
at the current position as a result of the execution of the SHOW operator. The results achieved 
by executing the SHOW operator are stated to be: 

where for each element e in v, beginning with v's I and ending with v's u (Le. for all 
elements of v from its first through its last) perform 

{TRANS showVec IGET e *GET OO} OOSAVESIMPLEBODY. 

For each element e of the vector v the SHOW operator causes a set of operations to be 
performed as described in the following paragraphs. We will do so by describing each of the 
operands and operators in the above sequence. 

The TRANS operator sets the origin of the current transformation T to the rounded current 
position. This is performed because, by convention, each character is structured with its origin 
at (0,0). Thus, the current transformation is conditioned so that the character will be laid 
down with its origin at the rounded current position. (See the comments on Section 4.3.5). 
The selection of the actual character which will be placed at that position is the result of a 
complex and subtle series of operations of which the SHOW operator is only a portion. 

The Imager Pool variable with the name showVec (Index value = 12) contains a font whose 
imaging operators have been scaled to a specific size. For the purposes of this explanation let 
us assume that it is a 10-point Helvetica portrait font. (See 4.9.1, which describes the process 
of locating a font. and 4.9.2 for a description of the MODIFYFONT which establishes this size, 
and SETFONT which places the font into the Imager Pool variable showVec.) 

The operator IGET brings the font from the Imager Pool variable showVec to the stack. 

The operand e is a typical character code extracted from the vector v. 

The operator *GET uses the value of e as an index into the font on the stack to obtain the 
proper imaging operator from the font for the imaging of the character element identified by 
the character code e. 

The operator DO causes that imaging operator to be executed. 

The whole sequence is executed as a body by the operator DOSAVESIMPLEBODY. Because this 
last operator is of the "DOSA VEto form all of the states of the system, other than the states of 
the persistent Imager Pool, are restored at the end of the imaging of each character. 
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Now, all of this seems straightforward and unsubtle. It would appear that the result of the 
SHOW operator would produce the imaging of the string of characters whose codes are 
contained within the vector v in a 10-point Helvetica portrait font. Such is not necessarily the 
case. There is a hidden facet to the imaging task contained within the definition of a font. 
Each element of a font is an imaging operator which will create the image of the character with 
which it is associated. Because such an element is an operator it may perform a number of 
functions before it actually lays down the image of its associated character. Sections 4.9.1 and 
4.9.2 describe the process of locating a font, modifying its size, storing it in the Imager Pool 
variable named show Vee, and the processes of executing a font character operator. They must 
be read and understood before the process of imaging the characters of the vector v can be 
completed. In anticipation of that process let it be stated here that as a consequence of the 
present state of the system the execution of the character operators of the 10-point Helvetica 
portrait font currently held in the Imager Pool variable showVee might actually, for example, 
result in the imaging of a set of 6-point Helvetica landscape characters on the page. Many 
other alternatives are also possible. 

4.5 Current position operators 

The reader should take careful note of the fact that all input operands associated with the 
current position operators are expressed in the Master Coordinate System. They are 
transformed by the point or vector forms of the current transformation into the Device 
Coordinate System where they affect the values of the current position held in the Device 
Coordinate Variables, DCScpx and DCScpy. Because of this transformation process a change 
in the x-direction in the MCS may result in an actual change in the y-direction in DCS, and 
conversely a change in the y-direction in MCS may result in an actual change in the x­
direction in DCS. Thus, where the definition of SETXREL states "Le. a relative displacement in 
the x-direction is added to the current position" that relative displacement is referenced to the 
MCS before the application of the current transformation, and may actually result in a change 
in the y-direction in the DCS. The same type of statement holds for the SETYREL operator. 

Note that the GEfCP operator takes the current position in the DCS and converts it into the 
coordinate framework of the MCS. This requires the inverting of the current transformation 
matrix. It is in reference to this inverting operation that the phrase "T must be well enough 
conditioned to invert" applies. The following material explains that phrase. 

The inverse of the current transformation T expressed by: 

T = adO 
b e 0 
c f 1 
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is given by the transformation matrix: 

T"l = ~ -g 0 
ae - bd ae - bd 

-b a 0 
ae - bd ae - bd 

bf- ~ ~d - af 1 
ae - bd ae - bd 

which only exists if ae - bd <> O. 

Note that even if ae - bd <>0, its value may be so small that the quotients in the above matrix 
exceed the computational capacity of the printer. A matrix which has that property is not well 
enough conditioned to invert. 

4.6 Pixel arrays 
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Pixel arrays are covered in detail in the section titled "Transformations Used in Conjunction 
with Pixel Arrays" in Part I of this Reader's Guide. That material in Part I should be 
reviewed carefully if the interpretation of the section on Pixel Arrays proves difficult This 
section of Part II will be devoted to the finer technical details of pixel arrays as they are 
presented in Section 4.6 of the Interpress Language Specification. 

The last paragraph of Section 4.6 introduces the concept of a net transformation which carries a 
pixel array into the Interpress Coordinate System. The purpose of a net transformation is to 
provide a method for discussing a pixel array within Interpress that is independent of the 
Master Coordinate System and the Device Coordinate System. This choice is somewhat 
confusing since the Interpress Coordinate System is generally not materialized within any 
processing operations. As described in the section titled Transformations Used in Conjunction 
With Pixel Arrays in Part I of this document it is much clearer, and more convenient, to 
define a pixel array in the Standard Coordinate System, and then transform it into the Master 
Coordinate System, where a pixel acquires the dimensional units of that system. It is then 
subjected to the current transformation T at the time it is used in an imaging operation, in 
which it may act either as a mask or as sampled black-and-white ink. Since T takes the pixel 
array all the way to device coordinates the net transformation (to Interpress coordinates) is 
never materialized within the printer. The transformations associated with these operations are 
described in Part I in the section titled Transformations Used in Conjunction With Pixel 
Arrays. 

It is clear from this that the net transformation will never be materialized within any specific 
implementation. The concept of a net transformation is a convenience which permits each 
printer to describe to creators of masters the transformations which it can handle easily. This 
description is presented in terms of the universally used ICS. Each printer provides a list of 
transformations, expressed at the ICS level, that it considers easy. This list provides the creator 
of a master with a statement of easiness that is independent of the inner details of the printer 
implementation. The creator of a master can readily determine whether or not he is creating a 
transformation which, if it were materialized at the ICS level, is or is not a member of a 
printer's easy set. In any implementation the transformation associated with a pixel array will 
probably never be materialized at the ICS level within the printer, but will be taken all the 
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way to the OCS level. Thus, a printer will examine whether or not a specific transformation is 
a member of its easy set by examining that transformation in the OCS domain. 

As described above, the net transformation is generally not materialized in any printer, nor is 
such a transformation examined by the printer. The net transformation described in the last 
paragraph of Section 4.6 is stated in the following manner. The pixel array is defined by 
<xpixels, ypixels 1 11 m samples MAKEPIXELARRAY). In this definition xpixels and ypixels are 
the number of pixels in the (rectangular) array along the x- and y-axes, respectively. The 
parameters I, I, and 1 are constant place holders for parameters reserved for future use. m is 
the transformation which carries the pixel array from the Standard Coordinate System to the 
Master Coordinate System. samples is the vector of pixels, where each pixel is a single bit. 
Pixels are presented in scan sequence within the samples vector under the assumption that 
they have been generated by a sequential scanning process. The net transformation, designated 
by nm, is given as nm=<m um CONCAT 0.1 CONCAT), where 0-1 is the inverse of the ICS-to­
OCS transformation. Here, again, the m transformation is the one used in the definition of 
the pixel array as stated above. The transformation um contained within the definition of nm 
is the value of the current transformation at the time the pixel array is used in a masking 
operation. It carries the pixel array from the MCS to the OCS. Thus, the portion of the 
definition of nm which reads m um CONCAT produces the transformation which carries the 
pixel array from the Standard Coordinate System in which it was originally defined to the 
Master Coordinate System, and then all the way to the Device Coordinate System. Since the 
goal of the net transformation is to present the pixel array in the Interpress Coordinate System 
it is now necessary to bring it back from the Oevice Coordinate System to the Interpress 
Coordinate System. The transformation which will do this is the inverse of the transformation 
which carries the Interpress Coordinate System to the Oevice Coordinate System. If the 
transformation from les to nes is designated as 0, the transformation from nes to les is 
designated as 0-1• Thus, the transformation represented by m um CONCAT must itself be 
concatenated with 0-1, and that concatenation is precisely what is expressed by the final 0-1 

CONCAT in the definition of nm. In point of fact, it is impossible for the master to generate 
0-1, so that the master could never generate nm by a process equivalent to the one used to 
define nm in the Interpress 82 standard. A master could generate nm directly by keeping track 
of its MeS to les transformation, and thereby avoid the necessity to know or generate 0-1• 

As noted above, such a generation is not necessary since a printer will examine the 
transformation associated with a pixel array in its own nes to determine if it is easy or not. 

Color is covered in detail in Chapter 6, "The Imaging Model" in Part I of this Reader's Guide. 
That material in Part I should be reviewed carefully if the interpretation of the section on 
color proves difficult. This section of Part II will be devoted to the finer technical details of 
color as they are presented in Section 4.7 of the Interpress Language Specification. 

The second paragraph is somewhat misleading. It would be better stated in the following 
terms. Constant colors are limited to black and shades of gray, specified by the light intensity 
absorbed by the image as a fraction f of the light intensity that is incident. (Note that most 
printer implementations contain only black inks, hence cannot truly represent a gray ink in the 
literal sense of the word_ Gray inks in such printers are simulated by regular patterns of black 
and white pixels which are organized so that the human eye integrates them to the desired 
shade of gray.) There is a second kind of color called sampled black-and-white color which is 
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defined by a pixel array in the manner defined below. A type Color records a color 
description: either a constant color or a sampled black-and-white color. In the case of sampled 
black-and-white color there is a mode in which the "white" portion of the sample is treated as 
transparent. This latter case is described in the following paragraphs. 

In Section 4.7 the statement is made "This region is tiled repetitively to build an arbitrarily 
large pattern of color which encompasses the entire page image--see Figure 4-4." The intent 
here is to describe how a uniform pattern of ink may be made by abutting the pixel array 
defining the sampled black-and-white color area to itself in all directions. It does not mean 
that the pattern actually is applied to the page, but, rather, that it has been made large enough 
so that it would cover the entire page if it were applied through a mask as large as the entire 
page. Note also that the definition of the pixel array includes the transformation which brings 
it into the Device Coordinate System. This transformation establishes the position and 
orientation of the "tile" represented by the pixel array. The abutting process takes place 
relative to this initial position, which is not necessarily at the origin of the Device Coordinate 
System. 

The Interpress language specification then goes on to say "The color deposited through the 
mask on an image pixel corresponding in position to a color sample value of x depends on x." 
The mask is a stencil through which ink is deposited. Only those positions in the image which 
correspond in position to the holes in the mask can be affected by the masking operation 
which applies ink to the image. In the case of sampled black-and-white ink which is created 
through the use of a pixel array two different imaging interpretations can be applied to the O's 
in the array as a function of the parameter transparent. The l's in the array alway apply black 
ink through the mask. The value of the parameter transparent determines what will happen to 
the image at points in the image which correspond to holes in the mask and O's in the ink. If 
the parameter transparent has the value 0 white ink is applied, thereby obliterating any 
previous image pixel which might have been deposited at that point. If the parameter 
transparent has the value 1 no ink is applied, thereby leaving unaltered any previous image 
pixel which might have been deposited at that point. 

4.8 Mask operators 

S4 

Care must be taken not to confuse the process of creating a mask with that of applying ink 
through the mask thus created. The reader has a tendency to think of the process of creating 
a mask in terms of drawing lines on a paper. If he does this he creates a mental picture of an 
image being deposited on a page at the time the mask is created, and this is an incorrect view. 
A more appropriate mental image to retain concerning mask creation is that of the creation of 
a shape in the form of a stencil. If the stencil is created by trajectories and outlines the 
creation process can be thought of as wielding a pair of scissors on a piece of stencil material. 
If the stencil is created through the use of pixel arrays the creation process can be thought of 
as wielding a pixel sized punch on a piece of stencil material, where the punch is applied at 
each position occupied by a 1 in the pixel array. At some later point in time this stencil will 
be transformed in size and orientation, laid down at some location on the page image, and 
then ink will be deposited through it. It is this latter series of operations which Interpress 
refers to as masking. 

Note that masking causes ink to be deposited through a mask. There are three kinds of masks 
which are referred to in this section. The first two are created by trajectories and outlines. 
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(See the definitions of types in Part I). The MASKFILL operator causes the interior of an 
outline to be treated as the stencil through which ink is deposited on the page image. 

The MASKSTROKE operator causes a trajectory to be treated as the centerline of a stencil whose 
width about that centerline is controlled by an imager variable stroke Width, and the shape of 
whose endpoints are controlled by an imager variable strokeEnd. In this latter operation think 
of the trajectory as being drawn on a piece of stencil material, and then apply a scissors to cut 
out the material along the trajectory at a distance strokeWidthl2 on either side of the 
trajectory. The imager variable strokeEnd controls how the endpoints of the hole cut in the 
stencil are to be shaped. Then apply ink through that stencil. 

The third type of mask is created with a pixel array. In this case the pixel array is viewed as 
though a pixel sized punch has been used to punch a hole through a stencil material at each 
pixel position occupied by a 1 in the pixel array, and the stencil material has been left 
unaltered at each pixel position occupied by a 0 in the pixel array. The MASKPIXEL operator 
causes ink to be deposited through the holes in the stencil thus created. 

In all of these masking operations the mask is defined in the creator's MeS. Hence, before 
the ink is applied in the printer's DCS the current transformation T must be applied to the 
mask to transform it into the printer's coordinate system. If the ink which is being applied is 
of the sampled black-and-white variety the current transformation T is also applied to the ink 
before it is deposited through the mask. 

4.9 Character operators 

This section is quite clear in the Interpress 82 specification, and should be read in its entirety 
before proceeding to Sections 4.9.1 and 4.9.2, below. A portion of Section 4.9 is included 
here, however, so that this section of the Reader's Guide can be read in conjunction with 
Sections 4.9.1, 4.9.2, and 4.4.6 as a coherent set of information in its own right. 

The important concepts to understand about the printing of characters are the following. A 
character is imaged by executing a special type of composed operator called a character 
operator. Instances of characters are placed on a page by invoking these character operators in 
conjunction with suitable transformations. In order for a creator to be able to anticipate the 
effect of these invocations it is necessary for all character operators to obey a common set of 
imaging rules. 

A character operator performs three operations: 

1. Generates masks. It invokes mask operators to specify the mask or masks that define the 
shape of the character, thus causing an image of the character to be added to the page 
image. The placement, size, and orientation of the mask are controlled by the current 
transformation. 

2. Moves to the next character position. It alters the current position so as to prepare for the 
next character in a sequence. It does so by adding a function of the "character width" to 
the current position. This function will be described later when we discuss the processes 
of adjusting and correcting text. For purposes of the following discussion consider that the 
completion of the imaging of a character results in the adjustment of the current position 
by an amount equal to the width of the character. 
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3. Corrects spacing. This operation is associated with the processes of adjusting and 
correcting text which are described later. For purposes of the following discussion 
consider that this operation results in no changes to the position of the character. 

From the viewpoint of the imaging model of Interpress a character mask is a stencil whose 
shape is pre-defined. It is important to understand that the character operators of an 
Interpress font are representations of the shape of a character, and not of its imaging size. It is 
a convention of Interpress that a font is defined in a Standard Coordinate System which does 
not have physical dimensions associated with its coordinates. All character operators in the 
font would produce characters whose effective printing size would be one unit in height. 
Thus, in the absence of any scaling operation, all character operators in the font would 
produce characters whose effective printing size would be one meter, because they would be 
brought into the Interpress Coordinate System as unit high elements, and the unit of Interpress 
is one meter. The phrase "effective printing size" is used to convey the concept that a 
character would be imaged so that the origin of a similar character on the following printing 
line would be located one meter below the origin of this character under the condition that no 
additional "leading" exists between the lines. In conventional printer terminology the "point 
size" of the type corresponds to the phrase "effective printing size". Thus, the one unit high 
character includes the standard inter-line space which is built into each character. 

At the time of the imaging of a character this character mask is generally subjected to a 
transformation which may rotate and/or reflect it to any possible orientations, and which may 
also scale it to any size. (It is important to understand that there is no concept of "portrait" or 
"landscape" inherent in the character operators of a font. In raster type printers characters are 
often defined by stored raster representations. These rasters must be created relative to the 
scanning sequence of the raster image generator in the printer. Thus, characters must be 
scanned differently relative to each orientation in which they may be imaged on a page. Each 
such scanning results in a different "font" from the printer's viewpoint even though they 
correspond to a single font from the Interpress viewpoint. Thus, the introduction of "portrait" 
and "landscape" character orientations are a necessity of the printer implementation, not of the 
font character operators per se.) 

From a formal presentation viewpoint we should discuss the concepts of adjustment and 
correction at this point in this Reader's Guide. In the interests of continuity of presentation of 
other concepts at this point we shall defer doing so until the end of our discussion of Section 
4.9. 

4.9.1 Fonts 

A font is a 5-element vector, whose first element is a vector of operators, one such operator for 
each character contained within the font. (The other components of the font vector are the 
metrics, character Metrics, name, and extras.) A character operator is located in the vector of 
operators by means of its numeric character code which serves as the integer index into that 
vector. It is important to understand that each character is represented in the font by a 
character operator. Because it is an operator its execution performs a number of functions. 
These functions may change the size and orientation of the character which is placed on the 
page. See Section 4.9.2 for a description of these functions. 

A font is identified by a hierarchical naming convention which is well described in Section 
4.9.1 in the specification. For completeness of exposition here we will repeat the description of 
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locating a font which a creator wishes to use in a document. The location of fonts which are 
to be used frequently throughout the document generally occurs in the preamble. The 
location of a font which is unique to a specific page may occur within the PageBody of the 
page itself. In either case the function is accomplished with the operator FINDFONT which 
takes as an operand a vector v of identifiers which are the hierarchical name of the font. The 
result of executing FINDFONT is to locate the font in the printer's library and place it on the 
stack. This location process is external to the Interpress operations, and is accomplished in a 
manner which is appropriate for each printer. If the printer has a font of the designated 
hierarchical name in its library this external process returns that font to the stack, and reenters 
the Interpress domain. If it does not have a font with the designated hierarchical name the 
external process may locate a font which it feels is an acceptable substitute for the designated 
font, return that substitute font to the stack, and reenter the Interpress domain. Other suitable 
actions might also take place in the absence of the font, such as aborting the job or the page, 
as a function of the printer's implementation. Appropriate warning or error messages are also 
returned if the font is not available in the printer's font library. 

Remember that the font returned to the stack is a vector of operators which will generate one 
meter high characters in the absence of any scaling operations. 

4.9.2 Modifying a character vector 

It is generally the case that the original creator ·of a document has an intended font imaging 
size in mind at the time he composes a document. The MODIFYFONT operator provides him 
with the capability to provide a transformation m which, in the absence of any other 
transformation, will scale the one unit high characters of the font obtained by the FINDFONT 
operator to the size he desires for printing. The MODIFYFONT operator takes two operands 
from the stack. The top of the stack must be a vector of operators, and generally is a font. 
The second element on the stack must be a transformation, m. The result of executing the 
MODIFYFONT operator is to create a new vector of operators in which each operator has been 
replaced by a new operator whose execution calls for the modification of the old operator by a 
concatenation of the transformation m with the current transformation T which is in effect at 
the time this new character operator is invoked. The transformation m is generally a scaling 
transformation which scales the one unit high characters of a . font located by a FINDFONT 

operator to the point size and orientation desired by the original document creator. Thus, the 
effect of MODIFYFONT is to create a new vector of operators which will produce character 
images of the size and orientation desired by the original creator of the document, if the 
cu"ent trans/ormation T only performs a scale change from the units of the MCS to the DeS 
with no rotation or magnification. For example, if the original creator of the document desires 
a 10-point font oriented with its vertical axis parallel to the y-axis of his MCS, and he is using 
inches as his dimensional units the transformation m would be created by the sequence 10/72 
SCALE. If he desired a 10-point font oriented with its vertical axis parallel to the x-axis of his 
MCS, and he is using inches as his dimensional units the transformation m would be created 
by the sequence 10/72 SCALE 90 ROTATE CONCAT. Ifhe were using points as his dimensional 
units these transformations would be created by the sequences 10 SCALE, and 10 SCALE 90 
ROTATE CONCAT, respectively. If the printer's nes were expressed in units of 1/300th's inches 
and the current transformation had no rotational nor magnification effects the values of 10/72 
inches or 10 points would be converted to their equivalent value in lIJOOth's inches, namely 
41.667 (i.e. 10/72 inches = 10 points = 41.667/300th's inches). 
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It is important at this point to distinguish between the original creator of a document, and a 
potential later user of that same document An example will illustrate this point The original 
creator of a document may have in mind the printing of the document on 8-112 by 11 paper 
in a portrait mode. Assume that for the purpose of creating the images of this document he 
uses an MCS with origin at the lower left hand comer of a page with his y-axis along the long 
edge of the paper. Assume that he wishes to use a lO-point Helvetica font. (This size has 
been chosen for this illustration to be compatible with the description of the SHOW operator in 
Section 4.4.6, which see.) A later user of this same document may wish to print it two-up on 8-
112 by 11 paper in a landscape mode. We shall follow the actions of the original creator of 
the document, and return to this later user in a while. 

The document creator will repeat the font locating process and modifying process for each 
font, and each font size and orientation, which he requires. Each such operation produces a 
different font In general these operations will take place in the preamble, and the fonts thus 
created will be stored in the pageFrame. The storage process is accomplished by the sequence 
n FSEf which stores the top of the stack in the pageFrame vector at the location indexed by n. 
Thus each font is stored at a location n known to the document creator. Any font may be 
retrieved by the sequence n FGET which returns it to the top of the stack. 

When the creator wishes to use a font for imaging a particular set of text he does so by setting 
the font into the Imager Pool variable named showVec which has an index value of 12. He 
does so by means of the convenience operator SETFONT which takes an integer n from the top 
of the stack, uses n as an index into the pageFrame to obtain the font which has been stored 
there in the manner described above, and stores the font so obtained into the Imager Pool 
variable named showVec. Until the contents of showVec are changed by another SETFONT it is 
this font which will be used when subsequent SHOW operators are invoked. (See Section 
4.4.6.) 

It would appear from the above description that once a particular font (e.g. the lO-point font 
described above) is established in the Imager Pool variable named showVec characters of that 
size and having an orientation corresponding to his MCS coordinate system would be imaged 
on the page when the SHOW operator is invoked. It must be remembered, however, that each 
element of a font is an imaging operator. Because such an element is an operator it may 
perform a number of functions before (and after) it actually lays down the image of its 
associated character. Particular to the current point is the fact that each character operator in 
the font concatenates its associated transformation m with the current transformation T so that 
the transformation m-T is the effictive transformation at the time of the imaging operation. A 
clear understanding of the italicized phrase above is critical to the understanding of the 
character imaging process. The current transformation, T, which is active at the time the SHOW 

operator is invoked is applied to each character operator during the processing of the SHOW 
operator. Thus, although the Imager Pool variable showVec might contain a font with a 
transformation m which will produce a 10-point font having a given orientation, the current 
transformation T when concatenated with m to form m-T might produce a font having an 
altogether different size and orientation during the imaging process. This conversion does not 
change the contents of the Imager Pool variable showVec. It only changes the images which 
are produced by the operators contained in the font which is installed in showVec. 

The original creator of the document will have seen to it that the current transformation T is 
set to the proper state to obtain his 8-112 by 11 inch portrait page with the 10-point font held 
in the Imager Pool variable showVec printing as a 10-point portrait font. Now, let us return to 
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the later user of that same document who wishes to print it two-up on 8-112 by 11 paper in a 
landscape mode. He merely needs to establish a current transformation T which rotates the 
image 90 degrees, scales it by .6, translates it to a new origin, and then invoke the original 
creator's lnterpress master without any further change to its internal content, in order to print 
that same page in his desired two-up orientation. His current transformaton will be applied at 
the time of the execution of the SHOW operator so that the character operators of the 10-point 
font installed in the Imager Pool variable showVec will have been changed to produce 6-point 
characters rotated by 90 degrees, with the entire image shifted to a new location on the page. 

4.9 (Revisited) Line justification 

Section 4.9 is being picked up where it was bypassed for the sake of continuity. 

Justification of text (and other images, if desired) on a line between fixed margins is provided 
within Interpress. Associated with each character operator is a pair of parameters, widthX and 
width Y. In general, for western languages widthX is positive and width Y is O. Similarly, for 
languages read right-to-Ieft widthX is negative and width Y is O. For languages read top-to­
bottom widthX is 0 and width Y is generally negative. If justification is not being used the 
position of the next character to be printed on a line is established by the sequence widthX 
width Y SETXYREL which is automatically invoked within the execution of the character 
operator itself. While the general rules for width definition are as described above, Interpress 
82 does not constrain the font designer to adhere to any specific standard with respect to his 
designation of widthX and width Y. He is free to use these parameters in any way he may 
choose so long as he recognizes that they will be used in the manner characterized by widthX 
width Y SETXYREL. 

A parameter amplifySpace in the Imager State provides a means for achieving justification of 
text between fixed margins. For each font there is a standard "space" character which deposits 
no ink, and whose width is used to separate words. There may be more than one character in 
the font that has the property of the standard "space" character in the· sense that such a 
character deposits no ink on the paper, but is used to provide spacing between printed objects. 
A character with this property is called a spaceband character. Some spaceband characters may 
be required to retain their width when a line is justified, others may not be required to. do so. 
An example of a spaceband character that may be required to retain its width is a special space 
character incorporated in the printing of a mathematical formula. If the entire formula had to 
be slightly adjusted to fit a given space such a character would be adjusted in position so as to 
maintain the proper proportions of the whole formula. However, this type of space character 
would not be permitted to grow independent of the rest of the formula in order to justify a 
line containing the formula. Those spaceband characters which permit their width to be 
increased are called amplifying characters. Note that there may be "space" characters in a font 
which havc the same propertics as printing characters. The "figure space" character whose 
width is set to match the standard width of the digits 0 to 9 is an example of a such a 
character. 

Justification of a line of text between fixed margins is achieved by increasing the space 
between words. 'nlis is accomplished by summing the widths of the characters on the line 
(including the spaceband characters) and determining the difference between that sum and the 
desired length of the line. For the following discussion call this difference the error. We 
assume that the number of characters to be included on a line is chosen so as to make the 
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value of the error positive. The error can be removed by modifying the effective width of the 
amplifying characters. This is accomplished in the following fashion. We wish the error to be 
taken out by changing the amplifySpace factor. Therefore, we set: 

error = amplifySpace * (Sum-of-widths-of-amplifying-characters), 

where, 

Sum-of-widths-of-amplifying-characters = 
SQRT«Sum of WidthX)**2+(Sum of WidthY)**2» 

where the sums cover all amplifying characters on the line. 

We then solve the first equation for amplifySpace, Le.: 

amplifySpace = error/(Sum-of-widths-of-amplifying-characters). 

When the line is printed justification is achieved by multiplying the width of each amplifying 
character by the factor amplifySpace. This is accomplished by having each amplifying character 
establish the position of the next character to be printed on the line by the sequence 
widthX*amplifySpace width Y*amplifySpace SETXYREL which is automatically invoked within 
the execution of the amplifying character operator itself. 

4.9.3 Metrics 

Almost all of the concepts in the section on character and font metrics are straightforward and 
easy to follow. The one exception to this is the font metric named easy. The easy vector 
provides information on the sizes and orientations of fonts that the printer can readily produce. 
Interpress provides the creator with a capability to call for fonts of arbitrary size, and having 
any orientation. In raster type printers characters are often defined by stored raster 
representations. Such printers generally do not have raster representations for every size and 
orientation of a font. The sizes and orientations that it does have are the easy ones. If it does 
not have any raster representation in the orientation called for by the master the text in that 
orientation cannot be printed. Such text will not be printed and an appearance error will be 
reported. If the printer has a raster representation of some other font with the right 
orientation, it will make a font substitution according to an appropriate algorithm, and print 
the page with an appearance warning. 

From the Interpress viewpoint a font is a collection of operators each of which contains, 
among other things. a mask contained within a unit high area. This mask is scaled and rotated 
at imaging time so that it is of the proper size and orientation to create the desired imaged. 
From a practical viewpoint an Interpress font explodes into a collection of printer fonts at a 
printer. Each such printer font contains a set of character operators each of which produces an 
image with a pre-defined character size and orientation. I'he easy vector defines the members 
of the set of printer fonts. 

The clements of the easy vector may be defined by the transformations which are used to 
modify the single Intcrpress font to the multiple printer fonts which arc available at the 
printer. The profusion of units which different creators may employ creates a problem for the 
expression of the clements of the easy vector. Interpress resolves this problem by expressing 
the defining transformations of the easy vector in the units of the Interpress Coordinate 
System. 
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4.10 Space correction 

The methods used to make fine adjustments of spacing within a line of text at the printer is 
fonnally describcd in the Interpress specification by means of Pascal-like programs. This 
section of the Reader's Guide will provide an alternative description of these methods couched 
in conventional prose. The intent here is to be comprehensive and self-contained. Hence, this 
section will repeat portions of the Interpress language specification. The reader is again 
reminded that the Interprcss language specification is the authoritative source for this 
infonnation. Any conflict between the readcr's interpretation of this description of these 
methods and the one presented in the Interpress language spccification must be resolved by 
reference to the latter document. 

Sometimes the exact positioning of a mask must be computed when the master is printed 
rather than whcn it is created. This is often the case if positioning depends in detail on the 
widths of characters, becausc the imager may not be able to usc a character font that has 
widths that are identical to those available when the master was generated. Of course, if the 
creator knows the properties of the font exactly, no new computation by the imager will be 
necessary. The creator will make a mastcr that specifies the exact position of each mask. 

Interpress provides a mechanism to correct a set of masks, which is used most frequently to 
insure that a line of charactcrs intended to appear unifonnly justified betwcen margins are in 
fact so justified. Correction is achieved by expanding or contracting some "correction space" 
untit the characters fit in thc dcsircd space. The Interpress mcchanism is not specific to 
characters, but will correct any kind of mask. 

It should be notcd that the correct process is essentially a "re-adjust" process. It is not 
intcndcd that the correct operation be used as a substitute for, nor alternative to, the 
justification operation. The amplifySpace mcchanism provides the primary justification 
operation. 

Mask correction is achieved with the CORRECf operator, which takes as its only argumcnt a 
body containing thc operators that invoke all of the masks that are to be corrected. Generally 
this body contains opcrators which will generate a line of text, but it need not be restricted to 
that. The desired length of the line is established through the use of the 
SETCORRECTMEASURE operator. SETCORRECTMEASURE establishes the values of correctMX and 
correctMY in the imager state. The line to be corrected has a length equal to thc square root 
of the sum of the squares of correctAl X and correctM Y. CORRECT will gencrally execute the 
body twice, first to compute how much correction is rcquired, and then a second time to 
actually create thc image. When CORRECT is initiatcd the current position is recorded, and thc 
body is executed, but the character operators are not allowed to modify the page image (the 
variable floImage is set to I). The exccution of the body invokes each character operator. 
Each character operator, in turn, invokes either the CORREcrSPACE or CORREcrMASK operator. 
If the character's width can be adjusted to remedy spacing problems the operator calls widthX 
width Y CORREcrSPACE if the character is not amplifying, or widthX*amplifySpace 
width Y*amplifySpace CORRECTSPACE if it is amplifying. If thc character's width should not be 
adjusted (e.g., a character which deposits ink, or a "figure spacc" designed to equal precisely 
the widths of the figures 0 .. 9), the operator calls CORRECTMASK. 

During this first pass amplifying characters are amplified by the multiplier set in the 
amplifySpace parameter in the imager state. The result of this first pass is the detenninatioll of 
four parameters: 
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1. The endpoint of the line that will result if the line is printed under the current conditions. 

2. The difference between this endpoint and the desired endpoint established by 
SETCORRECTMEASURE. 

3. The number of space characters which may be modified to achieve the required re­
adjustment. 

4. The number of "non-space" masks which may be re-adjusted if the line is too long and all 
of the required space cannot be taken out of the available space characters. 

Three conditions may exist at the end of the first pass. The error in the length of the line may 
be acceptable. There is a default parameter which is designated by the name correc/Tolerance, 
and equal to the value of the square root of the sum of the squares of correc/TX and 
correclTY in the imager state. If the difference between the endpoint of the line that will result 
if the line is printed under the current conditions and the desired endpoint established by 
SETCORRECTMEASURE is less than the correc/Tolerance no further correction is required. If not 
a special correction procedure is invoked if the creator has called for a CORREcr operation. 

If the line is too short the CORREcr operation will cause the space characters to be increased 
in size in proportion to their original sizes to the point where the line fits the desired space. 
Note that their original sizes include the amplifySpace factor in the case of amplifying 
characters. 

If the line is too long the CORREer operation will cause the space characters to be reduced in 
size in proportion to their original sizes to the point where the line fits the desired space. 
However, there is a threshold below which spaces will not be reduced. A parameter 
correc/Shrink in the imager state establishes the minimum value that a space can be reduced to 
by the CORRECT operator. A space is never allowed to be reduced to less than 
(1 - correc/Shrink) times its former size. The sum of all the widths of the space characters 
muitiplicd by the parameter correc/Shrink determines the maximum amount of space that may 
be removed from the line by shrinking space characters. If the amount of space to be 
removed from a line exceeds that value the line cannot be corrected merely by reducing the 
size of the space characters. In this case the space between words is reduced to the minimum 
allowed value as computed from correc/Shrink. The remainder of the space left to be removed 
from the line is compared with the correctTolerance. If it is less than the correc/Tolerance no 
further action is required. If it is greater than the correc/Tolerance the remainder of the space 
is removed by reducing the space between all non-space characters by an equal amount. This 
amount is determined by dividing the remaining space to be eliminated by one less than the 
number of non-space characters. (The reason for the reduction by one is that there are n-l 
opportunities to decrease the space between n characters.) 

Presented in a somewhat informal way, the entire justification and correction process is 
pert()rmed in the following fashion, assuming that the creator wants to invoke the full 
CORRECT operation: 

1. The creator justifies the line in his domain using his knowledge of the font widths. To do 
so he calculates where the line will end if he breaks it off after each word. When he 
reaches the threshold where he can no longer contain the next word he makes his line 
ending decision. At this point he calculates how much space he must add to the line, and 
determines the amplifySpace factor which must be applied to the amplifying characters 
contained within the line. 
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2. When the line is to be printed the amplifySpace factor is set in the imager state. This is 
accomplished by getting the value to be placed in the amplifySpace factor onto the stack 
and following it with the sequence IS iset (IS is the index value of the amplifySpace 
factor in the Imager State vector.) 

3. The desired length of the line is set in the imager state using a setcorrectmeasure operator. 

4. The correctTolerance is set in the imager state using a setcorrecttolerance operator. 

5. The correctShrink is set in the imager state using the sequence 20 iset. Presumably this is 
done once at the beginning of each page as part of the set-up of the imager state. (See the 
section on Imager Variables where it describes how this process is implemented by means 
of a composed operator created by the preamble.) 

6. Line printing is invoked with a correct operator. 

7. The correct operator sets nolmage to the value 1, and correctPass to the value 1 in the 
imager state, and invokes the show operator. 

S. The show operator, with noImage in the 1 state, invokes the character operators. Each 
character operator, in turn, invokes either the correctspace or correctmask operator 
depending on whether or not it is a spaceband character. On this pass each spaceband 
character causes correctspace to be called with its width multiplied by the amplifySpace 
factor if it is an amplifying character. If it is a non-amplifying character correctspace is 
called without the multiplication by the amplifySpace factor. Each non-space character 
calls correctmask, and has its width determined from the font widths table in the printer. 

9. At the end of the first pass CORRECT knows the amount of difference between the position 
where the line will end if it uses the amplifySpace factor and font width factors, and the 
desired end position of the line established by the SETCORRECTMEASURE operator. If this 
difference is less than the value of correctTolerance the process proceeds to image the line 
as it is with no further correcting operations. If not, the following steps are processed. At 
the end of the first pass CORRECT also knows the number of space characters in the line, 
and the number of non-space characters in the line .. 

10. CORRECT now calculates how it will correct out the difference determined in step 9 during 
the second pass over the line. If the line is too short the spaces will be increased in length 
to fill out the line, and the process skips to step 12. If the line will be too long, the 
process proceeds to step 11. 

11. A factor f is now computed. f is defined to be the quotient obt.'lined by dividing the 
amount of space to be taken out of the line by the sum of the spaces occupied by space 
characters. If f is less than or equal to correctShrink the line can be corrected merely by 
reducing the size of the space characters. In this case the space characters will be reduced 
by the factor t and the line will be properly corrected without violating the space 
reduction threshold set by correctShrink. 

If f is greater than correctShrink the line cannot be corrected merely by reducing the size 
of the space characters. In this case the space characters will be reduced to their minimum 
allowed value by multiplying all of them by the factor correctShriflk. The remainder of 
the space left to be removed from the line is compared with correctTolerance. If it is less 
than correctTo/erallce no further action is required. If it is greater than correctTolerallce 
the remainder of the space witl be removed by reducing the space between all non-space 
characters by an equal amount. This amount is determined by dividing the remaining 
space to be eliminated by one less than the number of non-space characters. (lbe reason 
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for the reduction by one is that there are n-l opportunities to decrease the space between 
n characters.} During the second pass of the CORREcr operator each space character will 
be reduced to its' minimum value and each non-space character's width will be reduced by 
the amount just calculated. since the calculation will generally not produce an integer for 
each character space reduction, the reduction process must be properly implemented to 
avoid round-off errors. 

12. The CORREcr process now proceeds to pass 2. It sets the no/mage parameter to O. and the 
correctPass parameter to 2 in the imager state, and again invokes the SHOW operator. 
During this pass the mask position corrections and space character length determinations 
made by the previous steps are invoked to bring the line to its desired length. 



A 

Appendix A 
References 

Xerox Corporation. Interpress 82 Electronic Printing Standard. Xerox System Integration 
Standard. Stamford. Connecticut; January 1982; XSIS 048201. 

This document pro';des a precise definition of the Intepress 82 language that is elaborated upon in this 
Interpress 82 Reader's Guide. 

l-Bil Coded Character Set for Information Processing Interchange. ISO 646-1973 (E). 
International Standards Organization. 

This document defines a limited character set for infor information interchange. It is almost compatible with 
ASCII. The Interpress 82 uses of ISO 646 are restricted to the subset that is compatible with ASCII. 

Xerox Corporation. Xerox Character Code Standard. Xerox System Integration Standard. 
Stamford. Connecticut; To be published. 

This document defines the 16-bit codes assigned to the characters and symbols supported by Xerox products. 

Xerox Corporation. Xerox Character Encoding Standard. Xerox System Integration Standard. 
Stamford, Connecticut; To be published as an Appendix to the Xerox Character Code 
Standard. 

This is an Appendix to the Xerox Character Code Standard. It defines a character encoding system which 
compresses the amount of information required to define a sequence of characters. The compression 
technique also results in the transmission of codes in ISO 646 in an unaltered form. 
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Appendix B 
Support levels and mapping 

B.I Interpress support levels 

Different printers support differing combinations of functions hanciled by the Interpre~s 

language, depending on their individual limitations and capabilities. All printers described as 
supporting Interpress must be capable of implementing a basic subset of functions, comprising 
the following: 

Text -- Basic font set capabilities. 

Vector Graphics -- Trajectory-defined images, limited to rectilinear forms aligned with the 
edges of the printed page. 

Ink -- Black. 

Language -- The Interpress 82 language structure and its transmission encoding as described 
within the specification section of this manual, with the exception of the IF operators and 
computational operators. 

Storage -- Data element size constraints as described in the specification section. 

Within each of the above functions, levels are designated to identify the extent of support that 
a printer is capable of achieving. For example, within the Ink function, a printer that supports 
only black ink values is at ink level zero, while a printer capable of producing gray values is at 
ink level one. 

B.2 Mapping 

As illustrated below, all element level designations are combined to form a map for the 
specified printer, following the form: 

Language.Pixel Arrays.Ink. Vector Graphics.Text.Storage.C1ipping 

A printer does not always support the Interpress elements at equal levels; typically it supports 
some Interpress elements at level zero ( for example, black ink but not gray) and other 
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elements at level one (for example, pixel arrays). Such a printer is considered to belong to the 
level zero product class, and not to level one. For implementation purposes, however, the 
Interpress Map is specific to the product. This allows the user of an Interpress master to 
predict the default actions (if any) of the printer being called upon to implement the Interpress 
master. 

..-N 
roro 0 ..... 0 ..... 0..-0 ..... 0 ..... 0 ..... 

Q) 
Vol 01 01 oX! (.) /1) 

~ fI) .... - cr: .1: 
01 >. .s.t= - oX! a. 
c /1) «I U ~ X ... 

~ x ... ..lo: 0 oX! 0- ... Q) ... Q) -...I 0..« of: :>'D ..... (I") w 

Basic Support Level 82 . 0 0 0 0 0 0 
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5700 82 1 1 1 0 0 0 

Figure Bol Interpress Mapping Concept 
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Compression specifications 

C.l Compressed pixel vectors 

The following paragraphs address the format of compressed binary raster images that are to be 
decompressed for printing on PSD Interpress printers. The compressed image is "contained" 
in the sequenceCompressedPixelVector transmission token and any immediately following 
sequenceContinued tokens, each of which consists of descriptor fields followed by the 
compressed data. (See "Token Formats" in Part I of the Reader's Guide.) 

Ultimately Xerox may support many different compression algorithms. Currently it supports 
the single algorithm described in this Appendix. This algorithm has been selected for a 
number of reasons. The two primary ones are the following: 

1. The algorithm provides an acceptable level of compression for raster images of the class 
that are most likely to be used within printings systems having a resolution in the 
neighborhood of 300 black-and-white pixels per inch. 

2. The algorithm can be efficiently implemented on the main frames of the major computer 
manufacturers. 

C.2 Compression algorithm principles 

The compression algorithm uses a combination of a prediction mechanism and a run length 
encoding mechanism. Because of the second point above, the prediction mechanism is 
extremely simple, consisting merely of a single bit "Exclusive Or". The bit selected for this 
process can either be the corresponding bit on the preceding scan line, or a bit on the current 
scan line located 5, 6, 7, or 8 bit positions preceding the bit being predicted. (The rationale 
behind this latter set of selections is to provide a reasonable mechanism within the same 
"Exclusive Or" framework to deal with half-tone cells of size 5x5, 6x6, 7x7, and 8x8, the 
assumption being that there is likely to be a high correlation between corresponding bit 
positions in adjacent cells.) The bit selected for the predictor in this latter case is set at the 
beginning of the compression operation for the entire image. Thus, the compression algorithm 
for an image contains two different predictor possibilities, the second one of which is selected 
from among four possibilities at the beginning of the compression operation. The predictor 
used is unique to each scan line, and can be arbitrarily varied from scan line to scan line. 
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Compression specifications 

Compression modes 

Each scan line begins with a Line Control Code (LCC) that designates which of the following 
four compression modes is to be used for the scan line. The four compression modes are: 

1. RA W, in which case the original raster information is presented without modification, i.e. 
no prediction and no run length encoding. 

2. ENe, in which case no predictor is applied to the original raster information, but it is run 
length encoded. 

3. HTN, in which case the predictor is the bit preceding the current bit on the same scan line 
by 5, 6, 7, or 8 bits. (Which of these cases to apply is set by a parameter at the beginning 
of the compression operation.) 

4. LIN, in which case the predictor is the corresponding bit on the preceding scan line. 

The run length encoding technique is a Huffinan code of Xerox's design. It is based on the 
use of a 4-bit input data group which is referred to as a nibble. Therefore, the original input 
data stream must be a multiple of four bits. In fact, for other reasons, the original input data 
stream must be a multiple of eight bits. The run length encoding system also produces a 
compressed data output stream that is a multiple of eight bits. 

Nibble classification 

Item size 

The run length encoding process breaks the data to be encoded into nibbles. These nibbles 
are then classified into four categories as follows: 

1. Z, a nibble containing the value 0000 (four zeros). 

2. A, a nibble containing any of the values 0001, 0010, 0100, or 1000 (Le. precisely one 1). 

3. B, a nibble containing any of the values 0011, 0101, 0110, 0111, 1001, 1010, 1011, 1100, 
1101, 1110, or 1111 (Le. any of the values not included in Z or A). 

The data to be run length encoded is then broken into sets of nibbles, each set of which 
consists of a sequence of n Z type nibbles (n = 0, 1, 2, ... ) terminated by an A or B type 
nibble. The run length encoding process then uses a set of special codes (of lengths 4-, 8-, 12-, 
16-, 20-, and 24-bits) to designat~. the number of Z type nibbles in each set, as well as the A 
or B type nibble which terminates the set Note that the number of Z type nibbles in a set 
may be zero. 

In the definition of a compressed image we will use the following nomenclature with the 
following designated meaning: 

1. Word: 2 consecutive bytes. Transmitted most significant byte first. UnleSs otherwise 
spccified, a word is not required to begin on any particular (word/byte/nibble) boundary. 

2. Byte: 8 consecutive bits. 

3. Nibble: 4 consccutive bits. 
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Definition format 

The definition of a Compressed Image is given in a format similar to the Backus-Naur 
convention. In this format each "paragraph" of text in the definition characterizes an element 
of the compressed image. For example, the first element of the compressed image is a word 
containing 16 binary zeros. This is defined by the statement "Word: Reserved, must be 
binary zero". The second element of the compressed image is a word containing the value 
NRange. The value NRange is constrained to lie between 5 and 8, inclusive. This is defined 
by the statement "Word: NRange [5 .. 8]". 

Specific literal values are designated by the enclosing them in "/" symbols. For example, the 
specific literal value 01110001 is designated as 101110001/. Literals which are defined as the 
selection of one among a set of mutually exclusive alternatives are designated by separating the 
alternatives with the symbol "I". 'For example, the literal which is the selection of one among 
the set of mutually exclusive alternatives 0001, 0010, 0100, and 1000 is expressed as 
10001100101010011000/. 

C.3 Compression algorithm specification 

With this background the full compression algorithm can be stated in the following semi­
formal manner: 

Compressed Image 

Data Line 

Word: Reserved, must be binary zero 

Word: NRange [5 .. 8] 

Word: Scan line length. Scan line length is an integer which defines the number of pixels in a 
scan line. This vaue must be a multiple of eight 

Byte: SOl (Start of Image) 1011100001 

Lines: one or more compressed Data Lines. Data lines are nibble oriented. Each Data 
Line is composed of a Line Control code (LCC) followed by a line of data. This data may 
end on a nibble boundary. Data Line is defined below. 

Byte: EOI (End of Image) 1011100011 

Nibble: Pad 100001 One or more Pad nibbles are required only when the EOI terminates 
on a nibble but not on a 16-bit word boundary. 

Byte: LeC (Line Control Code) one of four codes which control processing of the 
remainder of the data line. The remainder of the data line is termed a Run (See definition 
of a Run, below). The four LCe codes are RAW: 100000000/, ENe: 10000010/, LIN: 
1000000011, or HTN: 1000000111. 

RA W specifies that the bits of the Run which follow are pixels. The number of bits is 
specified by the value Scan line length, above. Scan line length must be a multiple of 
four. 

ENe specifies that the bits of the Run which follow are pixels which have been 
compressed. The compression process is accomplished purely by run length encoding. 
No prediction algorithm has been employed. 
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Lee 

RAW 
ENe 
LIN 
HTN 

Raster line 

HTN specifies that the bits of the Run which follow are compressed. The 
compression process is accomplished by a combination of a prediction algorithm and a 
run length encoding algorithm. In this mode each bit has been exclusively ored 
(XORed) with the bit that is N bits back in the current line. The value of N is 
defined by NRange above. The results of this exclusive oring process are then run 
length encoded. Leading zeros are assumed for the initial bits necessary to compare 
the first NRange bits of the line. 

The first Data line and each 16th line thereafter of an inuzge must be RA W, BTN or 
ENe 

LIN specifies that the bits of the Run which follow are compressed. The compression 
process is accomplished by a combination of a prediction algorithm and a run length 
encoding algorithm. In this mode each bit has been exclusively ored (XORed) with 
the bit that is in the corresponding position in the preceding scan line. The results of 
this exclusive oring process are then run length encoded. 

Table C.1 Line types v. encoding functions 

XORed Run Length Encoded 

no no 
no yes 
yes yes 
yes yes 

The Run is either raw pixels CRAW' above) or compressed according to the following method: 

First, we define the following: 

l: nibble = 100001 

A: nibble = 100011001010100110001 (A nibble -with a single 1 bit.) 

B: nibble = 10011101011011010111110011101011011111001110111110111111 
(A nibble with more than a single 1 bit.) 

(l, A, B are the mutually exclusive and collectively exhaustive cases of 4 bits) 

T: nibble = 1 AIBI 

H: The number of consecutive l's in a sequence of l's terminated by a T. 

Then we define the encoding of a Run by the following Huffman encoding procedure: 
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Run: A series of one or more H,T pairs encoded as 4-, g-, 12-, 16-, 20-, or 24-bit codes as 
follows: 

Four-; eight-; and twelve-bit codes 

H=O, T=A where: 

xx 

00 
01 
10 
11 

A 

1000· 
0100 
0010 
0001 

Table C.2 4-bit codes 10xx: 

Table C.3.1 g-bit codes Ollxxxxr: 

H = r = [0 . .1], T = B (0 or 1 Z nibbles, followed by a B nibble) where: 

xxxx 

0100 
·0101 
0110 
0111 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

B 

0011 (note xxxx not equal to B) 
0101 
0110 
0111 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
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Table C.3.2 8-bit codes Oyyyyyxx: 

H=yyy=[1..25], T=A (1 to 25 Z nibbles, followed by an A nibble) where: 

xx 

00 
01 
10 
11 

A 

1000 
0100 
0010 
0001 

Table C.4 12-bit codes 11rrrrrrxxxx: 

T=A=xxxx, H=rrrrrr= [26 .. 63] (26 to 63 Z nibbles, followed by an A nibble) 

T=R=xXX1, H= rrrrrr= [2 .. 63] ('2 to 63 Z nibbles, followed by a B nibble) 

Sixteen-; twenty-; and twenty-four bit codes 

16-, 20-, and 24-bit codes support the values 63(H(4096. They are created by a 12-bit code 
(11qqqqqqOOOO) followed by one of the preceding 4-, 8-, or 12-bit codes. 

Table C.5 16-,20-, and 24-bit codes 

H=yyy=[1..25], T=A (1 to 25 Z nibbles, followed by an A nibble) where: 

length fonnat definition 

16 llqqqqqqOOOO 10xx H = qqqqqq*64, T = A(xx)(see 4-Bit Codes above) 
20 llqqqqqqOOOO Ollxxxxr H = qqqqqq *64 + r, T = B(xxxx)(see 8-Bit Codes above) 
24 llqqqqqqOOOO 11rrrrrrxxxx: H = qqqqqq*64 + rrrrrr, T(xxxx) = (see 12-Bit Codes above) 

End of line situation 

Before encoding, a given line could have a stream of Z's without a T to tenninate it at the end 
of the line. Under this condition, these O's are skipped and an LCe for the next line is 
appended immediately to the encoded data stream. This LCC tells the decoder that all nibbles 
from the current position to the end of line are all Z's. 
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Appendix D 
A tutorial on 
the matrices used in Interpress 

Tnis appendix has two purposes. First, it presents the matrices and matrix methods wnich are 
used within Interpress 82. Second, it demonstrates how to perform the mechanical operations 
involved in manipulating these matrices, and provides explicit application examples. 

D.2 Interpress use of coordinate systems and transformations 

One of the fundamental requirements of Interpress is that it permits a master to describe 
precisely the location of every image on the output page. Any such description requires that a 
coordinate system be established within each printer. Since the optimum coordinate system 
for each different type of printer may be different it is impossible to create a master in terms 
of printer coordinates, and still have the master be printer-independent. The solution to this 
difficulty is to introduce the Interpress Coordinate System (ICS), and express the precise loca­
tion of all images on an output page in this coordinate system. Each printer can then provide 
a transformation which will convert Interpress Coordinates to its own Device Coordinates. 

The creator of every master could be forced to express all of his coordinates in the ICS. Such 
a requirement would introduce a difficult and unnecessary constraint. Interpress 82 removes 
such a constraint, and permits the creator of a master to use whatever coordinate system he 
may choose. Further, it permits him to change his coordinate system dynamically during the 
creation of the images for a page. 

The use of transformations permits the conversion of coordinates from any current Master 
Coordinate System (MCS) to the ICS, and thence to the Device Coordinate System (DCS). 
The use of vectors to represent points and matrices to represent transformations, together with 
the rules for matrix algebra, provides a simple and efficient method for implementing this 
transformation process. 

Two critical operating principles govern the use of transformations within Interpress 82. The 
trans/onnation parameters are stated in tenns 0/ the old coordinate system. Thus, for example, 
if the master wishes to create a new coordinate system whose axes are rotated 30 degrees coun­
terclockwise from those of the old coordinate system it will contain a statement which says 
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"rotate the coordinate system + 30 degrees". The transformation matrix which is created to 
represent the transformation is the one which will carry coordinates expressed in the new coor­
dinate system into coordinates expressed in the old coordinate system. Thus, in the example 
stated above, the transformation will generate the matrix which will convert coordinates ex­
pressed in the rotated coordinate system into these of the unrotated coordinate system. 

Transformations are created in a sequence that moves backward from the DCS. That is, the 
system starts with the DCS, applies the transformation that shifts to the ICS, then applies the 
transformation that shifts to the first MCS (designated as BCS in this Reader's Guide), and so 
on. However~ all transformations are directed toward the process of producing results in the 
Device Coordinate System (DCS). That is, each transformation defines how to convert coor­
dinates from the new coordinate system back to its predecessor coordinate system, i.e. the one 
that is closer to the DCS. Thus, for example, the transformation that shifts from the ICS to 
the DCS is one that will convert coordinates expressed in the ICS to coordinates expressed in 
the DCS. When the master then wishes to shift to the BCS coordinate system the transforma­
tion that is given is the one that will convert coordinates expressed in the BCS into coordinates 
expressed in the ICS. Thus, the statements which create the sequence of transformations move 
away from the DCS, first to the ICS, then to the MCS. However, the sequence of transforma­
tions which these statements create always moves towards the DCS, progressing from the BCS 
to the ICS, and thence from the ICS to the DCS. 

(Note: Interpress 82 designates all coordinate systems used in the master by the generic name 
Master Coordinate System (MCS). In this Reader's Guide we have designated the name Base 
Coordinate System (BCS) for the first such coordinate system introduced in the master. 
Subsequent coordinate systems introduced in the master are referred to as Local Coordinate 
Systems (LCS). The BCS and all LCS are merely specific instances of the MCS which can 
dynamically change during the creation of a page image.) 

D.3 General matrix operations 
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We define a vector representing a point in a two-dimensional coordinate system to consist of 
three components whose values are x, y. and 1. We represent such a vector by a triad written 
as [x y 1]. Let us be specific at this point and introduce the vector representing a point in 
the DCS. Using our notation this vector will be written as [xD y D 1], where the subscript 
D stands for Device Coordinates. .. 

We define a matrix of the type used in Interpress to consist of 9 elements whose values are a, 
b, c, d, e, f, 0, 0, and 1. Such a matrix is represented by a three by three array written as: 
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a d 0 
b e 0 
c f 1 

We will show how such a matrix is used to represent a transformation. We will often identify 
matrices by a name such as T or ID (written in boldface), in which case it is understood that 
the name is merely a shorthand way of describing the associated three by three array. Thus, 
we may have a particular transformation, T J, represented by a specific set of values for a, b, c, 
d, e, and f, and write it: 

aJ dJ 0 
T J = bJ eJ 0 

cJ f} 1 

and subsequently refer to the matrix by its name, T r 

Again let us be specific. We define the vector representing a point in the ICS by the notation 
[x I Y I 1], and define the matrix representing the transformation which converts Interpress 
Coordinates to Device Coordinates. We will name this matrix ID. 

o 
o 
1 

We speak of transforming the point in ICS defined by the vector [XI y I 1] to a corresponding 
point in DeS [xD y D 1] by applying the transformation ID, described by its associated matrix. 
In notational form this is written as 

The operation described above is defined to be the product of the vector and the matrix. This 
product is defined as follows: 

aID 

[xD YD 1] = [XI YI 1] bID 

where 

xD = x/aID + y/b/D + clD 
YD = X/dID + ytelD + flD 

cID 

o 
o 
1 

The equations. above, expressing the relationship between xD' y D' xl' Y I' and the clements of 
the matrix II> define the produci of the vector and the matrix. Note that this "product" is not 
the conventional product associated with the multiplication of two numbers. It is a new kind 
of product which specificalty defines the product of the vector and the matrix. 

The equations for xD and Y D arc the most general linear equations which can be written. The 
introduction of homogeneous coordinates. with the third coordinate having the value 1, pennits 
the vector by matrix multiplication to express this most general linear transformation in a com­
pact and homogeneous manner. It also permits us to combine series of transformations in an 
efficient and easy to implement manner. We will now develop that process. 
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Now, let us suppose that we introduce a second transfonnation, BI, which transfonns the point 
in the BCS defined by the vector [xB Y B 1] to a corresponding point, [XI Y I 1], in ICS by ap­
plying the transfonnation BI, described by its associated matrix. In notational fonn this is writ­
ten as 

If we substitute our definition for [XI YI 1] in tenns of [xB YB 1] and BI into the expression 
for [xD Y D 1] in tenns of [XI Y I 1] and ID we have: 

[xD YD 1] = [XI YI 1] ID = [xB YB 1] BI ID 

Note that the BI matrix appears on the left in the product BI ID. This is important because 
the product BI ID is not equal to the product ID BI. Mathematically speaking, matrix 
products are not commutative. 

Following our definition of an Interpress matrix, we have: 

aBI dBI 0 
Bl = bBI eBI 0 

CBI fBI 1 

and 

aBI 
[XI YI 1] = [XB YB 1] bBI 

CBI 

where 

Xl = x/aBI + Y /bBI + CBI 
Yl = XB *dBl + y/eBI + fBI 

dBI 0 
eBI 0 
fBI 1 

Now, let us substitute the equation expressions for XI and YI defined by these last equations 
for the values Xl and YI which were used in our earlier equations which defined xD and YD in 
tenns of XI and Y r Doing so we obtain 

xD = (x/aBI+y B *bBl+cBI)*alD+(xB *dBI+YB *eBI+fBI)*blD+cID 
Y D = (xB *aBI+y B *bBI+CBI)*dID + (xB *dBI+ Y B *eBI+ fBI)*e ID + flD 

We now collect tenns, and rewrite these equations as: 

xD= xB *(aB/alD+dB/blD)+ YB *(bB/aID+eB/bln> + (cB/alD + fB/biD+c/n> 
YD= xB *(aB/dlD+dBI*elD)+YB *(bB/dID+ eB/e/d + (cB/dlD+ fB/eID + f/d 

We can express this last equations in matrix fonn as: 

aBl*aID +dBI *bID 
[xD YD 1] = [xB YB 1] bB/alD+eB/blD 

cB/aID+fBI*bID+clD 

o 
o 
1 
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From our formal notational form we have: 

[xD YD 1] = [XI YI 1] ID = [xB YB 1] BI ID 

Hence, we can conclude that the product BI ID must be defined as: 

aBI dBI 0 aID dID 0 
BIID = bBI eBI 0 bID e/D 0 

CBI fBI 1 CID flD 1 

aBta/D +dBtb ID aBtd /D + dBte ID 0 
= bBta/D+eBtb/D b Btd /D + e Bte ID 0 

cB/*a/D + fBtb ID +c/D cB/*d/D+ fB1*e/D + f/D 1 

An inspection of the product matrix reveals how it is formed from its constituents. The ele­
ment located in the first row and first column of the product matrix is obtained by summing 
the products of the elements in the first row of the first matrix by the elements in the first 
column of the second matrix. The element located in the first row and second column is ob­
tained by summing the products of the elements in the first row of the first matrix by the ele­
ments in the second column of the second matrix. The general rule is that the element in the 
ith row and jth column of the product matrix is obtained by summing the products of the ele­
ments in the ilh row of the first matrix by the elements of the jth column of the second matrix. 
It may be seen that, because of the presence of "O's" and "1's" in particular positions of the 
Interpress matrices, the generation of the product matrix involves 12 multiplications and 8 addi­
tions. 

Expressed in a somewhat more formal, albeit still not rigorous manner, the rule for the multi­
plication of two 3 x 3 matrices proceeds as follows: 

1. A 3 x 3 matrix A is a square array made up of nine elements. The nine elements may be 
viewed as consisting of three horizontal rows each containing three elements, or three 
vertical columns, each containing three elements. 'Note that the first subscript on each 
element is the row number, and the second subscript is the column number. 

all an al3 

A = a21 a22 an 

a31 a32 an 

2. The transformation represented by two 3 x 3 matrices. A and B, applied in the order A 
first, B second can be represented as a third 3 x 3 matrix C = B A. If we define the three 
matrices as: 

all al2 au 
A= a21 a22 a23 

a31 a32 a33 

b ll b l2 bu 
B= b ZI bzz b2j 

b31 b32 b33 

cJl cn c13 

C=BA= CZI czz CZJ 

c31 cJZ cJJ 
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then the element clj located at the ith row and jth column of the matrix C is defined 
by the equation: 

clj = biJaJj +bifl2j +bu'l3j 

4. We can now observe an easy rule for the generation of cif We take each element of the 
ith row of matrix B and multiply it by the corresponding element of the jth column of 
matrix A, and sum these products. The term "corresponding element" means first element 
multiplied by first element. second element multiplied by second element. and third 
element multiplied by third element. Thus, the term c 13 is obtained by multiplying the 
first element in the first row of B by the first element of the third column of A, then 
multiplying the second element in the first row of B by the second element in the third 
column of A, and then multiplying the third element in the first row of B by the third 
element in the third column of A, and then summing the results of these products. 

S. An example will illustrate the principle. 

S -3 2 
B = -1 4 3 

6 -2 1 

4 -1 S 
A=2 3-4 

1 -4 2 

First row of B consists of S, -3, 2. 
First column of A consists of 4, 2, l. 
cn = Sx4 + -3X2 + 2xl = 16 

Second row of B consists of -I, 4, 3. 
First column of A consists of 4, 2, l. 
C21 = -lx4 + 4X2 + 3xl = 11 

Third row of B consists of 6, -2, 1. 
First column of A consists of 4, 2, l. 

C31 = 6x4 + -2X2 + lxl = 21 
First row of B consists of 5, -3, 2. 
Second column of A consists of -I, 3, -4. 
c12 = Sx-l + -3x3 + 2x-4 = -23 

Second row of B consists of -I, 4, 3. 
Second column of A consists of -1, 3,"-4. 
C22 = -lx-l + 4x3 + 3x-4 = 1 

Third row of B consists of 6, -2, 1. 
Second column of A consists of -I, 3, -4. 
C32 = 6x-l + -2x3 + lx-4 = -16 

First row of B consists of 5, -3, 2. 
Third column of A consists of S. -4, 2. 
Cl3 = SxS + -3x-4 + 2x2 = 41 

Second row of B consists of -I, 4, 3. 
Third column of A consists of S, -4, 2. 
C23 = -lxS + 4x-4 + 3x2 = -IS 

Third row of B consists of 6, -2, 1. 
Third column of A consists of S. -4, 2. 
en = .6x5 + -2x-4 + lx2 = 40 
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Hence, 

16 
C = 11 

21 

-23 41 
1 -15 

-16 40 

D 

6. If you are doing the multiplications manually, it is a simple matter to place one forefinger 
on the first element of the row being used in the B matrix, and the other forefinger on the 
first element of the column being used in the A matrix. Now, multiply these two values 
together, and move your first forefinger to the second element of the row being used in 
the first matrix, your second forefinger to the second element of the column being used in 
the second matrix, and so on, su~ing the products as you go. 

D.4 The identity matrix and inverse matrices 

There is a special matrix called the Identity matrix, and referred to by the letter I. The 
Identity matrix has the value: . 

1 0 0 
I = 0 1 0 

o 0 1 

The Identity matrix has the property that, for any matrix, A, AI = IA = A. Thus, I plays the 
same role in matrix multiplication that the value 1 plays in arithmetic multiplication. In con­
ventional arithmetic, for any value a (a not equal to 0) there is another value, a'1, such that a x 
a'1 = 1. A similar property holds for matrix operations, Under most circumstances, for any 
matrix A there is a matrix A'1 such that AA'1 = I. The matrix A'1 is called the Inverse of the 
matrix A, 

If we have two coordinate systems represented by [x y 1] and [x' y' 1], and a matrix A such 
that 

[x y 1] = [x' y' 1] A 

then if we obtain A'1, and multiply it on the right of both sides of the above equation we ob­
tain 

[x Y I]A'1 = [x' y' 1] AA'1 = [x' y' 1] 

Thus, while A converts x',y' coordinates to x,y coordinates, A'1 converts x,y coordinates to x',y' 
coordinates. The matrix A'1 has the property that it reverses the transformation operation per­
formed by A. 

Given a general Interpress Matrix 

a 
A = b 

c 

d 
e 
f 

o 
o 
1 

The matrix A'1 is given by 

elD 
A'1 = -bID 

(bf-ce)/D 

-dID 
aiD 
(cd-af)/D 

o 
o 
1 
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where D = ae - bd 

For example, given the matrix A 

3 S 0 
A = 1 2 0 

741 

D = 3 x 2 - 1 x5 = 1 
bf - ce = 1 x 4 - 7 x 2 = -10 
cd-af=7xS-3x4=23 

Hence, A·l is given by 

2 -S 0 
A·1 = -1 3 0 

-10 23 1 

Note that if D = 0 the quotients which include D in their denominators are undefined, and 
the matrix A·1 is undefined. As a practical matter, if the value of D is extremely small the 
quotients which include D in their denominators will cause arithmetic overflow in a computa­
tion process within an implementation that carries a finite number of decimal places. A matrix 
for which the value D is so close to zero that this condition prevails is said to be ill-condi­
tioned, and does not have an inverse that can be computed within the arithmetic limitations of 
the processor which is attempting to carry out the inversion opertions. 

D. S Interpress use of coordinate systems and transformations, revisited 
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Let us return to the application of these principles to the Interpress environment. For em­
phasis we repeat our earlier statement of the two critical operating principles which govern the 
use of transformations within Interpress 82. The transformation parameters are stated in terms 
of the oIJI coordinate system. Thus, for example, if the master wishes to create a new coor­
dinate system whose axes are rotated 30 degrees counterclockwise from those of the old coor­
dinate system it will contain a statement which says "rotate the coordinate system + 30 
degrees". The transformation matrix which is created to represent the transformation is the one 
which will carry coordinates expressed in the lIew coordinate system into coordinates expressed in 
the oIJI coordinate system. Thus, in the example stated above, the transformation will generate 
the matrix which will convert coordinates expressed in the rotated coordinate system into those 
of the unrotated coordinate system. 

Transformations are created in a sequence that moves backward from the DCS. That is, the 
system starts with the DCS, applies the transformation that shifts to the les. then applies the 
transformation that shifts to the first MeS (designated as BeS in this Reader's Guide). and so 
on. However, all transformations are directed toward the process of producing results in the 
Device Coordinate System (DCS). That is. each transformation defines how to convert coor­
dinates from the new coordinate system back to its predecessor coordinate system. i.e. the one 
that is closer to the DCS. Thus, for example. the transformation that shifts from the les to 
the DCS is one that will convert coordinates expressed in the les to coordinates expressed in 
the DCS. When the master then wishes to shift to the BeS coordinate system the transforma­
tion that is given is the one that will convert coordinates expressed in the BCS into coordinates 
expressed in the les. Thus, the statements which create the sequence of transformations move 
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away from the OCS, first to the ICS, then to the MCS. However, the sequence of transforma­
tions which these statements create always moves towards the DeS, progressing from the BCS 
to the ICS, and thence from the ICS to the OCS. 

One of the virtues of the matrix approach is that the transition from the DeS to the ICS, 
thence to the BCS, and on to any LCS can be accomplished in a series of incremental steps. 
Each such step involves only one simple transformation selected from a small set of fundamen­
tal transformations. The fundamental transformations with which Interpress 82 deals are the 
following: 

1. Pure scaling in the same amount in both the x and y directions. 

M = s 0 0 
o s 0 
001 

where s is a scale factor which converts coordinates from the new coordinate system to its 
predecessor coordinate system. 

2. Scaling by different amounts in the x and y directions. 

M = Sx 0 0 
o Sy 0 
001 

where Sx and Sy are scale factors which convert coordinates from the new coordinate sys­
tem to its predecessor coordinate system. 

3. Pure rotation. 

M = cos (a) 
-sin (a) 

o 
sin (a) 
cos (a) 

o 

o 
o 
1 

where a is positive for the case where it requires a counterclockwise rotation of the 
predecessor coordinate axes to obtain the new coordinate system. Note that the definition 
of the angle a is given in terms of the sign of the rotation that would be required to bring 
the predecessor axes to the new coordinate system, but the transformation given is the one 
that converts coordinates in the new coordinate system to its predecessor coordinate system. 

4. Mirror Image about x-axis. 

M = 1 
o 
o 

o 
-1 
o 

5. Mirror Image about y-axis. 

o 
o 
1 

M = -1 0 0 
010 
001 

6. Pure translation. 

M = 1 0 0 
010 
Tx Ty 1 

where T x and Ty are the translation components, expressed in the predecessor coordinate 
system, which would be required to bring the origin of the predecessor axes to the origin 
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of the new coordinate system, but the transformation given is the one that converts 
coordinates in the new coordinate system to its predecessor coordinate system. 

(The following warning comment is for the mathematically knowledgeable reader who has a 
strong prior background in transformations and matrix operations. Note that each of the 
above transformations describes its components in terms of the predecessor coordinate system, 
but the transformation which is generated is the transformation of coordinates from the new 
coordinate system to the predecessor coordinate system. In mathematical terms then, the trans­
formations stated above are the inverses of the transformations of conventional mathematics. 
Thus, for example, the definition of a rotation is in terms of the angle through which the 
predecessor coordinate system must be rotated in order to bring it into alignment with the new 
coordinate system. The transformation which is generated by the definition of the rotation 
operation is one which will convert coordinates in the new coordinate system into the predeces­
sor coordinate system.) 

D.6 The concatenation principle in Interpress 82 
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The introduction of a new coordinate system in Interpress is accomplished by providing the 
transformation which will transform coordinates expressed in this new coordinate system into 
the coordinates expressed in its predecessor coordinate system. Two important properties must 
be observed if this is to be accomplished correctly. These are: 

1. The creator of the new coordinate system thinks in terms of the predecessor coordinate 
system in describing the parameters of the required transformation. The transformation 
generated as a result of that description is one which will carry the coordinates of the new 
coordinate system into those of the predecessor coordinate system. 

2. The matrix representing the predecessor transformation must be left-multiplied by the 
generated transformation. In Interpress 82 this process is referred to as concatenation, and 
always has the meaning of left concatenation. 

A simple example will illustrate the principle. Assume that the printer has a resolution of 300 
black-or-white pixels per inch, and that the printer coordinate system uses 1I300th inch as its 
unit The Interpress Coordinate System uses meters as its unit. The first step in getting from 
the Device Coordinate System to the Interpress Coordinate System is to effect a scaling trans­
formation which will place the system into the Interpress Coordinate System's units. One 
meter is equal to 39.37 inches, and 39.37 inches is equal to 39.37 x 300 1I300th inches. 
Therefore one meter is equal to 11811 1/300ths inches. If we wish to shift the coordinate sys­
tem from the Device Coordinate System units to the Interpress Coordinate System units we 
must express the transformation which will convert meters to 1/300ths inches. In Interpress 
operators this is stated as 11811 SCALE CONCA IT. The operation 11811 SCALE produces 
the matrix 

M= 
11811 

o 
o 

o 
11811 

o 
o 
o 
1 

This matrix is then concatenated (left multiplied) with the current transformation. Note that 
the transformation expresses the conversion of units in the Interpress Coordinate System into 
units in the Device Coordinate System. 
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In Interpress 82 there are two concatenation operators, named CONCAT and CONCAIT, respec­
tively. CONCAT requires that two transformations (i.e. transformation matrices) be on the top 
of the stack at the time it is invoked. If we denote them by M and N. with M having been 
pushed on the stack first. N second. then the operator CONCA T forms the transformation 
defined by the matrix product MN. In execution CONCAT pops the stack to obtain N, pops 
the stack again to obtain M, performs the matrix multiplication MN (in that order), and places 
the product matrix back on the stack. CONCA IT requires that one transformation be on the 
top of the stack at the time it is invoked. If we denote that transformation by M. and the cur­
rent transformation (held in the Imager State) by T, then the operator CONCAIT forms the 
transformation defined by the matrix product MT, and establishes that product as the value of 
the current transformation in the Imager State. In execution CONCA IT obtains the matrix T 
representing the current transformation from the Imager State, pops the stack to obtain M, per­
forms the matrix multiplication MT (in that order), and establishes the product matrix as the 
current value of T in the Imager State. 

D.7 Illustrative example 

The following paragraphs will illustrate the principles presented above in terms of a typical 
Interpress 82 example. For purposes of this example we make the following assumptions (See 
Figure 0.1): 

1. The printer utilizes a right-handed coordinate system with origin in the lower left hand 
comer of a portrait page, y-axis parallel to the long edge of the paper. x-axis parallel to the 
short edge of the paper. The printer has a resolution of 1/300 inches and uses 11300 
inches as its units of measurement. 

2. The Interpress Coordinate System is as defined in the Interpress 82 Specification, namely, 
a right-handed coordinate system with origin in the lower left hand comer of a portrait 
page, y-axis parallel to the long edge of the paper, x-axis parallel to the short edge of the 
paper. The units of the Interpress 82 Coordinate System are meters. 

3. The master's Base Coordinate System is a right-handed coordinate system with origin in 
the lower left hand comer of a landscape page, y-axis parallel to the short edge of the 
paper, x-axis parallel to the long edge of the paper. The master coordinate system uses 
inches as its unit of measurement. 

Let us now follow the matrix generation process at the printer. It is important to keep in 
mind the fact that the goal of the transformation process is to bring coordinates expressed in 
any coordinate system into coordinates expressed in the Device Coordinate System. It is also 
important to keep in mind that the creator of the master has no knowledge whatsoever of the 
Device Coordinate System. He must express everything in terms of the Interpress Coordinate 
System. The printer itself will take care of the final transformation from the Interpress 
Coordinate System to the Device Coordinate System. The creator of the master must also 
keep in mind the Interpress view of transformations. Thus, if it requires a number of matrix 
multiplications to convert from his Master Coordinate System to the Interpress Coordinate 
System he must carry them out by a series of operations which work backwards from the 
Interpress Coordinate System out to his Master Coordinate System. Each step in this process 
backs out from the Interpress Coordinate System. but describes how to get from the coordinate 
system thus achieved back to its predecessor. If we follow the sequence of operations this 
process will become clear. This sequence is illustrated in Figure 0.1 which should be referred 
to as the discussion progresses. 
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The current transformation, T, is initialized to the Identity matrix, I, at the beginning of the 
document Thus. we have, initially: 

T= 1 
o 
o 

o 
1 
o 

o 
o 
1 

The first thing the printer will do will be to generate the matrix which will convert Interpress 
Coordinates into Device Coordinates. Recall that it does so by concatenating the 
transformation ID (Interpress to Device) with the identity matrix to form a new value for the 
Current Transformation, T, Le. it generates T = ID * I = ID by an internally generated ID 
CONCA TI sequence. (The creator of the master is totally unaware of this operation, and is 
indifferent to it, because he only has the responsibility to create the transformation which will 
take his initial Master Coordinate System into the Interpress Coordinate System. In fact, this 
operation will generally be different in each printer because of differences in implementation 
and resolution.) 

The printer is going to back out from its Device Coordinate System to the Interpress 
Coodinate System, hence it is required to create the transformation which will carry the 
Interpress Coordinate System back to the Device Coordinate System. Since, in our example, 
the Device Coordinate System and the Interpress Coordinate System are identical except for 
the units which each uses this transformation will merely be the scale change previously 
described. 

Thus, the transformation ID (Interpress to Device) must be the transformation generated by: 

11811 SCALE = 11811 
o 
o 

o 
11811 

o 
o 
o 
1 

Hence the operation at the printer becomes 11811 SCALE CONCATI, which results in the 
operation: 

T= 11811 0 0 1 0 0 
0 11811 0 0 1 0 
0 0 1 0 0 1 

and produces the matrix: 

T= 11811 0 0 
0 11811 0 
0 0 1 

We must now generate the series of transformations which takes us from the Interpress 
Coordinate System back out to the Master Coordinate System. We do so by means of three 
successive incremental transformations. First we create an intermediate coordinate system with 
the same origin and orientation as the Interpress Coordinate System, but having the units of 
the Master Coordinate System. We are going to back the Interpress Coordinate System out to 
this first intermediate coordinate system, but in doing so we create the transformation which 
will return coordinates from this first intermediate coordinate system to those of the Interpress 
Coordinate System. Again, this transformation is merely a scale change. 
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Now, 1 inch = .0254 meters. 

Hence, the intermediate coordinate system coordinates of a point would have to be multiplied 
by .0254 to obtain the Interpress coordinates of the same point. 

Thus, the desired transformation is 

.0254 SCALE = 0.0254 0 0 
0 0.0254 0 
0 0 1 

When CONCA TI is applied we obtain: 

T= .0254 0 0 11811 o . 0 
0 .0254 0 0 11811 0 
0 0 1 0 0 1 

Hence, 

T= 300 0 0 
0 300 0 
0 0 1 

This last transformation makes sense because it concatenates the scaling from inches to meters 
with the scaling from meters to 1/300ths inches. The result clearly must be the conversion 
from inches to 1I300ths inches, and there are clearly 300 1I300ths of an inch per inch. 

Now we create a second intermediate coordinate system whose origin is translated + 8.5 inches 
along the x-axis from the origin of the first intermediate coordinate system. Note that in order 
to convert the coordinates of a point in the second intermediate coordinate system into the 
coordinates of a point in the first intermediate coordinate system it is necessary to add 8.5 to 
the x-coordinate (e.g. the point (0,0) in the second intermediate coordinate system is the point 
(8.5, 0) in the first intermediate coordinate system. Therefore, the Interpress expression for 
the transformation which will carry coordinates expressed in this second intermediate 
coordinate system back to the first intermediate coordinate system is +8.5 0 TRANSLATE, and 
the desired transformation is: 

+8.5 0 TRANSLATE = 1 
o 

+8.5 

o 
1 
o 

o 
o 
1 

We now perform a CONCATI operation to produce: 

T= 1 
o 

+8.5 

o 
1 
o 

o 
o 
1 

300 
o 
o 

o 
300 

o 
o 
o 
1 
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Hence, 

T = 300 
o 

2550 

o 
300 

o 
o 
o 
1 

Finally, we create the Base Coordinate System by rotating the second intermediate coordinate 
system. Note that it requires a 90 degree counterclockwise rotation (+ 90 degrees) of the 
second intermediate coordinate system to arrive at the Base Coordinate System. Therefore the 
Interpress expression for the transformation· that will carry coordinates from the Base 
Coordinate System to the second intermediate coordinate system is 90 ROTATE, and the desired 
transformation is: 

90 ROTATE = 0 1 0 
-1 0 0 
0 0 1 

We now perform a CONCA TT operation to produce: 

T= 0 1 0 300 0 0 
-1 0 0 0 300 0 
0 0 1 2550 0 1 

Hence, 

T= 0 300 0 
-300 0 0 
2550 0 1 

This transformation is one that will carry a set of coordinates expressed in units of inches in 
the Base Coordinate System to the coordinates of the same point expressed in 1/300ths inches 
in the Device Coordinate System. For example, consider the point 5,2 in the Base Coordinate 
System, and apply the Current Transformation, T, to it thus: 

5 2 1 o 
-300 
2550 

300 
o 
o 

o 
o 
1 

The product of the one-row matrix by the transformation Tis: 

1950 1500 1 

This corresponds to a point which is located 1950 1I300ths inches from the lower left hand 
comer of the paper along the short edge, and 1500 1I300ths inches up from the bottom of the 
page on a line parallel to the long edge of the paper. Converting to inches produces the point 
6.5 inches, 5.0 inches. Thus, it corresponds to a point which is 6.5 inches from the lower left 
hand comer of the paper along the short edge, and 5.0 inches up from the bottom of the page 
on a line parallel to the long edge of the paper, and that is precisely correct. 
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In summary, then, the sequence of Interpress operations which would appear in the master to 
create the Base Coordinate System is: 

.0254 SCALE 

CONCAIT 

8.5 0 TRANSLATE 

CONCAIT 

90 ROTATE 

CONCAIT 

Now, let us assume that the creator of the master wishes to establish a local coordinate system 
whose origin is at the point 3,4 in the Base Coordinate System, and whose axes are rotated 30 
degrees counter-clockwise from those of the Base Coordinate System. (Note: A 30 degree 
rotation is not permissible in Interpress 82. This example is included to demonstrate the full 
power of the transformation operations. It would be rejected by an Interpress 82 printer as an 
inadmissible operation.) The transformation which will transform coordinates expressed in this 
local coordinate system to the Device Coordinate system is established by concatenating two 
additional transformations to the transformation T which currently carries the initial Master 
Coordinates into the Device Coordinates. The Interpress expression for the transformation 
which will carry coordinates expressed in a coordinate system whose axes are parallel to the 
Base Coordinate System, but whose origin is at the point 3,4 in the Base Coordinate system 
back to the Base Coordinate System is 3 4 TRANSLATE, represented by: 

3 4 TRANSLATE = 1 
o 
3 

o 
1 
4 

o 
o 
1 

We now perform a CONCAIT operation to produce: 

T= 1 
o 
3 

o 
1 
4 

which multiplies out to produce: 

T= o 
-300 
1350 

300 
o 

900 

o 
o 
1 

o 
o 
1 

o 
-300 
2550 

300 
o 
o 

o 
o 
1 

We now generate a second local coordinate system whose origin is coincident with that of this 
first local coordinate system, but whose axes are rotated 30 degrees counter-clockwise from it. 
The Interpress expression that will provide the transformation that will carry coordinates 
expressed in this second local coordinate system back to the first local coordinate system is 
given by 30 ROTATE, and is represented by: 

30 ROTATE = cos 30 
-sin 30 

o 
sin 30 
cos 30 

o 
o 
o 
1 
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which is expressed numerically as: 

30 ROTATE = .8660254 
-.5 
o 

.5 

.8660254 
o 

We now perform a CONCATI operation to produce: 

T= .8660254 .5 0 0 
-.5 .8660254 0 -300 

0 0 1 1350 

which multiplies out to produce: 

T= -150 259.808 0 
-259.808 -150 0 
1350 900 1 

300 
0 

900 

o 
o 
1 

0 
0 
1 

Finally, consider the point 2,1 expressed in this last local Master Coordinate System, and apply 
the current transformation, T, to it thus: 

2 1 1 -150 259.808 
-259.808 -150 
1350 900 

o 
o 
1 

The product of the one-row matrix by the transformation Tis: 

790.192 1269.616 1 

This corresponds to a point which is located 790.192 1/300ths inches from the lower left hand 
comer of the paper along the short edge, and 1269.616 1/300ths inches up from the bottom of 
the page on a line parallel to the long edge of the paper. Converting to inches produces the 
point 2.634 inches, 4.232 inches. Thus, it corresponds to a point which is 2.634 inches from 
the lower left hand comer of the paper along the short edge, and 4.232 inches up from the 
bottom of the page on a line parallel to the long edge of the paper, and that is precisely 
correct. The exact expressions for the location of the referenced point, expressed in l!300ths 
inches, is: 

x = 300*(3 + sqrt(5)*(cos(tan-10.5 + 30))) = 1269.615 1/300ths inches 

y = 300*(8.5 - (4 + sqrt(5)*(sin(tan·10.5 + 30)))) = 790.192 1/300ths inches. 

In summary, then, the sequence of Interpress operations which would appear in the master to 
create the final local Master Coordinate System is: 

.0254 SCALE 

CONCATI 

8.50 TRANSLATE 

CONCATI 

90 ROTATE 

CONCATI 

3 4 TRANSLATE 

CONCATI 

30 ROTATE 

CONCATI 
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0.8 Normalizing pixel arrays 

A scanned image of an area xPixels by yPixels is defined in a Standard Coordinate System 
using the following conventions: 

1. The first pixel on the first scan line is located at the origin. 

2. The subsequent pixels on the first scan line proceed up the y-axis, with the last pixel on 
the first scan line being located at 0, yPixels-1. 

3. The first pixel of the second scan line is located at (1,0), and subsequent pixels on the 
second scan line proceed up the line x = 1, with the last pixel on the second scan line 
being located at (1, yPixels-1). 

4. The first pixel on the last scan line is located at (xPixels-1,0), and subsequent pixels on the 
last scan line proceed up the line x = xPixels-1, with the last pixel on the last scan line 
being located at (xPixels-1, yPixels-l). 

Thus, the orientation of an image as it appears in the Standard Coordinate System is a 
function of the starting point of the scan, the direction of the "fast" scan, (Le. which direction 
each scan line goes), and the direction of the "slow" scan, (Le. the direction in which the 
sequential scan lines appear). Figure 0.2 shows the orientations of a large letter "J" as it 
would appear in the SCS for the eight possible scanning sequences. 

The definition of a PixelA"ay includes a transformation, m, which "normalizes" the scanned 
image. A scanned image is said to be normalized when it has the following characteristics: 

1. The image appears in its "desired" viewing position (Le. the position in which the image 
user desires it to be viewed. If I wish you to view an upside down .. J" then upside down 
is its desired viewing position. ) 

2. The origin is in the lower left hand comer of the desired viewing position. 

3. The upper left hand comer of the image in the desired viewing position is at the point 
(0,1), Le. the image is scaled so that it occupies a rectangle whose height is one unit 

Figure D.2 exhibits the Interpress operator sequence together with the resultant transformation 
matrix for normalizing each of the eight possible scanning sequences under the assumption 
that the desired viewing position is the conventional upright position. 

An example will illustrate how each of these normalizing transformations is generated. 
Consider the case shown in the lower left hand of Figure 0.2. The scanning sequence is 
assumed to start in the upper left hand comer of the rectangle bounding the "J". The fast 
scan is from left to right, the slow scan from the top to bottom. The figure which results in 
the SCS is a counterclockwise rotated "J" with its smaller leg resting on the x-axis, and the top 
of its longer leg lying on the y-axis. We use the same technique we have employed in the past 
to "back" the MCS coordinate system into this configuration. Consider that we have the "J" 
upright in the MCS with origin at its lower left hand comer, and the upper left hand comer of 
its bounding rectangle located at (0,1). Now, perform the operation 0 1 TRANSLATE. This 
creates a coordinate system with origin at (0,1), and provides the transformation that will 
convert coordinates from that system to the MCS from which we started. Next, perform the 
operations -90 ROTATE, and left concatenate it with its predecessor transformation. This 
creates a coordinate system that is properly rotated with respect to its predecessor, and 
concatenates this transformation with its predecessor. The resultant transformation is one that 
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will carry coordinates from the translated/rotated coordinate system back to. the MeS. Finally 
perform the operations lIxPixels SCALE, and left concatenate it with its predecessor 
transformation. This creates a coordinate system whose units are l/xPixels times those of the 
MeS, and provides the final transformation that will carry coordinates from the 
translated/rotated/scaled. coordinate system back to the MCS. The Interpress 82 statement of 
this sequence of operations is: 

lIxPixels SCALE 
-90 ROTATE 

CONCAT 
o 1 TRANSLATE 

CONCAT 

In matrix terms the matrix algebra proceeds as follows: 

lIxPixels 0 
l/xPixels SCALE = 0 lIxPixels 

0 0 

0 -1 
-90 ROTATE = 1 0 

0 0 

0 -l/xPixels 
CONCAT = l/xPixels 0 

0 0 

1 0 
o 1 TRANSLATE = 0 1 

0 1 

0 -l/xPixels 
CONCAT = lIxPixels 0 

0 1 

0 
0 
1 

0 
0 
1 

0 
0 
1 

0 
0 
1 

0 
0 
1 

The reader can confirm that the resultant transformation performs the desired normalization. 

D.9 Pixel array example 
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Consider the case where we would wish to print the enlarged image of the capital letter "]" 
shown in Figure 0.2 on a page described within the coordinate frameworks of our previous 
example. Although the MeS has its origin at the lower left hand comer of a landscape page, 
the DCS has its origin at the upper left hand comer of a landscape page. In most printer 
implementations the image scan sequence must match the printer scan sequence. If we assume 
this to be the case in this instance then the image must be scanned beginning in the upper left 
hand comer of its enclosing rectangle, fast scan left-to-right, slow scan top-to-bottom. The 
orientation of such a scanned image in the SCS is shown in the lower left hand comer of 
Figure 0.2. 

Let us assume that the image of the "]" is 3 inches wide by 4 inches high, and that it is 
scanned at a resolution of 150 black-white pixels per inch in both the fast- and slow-scan 
directions. Let us further assume that we wish to create an image that is also 3 inches wide by 
4 inches high, with its lower left hand comer located at the point (1,2) in the BCS. 
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As Figure 0.2 shows, the transformation matrix representing the normalizing transformation, 
m, for this scanned image is given by: 

m= 
o 
l/xPixels 
o 

-lIxPixels 
o 
1 

o 
o 
1 

Because the original image was scanned at 150 bits per inch, its 3 inch by 4 inch size generates 
a scanned array of 450 pixels by 600 pixels. The 600 pixel dimension lies along the x-axis in 
the SCS, hence xPixels = 600, and the matrix m for this specific instance becomes: 

m= 
o 
1/600 
o 

-1/600 
o 
1 

o 
o 
1 

Now, from our previous development we know that the value of the current transformation, T, 
that will carry the BCS to the OCS is given by: 

T= o 
-300 
2550 

300 
o 
o 

o 
o 
1 

In order to image our character at the point (1,2) we must perform the operation 1 2 
TRANSLATE CONCA IT, which results in: 

T= 1 0 0 0 300 0 
0 1 0 -300 0 0 
1 2 1 2550 0 1 

T= 0 300 0 
-300 0 0 
1950 300 1 

Since our normalized character is one unit high, and, in this case, our unit is an inch, and we 
wish it to be 4 inches high, we must now perform the operation 4 SCALE CONCA IT, which 
results in: 

T= 4 0 0 0 300 0 
0 4 0 -300 0 0 
0 0 1 1950 300 1 

T= 0 1200 0 
-1200 0 0 
1950 300 1 
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Finally. we concatenate m with T to obtain the transfonnation which applies when we image 
our Pixel Array, which results in: 

mT = 0 -11600 0 0 1200 0 
1/600 1 0 -1200 0 0 

0 1 1 1950 300 1 

mT = 2 0 0 
0 2 0 

750 300 1 

Let us interpret this matrix, and demonstrate that it is correct. Consider the general 
coordinates (Xs' Y) of a pixel in the SCS. To obtain the device coordinates of this point we 
transfonn its vector representation by the matrix mT. Thus: 

[XD YD 1] = [XS Ys 1] mT 

[XD YD 1] = [Xs Ys 1] 2 0 
o 2 
750 300 

o 
o 
1 

If we expand this latter fonn into its equation fonn we obtain: 

XD = 2Xs + 750 

Y D = 2Ys + 300 

From this fonn it is clear that the origin of the pixel array in the SCS goes to the point 
(750,300) in the DeS. If these coordinates were scaled to inches they would be (2.5,1) since 
there are 300 DCS units per inch. From Figure 0.1 it should be clear that the x-coordinate of 
DeS (stated in inches) is 8.5 minus the y-coordinate of BeS, and the y-coordinate of DeS is 
equal to the x-coordinate of BeS. Now we wanted a 4 inch high image with lower left hand 
comer located at the point (1,2) in the landscape page viewpoint of BCS. If we add the 4 inch 
height of the image to the 2 inch BeS y-coordinate .we obtain the BeS y-coordinate value of 6 
for the upper left hand comer of the image. Such a value is equivalent to a DeS x-coordinate 
value of 8.5 - 6 = 2.5 inches. Similarly the 1 inch x-coordinate in the BeS corresponds to the 
1 inch y-coordinate in the DeS. Hence the coordinates of the upper left hand comer of the 
scanned image (its origin in this scanning process) is properly located. 

We can also see that each pixel of the first scan line will be deposited on every other pixel 
along the corresponding scan line in the output image. That is, the pixels of the first scan line 
will be deposited at locations (750,300), (750,302), (750,304), and so on. Pixels on the second 
scan line will be deposited at locations (752,300), 752,302), (752,304), and so on. Note that the 
printer is assumed to print at 300 bits per inch while the image was scanned at only 150 bits 
per inch. If the factor of 2 were not present the 600 pixels along the height of the image 
would be printed on 600 consecutive printer pixels which would only occupy 2 inches on the 
printed page. In the absence of any special hardware/finnware/software combination in the 
printer the factor of 2 would cause the 600 pixels along a scan line of the image to be 
deposited on every other pixel as shown above. However, most printer implementations will 
fill in the missing pixels by means of some interpolation process. In this case a simple bit 
replication along the scan line, and a scan line replication of each scan line provides an 
example of a possible interpolation process. 
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85/10 0 TRANSLATE CONCATT 
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8.5 0 1 2550 0 

Base to Second Intermediate Transformation 

90 ROTATE 

0 1 0 
·1 0 0 
0 0 1 

First Local to Base Transformation 

3 4 TRANSLATE 

1 0 0 
010 
3 4 1 

CONCATT 
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·300 0 

2550 0 

CONCATT 

o 300 
·300 0 

1350 900 

Second Local to First Local Transformation 

CONCATT 

0 
0 
1 

0 
0 
1 

0 
0 
1 

0 
0 
1 

o 
o 
1 
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·0.5 
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o 

o 
o 
1 

·150 
·259.808 
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259.808 
·150 
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Figure 0.1 Coordinate Transformation Sequence 
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1/yPIxels SCALE 

1 0 
yPlxels 

0 
_1 __ 

yPlxels 

0 0 

1/yPixels SCALE 

1 "1 SCALE2 
CON CAT 
"1 1 SCALE2 
CONCAT 

0 

0 

1 

xPlxels/yPixels 1 TRANSLATE 
CONCAT 

_"_1_ 0 0 
yPlxels 

0 
_"_1_ 

0 
yPixels 

~ 
yPixels 

1/xPixels SCALE 

xPixels/yPixels 0 TRANSLATE 

CONCAT 

90 ROTATE 

CONCAT 

0 
__ 1_ 

xPixels 
_"1 __ 

0 
xPixels 

xPlxels 
0 

yPixels 

1/xPIxels SCALE 
"90 ROTATE 
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o 1 TRANSLATE 
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0 _"1_ 
xPixels 

__ 1_ 
0 

xPixels 

0 

0 

0 

1 

0 

0 

y 
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Figure 0.2 Pixel Arrays in the Standard Coordinate System for all Possible Scanning Sequences 
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