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Notice

This Xerox System Integration Standard describes Interscript - A Proposal for a Standard
for the Interchange of Editable Documents.

1.

This standard includes subject matter relating to patent(s) of Xerox Corporation. No
license under such patent(s) is granted by implication, estoppel, or otherwise, as a
result of publication of this specification.

This standard is furnished for informational purposes only. Xerox does not warrant or
represent that this standard or any products made in conformance with it will work in
the intended manner or be compatible with other products in a network system. Xerox
does not assume any responsibility or liability for any errors or inaccuracies that this
document may contain, nor have any liabilities or obligations for any damages,
including but not limited to special, indirect, or consequential damages, arising out of
or in connection with the use of this document in any way.

No representations or warranties are made that this specification, or anything made
in accordance with it, is or will be free of any proprietary rights of third parties.

XEROX?®, Xerox Network Systems, and NS
are trademarks of XEROX CORPORATION.



Preface

This document is one of a family of publications that describes the network protocols
underlying Xerox Network Systems.

Xerox Network Systems comprise a variety of digital processors interconnected by means
of a variety of transmission media. System elements communicate both to transmit
information between users and to economically share resources. For system elements to
communicate with one another, certain standard protocols must be observed.

Comments and suggestions on this document and its use are encouraged. Please address
communications to:

Xerox Corporation

Office Systems Division

Network Systems Administration Office
3333 Coyote Hill Road

Palo Alto, California 94304
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Introduction

Interscript provides a means of representing editable documents. This representation is
independent of any particular editor and can therefore be used to interchange documents
among editors.

1.1 Rationale for an interchange standard

As office systems proliferate, being able to interchange documents among different editing
systems is becoming more and more important. Customers need document compatibility
to avoid being trapped in evolutionary cul-de-sacs and having to pay the awful price of
converting documents from one product's format to another's.

Typically, an editing program uses a private, highly-encoded representation when
operating on a document to enable it to provide good performance. Generally, this means
that different editors use different, incompatible private formats, and a user can
conveniently edit a document only with the editor used to create it. This problem can be
solved by providing programs to convert between one editor's private (or file) format and
another's. However, a set of different editors with N different document representations
requires N(N-1) conversion routines to be able to convert directly from each format to
every other.

This N(N-1) problem can be reduced to 2(N-1) by noticing that we could write N-1
conversion routines to go from F1 (format for editorl) to F2,. . .,FN, and another N-1
routines to convert from F2,. . ,FN to F1. Except when converting from or to F1, this
scheme requires two conversions to go from Fi to Fj (j=1i). This is a minor drawback.
Choosing which editor should be editorl is the critical issue, however, since the
capabilities of that editor will determine how general a class of documents can be
interchanged among the editors.

This presents a truly difficult problem in the case that there is no single functionally
dominant editorl in the set. If the pivotal editorl doesn't incorporate all of the structures,
formats, and content types used by editor2,. . .,editorN, then it will not be possible to
faithfully convert documents containing them. Even if there were a single, functionally
dominant editor, it would place an upper bound on the functionality of all future
compatible editors.

Since there are no actual candidates for a totally dominant editor, this standard has been
developed by examining, in general, what information editors need and how that
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information can be organized to represent general documents. It provides an external
representation that is capable of conveying the content, form, and structure of editable
documents. That external representation has only one purpose: to enable the interchange
of documents among different editors. It must be easy to convert between real editors'
formats and this interchange encoding.

When represented by this interchange encoding, we call a document a script and reserve
the term document for the representation that an editing system uses to enable editing it.
Using a standard interchange encoding has the additional advantage that much of the
input and output conversion algorithms will be common to all conforming editors. For
example, when a new version of an existing editor is released, the only differences in the
new version's conversion routines will be in the areas in which its internal document
format has changed from its previous form: this represents a significant saving of
programming.

1.2 Properties that any interchange standard must have

2

An interchange encoding for editable documents must satisfy a number of constraints.
Among these are the following:

1.2.1 Encoding efficiency

Since editable documents may be stored as scripts, may be transmitted over a network,
and must certainly be processed to convert them to various editors' private formats, it is
important that the encoding be space-efficient.

Similarly, the cost in time of converting between interchange encoding and private
formats must be reasonably low, since it will have a significant effect on how useful the
interchange standard is.

1.2.2 Open-ended representation

Scripts must be capable of describing virtually all editable documents, including those
containing formatted text, synthetic graphies, scanned images, animated images, etc., and
mixtures of these various modes. Nor may the standard foreciose future options for
documents that exploit additional media (e.g., audio) or require rich structures (e.g., VLSI
circuit diagrams, database views). Thus, a standard must be capable of incremental
extension and any extension must have the same guarantees and be able to employ the
same mechanisms as the most basic parts of the standard.

For the same reasons, the standard must not be tied to particular hardware or to a file
format since documents will be stored and transmitted using a variety of media.

1.2.3 Document content and form

The complete description of a component of a document usually requires more than a list
of its explicit contents; e.g., paragraphs have margins, leading between lines, default
fonts, ete. Scripts must record the association between attributes (e.g., margins) and pieces
of content.
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Both the contents and attributes of typical documents require a rich value space
containing scalar numbers, strings, vectors, and record-like constructs in order to describe
items as varied as distances, text, coefficients of curves, graphical constraints, digital
audio, scanned images, transistors, etc.

1.2.4 Document structure

Many documents have hierarchical structure: e.g., a book is made of chapters containing
sections, each of which is a sequence of paragraphs: a figure is embedded in a frame on a
page and in turn contains a textual caption and imbedded graphics, and the description of
an integrated circuit has levels corresponding to modular or repeated subcircuits. This
standard exploits such structure, without imposing any particular hierarchy on all
documents.

Hierarchy is not sufficient, however. Parts of documents must often be related in other
ways; e.g., graphics components must often be related geometrically, which may defy
hierarchical structuring, and it must be possible to indicate a reference from some part of
a document to a figure, footnote, or section in way a that cuts across the dominant
hierarchy of the document.

Documents often contain structure in the form of indirection. For instance, a set of

paragraphs may all have a common "style," which must be referred to indirectly so that

changing the style alone is sufficient to change the characteristics of all the paragraphs

using it. Or a document may be incorporated "by reference" as a part of more than one

document and may need to "inherit" many of its properties from the document into which
_ itis being incorporated at a given time.

1.2.5 Transcription fidelity

It must be possible to convert any document from any editor's private format to a script
and reconvert it back to the same editor's private format with no observable effect on the
document's content, form, or structure. This characteristic is called transcription fidelity,
and is a sine qua non for an interchange encoding; if it is not possible to accomplish this,
the interchange encoding or the conversion routines (or both) must be defective. It must,
of course, also be possible to test that an editor does transecribe seripts faithfully, which in
turn requires that it be possible to test if two scripts are equivalent (section 2.3.4).

1.2.6 Script comprehension

Even complicated documents have simple pieces. A simple editor should be able to display
parts of documents that it is capable of displaying, even in the presence of parts that it
cannot. More precisely, an editor must, in the course of internalizing a seript (converting it
from a script to its private, editable format), be able to discover all the information
necessary to recognize and to display the parts that it understands. This must work
despite the fact that different editors may well use dlfferent data structures to represent
the content, form, and structure of a document.

At a minimum, this requires that a script contain information by which an editor can
easily determine whether or not it understands a component well enough to edit it, and
that it be able to interpret the effect that components which it does not understand have on
the ones it does. For example, if an editor does not understand figures, it might still be
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possible for it to display their embedded textual captions correctly, even though a figure
might well dictate some of its caption's content or attributes such as margins, font, etc.

This constraint requires that an interchange encoding must have a simple syntax and
semantics that can be interpreted readily, even by low-capability editors.

1.2.7 Regeneration

Processing a script to internalize it correctly is only half the problem. It is equally
important that an editor, in externalizing a script from its private internal format be able
to regenerate the content, form, and structure carried by the script from which the
document originally came. In particular, when regenerating a script from an edited
document, it should be possible to retain the structure in parts of the original script that
were not affected by editing operations. For example, an editor that understands text but
not figures should be able to edit the text in a document (although editing a caption may
be unsafe without understanding figures) while faithfully retaining and then
regenerating the figures when externalizing it.

This problem is much less severe when an editor is transcribing a document that it
"understands” completely, e.g., because the entire document was generated using that
same editor.

1.3 Whatthe Interscript standard does notdo

There are a number of issues that the Interscript standard specifically does not discuss.
Each of these issues is important in its own right, but is separable from the design of an
interchange representation

1.3.1 Interscriptis not a file format

This standard is not concerned with how seripts are held in files on various media (floppy
disks, hard disks, tapes, etc.), or with how they are transmitted over communications
media (local area network, telephone lines, etc.).

1.3.2 Interscript is not a standard for editing

A script is not intended as a directly editable representation. It is not part of its function
to make editing of various constructs easier, more efficient, or more compact: that is the
purview of editors and their associated private document formats. A script is intended to
be internalized before being edited. This might be done by the editor, by a utility program
on the editing workstation, or by a completely separate service.

1.3.3 Combining documents is not an interchange function

This exclusion is really a corollary of the statement, "A script is not intended as a directly
editable representation.” In general, it is no easier to "glue" two arbitrary documents
together than it is to edit them.
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1.3.4 Interscript does not overlap with other standards

There are a number of standards issues that are closely related to the representation of
editable documents, but which are not part of the Interseript standard because they are
also closely related to other standards. For example, the issues of specifying encodings for
characters in documents, or how fonts should be named or described are not part of this
work.

1.4 Concepts and guiding principles

1.4.1 Layers
The Interscript standard is presented in layers:

Layer 0 defines the syntax of the base language for scripts; parsing reveals the dominant
structure of the documents they represent (sections 2.1-2.2).

Layer 1 defines the semantics of the base language, particularly the treatment of bindings
and environments (section 2.3, chapter 3).

Layer 2 defines the semantics of properties and attributes that are expected to have a
uniform interpretation across all editors (chapters 4-5).

1.4.2 Externalization and internalization

A script represents a document in the Interscript format. Its sole purpose is to enable the
interchange of documents among editors in a manner that is independent of any one
editor.

A script is not the editable form of a document. The editable form is created by an editor
by internalizing a script according to the rules (semantics) of Interscript. The reverse
operation of converting a document in an editor's internal, editable format to a valid seript
is called externalization.

It is important that any document prepared by any editor can be externalized as a seript
that will then be (re)internalized by the editor without "loss of information". Ease of
internalization requires that the Interscript base language contain only relatively few
(and simple) constructs. This apparent paradox has been resolved by including within the
base language a simple, yet powerful, mechanism for abbreviation and extension.

A seript may be considered to be a "program” that is "compiled" to convert the script to the
private representation of a particular editor, ready for further editing. The Interscript
language has been designed so that internalizing scripts into typical editors'
representations can be performed in a single pass over the script by maintaining a few
simple data structures.

1.4.3 Content, form, value, and structure

Most editors deal with both the content of a document (or piece of a document), and its
form. The former is thought of as "what" is in the document, the latter as "how" it is to be
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viewed; e.g.. "ABC" has a sequence of character codes as its contents: its format may
include font and position information. Interscript maintains this distinction.

The distinction between the value and the structure of both content and form within a
document is also important. When viewing a document, only the value is of concern, but
the structure that leads to that value may be essential to convenient editing. An example
of structure in content is the grouping of text into paragraphs. An example of structure in
form is associating a named "style" with a paragraph.

Content: may be represented by structures built from character strings, numbers,
Booleans, identifiers, and nodes, which are structured objects containing simpler ones.

Form: Interscript provides for open-ended sets of properties and attributes. Properties are
associated with content by means of tags. Attributes are bindings between names and
values that apply over some scope. The way the contents of a document are to be
"understood" is determined by its properties: Interscript makes it straightforward to
determine what these properties are without having to understand them.

Structure: Most editors structure the content of a document somehow-into paragraphs,
sections, chapters. or lines, pages, signatures, for example. This assists in obtaining
private efficiency, but, more importantly, provides a conceptual structure for the user.

The most important, and most frequent, structuring mechanism between values is logical
adjacency (sequentiality), which is represented by simply putting them one after another
in the script.

Most editors that structure contents have a "dominant" hierarchy that maps well into
trees whose arcs are implicitly labelled by order. (Different editors use these trees to
represent different hierarchies). Interscript provides a simple linear notation for such
trees, delimiting node values by braces ("{" and "}"). If an editor maintains multiple
hierarchies, the dominant one is the one transcribed into the primary tree structure and
used to control the inheritance of attributes.

Structures recorded for form use explicit indirection by means of names. Interscript
allows expressions composed of literals, identifiers, and operators, and permits the use of
identifiers to represent expressions.



The language basis: syntax and
semantics |

This chapter defines the Interscript Base Language. Two versions of its syntax, a concrete
one and an abstract one, are supplied. The concrete grammar defines the publication
encoding for Interscript, which is solely intended for communicating Interscript concepts
among people and is used for all examples of Interseript in this standard (chapter 7 defines
the actual encoding to be used for representing scripts for editing systems rather than
humans).

Section 2.3 defines the semantics of the base language. These semantics have two primary
functions: (1) to provide a rigorous definition for equivalence of scripts, and (2) to show

conceptually what information in any script an Interscript implementation must
represent in order to be able to internalize and externalize a script correctly.

2.1 Grammar

Our notation is basically BNF with terminals quoted and parentheses used for grouping.

script = header node trailer

header = "INTERSCRIPT/INTERCHANGE/1.0 "

trailer = "ENDSCRIPT"

node r= "{"items "}"

items = empty|itemsitem

item = tag|indirection | binding|sBinding | term | openedNode | scope
tag = primary "$"

openedNode ::= (term|name"%")"|"

scope c= "["items "]"

binding i= name "&"term

sBinding := name "%e¢" (term|indirection| """ term "'")
term = primary | term op primary

op = T U LT "EQ

primary ;= literal |invocation|node | "(" term )"

literal = name | number | string

name = id|name"."id

invocation = primary "1"

indirection ::= name"%"
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This small grammar defines a representation language for scripts that is small enough to
admit of a precise denotational semantics (section 2.3), yet powerful enough to include
facilities for strong typing and data-type extensibility.

This surface syntax is intended only for use as a means of communications about
Interscript. It is a publication encoding and is not necessarily intended as the actual
encoding to be used for interchanging documents among editingsystems. Any such
encoding should pay attention both to the structure of this language and to the
requirements for an easily decoded, robust, and space-efficient representation.

2.2 Abstract grammar for Interscript

To associate a precise semantics with this language, it is easier to work from an abstract
syntax for it, ignoring surface punctuation and treating the parsed form of some external
encoding of a script. The following grammar serves this purpose as well as indicating the
reason for each of the parts of the language (in small print, like this). However, the small
print should be viewed as hints about the semantics; in any conflict between the small
print and the actual semantics, the semanties is to be considered the correct version:

script = node

An entire script is represented as a single high level node with subnodes to carry the various parts of the

logical and layout structures.
node := items

items empty | items item

item tag | binding | sBinding | term | indirection | openedNode | scope

A node is the primary structured data type of the language and is used to represent both logical and layout
structures. The items that make up a node may be tags, values, bindings, and expressions giving rise to
tags, values, and bindings. A node with values but no bindings behaves like a vector; a node with bindings
but no values behaves like a record; values and bindings may be intermixed to capture both the contentofa
piece of a document and the bindings associated with that content (such as what font a character is to be
displayed in).

tag ;1= primary

A node can have zero or more tags. Each tag is associated with an invariant that all nodes with that tag
must satisfy. This invariant includes what attributes (bindings) are relevant to the node, what types of
contents are allowed for the node, and any relations that must hold among the attributes of the node. For
example, a TEXT node is only ailowed to have character strings or PSEUDOCHAR nodes as contents. and
font is a relevant attribute of a TEXT node. An editor can tell whether or not it has code to deal explicitly

with a node simply by looking at the node's tags.
binding ii= nameterm

A binding associates a value (the result of elaborating the term) with a name. As bindings are encountered

during internalization. they are appended to the current environment. Whenever the value associated with
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a name is needed, the environment is scanned from most-recent to least-recent for a binding to that name (of

course, this is a logical description. not necessarily how one would implement environments).
sBinding ::= namesRhs

A structured binding is just like a normal binding except that the binding must be kept with the node in
which it occurs, even if it is not a relevant attribute of (a tag of) that node. Only names that are structurally
bound can be used in an indirection (see below) or can be opened (see openedNode below). Anintended use of
sBindings is for associating style information with a name so that it can be applied to nodes while still
maintaining the inherent indirection that would allow the style to be changed and have the effect of the
change propagate to all the nodes using it.

sRhs ::= term]|indirection|quoted

A structured binding can associate a single value, another name, or a quoted expression with a name. to get
the effect of structurally binding a set of items to a name, one can bind a node value to the name and then
access the items using the openedNode mechanism; e.g., list %« {1 1 2 3 5 8} list%]| will result in the
sequence 1 1 23 5 8 becoming itemsat the same level as the list%].

quoted :: = term

A quoted expression must be a syntactically correct expression (this is not a macro facility!), It will be

evaluated in the environment that obtains when used inn an indirection (see below).
term ::= primary|term op primary
Op ::= ADD|SUB|MUL|DIV|SUBSCRIPT|LT|EQ
primary ::= literal {invocation |node|term

Interscript expressions are primitive with a minimal spanning set of operators. Since scripts are expected to
be written and read by editing systems rather than by people, this is adequate. An invocation replaces an
occurrence of a name by its value. A node is a value like any other.

literal ::= name|number|string

A name standing by itself is atomic: it simply stands for itself, nothing more tan invocation is used if the
name is to be evaluated to produce a value). Numbers may be either Fortran-like reals or integers. Strings
are characters in the ISO 646 subset bracketted by the double quote character (.

name ::= id|nameid

A name is either a simple identifier (e.g., a, b, simpleld) or it is a qualified name (e.g., a.position.x,
font.face.style). If the name is to be evaluated (for an invocation, an indirection, or an openedNode), then it
is evaluated from left to right. All the identifiers except the last in a name must evaluate to node values,
which will then be treated as environments in which to continue the name evaluation process. For example,
in a.position.x, a must be bound to a node value and must contain a binding for position, which must alsobe a

node value containing in turn a binding for x.
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invocation :: = primary

When a name is invoked. it is evaluated as described under the name rule above, and the resultant value is

used in place of the invocation.
indirection :: = name

An indirection behaves just like an invocation for the purposes of evaluation. In addition, the fact that the
resulting value came from an indirection must be remembered in case of changes to the binding for the name

or for correct externalization of the document as a script.
openedNode ::= primary|name

A node value can be bound to a name and then later “opened” in some context to place the items of the node
into the environment in which it is opened. This can be used to introduce default values for tags, values, or
bindings anywhere in a script. If the form name%} is used instead of name | |, then the semantics demand
that the name of the node opened be maintained as well as the result of opening it. Such a structured open
can be used to associate styles with parts of a document while guaranteeing that any change to the style can
be reflected in all the places that the style is used.

scope ::= items

A list of items can be put in scope brackets [ ... |" to ensure that any computation in the scope cannot affect
the surrounding environment except by maintaining any bindings that are structural (see sBinding). Any
contents that result from evaluating the scope are considered part of the surrounding environment (just as if
they had not been surrounded by scope brackets).

2.3 Formal semantics for Interscript

10

The semantics for the base language are defined by a function, S, whose domain is the set
of parse trees corresponding to the abstract grammar of section 2.2. S is written in a
variant of the Mesa programming language [Mesa] which has had added to it the ability to
define and manipulate lists of values (provided all the elements of a given list have the
same type in the Mesa sense).

A type describing a list of items of type T can be defined as "LISTOF T (in these semantics,
T will always take the form "REF T" for some type T"). A list element can be created by the
operation

CONS: PROC[first, rest: LiST OF T] RETURNS[LIST OF T]

where T may be any type. Given a list L, the first element can be accessed as L.first, and
the tail of the list as L.rest.

2,3.1 Semantics organized according to the abstract grammar

The semantics of the base language are described by the function S:
S: prOC[e: Env, nt: NonTerminal] RETURNS[vs: Vs]

where a NonTerminal represents a node of an abstract parse tree (not defined here).
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_Vs: TYPE = LISTOF V'
V: TYPE = REF VRec

Conceptually, a VRec is a triple consisting of a mark, m, some contents, ¢, and sometimes
extra information, x, which is primarily for recording a name (e.g., for a binding). To get
the maximum benefit of type checking the definition of S without encumbering the
definition with a lot of extraneous type coercions, a Vrec is defined to contain a set of
fields, ca, one for each type of content (ca is one of ¢V, c¢Vs, cNum, ¢Str, cld, cTerm). For
similar reasons, the x component may be one of xId, xName, or xEnv. In any given Vrec at
most one of the ¢ fields and at most one of the x fields will actually be used; e.g., a tuple
representing the number 3.14 has the form VRec/m: num, cNum: 3.14], and a tuple
representing the name a.b.c as an atom has the form VRec/m: atom, xName: CONS[c,
CONS[b, CONS[a, NIL]]] |]. Here are the complete definitions of VRec and Mark:

VRec: TYPE = RECORD[m: Mark,
cVs: VseniL, cV: VeNIL, cNum: Number<-—0.0, cStr: STRINGENIL, c/d: |deniIL,
cTerm: NonTerminaleniL,
xid: IdeNiL, xName: Name«NiL, xEnv: EnveNIL];

Mark: 1vyee = {atom, num, string, node,  -- base values--
tag, bind, scope, bindStruc, evalStruc, onodeStruc, quotedTerm, vOfQ,
evalSentinel};

S is defined in terms of various subsidiary semantic functions, which divide naturally into
two groups: those that require an environment as a parameter and those that do not. The
type signatures of the functions in the two groups are

(1) functions with an environment parameter:

MkNode: proC[g: Env, vs: Vs] RETURNS [V -- node--]

MkBinding: proc[e: Env, v: V, n: Name, kind: Mark] RETURNS [V]
Lookup: PROC[e: Env, n; Name] RETURNS [V]

EvalName: proc[e: Env, n: Name] RETURNS [V]

RelBindings: proC[e: Env, vs: Vs --tag items only--] RETURNS [Vs]

(2) functions independent of environment (dealing only with tuples or lists of tuples):

Apply: prOC[op: Op, v1: V, v2: V] RETURNS [result: V]
Bindings: PrOC[v: V] RETURNS [Env]

Contents: PROC[vsS: Vs] RETURNS [Vs]

Tags: PROC[vs: Vs] RETURNS [Vs --tag items only--
Items: prOC[v: V] RETURNS [Vs]

MkScope: PROC[vS: Vs] RETURNS [Vs]

S is written in a "distributed" manner in the table below. It associates the parts of S with
non-terminals of the abstract grammar. If S were written as a single function, it would
look like a large case statement with one arm for each non-terminal of the abstract
grammar and the lines under the column heading Sle, Alternative] as the code for the
arms of the case statement.

11
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e denotes the current environment argument of S. An environment is simply a sequence of
bindings just like those that are relevant to a node. Some of the semantic rules pass a
modified ¢ to recursive application of S: see, e.g., the rule defining ifems. An environment
can be augmented by one or more bindings, bind*, denoted by ConcatVs[bind*, €].

Only the semantics for "interesting" alternatives of the grammar are given below. For
any alternative lhs :: = rhs whose semantics are not presented, its value semantics are Sle,

Ihs] = S[e, rhs].

When S maps a nonterminal of the abstract grammar into its tuple form, it is said to be
elaborated.

Lefthand Side Alternative S[e, Alternative]

script = node S[X, node]

The environment for the root node of an abstracted script is the external environment X.
node t= items {t: Vs = S[e, items]; RETURN[
MkNode[ConcatVs[Bindings{t], €], t]

Make a node from the list of items using the environment obtained by appending bindings in the node with

the current environment.

items l= empty empty
|items item {t: VS = S[e, items]; RETURN[

ConcatVs[t, S[ConcatVs[Bindings[t], ], item]}
Recursively elaborate items and then elaborate the last item using the environment formed by appending
the bindings in the preceding items to the current environment. Thus bindings affect things to their right in
a list of items.

tag :t=  primary MkTag(e, S, primary]]

Elaborate the primary. That should produce a (possibly qualified) name to use as the tag.

scope = items MkScope[S(e, items]]  -- see MkScope below--
openedNode = term items[S[e, term]]
| name MkV{m: onodeStruc,

cVs: Items[EvalName[e, S[NIL, name]]], name]

If a term (non-structural openedNode), then use the Items function to pull all the necessary elaborated items

from the node value that the term must elaborate to. If a structural openedNode. embed the elaborated
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items of the named node in a tuple marked as an onodeStruc in order to remember the name from which the

items were obtained.
binding ::= name term MkBindingle, S[e, term], ${NIL, name], bind]

Elaborate the term in the current environment. and make a (nonstructural’ binding between the name and
the resultant value. See MkBinding for details, especially for how values are bound to qualified names.

sBinding ::= namesRhs MkBinding[e, S[e, sRhs], S[NiL, name],
bindStruc]

Elaborate the term in the current environment. and make a structural binding between the name and the

resultant value. See MkBinding for details, especially for how values are bound to qualified names.
quoted = term Mky{m: quotedTerm, cTerm: term]
Simply make a quotedTerm tuple to hold the term for later elaboration.
term ;1= termopprimary applylop, Sle, term], S[e, primaryl]]

Elaborate the term. then the primary, and then apply the op to the result.

literal = name Mky{m: atom, xName: S[niL, name]]
| number MkyIm: num, cNum: number]
| string Mk Im: string, cStr: string]

A name as a literal is just made into an atom tuple. A numeric literal is stored as a num tuple. And, a string

literal is stored as a string tuple.
name = id MkAtom|id]
| name id cons[MkAtom[id], S[NiL, name]]

A qualified name is mapped into a list with the most highly qualified identifier first and the head.
unqualified identifier last.

invocation :1= primary EvalNamele, S{e, primary].xName]

Elaborate the primary to obtain a name to invoke (stored as the xName component of the resultant tuple).
Then use EvalName to lookup and evaluate the name.

indirection 1= name Mkv{m: evalStruc, cV: EvalNamels, S[NiL,
namel],

xName: S[NiL, name]]

Use EvalName to lookup and evaluate the name and embed the resultant value in an evalStruc tuple along
with the name from which it came.

13
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14

2.3.2 Definitions of semantics as a Mesa function

Groundrule:  Once constructed, no values or lists of values are ever modified (except in
Lookup). Therefore, they can be handed around without regard for being
changed in situ later.

S: proc[e: Env, nt: NonTerminal] ReTurns{vs: Vs] = {--TBD--};
NonTerminal: TYPE = REF --ParseNode--;

Error: eRROR[ec: {BoundsFault, InvalidTag, NotSingleton, Unboundld, WrongType}] =
CODE;

*******VALUES*******

V: TYPE = REF VRec;

Number: TYPE = REAL;

VRec: TYPE = RECORD[m: Mark,
cVs: VseNIL, cV: Ve=nNiL, cNum: Numbere0.0, cStr: STRINGeNIL, cld: IdeNiL, -- Contents
cTerm: NonTerminale—Nit, -- used for representing quoted terms--
xld: IdenNiL, xName: Name«nNiL, xEnv: EnveNiL]; -- eXtra information

Mark: tyre = {atom, num, string, node,  -- base values--
tag, bind, scope, bindStruc, evalStruc, onodeStruc, quotedTerm, vOfQ,
evalSentinel};

MarkAsAtom: ARRAY Mark oF ATom = [$atom, $num, $string, $node, $tag, $bind, $scope,
$bindStruc, $evalStruc, $onodeStruc, $quotedTerm, $vOfQ, $evalSentinel];
Vs, Env: TYPE = LISTOF V; -- for an Env, all items have mark bind or bindStruc--
X:Env & NIL; -- stand-in for the eXternal environment--
Mky: PrROC[m: Mark, cVs: VseNIL, ¢V: VeNiL, cNum: Numbere-0.0, cStr: STRING&=NIL,
cld: Ide=niL, cTerm: NonTerminale—niL, xid: IdeNit, xName: NameeNiL, xEnv:
EnveNiL] RETURNS{V] = {
-- The basic function for making a tuple--

RETURN[NEW[VRec « [m: m, cVs: c¢Vs, ¢V: ¢V, cNum: cNum, ¢Str: ¢Str, cld: dd, cTerm:
cTerm, xid: xld, xName: xName, xEnv: xEnv]]]};

True: V= MkV[m: num, cNum: 1.0]; False: V = MkVim: num, cNum: 0.0];
--TRUE and FALSE as tuples--

Mkys: PrOC[V1, v2, v3: VeNIL] RETURNS [vs: Vs] = {
--Make a list of Vs from individual Vs--

VSé—NIL; IF V3#NIL THEN vSe—~CONS[v3, vs];
IF V2#NIL THEN vS€—CONS[v2, vs]; IF v1 #NIL THEN vse~CONs[v1, vs] };

ConcatVs: PROC[v1, v2, v3: Vs&NIL] RETURNS [vs: Vs] = {
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--Concatenate a number of individual lists into one list (in order vl, v2, v3)--

AppendToT: proc[list: Vs] = {
UNTIL list = NILDO t.rest «— cons(list.first, NIL]; t & t.rest; list « list.rest enoLooP};

t: Vs « (vse—Cons[niL, NiL]);
AppendToT(v1]; AppendToT[v2]; AppendToT[v3]};

Nthitem: proc[vs: Vs, n: INT] RETURNS [V] = {  -.indexingintoa list'--
IF vs = NIL OR n <0 THEN Error{BoundsFault];
RETURNI IF n = 0 THEN vs.first ELSE Nthitem[vs.rest, n-1]1};

Name, Ids: TYPe = LiSTOFId; |d: TYPE = ATOM;
-- A Name is never empty: it always comes from the parser --

MkName: proc]a: ATOM, hd: NameeniL] RETURNS[Name] = {ReTurN[cONS[a, hd]l};

EqName: Proc[n1, n2: Name] RETURNS[BOOL] = {
UNTILNT = NILORN2 = NILDO
iF n1.first#n2.first THEN RETURN[FALSE];
n1enl.rest; n2¢<-n2.rest;
ENDLOOP;
RETURN[N1 = n2]};

*******REAL WORK*******

MkScope: PROC[vS: Vs] RETURNS [Vs] = {RETURN(

Unless a scope contains some structural items, its contents simply become contents
of the surrounding node. ‘

(iF HasStruc[vs] THEN Mky[Mky[m: scope, cVs: Contents[vs]]] eLse Contents[vs])]};

HasStruc: PrOC[vs: Vs] RETURNS [BooL] = {

Tests ifa list of Vs has any structural items (binds, indirections, or structurally
opened node).

One: pPrOC[v: V] RETURNS [BOOL] = {
RETURN[v.m = bindStruc OrR v.m = evalStruc OrRv.m = onodeStruc oRr

v.m = quotedTerm]};

RETURN[ IF vs = NIL THEN FALSE ELSE (One[vs.first] or HasStruc[vs.rest]) 1};

MkTag: proc[e: Env, n: Name] RETURNS [V -- tag --] = {

For every valid tag in a script there must be a tag definition (section 3.1.1). That
definition is given as a (structural) binding of a TAG$ node to the tag's name.
capture that definition in the tuple representing the tag along with its name
(remember these are value semantics, not an implementation: a real
implementation would avoid copying the definition and point to it somehow).
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tagDef: -- node --V = EvalName(e, n];
IF NOT HasTag[tagDef.cVs, sTaG] THEN Error[invalidTag];
RETURN[Mky[m: tag, ¢V: tagDef, xName: n]}};

MkNode: proc[e: Env, vs: VS] RETURNS [V -- node --] = { --[note 1] --

The canonical form for a node is a list of all its tags followed by its contents,
followed by a sequence of the relevant bindings for each of the tags.

RETURN[Mky[node, ConcatVs[Tags[vs], Contents[vs], RelBindings(e, Tags[vs]]]l]}:

The semantic procedures MkBinding, Lookup, EvalName, and Eval are a closely
related set and provide the central definition of how names are used in Interscript and
how bindings are iandled.

MkBinding: proc[e: Env, v: V, n: Name, kind: Mark -- bind/bindStruc --]
RETURNS [-- bind/bindStruc --V] = {

The only difference between a < and a % < is that the tuple is marked as such.
IF n.rest = NIL THEN RETURN[Mky[m: kind, ¢V: v, xId: n.first]]
A binding to a simple id results in a simple tuple being made.

£LSE {t: V = EvalNamele, n.rest]; iF t.m#node THEN Error{WrongType];
ReTURN[MkBinding[e, MkNode[e, ConcatVs[t.cVs, Mkys[Mky[m: kind, cV: v, xid:
n.first]]l], n.rest, kind]l};

A binding to a qualified name is handled by copying the binding corresponding to
the prefix of the name (it will be bound to a node value) with a new binding tuple
added to the end of the node value. Any future use of EvalName for the name will
find that binding first.

&
Lookup: PrROC[e: Env, n: Name] RETURNS [V] = {

looking up a simple identifier in an environment is a simple process of marching
down the environment list until a binding to that identifier is reached or the end of
the list is encountered.

One: proc[e: Env, id: Id] RETURNS [V] = {  --local procedure to handle simple ids --
b: V «If @ = NIL THEN NIL ELSE IF £.first.xld = id THEN .first eLSE One[e.rest, id];
IF e.first.m = evalSentinel AND b#NiL THEN e.first.xEnv « CONs[b, e.first.xEnv];

see note in Eval to explain why the above statement hangs bindings off sentinels
put into environments

RETURN[b.cV]};
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Looking up a qualified name requires that we first evaluate the prefix of the name
without its last identifier using EvalName (which must yield a node value), then make
an environment from the bindings of that prefix in which to look up the suffix identifier.

RETURN( IF n = NIL THEN NIL ELSE One([Bindings[EvalNamele, n.rest]], n.first] }};
EvalName: PrOC[e: Env, n: Name] RETURNS [V] = {
Lookup the name and evaluate it (it might be a quoted term)

RETURN[Eval[e, Lookup(e, nl]1};
Eval: proC[e: Env, v: V] RETURNS [V] = {
IFv.m = quotedTerm THEN {
ePlus: Env = cons[Mky[m: evalSentinel, xid: niL}, £]; .

We push an evalSentinel tuple on the top of the environment so that lookup
can collect all the bindings needed to evaluate this quotedTerm. The
environment that ends up hanging off the evalSentinel tuple is then tucked
away in the vOfQ tuple that results from evaluating the quoted term. This
information is needed to correctly externalize an indirection that caused a
quoted term to be evaluated. If the bindings in the xEnv component of the
vOfQ tuple match those extant when the document is externalized, then the
editor can simply output the indirection that gave rise to the vOfQ tuple safe
in the assurance that its value is unchanged.

RETURN Mky[m: vOfQ, cV: S[ePlus, v.cTerm].first, xEnv: ePlus.first.xEnv]}
ELSE RETURN[BaseVal([v]l};

BaseVal: Proc[v: VI RETURNS [V] = { RETURN][
(IF v.m = evalStruc THEN BaseVal[v.cV.cV -- it must be a vOfQ--] eLsE v)1};

Op: TYPE = {ADD, SUB, MUL, DIV, LT, EQ, SUBSCRIPT};

Isinteger: PrROC[v: V] RETURNS[BOOL] = { -- check that a number is actually an integer--
IF v.m#num THEN Error[WrongType];
RETURN[Real.Float{Real.Fix[v.cNum]] = v.cNum]};

Apply: proc[op: Op, v1: V, v2: V] RETURNS [result: V] = {

--apply the operator to the base values for vl and v2 (i.e., evaluate any quoted terms
that you encounter)--
vv1:V = BaseVal[v1]; vv2: V = BaseVal[v2];
SELECT Op FROM
ADD, SUB, MUL, DIV, LT = > {IF vw1.m#num OR vv2.m#num THEN Error[WrongType];
RETURN([(SELECT op FROM

ADD = > Mky{m: num, cNum: (vw1.cNum + vv2.cNum)],
sus = > MkyIm: num, cNum: (vv1.cNum-vv2.cNum)],
MuL = > Mky[m: num, cNum: (vv1.cNum*vv2.cNum}],
piv = > Mky{m: num, cNum: (vv1.cNum/vv2.cNum}],
LT = > (IF vwl.cNum < vv2.cNum THEN True £LSE False),
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ENDCASE = > NiL)]};
£Q = > {IFv1.m#v2.m THEN RETURN[False];

--Tuple marks have to be the same if they are to be equal --

SELECT vv1.m FROM
node = > reTURN[False]; -- two separate node values are never equal --
atom = > RETURN[IF (vv1.cld = vv2.cld) THEN True eLSE False];
num = > RETURN[IF (vv1.cNum = vv2.cNum) THEN True ELSE False];
string = > RETURN[IF String.EqualString[vv1.cStr, vw2.¢Str] THEN True
ELSE False];
ENDCASE = > Error[WrongTypel};
SUBSCRIPT = > -- use v2 as an index into the node vl --
IF NOT Isinteger[vv2] or vv1.m#node THEN Error[WrongType] -
eLSE RETURN[Nthitem[Contents[ltems[vv1]], Real.Fix[vv2.cNum]i];
ENDCASE};

Tags: PROC[vs: Vs] RETURNS [Vs -- tag items only --] = {ReTURN[(Sort[GetTags[vs]])]};
GetTags: PROC[vs: VS] RETURNS [Vs --tag items only--] = {
One: PrOC[v: V] RETURNS[VS] = {RETURN[(IF v.m = tag THEN Mkys[v] ELSE NiL)]};
RETURN[ IF vs = NIL THEN NIL ELSE ConcatVs[One[vs.first], GetTags[vs.rest]] 1};

Sort: PROC[vS: Vs -- tag items only --] RETURNS [sVs: Vs -- tag items only --] = {--[note 2]

-}

ltems: PROC[v: V] RETURNS [Vs] = {
IF v.m = node THEN RETURN[Rawltems[v.cVs]] eLse Error[WrongTypel};
Rawitems: PROC[vS: VS] RETURNS[VS] = {

Pull all the basic items out of a list, burrowing into evalStruc, onodeSéruc, or
scope tuples to extract their contained items

One: prOC[v: V] RETURNS[VS] = {

Local procedure to look at a single tuple and pull items out of it if it is an
evalStruc, onodeStruc, or a scope. Otherwise the value is returned.

RETURN[(SELECT v.m FROM
evaiStruc, onodeStruc = > v.cVs,
scope = > Rawltems[v.cVs],
ENDCASE = > MkVs[vi)l};
RETURNIIF Vs = NIL THEN NIL ELSE ConcatVs[One[vs.first], Rawlitems[vs.rest]]]};

Bindings: PROC[v: V] RETURNS [Env] = {
Make an environment from the bindings in the node v.

IF v.m = node THEN RETURN[GetBindings[Items[v]]] eLsE Error[WrongType]};

GetBindings: PrROC[vs: Vs] RETURNS[e: Env] = {

One: prOC[v: VI RETURNS[e: Env] = {  -- local procedure for catching bindings--
RETURN[IF v.m = bind OR v.m = bindStruc THEN MkVs[v] eLse NIL]};

RETURN[IF VS = NIL THEN NIL ELSE ConcatVs[GetBindings[vs.rest], One{vs.first]]]};
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RelBindings: PrOC[e: Env, vs: Vs -- tag items only --] RETURNS [Vs] = {

--Find all the relevant bindings for the tags in vs and make an environment from
them.--

One: proC[e: Env, v: V] RETURNS [Vs] = {
IF v.m#tag THEN Error[WrongType];
ReTURN[RefineBindings[e, PullDefaults[Bindings|
EvaiName[e, MkName[$attributes, v.xName]]l]11};

RETURN[IF vs = NIL THEN NIL ELSE ConcatVs[Onele, vs.first], ReiBindings[e, vs.rest]]]};
RefineBindings: PrOC[e: Env, basis: Vs] RETURNS [Vs] = {

For every identifier bound non-structurally in basis, place a binding in the result
Vs. If there is a binding in the environment for the identifier use that; if not, use the
one for it in basis (which provides a default value).

One: proc[e: Env, b: V] RETURNS [Vs] = {

IF b.m#bind AND b.m#bindStruc THEN Error[WrongTypel;
RETURN[IF b.m = bindStruc THEN NIL
ELSE Mkys[Mky{
m: bind, cV: Lookup[ConcatVs[e, Mkys[b]], MkMame[b.xid]], x!d:
b.xid]}]};

RETURN([IF basis = NIL THEN NiL
eLse ConcatVs[RefineBindings{e, basis.rest], Onele, basis.first]]]};

PullDefaults: proc[e: Env] RETURNS [Vs] = {
For every binding in the environment return a binding that gives a default value for
that identifier. Every identifier in the incoming environment is bound to a TYPE$
node (because relBindings reaches into the attributes attribute for a TAG$ node to
get these type definitions). The result Vs is not an environment, but is in the same
‘ left-to-right order as the bindings occuring in the attributes attribute for the TAG$
node from which they came.

One: Proc[b: V] RETURNS [Env] = {
if b.cV.m = node AND HasTag[ltems[b.cV], $TYPE] THEN
RETURN{Mkys[Mky
[m: bind, <V: Lookup[Bindings[b.cV], MkName([$default]], xid: b.xld]]]
ELsE Error[WrongTypel};

RETURN[IF £ = NIL THEN NiL ELSE ConcatVs[PullDefaults{e.rest], One[e.first]]]};
HasTag: PrOC[vs: Vs, id: Id] ReTurNs[BoOL] = {

Checks whether a given id occurs in the list of tags.

RETURN( iF vs.first.m = tag AND vs.first.cld = id THEN TRUE ELSE HasTag[vs.rest, id] |},
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Contents: PROC[vs: Vs] RETURNS [Vs] = {

The contents of a node are all the tuples in it except tags and non-structural
bindings (it thus includes all other values, structural bindings, structured
openedNodes, and indirections).

One: pPrOc[v: VI RETURNS [Vs] = {
RETURN[(IF v.m = tag OR v.m = bind THEN NiL ELSE Mkys[v])]};
RETURN[ IF VS = NIL THEN NIL ELSE ConcatVs[One[vs.first], Contents[vs.rest]] 1};

2.3.3 Notes for semantics

The semantics deal almost exclusively in immutable values, i.e., values which, once
created are never changed. As a result, it copies values prodigiously. Any
implementation of Interscript semantics should attempt to use pointers wherever possible
to avoid extraneous copies and copying of values.

[1): All the relevant attributes for each tag are listed at the end of a node, even if the
node's tags' relevant attribute sets are not disjoint.

To place some bindings in a node without regard for using a specific node type indicated by
tags, each binding must be a structural binding; e.g.,

abbrev & {a% <5 b%«7}

{...abbrev’|...}
{2]: the only requirements on SORT are that it sort names correctly and eliminate any
duplicates. More precisely, if N* is a list of names to be sorted and S* is the result of

sorting N* and removing duplicates, then

(Vi€[0..card(S*)-1) 5, <5, 1) A (Vi€[0..card(N*)) Is€S* I n,=5)

2.3.4 Equivalence of scripts
A script s; is equivalent to a script sq if and only if S[X,s1]=5[X,ss].
One way to test Interscript-conforming editors might be to develop a set of test scripts, and,

for each script in the set, check it for equivalence with a version of the script obtamed by
internalizing and then externalizing the script using the editor in question.




Tags, node invariants, and safe editing

Interscript makes it possible for editors to manipulate the parts of documents they
understand without altering parts they do not. This section describes the facilities that
make this possible and a set of safety rules that will enable editors to preserve this
property.

The first part of this section gives the details of how node tags are "defined" in the
standard. The second part describes the invariant associated with a node and how it is
specified. And the third part shows how a tag's definition can be used by an editor to treat
nodes with that tag safely even if the editor does not specifically implement the tag.

3.1 Tags, types, and node invariants

This section uses the Interscript base language syntax and semantics to define precisely
the properties of tags, which is accomplished by binding a TAG node to the tag's name. To
make a tag definition precise, we will introduce the notion of type, which is not embedded
in the base language, but rather is defined using it. Then it will actually be possible to
define (recursively) the properties of the tag TAG, including the notion of invariants for
nodes, which can be used by an editor to test whether an edit is legal, i.e., invariant-
preserving.

3.1.1 Defining tags

For every tag T used in a script there must be a corresponding definition of the important
properties of that tag. This is accomplished by (structurally) binding it to a TAG node,
which is used to capture some of T"s properties so as to enable editors to operate on T nodes
without necessarily having knowledge of T built into the editor. A TAG node defining T
will have the following relevant attributes:

attributes: a TYPE node (see definition of TYPE below) with each relevant attribute of T
bound to a TYPE node containing the default value for the relevant attribute,
and its type, which is a predicate on the attribute's value in a given node. If no
attributes are specified, the default is that the tag has no relevant attributes.
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contentType:

a TYPE node value specifying the type(s) of the contents allowed ina T
node. The default type is Any (see definition of TYPE below).

nodelnvariant: a predicate expressible as an Interscript (quoted) expression that must be

hasMorelnv:

requiredTags:

reducesTo:

tagOnly:

3.1.2 Defining types

true of any T node. Its default value is True.

a Boolean indicating whether there is more invariant for T than can be
expressed in T's TAG node; if hasMorelnv is False then T's invariant is
completely captured by the information in its TAG definition. Its default
value is True.

an untagged node listing as atoms all the tags other than T that are
required to be on a T node (this is a way of coupling T"s invariant to the
invariants for other tags). The default is that-no other tags are required.

either a quoted expression of the form '{...}' that can be used to reduce a tag
to an equivalent (but more basic) tag by treating the appearance of T'$ as
T.reducesTo%|, or NIL if T does not reduce to any other tag. The default is
NIL.

a Boolean indicating that a node with this tag need only be viewed by its
parent as a node consisting of just its tags for the purpose of checking the
parent's invariant. The default is True.

In order to define the attributes and contentType attributes of a TAG definition, we must be
able to define types. This is done by having a standard tag, TYPE, which can be used to
construct TYPE nodes to define types. The definition of the tag TYPE can be "described" in
Interscript (even though such a definition would actually be circular since TAG uses it):

TYPE% «—{TAGS
attributes
code % e-node
tags
union %«NiL -- or a node with a list of TYPE$ nodes as contents
predicate % «{Predicate 1 | default%«'1'}
default % «{Any 1 | defaulteNiL --Minimal automatic default--} }
contentType «None 1 }

That is, a TYPE node has the relevant attributes code, tags, union, predicate, and default,
with the following interpretations:

code must be an atom and one of atom, evalStruc, node, num, quotedTerm, string,
corresponding to a subset of the marks on VRecs in section 2.3.1. Or, code can have the
value Any, meaning that the type being declared may correspond to any of the marks

above.

tags is a list defining what tags a node of this type must possess.
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union, if not NIL, is a node value containing as contents a list of TYPE nodes; in this
case, the type being defined is viewed as having to satisfy one or more of the type
definitions given in the union.

predicate gives an Interscript quoted expression which a value must satisfy in order to
be a valid instance of the type. The default value ('1") always yields True.

default provides a convenient way of specifying a legal default value for a node of the
type being defined.

A TYPE node has no contents (since it is basically a record with its relevant attributes as
components), so its contentType has the type None (see below).

Note that the above definition of the tag TYPE is circular in that it "uses itself” to define
the types of the relevant attributes code, tags, union, predicate, and default.

Here are a set of standard TYPE definitions for the basic Interscript data types and for
types needed for defining tags and types:

Boo!% & {TYPE$ codee—num predicate% «'(A1 EQO) + (A1 EQ1)'}
Number% « {TYPES$ code<—num}

String% « {TYPe$ code«string}

Atom% « {TYPE$ code«—atom defaulte=0 -- no default --}

AtomList% « {TYPe$ tagse{AToMULIST} defaulte—{}} -- no default--
ATOMLIST% « {TAG$ contentType«—Atom 1 }

Any% « {1vYPe$ codeeAny}

None% « {Tvre$ predicate%«'0'} -- ever False, forbids any content--
Predicate% « {TYPe$ codee—quotedTerm}

Type% « {TvpPe$ tagse—{Tyre} defaulteAny 1}

To test if a given value v can be considered to satisfy a type with definition T, one can
simply invoke the following HasType procedure with the V representations of v and T.
HasType requires that

(1) either T.code is Any or T.code matches the mark of the value v; and
(2) if T.code is node, then v's tags must be a subset of the tags given in T.tags; and

(3) if T is a union type (T.union#NIL), then HasTypelv, subtype] must be true for at
least one of the subtypes given in the list T.union; and

(4) v must satisfy T.predicate.

To help in understanding how HasType works, try testing the value of Mky[m: num,
cNum: 2] against the type definition Bool above. HasType should return FALSE.

HasType: pPrOC[v: V, T: --node--V] RETURNS[r: BOOL ¢« FALSE] = {

bt: Env = Bindings|[T];

IF NOT (EqName([Lookup([bt, MikName[$code]].xName, MkName[$Any]] Or
EqName[Lookup([bt, MkName[$code]].xName,
MkName[MarkAsAtom[v.m]]]):

THEN RETURN([FALSE];
iF EQName[Lookup[bt, MkName[$code]].xName, MkName([$node]] THEN
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IF NOT Subset[Tags[v.cVs], Lookup[bt, MkName[$tags]].cVs] THEN
RETURN[FALSE];
FORtt: Vs « Lookup[bt, MkName[$union]].cVs, tt.rest UNTIL tt = NILDO
IF HasTypelv, tt.first] THENEXIT; -- can stop checking unions as soon as one
works--
REPEAT
FINISHED = > RETURN[FALSE]; -- v didn't satisfy any of the types in the union--
ENDLOOP;
RETURN[ ApplyPred[arg: v, pred: Lookup[bt, MkName[Spredicate]]] 1};
ApplyPred: proc[arg: V, pred: V] ReTuRNS[t: BoOL] = {
predEnv: Env = CONS[MkBinding([X, arg, MkName[$A], bind], X]; -- just the
external environment plus A«<arg
r: V = Evalle: predEnv, v: pred];
RETURN[IF r.m#num THEN FALSE ELSE (r.cNum#0) ]};
Subset: PROC[sub, set: Vs--all atoms--] ReTURNS[BOOL] = {
One: proc[a: V, set: Vs] RETURNS [BOOL] = { RETURN]
(1 set = NIL THEN FALSE
ELSE IF EqName[a.xName, set.first.xName] THEN TRUE ELSE Onel[a, set.rest])]};
RETURN[IF sub = NIL THEN TRUE ELSE (One[sub.first, set] AND Subset[sub.rest,

set])l};

The invariant associated with a node

A node in an internalized script is valid if it satisfies the complete invariant for the node. A
node's complete invariant depends on what tags are on the node, the TAG definitions for
those tags, and the actual contents of the node and bindings of the relevant attributes of
the node's tags. The following function Nodelnvariant evaluates as much of a node's
complete invariant as is possible without recourse to any external invariants associated
with the node's tags. Nodelnvariant returns the value no if a node is invalid, yes if it is
valid, and checkExternallnvariant if it is valid modulo the external invariants of any of its
tags that have such.

NodeValidity: TYPe = {yes, no, checkExternalinvariant};

Nodelnvariant: proc[n: --node-- V] RETURNS[r: NodeValidityeyes] = {
If n.m#node THEN Error[WrongType];
FORT: Vs « Tags[n.cVs], t.rest UNTILt = NILDO
SELECT TagCorrect(n, t.first.cV] FrRom
no = > RETURN[nO];
checkExternallnvariant = > r « checkExternallnvariant;
ENDCASE;
ENDLOOP;
RETURN([r]};

TagCorrect: PrOC[n, tagType: --node-- V] RETURNS[NodeValidity] = {
bt: Env = Bindings[tagTypel;
RETURN[ IF
CheckAttributes{bs: Bindings[n],
types: Bindings[Lookup[bt, MkName($attributes]]]] aND
CheckContents[Contents{n.cVs], Lookup[bt, MkName[$contentType]].cV] aND
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Subset[Lookup(bt, MkName[$requiredTags]].cVs, Tags[n.cVs]] anD
ApplyPred(arg: Stripped([n], pred: Lookup[bt, MkName{$nodelnvariant]]]
THEN (IF Lookup[bt, MkName[$hasMorelnv]].cNum = 1 THEN yes
ELSE checkExternalinvariant)
ELSE O]},

CheckAttributes: Proc[bs, types: Env] RETURNS[BOOL] = {
One: pProc(b: --bind[bindStruc-- V] RETURNS[BOOL] = {
t: --bindfbindStruc-- V = Lookup|[types, MkName(b.xid]];
RETURN(IF t = NIL THEN TRUE ELSE HasType[b.cV, t.cV]]};
RETURN(IF bs = NIL THEN TRUE
ELSE (One[bs.first] AND CheckAttributes[bs.rest, types])]};

CheckContents: PrOC[vs: Vs, type: V] RETURNS[BOOL] = {
One: proC[c: V] RETURNS[BOOL] = {
RETURN[IF c.m = bindStruc THEN TRUE ELSE HasTypelc, typell};
RETURN[IF vs = NIL THEN TRUE ELSE (One[vs.first] AND CheckContents[vs.rest, type])]};

Stripped: PrOC[N: --node--V] RETURNS(--node--V] = {
RETURN[Mky[m: node, cVs: Strip[items(n]]11};
Strip: PROC[vS: Vs] RETURNS[svs: Vs] = {
One: PrOC[v: V] RETURNS[VS] = {
SELECT V.M FROM
bind = > RETURN[Mky[Mky{m: bind, cV: One[v.cV].first, xid: v.xld]]];
node = > RETURN[IF ShouldStrip{v] THEN Mk[Mky[m: node, c¢Vs:
Tags[v.cVsl]] eLse Mky[Stripped{vil];
ENDCASE = > RETURN[Mk[v]]};
RETURNI[IF vs = NIL THEN NIL ELSE ConcatVs[Onelvs.first], Strip[vs.rest]]]};
ShouldStrip: PrROC[v: --node--V] ReETURNS[BOOL] = {
all of v's tags must agree on tagOnly for it to be true
tags: Vs = Tags|v.cVs];
FOR tags: Vs « Tags[v.cVs], tags.rest UNTIL tags = NIL DO
tDef: V = tags.first.cV;
btDef. Env = Bindings[tDef];
if Lookup[btDef, MkName[$tagOnly]]l.cNum#1 THEN RETURN[FALSE];
ENDLOOP;
RETURN[TRUE]};

3.3 Safety rules for editors

Using TAG definitions and the concept of Nodelnvariant, we can give some conservative
rules for editors in treating parts of documents that correspond to nodes in a seript. These
are simply observations about how a node's complete invariant can be affected by various
editing operations.

Rendering anode

An editor may display any node at all since this is not an editing operation. If it does not
implement any of the tags on a given node, the editor could still display the external form
of the node in the Interscript publication format (since it has to be able to externalize the
document as a script anyway). Of course, if an editor implements one or more of the tags

[\]
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ona node,.it can use those mechanisms to render the node and use the more basic, generic
display mechanism of script externalization for the attributes or content that it does not
directly implement.

Ediﬁng anode

All editing operations within a node can be composed from the following atomic
operations:

(1) replacing a value (whether of an attribute, an item of content, or the value of a
structured binding) by another value of the correct type;

(2) removing an item of content (includes structured bindings and subnodes)

(3) adding an item of content (includes structured bindings and subnodes)

(4) adding a tag to a node

(5) removing a tag from a node
In general, an atomic operation affects a subset of the tags on a node in the sense that it
could potentially affect the invariants of those tags (e.g., if it changed the value of an
attribute relevant to them). A single-node sequence of operations is one that affects

exactly one node.

A sequence of atomic operations that maintains the invariants of all nodes affected by the
edit is called valid.

What valid single-node operations can an editor perform on nodes that it does not directly
implement? Here is a general, safe mechanism:

save a copy of the node somewhere;
perform the operation sequence;

if the node's invariant and its parent's invariant are true allow the edit, otherwise
restore the original state.
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The preceeding sections of this standard have defined the Intersecript language and the
form of a seript. Those sections define Interscript in an abstract sense, just as a Pascal
syntax defines the Pascal language.

Yet to be described are the meanings that are attached to particular language constructs.
In the same sense that Pascal is not useful for summing until the syntactic operator “+” is
associated with concrete operations in real arithmetic, Interscript is not useful for
interchange until particular syntactic and semantic constructs are associated with
concrete document characteristics such as text, figures, paragraphs, and pages.

4.1 Introduction

In addition to defining the formal Interscript language, the Interscript 83 standard defines
a number of basic seript constructions.

The goal of the standard document constructs is to maximize effective interchange
amongst normal editors. The Interscript language provides total interchange at a basic
machine-to-machine level, but to provide interchange at a user-to—user level, we need
more.

What we need are constructs, defined in the standard, that encourage editors to formulate
document scripts in their terms. Thus we can define the “paragraph” and encourage
editors to use that construct in seripts. An editor could use its own “lines” and ”breaks,”
say, and the script would still be completely transportable; but it would be less editable,
since most other editors would tell their users that they didn't know how to edit “breaks.”

These basic constructs neither widen nor narrow the syntax and semantics defined earlier
in this standard, rather they identify several areas where document interchange is
enabled or enhanced by identifying and agreeing upon a particular representation for a
popular document construct, such as text or paragraph. This agreement aids the
construction of editing programs. It also aids the capturing of user intent - e.g.
distinguishing between wide paragraph margins and a wide page margin, which are
different intents even though, in a particular instance, they may result in the same layout.
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4.2 Overview

A document has two basic aspects: its content, typically text, and its layout. The basic
constructs defined in this section address these aspects, and address them as separately as
possible. Maintaining this separation is vital when interchanging editable documents,
since a characteristic of many documents is that the text is not attached to particular
pages, but rather "flows” from one to another. The pervasive effects of the dichotomy
between content and layout are visible throughout this standard.

4.2.1 Basic text

Text, especially, is kept simple. We wish to allow a very basic editor to be able to interpret
and alter the textual portions of a-seript, since we believe that it will be common for a
low—cost workstation to be asked to display document text (e.g. reading mail) and to
perform minor edits on text (e.g. correcting typos in a fancy document produced on an
expensive workstation).

4.2.2 Layout

We have created one construct — the box node - to formulate all geometric layout. Every
box node participates in layout according to the same rules; the common layout
arrangements, e.g. the indented paragraph, are expressed in terms of boxes.

The details of how the various document nodes interact when a layout is actually made are
deferred to section five.

4.2.3 Tag definition

Many of the subsections, below, define particular tags. Tags mark Interscript nodes, and
nodes are used for two distinct purposes (although the syntax is the same):

A node may exist to collect and associate a set of named values. This usage is
similar to a Mesa RECORD: a node-instance is typically assigned to a variable.

A node may be document content. As content, it will be free-standing and a
member of the logical-structure hierarchy.

Each tag introduced is presented by a formal definition, which is set off with heavy rules.
The tag is defined by giving its formal definition in terms of the TAG$ construct.
Following the formal definition, the meanings of the relevant bindings are discussed. The
phrase “something node” is equivalent to, and a convenient substitute for, the phrase
“node containing a something tag”

4.2.4 Publication encoding

Within ths standard, we often exhibit Intersceript fragments. We do so by using the
Interscript publication encoding. This encoding of the basic Interscript syntactic tokens is
defined to facilitate human communication and comprehension, not to serve for
editor-to—editor communication; to facilitate the latter, a machine encoding is used.
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The publication encoding is basically the characters of the BNF exhibited in section two.
This basic is augmented by several encoding-notations added for ease of use. These
encoding-notations do not extend the syntax in any way: they are only part of the
publication encoding; their sole purpose is to make it simpler to write and communicate a
script. They are described, within the section where they become useful, by stating the
encoding byte sequence and the actual BNF that it represents. Currently, the only example of a
publication encoding-notation is the "< >" encoding for characters, introduced in section 4.6.3.

4.3 The document as an entity

A document, considered as a unit of transmission and storage, has certain “properties”
that in many software systems are considered as properties of the
document-as-filed-entity. These “properties” include date-last-modified, author, etc.
Since we wish to “carry” these properties along with the document through editing
operations, it is appropriate that they be given within the script.

Content Tag: DOCUMENTS

DOCUMENT %« { TAGS
attributes « {
lastAlterationEditor & Atom
lastAlterationTime « String — /SO or other format
author, owner, editReason « String }

3

— the attributes will be augmented during standardization

A document node defines, via its bindings, various attributes of the document; attributes
that are not the document's content, but rather identify “properties” of the document as a
whole.

The scope of the document node's bindings define the portion of the script that they
describe. Thus typically there will be one document node at the outermost level which
contains all of the other nodes that comprise the document.

4.4 Boxes and layout

Document layout is described as an arrangment of boxes on document pages. Some layouts
are straightforward, while others are complicated and involve subtle positioning
requirements: keep the footnote on the page with the reference, the illustration must be on
aright-hand page, etc.

This section describes box metrics; layout algorithms are described in section five.

4.4.1 Box fundamentals

The function of box nodes is to describe document layout by (conceptually) partitioning the
(rectangular) document presentation medium into rectangular regions with edges that are
parallel to the edges of the medium.
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Box nodes are concerned with the layout geometry of the document. They are the only
standard nodes that are. All geometry is expressed in units of micas where a mica is 0.01
millimeter. [A script can use multiplication to effect other units: e.g. express unit inches
as 1*2540.]

Surprisingly, ISO standardization is not using the metric system, but defining
geometry in terms of a "“Basic Measurement Unit” which is variously proposed to
be 1/240 inch, 1/600 inch, or 1/1200 inch. Perhaps Interscript should change a
sentence, above, to read "All geometry is expressed in units of ‘Basic measurement Units'
or BMUs where a BMU is <whatever ISO decides >” And perhaps Interscript should
allow the size of the BMU to be defined in the script.

We define a box's layout by defining its size and positioning. Size and position are defined
separately for each coordinate. Sizes and positions are defined by a number when a
document is actually rendered (laid out on a medium). When they are stated by a script,
however, they are typically given with some leeway, and are then defined by a measure.

4.4.2 Measures

A measure is a triple of numbers [under, nominal, over] which suggest a distance but
allow some leeway in the layout process, or the atom SYNTHESIZED which is a “stand-in”
for such a triple.

A measure is a numeric measure if it is bound to a measure node (a triple of numbers) and
not bound to the atom SYNTHESIZED.

A measure node is a record that supplies the nominal metric for a span extent, together
with an “over” and “under” that indicate how much leeway the layout proces has to adjust
the value. The exact semantics of “over” and “under” are defined in the layout discussions
in section five.

Record Tag: MEASURE$

MEASURE %« { TAGS
attributes « {
under « Number T
nominal & Number 1
over « Number 1 }
contentType « { NIL }

}

Sometimes a box's size or positioning is not specified in the seript, but is computed during
layout. In this case, the binding is made to a special atom instead of to a measure node:

SYNTHESIZED: The measure does not have explicit metrics; rather the metric is
computed during the layout. The typical usage is to let a box assume the size
dictated by the layout requirements of its content.
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4.4.3 Box nodes

A box node suggests an area and its positioning relative to the enclosing box. Recurswely,
a tree of box nodes suggests a complete document layout.

Content Tag: BOX$

BOX %« { TAG$
attributes &« {
xSpan « SPAN
ySpan « SPAN
coordinateRotation «~ ONEOF {
' Occw 90ccw 180ccw 270cew }
clips « Boolean 1 }

The xSpan and ySpan bindings give the metrics of a box in the two (%, y) layout directions.

The coordinateRotation binding describes how the coordinates are rotated (in steps of
counter—clockwise right angles), inside the box, relative to the coordinates that were used
to lay out the box. Throughout this standard, in the interests of simplicity, coordinate
rotation is ignored in many discussions. Algorithms are described as though the
coordinate system does not change - e.g. the interior span that is parallel to an outside
xSpan is assumed to be an inside xSpan, rather than a ySpan, or possibly the negative of
an xSpan. The reader and implementor should provide logical coordinate rotation, as
required, as the box-tree is traversed. A formal definition of page coordinates is given in
section 5.4.2.

Boxes are always allowed to be placed so that they “stick out” beyond the area of their
containing box. If the clips binding of a container is TRUE, then children's “stick out”
portions are not rendered (imaged onto the display medium); if clips is FALSE, then “stick
outs” are rendered.
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Record Tag: SPANS

SPAN %« { TAG$

attributes « {
lowPartExtent « MEASURE
highPartExtent « MEASURE
fromLowContainer «- MEASURE
fromHighContainer « MEASURE
fromLowsSibling «~ MEASURE
fromHighSibling & MEASURE }

contentType « { NIL }

}

Figure 4.4-1 illustrates how the attributes of a span define the size and positioning of a
box node.

In a tree of box nodes, all but the “leaf” boxes will have layout continuing within them.
Such box nodes are given the INSIDELAYOUTS tag. Its attributes describe how layout is
performed inside this box node.

Content Tag: INSIDELAYOUTS

INSIDELAYOUT %« { TAGS
attributes «{
xLayout « INSIDELAYOUTMETHOD
ylLayout « INSIDELAYOUTMETHOD }
requiredTags « { BOX }
contentType « { NiL}
}

Record Tag: INSIDELAYOUTMETHODS

INSIDELAYOUTMETHOD %« { TAGS
attributes & {
direction « ONEOF { fixed up down onOrigins }
siblingAdjacency « ONEOF { parallel serial — 7ex — } }
contentType-« { NiL}
}

Figure 4.4-2 illustrates some box layout features.
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4.4.4 The page node

A page node collects together the information that make up a single document page.

Content Tag: PAGE$

PAGE% « { TAGS
attributes « { — get these from Interpress — }
requiredTags « { BOX }
contentType « { NIL }
hasMorelnvariant «- TRUE — no ancestor can have PAGEF tag
}
— page attributes will be the appropriate set of Interpress
— attributes to define such things as desired paper color

The document contains some number of page nodes. Each page node is the root of a tree of
box nodes. The page nodes, in script order, are the pages of the document. The tree of
boxes rooted at a page node defines a page's layout and content, from the page box all the
way down to character boxes. The layout structure of the document is a sequence of
box—trees, with the root of each tree being a page node.

4.5 Naming and labelling nodes

It is convenient to be able to attach naming information to particular nodes within the
document. This can serve two purposes:

to allow for intra~document references, which can augment the tree-like node
hierarchy of the logical structure, and indicate non-hierarchical document
connections

to augment nodes with user-sensible information so that the user can e presented
with information bout ertain nodes.

This naming information is attached to a node by adding a tag to the node; the naming
information is then an attribute of the additional tag. This is the standard way to augment a node:
adding a tag extends the set of relevant bindings of he node, and thus adds capability.

4.5.1 Labelling

It is sometimes necessary to associate two nodes that are not connected via the document
logical structure “tree” of nodes. Such a connection is created through labels.

The nodes to be connected (two or more) are given a label which is the same atom; an editor
finds the correspondence by matching label-atoms. The label-atoms are not user sensible;
unique labels can easily be created by an editor.

A label-atom is attached to a node by giving the node a LABEL tag:
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Tag: LABELSS

LABELS% « { TAGS
attributes « {
labels « { Atom 1 — can be more thanone —} }
}

In this standard, the phrase “the node is labelled with the atom” is shorthand for “the node
is given a LABELS$ tag and the script's bindings are arranged so the atom is among the
elements of the current binding to the attribute labels”

4.5.2 Intra-document references via labels

There are several forms of intra—document references that are handled by the label
mechanism. Listed below are the possible cases.

1. A set of (two or more) nodes with no distinguished memeber(s):
A unique label-atom is chosen and each member of the set labelled with that atom.

2. A set of nodes where one node “points to” all of the other members:
A unique label-atom is chosen; the atom is associated with the pointer-node via a
special attribute of that node; the other members of the set are labelled with the
atom.

3. A sequence of nodes, where the ordering matches script order:
Handled just like case one, with the ordering recovered by script examination.

4. A sequence of nodes, where the ordering does not match script order:
a) This may be handled like case one, with the ordering information supplied
outside the labelling arrangements; for example, all of the nodes may have some
other tag, and this tag may have a sequence-number attribute. Or
b) Every member of the sequence except the initial member is given a unique label.
The initial mamber of the set has an attribute (because it has some special tag)
whose binding is a list of the label-atoms of the members of the sequence. Or
¢) If the members of the sequence all have some tag (this is typical) then one can
generate atoms, but not use the LABEL tag, rather each member may have from
and to attributes, and each (from to) pair shares one generated atom. This resembles
a singley-threaded list, with matching atoms replacing pointers.
One might consider an arrangement like ¢, above, which uses only LABEL tags and labels attributes: the

initial node is given a label; each subsequent node (except the last) is given two label atoms, with the first
matching a label of its predecessor and the second matching a label of its successor; the final node has
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only a predecessor label. Such an arrangement, however, does not generalize well when nodes need to be
members of more than one sequence or need to be labelled for some other purpose.

5. More complicated arrangement, such as collections of sub-sequences and directed
graphs:

Are handled via extension of the methods suggested in #4, above.

In this standard, when we use the phrase “the node pointed to by ...” we mean an
arrangement like #2, above, where the set has two members. Thus “the node pointed to by
the from atom” means “the binding to from is an atom; there is exactly one node in the
document which has a LABELS tag and the from atom among its bindings to labels; this
node is meant, if there is not exactly one such node, it is a script error.”

4.5.3 User-sensible naming

It is often convenient for an editor to attach a user-sensible “name” or “description” to a
node. This may provide, e.g., an explanation of what the data-value should be, to aid
editor prompting. We provide this by additional tags which can augment any node.

Tag: USERNAMES

USERNAME %« { TAGS
attributes « {
name & String T — user-sensible name — }
}

Tag: USERDESCRIPTIONS

USERDESCRIPTION % « { TAG$
attributes « {
description « String 1 —— user-sensible description— }
}

4.6 Basic text content
This section defines the nodes which comprise the basic content of a document.

A document script is often organized as a hierarchical arrangement of content: words
within paragraphs within sections within chapters. The constructs in this section provide
such an arrangement.

A script hierarchy which reflects the document's physical medium - lines within columns
within pages - is possible with these constructs. It is more likely, however, that a script
will be arranged as a content-tree and then rearranged into pages via an (editing)
operation called pouring. Pouring is described in section five.
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4.6.1 Characters

The basic unit of text is the character. Characters participate in layout, and, therefore, are
(conceptually) boxes. A character node can be viewed as a stand-in for a box node: the box
node is the one obtained by looking up the "character” in a font. This is similar to the view
that the Interpress standard takes about characters.

Content Tag: CHARS

CHAR %« { TAG$
attributes « {
font &~ FONT }
contentType « { Number 1 }

}

Each CHARS node is a single character. The content is a single number that identifies the
character using an appropriate character numbering standard. The Interscript Standard is
separate from any character set numbering standard. To facilitate interchange, editors clarly must agree on one
character set. We suggest the Xerox Character Set Standard, which embraces and extends the current

international standards.

The character node acts just like a box node. Conceptually, the font binding identifies an
array of box node prototypes; the number in the character node is used to look up a box in
the font array, the box node thus obtained is used in place of the character node.

It is obviously unreasonable to encode an entire document's text one letter at a time via character nodes. Later in
this standard we discuss encoding notations, which allow common constructions, such as a sequence of character

nodes, to be compactly expressed.

Record Tag: FONTS

FONT %« { TAGS

attributes « {
name « String T — printers name of the font family
points « Number 1 — body size of type in printer's points
baselineOffset « Number — baseline up-~shift in points
italic &~ Boolean 1 — whether italic form should be used
boldness « ONEOF { lighter regular darker }
strikeout « Boolean 1 — whether 'struckout’ version
underlining &« ONEOF { none single double }
-— the metrics for strikeout and underiine are
-— provided by the font design — }

contentType « { NIL }

3
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An Interscript font node identifies and describes the font that the characters come from. It
contains the standard information that a printer would expect in a font description, plus
several attributes that have been bundled into the logical “font” for convenience:

The baselineOffset supplies a vertical shift for subscripts ete. Conceptually, an
ordinary font is augmented by a similar font where the baseline is one point higher,
another where the baseline is two points higher, etc. Practically, this “font” will be
synthesized as needed.

Real-world fonts have complicated arrangements of their “boldness.” Rather than
try to track this, we state that the boldness of the font is captured in the font name:
the name is, e.g. “Futura Light.” To aid editors in letting users “boldify” words, we
provide the boldness enumerated. It lets the font node specify “one step lighter” or
“one step darker.”

Conceptually, an ordinary font is augmented by strikeout and underline versions of
itself. For some fonts and some printing methodologies, this is likely to be true;
otherwise the strikeout and underline will be artificially produced.

4.6.2 Special characters

One maywish to create a built-up structure and have it act like a character: create a
logotype, for example, with a small bitmap frame, or build up a character like “%” with an
equation.

Tag: PSEUDOCHARS

PSEUDOCHAR % e { TAGS$
attributes e { }
requiredTags « { BOX }

}

The box defined by the pseudochar node will be treated just as if it was the conceptual box
equivalent to a character node.

4.6.3 Text

Running text (as opposed to characters in isolation) has attributes that single characters
lack. To provide for these attributes, we may imbed running text in a text node.
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Content Tag: TEXTS
TEXT % { TAGS
attributes « {
dialect « Number 1
— see appendix 00 for a numbering of languages — }
contentType « { textContent }

}
textContent « { union {
{Type 1 | Tags « {CHAR}}
{Type 1 | Tags « {PSEUDOCHAR}} }
— “textContent” abbreviation is used throughout this specification

The semantics of text nodes, and of character nodes, is deliberately kept simple. Thus
simple editors can edit “text” without "understanding,”

e.g., anything relating to
paragraph attributes.

4.6.4 A textencoding-notation

We define a compact way, in the publication encoding, to place character nodes into a text
node. The publication encoding

{ TEXT$ <Cat> < and dog.> }

is a notation for

{ TEXT$ {CHARS LABELS$ 67} {CHARS LABELS$ 97}

{CHAR$ LABELS$ 116} {CHAR$ LABELS$ 40} {CHAR$ LABELS$ 97}
{CBAR$ LABELS$ 110} {CHAR$ LABELS$ 100} {CHAR$ LABELS$ 40}
{CBAR$ LABELS$ 100} {CHAR$ LABELS$ 111} {CHAR$ LABELS$ 103} }

where the character-set reresentation for “C” is 67, etc.
4.6.5 Text fields

A text field node exists within running text. It holds a value which is reduced to text for
presentation.
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Tag: TEXTSHOWS

TEXTSHOW% « { TAG$
attributes « {
type « ONEOF { text amount date ... }
value « Any 7
picture «String 1 } — a COBOL picture clause? —
requiredTags &« { TEXT }
contentType « { textContent — same as TEXT — }
hasMorelnvariant ¢~ TRUE — value matches content —

}

The TEXTSHOW tag acts as an augmentation of a text node. Thus an editor which
understands text can display (but not edit) the content, which is the textual
representation of the underlying value.

4.6.6 Text value

A text remote value node is an augmentation to a text field. It provides a mechanism for
incorporating derived values (“see figure 2.3 on page 27”) into text.

Tag. TEXTREMOTEVALUES

TEXTREMOTEVALUEY «- { TAGS
attributes & {
from « Atom 1
value < Any 1 }
hasMorelnvariant e~ FALSE

¥

As an editing operation, typically during a pour, the value binding of the text field can be
derived from the node pointed to by the from atom by copying the binding of value. The
value can then, perhaps, be reduced to text via a TEXTSHOW tag.

Notice that a set of textremotevalue nodes can be placed within another node; each one
capturing one remote value; the value binding of the container node can then be
calculated via arithmetic on the imbedded values. This allows ordinary “fill in rules” to be
expressed in Interscript.

When content, as opposed to a binding, is to be retrieved, we use a different tag:
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Tag: TEXTREMOTECONTENTS

TEXTREMOTECONTENT% « { TAGS
attributes & {
from &« Atom 1 }
requiredTags « { TEXT }
contentType « { textContent — same as TEXT — }

}

The text remote content tag is an augmentation of a text node. As an editing operation,
typically during a pour, the content of the text field can be copied from the node pointed to
by the from atom.

4.7 Pouring constructions

40

For some documents, it is appropriate to have a tree of box nodes defined for each page,
and to place in a box node the exact document content (text, illustrations, ...) that belong
there. This is a straightforward approach - it is called solid layout.

When a solid layout is inappropriate, we separate the description of the layout and the
content. Instead of placing text (and other content) within the layout boxes that it belongs
in, we split it out into a separate logical structure.

Then rendering must include some function which recombines the content and layout, so
it can put the text in the right places on the page. We call non-solid layout fluid, and the
act of combining the layout information and the logical structure elements pouring.

Layout is strongly affected by content, and we cannot, in general, produce a correct layout
structure without knowing where the content falls. The font-size of the running text, for
example, affects how many lines fit into a column. So the layout information cannot be
precise, but rather must supply a template from which the correct layout of a particular
content can be constructed. ’

“Pouring” itself is detailed in section five.

In this section we define, without a detailed explanation of their semantics, the nodes that
control pouring.

4.7.1 Pouring, templates, and molds

A pour operation is controlled via a pour node. The content of the pour node is the logical
structure elements to be poured. The bindings of the pour node control the pour operation.
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Tag: POURS

POUR %« { TAG$
attributes & {
labelset «~ { Atom 1 — can be more than one —
— supplies label-set for matching — }
template « Node — a template or contains template(s)
satisfactionThreshold «~ Number 1
satisfactionForwardSearch « Number ]
satisfactionUpwardSearch « Number 1 }

The binding to template supplies the layout template that the content is “poured into.”

Tag: TEMPLATES

TEMPLATE % e- { TAGS
attributes « {
expresses « ONEOF { sequence alternation repetition } }
contentType « Node 1

}

A template node supplies a recipe for the construction of various layout possibilities that
are valid document layouts. A pour operation will examine this space of layout
possibilities and choose one actual layout that is appropriate for the actual content.

Tag: MOLD$
MOLD %« { TAGS
attributes « { coercion « QuotedExpression }
}

The mold tag defines the nodes, within a template, that are “targets” for content to be
poured into. Some nodes in the template will not be molds becase they are supplying layout geometry, e.g.
non-leafboxes. Other nodes in the template will not be molds becase they are supplying fixed page—content, e.g.
fixed marginal rules.

Tag: FENCE$

FENCE %« { TAGS
attributes«—{ }
contentType « NIL

}
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A fence node defines a logical "break” for layout algorithms.

4.7.2 Paragraph

A paragraph node collects together the text and formatting information that make up a
single document paragraph.

It is important to understand that a paragraph node is (just) a shorthand for a description
of a particular layout arrangement, together with the paragraph's (text) content. A
paragraph node is a stand-in for a pour node.

We standardize the paragraph node, instead of having all paragraph-like layout
performed with pour nodes, so that:

1. The user-intent surrounding the “paragraph” is captured: the editor can
recognize the user's paragraphs, e.g. to support a "select next paragpraph” key; the
user's semantics of naragraph-margin, widow control, etc., are captured in the
script and easily recognized by editors.

2. Paragraph-layout can be “hard—coded” into an editor. This may greatly speed up
pagination.

Tag: PARAGRAPH$S

PARAGRAPH %« { TAGS

attributes « {
lineJustification-« Boolean 1
lineRaggedness «~ ONEOF { atBeginning centered atEnd }
avoidWidow « Boolean 1
avoidOrphan « Boolean 1
firstLineLeftMargin «~ Number 1
leftMargin «- Number ¢
rightMargin « Number 1
preleading « MEASURE — of the paragraph —
postleading « MEASURE — of the paragraph —
interlineLeading: MEASURE
aboveBaseline « MEASURE — for TgX line layout —
belowBaseline & MEASURE — for TEX line layout —
specialLineFormatting « QuotedExpression
specialLineFormattingThroughLineN « Number 1
tabstops: { TABSTOP Nodes — how do you say this ?? — }

}

reducesTo & — see appendix P — }

We expect that the paragraph attributes, above, will be extended and perhaps
modified as this draft is finalized. There is a trade-off between making the
paragraph simple (and forcing odd-ball cases to use a pour) and making the
paragraph fancy enough to include all the “reasonable” cases.

12
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4.7.2.1 Layout within the paragraph

Within the paragraph, layout remains boxlike. A paragraph is composed of lines of text.
These lines are defined by line node boxes.

The line node boxes are layed out consecutively according to the layout direction inside
their container. (Since the paragraph node is a pour node, the ultimate container of the
line nodes will be a column or page; see section five.) Within a line, characters are laid out
according to the layout direction inside the line node box. Thus the two layout directions
define the writing—order of the paragraph text. For normal European text, the two layout directions
will be top-to-bottom and left-to-right.

4.7.2.2 The line node

The line nodes define the text structure of the paragraph; one of the line layout boxes is
probably defined with a repetition. They specify indenting, inter-line leading, special
fonts for the initial line, etc.

In typical usage, line nodes do not appear in the script; only paragraph nodes appear, and
the lines are derived from the paragraph information. For situations where the standard
paragraph does not suffice to describe a desired paragraph layout, explicit line nodes can
be used.

Tag: LINES

LINE % { TAGS
attributes « {
lineJustification <~ Boolean T
lineRaggedness «— ONEOF { atBeginning centered atEnd }
leftMargin &« Number 1
rightMargin « Number ¢
leading «~ MEASURE — interline —
aboveBaseline «~ MEASURE
belowBaseline « MEASURE
tabstops: { TABSTOP Nodes — how do you say this ?? — }
reducesTo « — see appendix Q — }

The line node has several attributes that are copied through from the paragraph node.

A line node is typically a mold for a pour operation, and therefore also has a coercion
attribute. This attribute can supply a “late” modification of the font information. The
actual font used to display the characters of running text is not defined by the font
attribute of text directly, but rather by the binding to font possibly modified by the
coercion quoted expression. A font coercion is useful when one wishes to alter the font of
some text after the pour - say because one wishes the first two lines of a paragraph to be
larger than the rest. This coercion of values during a pour is discussed in section 5.5.2.
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4.7.2.3 Tabs

We provide a facility which supports typewriter-like “tabbing.” Tabular material will
normally use the table facility and not tabbing.

Record tag: TABSTOPS

TABSTOP % e« { TAGS
attributes « {
type « ONEOF { left centered right aligned }
alignedOn &« Number T — a character —
position & Number 1 }

An array of tabstops may be supplied for a paragraph. Tab nodes in the text then can
move text—positioning to a tabstop.

Tag: TABS

TAB %« { TAG$
attributese—{ } }

A tab node will position text to the next tabstop, where “next” means next-by—count, not
next-by-position. [The "next” tab stop may be on the next line. Editors that wish to
disallow this should ensure that there are enough tabstops set.]

4.7.3 Fill

Often one wishes to terminate the "filling” of the currently-being-filled layout entity and
continue with the “next” one. E.g. force a new line or a new page. The fill node aids in
implementing this function.

Tag: FILLS

FILL% « { TAG$
attributes « {
container & Atom 1 }

}

The fill tag simply augments the node it is placed on, and provides the relevant binding
container. It is up to the molds of a pour operation to be arranged to provide the
functionality of terminating the “filling” of the layout entity; this is further discussed in
section five.
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4.7.4 Value replication

Sometimes the desired effect of a “pour” is not simply to put each item of content into a
place in a layout. Often one wishes to replicate certain values. A page heading, for
example, will appear in each page node as the result of a pour, yet there is only one
instance of the page heading in the script.

We address this need via the vacuum node.

Tag: VACUUMS$

VACUUM %« { TAGS
attributes « { sources « { Atom 1 } }
requiredTags « { MOLD }
3

When a vacuum node is encountered in a template, the pour operation is at some point,
matching the pour label set, in the content. The content tree is scanned upward,
examining the direct ancestors of the vacuum node and their immediate descendants, for
the first instance of a vacuum source node whose binding to sources is the same as in the
vacuum node. That is, a match with (parent) i for the smallest i, then the smallest j. The
content of this node is used as the source of the pour into the vacuum node in the template.
The pour may alter bindings and content in the target vacuum node, as normal. If no
matching vacuum source node is found, the vacuum node is treated just like an ordinary
mold that lacks matching liquid.

Tag: VACUUMSOURCE$S

VACUUMSOURCE %« { TAG$
attributes « { sources «{ Atom1 } }

}

4.7.5 Anchors

It is often convenient to synchronize streams of content. Footnotes and illustrations
should be near their references. We achieve this synchrony in layout via “together” nodes.

Content Tag: TOGETHERS

TOGETHER %« { TAGS$
attributes & {
groupings « { GROUPING%* } }
contentType « Node

}
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Record Tag. GROUPINGS

GROUPING %« { TAGS
attributes « {
penalty &« Number
levelLabel « Atom | NIL — nil = 'immediate ancestor’ —

contentType « Node T

}

The content nodes of the together node should be layed out “close” to one another. For
each possible pair of nodes (if the together node contains m nodes, there are m*(m-1)/2
pairs), a layout incurs a penalty which is the sum of the penalty in each grouping times
the logical “distance” between the layout placements. The "distance” is computed as
follows:

If levelLabel = NIL: In the solid layout, traverse the tree upward from one node until
encountering a node with the levelLabel, and mark that node. Do the same for the
other node in a pair. If either node of a pair does not have an ancestor with the
levelLabel, then the "distance” is 0. Else if the two ancestor nodes are the same,
then the “distance” is 0. Otherwise, traverse the solid layout tree in depth-first
order, and count the noumber of levelLabelled nodes you encounter between the two
marked nodes; the “distance” is encounters - 1.

If levelLabel =NIL: In the solid layout, find the immediate parent nodes of the pair

of nodes. If the two parents are the same node, then the "distance” is 0. Otherwise,
the "distance” is 1.

4.7.6 Penalty node

It is convenient to be able to arbitrarily “penalize” a particular layout. This allows a bias
to be given to the choices within a regular expresion node.

Content Tag: PENALTY$

PENALTY %« { TAGS
attributes « { penalty « Number 1 }
contentType « { NIL }

}

4.8 Tables

The function of a table node is to collect together the text, numbers, and formatting
information that make up a simple document table.

We take the view that the table itself is a layout problem, with content-information to be
poured ~ the table elements - and a “mold” - regular expressions that define the format of
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the table. To ensure that the table node is understandable by the simple editor - to avoid
the table being an "open ended” construct — we define it with a reducesTo.

This definition of the Interscript table is the one originally developed for the draft
standard. It is ambitious and standardizes multi-page, split-column, feature-rich
tables. It may be appropriate to, instead, initially standardize a simple, indivisible,
rectangular-lattice table. The latter would' be easier for editors to “understand”
and, lacking the interaction with layout that multi-page tables posess, would
simplify pouring.

Tag: TABLES

TABLE %« { TAGS

attributes « { .
splittable <~ Boolean 1 —-can it be split across pages
heading « — tableheading — Node 1
headingSubsequent « — if split to 2nd page — Node 1
layoutOfRow ¢« Node 1 }

contentType « { TABLEROW }

reducesTo « — see appendix T— }

A table node defines a table by defining “rows.” The major repeating dimension of a table
may repeat vertically or horizontally, we call the repeating major structure the “row” in
either case. The table's container's layout coordinate system and layoutProceeds
determines whether the “rows” repeat horizontally or vertically.

A table may have column headings. these are supplied separately from the rows, via a
binding.

A table may be considered to have row headings; these are the initial column entries in
each row. [The standard considers column headings to be “special” but does not consider
row headings to be special.] '

Since the table node is a pour node, it has a binding to re which gives the template which
controls the layout of the table. The table carries its layout information and its table
entries separately, and a pour is necessary to combine them.

Various information may be maintained, within a table, about the columns. This may
include restrictions on table elements in the column, formatting information, and possibly
information about split columns. All of this information is supplied by the binding to
layoutOfRow.

The template in the layoutOfRow binding describes the layout of each row.

Row layout is made complicated by the presence of “split columns.” Detail of “split
columns” could perhaps be derived from the templates; this would be difficult in practice.
To simplify “split column” desription, we standardize define that all “splitting” of logical
columns is derived from the nesting of the COLUMNSPLIT nodes within the layoutOfRow
node; this is the sole function of COLUMNSPLIT nodes.
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Tag: COLUMNSPLITS

COLUMNSPLIT % e { TAGS
attributes « { }

h

It is important to note that the column-widths are fixed by the layout information
contained within the node bound to layoutOfRow (and probably reflected in the
tableheadings). Altering the column widths is an editing operation. A table node within a
script has specified column widths; there is no "automatic” width adjustment provided by
the script; an editor, of course, is free to edit the widths as the user edits the table
elements.

An ordinary matrix-style (m by n) table has no split columns. Its layoutOfRow template
will contain no COLUMNSPLIT nodes.

An ordinary matrix-style (m by n) table will contain m TABLEROW nodes. Each TABLEROW
node will contain n TABLEELEMENT nodes.

Tag: TABLEROWS

TABLEROW% « { TAGS
attributes &« { }
contentType « { Node }
reducesTo &« — see Appendix T — }

A tablerow node defines a (logical) row of the table. Tablerow nodes exist (only) as content
within a table node. There is one tablerow node of content for each logical row of the table
instance.

Tag: TABLEENTRYS

TABLEENTRY% « { TAG$
attributes « { matchNumber « integer 1 }

3

Tableentry nodes are one-to—one with the “leaf node” entries in the table. In the case of a
simple table, there will be (number of columns) tableentry nodes within each tablerow
node and thus (number of rows)*(number of columns) tableentry nodes in the entire table
node. The actual content of the tableentry is the content of the table entry, e.g. the
tableentry node may be a text node.

If the table is not an ordinary matrix-style one, e.g. it contains "split columns” with
repeating groups, then the number of tableentry nodes per row can vary, and the actual
layout of the rows can vary. There is still only one binding to layoutOfRow: the
variability is is accomodated by having the row template describe a pour operation, with
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regular-expression choices and alternations allowing for splits and repeats. It then
becomes necessary to arrange for an appropriate match-up between tableentry nodes in
the content and in the template. We control this via the matchNumber bindings of the
tableentry nodes by stating: when choices and repetitions in the template allow for more
than one logical row structure, the bindings to matchNumber in the template must be
sufficient to resolve all ambiguity in the regular-expression. In particular:

Within an alternation, all bindings to matchNumber must be different and none
may be the atom MATCH. :

In the cae of a repetition, the bindings to matchNumber in the tableentry before the
repetition (if any), the repeated tableentry, and the tableentry after the repetltlon
(if any) must be different and none may be the atom MATCH.

Also, none of the bindings to matchNumber in the content may be to MATCH.

4.9 Inked boxes

We allow a box node to be “filled” with a stralghtforward ‘ink.” This allows for the simple
definition of black lines within a layout.

Tag: INKED$

INKED %« { TAGS
attributes « { color &~ ONEOF { Black ...} }
requiredTags « { BOX }

4.10 Interpress graphics

We allow arbitrary images to be placed inside box nodes via an interpress node. This node
contains a fragment of an Interpress master.

The coordinate system is that of the interior of the containing box: the box's origin and
coordinate rotation are used, and the length transformation is the unit (micas to micas)
one.

The Interpress content of the node is “executed” in the Interpress sense to obtain an image.
This “execution” is done exactly as an Interpress composed operator is executed.
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Tag: INTERPRESSS

INTERPRESS %« { TAGS
attributes « {
version « String 1
— exactly the Interpress heading character sequence — }
requiredTags « { }
parentTags « { BOX }
contentType « Integer 1 — probably an encoded sequence —

¥

4.11 Non-Interscript editing

4.12 Styles

We enable a non-Interscript conforming editor to “edit” a script by allowing it to leave
"warnings” in nodes whose invariants may not hold. This is particularly useful when a
user wishes to edit a node that he understands but the workstation software does not; the
workstation could allow him to directly edit Interscript constructs, much as a GML or
Scribe user directly edits the underlying data-representation.

Tag: CAUTIONS

CAUTION %« { TAGS$
}

The presence of this tag indicates that possibly non-Interscript conforming edits have
been made to this node. Editors should exercise care. If an editor understands a node, it
can, if it desires, acertain that its invariant is satisified and then remove the warning.

Many editors use “styles” in their user interface. Styles enable the user to associate a
named property, e.g. foreign word, with text. The style then can cause the text to be
presented in italic. This indirection has two advantages: it lets one have different
properties (e.g. foreign word and emphasis) that render the same, yet can be searched for
distinetly, and it allows the presentation of a document to be altered by substituting a new
set of styles.

The concept of styles exists within the Interscript language via the “%” indirection
operator. What the stylesheet standard document construct defines is the user-sensible
styles of a document.

The “stylesheet” consists of the bindings to the environment stylesheet. Each element of
that environment is itself an environment which defines a single style.
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Each style, therefore, has an element name of the form stylesheet.name, and that is how
the style is referenced within the script.

A style-environment has three elements:

The useridentification of the style: a text string which is the user's name for the
style. The element name in the stylesheet cannot act as the user-sensible name, since it is restricted to
the ISO 646 character set.

The description of the style: a text string can explain the style to the user. This has
no effect on the script, but is useful for editors.

The expansion of the style: a node-value; its content is the expansion of the style.
Thus the invokation of a style-sheet style within the seript will be literally of the
form stylesheet.name.expansion|.
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5.1 Introduction

The preceeding section defined several standard node types that encourage editors to
formulate seripts in their terms, in order to maximize interchange.

A main thread within those nodes types was the concept of layout — the arranging of
document content on pages. This section discusses layout in detail.

5.2 Overview

Layout uses the box node, defined in the previous section, as its “workhorse.” All
geometric layout is defined in terms of box nodes and their placement.

5.3 Boxes and measure arithmetic

The function of box nodes is to describe document layout by (conceptually) partitioning the
document presentation medium into rectangular regions.

Recall from section four that box nodes suggeét a desired layout via various measures
which suggest box dimensions and box placement-within-parent via a triple [undersize,
nominal, oversize] of numbers. [A measure may also be the atom SYNTHESIZED, which is a
stand-in for a measure.]

In a final layout, a box has a position and dimensions on the rendering medium. The final
position and size of the box may be a.function, not only of its measures, but of the measures
of other boxes that must be laid out with it.

5.4 Layout with boxes: “Solid” layout

A script may arrange boxes in pages to achieve layout, and place each piece of content
(text, graphics, image ...) into the appropriate box. This strictly-nested layout method is
termed “solid” layout. Solid layout is straightforward to describe and is suitable for rigid
document description: it might be used for single-page documents such as posters, or for
tightly-controlled layouts, such as a display of illustrations.




Layout

For documents where the text “flows” from page to page, solid layout is inappropriate, and
a layout model where continuous text is “poured” into successive pages is required.
Subsection 5.5 describes the additional features of "fluid” layout.

Note that an initial step in rendering a “flowing” document is to produce, from the “fluid”
document, a “solid” document which contains the same content; this “solid” document can
then be rendered.

5.4.1 Solid page layout

Given a page-tree of boxes to be laid out, we define a page layout as a specific arrangement
of boxes on the rendering medium.

While a box in the script has various measures that describe its layout relative to its
containing box, a box in a page layout has fewer interesting metrics. It has exactly three
metrics in each layout direction:

a container-relative position.

a lowpart and a highpart. The sum of these defines the box’s width or height. The
lowpart defines the origin of the box’s interior coordinates.

Formally, laying out a page-tree is defined as associating a set of numbers [xContained,
yContained, xLowPart, xHighPart, yLowPart, yHighPart] with each box of the page-tree.

5.4.2 Coordinate system

The coordinate system that is in force within a layed out box is defined as follows [this
definition is quite analogous to Interpress]:

The initial medium coordinate system has coordinates defined by

The two coordinate axes are named x and y. The rectangular image includes the
origin and lies in the first quadrant. The units of measurement are micas, where a
mica equals 10-5 meter. The coordinate system is chosen so that the y axis points
“up” in the normal viewing orientation.

Within the page box, the coordinates are defined by a transformation which takes a point
in the box’s internal coordinates into the medium coordinates via the matrix
multiplication:

[ Xnew, Ynew> 11 = [ X014, Yold, 11 M

This transformation matrix M is:

cos(a) sin(a) 0
-sin(a) cos(a) 0
X y 1

where
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a is the page box's coordinateRotation, with Occw =0° 90ccw =90° 180ccw =180°
and 270ccw =270° and

x = pageBox.xSpan.lowPart.nominal and
y = pageBox.ySpan.lowPart.nominal.
Within the box on a page, the coordinates are defined by a transformation which takes a

point in the box’s internal coordinates into the coordinates of the containing box. This
transformation matrix is:

cos(a) sin(a) 0
-sin(a) cos(a) 0
X y 1

where

a is the box’s coordinateRotation, with Ocew =0° 90cew =90° 180ccw=180° and
270cew =270° and

x = box.xSpan.fromLowContainer.nominal + box.xSpan.lowPart.nominal and

y = box.ySpan.fromLowContainer.nominal box.ySpan.lowPart.nominal.

5.4.3 Recursive page layout

If none of the boxes on a page have SYNTHESIZED measures, then the page layout can be
performed top-down. Furthermore, the role of layoutProceeds insures that the two
directions on the page can be laid out independently.

If some of the boxes on a page do have SYNTHESIZED measures, then these measures are
first converted to ordinary measures. This can be done bottom-up.

The algorithms, below, define how top-down page layout is performed.

5.4.4 Measure synthesis

If a lowPartExtent or a highPartExtent of a box is bound to SYNTHESIZED, we need to know
how to convert the atom to a numeric meaure. The algorithms below, define how
SYNTHESIZED measures are converted to numeric measures.

In the expositions below, we define a BoxNode as a logical “nesting” of boxes. A BoxNode
is an outermost box (with its box relevant bindings, content, etc.), and a set of contained
boxes. BoxNodes are passed by value in the procedures defined below; this is probably not
appropriate for an actual implementation, but aids the exposition. Within an outer box B,
there are B.kids contained boxes, named By for 0 =<k < B.kids. It is sometimes useful to
consider the contained boxes to be numbered “in reverse”; we facilitate this by defining
Bioboolean t0 mean By if boolean is TRUE and B(p kigs.1-k) if boolean is FALSE.

Ut
Ut
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Given a BoxNode B (a tree of box-nodes, rooted at B), a call

to

MakeMeasuresNumericXandY(B) will return a BoxNode, similar to the first, but with all

its SYNTHESIZED measures replaced by the correct numeric ones.

procedure MakeMeasuresNumericXandY (b: BoxNode) returns (b’ BoxNode),
begin
b e MakeMeasuresNumericXorY (b, x);
b’ e MakeMeasuresNumericXorY (b, y);
end

procedure MakeMeasuresNumericXorY (B: BoxNode, xy: SpanName)
returns (B’: BoxNode);
begin

how: LayoutMethod « if xy = x then B.xLayout.direction else B.yLayout.direction;

glue: GlueFunction « if xy = x then B.xLayout.siblingAdjacency
else B.yLayout.siblingAdjacency;
b: array [0..B.kids] of Box;

-- copy descendent nodes to local aray, reversing if layout direction is “down” --

forjin [0..B.kids) do bj « Bj>how#down;

-- use descendent nodes’ measures to calculate this node’s measures --
for am: Measure in MeasureName do
if B.am = SYNTHESIZED then -- leave alone if already numeric --

begin

if how = fixed then error

if LAYOUTINSIDES not in Bj.tags then errot -- synthesized but no internal layout -

--am =synth, how#fixed, am is lowPartExtent or highPartExtent --
if how = onOrigins then
begin
bm: array [0..B kids) of Measure;
for k in [0..B.kids) do
bmy « if am =l then by.xy.| + be.xy.cl else by.xy.h + by.xy.ch;
bj.am.nominal € MAX ¢ <n<8 kids (bmi.nominal)
bj.am.over «- MAX ¢ <n <8 kids (Dm;j.over)
bj.am.under « MAX g < n<B kids (bm;.under)
end
else -- how=up or how =down --
begin
bs: array [0..B.kids) of Span;
bm: array [0..B.kids) of Measure;
for k in [0..B.kids) do bsy « by .xy;
bm & Decompose (bs, glue);
if am = lowPartExtent then bj.am «-bmg else bj.am & Sum (bm ) - bmg;
end

-- copy descendent nodes back --

for jin [0..B.kids) dO B,2now#down € Dj;
B« B;

end
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procedure Decompose
(b: array [0..n) of Span,
function: procedure(Span,Span) returns (Measure) )
returns (a: array [0..3*n) of Measure)
begin
ag « byg.cl;
foriin[0..n)do a;i, 1)« bil; agi. 2y « bi.h; agiy « function(byi.1), b)) end;
agsi+3) € bn.ch;
end

5.4.5 Fixing a box’s dimensions and locations

When the SYNTHESIZED measures have been replaced with numeric measures, a page can
be layed out by fixing the box measures: (logically) replacing the box measure triples with
single values.

If a particular box has fixed dimensions, the boxes contained directly within it can be fixed
with the algorithms to be presented below. Since the page-box has fixed dimensions, a
page’s box-tree can be layed out from the top down.

The FixMeasuresXandY procedure, below, performs this operation. It fixes each box by
setting the correct value into the box’s lowPart.e, highPart.e, and containeeLow.e in both x
andy.

procedure FixMeasuresXandY (b: BoxNode) returns (b’": BoxNode),
begin
b « FixmeasuresXorY (b, x);
b’ e FixmeasuresXorY (b, y);
end

procedure FixMeasuresXorY (B: BoxNode, xy: SpanName)
returns (B’: BoxNode),;
begin
$: Span « B.xy;
how: LayoutMethod « if xy = x then B.xLayout.direction else B.yLayout.direction;
glue: GlueFunction « if xy = x then B.xLayout.siblingAdjacency
else B.yLayout.siblingAdjacency;

forjin [0..B.kids) do -- get measures of all descendents .. recursively --
b; « MakeMeasuresNumericXorY [bj, xyl;

if how = fixed then
begin -- each child box is layed out as though it’s the only one --
forjin [0..B.kids) do
begin
spaceAvailable: number «~ B.xy.l.e + B.xy.h.e;
b, b': array [0..1) of Span;
bg « B;;
b’ « DecomposeSetGlueRecompose [b, glue, spaceAvailable];
Bj &« b'o;
end
end

Jt
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else if how = onQOrigins then
begin
spaceAvailable: number « B.xy.l.e - Bi.xy.l.e;

two:
two’

array [0..1] of Measure « [B;.xy.cl, B.xy.I];

- array [0..1] of Span « Recompose [ SetGlue [two, spaceAvailable] |;

Bi.xy.cl &~ two'g; B.xy.l. «two'y;
FixMeasuresXorY [B,, xy];

end

else if how = up or how = down then
begin
spaceAvailable: number «B.xy.l.e + B.xy.h.e;

b,b":

array [0..B kids) of Span;

b’ « DecomposeSetGlueRecompose [b, how.sibGlueF, spaceAvailable];
for k in [0..B.kids) dO By >how #down €< D'k;

end

end

procedure DecomposeSetGlueRecompose
(b: array [0..n) of Span,
function: procedure(Span,Span) returns (Measure),
spaceAvailable: number ) returns (b": array [0..n) of Span)

begin

a: array [0..3*n) of Measure « Decompose [b, function];
d: array [0..3*n) of Dim « SetGlue [a, spaceAvailable];
b’ & Recompose {d];

end

procedure Decompose
(b: array [0..n) of Span,
function: procedure(Span,Span) returns (Measure),
spaceAvailable: number ) returns (a: array [0..3*n) of Measure)
begin
ag « bg.cl;
foriin[0..n)do ai+1) & bi.l; agi+2) & bi.h; ag,y « function(b(i-1), by end;
agzi+3) < bn.ch;
end '

procedure SetGlue

(b: array [0..n) of Measure,

spaceAvailable: number ) returns (d: array [0..3*n) of Number)
begin
m: Measure « Sumib};
delta: Number «s-m.e;
g: Number « if delta>0 then delta/(m.o-m.e) else delta/(m.e-m.u);
foriin [0..n) do d; «b;.e + g*(if g>0 then (b;.0-b;.e) else (b;.e-b;.u))
-- s now equals Sum{d] --
end

procedure Recompose
(d: array [0..3n) of Distance ) returns (b": array {0..n) of Span)
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begin

s: Number « Sumld];

foriin[0..n)do

b'.cl.e «ifi=0thendgelseb’(.1).cl + dgi.2) + d(zi-1) + dzipi

b'.l.cl.e e~ dzi4 1)

b'i.h.cl.e «di. 2y

-- note that ch, sl, and sh are meaningless in the recomposed spans --
-- note also that o and e are meaningless in fixed measures --

end

5.5 Layout with templates: “Pouring”

When a solid layout is inappropriate, we separate the description of the layout and the
content. Instead of placing text (and other content) within the layout boxes that
geometrically contain it on the printed page, we split it out into a separate galley.

Then rendering must include some function which recombines the content and layout, so
it can put the text in the right places on the page. We call non-solid layout fluid, and the
act of recombining layout and galley pouring.

Layout is strongly affected by content, and we cannot, in general, produce a correct layout
structure without knowing where the content falls. The font-size of the running text, for
example, affects how many line-boxes fit into a column. So the layout supplied with the
galley cannot be a precise one, but rather must supply a template from which the correct
layout of a particular content can be constructed.

Pouring is defined to be an editing operation. It is an operation which accepts one
document (a script containing layout templates and a galley separate from the layout) and
outputs a different document -- a solid-layout document which has no regular-expression
nodes and with the former galley arranged within the layout boxes.

An editor may choose to make the document that is the result of pouring a transient one,
by using it to render the document and then discarding it. Or an editor may make the
solid-layout document available to its user, perhaps by emitting the script that
corresponds to the “solid” document.

5.5.1 Pour node

A pour operation is performed under the control of, and within the scope of, a pour node.
The pour node defines the template that controls the target layout. The pour node’s
content is the galley nodes. The pour node controls the pour by defining the set of relevant
labels that will be used to match up nodes in the galley with nodes in the template.

5.5.2 Pouring streams

In order to perform a “pour,” the editor must be able to match up layout and galley.
Conceptually, the galley consists of a set of streams that will be poured into a set of
containers. Streams and containers are matched via labels.
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A pour operation involves a template T, a galley G, and a set of relevant labels L. Both the
template and the galley are nodes.

In order to talk about the process of matching nodes from the template with nodes from the
galley, it is convenient to number the nodes. We arrange to number the interesting nodes
of the template and the galley in depth-first order, using the function Number (x: Node, p:
Predicate) where p is a predicate on the node. The result of Number (x, p) is a tree shaped
like x, [except that descendants of nodes satisfying p have been discarded] but with each
node of that tree replaced with a triple [node, number, last]. The node value of the triple is
exactly the original node; the number field indexes the nodes satisfying the predicate in
depth-first order; the last field is just for use within the Number function procedure. A
node not satisfying the predicate is numbered 0; when a node satisfies the predicate, its
substructure is not numbered.

procedure Number (x: Node, p: Predicate, i: number) returns (nx: NumberTripie),
begin
if p(x) then nx e [node: x, number: i +1,last: i+ 1]
else if x.kids = 0 then nx e~ [node: x, number: 0, last. i]
else
begin
nx « [node: nt, number: 0, last: i];
for kin [0..x.kids) do
begin
nx.nodey « Number (nx.nodey, p, nx.last);
nx.last «- nx.nodey.last;
end
end
end

If nt is a numbered tree, we write nt;, for the node field of the node with number =k.

The set of relevant labels L determines the interesting nodes: those containing at least one
label from L. Each subset LS of L determines a sequence or stream of interesting nodes in
the template and the galley: those containing all the labels in LS and no labels in L-LS.
Thus if L={red, green}, the streams are determined by {red}, {green}, and {red, green}.
When we are considering a set of relevant labels L, we use symbols to denote a template
and a galley which consist of the interesting nodes:

t° = Number (t, X x IN x.labels N L = A MOLDS € x.tags, 0)
g® = Number (t,\x INx.labels "L 2D A, 0)

We also define the notion of the predecessor/successor relationship of nodes within a
stream. A node iis the predecessor of a node j in some stream if and only if they are both in
the stream, i preceeds j, and there is no node & which is in the stream and between them:

i—yj =i<jA(x;labelsNL=xjlabelsNLyvi=0) A
(xg.labelsN I=x;.lablesNL = k<iv/ k>})

We can now define a relation between node numbers which pairs interesting nodes in a
tamplate and a galley which are in the same position in the same stream. Two such nodes
correspond to one another. We write "e” for correspond:
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A node g in a galley satisfies the corresponding node ¢ in a template if one is the Atom
MATCH, or both are nodes and g has every tag that ¢ has, and for each attribute a of ¢, g.a
satisfies t.a. When g satisfies ¢, we can define molded by ¢ to be g, with every attribute
replaced by the attribute of ¢ which it satisfies.

A pour fails unless each stream from the template is the same length as the corresponding
stream from the galley, and each interesting node of the galley satisfies the corresponding
node of the template. If the pour does not fail, we say that the template accepts the galley.

tL'g = t°.laste>; og° last A ie ,j=g° satisfies t
¢ =8

If a pour does not fail, then we can define the result of the pour. It is the template with
each interesting node ¢ replaced by the corresponding node of the galley g molded by t. We
write “t£Lg” for the result of the pour.

G molded by t is defined to be g, modified as follows:
every MATCH attribute is replaced by the attribute of t which it satisfies

the quoted expression bound to coerce is executed in the environment of the result
of the pour.

Often it is useful to have a less restrictive version of pouring. We say that a template ¢
accepts a prefix of a galley g if there is some way of extending it to accept the whole galley,
i.e. some other template u such that fu accepts g. In this case the result of the pour is just
the part of tu g that comes from ¢. We use the “A” character to indicate such partial
pours:

tA£’'g = Ju:tul’g
t£g=x€3Ju,y: [tud’g N\ tulg=xyl definedonly if t£’g

We also define the portion of a galley that remains after a prefix of it has been poured. Ifa
prefix of the galley g is poured into the template ¢, then the remainder is g-t defined by:

g-t = Purge (g°,t°) defined only ift£’g

procedure Purge (g: NumberTree, t: NumberTree) returns (g': Node),
begin
if g.isLeafthen g’ «- g.node
elseif g.number= 0/ 3i<t’last & gg°.number THEN NIL then g” «NIL

else begin g’ « g.node; for kin[0..g’".kids) do g’x < Purge ((g’s)°, t); end
end

5.5.3 Best pours and good pours

Given a penalty function P and a set S of values, we can define the subset of best values as
the subset whose penalty is as good as possible:

Sbest = {5€8: (Vs’€8) P(s") < P(s)}
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This is most interesting when used for the results of pouring a galley into the (templates
resulting from) a regular expression.

We would like to say that, in performing a pour, the editor must choose a best template in
the above sense.

Stating that the editor must pick a template which minimizes total penalty (which is
about what we did in section 4.4.2.4 for solid layout) is unreasonable, as that potentially
involves searching a huge space for a global minimum, and there is no clear strategy.

We bound the editor’s search space by defining the valid local minimum. An editor may
choose to search further for a better layout, but is deemed successful with any layout that
is a member of the regular expression choice-space and has a penalty that is a valid local
minimum. Such a pour will be called a good one.

5.5.4 Local minima

When performing a trial “pour” into a choice or repetition regular expression, an editor
may compute the penalty associated with the first alternate, then the second, etc.
(considering the repetition as an infinite alternation of the form a | aa | aaa | aaaa ...).

If the best alternative has a penalty less than satisfactionThreshold then the regular
expression succeeds at this level.

Finding the best alternative may involve examining an infinite number of alternatives.
So we provide a search-bounding rule: an editor may choose the best from among the
subset it has examined providing that has examined a compact subset from the left and:

It has examined aa compact subset from the left and
it has found an alternative with penalty less than satisfactionThreshold and

either a) the n alternatives at the right of the examined subset are no better than
the current best alternative and n > satisfactionForwardSearch or b) some
alternative to the right of the current best alternative is at least
satisfactionUpwardSearch worse in penalty.

The above rule applies at a particular regular expression. Having made a choice at one
level, that choice must be propagated upward in the regular expression tree, and a higher
regular expression may prove unsatisfiable owing to the choice made here.

5.5.5 Fences

Another aid in performing a pour is provided by the fence. A fence is a fence-node
appearing in a template. It does not participate in the pour directly (it is not a mold) but it
serves to split the template into parts. If we indicate a fence by ||, then we can consider a
template ¢ which is broken by one or more fences:

t=tiftell... [ ta
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Given the presence of the fences, we redefine an good pour into ¢ to include the case where
the pour into each part ¢, is good and the galley is used up by the last pour.

Ift =t talits... [ tn,

and t; £'g, and to £ '(g-t1) and t3.£*(g-t1-t9) ... and t, £°(g-t;-tg...-tn.1)
and those pours are good,

then the pour t£’g is good

and the result is exactly the concatenation of the pours

t1 £g toL(g-ty) t3L(g-t1-to) ... ta L(g-ty-ta...-tn.1).

5.5.6 Multi-level pours

Frequently, one our operation will cascade into another. Characters will be poured into
lines, for example, and then the lines poured into columns.

This cannot be treated purely as one complete pour followed by another, since the two
pours influence one another. In the above example, the lengths of the lines are not fixed
until the second pour, and yet the line lengths obviously affect how many characters go in
each line. '

Thus the cascaded pours must be treated as one logical operation.

Given that the first pour results in a number of best/good results, we cannot, at that time,
decide on one and continue. Rather we must, logically, use all the initial pours (where the
template accepts the galley) as input to the second pour, and only choose after all pours
have been completed.

5.5.7 Pour “leftovers”

Multi-level pours introduce another phenomenon: the “leftover” which is the labelled
galley node which does not participate in the pour because its lable(s) is not relevent to the
pour. In the case of a single pour, these nodes were effectively discarded, since they did not
get into a template and the template was the result of the pour.

But in th multi-level pour case, we must consider the case where a node in the galley is
labelled with a label which will be relevent to the second pour. We do not want to lose this
node during the first pour. So we state:

Nodes which belong to no stream of apour are appended, after the pour, to the result
of the pour.

Note that this rule puts the irrelevent nodes outside the filled template. Thus, for
example, a node which is not poured into a page during the final pour of a document will
be effectively dropped, since it will not be on any page-image.
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5.6 Figures

" Higher sibling distance. If there was no sibling above
 the box (or if layoutProceeds = SINGULAR), then
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be the higher container distance.
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: way.
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Figure 5-1: one-dimensional box metrics
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nd
highPartExtent
#2
.......... Origin
#3 I lowPartExtent Box A
«3
#5 I highPartExtent
........... Origin
#6
IowPartExtent Box B
.3

The seven distances are related to the contained boxs’ measures as follows:
#1 relates to BoxA.ySpan.highContainer.

#2 relates to BoxA.ySpan.highPartExtent .

#3 relates to BoxA.ySpan.lowPartExtent .

#4 relates to BoxA.ySapn.lowSibling and BoxB.ySpan.highSibling,
with the actual measure used in the penalty calculation being derived by the
method indicated by ContainingBox.ySpan.siblingAddition.

#5 relates to BoxB.ySpan.highPartExtent .
#6 relates to BoxB.ySpan.lowPartExtent .
#7 relates to BoxB.ySpan.lowContainer.

Figure5-2: A layoutProceeds # SINGULAR span
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#2 highPartExtent

#5
Origin

#3
Box A

> ¢
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> ¢

highPartExtent #6

#4

p ¢

Origin

#7
Box B

v
V' N
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The eight distances are related to the contained boxs’ measures as follows:

#1 relates to BoxA.ySpan.highContainer.

#2 relates to BoxA.ySpan.highPartExtent.

#3 relates to BoxA .ySpan.lowPartExtent.

#4 relates to from BoxA.ySpan.lowContainer.

#5 - #8 are similar but use Box B's measures.

Figure5-3: A layoutProceeds = SINGULAR span




Appendix B
Example of Script Evaluation

This appendix contains a simple example of a script as it is
(a) written in the publication encoding,
(b) represented in terms of the abstract grammar, and
(c) represented in terms of value items.

In the process of going from (a) to (b) the script is parsed; in going from (b) to (c) the parse
tree is evaluated using the semantics defined in section 2.3.

The source script

{aTag$

relVi «0 --relV1 is a relevant attribute of an X node--

ve—relVIT +5  --visnotarelevant attribute of an X node--

q% e -- bind a quoted expression to q, which is not a relevant attribute--
‘{"FalseString" "TrueString"}!(reflV1 1 LTV 1) -- conditional expression--

“content" -- simple string as content--

q% -- evaluate q (remembering that the result came from q)--

}

For purposes of this example, assume that the tag X is defined as follows:
aTag%«{TAGS$
attributes « {
reiV1% ¢« Number 1
relV2%« {String 1 | defaulte"reiV2 default value"}}
contentType « String T
reducesTo «NiL}

Abstract version of the source script

script(
node( items(items(items(items(items(items{
item( tag(name(id(X)))) --aTag$--
item( binding(name(id(re/V1)) term(primary(number(0))))) --relV1l «0--
item( binding( v erelVl P +5-- :
name(id(v))
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term(
term(primary(invocation(name(id(re/V1)))))
op{ADD)
primary( number(1))
)
)
item(sBinding{  --q%«--
name(id(q))
sRhs(quoted(term(
term(primary(
node(items(items( -- ‘{"FalseString" "TrueString"}/(relV1 { LT
vl)--
item(term(primary(literal(string("FalseString™)))))
item(term(primary(literal(string(" TrueString™)))))
)
)
op(SUBSCRIPT)

primary(term(
term(primary(invocation(name(id(re/V1)))))
op(LT)
primary(invocation{name(id(v))))
)]
»
)
item( term(primary(literal(string(“content")))))  -- "content"--
item( indirection(name(id(q)))) -- q%--
mN
)

Elaboration of abstract script's semantics

[m: node,
cVs: usT[
[m: tag, xid: aTag],
[m: bindStruc,
cV: [m: quotedTerm,

term(
term(primary(
node(items(items(
item(term(primary(literal(string("FalseString™)})))
item(term(primary(literal(string(" TrueString")))))
»
)
op(SUBSCRIPT)
primary(term(
term(primary(invocation(name(id(re/V1)))))
op(LT)
primary(invocation(name(id(v))))
))
).
xid: ql,

[m: string, ¢Str: "content”],
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[m: evalStruc,
[m:vOfqQ, -- note the carried-along environment--
[m: string, cStr: "TrueString"],
xEnv: ust[[m: bind, cV: [m: num,0}, xid: re/V1] [m: bind, ¢V: [m: num,5]
xid: v}]
1.
xName: usT{$q, NiL],
[m: bind, cV: [m: num, 0], xid: relv1], -- an explicit binding--
[m: bind, cV: [m: string, "relV2 default value"], xld: re/v2] --fromaTag’s
definition.--
] --end of cVsLisT
1 -- end of the node

’
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Appendix P
Paragraph% reducesTo

[ To save space in what follows, | abbreviate as follows:
{MEAsURES under «anominal «b overec } = > {MEASURES abc}
{meASURES under < anominal «<a over«a } = > {MEASURES @ } ]

PARAGRAPH% - { TAGS ....
reducesTo « { POURS -- nested paras are not in yet --
leftLineMargin « firstLineLeftMargin
rightLineMargin « rightMargin
topLineMeasure « { MEASURES prelead }
bottomLineMeasure « { MEASURES leading }
beginningPad « NoT lineJustification AND
(lineRaggedness = atBeginning or lineRaggedness = centered)
endingPad « NoT lineJustification AND
(lineRaggedness = atEnd OR lineRaggedness = centered)
firstLineBox « { LINES } ’
leftLineMargin « leftMargin
toplLineMeasure « { MEASURES leading }
middleLineBox « { LINES }
bottomLineMeasure « { MEASURES postlead }
beginningPad «- (lineRaggedness = atBeginning OR lineRaggedness = centered)
endingPad « (lineRaggedness = atEnd or lineRaggedness = centered)
lastLineBox ¢ { LINES }
topLineMeasure « { MEASURE$ prelead }
firstAndLastLineBox « { LINE$ }
template « { expresses « alternation
{ -~ single line -- firstAndLastLineBox }
{ -- two lines --
{ TOGETHERS penalty « widowControl * 1000 + orphanControl * 1000
firstLineBox lastLineBox } :
{ -- three lines is ugly .. use a select on widow and orphan control --
{ -- select: zero if neither or both, one if only widow, two if only orphan --
{ TOGETHERS penalty « widowControl * 1000
firstLineBox middlelineBox lastLineBox }
{ { ToGETHERS penalty « widowControl * 1000
firstLineBox lineBox } lastLineBox }
{ firstLineBox
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{ TOGETHERS penalty « orphanControl * 1000
lineBox lastLineBox } }
} ( ( widowControl#orphanControl) *
( widowControl + orphanControl + orphanControl))}
{ -- four or more lines --
{ { roGETHERS penalty « widowControl * 1000
firstLineBox middleLineBox }
{ TempPLATES expresses « repetition middleLineBox }
{ ToGeTHERS penalty « orphanControl * 1000
middleLineBox lastLineBox} }}}
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Line% reducesTo

LINE% « {TAGS ....
reducesTo « { -- first we illustrate the non-tab case .. as it is easier to understand --
stretchySpan « { span$
lowPartExtent « { MEASURES 0 0 99999 }
highPartExtent ¢ { MEASURES 0 0 99999 }
fromLowContainer « { MEASURES 0 0 99999 }
fromHighContainer « { MEASURES 0 0 99999 }
fromLowSibling « {MEASURES 0 0 99999 }
fromHighSibling « { MEASURES 0 0 99999 } }
stretchyBox « { BOx$ xSpan & stretchySpan ySpan « stretchySpan }
leftLineMeasure « { MEASURES leftLineMargin }
rightLineMeasure « { MEASURE$ rightLineMargin } --
{8Ox$ LABELS POURS labels « {uniqueBodyText}
xSpan « {spaN$
lowPartExtent « SYNTHESIZED
highPartExtent « SYNTHESIZED
fromLowContainer « { MEASURE$ leftLineMargin }
fromHighContainer « { MEASURE$ rightLineMargin } }
ySpan « { sPANS
lowPartExtent « belowBaseline highPartExtent « aboveBaseline
fromLowSibling « { MEASURES topLineMargin }
fromHighSibling « { MEASURE$ bottomLineMargin } }
coordinateRotation « 0
{NIL stretchyBox}(beginningPad) -- stretchy iff beginningPad -- }
template « { TEMPLATES expresses «- alternation
{ TEMPLATES expresses « repetition { MOLD$ PSEUDOCHARS } }
{ TEMPLATES expresses « sequence
{ TEMPLATES expresses « repetition { MOLD$ PSEUDOCHARS } }
{ MOLD$ PSEUDOCHARS FILL$ container «Line } } }
{ NiL stretchyBox } (endingPad ) } }




Line% reducesTo

LINE% & { TAGS ....
reducesTo « { -- this is the real case which handles tabs --
stretchyMeasure « { MEASURES under « 0 nominal « 0 over « 99999 }
stretchySpan « { span$
lowPartExtent « { MEASURES 0 0 99999 }
highPartExtent « { MEASURES 0 0 99999 }
fromLowContainer « { MEASURES 0 0 99999 }
fromHighContainer « { MEASURES 0 0 99999 }
fromLowSibling « { MEASURES 0 0 99999 }
fromHighSibling « { MEASURES 0 0 99999 } }
stretchyBox « { BOx$ xSpan « stretchySpan ySpan « stretchySpan }
leftLineMeasure « { MEASUREeS leftLineMargin }
" rightLineMeasure « { MEASURES rightLineMargin }
tabstopZeroBox « { Box$ POUR$ LABELS labels « {uniqueBodyText}
xSpan « { spanN$
lowPartExtent & SYNTHESIZED
highPartExtent e SYNTHESIZED
fromLowContainer « 0
fromHighContainer <0}
ySpan « { spaNS
lowPartExtent « belowBaseline highPartExtent « aboveBaseline }
{ NiIL stretchyBox } (beginningPad )
template « { TEMPLATES expresses « repetition
{ moLD$ PsEuDOCHARS } }
{ NIL stretchyBox } (endingPad ) } }
-- "tabstopBoxOne” needs to be repeated for each defined tabstop --
-- the recursion to accomplish this would overly complicate an already --
-- complicated draft example --
tabstopOne « tabstops!0
-- this draft handles left, centered, and right tabstops but not aligned tabstops --
tabstopOneBox « { Box$ POURS LABELS labels « {uniqueBodyText}
xSpan « {spaN$
lowPartExtent « { {MEASURES 0} {MEASURES 99999} }
( tabstopOne.type = centered OR tabstopOne.type = right)
highPartExtent « {
{MEeASURES 0 0 99999} {MEASURES 99999} {MEASURES 0} }
(tabstopOne.type -- left =0 centered =1 right =2 --)
fromLowContainer «
{ MeasURES tabstopOne.position - lowPartExtent.nominal } }
fromHighContainer « { {measuRe$ 0 0 99999} {MEASURES 0} }
( tabstopOne.type = left) -- if left, box must end at line end --
fromHighContainer «
{ MeAsURES tabstopOne.position - lowPartExtent.nominal } }
ySpan « { spANS
lowPartExtent « belowBaseline highPartExtent « aboveBaseline }
{ NIL stretchyBox } ( tabstopOne.type = centered or tabstopOne.type = right )
template « { TEMPLATES expresses « sequence
{moLD$ TABS }
{ TEmMPLATES expresses « repetition { MOLD$ PSEUDOCHARS } }
{ NniLstretchyBox } (tabstopOne.type = left OR tabstopOne.type = centered )
fillLineBox « { 8B0x$ POURS LABELS labels « {uniqueBodyText}
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xSpan « {sPaN$
lowPartExtent « 0
highPartExtent « 0
fromLowContainer « 0 -- area not interesting -- }
ySpan « { span$
lowPartExtent « 0 highPartExtent <0 }
template « { FILLS container « Line }
{ BOX$ INSIDELAYOUTS
-- this is the line box .. it contains a box for each tabstop's characters --
clips « TRUE
xLayout « {INSIDELAYOUTMETHODS direction « fixed}
xSpan « {span$
lowPartExtent « SYNTHESIZED
highPartExtent « SYNTHESIZED
fromLowContainer « leftLineMeasure
fromHighContainer « rightLineMeasure }
ySpan « { sPaN$
lowPartExtent « belowBaseline highPartExtent < aboveBaseline
fromLowSibling « topLineMeasure
fromHighSibling « bottomLineMeasure }
coordinateRotation « 0
tabstopZeroBox tabstopOneBox --etc -- fillLineBox
{ niLstretchyBox } ( endingPad ) }
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Glossary

Italics indicate words defined in this glossary.

abbreviation: an invecation used to shorten a
script, rather than to indicate structure

attribute: a rname, value) pair, identified by its
name, which is bound to a value

atom: a name denoting only itself. Occurrences of
the same atom in different parts of a script all denote
the same primitive value

base language: the part of the Interscript
language that is independent of the semantics of
particular tags

base semantics: the semantic rules that govern
how secripts in the base language are elaborated to
determine their contents and attributes

binding: the operation of associating a value with a
name: also the resulting association

contents: the vector of values denoted by a node of
a script

document: the internalization of a script in a
representation suitable for some editor

dominant structure: the tree structure of a
document corresponding to the node structure of its
seript

elaborate: iverbs To develop the semantics of a
script or a node of a script according to the Interscript
semantic rules. This is a left-to-right, depth-first
processing of the script

encoding: a particular representation of scripts.
The encoding presented in this standard is the
publication encoding for writing about Interscript.

environment: a vaiue consisting of a sequence of
attributes. An environment may be either free-
standing or nodal. A free-standing environment is a
structured value much like a record, with the
components being the attributes of the environment.
A nodal environment is associated with a node of a
script and represents the artributes bound in that
node.

expression: a syntactic form denoting a value

external environment: a standard environ-
ment in whose scope an entire script is elaborated.
This environment, is named X.

externalization: the process of converting from
a document to a script.

fidelity: the extent to which an externalization or
internalization preserves contents, form, and
structure

hierarchical name: a name containing at least
one period, whose prefix unambiguously denotes the
naming authority that assigned its meaning
identifier: a sequence of letters used to identify an
attribute

integer: a mathematical integer in a limited range

indirection: the appearance of a name%,
denoting the evaluation of name plus the necessity of
remembering that the result came from evaluating
name

internalization: the process of converting from a
script to a document; also the result of that process

Interseript: the name of this editable document
standard

invocation: the appearance of a name 1 (see also
indirection)

literal: a representation of a value of a primitive
type in a script

local binding: a binding of a value to a name,
causing the current environment to be updated with

‘the new attribute; any outer binding's scope will

resume at the end of the innermost containing node

name: a sequence of identifiers internally
separated by periods;e.g.,a.b.c

nested environment: the initial environment
of a node contained in another node

node: everything between a matched pair of {}sin a
script; this may represent a branch point in a
document's dominant structure, or it may simply be
a structured value acting as a vector, a record-like
value, or a mixture of the two.

number: the Interscript primitive type for
representing numeric values.

primitive type: Boolean, number. string, or
atom

primitive value: a literal or a node, vector, or
environment containing only primitive values



Tiuddary

property: each tag an a node labels 1t with a
propertv; the properties of a node determine how it
may be viewed and edited

publication encoaing: the encoding for
scripts used for examples to be read by people rather
than editing systems. ’

qualified name: see hierarchical name.

quoted expression: a value which is an
expression bracketed by single quotes ("'"); the
expression is evaluated by invoking the name (with or
without tndirection).

real: a floating point number

Scope: the region of the script in which invocations
of the attribute named in a binding yield its value; the
scope starts textually at the end of the binding, and
generally terminates at the end of the innermost
containing node

script: an Interscript program: the interchangeable
result of externaiizing a document

string: a lizeral which is a sequence of characters
bracketed by double quote marks. e.g., "This is a
string!"

style: a quoted expression to be invoked in a node to
modify the node's environment. labels. or contents

tag: an atom labelling a node using the syntax
atom$; the properties of a node correspond to the set
of tags labelling it

value: a primitive value. node. sr quoted expression

X: the standard outer environment for an entire
script
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