
This document is for internal Xerox use only.

Preliminary Mesa System Documentation
by Charles M. Geschke, Charles Irby, Richard K. Johnsson, Edwin H. Satterthwaite and
John D. Wick

December t 1976

This collection of documentation describes the initial release of the Mesa programming
system, Mesa library packages, and operational procedures for the Alto. It is intended as a
preJiminary effort, for use by experienced systems programmers operating in the Parc and
SOD/Palo Alto environment. Substantial evolution of both the system and this
documentation should be anticipated.

The Mesa, language, compiler and programming system are the product of a long-standing
research project at Parc, in which Chuck Geschke, Butler Lampson, Jim Mitchell, and Ed
Satterthwaite have been the main participants. The current compiler was written by
Geschke and Satterthwaite. They also wrote the debugger and support software needed to
run Mesa programs on the Alto, in collaboration with Jim Mitchell and with Charles Irby,
Richard Johnsson and John Wick of SOD/Palo Alto. Compiler testing has been done by
Jim Frandeen of SOD/Palo Alto.

© Copyright· 1976 by Xerox Corporation

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo AHo / California 94304

SYSTEM DEVELOPMENT DIVISION
3406 Hillview Avenue / Palo Alto / California 94304

This document is for internal Xerox use only.

PREFACE

December 1, 1976

(MESA-DOC)MESASYSTEM

You are reading the preliminary Mesa system documentation for the Alto. Both this
documentation and the objects it describes will be changing rather rapidly over the next year.
The Maxc directory <MESA-DOC) will contain up-to-date versions of the 'various sections of this
document as well as the complete document. Each section is stamped with its release date. It is
the reader's responsibility to check that his hardcopy version is as current as the time-stamp in
the corresponding file stored on <MESA-DOC). To the best of their ability, the authors will take
care to insure that the documentation and the system facilities which it documents are kept in
synchrony.

All suggestions as to the form, correctness, and understandability of this material should be
funneled through Chuck Geschke who will assume the responsibility for coordinating
modifications and extensions. All of us involved in the development of Mesa welcome feedback
and suggestions on both the language and the system environment. The earlier such suggestions
are offered in the development cycle the greater the likelihood of their having a significant
impact on the resulting system.

This documentation is divided into four parts. Section 1 contains the descriptions of various
system facilities (debugger, library packages, system functions, etc). Section 2 describes where to
find (on Maxc) the Mesa source and object code referred to in Section 1 as well as the
documentation. Section 3 is a a very brief how-to-do-it description for getting a full Mesa
system onto your Alto disk and some directions for running the Alto/Mesa compiler. Section 4
defines the format of Mesa "image" files and describes the procedure for producing them. Good
luck!

SECflON 1: SYSTEM FACILITIES

Introduction

This section is broken into several subsections each of which describes a more or less logically
disjoint subset of system facilities. Each component will be changing -- some more rapidly than
others. The standard Mesa environment, which you may establish on your Alto disk by
following the directions in Section 3, contains all of the facilities described in the initial release
of this document -- binder, debugger, display package, string package, streams package, streamio
package, segmentation (and file) machinery, and storage-allocation package. As the Mesa
environment evolves, more packages and expanded facilities will emerge. As these extensions
arrive, you wi)) be notified (by message) on Maxc.

Each subsection is time-stamped and a pointer to the corresponding .BRA VO (and .EARS) file on
(MESA-DOC) is printed at the beginning of the document. If you are uncertain about the
accuracy of your copy of the particular subsection, you should check the time-stamp in the
respective file on (MESA-DOC). The appropriate DEFINITIONS modules, which user programs will
want to reference, are named in the various subsections. This entire document appears in the
(MESA-DOC) directory as MESASYSTEMDOCUMENT.EARS.

These are the subsections of Section 1 in alphabetical order:

Binding Facilities
Debugging Documentation
Display Facilities
Files
Processes
Segments
Storage Management Facilities
Stream 10 Package
Streams Package
Stri ng Package

2

Alto/Mesa Binding Facilities

March 1, 1976

(MESA-DOC>BIND

The facilities described below are used for binding a modules's external references (to
PROCEDUREs, SIGNALs, and ERRORs) after it has been loaded. The default binding
structure established when modules are loaded is described. Some additional procedures are
described which can be used to alter the default structure. The binding structure establishes the
path that the binder will follow when attempting to resolve external references within newly
loaded user modules.

TYPEs

GlobalFramcHandlc: TYPE = POINTER TO global FrameBase;

global FrameBasc: TYPE = RECORD[

ownerlink: GlobalFrameHandle,
-- points to frame of creator

bindentry: GlobalFramcHandle,
-- points to frame of first module to try when binding

bind link: GlobalFrallleHandle,
-- points to frame of next module to try when binding and current module did
not have correct symbol and type. This is referred to as the "binding path"
]

NULLFramc: GlobalFralllcHandle;

SIGNALs

InconsistentBindingPath: ERROR;
Attempt to use a FralllcHandlc that does not point to a "global" FramcBase was detected.

CircularBindingLink: ERROR;
Attempt to set the binding path for a global frame would have resulted in a loop in the
binding path.

PROCEDUREs

Bind: PROCEDURE[f: GlobaIFrameHandle];
Given the global frame f of a newly loaded module, this routine locates all unbound
references to external objects in the module associated with f and attempts to bind them
to objects of the same name and type that are defined in other modules. The search
commences by first following the bindcntry field of f. Thereafter the bindlink fields are

followed until all symbol references are bound or the end of the path is encountered
(f.bindlinl< = NULLFrame).

BindingEntry: PROCEDURE[GlobaIFrameHalldle] RETURNS [GlobaIFrameHandle];
Returns the current value of the bindentry field of the specified frame.

BindingPath: PROCEDURE[GlobaIFrameHandle] RETURNS [GlobaIFrameHandle];
Returns the current value of the billdlink field of the specified frame.

SetBindingEntry: PROCEDURE[frame, entry: GlobaIFrameHandle];
sets frame.bindelltry to entry after checking that all is well.

SetBindingPath: PROCEDURE[frame, entry: GlobaIFrameHandle];
sets frame.bindlink to entry after checking that all is well.

Default binding paths

The MESA language construct NEW (and the debugger command "New") set up the frame of
the new module so that its bindclltry field points to itself and so that its bindlink field points to
the frame pointed to by the bindcntry field of its owner (the module which executes the NEW).
I n addition, the owner's bindentry field is changed to point to the new frame. Thus, if modules
A, B, and C are established in order using the default mechanisms just defined, the following
will be executed:

A.bindentry to A
A.bindlink to owncr.bindentry
B.bindcntry to B
B.bindlink to A
C.bindcntry to C
C.bindlink to B
owner.bindcntry to C

where owner is the frame which corresponds to the debugger or to the module that did the NEW
construct. Thus, if Bind[C] is called (or the debugger's Bind command is given), then the order
in which binding would proceed is B-)A-)owncr.billdentry. To bind B, however, the order
would be A -)owncr.bindclltry.

If it is desirable to have A's binding order be C-)B-)A-)owncr.bindcntry, for example, then one
would call SetBindingEntry[A, C] before calling Bind[A].

Some additional techniques that can be used to control binding are to create an orphan and to
hide a set of modules under another module. This is once again done by manipulating the
bindcntry and bindlil1k fields.

To create an orphan structure, one just sets the bindlink field of the first frame of the structure
to NULLFramc. For example, setting A.bindlink to NULLFramc in the above example would
make A-B-C an orphan structure. If the binding of A, B, or C is requested after the orphaning,
then all of the remaining undefined references within A-B-C mllst be resolvable within A-B-C.
In addition, no other module can be bOllnd to any of A-B-C after it is orphaned (although they
could have been bound to it prior to the orphaning).

To hide the module B under the module A, just set A.bindcntry to Band C.bindlink to A. If this
is done before C's undefined symbols are bound, then B will not be a candidate for binding any

of CIS undefined symbols.

Alto/Mesa Debugging Documentation

December 1, 1976

<MESA-DOC)DEBUGGER

The debugging facilities being documented here are the humble beginnings of an interactive
debugger for Alto/Mesa. The Mesa debugger comes in three flavors: internal, external, and
nlinL. The Mesa debuggers are the primary interface between you and the Mesa runtime
system. They provide facilities for loading, binding, and starting execution of Mesa
programs. In addition, they provide debugging facilities which include: setting breakpoints,
tracing execution, displaying the run-time state (stack), and interpreting Mesa statements. At
present the interpretive facilities are severely limited. These facilities will undergo extensive
development during the next few months.

Overview

The three flavors of the debugger differ in their relationship to the user program. The
internal debugger is resident in core along with the user program being debugged. The
external debugger resides in a different core image which is loaded when called for in very
much the same way that Swat resides in a separate core image. The mini debugger is the code
which is necessary to communicate with the external debugger and is resident along with the
user program. The mini debugger also serves the function of an executive when the mesa
system is first started. The mini debugger has only five commands eac;h identified by their
first letter. The commands will be discussed in detail below and any differences among the
debuggers will be noted. For the record, the commands in the mini debugger are New, Bin d,
Start, Makelmage, Debug, and Qu i t. The Makelmage command is discussed in Section 4.

The user interface to the debugger is controlled by a command processor which invokes a
collection of procedures for managing breakpoints, examining user data symbolically, and
controlling the context from which user symbols are looked up. The command processor
prompt character is ")" for the mini and external debuggers and "\" for the internal debugger
(actually the character is repeated once for each nesting level of the debugger). The command
syntax is tree structured and each character is extended to the maximal unique string which it
specifies. Whenever an invalid character is typed, a ? is typed and you are returned to the
command level. Typing a ? at any point during command selection prompts you with the
collection of valid characters (in upper case) and their associated maximal strings (in lower
case) and returns you to the command level. Whenever a valid command is recognized you
are prompted for the parameters associated with that command (if any). Identifi'ers and
numeric arguments are terminated with carriage-returns or spaces (the debugger will echo a
delimiting character of its own choice in order to minimize loss of information from the
screen). String arguments are terminated with carriage-returns. Typing rubout (delete) at any
point during command selection or parameter collection returns you to the command processor.

At system start-up the mini debugger is given control in a context from which all the various
system utilities are visible (cf. documentation for loader, binder, io-packages, etc). The only
commands available are those for simple loading, binding and executing of modules. For
more complex operations you must first invoke the external debugger with the Debug
command. The interpretation of symbols (variable names, procedure names, etc) is based
upon the following symbol-lookup .algorithm. The runtime stack of procedure frames is
searched in LIFO order by examining first the local frame of each procedure and then its
associated global frame until a program (global) frame is encountered. The search then
proceeds down the BindingPath links starting with the program frame's BindingEntry link.
(For a description of binding links see the documentation for the binder.) When in doubt
concerning the search order for symbol-lookup you may use the Display Binding path
command documented below.

2

A. Command Tree

This is the command tree structure. Capitalized letters are typed by the user (in either upper
or lower case) and the lower case substrings are echoed by the command processor. Each
command is described in section B along with its parameters.

Display Binding path
Module

STart

Frame
Variable
Eval-stack
Stack

Et Context
Octal context
Break
Trace
Program Break

Trace
Reset context
COremap [confirm]

Reate
Ase Ignore

Heed
Lear All Breaks [confirm]

Traces [confirm]
Entries
Xits

Entry Break
Trace

Xit Break
Trace

P rog ram B I'eak
Trace

Break
Trace

Proceed [confirm]
BInd

Reak Entry
Xit

Trace All Entr i es
Xits

Entry
Xit

New
Load
Octal Read

Write
Clear break
Set break

Interpret Call
@

Pointer
Array
Size
De-reference
Expression

Quit [confirm]
tNstall [confirm]

3

B. Semantics of commands

The semantics of the debugger's commands are summarized below along with the parameters
required by each command. The debugger prompts for all parameters. Identifiers (module,
variable and type names) are accepted as a sequence of characters terminated by SPACE or
RETURN. Source strings (for setting breakpoints) are accepted as a sequence of characters
terminated by RETURN. A numeric parameter is a sequence of characters terminated by SPACE
or RETURN which is passed to a very simple expression parser. The expression parser accepts
constants in either octal or decimal and the operators +, -, *, I. Evaluation is strictly
left-to-right with no precedence or parentheses allowed. All forms of numeric constants
allowed by the Mesa syntax are accepted, however the default radix is octal rather than
decimal. Use the "0" notation to force decimal interpretation of a numeric value. Many
parameters have default values which may be used or inspected by typing ESC. After the
default parameter is typed by the debugger, you may use the normal input editing conventions
to modify it.

Display Binding path

displays the present binding path (the order which symbol-lookup
searches).

Display Module [module]

dumps the contents of a global frame where module is the name of a
program whose global frame has been loaded.

Display Frame [address]

dumps the contents of a frame where address is its octal address.
(Useful if you have several instances of the same module.)

Display Variable [id]

displays the contents of a variable named id.

Display Eval-stack

Display Stack

displays the contents of the Mesa evaluation stack (in octal). Useful in
octal debugging (ugh) or for displaying the (un-named) return values of
a procedure which has been broken at its exit point.

follows down the procedure call stack (optionally) displaying the values
in each frame. At each frame, the corresponding body's name, the
frame's address, and the appropriate source text are displayed. You are
prompted with a ")". A response of V displays all the frame's
variables; P displays the input parameters; R displays the return values
(those which are "named" in the R ETUR NS part of the body
declaration); N displays nothing; and Q terminates the display and

4

STart [address]

returns you to the command processor. For a description of the output
format for variables, see section C below.

starts execution of the frame whose octal address is address.

SEt Contex t [modulenamc]

changes the context (and thus the domain for symbol-lookup) to the
program module whose name ismodulename. If there is more than one
instance of a module named modulename, the debugger lists the octal
frame addresses of each instance and does not change the context. You
may use the foHowing command to set the context with a frame address.

SEt Octal context [frame]

changes the context (and thus the domain for symbol-lookup) to the
frame whose address is frame. (cf. SEt Context).

SEt Break [proc, text]

sets a breakpoint in the procedure body named proc at the beginning of
the statement defined by the line containing the first instance of the
string text. The search for the string text commences at the beginning
of the source text for proc. (Note: the range of the search extends from
the beginning of the text for proc to the end-of-file.) When a
breakpoint is encountered during execution, the debugger types the
name of the body being broken, the text corresponding to that code
location, and the address of the currently active frame. A nested
instance of the debugger is created and control then transfers to the
command processor from which you may access any of the facilities
described in this document. To continue execution of your Mesa
program, you execute the Proceed command documented below.

SEt Trace [proc, text]

sets a trace in the procedure body named proc at the beginning of the
statement defined by the line containing the first instance of the string
text. The search for the string text commences at the beginning of the
source text for proc. When the tracepoint is reached, the procedure
name, frame address, and source text are typed. You may respond to
the U)U prompt with the standard replies (cf. description of Display
Stack above) for listing the parameters, return values, or all locals. In
addition to the standard replies, you may also type B(b) which wiH
create a nested instance of the debugger and send control to the
command processor.

SEt Progl'am Break [1)fOg, text]

sets a breakpoint in the program body named prog at the beginning of
the statement defined by the line containing the first instance of the
string text. The search for the string text commences at the beginning

5

of the source text for prog. (cf. SEt Break)

SEt Program Trace [prog, text]

Reset context

COremap [confirm]

CRea te [segment]

CAse Ignore

CAse Heed

sets a trace in the program body named prog at the beginning of the
statement defined by the line containing the first instance of the string
text. The search for the string text commences at the beginning of the
source text for prog. (cf. SEt Trace)

restores the context which this instance of the debugger had at its
creation.

prints the current configuration of segments in memory.

allocates a frame for segment (segment = SegmentHandle for code
segment -- returned by Load). See the description of New below.

ignores the distinction between upper and lower case during
symbol-lookup. This is the default state when you start Mesa. Upper
and lower case are always different in source strings (Break and Trace).

observes the distinction between upper and lower case during
symbol-lookup. Once set, this state persists until you execute a CAse
Ignore command.

CLear All Breaks [confirm]

clears all breakpoints.

CLear All Traces [confirm]

clears all tracepoints.

CLear All Entries [prog]

removes all entry traces in prog.

CLear All Xits [prog]

removes all exit traces in prog.

CLear Entry Break [proc]

converse of BReak Entry (cf. below).

6

Tr ace [proc]

converse of Trace Entry (cf. below).

CLear Xit Break [proc]

converse of BReak Xi t (cf. below).

CLear Xit Trace [proc]

converse of Trace Xit (cf. below).

CLear Program Break [prog, text]

converse of SEt Program Break (cf. above).

Trace [prog, text]

converse of SEt Program Trace (cf. above).

CLear Break [proc, text]

converse of SEt Break (cf. above).

CLear Trace [proc, text]

Proceed [confirm]

BInd [address]

BReak Entry [proc]

BReak Xit [proc]

converse of SEt Trace (cf. above).

resumes execution of the Alto/Mesa program from the point at which
it was broken.

binds the external references for the frame specified by address. If a
symbol cannot be bound, its name is displayed on the screen. (Please
refer to documentation for the binder in (MESA-DOC)BIND.BRAYO).

inserts a breakpoint in the procedure proc at the first instruction after
the code which slores the input parameters in proc's frame.

inserts a breakpoint at the last instruction of the procedure body for
proc.

Trace All En t r i e s [prog]

sets a trace on the entry point to each procedure in the module prog (cf.
Trace Entry).

7

Trace All Xits [prog]

Trace Entry [proc]

Trace Xi t [proc]

New [filename]

Load [filename]

sets a trace on the exit point of each procedure in the module prog (cf.
Trace Xit).

sets a trace on the entry point to the procedure proc. When an entry
tracepoint is encountered, proc's parameters are displayed and you are
prompted with")". The valid responses are described in the SEt Trace
command.

sets a trace on the exit point of the procedure proc. When an exit
tracepoint is encountered, proc's return values are displayed and you are
prompted with ")". The valid responses are described in the SEt
Trace command.

equivalent to STart[CReate[Load[filename]]]. Load establishes a
link between the segmentation machinery and filename. In addition,
Load actually loads the object code for filename into memory. CReate
allocates a frame of appropriate size for the global data space required
by filename. The starting PC of this frame is the beginning of the code
required to perform the frame's initialization. This includes both
explicit user specified initialization (e.g. x: INTEGEH ~ 0) and
system-initiated initialization (e.g. fabricating unique values for
SIGNAL constants). CReate does not exececute this code. The first
STart issued for this frame will execute the initialization code and
return to the command processor upon completion. Subsequent STar't
commands will run the frame from the point following the
initialization code and will return to the command processor upon
encountering a user supplied STOP in the program or upon "running
off the end" of the program text. At the end of each Mesa program
there is an implicit STOP loop. Hence, attempts to STart a program
which has "run off the end" will result in an immediate return.

maps the code segment of filename into memory and returns a
SegmentHandle (for CReate). See documentation for New above.

Dc ta 1 Read [address, n]

allows YOll to display the n (octal) locations starting at address. (Note:
these octal commands are being made available both as low-level
debugging aids for system maintainers who mllst diagnose the
higher-level debugging aids and system, and in lieu of expanded
interpretive facilities.)

8

Oc ta 1 Wr i te [address, rhs]

allows you to store rhs (octal) into the location address. (The default
for rhs is the current contents of address.)

Octal Set break [globalframe, bytepe]

sets a breakpoint at the byte-relative offset bytepc in the code segment
of the frame globalframe.

Octal C1 ear break [globalframe, bytepc]

Interpret [string]

converse of Octa 1 Set break.

(in the glorious future) interprets some reasonable subset of the Mesa
language. For now, you may use the following interim facilities.

Interpret Call [proe]

Interpret @ [var]

cans the procedure proc after prompting you for the parameters one
word at a time. The parameters may be octal constants, strings (enclode
in double-quotes), or simple identifiers. Note: no type checking is done
and string parameters are not supported by the mini debugger.

returns the address of var.

Interpret Pointer [address, type]

symbolically displays (according to the type) the value(s) stored at octal
address. The type should be the type of the data rather than the type of
the pointer. In searching for type the debugger examins first the
current local frame then the corresponding global frame and its
included modules.

Interpret Array [array, index]

displays the value' of array[index] .

Interpret Size [V~lf]

returns the number of words of storage allocated for var.

Interpret De-reference [var]

chase the pointer var one level. Note: var must be of type pointer.

9

Interpret Expression [exp]

Quit [confirm]

tNstall [confirm]

evaluates exp using the simple numeric parser described and prints out
the value in octal and decimal. This can be used for quick calculations
or for octal-decimal conversions.

returns control to the dynamically enclosing instance of the debugger
(if there is one). Executing a Qu it has the effect of cutting the
runtime stack back to the nearest enclosing instance of the debugger.
Qu i ting from the outermost instance of the internal debugger or from
the mini debugger returns you to the Alto Executive.

installs the current core image as the external debugger. This command
is invoked by typing control-N and is accepted only by the internal
debugger.

C. Debugger's output conventions

The debugger uses information about the types of variables to decide on an appropriate output
format. In general compile-time constants are not displayed. (Exception: Di sp 1 ay
Var i ab 1 e.) Listed below are the types which the debugger distinguishes and the convention
used in each instance.

INTEGER
always displayed in decimal. Uniformly, numeric output is decimal unless terminated
by "B" (octal).

BOOLEAN
TRUE or FALSE.

RECORD
the record's type identifier is followed by a bracketed list of each field name and its
value. E.G. v: Vector; Vector: UECORD[x,y: INTEGER]; -- the debugger displays an
instance of v as v=Vector[x: 9, y: -1].

ENUMERATED
displayed as the identifier constant used in the enumerated types declaration. E.G. c:
ChannelState; ChannelState: TYPE = {disconnected, busy, available}; -- the debugger
displays an instance of c as c=busy. If the value is outside the range of the enumerated
type (probably uninitialized variable) a ? is displayed.

STRING
displayed as s=(3,10)"foo" where 3 is s's current length and 10 is its maximum

10

length. If the string is longer than 60 characters, only the first 40 and the last 10 are
displayed.

CHARACTER
a printing character (c) is displayed as 'c. A control character (x) other than NUL, TAB,
IF, FF, CR, ESC is displayed as tX. Values greater than 177B are displayed in octal.

POINTER
always displayed in octal, terminated with an "ttl. E.G. p=107362B1'.

PROCEDURE, SIGNAL, ERROR
displays the name of the procedure (signal, error) and the name of the program
module in which it resides. E.G. OutChar=PROCEDURE in (DisplayIO). Procedure

-variables which do not contain valid procedure descriptors are flagged with a"?".

ARRA Y, ARRAY DESCRIPTOR
displays the first, second and last values of the array unless the number of elements is
"small". E.G. a=(lO)[Vector[x: 0, y:OJ, Vector[x: 1, y: 1], ,
Vector[x: 9, y:9]J. The parenthesized value to the right of the "=" is the (current)
number of elements in the array.

subrange OF INTEGER
displayed in octal if the upper limit exceeds 777778, decimal otherwise.

D. Error messages

The debugger may generate a number of different error messages in the process of attempting
to execute your commands.

No symbol table for frame rinnnnnB

!xyz

the symbol table file corresponding to this frame is missing and any attempt to
symbolically reference variables in this module (e.g. for binding) will fail. In general,
this message is only a warning and processing continues on.

the variable named xyz has not been found.

!Number
an invalid number was typed.

!File: xyz
the file named xyz has not been found.

!String: xyz
search for the string xyz has failed.

!String too long

the string you have just typed is too long. Source-text parameters are limited to 60
characters. Identifiers and string constants are limited to 40 characters.

uncaught SIGNAL 50S (in MayDay)

11

the user program has raised a SIGNAL (ERROR) which no one dynamically nested
above the SIGNAL invocation was prepared to catch. The debugger prints the name of
the SIG NAL, lists its parameters (if any), creates a new instance of the debugger, and
gives control to the command processor. At this point you may, for example, trace the
stack to see who raised the uncaught SIG NAL. If the semantics of the situation
permit, you may proceed execution at the point of the SIGNAL's invocation by issuing
a Proceed command. Alternatively, you retire to the dynamically enclosing instance
of the debugger by issuing a Qu i t command (and lick your wounds). If the SIG NAL
actually was an ERROR and you elect to Proceed, then prepare to read the following
error message.

ResumeError!
you have attempted to continue execution from an ERROR. This may, of course,
occur both in the situation described above or as the result of a programming error.
The debugger does not support resuming SIG NALs which return values.

E. Installing the External Debugger

In order to establish the communication link between the external and the mini debuggers,
you must install the external debugger. (This installation is similar to the installing of the
Swat debugger for those familiar with this operation.) The tNsta11 command is invoked by
typing control-N to the internal debugger which resides in the core image of the external
debugger. The external debugger is contained the file XDEBUG.IMAGE (see section on
getting started). To run this file you type MESA XDEBUG to the Alto Executive. This will
leave you talking to the internal debugger (prompt character "\"). At this point you might
want to load some programs to live with the external debugger. This is done with the
commands described above. Currently the only interesting module to load is the window
manager. See Section 3 for more about this module. When you are satisfied with the status of
your debugger, issue the tNs ta 11 command. The command will (1) save the current core
image on the file MesaOebugger and (2) exit to the Alto Executive. The debugger uses the file
Swatee to hold the user core image.

12

Alto/Mesa Display Facilities

October 7, 1976

(MESA-DOC)DISPLA Y

Introduction

The purpose of the Mesa display package is to provide the basic facilities for a wide range
of user requirements in dealing with the Alto bitmap display. Since the subject of display
illusions has been one of the most active and inovative, these facilities have been built in
such a way as to support the currently known popular ways of dealing with the display
and hopefully will provide the primitives for yet more powerful facilities. This
documentation is divided into the following sections.

Bitmaps
Rectangles
Streams
Windows
Menus
Fonts

The Mesa display support modules are divided into two major sections: those that deal
with the hardware or physical characteristics of the display and those that use them.
Bitmaps and Rectangles are intended to provided all of the lower level facilities required
to support the alto display, while Display Streams, Windows and Menus are built using
those primitives. Facilities are provides for creating and manipulating bitmaps and
rectangles within them, for associating streams and/or windows with rectangles, and for
displaying ancl marking menus.

Bitmaps

The most primitive objects in the Mesa display facilities are bitmaps. A BitmapObject
contains all the data about the physical characteristics of an actual Alto display bitmap
(suitable for displaying), which is defined (in RECTANGLEDEFS.MESA) as follows:

BMHandle: TYPE = POINTER TO BitmapObject;

BitmapObject: TYPE = RECORD [
link: BMHandle, -- # NIL iff being displayed
rectangles: Rptr, -- list of rectangles for this map
deb: DCBlltr, -- address of block to be used for DCB
addr: POINTER, -- it's address
words: INTEGER, -- size of map (in words)

words per I inc: [O .. maxwordsperl ine],
xO: xCoord, -- x,y of upper left corner
yO: yCoord,
width: xCoord,
height: yCoord,
indenting: [0 .. 77B],
resolution: restype,
background: backgtype];

-- in bits(but even words)
-- in real scan lines
-- in units of /6 bits

Initially, the system comes with a default bitmap, which is obtained by caIling

GetDefaultBitmap: PROCEDURE
RETURNS[BMHandle];

New bitmaps may be created by calling

CreateBitmap: PROCEDURE [pagesformap, wordsperline: INTEGER]
RETURNS[BMHandle];

This procedure creates a BitmapObject, initializes it, allocates the requested space for the
bitmap and initializes the map to all zeros. It also allocates a Dcn for this map and
initializes it in anticipation of being displayed.

A bitmap is destroyed by calling

DestroyBitlllap: PROCEDURE [bitmap: BMHandle];

Before destroying a bitmap, all rectangles contained within it must be destroyed;
otherwise, you wi II get the signal

BitmapError: SIGNAL [bitmap: BMHandle, error: BitmapErrorCode];
BitmapErrorCode: TYPE = {BitmapOperation};

Bitmap Manipulation

The following routines are provided for altering and manipulating bitmap objects in a
uniform way. You may alter the size and or shape of a display bitmap by calling

ReallocateBitmap: PROCEDURE
[bitmap: BMHandle, pagesformap, wordsperline: INTEGER];

This procedure may also be used to deallocate the memory used for a bitmap and
subsequently reallocate it.

If you decide to alter any of the fields of a bitmap object and wish to have the effect of
that alteration reflected in the hardware (e.g. change background from white to black) call

Update Bitmap: PROCEDURE [bitmap: BMHandlc]
RETURNS[DCBptr];

The above call returns the real DCB address for the specified BitmapObject because DCB's
(as required by the Alto harware) must be even word alligned and the field in the
BitmapObject mayor may not be alligned.

The following two procedures are supplied to actually display (undisplay) a bitmap.

DisplayBitmap: PROCEDURE [bitmap: BMHamlle];

UnDisplayBitmap: PROCEDURE [bitmap: BMHandle];

Rectangles

Rectangles describe arbitrary rectangular regions within a bitmap. Together with bitmaps,
rectangles and the procedures for manipulating them implement the most primitive
functions of the display package. (Definitions are in RECTANGLEDEFS.MESA)

Rptr: TYPE = POINTER TO Rectangle;

Rectangle: TYPE = RECORD
[
link: Rptr,
visible: BOOLEAN,
options: RectangleOptions,
bitmap: BM Handle,
xO, width, cw: xCoord, -- relative to bitmap origin
yO, height, ch: yCoord
];

HectangleOptions: TYPE = RECORD
[
NoteInvisible: BOOLEAN,
NoteOverflow: BOOLEAN,
];

-- SIGNAL if rectangle off bitmap
-- SIGNAL if attempt to store outside

The system is intialized with a default rectangle that encompasses the entire default
bitmap; its identity is returned by

GetDefaultUectangle: PROCEDURE
RETURNS[RI)tr];

New rectangles are created by cal1ing the procedure

Create Rectangle: PROCEDUR E
[bitmap: BM Handle, xO, width: xCoord, yO, height: yCoord]

RE'rURNS[I~ptr];

Writing of text at arbitrary locations within a rectangle is accomplished by

\VriteRectangleChar: PROCEDURE
[rectangle: Rptr, x: xCoord, y: yCoord, char: CHARACTER, pfont: FAptr]
RETURNS[xCoord, yCoord];

\VriteRectangleString: PROCEDURE
[rectangle: Rptr, x: xCoord, y: yCoord, str: STRING, pront: FAptr]
RETURNS[xCoord, yCoord];

Where x and yare relative to the rectangle origin. If the rectangle is not visible (e.g.
outside the bounds of the bitmap) or x, y is outside the rectangle then one of the
SIG NALs NotVisible, RightOverfiow or BottomOverfiow is generated.

The fol1owing procedures wil1 handle clipping situations for rectangle overflow either to
the right or off the bottom. In the current implementation they will notal1owa rectangle
to either go off the top or to the left of a bitmap.

Rectangles may be moved or their size altered by invoking

MoveRectangle: PROCEDURE [rectangle: Rptr, x: xCoord, y: yCoord];

GrowRectangle: PROCEDURE [rectangle: Rptr, width: xCoord, height: yCoord];

Where x, y, width and height are relative to the bitmap origin.

Rectangle Utilities

The following procedures implement commonly used operations on rectangles. They are
by no means a complete set but are simply the ones used in providing the basic Mesa
system facilities.

Coordinates are relative to the rectangle origin.

DrawlloxInRectangle: PROCEDURE
[rectangle: Rptr, xO, width: xCoord, yO, height: yCoord];

Draws a rectangular box with lines of width one inside the supplied rectangle.
I

ScrollBoxlnRectangle: PROCEDURE
[rectangle: Rptr, xO, width: xCoord, yO, height: yCoord, incr: INTEGER];

Will scroll the rectangular region within the supplied rectangle defined by xO, yO, width,
and height either up or down as specified by increment (+ = up).

InvertBoxln Rectangle: PROCED URE
[rectangle: Rptr, xO, width: xCoord, yO, height: yCoord];

Will video reverse the rectangular region within the supplied rectangl,e defined by xO, yO,
width, and height.

ClearBoxInRcctangle: PROCEDURE
[rcctangle: Rptr, xO, width: xCoord, yO, hcight: yCoord, gray: GrayPtr];

Will clear the rectangular region within the supplied rectangle defined by xO, yOt width,
and hcight to the supplied gray pattern (e.g. 0 = clear -1 = black etc.).

The display facilities allow you to alter both the bitmap and the position of a rectangle
within a bitmap such that it is possible for a rectangle to be not visible (entirely outside
the bounds of the bitmap). You may determine if a rectangle is visible by calling

IsRectangleVisible: PROCEDURE [rectanglc: Rptr]
RETURNS[BOOLEAN];

Exceptional Conditions

The following exception conditions are optionally reported to the user based upon th~
setting of the the rectangle object flags NotcInvisible and NoteOverfiow.

RectangleError: SIGNAL [rectangle:Rptr, error: RectangleErrorCode];
RectangleErrorCode: TYPE = {RightOverflow, BottomOverflow, NotVisiblc};

Coordinate Conversion Routines

The following procedures allow you to convert between cursort rectangle and bitmap
coordinates. They worry about indenting and other displayed bitmaps.

CursorToMapCoords: PROCEDURE [bitmap: BMHandle, x: xCoord, y: yCoord]
RETURNS[xCoord, yCoord];

Converts the cursor coordinates (display origin relative) to bitmap coordinates (bitmap
origin relative).

UectangleToMapCoords: PROCEDURE [rectangle: Rptr, x: xCoord, y: yCoord]
RETURNS[xCoord, yCoord];

Converts rectangle coordinates (rectangle origin relative) to bitmap coordinates (bitmap
origin relative).

Display Streams

Display streams are provided in Mesa to perform teletype simulation operations that are
commonly associated with display based systems. Display streams are associated with a
previously created rectangle at stream creation time. For a more complete desciption of
streams see the STREAMS documentation. The system comes equipped with a default
displaystream. Interpretation of the standard stream operations is as follows:

reset[s] clears the rectangle associated with s.

get[s] produces a StreamAccess error.

putback[s,i] produces a StreamAccess error.

put[s,i] writes the CHARACTER i in the next character position. Options are
provided for line wrapping/truncation and scrolling/discarding.

endof[s] produces a StreamAccess error.

destroy[s] destroys s in an orderly way, freeing the space it occupies. If s is the
default display stream, the StreamOperation error results.

Initially, the default display stream is defined by a rectangle which occupies the entire
default system bitmap, the stream's handle is returned by the procedure

GetDefaultDisplayStream: PROCEDURE RETURNS [StreamHandIe];

Any number of display streams may be created, using the procedure

CreateDisplayStream: PROCEDURE [rectangle: Rptr]
RETURNS [DisplayHandle];

where rectangle is a pointer to a rectangle object associated with a bitmap. It should be
noted that display streams by themselves provide no facilities for dealing with retangles
that overlap (e.g. the characters are simply OR'ed together) however, facilities are provided
by windows for dealing with this situation in an orderly manner.

The following procedures implement backspace character and line functions.

ClearDisplayChar: PROCEDURE [stream: StreamHandle, char: CHARACTER];

ClearCurrentLine: PROCEDURE [stream: StreamHandle];

ClearDisplayLine: PROCEDURE [stream: StreamHandle, line: INTEGER];

The requirement to pass the character to be erased in ClearDisplayChar is a little hoaky,
but this is necessary because the stream retains no memory of what characters were
displayed.

\Vindows

Windows provide a uniform mechanism for managing the data (text or bit arrays)
contained in rectangles. Windows and the system supplied procedures are designed to
allow the user to recreate or reposition a view in a rectangle in a standard manner.

(Definitions are in WINDOWDEFS.MESA)

WindowType: TYPE = {clear, random, scratch, file, scriptfile};

WindowHandle: TYPE = POINTER TO Display\Vindow;

Display\Vindow: TYPE = RECORD
[
link: Window Handle,
type: \VindowType,
name: STRING,
menu: MenuHandle,
displayproc: PROCEDURE [WindowHandle],
rectangle: Rptr,
ds: DisplayHandle,
ks: KeyHandle,
file: DiskHandle,
fileindex: StreamIndex,
tempindex: Stream Index,
eofindex: StreamIlldex,
selection: Selection
];

Selection: TYPE = RECORD
[
ptr1: Stream Index,
ptr2: StreamIndex
];

New display windows may be created by calling

CreateDisplayWindow: PROCEDURE
[type: \VindowType, r: Rptr, ds: DispiayHandle, ks: KeyHandle, name: STIUNG]

R ETUR N S[\Vindow Handle];

Conversly, display windows may be destroyed and all data associated with them released
by invoking

DestroyDisplay\Vindow: PROCEDURE [w: Window Handle];

It is often desirable to be able to transform one type of window into another (e.g. load a
file into a scratch window). The following procedure undoes the old attributes and sets up
new ones.

AltcrVv'indowTypc: PHOCEDUUE
[w: WindowHandlc, type: WindowTypc, name: STRING];

Refreshing both the border and content of a window is accomplished via the following
procedure. Actual content refreshing is accomplished by dispatching to a user supplied

(or system default) procedure.

l)aintDisplayWindow: PROCEDURE [w: WindowHandle];

The concept of a window being current (e.g. on top) is central to this implimentation of
display windows. Windows are maintained in a ring in the order they were last current.
To make a window current (which also refreshes its content) call

SetCurrentDisplay\Vindow: PROCEDURE [w: WindowHandle];

At any point you may determine which window is current by calling

GctCurrentDisplayWindow: PROCEDURE
R ETURNS[Window Hand Ie];

To determine which window (if any) the cursor may be in call

FindDisplay\Vindow: PROCEDURE [x: xCoord, y: yCoonl]
RETURNS[WindowHandlc, xCoord, yCoord];

Coordinates are cursor coordinates (display origin relative). If WindowHandle is NIL then
the supplied x, yare not in any window. If a non-NIL WindowHandle is returned then
the x, yare converted into rectangle coordinates (rectangle origin relative) and returned
also.

For file type windows y~u may alter the file being displayed by invoking

SetFileFor\Vindow: PROCEDURE [w: \VindowHandle, name: STRING];

Scratch, scriptfile and file type windows use a Stream to manage the data contents of
the window. You may reposition the displayed contents of these windows by calling

SetIndexFor\Vindow: PROCEDURE [w: WirulowHandle, index: StrcamIndex];

SetPositionForWindow: PROCEDUUE [w: WindowHandle, position: INTEGER];

Exceptional Conditions

In general the procedures implementing windows do not generate SIGNALs or ERRORs
but rather attempt to muddle through whatever nonsense you supplied or tried to do. This
results in coercing coordinates and turning funny calls into NOPs in most cases.

Menus supply a uniform command specification facility. The current implementation is
very si mple and just provides for a correspondence between a keyword and a procedure to
be invoked if that key word is selected. The display algorithm and selection technique are
built-in. (Definitions are in MENUDEFS.MESA)

MenuHandle: TYPE = POINTER TO McnuObjcct;

l\1enuObject: TYPE = RECORD
[
link: 'MenuHandle,
index: INTEGER,
width: xCoord,
rectangle: Rptr,
menuseg: SegmentHandle,
dataseg: SegmentHandle,
array: MenuArray
];

MenuArray: TYPE = DESCRIPTOR FOR ARRAY OF MenuItem;

MenuItem: TYPE = RECORD
[
keyword: STRING,
proc: MenuProc
];

To satisfy the Mesa TYPE checker, all menu procedures must have a uniform calling
sequence, which is as follows

MenuProc: TYPE = PROCEDURE [w: WindowHandle, x: xCoord, y: yCoord];

New MenuObjects are created and destroyed by calling

CreateMenu: PROCEDURE [arnlY: MenuArray, width: xCoord]
RETURNS[MenuHandle];

DestroyMenu: PROCEDURE [menu: IVlenuHandle];

A menu is actually displayed on the Alto display screen by calling

DisplayMenu: PROCEDURE
[menu: MenuHandle, bitmap: BMHandle, x:' xCoord, y: yCoord];

Coordinates are bitmap origin relative. This procedure saves the contents of the
bitmap to be overlayed so it may be restored later.

To take a menu down and restore the previous contents of the bitmap call

ClearMenu: PROCEDURE [menu: MenuHandle];

Items in a displayed menu are marked as selected by invoking

MarkMenuItem: PROCEDURE [menu: MenuHandle, index: INTEGER];

The current implementation assumes that only one menu item will be marked at a
time. Therefore simply marking a new item will unmark the currently marked item (if
any). Marking is currently done by video reversal.

Exceptional Conditions

There is currently no checking to ensure that you do not attempt to clear
non-displayed menus or other such nonsense. If you do, you are on your own.

Font procedures assume the standard Alto font format. Only the most simple font
procedures are supplied as follows.

ComputeCharWidth: PROCEDURE [char: 'CHARACTER, font: FontHandle]
RETURNS [INTEGER];

GctDcfaultFont: PROCEDURE
RETURNS [font: FontHandle, lineheight: INTEGER];

Returns the system font.

GctFont: PROCEDURE [SegmentHandle];
RETURNS [font: FontHandle];

Swapin and locks the font segment.

GetFontSegment: PROCEDURE [filename: STRING]
RETURNS [SegmentHandle];

Allocates space and creates a Segment for a font.

Alto/Mesa File Machinery

December 1, 1976

(MESA-DOC)FILES

Introduction

Logically, the Mesa file package is a sub-module of the segmentation machinery, but it is
described separately because other objects (e.g. disk streams) also use this interface. Internally,
the file machinery maintains a set of items called FilcObjccts: a file object, among other things,
contains the file's disk address and serial number, as well as its access rights, several reference
counts, and a file length hint.

The Mesa system follows most conventions of the Alto file system (although some, including
multiple versions, sub-directories, and the system log are not currently supported). See the Bcpt
Operating System document for a description of the Alto file system. A description of the
various procedures used to manipulate the Alto's directory appears at the end of this section.

A file is an integral number of pages which logically appear to be contiguous, irrespective of
their physical location. The pages of a file are numbered from zero up to some maximum:

MaxFilePage: CARDINAL; -- maximum file page number

PageNumber: TYPE = [O .. MaxFilePage];

In the Alto file system, page zero of the file (the leader page) is special; it contains file status
information. Thus the data actually begins at page one.

Externally, a file is known by its name, which is just a string. Internally Mesa retains only a
file's FP, which is an abreviated form of the Alto file system's file pointer:

FP: TYPE = RECORD [
serial: SN, -- internal file serial number
leaderDA: vDA]; -- first virtual disk address

The correspondence between file names and FPs is maintained in the file system's directory
(SysDir). After the file is initially looked up in this directory, the name is discarded; the Mesa
world deals only in FPs thereafter. A directory search is required if the name must be recovered.

File Objects

A FileHandle is used to refer to a file in the Mesa environment, and can be obtained by a call
on New File; it is simply a pointer to a record called a FileObject.

FileHandle: TYPE = POINTER TO FileObject;

FileObject: TYPE = RECORD [
open: BOOLEAN, -- if the file is open
read, write, append: BOOLEAN, -- access rights
lock: [O .. MaxRefs], -- reference count
segcount: [O .. MaxRefs], -- attached segments
swapcount: [O .. MaxRefs], -- swapped in segments
••.]; -- plus other private fields

The following options are used when creating new file objects (these will become set types):

AccessOptions: TYPE = [0 .. 7];
Read: FileOptions = 1;
\Vrite: FileOptions = 2;
Appcnd: FileOptions = 4;

VersionOptions: TYPE = [0 .. 3];
NewFileOnly: FileOptions = 1;
OldFileOnly: FilcOptions = 2;

Read access allows existing pages of the file to be read; Write means that existing pages can be
written (or deleted; perhaps a separate Delcte option should be included). Append allows new
pages to be added to the end of the file (files do not have holes in them). Note that Append
does !lot imply Write access.

Disallowed combinations are {NcwFileOllly, OldFileOnly} and {NewFileOnly, "'Append}. If
Append access is not specified, OldFileOnly is assumed. If you like, you may specify
DefaultAccess or DefaultVersion, which are equivalent to Read and create the file if necessary.

Signals associated with file objects:

FileName Error: SIGNAL [name: STRING];

The file name is invalid, or the file does not exist (OldFileOnly), or the file does exist
(NewFileOllly).

FileAccessError: SIGNAL [file: FileHandle];

An attempt to perform some operation not allowed by the current access, or the
requested access and version options are inconsistent (see the diallowed combinations
above).

InvalidFP: SIGNAL [fp: POINTER TO FP];

A file positioning operation has determined that the file serial number in the FP of the
file object does not match the disk label.

2

FileError: SIGNAL [file: FilcHandle]; all other file errors

A FileObject is created using the following procedures:

New File: PROCEDURE [
name: STRING, access: AccessOptions, version: VcrsionOptions]
RETURNS [FileHandle];

Given a file name and access rights, this procedure creates a new file object and returns a
pointer to it. A check is made that the file exists in the directory, creating it if
necessary, but the file is not opened as a result of this call. Objects attached to the file
(segments and streams, for example) ensure that the file is open before attempting a
transfer. If there is already a file object for the file specified, its access is updated (by
or'ing; this is not a protection system), and a pointer to the old object is returned.

InsertFile: PROCEDURE [
fp: POINTER TO FP, access: AccessOptions]
RETURNS [FileHandle];

Creates a file object directly from fp, without searching any directory. If there is already
a file object with a matching fp, its access is updated (by or'ing; this is not a protection
system), and a pointer to the old object is returned.

Internally, Mesa keeps track of the number of segments attached to each file (segcount) and of
those the number which are currently swapped in (swapcount). When the swap count goes to
zero, the file may be closed, and when the segment count goes to zero, the file object is released
(only the latter operation happens automatically). Since a file may have other objects attached
to it (streams, for example), it may be necessary to prevent the file object from being released
even when there are no more segments attached to it. The lock field serves this purpose, and is
manipulated by the procedures

LockFile, UnlockFile: PROCEDURE [file: FileHandle];

A maximum of MaxRefs locks may be performed on each file object. Note that a file object is
not automatically released when its lock c~unt goes to zero.

A FileObjcct is released by

ReleaseFile: PROCEDURE [file: FileHalldle];

The file is first closed if it is open; then its file object is released. A FileError will be
generated if there are segments associated with the file at the ti.me of this call. Note:
except for this error check, releasing a file which is locked is a no-ope

A file is physically destroyed by calling

DcstroyFile: PROCEDURE [file: FileHandle];

In addition to releasing the file object, the file's pages are deleted and its entry is
removed from the directory. The file object must not have any segments currently

3

attached to it, nor may it be locked; either condition results in a FileError.

To be on the safe side, destroying a file is somewhat complicated if it currently has segments
attached to it. The file must first be locked, then all of its segments deleted, then the file should
be unlocked and finally DestroyFile should be called. This sequence assumes that no other user
has a Lock on the file.

Characteristics of the disk file associated with a FileObject are obtained and changed using the
following procedures:

FindFile: PROCEDURE [fp: POINTER TO FP] RETURNS [FileHandle];

Searches alI existing file objects for one whose serial number and disk address match
those contained in fp. Returns NIL if no match' can be found.

GetFileFP: PROCEDURE [file: FilcH andIe, fp: POINTER TO FP];

Copies the file pointer from file into fp.

GetFileAccess: PROCEDURE [file: FileHandle] RETURNS [access: AccessOptions];

Converts the read, write, and append bits of a file object into a form that can be passed
to NewFile.

SetFileAccess: PROCEDURE [file: FileHandle, access: AccessOptions];

Or's access into the file object (this is not a protection system).

GetEndOfFile: PROCEDURE [file: FileHandle]
RETURNS [page: PageNumber, byte: CARDINAL];

Returns the page number of the last page in the file that contains data, together with the
number of bytes in that page (the number of the first non-existant byte in the page,
counting from zero). In the Alto file system, page zero is the leader page, the first data
page being page one. Note that if the last data page is full, a null page is appended to
the file, but GetEndOfFile does not tell you about it (so do not count on it being there).
For an empty file, this routine returns [0, BytesPerPage] (reflecting the existence of the
leader page).

GetEndOfFile first opens the file (if it is closed) to obtain the length hint from the leader page.
It also inserts the current file length into the file object, so that subsequent requests for the
length will not require reading the disk.

SetEmlOfFile: PROCEDURE [file: FileHandle, page: PageNurnber, byte: CARDINAL];

Extends or truncates the file as necessary to make page the n urn ber of its last data page,
with byte bytes in it. The arguments are first adjusted to include a null page if
necessary. Extending requires Append access, truncating requires \Vritc access.

The procedure EnumcrateFiles is provided so that one may conveniently scan all file objects that
currently exist.

EnumerateFiles: PROCEDURE [

4

proc: PROCEDURE [FileHandle] RETURNS [BOOLEAN]]
RETURNS [FileHandle];

This procedure calls proc once for each file object that is currently in use. This process
will terminate when the list of file objects is exhausted or when proc returns TRUE. In
the latter case, the File Handle of the last FileObject processed is returned. Otherwise,
NIL is returned.

If new file objects are created while EnumerateFiles is in control, it is not guaranteed that they
will be included in the sequence of FileHandles passed to proc.

Directories

A number of procedures are provided to manipulate the Alto directory (SysDir). Currently,
these routines do not support either sub-directories or file version numbers. The simplest
operation provided is to enumerate all of the file entries in the directory:

EnumerateDirectory: PROCEDURE [
proc: PROCEDURE [POINTER TO FP, STRING] RETURNS [BOOLEAN]];

This procedure calls proc once for each filename in the directory, passing it pointers to the file's
FP and name. These parameters are local to the enumeration procedure and must be copied if
they are to be retained after the enumeration completes. Processing terminates when proc
returns TRUE or the end of the directory is reached.

The fo11owing procedures may be of use to programmers implementing features beyond those
provided by New File and DcstroyFile.

DirectoryLookup: PROCEDURE [
fp: POINTER TO FP, name: STRING, create: BOOLEAN] RETURNS [old: BOOLEAN]

This procedure looks up nallle in the directory. If an entry already exits, its file pointer is
copied into fp and TRUE is returned, otherwise FALSE is returned. In addition, if create is
THUE, the file will be created (with one empty data page), and the new file pointer will be
copied into fp.

DirectoryLookullFP: PROCEDURE [
fp: POINTER TO FP, name: STIUNG] RETURNS [old: BOOLEAN]

This routine is similar to DirectoryLookup, except that the directory is searched for a matching
Fl'. It returns TRUE if the file pointer was found. In addition it will supply the filename if
name is not NIL.

DirectoryPurge: PROCEDURE [
fp: POINTER TO FP, name: STIHNG] RETURNS [found: 1l00LEAN]

This procedure removes the entry corresponding to name from the directory (it does not disturb
the file pages pointed to by the FP, however). If the file is found, its file pointer is copied into
fll and TRUE is returned, otherwise FALSE is returned.

DirectoryPurgeFP: PROCEDURE [

5

fp: POINTER TO FP] RETURNS [found: BOOLEAN]

This routine is similar to DirectoryJ>urgc, except that the directory is searched for a matching
FP. It returns TRUE if the file pointer was found. deleting the entry in the process. Perhaps it
should also copy the file's name into a supplied parameter?

6

Alto/Mesa Process Package

May 19, 1976

(MESA-DOC)PROCESS

(MESA)PROCESS.MESA contains procedures that implement a simple process switching
facility. The necessary declarations appear in (MESA)PROCESSDEFS.MESA and are described·
below.

MACHINE CODEs

Logically this instruction is a procedure, but may not be assigned to procedure variables.

BLOCK: MACHINE CODE
This instruction makes the current process not ready and runs the highest priority ready
process. A process should only block when there is some external condition which will
make it ready again. The external condition might be another process on an
asynchronous interrupt.

TYPEs

ProcessObject: TYPE = PRIVATE RECORD [...];
ProcessHandle: TYPE = POINTER TO ProcessObject;

A ProcessObject describes the state of a suspended process. The state consists of the
evaluation stack and stack pointer, a pointer to the frame, and the priority of the
process. The constant ProcessNIL points to the null process.

ProcessPriority: TYPE = [0 .. 15]
HighestProcessPriority: ProccssPriority=2
Lowesti'rocessPriority: ProcessPriority= 14

The priority of a process determines the order in which ready processes are run. Because
of limitations of the Alto implementation of process switching, the range of useable
priorities is limited to [2 .. 14]. In the standard system, the keyboard handler runs at
priority 2 and the Debugger at priority 14. The priority of a process may be
Unscheduled meaning that the process is not in the process switching system, but has not
been destroyed.

SIGNALs

PriorityNotAvaiiable: ERROR;
A requested priority slot is in use.

InvalidPriority: ERROR;
A priority is not in the proper range.

InvalidProcess: ERROn;

An object does not appear to be a proper process.
ProcessNotScheduled: ERROn;

Attempt to change active or ready for a process whose priority is Unscheduled.

PROCEDUREs

Disableinterrupts, Enableinterrupts: PROCEDURE
These procedures disable and enable the process switching mechanism. They should
surround any (hopefully small) segments of code manipulating writeable data which may
be accessed by more than one active process.

CreateProcessFromFrame: PROCEDURE [FrameHandle, ProcessPriority]
RETURNS [ProcessHandle]

CreateProcessFromProcedure: PROCEDURE [PROCEDURE, ProcessPriority]
RETURNS [ProcessHandle]
These procedures create ProcessObjects allocating the necessary space from the heap. The
process may be a procedure or a frame. If the process ever "returns" it winds up
executing BLOCK endlessly.

SetProcessPriority: PROCED URE [ProcessHandle, ProcessPriority]
GetProcessPriority: PROCEDURE [ProcessHandle]

RETURNS [ProcessPriority]
These procedures set or read the priority field of a process object. When the priority of
a process is set, it is made unready and inactive. The priority may be set to Unscheduled.

GetCurrentProcess: PROCEDURE RETURNS [ProcessHandle]
GetCurrentPriority: PROCEDURE RETURNS [ProcessPriority]

These procedures return information about the currently running process.

DestroyProcess, MakeProcessReadYbActivateProces~~
DeActivate Process: PROCE UR[·: [ProccssHandle]
These procedures operate on processes. DestroyProcess returns the space in the process
object to the heap. The other procedures simply control the process switching
mechanism. I n order to run, a process must be both ready and active. A process is also
made ready by the occurrance of a Nova interrupt on the channel corresponding to its
priority.

EnumerateProcess: PROCEDUHE [PROCEDURE [ProccssHandlc] RETURNS [BOOLEAN]]
RETURNS [ProccssH~\ndlc]
The passed procedure is invoked with processes in order of decreasing priority. If the
value of the procedure is TRUE EnumerateProcess returns the last ProcessHandle.
Otherwise ProcessNIL is returned.

Alto/Mesa Segment Machinery

December 1, 1976

<MESA-DOC)SEGMENTS

Introduction

The Mesa virtual memory (VM) is organized as a vector of pages of size I)ageSize words; the last
page is MaxVMPage. VM is occupied by segments: a segment is an integral number of pages in
length and the words in a segment are all linearly addressable -- i.e., segments have no empty
holes in them. Data segments are associated directly with memory and are not swappable or
movable; file segments correspond to contiguous groups of pages in a file and may be swapped
in and out of virtual memory.

User programs access file segments using FileSegmentHandles, which are pointers to
FileSegmentObjects. A FileSegmentObject contains sufficient information to compute its
address if the segment is swapped in. Internally, the segmentation package maintains a set of
objects called FileObjects: a file object, among other things, contains the file's disk address and
serial number, as well as its access rights. The association between a segment and a file is made
when the segment is created. The Mesa file package is documented separately.

Segments may also be pages in VM rather than being attached to a file. Such data segments are
not swappable or movable in any way (relative to the Mesa virtual memory). Thus, absolute
pointers into a data segment are valid for the lifetime of the segment. DataSegmentHandles and
DataSegmentObjects are used to record information about these segments.

Data Segments

As mentioned above, segment objects come in two varieties: data segments and file segments.
Data segments are associated only with virtual memory (there is no swapping file), and are never
moved or swapped out.

DataSeglllentHandle: TYPE = POINTER TO DataSeglllentObject;

DataSeglllentObject: TYPE = RECORD [
... , -- other private fields
pages: [1..MaxVMPage+l], -- number of pages
ViVlpage: [O .. MaxVMPage]]; -- location in VAl

The procedures which manipulate data segments are:

NewDataSegment: pnOCEDURE [
base: PageNumbcr, pages: PageCount]
RETURNS [DataSegmcntHandlc];

Create a new data segment and return a handle for it. If base is DefaultBase then the
segment is allowed to begin on any free page in memory. If base is an actual page
number (in [O .. MaxVMPage]), an attempt is made to place the segment at that location.
Note that pages should not be defaulted.

VMNotFree: SIGNAL [base: PageNumber, pages: PageCount];

In NewDataSegment, the base was not DefaultBase and the specified memory pages were
not free.

DataSegmentAddress: PROCEDURE [seg: DataSegmentHandle] RETURNS [POINTER];

Returns a pointer to the base of the segment in virtual memory. In the current
implementation, segments always begin on a page boundary; this may not be true in the
(distant) future.

VMtoDataSegment: PROCEDURE [a: POINTER] RETURNS [DataSegmentHandle];

The handle for the segment containing the specified address (as currently laid out in
memory) is returned. NIL is returned if no data segment contains it. This does not
imply that the page containing the address is free, however; it may be assigned to a file
segment, or reserved for some operation currently in progress. Note: this operation
requires a search of all existing data segment objects.

DeleteDataSegment: PROCEDURE [seg: DataSegmentHandle];

The specified data segment is deleted and its segment object freed. When a segment is
successfully deleted, any YM which it occupied becomes free.

EnumerateDataSegments: PROCEDURE [
proc: PHOCEDUnE [DataSegmcntHandle] RETURNS [BOOLEAN]]
RETURNS [DataScgmentHandle];

proc is called once for each data segment currently defined in the system. If proc returns
TR UE, EnumerateDataSegments returns the DataSegmentHandle of the last segment
processed. If the end of the set of data segments is reached, NIL is returned.

If new data segments are created while EnumerateDataSegments is in control, it is not guaranteed
that they will be included in the sequence of DataScgmentHandles passed to [)foe.

File SeJ!mcnts

Unlike data segments, file segments are associated with a contiguous group of pages in a file and
are therefore swappable. Pointers into a file segment are valid only while it is swapped in (and
locked so that it will not be swapped out). A file segment which is swapped out occupies no
space in virtual memory other than the segment object which describes it.

FilcSegmcntHamllc: TYPE = POINTER TO FileScgmcntObjcct;

2

FileSegmentObject: TYPE = RECORD [
swappedin: BOOLEAN, -- TRUE iff segment is swapped in
read, ,write: BOOLEAN, -- access options
class: FileSegmentClass, -- user se/table (see below)
lock: [O .. MaxRefs], -- locking reference count
file: FileHandle, -- see the file machinery
base: PageNumber, -- first page of the file to include
pages: [1..MaxVMPage+l], -- number of pages, beginning with base
VMpage: [O .. MaxVMPage], -- if swapped in, VM page number
•••]; -- plus other private fields

FileSegmentClass: TYPE = {code, symbols, other};

To create new file segments, use

NewFileSegment: PROCEDURE [
file: FileHandle, base: PageNumber, pages: PageCount, access: AccessOptions]
RETURNS [FileSegmentHandle];

Creates a new segment and returns a handle for it. The segment is associated with the
corresponding file pages, but the file is not opened and the segment is not swapped in.
If base is DefaultBase, the segment will begin with the first data page of the file, and if
pages is DefaultPages, it will include the last page of the file. Although it is generally
not done, a segment can begin with the leader page (page zero) of a file. Finally, if
access is DefaultAccess, read access is assumed.

If the access specifies that changing the data is permitted, then whenever it is necessary to swap
this segment out and remove its pages from memory, pages will be written back to the file (the
Alto has no hardware to detect if the pages have actually been changed). Note that it is possible
to change the segment's access (by setting the write bit, for example), provided the file to which
it is attached has the appropriate access rights.

InvalidSegmentSize: SIGNAL [pages: PageCount];

This signal is generated whenever a zero length segment is requested, or if the length
exceeds the size of vi rtual memory.

FileSegmentAddress: PROCEDURE [seg: FileScgmentHandle] RETURNS [POINTER];

The address of the beginning of the segment is returned. NIL is returned if the segment
is not currently swapped in. To guarantee the validity of the address, the segment should
be locked when this procedure is called (see below), since the system may swap out file
segments which are not locked. Beware of dangling references!

VMtoFileSegment: PROCEDUUE [a: POINTER] RETURNS [FileSegmentHandle];

The handle of the file segment containing the specified address (as currently laid out in
memory) is returned. NIL is returned if no file segment contains it (this does not imply
that the page containing the address is free, however; it may be assigned to a data
segment, or reserved for a segment whose swap in is in progress). Note: this operation
requires a search of all existing file segment objects.

DeleteFileSegment: PROCEDUUE [seg: FileScgmentHandle];

3

The specified file segment is deleted and its segment object is released. If the segment is
swapped in, it is first swapped out (it should not be locked). If there are no other
segments associated with this segment's file (the file's segcount is zero), then ReleaseFile
is called to release the FileObject. When a segment is successfully deleted, any VM
which it may have occupied becomes free.

Window Segments

A window segment is similar to a file segment except that the base· and pages fields of the
segment may be altered after it is created, in order to slide the window around in a file or to
vary the window's size. In reality, all file segments are in fact window segments, and may be
moved with the following procedure: .

MoveFileSegment: PROCEDURE [
seg: FileSegmentHandle, base: PageNumber, pages: PageCount];

If the segment is swapped in, it is first swapped out (it should not be locked). The
segment is then moved to the new location in the segment's file, but it is not swapped
in. The base and pages are defaulted as in NewFileSegment. In the current
implementation, the disk address of the original segment position is retained as a hint
about the the new location, thus improving performance considerably when a one page
segment is slid forward or backward in a file.

If the original and final position of the segment overlap, there is no guarantee that the
overlapping pages are actually written, nor is it guaranteed that a minimum number of pages are
transferred. The segment machinery reserves the right to implement (or to unimplement) such
optimizations in the future.

Swapping Segments

A segment can be swapped into and out of VM. The procedures and signals which implement
this are

SwapIn: PROCEDURE [seg: FileSegmentHandle];

Swap in the specified segment (if it is swapped out), opening the associated file if
necessary. Lock it so it won't be moved or swapped out. A SwapError will result if the
segment already has MaxRefs locks on it, or if the segment's file has MaxHefs segments
currently attached to it and swapped in.

InsufficientVM: SIGNAL [pages: PageCount]:

There is not enollgh contiguolls memory to accomodate a segment; pages is the number
of pages that are actually required. If resumed, the allocation will be retryed; this gives
the catcher of this signal a chance to free up some YM. Users can free YM pages by
deleting data segments and by allowing locked segments to become swappable (see also
the section below on swapping strategies).

4

SegmentFault: SIGNAL [seg: FileSegmentHandle, pages: PageCount];

End of file was encountered while attempting to swap the segment in or out; pages is the
actual number of pages in the segment. If pages is greater than zero then the signal may
be resumed and the segment will be truncated (of course, this witt not alter the file
length).

To unlock a segment (attow it to be swapped), use the procedure:

Unlock: PROCEDURE [seg: FileSegmentHandle];

Unlock the specifed segment so that it can be swapped out. Note that locking behaves.
like reference counting, so that locks (performed by SwapIn) must be properly paired
with Unlocks.

A segment is swapped out using

SwapOut: PROCEDURE [seg: FileSegmentHandle];

Swap out the specified segment, writing the pages back to the file if the segment's access
makes this necessary, and free the segment's VM pages. If the segment is locked, a
SwapError witt be generated.

A program may explicitly request that the file pages corresponding to a segment be updated by
catting

SwapUp: PROCEDURE [seg: FileSegmentHandle];

Write the pages of the segment back to the file if the access requires it, but do not
unlock the segment or free the segment's VM pages.

Note that neither SwapIn, SwapOut, or SwapUp are capable of extending a file (physicatty
adding pages or bytes to it) based on the size of a segment. Segments may be attached only to
pages of a file that are already allocated from the disk (and chained together). Extending (or
contracting) a file must be done lIsing other mechanisms (for example, see SetEndOfFile in the
file package).

Swapping Strategies

A mechanism is provided for informing the segmentation machinery of emergency measures
which can be taken when the signal InsufficientVM is (about to be) generated. These measures
take the form of SwappingProcedufcs which, when called by the swapping manager, attempt to
make more room in virtual memory and return a BOOLEAN indicating their success or failure
to do so. The swapping manager invokes each procedure in turn, retrying the allocation after
each procedure which has indicated success, until sufficient memory is obtained. If all such
procedures indicate failure, the signal InsufficicntVM is raised (the swapping manager is not
crying wolfl).

The swapping strategies are maintained as a linked list of SwapStrategy nodes whose procedures
are invoked from head to tail. The swapping manager initializes the list with a single node
which invokes code swapping as a last resort.

5

SwappingProcedure: TYPE = PUOCEDURE RETURNS [BOOLEAN];

SwapStrategy: TYPE = PUIV ATE RECORD [
link: POINTER TO SwapStrategy,
proc: PUBLIC SwappingProcedure];

StrategyList: POINTER TO SwapStrategy +- @LastResort;
LastUesort: SwapStrategy = SwapStrategy[NIL, TryCodeSwapping].

Swapping procedures are added to and removed from the list by the procedures:

AddSwapStrategy: PROCEDURE [strategy: I)OINTER TO SwapStrategy];

The specified strategy node s is added to the head of the list of swapping procedures. If
s is already on the list, its position and content are not disturbed.

RemoveSwapStrategy: PUOCED URE [strategy: POINTER TO SwapStrategy];

The specified strategy node s is removed from the list of swapping procedures.

Currently, TryCodeSwapping uses round-robin to choose a code segment to swap out. Only code
segments which are not locked are considered.

Since it is unattractive to require that swapping strategies (other than TryCodeSwapping) be
locked, swapping procedures should observe the following conventions. If such a procedure
obtains a state in which it has nothing to swap, it should either remove the node containing it
from the strategy list or change the procedure in the node to be

CantSwap: SwappingProcedure = BEGIN RETURN [FALSE] END;

Because CantSwap is part of the swapping manager (and therefore locked), this will avoid
swapping in a strategy procedure which knows it has nothing to do.

Miscellaneous Procedures

The following procedures implement conversion between memory addresses and virtual memory
page numbers.

PageFromAddress: PUOCEDURE [a: POINTER] RETURNS [PageNul1lber];

AddressFromPage: PROCEDUUE [p: PageNumber] RETURNS [POINTER];

PagePointcr: PROCEDURE [a: POINTEU] RETURNS [POINTER];

PagcPointcr returns the address of the beginning of the page which contains its argument.

6

Alto/Mesa Storage Management Facilities

March 1, 1976

(MESA-DOC)STORAGE

Introduction

Two collections of Mesa procedures are available for acquiring and managing storage areas.
The segmentation machinery, which is described in detail elsewhere, provides contiguous
groups of pages (256 word blocks) in the virtual memory. A simplified interface with that
machinery is described below. There is also a Mesa free storage package for managing
arbitrarily sized nodes within free storage zones. Since all state information is recorded
within the zones themselves, the system-provided instantiation of the latter package can
manage an arbitrary number of zones. There is one system-defined zone, called the heap,
available for general use, and special procedures exist for creating and destroying nodes within
the heap. The salient characteristics of these packages are summarized below.

The segmentation machinery is most suitable for obtaining large blocks of storage. All
bookkeeping information associated with such blocks is recorded in auxiliary tables that are
managed by the segmentation system, not in the blocks themselves. Allocating or releasing a
segment involves searching and updating a number of those tables and is relatively expensive.
On the other hand, any freed page becomes available for general use by the system (loading,
buffering, etc.) and any two adjacent. free pages can be coalesced to become part of a new
segment.

The free storage package is a transliteration of a BCPL program by Ed McCreight that was
itself based upon a suggestion by Don Knuth (Volume I, p. 453, .ft19). Within a zone, free
nodes are kept as a linked list. One hidden word containing bookkeeping information is
stored wi th each allocated node, and additional bookkeeping information is kept in the header
of each zone. Allocation and release of nodes are usually very fast. Adjacent free nodes are
always able to be coalesced. It is possible to add new areas of storage to enlarge a zone, but
there are no procedures for shrinking a zone, even if an entire block becomes free.

The free storage package performs best when the sizes of nodes are small compared to the
sizes of the block(s) making lip the zone. In particular, the system's heap is intended to be
used for small, transient data structures, such as the nodes of temporary list structure or the
bodies of (short) strings when the maximum length must be computed dynamically or the
structure must outlive the frame that creates it. Use of the heap for large (Le., multipage)
nodes decreases flexibility in storage management, since the additional pages become a
permanen t part of the heap.

The allocators in both package$ return absolute pointers; allocated nodes are not relocutable
and there is no garbage collection or automatic dcallocation of any sort. Also, the values
returned by the allocators are free pointers (type POINTER TO UNSPECIFIED) which must
be cast appropriately (usually by assignment) before they can be used.

Segmentation Interface

The following definitions are contained in the file <MESA)SYSTEtv1DEFS.MESA.

AllocateSegment: PROCEDURE [nwords: INTEGER] RETURNS [base: POINTER]

allocates a segment of virtual memory containing at least nwords words and returns the
address of the first word in that segment. AllocateSegment provides a simple interface
to NewSegment for allocating VM segments only; see the description of that procedure
for further explanation.

SegmentSize: PROCEDURE [base: POINTER] RETURNS [nwords: INTEGER]

returns the number of words actually obtained in the segment.

These two procedures allow complete utilization of segments obtained without knowledge of
page structure and guaranteed only to have some minimum size. Such segments are returned
to the system by

FreeSegment: PROCEDURE [base: POINTER] .

For programs in which the page structure is already known, the following procedures are also
provided.

AllocatePages: PROCEDURE [npages: INTEGER] RETURNS [base: POINTER]

FreePages: PROCEDURE [base: POINTER];

PagesForWords: PROCEDURE [nwords: INTEGER] RETURNS [npages: INTEGER] .

Any storage obtained using AlIocatePages is guaranteed to begit;l .. on a page boundary.

Free Storage Package

The following definitions are available in the file (MESA)FSPDEFS.MESA. A zone is a
block of storage containing embedded nodes. The length of either a zone or a node is

Blocl{Size: TYPE = INTEGER [O .. VMLimitl2] -- 15 bits.

Each zone is headed by a ZoneHeader, which is a record with the following public fields:

threshold: BlockSize, muumum node size in zone
checking: BOOLEAN, -- zone checking (see below)

Zones are identified by pointers of type

ZonePointer: TYPE = POINTER TO Zone Header .

An arbitrary block of (uninterpreted) storage is converted to a zone by

MakeZone: PROCEDURE [base: POINTER, length: BlockSize] RETURNS [z: ZonePointer];

such a block can alternatively be made an extension of an existing zone by

AddToZone: PROCEDURE [z: ZonePointer, base: POINTER, length: BlockSize] .

The largest node that can be allocated in a virgin block of size length is nwords-ZoneOverhead.

A node is allocated by

MakeNode: PROCEDURE [z: ZonePointer, n: BlockSize] RETURNS [POINTER] .

The value returned points to a block of n words; there is an additional hidden word of
overhead (at offset -1) which must be preserved by users of the node. Nodes are sometimes
split to satisfy allocation requests. Splitting within a zone z never generates fragments with
size less than z.threshold, which is initialized to the minimum size of a free node. A request
for a node of size n will produce a node with size in the range [n .. n+z.threshold). The
actual size of an allocated node is returned by

NodeSize: PROCEDURE [p: POINTER] RETURNS [BlockSize] .

If after coalescing all free nodes, a node of the requested size cannot be found,

NoRoomIIlZone: SIGNAL [z: ZonePoillter]

is raised. This signal can be resumed (after, e.g., adding to the zone), and another attempt to
allocate and return a suitable node will be made. An allocated node is returned to the zone by

FreeNode: PROCEDURE [z: ZonePointer, p: POINTER] .

Alternatively, an existing node can be split by calling

SpIitNode: PROCEDURE [z: ZonePointer, p: POINTER, n: BlockSize];

the first n words of the node p remain allocated, and the remainder of the node is freed.

When a zone z is created, the variable z.checking is initialized to FALSE. If that variable is
set to TRUE, the' zone is checked for consistency prior to each transaction involving that
zone. A failure raises one of the signals

InvalidZone: ERROR [POINTER];
InvalidNode: ERROR [POINTER] .

Allocation From The Heap

The following definitions are available in <MESA)SYSTEMDEFS.MESA. The heap is
managed by the free storage package; the appropriate zone pointer for use with the procedures
described in the previous section is returned by

HcapZone: PROCEDURE RETURNS [ZoncPointer] .

The following procedures provide a specialized interface.

AllocatcHeapNode: PROCEDURE [nwords: INTEGER] RETURNS [p: POINTER];
FreeHeapNode: PROCEDURE [p: POINTER] .

In addition,

AllocnteHeapString: PROCEDURE [nchars: INTEGER] RETURNS [s: STRING]

allocates space for the body of a string in the heap. The field s.length is set to 0; s.maxlength,
to nchars. Such strings are freed by

FreeHeapString: PROCEDURE [s: STRING] .

If an allocation request cannot be satisfied from existing heap storage, an attempt is made to
extend the heap with a block of appropriate size obtained from the segmentation machinery.
The extension becomes a permanent part of the heap.

Alto/Mesa StreamIO ·I>ackage

October 8, 1976

<MESA-DOC>STREAMIO

<MESA)STREAMIO.MESA contains a set of procedures for convenient use of the character and
string stream facilities in Mesa. The procedures of the STREAMIO package are described.
below. The declarations necessary to use the procedures are in <MESA>IODEFS.MESA.

J nitialization

The initial system provides an instance of STREAMIO which will obtain input from the
keyboard and write output to the display. User programs may create new instances of
STREAMIO to deal with other streams by writing

StreamIO: FROM "<mesa>streamio";

DEFINITIONS FROM ... StreamIO

f: FrameHandle;

f ~ NEW StreamIO[InputStream, OutputStream];

Bind[f]; START f;

InputStream and OutputStream are StreamHandles for the desired input and output streams for
the new instance of STREAMIO. The desired stream procedures may be accessed by OPENing f,
writing f.procedurename, or by causing the appropriate procedure references to be bound to the
new instance of STR EAM 10. (When the control fault handler is implemented, binding the new instance of
Strc:uulO will be performed automatically, eliminating the need for the explicit call on Bind.)

Character 10

ReadChar: PROCEDURE RETURNS [CHARACTER]

Returns the next character from the InputStream.

\VritcChar: PROCEDURE [c: CHARACTER]

The CHARACTER c is written on the OutputStream.

String Input

The procedures below read input from the InputStrcam. The following exceptional conditions
may occur.

LineOvcrflow: SIGNAL [STRING] RETURNS [STRING]

The input has fiJled the string, the current contents of the string is passed as a parameter
to the SIG NAL. The catch phrase should return a string with more room.

Rubout: SIGNAL

The DEL key was typed during ReadEditedString.

The procedures are:

ReadEditedString: PROCEDURE [
s: STRING,
t: PROCEDURE [CHARACfER] RETURNS [BOOLEAN],
newstring: BOOLEAN]
RETURNS [CHARACfER]

s contains (on return) the string read from the InputStream. The procedure t returns
TRUE if the CHARACTER passed to it should terminate the string. If (newstring is
TRUE and the first input character is ESC) or (newstring is FALSE), then s is treated as
if it had been read from InputStream (input characters are appended to it). Otherwise s
is initialized to be empty.

A string is read from the InputStream with the following editing characters recognized:

t A, t H (BS) delete the last character
t W, tQ delete the last word
t X delete the line and start over
t R retype the line
t V quote the next character

All characters except the terminating character are echoed on the OutputStream. The user
supplied procedure t determines which character(s) terminate the string. The character returned
is the character which terminated the string and is not echoed or included in the string.

The following procedures all call ReadEditedString passing TRUE for newstring.

ReadString: PROCEDURE [s: STRING,
t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN]]

Like RcadEditedString except that the terminating character is echoed. No value is
returned.

ReadLine: PROCEDURE [s: STRING]

Reads from the InputStrcam up to the next carriage return character using
Read Ed itedString.

ReadID: PROCEDURE [s: STRING]

Uses ReadEditedString to read a string terminated with a space or carriage return into s.
The terminating character is not echoed.

String Output

\VriteString: PROCEDURE [s: STRING]

The string s is written on the OutputStream.

\VriteLine: PROCEDURE [s: String]

The string s is written on the OutputStream followed by a car~iage return.

Number Input

These procedures use the string-to-number conversion procedures from the STRINGS package.

ReadNumber: PROCEDURE [default: UNSPECIFIED, radix: CARDINAL]
RETURNS [UNSPECIFIED]

ReadID followed by StringToNumber. The value default will be displayed if esc is
typed. radix is a default value, use the "8" or "0" notation to force octal or decimal.
radix values other than 8 or 10 cause unpredictable results.

ReadDecimal: PROCEDURE RETURNS [INTEGER]

ReadID followed by StringToDecimal.

ReadOctal: PROCEDURE RETURNS [UNSPECIFIED]

ReadID followed by StringToOctal.

Number Output

NumberFormat: TYPE = RECORD [
base: [2 .. 36], zerofill, unsigned: BOOLEAN, columns: [0 .. 255]];

OutNumber: PROCEDURE [s: StreamHandlc, val: UNSPECIFIED, f: NumbcrFormat]

val is converted to a character string on s in base f.basc. The string is right justified in a
field f.columns wide. If f.zerofill, the extra columns will be filled with zeros, otherwise
spaces are used. If f.ullsiglled, the number is treated as unsigned.

WriteNumber: PROCEDURE [val: UNSPECIFIED, f: NumberFormat]

Equivalent to OutNumber[OutputStream, val, f].

WritcDccimal: PROCEDURE En: INTEGER]

The value of n is converted to a character string of digits in base ten and output to the

OutputStrcam. Negative numbers are written with a preceeding minus sign ('-).

WriteOctal: PROCEDURE [0: UNSPECIFIED]

The value of 0 is converted to a character string of digits in base eight and output to the
OutputStrcam. The numbers are unsigned, i.e., -2 is written as 1777768. The "Bit is
appended to any number more than one digit long.

Alto/Mesa Streams

December 1, 1976

(MESA-DOC>STREAMS

Introduction

The purpose of streams is to provide a standard interface between programs and their sources of
sequential input and their sinks for sequential output. A set of standard operations defined for
all types of streams is sufficient for all ordinary input-output requirements. In addition, most
streams have special (device dependent) operations defined for them; programs which use such
operations thereby forfeit complete compatibility.

Streams transmit information in atomic units called items. Usually an item is a CHARACTER
or a WORD, and this is the case for most of the streams supplied with Mesa. Of course, a
stream supplied to a program must have the same ideas about the kind of item it handles as the
program does; otherwise confusion will result. Normally, streams which transmit text use
CHARACTER items, and those which transmit binary information use WORDs.

Streams are passed about using StreamHandles, which are produced by the (device dependent)
procedures that create streams (described in the sections below). A Stream Handle is a pointer to
a variant record of type StreamObjcct, which is defined (in (MESA>STREAMDEFS.MESA) as
follows:

StreamHandle: TYPE = POINTER TO StreamObjcct;

StreamObject: TYPE = RECORD [
reset: PROCEDURE [Stream Handle],
get: PROCEDURE [Stream Handle] RETUUNS [UNSPECIFIED],
putback: PROCEDURE [Stream Handle, UNSPECIFIED],
put: PROCEDURE [StreamHandle, UNSPECIFIED],
endof: PROCEDURE [StrcamHandle] RETURNS [BOOLEAN],
destroy: PROCEDURE [Stream Handle],
body: PRIV AT!): SELECT PUBLIC type: * FROM

Keyboard = > • . .
Display => .••
Disk => ...];

In addition, error conditions are reported in a fashion independent of the particular stream type,
using the following definitions (not all error codes are applicable to all stream types):

StreamError: SIGNAL [strcam:StreamHandle, error:StrcamErrorCodc];

StrcamErrorCode: TYPE = {
StrcamTypc, StrcamAccess, StreamOperation,
StrcamUnit, Stream Position, StrcamEnd, StreamBug};

As the definition implies, each stream object contains procedures that implement the standard
stream operations, as described below (5 is a StreamHandle, i is an item of the appropriate type,

and "code error" means that SIGNAL StreamError[s,code] is executed):

reset[s] restores the stream to some initial state, generally as close as possible to the state
it is in just after it is created.

get[s] returns the next item; StreamAccess error if s cannot be read or if endof[s] is true
before the call.

putback[s,i] modifies the stream so that the next get[s] will return i and leave s in the
state it was in before the putback.

put[s,i] writes i into the stream as the next item; StreamAccess error if the stream cannot
be written; StreamEnd error if there is no more space in the stream.

endof[s] TRUE if there are no mOore items to be gotten from s. For output streams,
endof is device-dependent

destroy[s] destroys s in an orderly way, freeing the space it occupies. Note that this has
noting to do with deleting any underlying data structures or processes associated with the
stream (like a disk file, for example, or the keyboard process).

Each of these operations is defined more precisely in the descriptions of the individual stream
types which appear below. All of the stream routines produce the StreamType error when the
variant of the StreamObject they are passes is not what they are expecting.

Keyboard Streams

The system comes equiped with a process that monitors the keyboard, keyset, and mouse buttons
and buffers the input in one of a number of keyboard streams. The keyboard module
«MESA)KEYSTREAMS.MESA) provides a default keystream which is initially attached to the
process. Interpretation of the standard stream operations is a follows:

reset[s] clears the buffer associated with s; any characters in the buffer are lost.

get[s] returns the next character in the buffer; if endof[s] is TRUE, busy-waits
(BLOCKs if a scheduler is present in the system) until it is FALSE.

putback[s,i] modifies the stream so that the next get[s] will return i, independent of any
type-ahead. If the buffer is full, putback is a no-op (sorry about that).

put[s,i] produces a StreamAccess error.

endof[s] TRUE if there are no characters in the buffer.

destroy[s] destroys s in an orderly way, freeing the space it occupies. Any characters in
the buffer at the time of the destroy are lost. If s is the current keystream, the
StreamOperation error results.

Initially, the default keystream is the current one; the keyboard process (see
(MESA-DOC)PROCESS) always enters characters in the buffer of the current keystream, whose
handle is returned by the procedure

GetCurrentKey: PROCEDURE RETURNS [StreamHandle];

2

Any number of keyboard streams may be created, using the procedure

CreateKeyStream: PROCEDURE RETURNS [Stream Handle];

A keystream is made current by calling the procedure

OpenKeyStream: PROCEDURE [stream:StreamHandle];

The stream which was current before the call is undisturbed, except that input characters are no
longer directed to it by the keyboard process, but to stream instead. A keystream can be turned
off (cease receiving characters) by calling

CloseKeyStream: PROCEDURE [stream:StreamHandle];

The StreamOperation error results if stream is not the current stream; otherwise the default
keystream becomes current. The identity of the default keystream is returned by

GetDefaultKey: PROCEDURE RETURNS [StreamHandle];

Low-level keyboard functions: The keyboard process copies the current mouse coordinates into
the cursor coordinates each times it runs (60 times per second). The basic system does not
provide for lower level keyboard functions for for access to the keyset or mouse buttons through
the stream. For the present programs wanting to read mouse and key set buttons mllst read them
directly from memory, either in an interrupt scheduled process or in some busy wait loop. For
convenience the file KEYDEFS.MESA contains the declaration of a record containing all of the
keyboard and mouse bits which may de directly mapped onto the keyboard words in memory.

updown: TYPE = {down, up};

KeyBits: TYPE = IVIACHINE DEPENDENT RECORD [
blank: [O .. 377B], -- not used
Keysetl, Keyset2, Keyset3, Keyset4, KeysetS: up~own,
Red, Blue, Yellow: updown
Five, Four, Six, E, Seven, D, U, V, Zero, K, Dash, P, Slash, BackSlash, LF, BS: updown,
Three, Two, \V, Q, S, A, Nine, I,

X, 0, L, Comma, Quote, RightBracket, TopSpare, MiddleSpare: updown,
One, ESC, TAB, F, Ctrl, C, J, B,

Z, LeftShift, Period, SemiColon, Return, Arrow, DEL, FL3: updown,
R, T, G, Y, H, Eight, N, ~t,

Locl{, SI)aCe, Left Bracket, Equal, RightShirt, BottomSpare, FL4, FLS: updown];

Keys: POINTER TO KeyBits = -- magic memory location --;

Disk Streams

A disk stream is an array-like representation of a disk file; that is, parts of the file may reside
in memory from time to time at the convenience of the stream. Like most arrays, a stream has a
length; unlike array variables, the length of a stream may be changed by appending to it, and the
maximum length is very large. Disk streams are created by the procedures

CreatcBytcStream, CrcatcWordStrcam: PROCEDURE [filc:FilcHandlc, access:FilcOptions]
RETUHNS [StrcamHandle]

3

If file is a valid FileHandle with the appropriate access rights, it is opened and a byte or
word stream is attached to it. If access is Append only, the stream is positioned at the
end of the file, otherwise at the beginning. If access is null (zero), Read is assumed.

The stream's FileHandle and FileOptions may be read directly from the StreamObject using the
field names file and access. .

The operations allowed on the stream's length are determined by its access options (FileOptions);
these options are negotiated with the underlying file system (see
<MESA-DOC)SEGMENTATION). The options supported by the stream package are:

Read: the length is a constant.
Write: the length may decrease.
Append: the length may increase.

A disk stream has as part of its state a current index into the array representation of the file.
The first data item is at index zero, the last at length-I. An invariant of a disk stream is index
<= length. The current index and length are used in defining the semantics of the standard
operations on disk streams, which are as follows:

reset: PROCEDURE [stream:StreamHandle]

Effect: sets the index to zero.

get: PROCEDURE [stream:StreamHandle] RETURNS [item:UNSPECIFIED]

If: Read IN access AND index < length.
Effect: item ~ stream[index]; index ~ index+ 1.

putback: PROCEDURE [stream:StreamHandle, item:UNSPECIFIED]

Effect: StreamOperation error.

put: PROCEDURE [stream:StreamHandle, item:UNSPECIFIED]

If: (Write I N access AND index < length) OR
(Append IN access AND index = length).

Effect: stream[index] ~ item; index ~ index+l;
length ~ MAX[index, length].

endof: PROCEDU.RE [stream:StreamHandle] RETURNS [eof:BOOLEAN]

Effect: eof ~ index=length.

destroy: PROCEDURE [stream:StreamHandle]

Effect: IF Read "'IN access AND index#O THEN length ~ index (i.e. truncate the file if
it is not positioned at the beginning).

Actually, there is a little more to it. Disk streams deliver either byte or word items; in either
case, the index is always computed in bytes. So the description above is a simplification of what
really happens. Rather than clutter it up, suffice it to say that when accessing files in word
mode, index values are always rounded up to word boundaries.

In addition to the standard operations, the following diskstream dependent functions are
provided to efficiently copy large blocks of words to or from the stream:

4

ReadBlock: PROCEDURE [stream:StreamHandle, address:POINTER, words:INTEGER]
RETURNS [count:INTEGER]

If: Read IN access.
Effect: count ~ MIN[words,length-index];

FOR index IN [index .. index+count) DO
MEMOR Y[address] ~ stream[index];
address ~ address+l; ENDLOOP.

WriteBlock: PROCEDURE [stream:StreamHandle, address:POINTER, words:INTEGER]
RETURNS [count:INTEGER]

If: (Write IN access AND index < length) OR
(Append IN access AND index = length).

Effect: count ~ IF Append IN access
THEN words .
ELSE MIN[words,length-index];

FOR index IN [index . .index+count) DO
stream[index] ~ MEMORY[address];
address ~ address+l; ENDLOOP.

length ~ MAX[index, length].

When using ReadBlock and WriteBlock, the initial index must be on a word boundary (otherwise
the Stream Position error results). Note that the returned val ue may be less than words if the
stream's access does not allow reading or writing of the whole block (the StreamAccess error is
never raised by either of these procedures).

The stream index alluded to above is actually a structure:

StreamIndex: TYPE = RECORD [
page: PageNumber,
byte: \VORD];

The first data byte of a stream is at StreamIndex[O,O]. The current stream position can be
determined by calling

Getlndex: PROCEDURE [stream:StreamHandle] RETURNS [Stream Index];

It is quite acceptable to do double-precision arithmetic on a StreamIndex (and even single
precision operations on the individual fields, if you are carefull about borrows, carries, and
overflows). The paged structure of the index can be restored by invoking

Normalizelndex: PROCEDURE [index:StreamIlldex] RETURNS [StreamIlldex];

It returns an index whose byte field is in the range [O .. CharsPerPage). The current index may
be set by calling

SetIndex: PROCEDURE [stream:StreamHulldle, index:Streamlndex];

Note that this may actually extend the file (with unspecified data) if Append access is allowed.
To determine if this will happen, you might first want to call

FileLcngth: PROCEDURE [stream:StrcamHandle] IU~TURNS [StreamIndcx];

Note that FileLength returns the length as seen through the stream; this may differ from the

5

physical length of the disk file (if, for example, items have been appended to the stream but not
yet written to the disk).

If a physical disk location is required along with the stream position, a file address (FA) will
prove useful; it is similar to a StreamIndex with a disk address (DA) tacked on the front, except
that the page field is one origin (in the Alto file system, page zero is the leader page).

FA: TYPE = MACHINE DEPENDENT RECORD [
da: DA,
page: PageNumber,
char: WORD];

You may record the current stream position and re-establish it later, in a fashion similar to
Getlndex and SetIndex, by calling the procedures

GetFA: PROCEDURE [stream:StreamHandle, fa:POINTER TO .FA];

JumpToFA: PROCEDURE [stream:StreamHalldle, fa:POINTER TO FA];

The special thing about JumpToFA is that the disk address in the fa is taken as a hint; if it
doesn't work out (the page number or file serial number doesn't match the stream's version of
them), JumpToFA will attempt to find the requested page via the shortest route and correct the
fa accordingly. This may involve starting over at the beginning of the file. If that fails,

InvalidFP: SIGNAL [fp:POINTER TO FP];

will result, probably indicating that the file has been moved (or worse, deleted!) since the stream
was attached to it. A call on some directory searching procedure may prove usefull in this
situation, to determine if retrying the operation (with a new fp) is appropriate.

6

Alto/Mesa String Package

October 8, 1976

<MESA-DOC)STRINGS

<MESA)STRINGS.MESA contains procedures that implement various string operations. The
necessary TYPE and PROCEDURE declarations appear in (MESA)STRINGDEFS.MESA and
are described below.

SubStringDescriptor: TYPE = RECORD [
base: STRING,
offset, length: INTEGER]

TYPEs

SubString: POINTER TO SubStringDescriptor

SIGNALs

StringnoundsFault: SIGNAL [STRING]
An attempt was made to increase the length of the indicated string to be larger than the
maxlength of the string.

Overflow: SIGNAL
An input number is too large. Decimal numbers must be in the range [-32767 .. 32767];
octal numbers must be in the range [0 .. 1777778].

InvalidNumber: SIGNAL
A string is not a valid number because it is empty or contains characters other than
digits in the appropriate range.

PROCEDUREs

WordsForString: PROCEDURE [nchars: INTEGER] RETURNS [INTEGER]
Calculates the number of words of storage needed to hold a string of length nchars. The
value returned includes any system overhead for string storage.

AppcndChar: PROCEDURE [s: STHING, c: CHARACTER]
Appends the character c to the end of the string s.

AppcndString: PROCEDURE [to, from: STRING]
Appends the string from to the end of the string to.

EqualString: PROCEDURE [sl, s2: STRING] RETURNS [800LEAN]
Returns TRUE if sl and s2 contain exactly the same characters.

EquivalentString: PROCEDURE [sl, s2: STRING] RETURNS [BOOLEAN]
Returns TRUE if sl and s2 contain the same characters except for case shifts. Note that
strings containing control characters may not be compared correctly.

AppendSubString: PROCEDURE [to: STRING, from: SubString]
Appends the substring in from to the end of the string in to.

EqualSubString, EquivalentSubString:
PROCEDURE [sl, s2: SubString] RETURNS [BOOLEAN]

Analogous to EqualString and EquivalentString.

DeleteSubString: PROCEDURE [s: SubString]
Deletes the substring s from the string s.base.

The procedures below convert strings of ASCII characters to numbers in internal format.

StringToNumber: PROCEDURE [s: STRING, defradix: CARDINAL] RETURNS [INTEGEH]
The characters of s are interpreted as a (possibly signed) number whose value is
returned. defradix is used in the conversion unless the "B" or "0" notation is used.
Supplying defradix values of other than 8 or 10 is not supported

StringToDecimal: PROCEDURE [s: STRING] RETURNS [INTEGER]
The characters of s are interpreted as a (possibly signed) decimal number whose value is
returned.

StringToOctal: PROCEDURE [5: STRING] UETURNS [UNSPECIFIED]
The characters of s are interpreted as an octal number whose value is returned. The "B"
notation of the source language is accepted but not required, i.e., IB2 = 100B = 100.

SECfION 2: MAXC DIRECfORIES FOR ALTO/MESA USERS

The Maxc directory (MESA) contains the source and object files of interest to the users of the
Mesa system. The standard extension for Mesa source files is .MESA and the standard extension
for Mesa object files is .XM. A Mesa object file contains three main parts: (1) object code, (2) a
symbol table, and (3) source-to-object correspondence table (used by the debugger for
source-level debuggi ng).

The following list enuinerates the files of interest to Mesa users. The object file corresponding to
each source file listed below is also on (MESA). The parenthesized file name following the name
of DEFINITIONS modules is the name of the source file for the code which implements those
definitions -- the ultimate documentation after all.

FSPDEFS (FSP) -- free-storage package
IODEFS (STREAMIO) -- some stream I/O
MENUDEFS (MENUS) -- command menus and selections
PROCESSDEFS (PROCESS) -- basic (hard) processes
RECTANGLEDEFS (RECTANGLES) -- display bitmaps
SEGMENTDEFS (SEGMENTS, FILES, SWAPPER) -- segmentation machinery
STREAMDEFS (STREAMS) -- disk stream package

(KEYSTREAMS, DISPLAY) -- keyboard and display
STRINGDEFS (STRINGS) -- string package
SYSTEMDEFS -- simplified interfaces to some facilities
WINDOWDEFS (WINDOWS) -- display windows

In addition to the source files listed above, all the source files for the debugger and other system
components can be found on (MESA). The (MESA) directory also contains MESA.lMAGE (the
Alto/Mesa system), XDEBUG.lMAGE and XDEBUG.SYMBOLS (the Mesa "external" debugger),
COMPILER.lMAGE (the compiler), MESA.RUN (the Alto/Scpl program which "boots" the Mesa
system on the Alto), and MESASYSTEt 1.CM (an FTP command file for transfering a complete Mesa
environment from Maxc to your Alto disk). (MESA) also contains CHECKER.IMAGE (an
error-correcting Mesa syntax checker). Section 3 has directions for running CHECKER.

The Maxc directory (MESA-DOC) contains the documentation for the Mesa system. Both .BRAVO
and .EARS versions are maintained here. The following list enumerates the documentation files
of interest:

MESASYSTEMCOVER -- the cover page
MESASYSTEM -- this material, excluding the subsections of Section 1
BIND -- binding facilities
DEBUGGER -- the debugger
DISPLA Y -- display streams, windows, men us and selections
FILES -- file machinery
PROCESS -- low-level, hardware scheduled processes
STRINGS -- string manipulation package
STREAMIO -- character, string, and numerical I/O
STREAMS -- generalized stream access to I/O devices
SEGMENTS -- segmentation machinery

3

STORAGE -- simple segmentation interface, heap, and free-storage package
IMAGE -- Section 4: image files and image file facilities
MESASYSTEMDOCUMENT.EARS -- a compilation of all of the above files
MESA-NEWS.MSG -- an MSG-format news file

4

SECfION 3: HOW-TO-DO-IT

1. Finding an Alto capable of running Mesa

Any Alto with serial number 300 or greater should be capable of running Mesa. Altos
with version 23 microcode and Alto II's also run Mesa.

2. Setting up your Alto disk

First, make sure your disk contains Alto Operating System version 5 or greater. Then
obtain the text file (MESA)MESASYSTEM.CM from Maxc. This is a command file which
will transfer the basic runtime files from Maxc to your Alto. You wil1 need
approximately 1000 free pages. This command file transfers: (1) MESA.RUN, a BCPL
program which loads the ram with the Mesa emulator, loads main memory with the
kernel Mesa system, and starts execution; (2) MESA.IMAGE, the core-image of the Mesa
system; (3) XDEBUG.lMAGE, the "external" debugger; (4) XDEBUG.SYMBOLS, the symbols for
the debugger; and (5) WMANLOADER.XM, the (experimental) window manager for use in
the debugger. If the file MesaFont.AI exists, Mesa will use it for the system display;
otherwise SysFont.AI is used.

The debugger must be installed (like Swat). Run the debugger by saying mesa xdebug to
the Alto Executive. If you would like to include the window manager in the debugger,
execute a NEW-RIND-START sequence on the file WMANLOADER.XM. Then execute the
"tNs ta 11" command (control-N). See the section on the debugger for more details.

3. Preparing your source file

tvlesa accepts both unformatted ASCII and formatted BRAVO source text files. You will
note that the Alto/Mesa debugger uses the source file to print source-text descriptions of
the locus of the pc in frames and for setting breakpoints. In order to exploit this
facility, you must be sure that the source file on your Alto disk is consistent with the
object file.

4. Compiling your program

The Alto version of the compiler may be retrieved from (MESA)COMPILER.lMAGE.
(Remember that compiled versions of all DEFINITIONS modules that your program uses
must be on your disk.) Type mesa compiler to the Executive to invoke the compiler; it
will prompt for the source 'file name. \Vhen it finishes, it will prompt again; a null
filename will return you to the Alto Executive. Alternately, you may type mesa compiler
sourcel source2 ... directly to the Executive, making use of its filename completer if
you wish.

Semantic errors result in a symbolic print-out of the location of the error (in the form:
procedllre[character-position) and an indication of the type of error. The semantic
passes try very hard to muddle through with a complete diagnosis. The compiler puts all
error messages in the file sOllrcename.errlog.

Before using the compiler you may do a syntax check on the source. Obtain the binary

5

file <MESA)CHECKER.lMAGE and give the command mesa checker to the Executive. The
checker will ask you for a source file and whether you wish to have the source scrolled
on the screen while it is being checked. If. an error occurs, the checker attempts to
recover by deleting and/or inserting text (not in the file). displays the change(s), and
asks whether you wish to plow on. Note that this is pure syntax analysis, no semantic
(Le. type) checking.

5. Running your program

And now the fun really begins ... Type mesa to the Alto Executive and, after a bit of
disk rattling and ram loading, you will find yourself talking to the Mesa mini-debugger.
At this point, you are well advised to browse through the debugger's documentation in
Section 1. Basically. you must: (1) load your program and execute its initialization code

,-- NEW command, (2) bind the external references -- BIND command, and (3) start
execution -- START command. When this fails, try putting in some breakpoints or
enabling some tracing before execu~ing step (3).

6. Talking to the debugger

In addition to the commands described in the section on the debugger, an experimental
window manager allows you to view a number of display windows which contain the
debugger's typescript, the user's typescript, and a current source file. Additional windows
can be created to view other source files. The following sketchy description is meant to
suffice until display windows are more fully integrated into the debugger.

It wiJl be helpful if you try things out as you read the description below. Give the
Executive the mesa command and then give the Debug command to enter the debugger.
Be sure you have included WMANLOADER in the debugger when you installed it (see
above).

The current window, which appears on top, is determined by the position of the cursor
on the screen. The sensitive point of the cursor is generally the tip of the arrow, the
center of the bullseye or the upperleft corner of the redbutton cursor. The left edge of
the current window is a "jump bar". Moving into the jump bar gives you a double-arrow
cursor to indicate that you are in scrolling mode: clicking red while any part of the
cursor is in the jump bar will give you an uparrow which will allow you to scroll up the
file, clicking green will give you a downarrow which will allow you to scroll down the
file, and clicking yellow will give you a horizontal arrow which will allow you to to do
absolute thumbing -- to the beginning if the arrow is at the top of the window, and to
the end if it's at the bottom. A "thermometer" in the jump bar shows where you are.
Moving out of the scrolling margin without clicking the cursor will allow you to return
to selection mode.

When you're not in the jump bar, red selects a character and holding down the button
allows you to extend the selection in either direction (much like Bravo, only the selection
turns black); yellow selects a word and holding down the button allows you to extend by
word boundaries in either direction (where words are considered to be a continuous
stream of either spaces, controlchars, extra symbols, or alphanumerics). This is especially
useful for selecting the names of files to be loaded into scratch windows or giving
information to the debugger (more on this later). Holding down green will cause a menu
of commands to appear to the left of the cursor. You may select a command by pointing
at it (it wi11 turn black); something will begin to happen when you release the button. If
you change your mind prior to selecting a command, just move out of the menu before
releasing green. If you decide not to go through with a selected command, simply click

6

green and that will resume the previous state as a default option. Currently, the
commands are:

CREATE: Move the redbutton cursor around until you get to the place for the
new window -- then click red. You will get a scratch window into which you can
type things like filenames.

LOAD: The name of the file which will be loaded is the selection in the current
window. Now move the redbutton cursor into any window (except a typescript
window) and click red.

MOVE: The upper left-hand corner of the current window will stick to the
redbutton cursor while you move it around. Click red to unstick it, click green to
return to the former position.

GROW: The current window will turn gray and the lower right-hand corner of
the window will stick to the redbutton cursor while you change the size (subject
to a minimum size limitation). Click red to unstick it, click green to return to its
former size.

DESTROY: Move the bullseye cursor into the window you want to kill off and
click red. If you try to destroy any of the typescript windows, it will ignore you.

STUFF IT: Takes the current selection of the active window and stuffs it into
the input stream of the window that is selected by clicking red.

Examples of the use of STUFF IT:

7

This command is useful for selecting procedure or program names as well as a unique string for setting
a breakpoint. It might be helpful to create a scratch window that contains frequently used procedure
names, program names, Debugger command letters, and even a space and carriage return (for lazy
typists). Then you might select the identifier of your choice and "stuff it" into the debugger's window
eliminating the hazards and time lost by incorrect typing and searching. You can also go into the
source file of a program and select a unique word or string of words that the debugger can then use to
set a breakpoint.

After any action is taken, the current window is refreshed and its selection is updated.

Good luck! Be of good humor! And please, please feel free to send suggestions, requests,
plaudits, and complaints to Chuck Geschke who will darken or brighten the day of the Mesan to
whom they should be directed.

SECfION 4: IMAGE FILES

<MESA-DOC>IMAGE

December 1, 1976

A Mesa image file contains the code, data, and control information necessary to start execution
of a Mesa system. This section defines the format of image files and the facilities provided to
make them.

Format:

ImageHeader: TYPE = MACHINE DEPENDENT RECORD [
version: CARDINAL, -- should be 1
options: 'VORD, -- should be 0
av, gft, sci: POINTER,
state: State Vector,
map: ARRAY OF MapItem];

MapJtem: TYPE = MACHINE DEPENDENT RECORD [
page, count: [0 .. 255]];

The first data page of an image file is a record of type IrnageHeader. The size of the array
depends on the number of page groups in the file. The last element of the array is
Mapltem[O,O]. The version field iden tifies the version of the format being used (currently only
version 1 is defined). The options field specifies other data about the image file as a bit mask.
Currently no options are supported. The three pointers, av, gft, and sci are the initial values for
those processor registers. The StateVector in state is the initial state of the program. This
StateVector will be loaded as the lowest priority process and will be started using the Mesa
TRA NSFER WITH construct.

After the first page, the remaining pages of the file contain the pages to be loaded into
memory. The entries in the map array identify the core locations and number of pages in each
page group. The MESA.RUN program which loads an image file will load page groups until it
encounters IVlallItem[O,O].

Making Image Files:

The basic system contains code to make an image file of itself and any user programs which
have been loaded. Users may invoke this code either with the mini debugger's Makelmage
command or by calling the following procedure:

I\tJakeImage: PUOCEDURE [name: STHING, symbolsToImage: BOOLEAN];

If symbolsToImage is TRUE then all symbol table segments in the system will be copied into the
image file. Since symbol tables are usually very large (compared to code) lIsing this option will
create very large image files. In particular, the size of the image file will be approximately the
sum of the sizes of MESA.lMAGE and any user program files included. When symbolsToImage is
FALSE the symbol segments are left attached to their original files. The Makclmage procedure

contains code to lookup these files and reattach the symbol tables when the image file is
restarted. If any symbol file is not present, the system behaves as if the symbol segment had
been deleted. There is no check to assure that the files found when the image file restarts
contain the same data as the files of the same names when the image file was created.

The mini debugger's Makelmage command accepts a filename, defaults the extension to ".image"
and calls MakeImage[name,FALSE]. The Makelmage procedure always returns to the Alto
Executive since there is no graceful way to continue from making an image file. When the
image file is restarted, MakcImage returns to its caller as if nothing had happened. If
MakeImage was called by the mini debugger, the mini debugger will be ready to accept a new
command. A program which calls MakeImagc may continue executing normally.

Restrictions:

1. The name of the new image file may not be the same as the name of the image file running at
the time MakeImage is called. An image file can be renamed any time it is not running.

2. The user program should not have handles on any files or disk streams. Any FileSegments
allocated by a user program will be' made a part of the new image file.

3. Makclmage should only be called from process priority level 14, i.e. the process at which the
mini debugger starts running.

4. This list of restrictions may not be exhaustive. In general you should avoid doing anything
other than loading and binding modules and initializing data structures before making an image
file.

2

<koalkin>debugsum.bravo
DEBUGGER SUMMARY

DEBUGGER COMMANDS:
Bind
BReak Entry

Exit
CAse Ignore
CAse Heed
CLear All Breaks [confirm]

Entries [confirm]
Traces [confirm]
Xits [confirm]

Break
Entry Break

Trace
Program Break

Trace
Trace
Xit Break

Trace
COremap [confirm]
CReate
Display Binding path

Eval-stack
Frame
Module
Stack
Variable

tNstali [confirm]

WHAT DEBUGGER MOUSE BUTTONS DO:

RED
YELLOW
GREEN

MENU COMMANDS:
CREATE
DESTROY
MOVE

ScrollBar
ScrollUp
Thumb
ScrollDown

WHAT MENU MOUSE BUTTONS DO:

Interpret Array

Load
New

Call
De-reference
Expression
Pointer
Size
@

Octal Clear Break
Set Break
Read
Write

Proceed [confirm]
Quit [confirm]
Reset context
SEt Break

Context
Octal Context
Program Break

Trace
STart

Trace

Trace All Entries
Exits

Entry
Exit

TextArea
Select/Extend characters
Select/Extend words
Menu Commands

GROW
LOAD
STUFF IT

RED "Do it" - in this window/ at this spot
GREEN Reset to previous state

DURING TYPE IN TO TYPESCRIPT WINDOW:
tA delete character tX
tH delete character tR
tW delete word tV
tQ delete word esc

delete line
retype line
" next
old string

Programmer'.s Addendum:
Mesa Language Manual, Version 1.0

The initial release of the Mesa Language Manual is intended to present the Mesa
language as it will be when the compiler is transferred from PARe to lTG/SOD in the first
quarter of 1977. This addendum describes the differences between the current
language and the language as given in the manual. It also corrects any errors which
have been detected in the Manual. Lastly, it includes a reference grammar for the
current language (which will eventually be included as an appendix to the manual itself).

Mesa users are urged to report any discrepancies which they find in the manual or in this
addendum so they can be corrected in future versions. In future versions of the
addendum we will give credit to the first person to report a given error. Any person who
finds more than one distinct, previously unreported error in a single release of the
manual or the addendum will also receive a commendation suitable for framing.

Jim Mitchell, 2 Nov 76

Programmer's Addendum: Mesa Language Manual Version 1.0 1

A.1 Errata in Version 1.0 of the Mesa Language Manual

This section is a partial reproduction of the table of contents for the manual with errata
inserted following the section heading for the section in which they appear. This is an
experiment, and I would appreciate any feedback on the utility of listing errors this way
or any alternate ways of doing so.

CHAPTER 1. A GUIDE TO PRESENTATION OF THE MESA LANGUAGE

1 . 1. Syntax Notation

CHAPTER 2. BASIC TYPE CONCEPTS AND SIMPLE DATA TYPES

2.5. Subrange variables

The compiler currently does not do range checking on the use of subrange variables at
either compile or run time.

1

1

4

12

2.5.1. Specifying intervals 13

Empty intervals are not allowed in declarations. However. they can be used when
specifying the bounds for a FOR loop or with the IN relational operator.

2.6. Constructing and defining types 14
On the Alto, if a subrange covers more than 215_1 values, its internal representation
(which always represents the lowest value in the range as zero) will include some values
which, viewed as integers, are negative. Thus, unsigned arithmetic will be needed for
adding, subtracting. comparing, etc. values in ranges. At the moment, this is not
guaranteed to work correctly. except for the fundamental operators (~. =, and #).

CHAPTER 3. COMMON CONSTRUCTED DATA TYPES 17

3.2. Sets 21
SETS ARE NOT YET IMPLEMENTED AT ALL. Enumerated types do work, however.

3.3. Arrays 24
General expressions cannot be used when indexing or when calling a procedure; in
particular, the form (exp)[exp] is not allowed.

3.4. Records 28
3.4.1. Field lists 28

Default values cannot be specified for components of records. Thus, any components.
defaulted in a constructor (sec. 3.4.4) have an indefined value.

3.4.2. Declaration of records 30
The current compiler does not pack components in records in any optimal way. It only
guarantees that fields which require less than one word do not overlap a word boundary.

3.4.5. Extractors
An extractor may not contain an imbedded extractor: i.e., an assignment such as the
following is not allowed:

[a, [b, c, d], e] ~ someRecordValue;

3.5. Pointers
3.5.1. Constructing pointer types

ORDERED pointer types are not implemented.

3.5.2. Automatic dereferencing
Most automatic dereferencing is not implemented except for single-level dereferencing
used with pointer qualification. For example. ptr.component and ptrt.component are
equivalent. but if ptr2 were defined as follows:

ptr2: POINTER TO POINTER TO foo;
then ptr2.component is not equivalent to ptr2t t .component. In fact. ptr2.component is not
type-correct and will cause an error. Automatic de referencing without qualification is not
implemented at all. thus the example in this section

candidate 1 ~ winner;
will cause an error from the compiler.

35

36
38

40

Program-rn'e(s Addendum: Mesa Language Manual Version 1.0 2

CHAPTER 4. ORDINARY STATEMENTS 45

CHAPTER 5. PROCEDURES 62

5.4. Procedure calls 67
5.4.2. Arguments, parameters, and defaults 69

Arguments to a procedure cannot be defaulted, and defaults cannot be specified for
procedure parameters.

CHAPTER 6. STRINGS, ARRAY DESCRIPTORS, AND VARIANT RECORDS 83

6.3. Variant records 87
6.3.3. Accessing entire variant parts, and variant constructors 92

The entire variant part of a record (such as body in a Stream) cannot be accessed as if
it were a common component except in the special case when it is being assigned a
constructed value; e.g.,

r.body ~ keyboard[]:
It may not be accessed as a rightSide, nor in an extractor.

CHAPTER 7. MODULES AND PROGRAMS 95

7. 1. The fundamentals of modules 95
7.1.1. Including modules in a module: the DIRECTORY clause 97

There is no check for agreement between identifiers declared in the DIRECTORY clause
and the names in the included modules.

7.1.2. Implications of recompiling included modules 98
Currently, the Alto compiler is unable to determine that a particular object module is the
same one used when compiling some module which includes a module of that name.
Thus, it is doubly important for the user to keep track of the order of compilation for a
set of interrelated modules and to correctly recompile them when changes are made.

7.4. Controlling module interfaces: PUBLIC, PRIVATE, and READ-ONLY 103
READ-ONLY is not implemented.

7 .4.4. READ-ONLY in pointer types 106
READ-ONLY is not implemented.

7.4.5. IMPLEMENTING 106
The compiler does not check that a module which is IMPLEMENTING. a DEFINITIONS
module provides actual procedures corresponding to the procedure interfaces given in the
DEFINITIONS module.

7.6. Loading modules 111
7.6.1. The NEW operation 111

Currently, the arguments in a NEW operation are not checked either for number of
arguments or for type-equivalence with the parameters specified for the program being
instantiated.

Keyword constructors cannot be used in argument records for NEW, nor can arguments
be defaulted.

The instance of a program created by NEW is started immediately, and the pointer to its
frame is only returned to the creating program when the new instance does a STOP.
Thus, if the new instance generates a signal which causes the creator to regain control
(via an EXIT, RETRY, CONTINUE, or GOTO in a catch phrase), the pointer to the new
frame will never have been stored and there will be no way to START the new instance
again later.

7.7. BINDing a module
The form "THIS identifier" is not implemented.

112

Programmer's Addendum: Mesa Language Manual Version 1.0 3

CHAPTER 8. SIGNALLING AND SIGNAL DATA TYPES 118

CHAPTER 9. PORTS AND CONTROL STRUCTURES 126 .

9.1. Syntax and an example of PORTs 126
The current syntax for PORTs does not allow RESPONDING.

9.2. Creating and starting coroutinesj JOINing PORTs
9.2.1. The JOIN statement

The JOIN statement is not yet implemented. Anyone needing to use PORTs can JOIN
them using the JOIN procedure as specified in section A.3 of this addendum.

9.2.3. Control faults and linkage faults
PortFault is currently named PortControlFault.

APPENDICES

A. Pronouncing Mesa

B. Conventions for names and program format

128
129

135

136

Programmer's Addendum: Mesa Language Manual Version 1.0 4

A.2 Collected Grammar for Mesa

The Mesa grammar in this section has been divided into four parts, corresponding to the
syntax for CompiiationUnit, TypeSpecification, Statement, and Expression. These four parts
refer to each other and occasionally use syntax rules from other parts (such as LeftSide
which is used in an assignment statement but defined under Expression). Where such
cross references occur, a comment has been added to indicate which part to refer to.
Other than this, each part is self-contained, and the productions within a part have been
ordered alphabetically by their names -- except that the productions for Compilation Unit,
TypeSpecification, etc. each head their respective sections. Feedback on this ordering
or on alternatives would be appreciated.

CompilationUnit .. -.. -

Declaration

Directory
DefinitionsFrom
identifier : ModuleHead = GlobalAccess
Module8ody

::= IdUst : Attribute TypeSpecification Initialization; I
IdUst : Attribute TYPE = Attribute TypeSpecification ; I
IdUst : External TypeSpecification ;

DeclarationSeries ::= empty I DeclarationSeries Declaration

Directory ::= empty I DIRECTORY IncludeUst ;

DefinitionsFrom ::= empty I DEFINITIONS FROM IdUst ;

FileName ::= stringUteral
GlobalAccess

IdUst

Implementing

IncludeUst

Module8ody

ModuleHead

ModuleParams

Sharing

::= Access -- in Declaration

::= identifier I IdUst , identifier

::= empty I IMPLEMENTING identifier

::= identifier : FROM FileName I
IncludeList , identifier : FROM FileName

::= BEGIN
OpenClause -- in Statement
DeclarationSeries
StatementSeries
END.

::= PROGRAM ModuleParams Implementing Sharing I
DA T A ModuleParams Implementing Sharing I
DEFINITIONS Sharing

::= empty I [NamedFieldUst] -- in Declaration

::= empty I SHARING IdUst

StatementSeries ::= empty I Statement I
StatementSeries ; Statement

TypeSpecification :: =
Typeldentifier I
TypeConstructor

Access ::= e~pty I PUBLIC I PRIVATE

Adjective ::= identifier

ArrayDescriptorTC ::= DESCRIPTOR FOR ArrayTC

ArrayTC ::= ARRAY IndexType OF TypeSpecification I

Attribute

Common Part

EnumerationTC

External

FieldUst

IndexType

Initialization

ARRAY OF TypeSpecification

:: = Access Protection

::= empty I NamedFieldUst ,

.. - { IdUst }

::= empty I EXTERNAL

::= [UnnamedFieldUst] I [NamedFieldUst]

::= SubrangeTC I EnumerationTC I Typeldentifier

::= empty I ~ InitExpr I = InitExpr

InitExpr

Interval

Programmer's Addendum: Mesa Language Manual Version 1.0

::= Expression I
ProcedureLiteral I
[Expression] I
CODE

[Expression .. Expression] I
[Expression .. Expression) I
(Expression .. Expression] I
(Expression .. Expression)

MachineDependent

NamedFieldUst .. -

::= empty I MACHINE DEPENDENT

IdUst : Attribute TypeSpecification I

ParameterUst

PointerTC

PortTC

PredefinedType

ProcedureUteral

ProcedureTC

Protection

RecordTC

ReturnsClause

SignalOrError

SignalTC

SubrangeTC

Tag

TagType

NamedFieldList , IdUst : Attribute TypeSpecification

.. - empty I FieldUst

::= POINTER TO Protection TypeSpecification

.. - PORT ParameterList ReturnsClause

::= INTEGER I BOOLEAN I CARDINAL I
CHARACTER I STRING

::= BEGIN
OpenClause
DecJarationSeries
StatementSeries
END

-- in Statement
-- in CompilationUnit
-- in CompilationUnit

::= PROCEDURE ParameterList ReturnsClause

::= empty I READ-ONLY

::= MachineDependent RECORD [VariantFieldUst]

::= empty I RETURNS FieldList

.. - SIGNAL I ERROR
::= SignalOrError ParameterUst ReturnsClause

::= Interval I Typeldentifier Interval

::= identifier: Attribute TagType I
COMPUTED TagType

::= TypeSpecification I •
TypeConstructor ::= ArrayDescriptorTC I ArrayTC I EnumerationTC I

PointerTC I PortTC I ProcedureTC I RecordTC I
SignalTC I SubrangeTC

Typeldentifier ::= PredefinedType I identifier I
identifier . identifier I
Adjective Typeldentifier

UnnamedFieldList ::= TypeSpecification I
UnnamedFieldList , TypeSpecification

Variant .. - IdUst => [VariantFieldList] • I
IdUst = > NULL ,

VariantFieldList .. - CommonPart identifier: Attribute VariantPart I
VariantPart I
NamedFieldUst I
UnnamedFieldList

VariantList .. - Variant I VariantUst Variant

VariantPart .. - SELECT Tag FROM
VariantList
ENDCASE

5

Programmer's Addendum: Mesa Language Manual Version 1.0

Statement .. -.. -

AdjectiveList

Assignation

AssignmentStmt

BindStmt

Body

Call

Catch
CatchPhrase

CatchSeries

ChoiceSeries

CompoundStmt

ConditionTest

ContinueStmt

Direction

ElseClause

EnableClause

ErrorCall
ExitsClause

ExitSeries

ExitStmt

Extractltem

Extractor

FinalStmtChoice

FinishedExit

GotoStmt

IfStmt

Iteration

IterativeControl

KeywordExtract

AssignmentStmt I BindStmt I Call I
CompoundStmt I ContinueStmt I ErrorCall I
ExitStmt I GotoStmt I IfStmt I LoopStmt I
NullStmt I ResumeStmt I RetryStmt I
ReturnStmt I SelectStmt I SignalCall I
StartStmt I StopStmt

::= Adjective I AdjectiveList , Adjective -- in TypeSpecification

.. - FOR identifier +- Expression , Expression

.. - LeftSide +- Expression I -- LeftSide in Expression
Extractor ~ Expression

.. - BIND Expression

.. - OpenClause
EnableClause
StatementSeries -- in CompiiationUnit

.. - LeftSide I -- in Expression

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

.. -

LeftSide [ComponentList] I -- ComponentUst in Expression
[ComponentList ! CatchPhrase]

IdUst = > Statement I ANY = > Statement
Catch I CatchSeries ; Catch

IdUst = > Statement I
CatchSeries ; IdUst => Statement

AdjectiveUst = > Statement ; I
Choice Series AdjectiveList = > Statement ;

BEGIN
Body
ExitsClause
END

empty I WHILE Expression I UNTIL Expression

CONTINUE

empty I INCREASING I DECREASING

empty I. ELSE Statement

ENABLE Catch ; I
ENABLE BEGIN Catch Series END ;

ERROR Call I ERROR
EXIT ExitSeries I EXIT ExitSeries ;

LabelUst = > Statement I
ExitSeries ; LabelList => Statement

EXIT

empty I LeftSide
[KeywordExtractList] I
[PositionalExtractList]

empty I = > Statement

FINISHED = > Statement I
FINISHED = > Statement ;

GOTO Label I GO TO Label

IF Expression THEN Statement ElseClause

FOR identifier Direction IN Subrange -- Subrange in Expression

empty I Repetition I Iteration I Assignation

identifier : Extractltem

KeywordExtractUst ::= KeywordExtract I

Label .. -
LabelUst .. -
Leftltem .. -
LoopControl .. -
LoopExits .. -

KeywordExtractUst , KeywordExtract

identifier

Label I LabelList I Label

Expression

IterativeControl ConditionTest

ExitSeries I FinishedExit I ExitSeries ; FinishedExit

6

Programmer's Addendum: Mesa Language Manual Version 1.0

loopExitsClause ::= empty I REPEAT loopExits

loopStmt .• - loopControl

NullStmt .. -
OpenClause .. -
Openltem .. -
OpenUst .. -

DO
Body
loopExitsClause
ENDlOOP

NULL

empty I OPEN OpenUst ;

Expression I identifier : Expression

Openltem I OpenUst , Openltem

PositionalExtractlist ::= Extractltem I
PositionalExtractlist , Extractltem

Repetition .. - THROUGH Subrange -- in Expression

ResumeStmt .. - RESUME I
RESUME [Componenllist] -- Componentlist in Expression

RetryStmt •. - RETRY

ReturnStmt •. - RETURN I

SeleclStmt .. -
Select .. -

SelectVariant .. -

SignalCall .. -
StartStmt .. -
StmtChoiceSeries

StopStmt .. -
Tagltem .. -
Test .. -
TestList .. -

RETURN [Componentlist]

Select I SelectVariant

SELECT Leftltem FROM
StmtChoiceSeries
ENDCASE FinalStmtChoice

-- Component list in Expression

WITH Openltem SELECT Tagltem FROM
ChoiceSeries
ENDCASE FinalStmtChoice

SIGNAL Call

START LeftSide

::= Testlist => Statement; I
StmtChoiceSeries Testlist => Statement;

STOP I STOP [! CatchPhrase]

empty I Expression

Expression I RelationTail

Test I Testlist , Test

--RelationTail in Expression

Expression: : =
AssignmentExpr I Disjunction I IfExpr I
NewExpr I SelectExpr I SignalCall

AddingOp .. - + I -
AssignmentExpr .. -
Choice list .. -
Component .. -
Componentlist .. -
Conjunction .. -
Constructor .. -
Disjunction .. -
ExprChoicelist .. -

Expressionlist .. -
Factor .. -
IfExpr .. -
IndexedReference

LeftSide ... Expression

Adjectivelist => Expression, I -- Adjectivelist in Statement
Choice list Adjectivelist = > Expression ,

empty I Expression

KeywordComponentlist I PositionalComponentlist

Negation I Conjunction AND Negation
OptionalTypeld [Component list]

Cqnjunction I Disjunction OR Conjunction

Testlist => Expression, I
ExprChoicelist Testlist => Expression,

Expression I Expressionlist , Expression

- Primary I Primary

IF Expression THEN Expression ELSE Expression

.. - LeftSide [Expression]

KeywordComponent ::= identifier: Component

KeywordComponentlist .. - KeywordComponent I
KeywordComponentlist , KeywordComponent

7

Programmer's Addendum: Mesa Language Manual Version 1.0

LeftSide

Uteral

MultiplyingOp

Negation

NewExpr

Not

::= identifier I
Call I IndexedReference I
(Expression) . identifier I LeftSide . identifier I
(Expression) t I LeftSide t I
COERCE [Expression] I
COERCE [Expression , Typeldentifier]

::= numeric Literal I
stringLiteral I
characterLiteral

.. - • I / I MOD

-- all defined outside the grammar

::= Relation I Not Relation

::= NEW LeftSide

::= 1 NOT

OptionalTypeld ::= empty I Typeldentifier

PositionalComponentList ::= Component I
PositionalComponentList , Component

Primary .. - LeftSide I Literal I Constructor I

Product .. -
Relation .. -
RelationalOp .. -
RelationTail .. -

SelectExpr .. -
SelectExprSimpJe

(Expression) I @ LeftSide I
LENGTH [LeftSide] I BASE [LeftSide] 1
MIN [ExpressionList] I MAX [ExpressionList] I
ASS [Expression] I
TypeOp [Typeldentifier] I
DESCRIPTOR [Expression] I
DESCRIPTOR [Expression , Expression] I
DESCRIPTOR [Expression , Expression , Typeldentifier]

Factor I Product MultiplyingOp Factor

Sum I Sum RelationTail

I = I < I <= I > I >=
RelationalOp Sum I Not RelationalOp Sum 1
IN SubRange I Not IN Subrange

SelectExprSimple I SelectExprVariant

.• - SELECT Leftltem FROM
ExprChoiceList
ENDCASE = > Expression

SelectExprVariant ::= WITH Openltem SELECT Tagltem FROM

Subrange

Sum

TypeOp

ChoiceList
ENDCASE = > Expression

.. - SubrangeTC I TypeJdentifier

•. - Product I Sum AddingOp Product

.. - SIZE I FIRST I LAST

8

Programmer's Addendum: Mesa Language Manual Version 1.0 9

A.3 Interim JOIN procedure

The JOIN procedure below is self-contained and needs no DEFINITIONS module to be
included in any program which contains a copy of it. A program which would have used
a JOIN statement of the form

JOIN progA.portA TO progB.portB

should instead contain a copy of the JOIN procedure (available as a separate Bravo file
on Maxc as (MITCHELL)JOINPROC.MESA) and call it as

JOIN[@progA.portA, @progB.portB]

Actually, this procedure also simultaneously accomplishes the effect of the statement

JOIN progB.portB TO progA.portA

JOIN: PROCEDURE [p 1, p2: POINTER] =
BEGIN
Port: TYPE = MACHINE DEPENDENT RECORD

[
framePtr: POINTER, -- actually a pointer to a frame
link: POINTER TO Port
];

port1.link +- p2; -- JOIN 1 TO 2
port2.link +- p1; -- JOIN 2 TO 1
END;

