Inter-Office Memorandum

To cSL, SSL | Date June 12, 1274.

From Jim Mitchell Location PARC-CSL
subject What Mesa needs in an Alto Organization

Virtual Memory Scheme

VAT I\ Y4
A\ A a)/&

Since there has been much discussion of Virtual Memory (VM) schemes
in the context of Alto "Gold Coins", it seemed appropriate that the
desires of the Mesa group be specified. This memo is a reasonably high
level description of the characteristics which would be helpful to Mesa
in a VM scheme.

Mesa Object Files
A Mesa Object Module (file) is composed of two main parts, each of
which is a contiguous group of pages in the file:

header info
: n pages
object code
Titerals
symbol
t§b1es S pages

Generally, s is larger than n, and sometimes s is twice as large as n.

The action of "loading" a Mesa module requires only that the code
pages be mapped into memory. The code is never altered in any way - all
external connections (generally procedures and ports) are in the data
associated with a program. A Mesa routine (procedure or coroutine) is
uniquely identified by a frame containing its state and local variables,
and many routines may share the code in an object module. The information
which allows Mesa to associate a symbol table and code with a routine is
kept in a frame called a creator frame. The act of "declaring" an object
‘file to Mesa causes a creator frame for that file to be made. Instances
of that module can then be created simply by transferring control to its

creator; the result is a new routine. The cost of creating new instances
is roughly comparable with the cost of a procedure call.

The header information in the code block of an object file contains
sufficient information to enable the Mesa loader to manufacture a creator
for it.

Abstractions for Managing (Overlaying) Code Blocks
A contiguous set of file pages is called a page group in Mesa, and
is identified by three values:
filehandle: some handle on a file by which the pages of the file
can be named (for example, a JFN in Tenex);

pagebase: the page in the file which corresponds to page zero in
the page group;
size: the number of pages in the group.

A page group is accessed by a PG-handle (actually a protected [sealed]
pointer) and page groups may be created, destroyed, and swapped into
memory or out. More than one page group may, in principle, be associated
with the same pages in a file. On Tenex this is accomplished by PMAPping
the appropiate file pages into the Tenex VM. One special kind of page
group, called a Window group, is provided: the pagebase and size attri-
butes of such a group are alterable after it is initially set up, and it
~can thus "window" pages of the file to which it is attached.

The code and symbol table parts of a Mesa module are each modelled as
a fixed page group by the Mesa loader, overlaying and debugging software.
The main implication of this is that Mesa code is "swapped" (overlayed) in
units corresponding to the code in a single module. Symbol tables, being
separately swappable, only consume VM space when needed by debugging or
dynamic (LISP-1ike) binding mechanisms.

The following diagram portrays the relationships between the Tenex
page-grouped VM as seen by Mesa, File memory, and Maxc disk storage (see
next page, please):

Disk

Tenex Files Skﬁ-voui-&.
vm - 7]
T /
=
‘1/”’—_”‘
/
/\
l\
,Z,\ UJQrcls Yk(y
bi- o
0 ' L V\)OrC(s

“One obvious conclusion from this diagram is that the logical grouping
of file pages which Mesa considers useful is not at all maintained at the
level of disk‘storage. A second observation is that the Tenex-provided VM
is being treated as a real memory into which a much larger VM, composed
of page groups, is mapped. For obvious efficiency reasons on Tenex, only
Mesa code and symbol tables are considered swabpab]e because pointers to
them can be controlled by software (for not-in-memory traps, etc.).

Mesa/Alto)
We would like to propose a VM scheme for Altos which supports a struc-

ture such as the following:
Atto ym
. ‘Zxo.‘l_ _f‘\\«. mocy

ll-&

° wg(‘;lﬁ

Y |

=
2 ords ‘ -3 -

The main things to notice about this second diagram are the following:

(1) As well as Tlogical page groups in VM, there are real page groups in
files which correspond to real page groups on disk storage;

(2) A physical page group represents an indivisible disk-to-real memory
unit of transfer;

(3) Logical page groups do not have to correspond to physical page groups,
but there can be considerable performance payoffs when they do, or
when they require a small number of physical page groups. This is
because the definition of a physical page group includes the fact that
reading it requires a minimal number of disk head seeks and disk
rotations. |

(4) If all physical page groups are size p, the scheme is very similar to
Tenex's VM, with page size = (p*256) words.

Sundry Details

Disk Bad Spots
The disks on Altos do have bad spots. If a bad spot develops in a

physical page group, one could either _
(a) change the single page group into (at most) three page groups,
one of which is a newly allocated single disk page to take over for
the page which is unusable; '
(b) move the page group as a whole to a new contiguous area and
free the previous area, except for the bad page, which is put into a
file of bad pages called BadSpots. :
I favor solution (b) since it uses machinery which will have to exist in
any case, and because there are very few bad spots. Its advantage is that
physical page groups are never fragmented; this might be very valuable if
someone is treating the VM as consisting of fixed size pages as mentioned
previously.

Private Memory

The memory private to a VM should just reside in a PrivateMemory file,
but without all the fiction maintained by Tenex to pretend that the JOBPMF
for a job is really a file when it is not.

Sharing VM .
Virtual memory is only sharable by sharing files; i.e., by mapping a

file name string into a logical page group in one's own VM.

-4 -

. Inter-Office Hémorandum

To: CSL/SSL Date: June 15, 1974
From: Ed.Satterthwaite : " Loc.: Palo Alto
Subject: Mesa for the Alto Org.: PARC/CSL

- 0On June 12 and 13, the group aétive]y involved in the implcmentation of
'fHesa (Geschke, Mitchell, Satterthwaite, Sweet) met to consider the ..
,prob1emwof creating a version of Mesa for the Alto. Our .conclusions .
about the major steps as well as time estimates for each are summarized
" below. -An attachment summarizes the more important interdependencies of .
“"the steps and indicates a possible division of the work among the members
of the group. : o
We belicve that certain additions and changes to TENEX Mesa are essential
before lesa can . be moved to the Alto. Host of these are well understood;
“we propose to implement them in parallel with design of an-interpretive
system for both MAXC and the Alto.

TENEX Mesa -

(l).Ncw version of the segmentation machinery (3 weeks)
(a) . complete and test mew SEGRUN and associated modules

(b) - modify debugger, loader, and bootstrapper

(c) change the compiler fo prbduco modulies with new symbol
table formats, expanded initialization code :

(d) ALSO: extend the compiler to ai1ow arbitrary named_types
(2) Finish control structures (4 weeks)

(a) '1mplemeﬁt support for the control primitives

(b) change éompiler's code generators

(c) modify debugger, binder, loader, error handling

(3)

General cleanup (3 wecks)

“(a) control structures cleanup

(b) 1mp{cment INCLUDEd program modules, revised binding
mechanism

(c) introduction of simple constructors and of sets as data
types ‘ ’

{4) Documentation (indefinite)

Alto Mesa

(5)

()

Design the interpretive machine (8 weeks)

(a) instruction set
(b) ihtcrpretive engine
{c) - Alto microcode feasibility study

Implement interpretive Mesa (i-Mesa) for TENEX (8 weeks)

(a) make anh i-Mesa TENEX compiler
(b) make a TENEX {-Mesa interpretiQe engine
(c) allow 1-Hes$ and c-Mesd modules to interact
.(d). make a complete i-Mesa system for TENEX
Note that this will not be quite identical to an i-lesa

system for Alto (e.g., 36 vs. 16 bit words, different
operating system services, etc.)

(7)'Move 1-Mesg to the Alto (8 weeks)

(a) write a simulator of the Alto operating system interface
' - for TENEX

.(b) alter low-level routines of i-Mesa to match the Alto

(c): modify 1i-Mesa compiler to produce code for the Alto's
interpretive cngine - '

A(d) modify the TENEX interpretive engine to accept Alto 1-Hesa

(e) make a complete i{i-Mesa system for Alto (running under
simulation by TENEX Mesa)

(f) write an interpretive engine in BCPL
(g9) transfer i-Mesa system from TENEX to Alto
(8) Move i-Mesa interpreter to A]io microcode (indefinite)

External Constraints

Early in the design of the interpretive machine (step 5) we need to
understand the basic facilities to be provided by the kernel
operating system for the Alto.

brior to steps 7a and 7b, we will need a precise definition of that
operating system's behavior and interfaces.

Prior to step 7f, we will need one or more dedicated Altos with

reliable and reasonably complete (but not highly tuned) utilities and

operating system. Easy access to an Alto for familiarizing ourselves

with the utilities and service routines would be helpful toward the
~end of step 5.

ygtés-

These time estimates, which are thought to be somewhere between
realistic and optimistic, 1imply that a slow but usable version of
Mesa could be running on Altos by the end of 1974 .(with some luck and
few diversions). ‘ ~

They also 1imply that, with present manpower commitments, further
investigation of the substantive issues in the design of HMesa data
structuring facilities as well as the implementation of any solutions
will be pushed well into 1975,

‘During the remainder of 1974, we would like to encourage others to
begin using TENEX Mesa to the extent that this is possible without a
major effort to produce additional documentation.

ia B s 15
3G6H :rcM CH\

I
4
4
’

i
RES

BN 2
RES

Alle

Mesa

= organited by MG

Pilan

Mesa Imp'fmen‘}q‘#‘l‘on
3 weekc 7 weeks 10 weelks
: 26 wm—eed D¢ '. .‘
' JGu, EHS IGm, cu\ e, € S\ :
. TENEX
T3y ——3 — &
7 ;1‘ Mesa
ERS
/ b _ ”1
RES 3¢ v~
RES
€a — H >
- . i > ¢
" 5 ; RES
v ¢
5% — 5 5 Cb > Ge > €l —p € 5 T7b e T —> Ty —> 7 =
w?
a n ; :' JG 4, EHS ,JGM all : Et
A []
Se : : / ’ / 1
anﬁ g woeke "c ZA Week’
5 7
/>7 CrG
Ta cMmG

XEROX

inter-Office Memorandum

To: Mesa and Alto Groups Date: August 21, 1974
From: Ben Wegbreit, Chuck Geschke Loc.: Palo Alto
Subject: The Implementation of Mesa on Alto Org.:. PARC/CSL

During the past six weeks, a number of measurements have been
performed using Tenex Mesa with an eye toward designing and predicting
the performance of a Mesa virtual machine emulated by Alto microcode,
The purpose of this memo is to ocutline the method used in this analysis and
explain some of the results.,. The measurements can be divided into two
classes: dynamic and static, The static measurements were collected as a
basis for deciding how to design a compact representation of Alto-Mesa
object code. The results of this static analysis are presented in section Vi
at the end of this memo. The dynamic statistics were gathered to (1)
analyze the compatability of the WMesa virtual machine and the virtual
memory scheme proposed for Alto by Wegbreit et. al. and (2) to give a
feeling for the performance degradation/improvement in moving from Maxc
to an Alto. We begin by giving a brief overview of the essential
components of the Mesa virtual machine.

1. The Mesa Virtual Machine

The Mesa machine consists of a number of system controlled

- registers used to point at a program module's global (own) data and code

and to point at the frame of a currently aclive procedure, In addition the
user is allotted some fixed number of registers for pointing at his privately
managed data regions. These registers will be implemented via base
registers of the virtual memory hardware. A Mesa program module
consists of a collection of subroutines and (potentially) a main body. To
facilitate subsequent discussion, let's define the following terms:

Greg: pbinter to globals of entire program

'Creg. pointer to code for main body and all procedures defined
ina module

Dreg: pointcr to the "own" data of a program modulev

Freg: pointer to the "local" data of the currently active
procedure, i.e. the frame pointer

: Uregs: pointers (user computed) to data,

The Iﬁ\plemcntatlon of Mesa on Alto August 21, 1974 Page 2

Given the notion of pagegroups in the proposed Alto virtual memory scheme,
it is desirable to minimize the number of times that various "base" registers
must be reloaded in moving between pagegroups. More precisely, a base
register will be saild to "fault"” when its. bounds registers must be reloaded.
Let's assume that the above-mentioned Mesa registers are implemented as
. base registers on the Alto. Further, let's assume that each Mesa module Is
treated as a pagegroup. Then it follows that as long as program control
remains within a given module, Creg and Dreg will not fault, Uregs, of
course, can fault at any time, What about Freg? Well, if one notes (as Is °
true in the case of Tenex Mesa programs) that the total active frame
space never grows very large, then a pageqgroup can be allocated for frame
usage so that Freg seldom, if ever, faults. Of course, when a procedure
call occurs, Freg must be changed so that it bases the new frame, This
requires reloading Freg; however, its bounds registers are unchanged and
no fault occurs, Indeed, with the observation that module own variables
also occupy a limited amount of storage in most cases, one can reasonably
allocate them from the same pagegroup as frames, Thus Dreg also seldom,
if ever, faults, Greg bases data common to the entire program; this
includes the transfer vector and other similar data. Since this s
reasonably small, it should be implemented as a single page group. Hence,
Greg never faults,

. Method of Dynamic Statistics Gathering

Fortunately Tenex Mesa is a reasonable vehicle for measuring the
behavior of such a proposed model. It already exhibits an architecture
consisting of Creg, Freg, and Dreg and allows acceptable analysis of Uregs,
A PDP-10 emulator, created at Harvard and modified at BBN to measure
Lisp, has been modified to be a suitable instrument for measuring Mesa,
Every instruction fetch and non-instruction-fetch memory access is trapped
in the emulator's interpretive loop and a call made to the.
statistics-gathering routine(s). All the various dynamic measures (while
presented separately) were gathered in parallel,

One of the first observations noted was that roughly 40%-of the
instructions being executed on Maxc were in subroutine call and return
sequences, Clearly that pomto (o the necessity of micro-emulated call and
return instructions for Alto-Mesa, Those sequences also introduced a great
deal of noise into the data collected. Hence the emulator was
re-structured to account for call and return sequences in a special manner

which will be discussed in more detail later on.

The measuring of Uregs is confused somewhat by the fact that the
present Tenex-Mesa compiler allocates user ac's in a stack-like fashion,
Almost any other allocation discipline of these six ac's would produce
better utilization for the purposes of this model. As a result the Ureg
utilization is measured in two ways, The first assumes two ac's, one for
reading and the other for writing (as in the Sturgis BCPL study), The
second simply takes. the six PDP-10 ac's as allocated in the Tenex object
code for the applicable read or write operation, The experiments show

The Implementation of Mesa on Alto August 21, 1974 Page 3

nearly no difference in the behavior of the two modes. A more reasonable
allocation scheme like LRU could be presumed to perform better but there
does not appear to be an easy mecthod to measure Iits effect.

/ll. The Mesa machine and address translation

In order to explain the results of the study of
Mesa/Alto-virtual-memory compatability, let's examine the test data
gathered for two very different Mesa programs. Example A is the MPL
compiler compiling a large (35k character) source file and example B is a -
formatting program (Ed Satterthwaite) handling a (107k character) text -
file, . :

(A) Compiling NEWMPLEXP.NLS

Instructions emulated: 14666840 ' '
Call inst: 6053898 NHon-call inst: 8612942 ‘
Non-call memory refs: 6770596 Intra-call memory refs: 4441902

Module.faults: 228633 Local calls: 155130 Total calls: 383763
Params: 499304 Ret vals: 290715
User: "R W Total RFLT WFLT Faults
© 1282887 450158 1733045 529626 1/57911 687537
AC#: R W Total . RFLT WFLT Faults
0 ‘ 27360 266859 294219 12594 12187 24781
1 - 778790 BO722 868512 362662 73421 436083 .
2 279231 166488 445719 91163 54905 146068
3 . 205313 0 205313 74233 0 74233
"4 ' 36 0 36 1 0 1
5 0 0o - 0 0 0 0
-6 0 0 "0 0 0 0

Total mem refs: 20592966

Faults on AC's 0 i;hru 6 memrefs: 1138432 5.53
Faults on 2-cache memrefs: 1144803 5.60

(B) Formatting of ch?7

Instructions emulated: 11398563
call inst: 3286631 Non-call inst: 8111032
Non-call memory refs: 5803251. Intra-call memory refs: 2415508

Module faults: 141258 lLocal calls: 54737 Total calls: 195995
Params: 187543 Ret vals: 94557 , .

R W Total RFLT WFLT Faults

User: .
398745 274688 673433 99843 112275 212118

The Implementation of Mesa on Alto August 21, 1974 " Page 4

AC# R . W Total RFLT WFLT Faults
0 122851 178238 301089 110968 114648 225616
1 232525 1875 234400 18432 1564 19996
2 25607 95959 121566 2124 795 2919
3 17699 0 17699 741 0 741
4 162 0 162 1 0 1
5 0 0 0 0 0o 0
6 0 0 0 . 0 0 0

Total mem refs: 16722681

Faults on AC's 0 thru 6 memrefs: 531789 3.18

Faults on 2-=cache memrefs: 494634 2.96
Notes:
) The runs chosen were very long because shorter runs (250k

instructions) were dominated by Initialization and user interaction with the
Mesa debugger. The compiler was run on scveral long sources and
demonstrated very uniform behavior, '

(2) Notice that instructions in call/return overhecad change from 40% to
30% betwren the compiler and formatter, The compiler uses a Tree Meta
parser which translates into long sequences of subroutine calls, The
emulator distinguishes those mcemory references which occur during
call/return. from those which do not, The intra-call/return memory
references are accounted for separately as will be described later,

(3) Procedure calls are divided into two classes: local calls and module
faults (i.e. external calls), Parameters and returned values were counted
but not used in the analysis, '

(4) The non-call/return memory references which are user computed (as
opposed to frame references, references to literals, and module own
references) were analyzed in the two ways mentioned earlier, The first
{("User:") assumes a two-pointer cache, one for reading and one for writing.
The second ("AC#:") uses the PDP-10 AC's as allocated by MPL, A fault
occurs when a pointer reference occurs to memory and the value which
appears in the pointer falls in a different pagegroup from the preceding
reference using that same pointer,

(5) "Total mem refs" are computed by summing the fallowing quan'title‘s:-

(a)non=call/return instructions

{(b)non-call/return memory refs

(c)10*local calls :
. (e)1G6*external calls

The Implementation of Mesa on Alto August 21, 1974 Page &6

In (c) the 10 comes from:

call .
allocate new frame 3 (best case)
save PC 1
save Freg 1
return '
restore Freg 1
restore PC 1

de-allocate frame S8

in (d) the 16 comes from the 10 in local call/return plus:

call
save Creg,Dreg 2
load new Creg,Dreg 2
return :
restore Creg,Dreg 2,

The "best case" assumption in frame allocation of (c) is p‘rcbably the most
common case,

(B6) Faults (in both cases) are computed by multiplying the module faults
by 2 (one load of Creg for call and one for return) and adding that to the
faults incurred by the relevant Ureg discipline., The fault rate Is computed
by dividing the faults by the total memory references, '

(7) The above experiments were first run with the assumption that Mesa
data modules (where the Uregs sometimes roam) were one page In size, The
emulator was then modified to treat each user data module as a
multi-page-pagegroup. The effect, however, was negligible,

V. Cost of Base Register. Faults

When a base register faulls, i.e. the address computed through it
does not fall in its page group, the register is reloaded by consulting a hash
" table as proposed by L. P. Deutsch. The cost of this per fault -may be
estimated as follows: . !

1 Using Peter's current micro-code ("Second Try at Lisp Microcode",
6/20/74): '

The first probe of the hash table requires 13 microinstructions; subsequent
probes require 15 microinstructions. Once the right entry is found, the
steps for reloading the base rcgisters depend on new instructions and
hardware, so this is somewhat less certain - 4 additional microinstructions
is plausible. If the hash table Is 1/2 full, then using double hashing and
assuming random hash functlions, we can expect an average of 1,3 probes
for a successful search (since an unsuccessful scarch implies a disk seek,
we won't consider that here). Hence, the mean number of microinstructlons
per fault is: 13+(.3*15)+4 = 21,5,

The lmplemer'\t.ation of Mesa on Alto August 21, 1974 i Page 6

Note: If we use linear reprobing instead of double hashing, then probes
subsequent to the first require only about 8 microinstructions, while the
mean number of probes is 1.5. This gives: 134(,.5*8)+4 =21, That is, it really
doesn't make much difference - the first probe and terminal computation
are dominent. Hence, to simplify subsequent discussion, we'll assume linear
reprobing and a mean number of probes of 1.5,

(2) ' Using special hardware:

(a) hardware hash computed Ain the memory interface board and suppliéd on
the bus reduces ecach probe by & microinstructions (from T
microinstructions needed to obtain a hash to 2), E

(b) Putti‘ng the hash table in RAM - reduces each read of the table by 2
micro=~instructions (from 4 of which one is certainly overlapped to 1). _

(c) Putting everything on the memory interface, The best possible probe
sequence would secem to be (i) compute initial probe (ii) start fetch frcm
RAM (iii) get word from RARN (iv) compare against the virtual page number
sought. A success would be followed by 2 cycles to reload the bounds and
mapping registers,

For these four possible organizations, the number of micro-instructions
needed to handle a fault are:

(a) 8+(.5*10)+4 = 15
(b) 11+(.56*8)+4 =19
(a&b) 6+(.5*6)+4 = 13
(c) 44+(.5%5)+2 = 8.5

fnnn

From the fault rate and number of micro-instructions per fault, the
performance degradation causced by faults can be computed, Simple
instructions on the Alto in Nova emulation mode require about 1200 ns per
memory reference (i.e. computation is about 1/3 non-overlapped with
memory.) This is probably low over the entire mix, but in the absence of
reliable data, we'll take this as typical. The time spent in processing faults
per unit of computation time is: faults/memory ref * microinstruction/fault
* 170 ns/microinstr * memory ref/1200 ns, -

Thus the percentage degradation for each of the hardware
organizations and each of the above fault rates are as follows;

The Implementation of Mesa on Alto _ August 21, 1974 Page 7

FAULT RATE
Organization | 5.0 3.0
all microcode 17.0% 9.1%
(a) hardware hash - . 11.8% 7.3%
(b) RAM table o 15.0% 8.0%
(adb) L 10031 5.6%

(c) all hardware 6.7% » 3.6%

Considering the estimates used in various steps, these numbers are best
treated as accurate only to within a factor of 1.5 or so either way,

V. Page Faults

Statistics on the expected number of page faults were gathered
using a model similar to H, Sturgis' ("Some Statistics for Virtual Memory
Fans, Part 2", 7/3/74). In bricf, this models a LRU page replacement
algorithin for all possible core buffer sizes as follows: A. queue of page
numbers is maintained, with the i-th most recently referencd page in the
i=th position. A vector C of integer counts in maintained in parallel, On
each memory reference, the qucue is scarched for the referenced page,
Suppose it is found to be the j-th page in the queue; then the j~th position
of C is incremented by 1 and the page Is moved to the front of the queue.
If an LRU page replacement algorithm is used with a paging buffer of k
pages, then the number of page faults is the sum C[K+1] + C[K+2] +
CIK+3] + ... ' : : '

Note: This model takes into account none of the following: cholice of dirty
vs, clean pages for replacement, page groups, types of references to
memory, . :

Page fault statistics for the two runs discussed in Section lll are as
follows: : - ’

The Implementation of Mesa on Alto August 21, 1974 Pége 8

(A) Compiling NEWMPLEXP.NLS

. Memory Refecrences Cons'id‘ered:' 15,383,534

- # pages in buffer # page faults fault rate
10 448,181 2.91 10t-2
20 259, 541 1.68 101t-2
30 161,611 1.05 10t-2
10 86,418 5.62 10+-3
50 56, 306 3.66 10t-3
60 36, 396 2.37 101-3
70 22,883 1.49 10t-3
80 15,641 1.02 10t-3
90 _ 10,713 6.96 101-4
100 ‘ 7,622 4.95 10t-4-
110 5,550 3.61 10t-4
120 3,657 2.38 10t-4
130 2,145 1.39°10t-4
140 _ 1,160 7.54.101-5
150 565 3.67 10t-5
160 . - 310 2.02 10t-5
170 132 8.58 10t-6
180 - . 84 5.46 101t-6
190 : 67 4.36 10t-6.
200 .55 3.58 10t-6
210 . 36 2.34 10t-6
220 23 1.50 101-6
230 0 0
(B) Formatting of ch?
Memory References Considered: 13,915,180
pages in buffer # page faults fault rate
10 15,404 1.11 10t-3
20 6,037 4.34 10t-4
30 3,042 2.10 10t-4
40 . . 1,335 9.56 10t-5
50 0925 6.69 10t-5
60 DO 4.80 10t-5
70 - 392 2.82 10t-5
.80 170 1.22 10t-5
90 ’ 30 2.16 10t-6
100 14 1.01 10t-6
110 : :. 0 0

Note: Memory References Considered in each case were the non-call
memory references, i.e. the sum of the classes "Non-call instr* and
"Non-call memory refs'". This was done to maintain consistency with the
data In Section . Hawever, it produces results with unduly high fault
rates since call sequences will require memory references for moving data
which are well-behaved with regard to paging. If, in fact, no faults were

The Implemehtation of Mesa on Alto August 21, 1974 Page 9

caused by these memory references then the fault rates would be lowered
by about 1/3 for case (A) and 1/5 in case (B).

To a first approximation, each Maxc page of 512 36-bit words
corresponds roughly to one Alto page of 512 16-bit words, since integers fix
on one word and it is anticipated that each instruction will fit in one word.
{This neglects characters, real numbers, large pointers, etc.) With 60 k of
main memory used for buffers, this gives 120 pages,

The effect of the fault rate on overall performance can be done in
tw_o ways:

) Elapsed time

If a portion of the disk is used for paging (like the Maxc "drum"), then the
access time on the Model 44 disk is about 30 ms and about 50 on the
Model 31. Consider case (A) as an example. Computation time is about
(15.1016)*(1,2,101-6) = 18 secconds, Given 120 pages for buffers, the
number of faults is 3,657 and the time spent in paging with a Model 44 is
(3,657)*(30.101-3) = 110 seconds, .

(2) Comparisoti with Tenex

A second way of assessing the effects of page faults in the proposed
Mesa/Alto machine is in comparison with paging in the current: Mesa:
implementation on Tenex., As the average time to access a "drum® page on
Tenex is 42 ms, the effective device speeds may be regarded as
essentially the same. Cases (A) and (B) were each rerun twice under
different load averages and the actual number of page faults (PGSTAT +1)
were obtamed

load < 2 load > 0_
(A) compiler 432 2987
(B) formatter 487 1006

What conclusions can one draw? A medium-size well- behaved
program such as the formatter, example (B), may be expected to fit in core
and never page fault, Time waiting for the disk Is only that required to
load pages, For the example run of (B), we have

Alto upper bound of time tr'J”load pages 3.3 seconds

Alto compute time (estimate) 16.7 seconds
Tenex time for page fauits 20.4 seconds
Tenex compute time (estimate) 16.7 seconds

That is, Alto Mesa might be expected to run about twice as fast for this run
- due to its lower pagmg needs.

The Implementation of Mesa on Alto . August 21, 1974 Page 10

The compiler,” example (A), Is a large program for which there has
been, to date, no major attention to obtaining good paging properties. As it
stands, its page Tault rate implies a performance of Tenex with a load
average somewhat larger than 6. That is, with 120 pages, the number of
faults is 3,657. Observe that with 1560 pages, the fault rate drops to 5§65,
Considering the ratio of compute time to paging time, there is a critical
knee in the curve at around 1650 pages, It is anticipated that with a
moderate amount of effort, the compiler could be reconfigured to shift the
curve and bring the knhee down to 120, At a fault rate of 565, Alto Mesa
would be comparable to Tenex Mesa with a load average of less than 2,

VI. Static mecasurements of Mesa Programs

A number of static mcasurements have been collected on Mesa
programs and several more remain to be gathered, The measurements
documented here were obtained (for efficiency reasons) by examining the
PDP~10 "object code for Nesa programs, More static measures are being
collected by Dick Sweet by metering the compiler but those results are not
yet available, The programs measured consisted of all the Mesa programs
stored on the {MPS> directory,

(a) Frame References

The Mesa frame Is the locus for parameters, local variables, and
(rarely) temporarics (which in this analysis are grouped with locals). The
purpose of this study is to determine how many bits of offset from Frag are

needed to address variables in the frame,

Bits “%-of-frame-references

1 38.6%
2 60.1%
3 . 81.9%
4 . 985.4%

Of course, the most frequently referenced frame variable was not
necessarily the one with smallest offset in the PDP-10 object code, Frame
variables are simply allocated in declaration order. So, what happens if
those most frequently accessed are allocated to the smallest offset
position? The following table shows the resulls for sorted frame variables,

Bits 7%-of-frame-references

1 50,3%
2 72.6%
3 89.6%
4 97.4%

The resuit of the sorting experiment shows that sorting Is only worthwhile
in the (unlikely) ecvent that one allocates only one or two bits to frame
offset addressing. :

The Implementation of Mesa on Alto August 21, 1974 Page 11

(b) Constant usage

The use of constants was measured in the object code, This
approach had good and bad aspects, On the bad side, one has to be careful
to account for constants which are implicit in certain PDP-10 opcodes (e.qg.
A0S, JUMPG, HRROI, ectc.). On the good side, once object code has been -
produced, the compiler has already done a fair amount of compile-time
evaluation of constant expressions. The measurement was done as follows,
Constants in the interval [-15,14] were counted individually. Since many of
the measured programs did characler handling, constants in the range
[156,127] were lumped into a separate bin (called CHARS). Finally all
constants less than -15 or greater than 127 were thrown into NEG and POS
bins, respectively. Here are the results: -

Constant #-of-occurrences

NEG 105
[-15,-21] 72
-1 264

0 4259

1 1705

2 422

3 227

4 143

5 122
[6,14] 627
CHAR 1259
POS 1532
Total 10737

Note that the range [0,1] accounts for 65.5% of the occurences, [-1,2]
accounts for 61.9%, and that 81.6% fall in the range [0,127]. If the domain
of constants Is limited to the range [-15,14], then the interval [0,1]
accounts for 75.4% of the occurrences, the interval [~ 12] accounto for
84.8%, and the interval [~1,6] accounts for 95.3%.

(¢) Procedures

A couple of static.meussaess. weea made for procedures that can be
compared with dynamic measurements made earlier, Procedure calls were
partitioned into local and external calls with the result:

Local calls: 1868 24.65%

External calls: 6746 756.5%

This compares with the dynamic local/external percentages of 40,4%/69,6%
and 27,9%/72.1% in examples A and. B in section lil,

The number of parameters for each procedure call were also
tabulated.

The Implementation of Mesa on Alto August 21, 1974 = Page 12

#-of -paramcters #-of-calls percentage

0 ' 1069 21.2%
1 4498 48.4%
2 2026 21.8%
3 563 6.0%
4 165 1.8%
5 700 0.7%
6 11 0%

“In dynamic example A, procedures had an average of 1.3 parameters and in
example B an average of .96 parameters,

A number of other rather PDP-10 specific static mesaurements were
also made which arc of little or no interest for Alto-Mesa., The purpose of
gathering the static data is to provide information helpful in designing a
‘compact represcntation for Alto-Mesa object code, For example, the high
frequency of one-parameter procedure calls suggests that a two operand,
single-parameter-function-call ‘instruction might be profitable. Dick Sweet
is gathering data from the compiler on more complex expressions than
those which can be conveniently deduced from object code. In particular,
if “"f[al" is so frequent, it may well be that instances of "b~f[a]" are so
common that a three operand instruction is warranted

	1-01_19740612
	1-02
	1-03
	1-04
	2-01_19740615
	2-02
	2-03
	2-04
	3-01_19740821
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12

