
Inter-Office (VJem.ornndum

To CSL, SSL

From Jim Mitchell

Subject What Mesa needs in an Alto
Virtual Memory Scheme

Date June 12,1274.

Location PARC-CSL

Organizlltion

Since there has been much discussion of Virtual Memory (VM) schemes
in the context of Alto "Gold Coins", it seemed appropriate that the
desires of the Mesa group be specified. This memo is a reasonably high
level description of the characteristics which would be helpful to Mesa
in a VM scheme.

Mesa Object Files
A Mesa Object Module (file) is composed of two main parts, each of

which is a contiguous group of pages in the file:

header info

n pages
object code

literals

symbol
tables pages

Generally, s is larger than n, and sometimes s is twice as large as n.

The action of "loading" a Mesa module requires only that the code
pages be mapped into memory. The code is never altered in any way - all
external connections (generally procedures and ports) are in the data
associated with a program. A Mesa routine (procedure or coroutine) is
uniquely identified by a frame containing its state and local variables,
and many routines may share the code in an object module. The information
which allows Mesa to associate a symbol table and code with a routine is
kept in a frame called a creator frame. The act of "declaring" an object

'file to Mesa causes a creator frame for that file to be made. Instances
of that module can then be created simply by transferring control to its

creator; the result is a new routine. The cost of creating new instances

is roughly comparable with the cost of a procedure call.

The header information in the code block of an object file contains
sufficient information to enable the Mesa loader to manufacture a creator
for it.

Abstractions for Managing (Overlaying) Code Blocks
A contiguous set of file pages is called a ~ group in Mesa, and

is identified by three values:
filehandle: some handle on a file by which the pages of the file

can be named (for example, a JFN in Tenex);
pagebase: the page in the file which corresponds to page zero in

the page group;
size: the numb~r of pages in the group.'

A page group is accessed by a PG-handle (actually a protected [sealed]
pointer) and page groups may be created, destroyed, and swapped into
memory or out. More than one page group may, in principle, be associated
with the same pages in a file. On Tenex this is accomplished by PMAPping
the appropiate file pages into the Tenex VM. One special kind of page
group, called a Window group, is provided: the pagebase and size attri­
butes of such a group are alterable after it is initially set up, and it
can thus "window" pages of the file to which it is attached.

The code and symbol table parts of a Mesa module are each modelled as
a fixed page group by the Mesa loader, overlaying and debugging software.
The main implication of this is that Mesa code is "svJapped" (overlayed) in
units corresponding to the code in a single module. Symbol tables, being
separately swappable, only consume VM space when needed by debugging or
dynamic (LISP-like) binding mechanisms.

The following diagram portrays the relationships between the Tenex
page-grouped VM as seen by Mesa, File memory, and Maxc disk storage (see
next page, please):

-2-

D:~k
s CI.) I'v..~-L

. One obvious conclusion from this diagram is that the logical grouping
of fi1e pages which Mesa considers useful is not at all maintained at the
level of disk storage. A second observation is that the Tenex-provided VM
is being treated as a real memory into which a much larger VM, composed
of page groups, is mapped. For obvi ous effi ci ency reasons_ on Tenex, only
Mesa code and symbol tables are considered swappable because pointers to

them can be controlled by software (for not-in-memory traps, etc.).

Mesa/Alto
We would like to propose a VM scheme for Altos which supports a struc­

ture such as the following:
A«o YM

-3 -

The main things to notice about this second diagram are the following:
(1) As well as logical page groups in VM, there are real page groups in

files which correspond to real page groups on disk storage;
(2) A physical page group represents an indivisible disk-to-real memory

unit of transfer;
(3) Logical page groups do not have to correspond to physical page groups,

but there can be considerable performance payoffs when they do, or
when they require a small number of physical page groups. This is
because the definition of a physical page group includes the fact that
reading it requires a minimal number of disk head seeks and disk
rotations.

(4) If all physical page groups are size p, the scheme is very similar to
Tenex's VM, with page size = (p*256) words.

Sundry Details

Disk Bad Spots

The disks on Altos do have bad spots. If a bad spot develops in a
physical page group, one could either

(a) change the single page group into (at most) three page groups,
one of which is a newly allocated single disk page to take over for
the page which is unusable;
(b) move the page group as a whole to a new contiguous area and
free the previous area, except for the bad page, which is put into a
file of bad pages called BadSpots.

I favor solution (b) since it uses machinery which will have to exist in
any case, and because there are very few bad spots. Its advantage is that
physical page groups are never fragmented; this might be very valuable if
someone is treating the VM as consisting of fixed size pages as mentioned
previously.

Private Memory

The memory private to a VM should just reside in a PrivateMemory file,
but without all the fiction maintained by Tenex to pretend that the JOBPMF
for a job is really a file when it is not.

Sharing VM
Virtual memory is only sharable by sharing files; i.e., by mapping a

file name string into a logical page group in one's own VM.

~-

, Inter-Office Memorandum

To: CSL/SSL Date: June 15, 1974

From: Ed,Satterthwaite Lac.: Palo Alto

Subject: f1csa for the A 1 to Oro.: PARC/CSL

, On June 12 itnd 13, the group actively involved in the implementation of
Mesa (Geschke, Mitchell, Satterthwaite, Sweet) met to consider the

,problem of creatinn a version of ~'esa for the Alto. Our ,conclusions
about tho major steps itS well as time estimates for each afO summarized
below.' ,An attachment summarizes the more important interdependencies of

-thh ~tcps 'and indicates a possible division of the work among the members
of the grOlJp. . I

Ho bel ieve that 'cor'tain additions and Change's to TENEX "tesa are essential
beforo Mesa cah,be moved to the Alto. Most of these are well undorstood;

"-Ie propose to implement them in parallel ''lith desfon of on· interpretive
system for b9th HAXC und tho Alto.

TENEX Mesa ---- ----

(1) ~m'l version of the segmentation machinery (3 weeks)

.. Ca.) complete and test n'ew SEGRUN and associated modules

(b) modify debugg~r, loader, and bootstrapper

(c) change the comp,iler to produco modules with nC\'I symbol
table formats, expanded initialization code

(d) ALSO: extend the compiler to allow arbitrary named types

(2) Finish control structur~s (4 weeks)

(a) implement support for the control primitives

(b) change compiler's code generators

(c) mod i fy debugger, b 1 nder, loader, error hand 11 ng

(3) General cleanup (3 weeks)

(a) control structures. cleanup

(b) imp lement INCLUDEd program modu 1 e5, rov1 sed b 1 nd 1 ng
mechanism

(c) in troduc t i on of simp 1 e cons true tors and of sots as data
types

(4) Documentation (indefinite)

Alto HOSil -- ---

(5) 0 e 5 i 9 nth e i n t e r pre t i ve mac h i n e (8 \-19 e k s)

(a) instruction set

'(b) intorpretive en9ine,

,·(c.) .. Alto microc'ode feasibility' study

(6) Implement interpretive Mesa (i-Mesa) for TENEX (8 weeks)

(a) make an i-Mesa TENEX compiler

(b) make a TENEX i-Mesa interpretive engine

(e) nllow i-Mesa and c-Mestl modules to interact

(d) ma~e a complete .i-Mes~ system for TENEX

Note that this will not be, Quite identical to nn i-Mesa
system for Alto (e.g., 36 vs. 16 bit words~ different
operating system services, etc.)

(7) Move i-Mesa to the Alto'(8 weeks)

(a) write a simulntor of the Alto operating system interface
for TENEX

(b) alter low-level routines of i-Mesa to match the Alto

(c)· mod i fy i -Mesn comp i lor to produco code' for the A 1 to's
interpretive engine

,(d) modify the. TENEX interpretive engine to accept, Alto i-Mesa

(0) make' a complote i-~1esl\ system for Alto (runn1ng under
simulation by TENEX Mesa)

(f) write an interpretive engine in BCPL

(g) transfer i-Mesa system from TENEX io Alto

(8) Move i-Mesa interpreter to Alto microcode (indefinite)

Early in the design of tho interpretive machine (step 5) we need to
understllnd the basic facilities to be provided by tho kernel
operating system for the Alto.

Prior to steps 7a and 7b, we will need a precise definition of that
operating system's behavior and interfaces.

Prior to step 7f, we ''/111 need one or more dedicated Alto"s with
roliable and reasonably complete (but not highly tuned) utilities and
operating system. Easy access to an Alto for familiarizing ourselves
with the utilities nnd service routines would be helpful toward the
end of step 5.

Notes ----

These time es t; ma tos t wh i ch are thought to be somm·,her"e between
rca1istic nnd optimistic, imply that a slo~·, but usable version of
Mesa could be running on Altos by the end of 1974.(with some luck and
fe\'! diversions).

They a 1 so imp ly tha t, wi th presen t manpower commi tmen ts, further
investigation of tho substilntive issues in the design of Nesa data
structuring fnci1ities as well as the implementation of any solutions
''Ii11 he pushed \>/e11 into 1975.

During the" remainder of 1974, \'Ie would like to encourage others to
beuin LJsing TENEX Mesa to the extent that this is possible without a
major effort to produce additional documentation.

ReS

5G\
"n ~ ~
Sob

-~
~'I *

Sc /
edt ~ 8

R E' S

: /:. 3<\ ~ :
; /' JCo"', [tis \, :

2. -~3b ~3

3c "
RES

,

--~4

~Q ----~f--------------------------~~ Ie

/ RES

5 ~ bb ->bC --t> (J -) b
:U; tA.., EHS J"G M

I
wo(" kr

cd'

I
24- wee ~J

7f
CM.G

XERO)(

Inter-Office Memorandum

To: Mesa and Alto Groups Date: August 21, 1974

From: Ben Wegbreit, .Chuck Geschke Loc.: Palo Alto

Subject: The Implementation of Mesa on Alto Org.: PARC/CSL

During the pnst six weeks, a number of measurements have been
performed using Tenex Mesa with an eye toward designing and predicting
the performance of a Mesa virtual machine emulated by Alto microcode.
The purpose of this memo is to outline the method used In this analysis and
explain some of the results. The measurements can be divided into two
classes: dynamic and static. The static measuremenls were collected as a
basis for deciding how to dc·sign a compact representation of Alto-Mesa
object code. The rc~ults of this stntic analysis are presented in section VI
at the end of this memo. The dynamic statistics were gathered to (1)
analyze the compatability of the Mesa virtu .. 1 machine and the virtual
memory scheme proposed for Alto by Wegbrcit ct. nl. and (2) to give a
feeling for the performance degradation/improvement in moving from Maxc
to an Alto. We begin by giving a brief overview of the essential
components of the Mesa virtual machine.

I. The Mesa Virtual Machine

The Mesa machine consists of a number of. system controlled
registers used to point nt D progrnm module's global (own) dnta nnd code
and to point at the frame of a currently aclive procedure. In addition the
user is allotted some fixed number of registers for pointing at his privately
managed data regions. These registers will be implemented via base
registers of the virtual memory· hardwnre. A Mesa program module
consists of a collection of subroutines and (potentially) a main body. To
facilitate subsequent discussion, letts define the following terms:

Greg: pointer to globals of entire program

Creg: pointer to code for main body· and all procedures defined
In a module

Dreg: pointer to the "own" data of a program module

Freg: pointer to the "Iocnl" data of the currently active
procedure, I.e. the frame pointer

Uregs: pointers (user computed) to data.

The Implementation of Mesa on Alto August 21, 1974, Page 2

Given the notion of pClgcgrOlJps In the propo5ed Alto virtual memory scheme,
it is desirllble to miniinizc the number of times that various "base" registers
must be reloaded in moving betw(!cn pllgegroups. More precisely, a base
register will be snld to "fnult" when its, bounds regis ters must be reloaded.
Let's assumc thnt the nbove-mentloned Mesn registers are implemented as
base registers on the Alto. Further, let's rtssume thllt each Mesa module Is
treated as a pagegroup. Then it follows that CIS long as progrom control
remains within i;l given module, Creg unci Dreg will not fault. Uregs, of
course, cnn fault nt (lny time. What nbout Freg? Well, if one notes (as Is
true in the case of Tenex .Mesa prO{Jram5) that the total active frame
space never grows very Inrgc, then a pc1gegrollp con be allocated for frame
usage so that Freg seldom, if ever, faults. Of course, when a procedure
call occurs, Frcg must be changed so that it bases the new frame. This
requires reloading Freg; however, its bounds registers are unchanged and
no fault occurs. Indeed, with the observation that module own variables
also occupy a limited amollnt of storage in most cases, one can reasonably
allocate them from the same pagegroup as frames. Thus Dreg also seldom,
if ever, faults. Greg bases data common to the entire program; this
includes the transfer vector and other similar data. Since this I~
reasonably small, it should be implemented as a single pag,e group_ Hence,
Greg never faults.

II. MetlJo·d of Dynamic Statistics Gathering

Fortunately Tenex Mesa is a reasonable vehicle for measuring the
behavior· of such a proposed model. It alrendy exhibits an architecture
consisting of Crcg, Freg, and Dreg find allows acceptable analysis of Uregs.
A PDP-10 emulator, created at Harvard {md modified at BON to measure
Lisp, has been modified to be a suitable instrument for measuring Mesa.
Every Instruction fetch and non-instruction-fetch memory access Is trapped
in thc emulator's interpretive loop and a call made to the.
statistics-gathering routine(s). All the various dynamic measures (while
presented scparately) were gathered In parallel.

One of. the first ·observations noted was that rou·ghly 40%' of the
instructions being executed, on Mnxc were in subroutine call and return
sequences. Clearly that points (0 the necessity of micro-emulated call and
return instructions for Alto-Meso. Those !icquences 0150 introduced a great
deal of noise into the data collected. Hence the emulator was
re-structured to account for cnll 11l1d return sequences in II specilll mnnner
which will be discussed In more detail later on.

The measuring of Uregs Is, confused somewhnt by the fact that the
present Tcnex-Mesa compilcr allocates U5cr acts in a stack-like fashion.
Almost any other allocntion di:;cipline of these six acts would produce
better utilization for the, purposes of this model. As a result the Ureg
utilization is measured in two ways. The first assumes two acls, one for
reading. and the other for writing (as in the Sturgis I3CPL study). The
second simply takes. the six PDP-l0 nc's as allocllted In the Tenex object
cod~ for the applicable read or write operation. The experiments show

The Implementation of Mesa on Alto August 21, 1974 Page 3

nearly no difference in the behavior of the two modes. A more reasonable
allocation scheme like LRU could be presumed to perform better but there
does not nppear to be an easy method to measure Its effect.

"'. The Mesa machine and address translation

In order to explain the results of the study of
Mesal Alto-virtual-memory compatnbility, let l

!) examine the test data
gathered for two very different Mesa programs. Example A Is the MPL
compiler compiling n Inrge (35k chnrncter) source file and example B Is a
formatting program (Ed Satterlhwaill7) handling a (107k character) text·
file.

(A) Compiling NEWMPLEXP.NLS

Instructions em lJ 1 ri ted: 1 i16 6 6 B 4 0
Call inst: 6053898 Non-cnll inst: 8612942
Non-call memory refs: 6770596 Intra-call memory refs: 4441902

Module.fnults: 228633 Locnl cnlls: 155130
Params: 499304 Ret vnls: 290715

Total calls: 383763

User: R W Total RFLT WFLT Faults
1282887. 450158 1733045 529626 157911 607537

ACII:
o
1
2
3

'4
5
6

R
27360

778790
279231
205313

36
o
o

W
2()G859
89722

166488
o
o
o
o

Total mom refs: 20592966

Total
294219
863512
445719'
205313

36
o

'0

RFLT
12594

362662
91163
,74233

1
o
o

/

WFLT
12187
73421
54905

o
o
o
o

Faults on I\C's 0 thru 6 rnemrefs: 1130432 5.53
Faults on 2-cacho mc~rofs: 1144303 5.60

(B) Formatting of ch7

Instructions emulated: 11398563
Call inst: 3286631 Uon-cal1 inst: 8111932

Fnults
24781

436083
11606B
74233

1
o
o

Non-call memory refs: 5803251. Int.ra-call memory refs: 2it.15508

~1odule faults: 141258 Local ca,lls: 54737
Params: 187543 Ret vnls: 94557 I

.. ,I' .. '

Totnl calls: 195995

User: ·R W Total RFLT \~FLT Faults
398745 274688 673433 99843 112275 21211B

The Implementation of Mesa on Alto Au'gust 21, 1974 Page 4

ACII: R W Total RFLT ~/r LT F Cllll ts
0 122851 173236 3010B9 11 0~J(>n 114648 225616
1 232525 1075 23111100 1(3'132 15G'1 19996
2 25607 95959 121566 212'1 795 2919
3 17699 0 17699 741 0 741
4 162 0 162 1 0 1
5 0 0 0 0 0 0
6 0 0 0 0 0 0

Total mem refs: 16722681

Faults on AC's 0 thru 6 mcmttifs: 531789 3.18
Faults on 2~cachc mcmrefs: 494634 2.96

Notes:

(1) The runs chosen were very long because shorter runs (250k
instructions) were dominated by Initialization and user interaction with the
Mesa debugger. The complier WDS run on severnl long sources and
demonstrated very uniform behavior.

(2) Notice that instructions in call/return overhead change from 40% to
30% between the compiler and formnUer. The compiler uses a Tree Meta
parser which translates into long sequences of subroutine calls. The
emulator distinuui5hcs those memory references which occur during
call/return, from those which do not. The Intra-call/return memory
references nrc llccounted for separately as will be described Inter.

(3) Procedure calls arc divided into two classes: local calls and module
faults (i.e. external ctllls). Parameters and returned values were counted
but not used in the antilysis.

(4) The non-Cull/return memory references which are user computed (as
opposed to frame references, references to litertlls, and module own
references) V'~erc nnnlyzcd in the two ways mentioned carlier. The first
(It User:',,) assumes n two-pointer cache, ol1e for reading and one for writing.
The second ("AC#:") uses the PDP-10 ACts as allocated by MPl. A fault
occurs when a pointer reference occurs to memory and the value which
appears in the pointer falls in_ n different pllgcgroup from the preceding
reference using that same 'pointer.

(5) "Total mem refs" ar~ computed by summing the following quantltle,s:,

(fl)non-call/return instructions
(b)non-c all/return memory refs
(c)10*local clllis
(cl)1G*external calls

The Implementation of Mesa on Alto

In (e) the 10 comes from:

call
allocate n"cw frame
save PC
save Freg

return
restore Freg
restorc PC
de-allocate frame

3 (best" case)
1
1

1:
1
3

August 21, 1974

In (d) the 16 comes from the 10 in local call/return plus:"
cllil

save Cre9,Dreg 2
lond ncw Crc9,Drcg 2

return"
restore Crcg,Dreg 2.

Page 6

The "best case ll assumption in frame allocation of (c) is probably the most
cornmon case.

(6) Faults (in both ca~e5) are computed by multiplying the module faults
by 2 (one load of Creg for cull llnd one for return) and adding that to the
fnultsinclJrred by the relevant Urcg discipline. The fault rate Is computed
by dividing thc faults by the total memory refercnces.

(7) The above experiments were first run with the assumption that "Mesa
data modules (where the Urcgs sometimes roam) were one page In size. The
emulator was then modified to treat cach user data module as a
multi-pngc-pagegroup. The effect, however, was negligible.

IV. Cost of Base Register. Faults

When a base register faults, i.e. the address computed through it
does not f all in its poge group, the register Is reloaded by consulting a hash
table as proposed by L. P. Deutsch. The cost of this p..er fault -may be
estimated as follows:

(1) Using Peter's current micro-code ("Second Try at Lisp Microcode",
6/20/74):

The first probe of the hnsh tnble requires 13 microinstructions; subsequent
probes rcquire 15 microinstructions. Once the right entry is found, the
steps for reloading the b[lse registers depend on new instructions and
hardware. so this is somewilnt I'ess certain - 4 ndditionrtl microinstructions
is plausible. If the hush tnhle Is 1/2 fuU, then using double hashing and
assuming random hnsh functions, we can expect an average of 1.3 probes
for a successful search (since [In unsuccessful search Implies a disk" seek,
we won't consider that here). Hence. the mean number of microinstructions
per fault Is: 13+(.3~15)+4 = 21.5.

The Implement.ation of Mesa on Alto August 21, 1974 Page 6

Note: If we lIS.C linenr reprobing Instead of double hashing, then probes
subsequent to the first require only about n microinstructions, while the
mean number of probes is 1.5. This gives: 13+(.5"8)+4 =21. That Is,· It really
doesn't make much difference - the first probe nnd terminal computation
are ·domincnt. Henc c, to simplify subsequent discussion, we'll assume linear
reprobing and a mean number of probes of 1.5.

(2) Using special hardware:

(a) hardware hash computed ·in the memory Intcrfnce board and supplied on
the bus reduces each . probe by G microinstructions (from 7
mierol~structions needed to obtain a hash to 2).

(b) Putting the hash table In RAM - reduces each r~ad of the table by 2
micro-Instructions (from 4 of which one is certainly overlapped to 1).

(e) Putting everything on the memory Interfnce. The best possible probe
sequence would seem to be (I) compute Initial probe (ii) start fetch from
RAM (iii) get word from RAM (iv) compare against the virtual page number
sought. A success would be followed by 2 cycles to reload the bounds and
mapping registers.

For those four possible organizations, the number of micro-Instructions
needed to handle n fnult nre:

(a)
(b)
(a&b)
~c)

8+(.5*10)+4 = 15
11+(.5*3)+4 =19
6+(.5*6)+4 = 13
4+(.5*5)+2 :: 8.5

From the f £lull rate and number of micro-instructions per fault, the
performance dcgrndntion cnuscd by fnults cnn be computed. Simple
instructions on the 1\1 to in Nova elllulation mode require about 1200 ns per
memory reference (i.e. computation is about 1/3 non-overlapped with
memory.) This Is prohably low over tile entire mix, but In the absence of
reliable elata, we'll tnke this as typical. The time spent in processing faults
per un! t of computation time ·Is: f ault:;/mf?nlory ref * microinstruction/fault
)Ie 170 ns/microlnstr * memory ref /1200 nSf

Thus the percentage de~Jradntion for each of the hardware
organizations and .cf.lch of the above fuult rotes arc as followsJ

The Implementation of Mesa on Alto August 21, 1974 Page 7

FAULT RATE

Or.gan i Zil t i on 5.6 3.0
---- .. _----_ ..

all microcode 17.0% 9.1 r-

(a) harch-Illre hash 11.8% 7.3X

(b) RAN table 15.0% B.Or.

(a&b) 10.31- 5.61-

(c) all hardwilrc 6.7% 3.6i':

Considering the cstimntcs used in vnrious steps, these numbers are best
treated as accura~e only to within II f actor of 1.5 or so either way.

v. Page Faults

Statistics on the expected number of page faults were gathered
using a model similar to H. Sturgis' ("Some Statistics for Virtual Memory
Fans, Part 2", 7/3/74). In brief, this models n LRU page replacement
algorithm for all possible core buffer size5 as follows:. A. queue of page
numbers is rnnintaincd, wi~h the I-th mo~t recently refcrcncd page In the
i-th position.. A vector C of integer counts in maintained in parallel. On
each memory reference, the queue is searched for the referenced page.
Suppose it is found to be the j-lh pnue in the queue; then the j-th position
of C is incremented by 1 and the pnge 15 moved to the front of the queue.
If an LRU page replacement nl90rltllrn is used with a paging buffer of k
pages, then the number of page faults Is the sum C[K+1] + C[K+2] +
C[I<+3] + •••

Note: This model takes into account none of the following: choice of dirty
vs. clean pages for replacement, page groups, types of references to
memory •.

Page fault statistics for the two runs discussed in Section III are as
follows:

The Implementation of Mesa on Alto

(A) Compiling NEWMPLEXP.NLS

MemC?ry References Considered:· 15,383,534

D. pages in buffor

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
IHO
190
200
210 .
220
230

(B) Formatting of ch7

/I page faults

4'1H,HJl
259,51)1
1(;1,611
86,'118
5.6,306
3G,396
22,B03
15,6111
10,713

7,622
5,550
3,657
2,1115
1,160

565
310
132

3'1
67·
55
36
23
o

Memory References Considered: 13,915,180

I pages in buffer

10
20
30
40
50

. 60
70
80
90

100
110

pnge faults

15,404
6,037
3,042
1,335

925

392
170

30
14
o

August 21, 1974

fault rate

2.91 10t-2
1.68 101-2
1.05 101-2
5.62 10t-3
3.66 10t-3
2.37 10t-3
1.4910t-3
1.02 10t-3
6.96 10t-'1
'1.9510t-4·
3.61 10t-4
2.3U 10t-4
1.39'10t-4
7 • 0'1· 1 ° t - 5
3.67 10t-5
2.02 10f-5
0.50 lOt - 6
5.116 10t-6
4.36 101-6
3.58 101-6
2.311 10t-6
1.50 10t-6

°

fault rate

1.1110t-3
'1.34 101-4
2.1910t-4
9.56 101-5
6.69 10t-5
4.H9 10t-5
2.D2 101-5
1.22 101-5
2.16 10t-6
1.01 10t-6
o

Page 8

Note: Memory References ConsicJcrcd In each· case were the non-call
memory references, i.e. the sum' of the clnsscs "Non-call fnstr" and
"Non-calf memory refs". This WClS done to maintDin consistency with the
data hi Section III. However, it produces results with unduly high fault
rates since call sequences will require memory references for moving data
\vhich arc well-behaved with rcgnrd to pllglng. If. in fact, no faults were

The Implementation of Mesa on Alto August 21, 1974 Page 9

caused by these memory refcrenc'cs then the fault rates would be lowered
by about 1/3 for case (1\) find 1/5 in CClse (8).

To a first flpproxlmation, each Maxc page of 512 36-blt words
corrcsponci!; roughly to one Alto pllgC of 512 1G-bit words, since Integers fix
on one word and it is anticipnted tllnt each instruction will fit In one word.
(This neglects characters, rcal numbers, large pointers, etc.) With 60 k of
main memory used for buffers, this gives 120 pages.

The effect of the fault' rate on overall performance can be done In
two w~ys:

(1) Elapsed time

If a portion of the disk is used for pnrling (like the Maxc "drum"), then the
access time on the Model 44 disl< is about 30 015 nnd about 50 on the
Model 31. Consider case (A) ilS nn example. Computation time is abou~
(15.10.6)*(1.2.101-6) = 18 seconds. Given 120 pnges for buffers, the
number of fuults is 3,657 and the time spent in poging with a Model 44 Is
(3,657)*(30.101-3) = 110 seconds.

(2) Comparisofl with Tcnex

A second way of nS5c5sing the eff ccts of page faults in the proposed
Mesal Alto machine Is in compari!.on with paging in the current' Mesa'
implementation on Tenex. As thc avernge time to access II "drum" page on
Tenex is 42 ms, the effective devico speeds mClY be regarded as
essentinlly the, Silm'c. CClSCS (A) olld (n) were each rerun twice under
different load averages [lnd the nctual numher of page faults (PGSTAT '+ 1)
were obtained.

load < 2 land> 6

(A) compiler 432 2987

(B) formatter 487 1006

Whnt conclusions cnn ono draw? A medium-size well-behaved
program slich as the formatter', cX8mplc' (B), ,may'be expected to fit In core
and nevcr pnge f nult. Time wniting for the di~1< Is only that required to,
load pages. For the example run of ((3), we have

Alto upper bound of tlmc to"load pages
Alto compute time (cstimote)
Tencx time fat' page faults
Tcnex compute time (estimnte)

3.3 seconds
10.7 seconds
20.4' seconds
10.7 seconds

That is, Alto Mesa might be Qxpccted to run about twice as fast for this run
- due to its lower p aging needs.

The Implementation of Mesn on Alto August 21. 1974 Page 10

The compiler,· (!xarnple (A), Is a Inrgc pro9ram for which there has
been, to date, no major· attention to obtnining qood paning properties. As It
stands, Its pllgc fault rF.lte implies Cl perrOrmlll1Ce of Tenex with a load
average somewhat larger than G. That is, with 120 pllgCS, the number of
faults is 3,G57. Observe that with 150 pnges, the fnult rate drops to 565.
Considering the ratio of compute time to paging time, there Is a critical
knee in the curve nt nround 150 pnues. It is anticipated that with a
moderate amollnt of effort, the compiler could be reconfiuured to shift the
curve and bring the knee down to 120. I\t a fault rate of 565, Alto Mesa
would be comporablc to Tenex Meso with a lond nvernge of less than 2.

VI. Static measurements of Mesa Programs

A number of stlltic· measurements have been collected on Mesa
programs and sever~lI more remnin to be gathered. The measurements
documented here were obtnined (for cfficicncy n~Clsons) by examining the
PDP-10 . object code for Mesa progrnms. Marc static measures are being
collected by Dick Sweet by metering the compiler but tho5e results arc not
yet available. The programs measured consisted of all the Mesa programs
stored on the .<MPS) directory.

(a) Frame References

The Mesa frume Is the locus for parameters, local variables, and
(rarely) temporaries (which in this analysis are grouped with locals). The
purpose of this study is to determine how many bits of offset from Freg are
needed to address variables in the frame. .

Bits· %-of-frame-rcferenccs

1 38.6%
2 60.1%
3 B1.9°f,.
4 95.4%

Of course,· the most frequently referenced fnunc variable was not
necessnrily the one with smallest offset in the PDP-10 object code. Frame
variables are simply allocated in declnrCltion order. So, what hnppens If
those most· frequently accessed nrc. allocated to the smallest offset
position? The following tnble shows the results for sorted fr,lme variables.

BHs %-of-frame-references

1 50.3%
2 72.6%
3 8n.Get/.
4 97.4%

The resuH of the sorting experiment shows that ~orting is only worthwhile
in the (unlikely) event that one allocntcs only one or two bits to frame
offset addressing.

The Implementotion of Meso on Alto August 21, °1974 Page 11

(b) Constllnt usage

The usc of constants wns mc,lsLJred in the object code. This
approach had good and bad aspects. On the bad side, one hos to be careful
to account for const"nts which nrc implicit in certain PDP-10 opcodes (e.g.
AOS, JUMPG, HRROI, ntc.). On the good ~dde, once object code has been
produced, the compiler hns olrcndy clone [I fnir nmount of compile-time
evaluation of constnnt expression~. The rnensurerncnt was done ns follows.
Constants in the intervnl [-15,14] were counted individually. Since mllny of
the mc~sLJred programs did charncter hnndlinu, constants in the range
[15,127] were lumped into a sepnrnte bin (coiled CHARS). Finally all
constants less than -15 or grenter than 127 were thrown into NEG and POS
bins. respectively. Here are the results:

Constant

NEG
[-15,-2]

-1
o
1
2
3
4
5

[6,14]
CIIAR .
POS

Totnl

#-of-occlIrrences

105
72

264
11259
1705

422
227
IJ13
122
627

1259
1532

10737

Note that the range [0,1] accounts for 55.5",4 of the occurenccs, [-1,2]
accounts for 61.9%, Clnd that 81.0"10 f nil in the range [O,12"r]. If the domain
of constants 15 limited to the rnnge [-15,14], then the interval [0,1]
accounts for 75.4 "/,, of the occurrences, the interval [-1,2] accounts for
84.8%, . nnd the Interval [-1,6] nccollnts for 95.3%.

(c) Procedures

A couple of 5tntic".~"Q,)JS~!::!!:·~~<1:;.w~ .. ',;'.Q.. mnde for procedures that can be
compared with dynamic tnet.,surements made e8rlier. Procedure calls were
partitioned into local Dnd external cnlls .with thc rcsult:

Locnl calls: 1868 24.5%
External calls: 5746, 75.S"/.

This compnrcs with the dynnmic locill/externnl percentages of 40.4%/59,6%
and 27.~r/,,/72.1,,/. in eXDmples A Cllld .. B In section III.

The number of parameters for each procedure call were also
tabulated.

, The Implementation of Meso on Alto

I-of-pnrametcrs i-or-culls

o
1
2
3
4
5
6

1 ~)69
449B
207ft

563
165

70
11

August 21, 1974

percentage

21.2%
413041-
21 .B%
6. Or.
1 • ar.
0.7%
Or.

Page 12

In dynamic cxnmple A, procedures hnd an average of 1.3 parameters and In
exampl,e B an nvernge of .96 pnrnmeters.

A number of other rather PDP-10 sp£!clfic stntic mesaurements were
also mndc which arc of little or no interest for Alto-lV1es~. The purpose of
gathering the static data is to provide informiltion helpful In designing a

'compact rcprcscntntioll for Alto-Mcsa object code. For example, the high
frequency of ollc-pnramcter procedure calls suggests that a two operand,
single-parnmeter-func tion-call 'instruction might be profitable. Dicl< Sweet
is gathering data from the compiler 011 man! complex expressions than
those which can be conveniently deduced from object codc~ In particular,
if "f[o]" Is so frequent, it may well he thnt instances of "b"f[a]" are so
common that a three operand instruction Is warranted.

	1-01_19740612
	1-02
	1-03
	1-04
	2-01_19740615
	2-02
	2-03
	2-04
	3-01_19740821
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12

