”

s D
Cf—”’r-y — b
o

Yoyt Thoo Bl o apd
Yator-dhimn Doy nonu

To Hal Lazar . Date Dccev nber 17 1974

b . a3 ' (/-.':'// . . A ’ f . [od
From P. Heinrich, W. Shultz /s Location A3-17/Ext., 1571

Subjest Selection of a System Organizetion ITG IPD SRAP - \sz‘_;,r;
Programming La nouage for
OIS :

Introduétion

Althougn there is not much que;;tlon that we need a higher level Systems

‘Programming Lancuage for OIS software developm nt, let us restate the

chief reasons for this need:

1. It permits more modular, machine in‘dependent implementa~-
tion of software systems.

 2. It reduces deVelopfnent and maintenance costs for large
' ' software projects (as opposed to assembly lanfuage develop- '
~ ment techmques)

3. 'It makes it easier for a t‘otalisyst'em (both hardware and
software) to grow and evolve over time.

Giv_éri, then, that we want to use a higher level language for development

- of OIS software, we have several choices:

1. We can invent a new language.
2. We can adopt an industry standard. R
3. Wecan adépt or adapt an existirig Xerox ianguag,e.‘

We rejected alternative #1--the world does not need another systems
language. - We really can't select alternative #2~-there really is no
industry standard for systems work, although Algol and PL./1 derivatives
are both common and successful. We choose instead alternative #3. Of
the possible Xerox programming languages, only three seem to be

appropriate candidates for OIS software development, These are:

1. SPL - Structured Programming Language devél'dped by
DSD in El1 Segundo, '

Hal Lazar ' o o=2- ' December 17, 1974

2. BCPL - Basic CPL, usec] at PARC for Nova and some Alto-
work.

3. MPL - Modular Programmlno' L'anfuage, developed a"c PARC
' (also called Mesa) '

We rejected BCPL as being too basic and too pri:hitive (For example,
' 1t has no data structure except 16-bit integers.). This lefi on_.y SPL and -

For the past several months, as time permitted; . Jirn_‘ Frandeen and- the -
_authors have looked into the relative advantages of SPL and MPL. . We
have traveled to PARC, and Jim Mitchell has spent time with us in .
'El Segundo. We have looked into SPL work here in El Segundo. We have
-also come to understand the needs and system architecture of OIS better
than before. From this study we have come to a conclusion.regarding -

' OIS software development. As noted below, there would be company~w1de
advantage.: at standardizing on a single Systems Programming Language .
for all Xerox software aevelopment (J.OI' computers and copiers), but we
make no recommendation 1n thls regard We do discuss the implications
of thlb later, however. -

Cdnclusion

VW e have concluded that the best languarfe for developmg all OIS software is
MPL-~-~the Modular Programming Language developed at PARC. A detalled' ,
analysis of the reasons for this decision are presented below. - Also, a
prelz.mmary actlon plan to 1mplement thls dec1S1on 1s presented la’cer m

Vthls paper. o R R e

) kA detalled comoamson of SPL and MPL is glven below. In fac’c, SPL

- would be a very adequate -language for OIS software development, but
MPL is a better language, in our opinion. This made the evaluation

- more difficult. But we were fortunate that Xerox had two languages that
were worthy of consideration, since this helps insure that tne one OIS
lanruage can benefit from the experlence of bOLh o :

We now recommend that other people in the company who are Jnterested
" in Systems Programming Languages look at MPL and at the 1mohcatlons

of standardlzatlon. '

;
[y e o tom eann

\,4
B
s
|

RS
[N EEP]

|" . C*u:sli:y'ur Feature

SPL

MPI

~F;“‘-'~"‘”’ T AT T

Adequate io. OIS systen Yes | Yds .
salivare development
Campatjbitity with OIS Adequate Exceleat (Orivnted to

I"rocessor Architecture

base register and
recursive use)

Features present but not
reguired for OIS

I'loating pdint {not yct
implemented)

None

"Easy to learpn and to program

Very pgood

Very good

Easy to build and debug complex
S} stems

Barely adequate
{weak debugping in
current version)

Excellent (ot typing
wnd peruneter check-
ing combined with

complete debug system)

{Sigma)

Comnpiler operating elficiently
on developnient machine -

Reasongble (not
great, but could be
improved)

Ixpeeted to be reason-

able. (May be slow
due to lack of base’
registers)

[code (for OIS)

Produces cfficient object

Too early to determine

‘Foo curly to deturmine

Permits symbolic, packed data
structures

Yes

Yes

Pennit explicit control of
registers-and basic hardware
instructions

By nssembly
level procedures

By in-line asse x.\bly :
ievel vude

Optional limits and trace (debug)

Not now

Yes.

Pormit modular program

construction and debugging

N

Yes (adequate)

Yes (better, becsusce
of data typingg il
eheckny)

Permit open and c!oscd
subprobr'x'n usc

Yes (by use of
“compile time"
variables)

No (enly closw«l)

Pecrmit user control of
synchronous crror processing

Not yet, Plans to
add with ON statement

Usc of SIGN. “sl. {eature

Permit user contro} of
nsynchronous cvents {for 1/O end
aclion or inter-task communica-
tion)

Not yet. Might be nble
to add with purt of
ON fecature.

Variation of SIGNAL
{eature -

Machine independecnce o .

Compiler not complete-
ly independent; also,
1/0 calls are strictly
dependent on CP-V;
source could be if user
.is cnre.ul

Lasier to be machine

indcpendent since data
typing specifies valee

range rot bit range

Structured programining madc
easier BN

Adequate; pood block
structured language

Retter, since inore
disciplincd data typing

1/0 facilities (for-user)

At source level, but
for CP-V-type 1/O
only

By use of special
built-in proceclures

Seif-documenting Good Better, again due to
) data typing)
v
Desirable zdvanced features None Ca-routine and

‘{sce attached memo by

J. Frandeen)

recursion

Basic oxtensibility of comp:ler
and l:m;'uag‘.

Compilker code is very
marginal, Little
cxperience on language
itself. . ’

{ Compiler coding
practices are excellent/

Language ig very
freneral, .

R Al
AL

Hal Lazar ‘ -4~ \ Deeember 1»7,.”1’9-7‘4

- Other Considerations

Langvaore Maturity: We ar re concerned about language ndaturv‘tyk (of actual
use) because this determmcs its current stability and quality. No language
‘ 1s born perfect—-—lt must grow and develop and mature over a pemod of time.

" SPL is demvea from PL/ 1 w1th many changes, mos’cly spec1f1ed by

- Mike Kuppin, with inputs from others (including Evergreen Assocmtes).

The first version is_just now being completed. Thus, there is little real

" experience with using SPL for systems work. The only significant program

to date written in SPL is ’che compller 1tse1f and it is not a very good

- 1mn1ementatlon.

- MPL version A was derlved from OSPL (on the 940 by Lampson and Deutsch),
" an SPL at BCC (by Lampson and Mitchell), BLISS (Caxnegle Mellon) and -
~ L10 (SRI). MPL version B (the current version) was derived from ‘VIPL A

‘as modified by ideas from ECL (at Harvard, by Wecrbrelt), Simula 67, '

Pascal, and minor influence from BCPL. It has been used for several -

- months by many people at PARC, and will be used by several other pro;;eCts

.. at PARC in 1975. Therefore, although not as clear a derivation from as major |
‘a language as PL/1, it is felt that the language is well-tested by a group of..
very sophisticated system nroo'rammers and is therefore currently more

" - mature tha.n SPL. _

Tlmehness Basmally, w111 the language be ready when we need it for
'QIS? We will not begin coding for OIS operating software before early

1976, although we need to know what the language is in 1975 to permit

software specifications to be developed and to permit hardware/ software
~ optimization to begin. Also, OIS software development tools can be started

by mld 1975 1f funds permlt., '

. SPL W JJl be avallable in a form usable for this work by 4@,’7 5. ‘Some-

- features not in the current language (such as the ON statement) need to be
. added, and the support system needs to be built up extensively. - A higher
f1c1ency produc LlOn version would probably not be avallable before 4Q7 6.

MPL W111 be usable at PARC in early 1975, and could be converted to
Sigma 7 by 4Q75 for development work. A higher efficiency production
versmn could probably be ready on Sigma by 2Q76 ' ‘ S

Support Software The compiler-is only one element of a large software
development system. VVlthOllt a good total system, the compller 1s not
very valuable. : : : R

e et .:._\,_____ . ————
H e W TIITTIST T T EY

.SPL essentially has no support system of its own. It uses the CP-V loader,
debugger, source editor, file editor, and file management. This results
in rather poor symbolic debugging and updating.

MPI, has a complete support system, written in MPL, inclucling:

A loader (link editor)
A file editor

A source ediior

A debudger

0o 00O

" MPLusesthe MAXC file management serv1ces for basic flle support, but
could be converted to CP-V. - -

Under CP- V either MPL or SPL proorams could be created and debugged i
interacti vely ‘ 4

: Personne]i We assume the responsibility for the final development of

~ the OIS System Programming Language would rest in El Segundo under)
the OIS budget center. There are three people on the current SPL project
in DSD. There is one person in OIS development (Jim Frandeen) who

- could work on either SPL or MPL. There are about three people at PARC
on MPL development, but they could do ll’ctle more than ccmsult Wlth us

in 1975.

v Docu:cnentation: ‘A compiler is no good without adequate documentation. 4

SPL, will have a preliminary reference manual out in January, 1975.
There is no user guide or specific support documentatjon.

MPL has very brief language and support software reference documentation
available now. We would have to work with the people at PARC to help ‘
increase the availability of user documentation in early 1975.

Cost: A precise costing has not been performed, due to the uncertainiies
in OIS requirements and the schedules and manpower involved. An action
item below calls for a more detailed plan in this regard. However, our '
estimates are that there is no significant difference in the final cost to
QIS, for these two alternatives. That is, although SPL is alréady on
Sigma 7 under CP-V, it definitely requires some extensions, some more
support software, and significant performance rework. MPL is a good
implementation, but must be converted from MAXC to Sigma 7. Both
‘require a new object code generation module, to prepare output 101 OlS

hardware. L S s e eesTLTLIT o,

et
[
w3
Ly
1
-

SR ~§-. Deeomber 17,

MPL Developme‘nt. for OIS

The required modifications to MPS for OIS fall into two categories:
conversion to Sigma/CP-V and enhancement for OIS. (The conversion
to Sigma/CP-V is to permit development work under CP-V.)

Conversion? '

1. The 1/0 interfacve beiweed MPL and itne¢ Sperating system must -
“be converted tc LP-Y gerwdoc-eollse a0 : e

.2, 1 The ob;;ect code generatlon phase must be changed to produce
.. Sigma-object code and special provision must be made for
o dynamlc reference to varlable data. *

3. 'An Opth"l to allow Statlc procedures (no recursion) should be
- implemented to permit more eff1c1en:. code to be generated -
5 for Sloma. 3 :

' Enhaﬁcemen’c: :

‘1. .An object code generation phase will be written for the QIS
- . processor. ' This will be an interactive process which
~+ involves testing the object.code, redefining the instruction
' set changmg the compiler and mlcrocode, then testmg agam.)

2. 'Automatlc mstrumenta’clon for procram performance analys,ls;

3. »Developmen’c of other Tanguage re1ated development LOOIS -
such as program analyzer that checks for adherence ’co '

-standards also sunulators and utlhtles.

4, ,"Investlga’uon of other enhancemenus in. the area of OIS
S control program / MPL interface. (for I/ O and mterrupts)

- "MPS takes advantage of the base register architecture of MAXC and ALTO
to allocate and access dynamically local variables. The absence of base
‘registers on Sigma will require an object code modification to index
registers before they are used to reference local dynamic variables.

™
1

Action Plan

An OIS/MPL development team of two to three people must be identified
and brought together by the middle of January. Initially, the team will

_ spu*d time at PARC fomiliarizing themselves with MPL and support
oftware, and with other related materials.

" The Sigma conversion effort should begin no later than March 1, 1975,
Thereafter, the first order of business for the team is a develop*nenu.
plan for the enhancement of MPL for OIS, This development plan will
detail features, schedule and manpower required. By that time, OIS -
architecture will be flrm and control soltware will be be‘cter understood.

It is expeéted tha;t the OIS/MPL team will help the MPL staff at PARC |
- produce user-level reference documentation during the first half of 1975, .

A preliminary schedule goal is to have MPL operating on.Sig*rha under
CP-V by 4Q75 for the development of other OIS development software.

As part of the support plan, an alternative to the Sigma development work |

should be explored; namely, to investigate using MPL on ALTO for some
early development and learning. (The PARC MPL staff is currently
converting MPL to ALTO.) . : ST

Open ISSI'J.eS

There are several issues which remain open following our reco:rnmenda’clon
of MPL for OIS development :

o OIS Hardware Architecture

Although a preliminary version is proposed, the hardware .
architecture is not yet fixed. . A radical change in hardware
design could impact the recommendation we have made. To

a great extent, the hardware design being proposed by the
architecture team has been influenced by and oriented toward
the MPL language, because of the interaction between Alto
and MPL at PARC. The intention was and is to p roduce an
optimal hardware/software product.

o Computer Division Higher Level Language

Can the computer Division use MPL? Should SPL development i
be halted and joint development of MPL started? What new

or revised computer products require, ov can use, a higher, R

g , R
_ Attachment: memo by J. Frandeen on OIS/MPL

C‘:

. =8~ _ ~ December 17, 1¢

level language? This question is significant because if joint
development does not accur, additional funds w111 have to be
generated in OIS to staff MPL, development.

Standardization vs. the Tower of Babel -

Can and should other products or programs such as DPS, "
PECOS, RASCAL, etc., use MPL? For PECOS III the -

- answer is certainly yes. All OIS products must use a common

language. It is highly desirable to have a company-wide .-

- standard higher-level language system. It avoids dunhcatlon,

‘inéreases the pool of trained personnel, and focuses our
efforts in one direction, and it helps permit us to build o

' unified systems out of modular, stand alone products,

OIS Architecture Board
- B. Beeson
K. Campbell
J. Elkind
S.. Klece

W,

-
Hi

. .-
~-epma c
LA tevielny

vt
s

e

Klein - - _ ST st e e e

A. Kopito

B. Lampson
A. Lipton
C. Martin-

R.

R,

. J. Mitchell ..

Somrad
Vance

From Jim Frandeen ‘ Location = A1-63/xt.1541

.Subjzat Reentrancy, Recursion and Organization Development Programming
Coroutines for OIS CS~74-7111
" Programming Language .

Consideration of lHesa as the 1 nage used to implement OIS

has - led ' to discussion of th ollowing language ifeatures:

coroutines, recursion, and reentrant procedures. Since

these features are implemented in Hesa hut not is SPL, it is.
important to understand now tney are used and whethexr or not

we need them for 0IS.

ang
e T

REENTRANT PROCEDURES

A procedure is said "to be reentrant if more than one
activation of the procedure can exist at any one time.

Reentrancy is usually associated with multipyrogramming and
task switching. Multiprogramming is the use of an operating
- system to execute a number of tasks concurrently, A task is-
an activation of a program. A program is a collection of
one or more procedures. It is ‘important to distinguish
between a procedure and a task. A procedurc is a module of
‘executable code. A task is an activation of a procedure,
including its context and local variables. If a procedure

is reentrant, it can be shared by several tasks. Consider
the following multiprogramming example. The system I/0

supervisor is executing for task A. "The I/0 supervisor is
building an I/Q control bhlock for this task. Task A is
~dinterrupted because task B, which has a higher opriority,
. becomes ready to run. Task B invokes the I/Q supervisor,

~and it begins building an I/0 control block for task B.
Note that the I/0 supexrvisor never finished building the I/0
control Dblock for task A; it nmust be ahle to continue where
it left off when task A is reactivated. With this example,
we can understand the requirements of a reentrant procedure:

1. The code nust not modify itself,

2. Variables that are local to the procedure must he
' unigue for cach activation of the vprocedure —-—-
otherwisce, a second activation of +the . procedure
would - destroy variables. from the previous

‘activation. -

" For .the OIS °y tem, it will be necessarv for sone nrocedurés,

"to he reentrant. W7ithout reentrant procedures, a
multiprogramming type 0f environment is not posszble.‘"Thcre
are two possihle nethods for implementing reentrant
vproge_ﬂdures.. . .) e T, .

In the first method, reentrancy is handled by the code of
" thée procedure vhenever the procedure is activated. In lMesa,
. wvhen a procedure is. activated, the initialization code o£
,'thé‘prOCnduxp‘calls a system routine to allocate a frame and .
. then sets a base register to point to the frame. --A-frame is -

' a record ‘Hat contains the context of the procedure -~ the

. return address, parancters passed to it, a place to save the
- reaisters _1f the nrocedure is interrupted, and all local
;_.varlables,- The code addresses all local variables as .an
- offset £from the beginning of the frame pointcd to by the .
"base register. In the example above, . the I/O supervisor.
would begin building an I/0 control block in the frame of -
- task A. Uaen interrupted and reentered, a new frame would
be allocated, the base register would be set to point to the
- frame of task B, and the I/0 supervisor would begin building
‘a Qifferent I/0 control block for task B. Later, when task

A is reactivated, the base register is restored to point to

the . frame of task A, and the code_contlnues execution wherc

- In the seccond ncuhod reentrancy' rmust’ be handled by the
operating systen. sxecutable code and local variables are
placcd in separate pages of memory. If a procedure is to be
- reentered, the operating system nust'first’ save the = local
storage - of - the active task. This can be cone by swapping
out local storage or, in a virtual machine such as the Slgna'

7+ by changing the memory mnap. In SPL, code and local

- storage are placed in separate control sections so that
-reentrancv could be ~mﬁlem°ﬁted by the 0perablng szgtem.

It -~ seems: more dcswraolp to bavc reentrancv handlcu'v
auntomatically by the code of the reentrant procedure.. Flrstfi
L of all, the language will be more machine independent if
'rbontrgucv ‘is handled by the ' language.. If reentrancy 1is =
handled by the operating system, we must depend on a virtual
machine, and this will make it very difficult to adapt the
- language to different rachines. It is not - yvet clear what
the architecture of the OIS machine will he. Fven if we
choose a virtual mrachine for OIS, we hope that the langquage
we c¢hoose for OIS will be used for other apvlications

throuéﬁout.Xcr X on a variety of wachlnb>, - Secondly, 4if

(
o -

e is allocated by the procedure, this storage

‘local storag

uses core space only while the procedure 1is @ active. For
static procedures, local storage must be permanently
allocated. For small machines, the savings in core storags

provided by d)namic local storage can be considerable.

RECURSTON

an active rocedure that can be reactivated £from within
itself or from withiowsramgutiiso -proceloy® 1s said to. be
‘recursive; such reactivation is called recursion. This
characteristic is extremelvy important becauvse some kinds of
Aprob‘em require this Kkind of capaallltV, and others are
stated most easilv hy using recursion. To clarify vwhat i3
meant bj recursion, the cla°81c exarple of the factorial is
nost easi ly unanrs;ood'

FACTORIAL: °ROCEDUAM(V)

o “IF M = 1, THEN ANSHER = 1;

l ELSE AINSWER = ﬂ*FAC”ORiAL(W 105
E?DZFAQTbRIAL;

‘In this case, the FACTORIALL procedure-is repeatedly called
from within itself to £ind the value of Nl a '

Recursive routines aré especially useful in parsing. .For
example, consider a simple grammar:

i

(1]

.A]B!C{DIE |
<§ariabl§>‘<&ariabl§>v% <§KpresSiO§>

statement ::= <&ariabl%> = <§xpressio§>

~variable . :

expression -

.

!

Y - - 1w ey oo}
Peter Holnrach

T8 Booonlizs 197

CRe-TGh=7 0070

Yy, 0- &

The syrbol '::=' can bhe~ read as ‘'is defined as°'. The
vertical bar represents ‘'or'. Examples of statements

according to this grammar are:

A=A
. B =2C
A=DB +fc‘+ E"

. How, suo oﬁe we want to wrlte a routlne that S will test...to
. see 1if a charactexr. s trlng is a valid expression. Since the
~definition of an expression is recur51vc, the most mnatural
wvay to desicgn the routine is to make it recursive. When the
routine 'is ocanninc "B+C+E' it gets to 'B+’ and then it

- wants. to know if the reqt of the strlng 1s an e: pression, so

it calls itself. ' . U

Other proalcms cannot be easily 'solved without- recursion. s

.The classic example is the asynchronous error routine which
'is called vheénever an I1/0 error is detected.. Suppose a tape
read error occurs during processing, and the -error routine
is activated. The error routine wishes to send a message to-
the operator and wait for a reply, but an I/0 error occurs
during this - interaction. Different systems ~handle this
'problem leh varying degrees of SOOh’SLlcaulOW.~'- ' e

(] ~', Thc error 'rou*:mD is leactlvated but 31nCé the

- “youtine is not ~recursive, the results are.
disastrous. ’ : i JEO T

© The error routine checﬂg'to see if it is being

© reactivated, and if so, -it causes the program to

abort- e R) RS PR T

.o ~»»H"ne ooelaulng sv stem forbids the proargm - to

.eyccuhe I/O operatlons in the error: Ioutlne.~ o

Of course, lf uhe erxor rouulnellsr a recur51ve‘ proceaure,
tncre is: really no hroolen. ‘ S

“As mnight “:be cxnpcted, recursion is relatea to ILPHLIaan..
Ay procedure that i1s recursive must be . reentrant.
Reentrant procedures are not alwavs recursive, depending on
“the implemnéntation: llowever, 31f a languace is being
designed +to handle reentrancy, it 1is not ‘difficult to.
providg recursion as well. Hesa handles recursion and

"reentrancy automatically for all procedures. Since we will
need recentrant ovrocedures for OIS, we should provide’
recursion as well.

Efficiency of Recursive and Reentrant Ccde

_ Recursive and reentrant procedures are desirable features,

but these facilities are not free. The user payvs Zfor thom
with dincreased overhead - call/return overhead and local
storage access overhead. Each time a recursive/reentrant
procedure is invoked, a great deal of overhead is recuired -
to allocate a frame and initialize the storage in the frame.
Similarly, wvhen the ploccéure terminates, the £frame space
-must be freed, : SR

Besides call/return overhead, additional overhead ‘may be .
. necessary in order to access variables in local storage. -In
a recursive/reentrant procedure, local variables reside in-a
dynarnic frame pointed to by a xregister. The compiler
generates . code that addresses each . variable as a
-displacement D from the beginning of the frame, plus the
contents o0f a base register B, Every local storage access

must speci ify a two-part address -- a displacement D and a'-

base register B. On base register machines such as the 360,
this works ‘out very well because most instructions that
access menoxy have a *hree—par adldress -- a dePlaCGWenu D,
a base regis ster B, and an 1nde\ register I. : .

on the 32-bit Sigma machines, memory access instructions
have a two-part address —-- a 17-hit-displacement D (a word

address) and an index register I. It is possible, of
‘course, to access variables in a frame by using the Sigma
index register as a base register. This works perfectly

well for accessing a fullword variable:
1IW,R D,B

This instruction loads into register R the fullword
specified by the two-part address field D,B. The hardware
computes the address by adding the displacement D to the
base address contained in register B. The problem occurs
when the access reauires indexing. - Suppose yvou want to
access tho ith ccurrence of the wvariable, and index
register I contains the index. You would like to write
something like: : :

peeinisich
e 1978

IM,R D(I),B

On a base reglstcr machine, this is exactly what vou. would
do, and <the instruction would fit in one 32-bit word. The
hardware computes the address of the word to be accessed by -
‘adding the contents of base register B and index rxegistexr I
.to the displacerment D, On Signa nardva”e, this same menory
access would require Hree word : ‘ ‘

mw,c I
AY,C B -
CLW,R D,C:

The first two 1nstruc;10ns compute. ‘a new base registex C bv
adding the contents of the base register B. and thé - 1nﬂex
register, = This is in effect’ skulatlnq what bhase qu1 ster
machines such as the 360 do automaulcallv.»

The language we choose for OIS must be implemented to run on
the Sigma 7 under CP-V, This will permit developrent woxk
~on OIS to begin before OIS hardware has heen designed. The
‘compiler can subsequently be adapted to generate object code
.for the OIS machine. In addition to use for OIS, it is
hop=ad that the language chosen for OIS -can be. used for Obhcr.
ap)llcaulo 1S throughout /eroA. : .

™he rpoulrewents for - xecur51on, - reentrancy . and
inplementation on the Sigma 7 seen to bﬁ'contradlctory.- o
 matter what language we choose, recursion and reentrancy
- cannot be'implenentcd'cLF1c1entlv on the Sigma 7 because the
“hardware doass not provide base regwstera and instructions to
 facilitate the call/return seguence. This problem can ‘bhe
‘resolved rather easily if recursion and reentrancy are
~optional features of the language. Not all procedules need
to be recursive and reentrant. For static rouulnea, the -

compiler wvould simplv allocate frame space with the object =

code, making all variables directly addressable. This is
’ ‘what SPL QOGD for all proc;dqrcs.~ . - o

There is no guestion wﬁether or not He >sa can be adapted to -
run on the Sigma 7. The question is “how efficient will it
Cha?V, The lesa language provides recursion and reentrancy
autonaticallj for all routines. Uould Mesa COﬁpllaglCﬂq'
take an inordinate amount of time? Vould all Mesa programs.
run lnefflc;&nbly,on Sigma hardware? , ‘ - :

voeter Yoednrion
15

e N .
Tiovre Laas e I

i Ne aaeie s NP

. .oty . 4

. g
rage 7

i
. ;

We could study these questions at great length, but this

would still not solve the problem of additional owverhead

when recursion and reentrancy: are not really neecded. A

simple solution to this problem would be to add .2 facilitw.
to Mesa that would permit routines to be declared static..
Implementing static procedures in lMesa would he easier that
implemonting recursion and reentrancy in -SPL.

. COROUTINES
Coroutines provide a very useful control structure.
Coroutines are closely related to suhroutines. The main.
prograr: . and - a subroutine operate in a master/slave-

‘relationship -~- the main prograen calls the subroutine, the
-subroutine .begins execution at its beginning,. runs to
completion, and returns .to the main program. The - main
program = then continues to execute at the instruction
- following the subroutine call.)
In contrast to this mastexr/slave relationship between the

‘main program and a subroutine, the relationship hetween
coroutines is completely syrmetrical.. Coroutines call each:-.
other, and it is impossibkble to tell which is the subroutine

of the other. A good example of a coroutine structure would

be two chess plaving programs. We will...call one program

Black and one program White and and activate one program
{say White) first. Vihite computes its move and calls Black.

When Black is activated, it computes its move and calls

White. Fach time a coroutine is activated, it continues. at

the place where it last terminated. Coroutines are used

. most naturally for input/output routines. For example,

consider the following coroutine written in HMesa.)

L A A I

Dago ¥

" nextchar: COROUTINE RETURIS [CIIARACTER] =-

~- this routine returns the next

-- after every card it returns a

BEGTH |
card: CHERACTER [80];
i: TmeER;
DO
readcard [caxd]l;
FOR i = 1 TO 90 DO
fﬁmmm'm@ﬂ‘ﬁ]jf
. END e |
"Rzrdénw[Sfi}
L END

END

. ewaww

input character,

blank as the next character

- input card is character arr

i indexes next character

DG‘ereverj

 £ill card buffexr

return next character

continug loop next activat:

xeturn hlank at end of carxd

repeat DO loop .

This' routine acts very muchh like a subroutine. The
-statement

- Cc G— nexﬁchar[I

would activate the coroutine nextchar and assign the next
character to c. Internally, thére are sorme ‘important
differences between a coroutine and a suhroutine, ’ '

1. Like a subrwutine, local storag@.is allocated the
, first time & -wriooliiwe iormetivated. - However,
: this Jocal storage is not frced by the PRETURN
‘ "statement. -~ In thez chess exarmle, this would be
like upsetting the board after cvery nmove. The
coroutine wants to remember what it was doing the

‘next time it is entered.

2. When a subroutine is called, it always starts at
the bsginning. When a coroutine is called, it
always continues at the point where it last

- terminated.

On the INeed for Recursion and Coroutines

: N
Recursion and Coroutines are two features provided by Hesa

that - SPL does .not suppurt. Tiw~guestzon is "do we really

need these features in the language we choose for QIS?Y.

The answer 1is probably "no, ve don't really need them ——

these features are fairly new in the programming world, and

we <can continue to- do things the way we have always done

them". However, these are very useful tools, and many

problems are most naturally solved by using coroutines and

recursion. These tools do not fall into the category of “a
better mousetrap". A tool of the better mousetrap variety

is the literal. The literal «constant 'is cextainly a
convenience because the programmer doesn't have to think of

a name for the constant and declare it somewhere -in the

‘program; he can keep his mind on the vroblem and let the

compiler worry about such routine matters. ~The . literal
provides a more convenient way to do something. Recursion

and coroutines, however, really provide nzw. wavs to think

about problen solving. ¥ith regard to programming tools and

thinking habits, +the following auote firom Dykstra's “"The

Humble Programmer" 1is very relevant. ‘ o :

"Y obsérve a cultural tradition, vhich in all
- probability has its roots in the Renaissance, to regard
the human mind as the supreme and automonous master of
its artifacts. But if I start to analyze the thinking
habits of nmnyself and ny fellow human beings, I come, .
whethar I like it or not, to a completely . different
conclusion, viz. that the-tools we are trying to use
~and the languagza we are using to'eXﬂross Or recorda our .
. thoughts are the major factors determining what we can
- think or express at all! The analysis of the influence
- that programming languages have on the. th 1nk1ng habits
of their ..users, and the recognition that, by now, -

brainpower is by far our scarcest resource, these
: togethe give us a collection of ‘yvardsticks for
‘com Darlﬂg the vclatlva merlts of various . programming
'lavguagcs." - T e

. SUMMARY

- The lgnguage we select for OIS mnust provide reentrant.
procedures. Without reentrant ~ procedures, a
.muTtlﬁvoc*anmlna type of environment is not DOSSlble."If
- the lHDQU“gn handles reentrancy, then it should be able to
- provide recursion .at little extra cost. The language w
~choose for OIS must he implemented on Sigma 7 under CP-V,
- This will permit uevclovﬂenb work on OIS to baegin befoxe the
~hardware has been developed and it will p;rnxt the language
to be. used for other applications. throughout lercx. Slnce'
- reentrancy and recursion cannot be efficientlv implemented
. on Sigma hardware, recursion and reentrancy must be optional
- - features of the language. The compiler will produce sta 'c
- procedures wvhen these Featu*es are not needed

Recursion and . coroutlnes are varj povﬁrful tools tha~~
provide new ways to think about prohlem aolvwnq. If we are
considering a lanruaoe that will be used into He 19005, the
Janguage should 1nclude th se. foaturee. ,':.' .

Qy};\) 74’\5/)’*.,5767‘-&7"‘/ N .

wa Frandeen
OIS Project

“es

“endelson, X.’ohu

2'

'u

-

Ac:'1 L CO@?&, S. Klee,.A. (dpito, cC. Hartin,'d.

[

Inter-Office Memorandum

HE Hal Lazar oL Date 2 January 1975

fFrom - Jerry Elkind, Butler Lampson, Lccation Palo Alto
Jim Mitchell .

Subject Comments on the Selection of Organization CSL
Mesa for the OIS
System Programming Language

In a memo written December 17, 1974 Peter Heinrich and Wendell Shultz
recommended that Mesa (MPL) be adopted as the System Programming Language
for OIS, and they proposed a plan to transfer the system from PARC to OIS

.Development. In the following we comment on the recommendatxon and discuss

alternative paths for implementing it.

1. We concur with the recommendation to adopt Mesa

We concur and endorse the fundamental recommendation that Mesa be adopted as
the OIS implementation language. OIS needs a high level language for
implementation. It appears to us that Mesa is more complete and more
powerful than the other alternatives. 1Its use by both 0IS and PARC would
facilitate exchange and communication of software among these two
communities. We are prepared to assist where we sensibly can in helping to
transfer knowledge about the system to the OIS group so that they can use
our implementation of the system or develop their own, whichever seems most
appropriate. :

2. The technical evaluation of Mesa is essentially correct

The technical evaluation of Mesa contained in the memo is essentially
correct, but there are a few instances where the capabilities of Mesa were
overstated and a few where they were understated. Jim Mitchell has already
spoken to Wendell about these, and there should be some additional
conversation between them on this subject. The principal overstatements
were the suggestion that Mesa has a file editor and-a source editor
integrated into the Mesa system. We have been using the standard MAXC and
Alto editors, but they are not written in Mesa. The principal
understatements are that Mesa does not have an automatic instrumentation
system (it does) and an implication that there will be an opportunity for
signicant enhancement of the instruction set being developed for the Mesa
Alto implementation. The current effort to design an instruction set for
Alto will produce code that is reasonably close to the minimum size as
determined by entropy measures. We believe that it will be hard to improve
on it and that the principal task of the "object code generation phase"”
(page 6) should be to adapt this instruction set to the OIS processor.

3. Comments on-the Action Plan

We are concerned about parts of the proposed action plan for 1mplement1ng
Mesa on the Sigma under cp-v.

First, the MAXC version of Mesa is not the appropriate take-off point for.

such an implementation. The Alto version is the one to.start with. We are
now concentrating on the Alto version, making considerable improvements in

it, and are not intending to upgrade the Maxc version to maintain

ccompuatibility between it and the Alto one.

; ¢ is obviously essential for OIS to have a Mesa system on which to
iv-develiopment. 'There are three ways in which this can reasonably be

1. Obrain Altos and run the version of Mesa being
developed at PARC.
2. 1mplc"ﬂnt an interpeter on the Sigma that will be
able to execute the Alto version of Mesa. :
3. implement a version of Mesa on the Sigma in the
manner described in the memo.

The last of these alternatives is by far the hardest to accomplish, will
take much longer to complete, and is the most risky. It would cause
continuing compatibility problems between the PARC and OIS versions of the
system, which would represent a considerable hazard especially during the
period when the system is still in active evolution. We would argue
strongly for either of the first two alternatives. B .

Thkird is the problem of compatibility. Obviously, PARC and the OIS Group
must have complete and independent control over the versions of Mesa that
each is using. However, there is much to be gained by Kkeeping these two
versions as compatible as possible for as long as we can. This is
especially important in the near term when the systems will be actively
evelving. We have had considerable success with two large systems, .
Interlisp and Tenex, in maintaining compatibility among a number of very
independent organizations. It should certainly be possible to do as well
with Mesa and the PARC and OIS organlzatxons. The key to achieving .
compatibility is to define a standard interface, that is, a specification
fur a Mesa Virtual Machine that all implementations must satisfy. The
virtual machine should be defined at as low a level as possible.. If we
adoot this approach, then we can be reasonably confident that Mesa programs
11 run correctly provided that they don't use facilities not in the’
\1rtual machine. Input/output almost certainly will have to be handled in a
machine-specific manner at least to some extent, but this seems
unavoidable. A Mesa Virtual Machine has not yet been specified and needs to
be. ' '

Finally, we concur in the suggestlon that two or three OIS programmers spend
some time at PARC to learn about the system. The rzght number seems to be
two programmers. The time period should be about six months. We believe
fhat the best and fastest way of learning is for them to spend this time as
part of the Alto Mesa project team, working on documentation, converting
parts of the system from MAXC to Alto, and criticizing and contributing to
the Virtual Machine definition. Our resources at PARC are few, and it is
important that we find a way of transferring the knowledge about the system
without interfering greatly with the very crucial work of moving Mesa to
Alto. The only way we can see to do this is by having these OIS team
members participate in that transfer. .

c: OIS Architecture Board

B Beeson C Geshke

K Campbell "E Satterthwaite
§ Klee P Deutsch
W Klein B Wegbreit
A Kopito J Morris

A Lipton C Simonyi

C Martin W Teitelman
B Spinrad J Moore

F Vance D Bobrow

G Pake . C Thacker

H Haill

¥ English

R Taylor

	1-01_19741217
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01_19741219
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01_19750102
	3-02

