
XEROX 
PALO ALTO RESEAI~CH CENTER 

Learning Research Group 
ApriJ 2S, 1978 

To: Smalltalk Interest 

Subject: NoteTaker Smalltalk Design *DRAFT* 

From: Dan Ingalls 

Filed on: . MAXC<Inga]1s) NoteTalk.Bravo 

General Approach 
The NoteTaker Smalltalk design builds on that of its predecessor, with major changes 
addressed to the foilowing improvements: 

1. Full capacity performance in NoteTaker environment. It should be possible to do 
.... nn'nlpv prlitino nf .... nlnhinprl tpvt <:I"rl or'lnhi .... c with 1 ")QV \lIArrlc Af D A "'A 'lnrl .. 
...... '-'.IJJ.p'~./1I. ""1-101."-.1.10 ",-,"J. """'--"JIJ.VJ..I1 ..... "-' "''''''.n.. ... \,4J..lY ,o'''"'1-'III''''IJ nJ\,.Jl ~.6-\,.JJ'" '"'JUJU.., V.l .I.'\. . ..{I..J'-I '-'IIU U. 

340K byte floppy disk. 

2. Identical compatibility with the D-O environment. It should be possible to run 
the same save file on either machine, except in cases where advantage has been taken 
of the greater virtual address space of the D-O. 

3. Better real-time response through more efficient addressing, storage management 
and elimination of object swapping. 

4. Support for language improvements such as multiple superclasses and arbitrary 
instantiation. 

Pointer format 
Our experience has shown 16-bit object pointers to be well-suited to a system size of 1 
million words. NoteTaker Smalltalk wi1l not encode class information in the pointer as in 
its predecessor for three reasons: 

1. It causes inefficient use of address space for classes with few instances. 

2. It makes classes very special, and thus requires an extra level of simulation to 
provide arbitrary instantiation. 

3. It makes arbitrary transmutation of objects effectively impossible. 

Physical Storage :vtanagement 
There are two principal areas of physical storage which are called the ROT (Resident Object 
Table) and the data area. The ROT is indexed by object. and provides the actual core 
address (24 bits) and also the reference connt of the object. The data area contains the 
remaining representation of the objects, namely class link and parts. The tradeoffs in space 
are interesting: 

128K NoteTaker 
S12K NoteTaker 
D-O (I-2M paged) 

approx. 10K objects 
approx. 40K objects 
limit 60K objects 



I 

, 

( 

( 

(. 

In 128K, only 1 bit of 8 are being used for the high-order core address; one could save 10K 
bytes by going to 16-bit core addresses which get multiplied by two in the interpreter. Note 
that this evenword alignment gives rise to a mean waste of 1/2 word per object, or 10K 
again! The argument tips much in favor of long core addresses for the larger sizes. and it 
would be nice for the small system to be totally compatible. 

There are two more places where we could pick up a little space. One is to pack a small 
reference count in with the high-order bits of the core address; the 8086 can only use 4 of 
these bits, but it would restrict 0-0 to the same range (insofar as we choose to retain total 
compatibility). We could also restrict the object numbers of c1ass- I ike objects to have zero 
in their low order bits so that a small reference count could be packed into those bits of the 
object's c1ass link. This scheme implies that any future schemes for arbitrary instantiation 
will involve an indirect ancestor link, as the ancestor can not be counted on to have such a 
special object number. At this time I feel that this issue is a small one - 5K out of 128K. 
and we should cling to simplicity as long as possible. 

It must be possible to trade ROT allocation off against the data area, but a proportion of 1 
ROT entry per 16 words of data will probably do well initially. 

Thf': C'lIffent :~l1o('~tion scheme for resident data seems annronriate for the NoteTaker as well: 
~ -~~t -~f- i~~-e--iis-t~--f~-r--th~-·~~I~I~~n ~izes- a~ld -octa~es fo; 'large ones, a minimum quantum of 
two words (this may not be necessary). and a compaction pass for consolidation of 
fragments. 

Virtual Storage Management (garbage collection) 
Our fall-back position here is to do reference counting as now, and provide a garbage 
collector which would take 5 or 10 minutes to collect cyclic structures. 

Ted has a new design for a composting scheme (special treatment for recently created 
objects) in the works which may reduce the reference count overhead. He is currently taking 
statistics on object activity, and I am currently writing code for reference counting on the 
8086, and we will choose our strategy when the results are available. 

Program encoding 
The Smalltalk-76 instruction set has stood up very well. but a few improvements have 
emerged from our experience and should be incorporated in the NoteTaker Smalltalk: 

l. Peter's recommendation for saving 2 bytes of overhead on methods. 

2. Make Method a real Class to clean up the semantics of code. 

3. Put all messages in-line with a send-immediate code, replacing the send-literal­
relative code. This saves a byte per message for single occurrences - the dominant 
case. We would use 1 hexade of codes to give the high 4 bits of the message atom, 
with the following byte supplying the low 8 bits, and there would be a system limit 
of 4096 message names. If this seems low, we can use two hexades to span 8192. 
Either way we actually free up 1 or two hexades which can be used to encode the 
common stores in 1 byte as suggested by Peter. 

4. In the light of (3.), we should re-examine Dave's literal statIstIcs and consider 
similar immediate access to all literals, or the possibility of class-wide literal frames. 

2 



I 

, 

( 

( 

Message lookup 
After a couple of excursions, I am leaning back toward essentially our current message 
dictionary structure, but with a decent sized cache in the interpreter for class/message/code. 
In this way we retain the space efficiency of having the dictionary in the class, but get fast 
probing from the interpreter which also bypasses the superclass lookup when successful. 

The text for Smalltalk code will be carried in an optional column of the dictionary which 
will 

if absent, indicate a disk on which the code resides 

if present, contain pointers which 

if absent, indicate a disk on which the code resides 

if present, point to the code 

I/O Primitives 
The word "nrimitives" is used snecificallv here to mean ooerations which are implemented 
in the sepa;ate I/O processor of the NoteTaker. The graphical primitives will Include at 
least projector-oriented versions of BITBL T and line drawing, with the possibiiity of entire 
text-line operations and KAOS animation operations. In addition there must be support for 
display control, floppy, keyboard, touch-screen and pointing device. The 8086 also appears 
capable of significant musical synthesis, and we will probably support both FM and direct 
modes. If there is room. we will put in some speech primitives also - after all, talk is cheap 
(tee hee). 

¥/e have yet to establish exact timings for these operations, but they look as good or better 
than the current ALTO times. With more detailed information, we can choose more 
appropriately where to divide the load between the two processors, and therefore what the 
task control blocks will look like. 

~otcTaker Em:ironmcnt 
Generally, Smalltalk will run totally resident on the NoteTaker. and significant applications 
will use the floppy disk to read and write related data such as documents. music. source 
code, etc. At any time, the system can be saved in bootable form on the disk, and the time 
for this operation will, like booting, be around IS seconds. When we go to S12K, there is a 
potential need for multiple disks to hold a single boot-file; we will throw a party for 
Shugart at that point. 

D-O Environment 
I would like to provide a totally compatible D-O environment - meaning that the very same 
boot file would run on D-O, with microcode running Smalltalk, and some Mesa runtime 
code handling calls to the I/O processor. 

3 


