
('

(

From:

To:

Subject:

File on:

Dan IngaUs

XEROX
I)ALO ALTO RESEARCH CENTER

Learning Research Group
fvlay 31. 1978

NoteTaker Smalltalk Interest

Getting Started_.,

MAXC <INGALLS) NoteTalk3.Bravo

Now is the Time
The NoteTaker hardware schedule is very short. and writing a new SmaHtalk from scratch
will take a while. Many components of the Notetaker Smalltalk system can be coded at this
point in time (BitBLT. byte fetch. text primitives). Of those that remain, most (ROT
format, storage management, method lookup) depend on design decisions which can be
argued on both sides, and which may as well be decided by fiat. In order to get us going,
this memo proposes some arbitrary decisions. and outlines the tasks involved in transfering
our current Smalltalk system to the NoteTaker hardware~ I feel that the small machine
environment wiii be sufficientiy different that we s.hould concentrate on getting something
up, and then look at performance improvements after the dust settles. In the places where
we already have good ideas. we will make sure the initial implementation admits
improvement readily.

Some Arbitrary Decisions
The simplest of the ROT formats is one which uses a two-word entry for each object. in the
form which the 8086 can load with its doubleword LDS (Load Data Segment) instruction.
This provides high speed access to data. an" makes enough room in the ROT for reference
counts and garbage collector bits. It is limited to 16K objects at this level of simplicity. but
that is no problem for 128K. and may even be adequate for a 256K NoteTaker.

The simplest storage reclamation scheme is a fun sweep garbage collector. and, by
augmenting it with an incremental sceme (see <INGALLS)CompostGC.Bravo) we should get as
good or better performance than with our current reference cOtlnting. If not. then we can
go back to reference counting for the incremental stuff - a possibility which must be'
provided for in our coding style.

Our current access to methods via MessageDicts is hard to beat for compactness and
simplicity. Its efficiency can be greatly enhanced with a cache, and such an enhancement
will be essential if multiple superclassing gets heavily used. I propose that we implement
this scheme with cache; the latter being separately debuggable ..

Given the restricted range of object pointers, we can get some extra simplicity and speed out
of using 1/2 the pointer space for IS-bit integers. For Largelntegers. we can go with Daveis
current implementation for a while, later writing 8086 code to take advantage of the 8086's
hardware support for extended arithmetic. IncidentallYt it would be nice if we could borrow
an existing 8080 or 8086 floating-point package to support Floats.

We have gotten a lot of simplicity out of our Contexts as objects, and I'm reluctant to
change this scheme in the first implementation. The one thing I would change, however. is
to build the tempframe into the Contexts so that allocation can go a little faster, and work
out a scheme (I-bit reference count?) to recognize the common case that a returning
Context can be freed.

Then 'Vb at?
Assuming that we go with these or similar decisions, the NoteTaker Smal1talk environment

. requires implementation of the following modules:

Interpreter: byte fetch, fast ops, method lookup, activation
Storage Management: allocate, liberate. compact, full gc, inc gc
Text display: pick string. pick runs, pick font, measure/display
Bi tBL T: clipping, setup, actual BL Tt line-drawing control

I n addition, some· redesign has to be done where we are going to change things:

Text display: restriction of primitives to line-level means some new Smalltalk code
to handle the inter-line code. ..

The bootstrap writer (Ted's VMapper) must translate our bytecode change. the new
ROT format, the multiple superclass hookp and the extra class field in each object and
. probably more_ .

_The file system and other I/O stuff (mouse. kbd, etc) will have to be redone.
meaning at least several changes to File and Directory, and probably a complete redo
of . the 1/0 part of User.

We must, at an eariy stage, estimate the storage requirements for the system and check them
with the hardware reality; a further issue here is what number and capacity of processors
we can count on using in every NoteTaker. . .

Making the Move
There is the potential in the current Smalltalk of making the bootstrapping a really
enjoyable process. but I don't yet feel that I can convince anyone of how. It should be
possible to build the entire NoteTaker memory image from our current system. including
the 8086 code for the processor(s). It should be further possible to simulate the code.
project the -bitmap in a -window, assemble changes to the 8686 code and all the things we
would- like. The only reason I can see for not dOing this is the possibility that the Alto
assembler. umbilical/debugger can be done sooner and will be more convenient Even in
that case, I would consider the simulated bootstrap experience to be of great interest in
terms of self-definition and portability to any other environment.

Let's Talk
. We need now to have a meeting to discuss these proposals. talk about individual interests.

and assess manpower needs and sources (summer help?). How about this Friday at 11:007

