XEROX

PALO ALTO RESEARCH CENTER

Systems Science Laboratory
LSI Systems Area
October 23, 1978

For Xerox Internal Use Only

To:

File

From:

Doug Fairbairn

Subject:

More NoteTaker I/O information

stored: [IFS] < fairbairn > ntioDev-1.nt

The interrupt controller is addressed as I/O location 0(on the I/O processor) and $800_{\hbox{\scriptsize H}}$ on the emulation processor. We will be running this controller in a nested interrupt mode where higher priority devices can interrupt those of lower priority. The processor can mask off any interrupts which are not desired. The highest priority interrupt is level 0 and level 7 is the lowest.

The interrupts are triggered by a postive going edge and they must remain high until the interrupt is serviced.

The controller must be initialized with 3 initialization words. They are as follows:

It is important that the control words be output in the order shown.

The mask bit register (a 1 disables an interrupt on that channel) is loaded by writing the mask to address 2_H (IOP) or 802_H (EP). A 1 bit in the LSB of the word masks the highest priority channel.

The "in service" bit for the current interrupt may be reset by writing a 20H to locations 0H (IOP) or 800H (EP).

There is another word which can be written to the device which determines what data comes back on a read. The data to be written is either A_H and B_H . This data is written into location 0_H (IOP) or 800_H (EP). If an A_H is written then subsequent reads of location 0_H or 800_H (EP) will get you the Interrupt Request Register (pending interrupts). If you write a B, subsequent reads will get you the In Service Register (all the interrupts which are currently being serviced). A read of location 2_H or 802_H (EP) will always get you the current mask register.

CRT Controller

The CRT has many internal registers for setting a multitude of internal timing parameters. he following data, when loaded into the associated locations should give the proper timining for the NoteTaker.

```
Address:
                Data:
140H
                 60H
142H
                 F0H
144H
                 7DH
146H
                 1EH
148H
                not used
14AH
                 Read the line on which the cursor is displayed
14CH
                 Read Cursor character
14EH
                 Reset device (stop all timing generation)
150H
                 Scrolling - not used
152H
                 Load cursor character address
                Load cursor line address
Start timng chain after reset
Self load - not used
154H
156H
158H
```

The cursor line address is used to stop the generation of any video. It will automatically restart at the beginning of the next field.

The bit clock is settable as well. It is a 36Mhz. osciallator with a programmable divider. The register which holds the timing is at location 100H. It is a 16 bit register of which only 4 of the bits program the bit clock. The whole register is used as follows:

```
program the bit clock. The whole register is used as follows:
Bits 0-1 (MXXX XXXX XXXX XXXX)- Analog to digital converter speed
         00 - 3 Khz.
01 - 4 Khz.
         10 - 6 Khz.
11 - 12 Khz.
Bit 2 (XXMX XXXX XXXX XXXX)
         0 -stop the CRT timing chain in its current state
         1 - allow it to proceed
Bits 3-6 (XXXM MMMX XXXX XXXX) - Bit clock speed
         0000 - 2.25 Mhz.
         0001 - 2.4 Mhz
         0010 - 2.57 Mhz.
        0011 - 2.76
0100 - 3.0 Mhz.
0101 - 3.27
0110 - 3.6 Mhz.
         0111 - 4 Mhz
         1000 - 4.5 Mhz.
         1001 - 5.14 Mhz.
         1010 - 6.0 Mhz.
        1011 - 7.2 Mhz.
1100 - 9 Mhz.
1101 - 12 Mhz.
1110 - 18 Mhz.
Bits 7-9 (XXXX XXXM MMXX XXX) - Select A/D source
        000 - Tablet X
        001 - Tablet Y

010 - Main +5 volts

011 - Main +12 volts(scaled by 1/3)
        100 - Battery output voltage (scaled by 1/10)
        101 - External analog 0
        110 - External analog 1
        111 - External anlalog 2
```

Bits 10-12 (XXXX XXXX XXMM MXXX)

Drive select (bit 10 =drive 1, bit 11 =drive 2, bit 12 =drive 3) for the floppy in a multi floppy system. Only one bit may be on at a time.

Bit 13 - (XXXX XXXX XXXX XMXX) - Side select for floppy

Bit 14 - (XXXX XXXX XXXX XXMX) - Turn on 5 volt disk power

Bit 15 - (XXXX XXXX XXXX XXXM) - Turn on 12 volt disk power

NOTE: All bits are set and reset at once. The programmer must keep track of the revious states of bits.