NoteTaker Smalltalk Conventions

This is a working document. Send protests to: Ted Kaehler
Filed on: [IVY] < kachler > NoteTaker.Conventions
This is version 5 on March 6, 1979
(Changes are underlined)

Opbject Pointer Space

A pointer to an object is called an OOP (ordinary object pointer). The 16 bits of an oop are
apportioned as follows:

oop = xxxx xxxx xxxx xx00 The oop is a pointer to an object. The oop is the actual
displacement in the OT of the entry of this object. The first oop is 0 and the last actual oop
may be as big as OEFFC hex.

oop = xxxX Xxxx xxxx xxx1 This is the oop of an integer. The value of the integer is
oop/2.

oop = xxxx xxxx xxxx xx10 (Not yet specified)

Physical Memory

The bottom few K of physical memory are local to the processor. The entire space is divided as
follows (all addresses are byte addresses in hex): .

00000  (CS points here)
Local memory for interpreter, storage management,
interrupt vector.
02000 (Local memory ends at 02000 assuming 8K bytes of it).
OT is up to 15K entries of 4 bytes apiece.
10000
Data arca. (actual smalltalk objects reside here).
3FFFF  (end of physical memory 256K bytes).
FFFFO0
Bootstrap locations for 8036
FFFFF  (end of virtual memory 1M bytes).

Object Table (OT)

The object table contains a two word entry for each object and is indexed by the oop (plus
OTbase) off the code segment register. The bit format follows (Note that I am showing the bits as
high:low but in memory the bytes are reversed):

rrrr T uuut ttty (bytes 1,0)

SSSS SSSS SSSS 5888 (bytes 3,2)
where r is REF the reference count, u are unused bits (possibly for garbage collector status), t is
TOFF the core address offset, v is CLL (core longer than length, for inflated allocation), and s is
TSEG the core address scgment origin. We will use the LDS instruction to load the first OT word
into register SI and the second word into segment register DS. - Subscquent MOV instructions used
to access the data ficlds of the object compute the cffective address as DS*16 +SI. Notice that the
v bit is anded out to give a zero bit there. Thus the TOFF field overlaps the TSEG ficld by one
bit. TOFF and TSEG arc normalized so that ncgative offscts of up to 8 byles are allowed on
SLDS. After anding out the REF, u, and v fields of SI, the core address of the field ends up bemg
$sSS $SS$ Ssss ssss 0000 + t ttt) + offsct



Normalization applies to both objects and free blocks, thus the normalized core address in an OT
entry will survive many allocations and frees. A normalization is only done during an allocation
which must carve the core off a big block (this is also when a new OT entry filled in). Objects are
renormalized during compaction.

The OT must lic below the data space. OT entries may point below the data space at the OT (for
empty entries the freelist). They point into the data space (for objects and free blocks). They may
not point above the data space. The end of the O is marked by a fake entry beyond the end. It
has REF=0. A fake picce of core just beyond the end of the data space contains its oop
(ILLOOP). (The compacter uses this to know when 1o stop).

Segment Registers

CS always points to base of current 8086 code (00000). CS is used to address the OT just above
the code.

SS Points to the current context during interpretation. It is switched to the top of the stack space
(which grows down) while large chunks of 8086 code run.

DS changes continually and points to the segment of the current object (instance, message dict,
class, literal, or object reference).

ES points to segment of current method (lhe byte codes).

Remember to say 'seg cs’ before accessing any variables in the code segment!

Mapping

Given an OOP in BX, the code to find the object in the OT and load field 3 looks like this:
SEG CS :using code segment
LDS SIOTbase!BX Joad DS,ST with oop in BX off CS + OTbase
AND SL#TOFFMSK :AND out non-offset bits (TOFFMSK = 01EH)
MOV  AX.3!SI Jload AX with ficld 3 of object (using DS)

Format of an Object

The Oth word of an object is pointed at by the OT. It contains the high 10 bits of the oop of the
class of the object. (The low 6 bits of the oop of a class must be zero). The low 6 bits of the
zeroth word are LC, the length code. The ficlds follow in the next words. Objects must begin on
even byte addresses.

Lengths of Objects

It is always possible to tell if an object is in use or on a freclist by looking at the REF field of the
OT. A zero in the REF ficld means that the object is on a freelist. If so, its total length in bytes
is found in its zeroth core word. (There is also a freelist of empty OT entries with no core. They
each point at the next free OT entry and not at core and thus have length zero). Else REF is not
zero and the object is in use. If the LC ficld in the zeroth core word contains a zero, the object is
an octave object and the total length in bytes minus 2 is found in the word before the zeroth word.
(The OT still points at the word containing the class). If LC is not zero, it contains the total
number of bytes in the object (up to 63). The maximum size of an object is 64K-1 bytes. The
minimum size is 4 bytes (zero ficld objects are octave and thus have a 4 byte header). Note that
the length of any object is available without refercnce to any other object.

Classes



Of the 15K possible objects, 1K of them may be classes. The oop of a class has 0 in the low 6
bits. A special allocation call dispenses these valuable oops from the end of the OT empty entry
freelist where they were stashed in primordial times. If a non-class would suddenly like to become
a class, it must be renamed. Object renaming will be treated as a special primitive (like
alllnstances) and will involve a scan of all fields in the system (~1 sec). Allocation of oops will be
from the bottom up with NIL being 0, false being 1, true being 2. All newly allocated object will
have 0 in every ficld. Thus all pointer ficlds are initialized to NIL and 2all non-pointer ficlds are
initialized to O bits.

New Objects

A field called Instspec in each class carries information about the instances of that class. All
instances are allowed to have two kinds of ficlds. Named fields are ficlds that every instance of
this class has (they known by the compiler and come first in the instance). The LONG field in
Instspec encodes how many named ficlds instances of this class have. Extra fields are held only by
this instance (they are at the end of the instance). The object creation routine adds the number of
named fields to the number of extra fields to compute the length of the new instance. The call to
the creation routine supplies the number of extra fields. (Many objects will have 0 extra fields.
Strings and Vectlors have no named fields).

An object is created with REF=0. As soon as it is pushed, it acquircs the positive reference count
associated with an object in use. Beware that it is in limbo between being created and being refi’d.
No compaction is allowed while an object has REF =0 and is not on a freelist.

Storage Allocation

Every piece of user core is pointed at by the OT at all times. All free core and empty OT entries
hang around on freelists. Lengths in words of (empty entry),2,3.4,5,6,7.8,9,10,11,12,13,14,15,16, and
BIG get separate free lists. A freclist head contains an oop, which points at core. The first core
location contains the byte length and the second the oop of the next entry on the list. (For the
(empty entry) list, TOFF has OFH, an illegal value, and TSEG contains the oop of the next entry).
Free object must have REF=0 and CLL=0. (The deallocation routine makes surc this is true).
The (cmpty entry) list must always have something on il. Other lisls may be empty. No merging
of adjacent free.blocks is done. Instead compaction unifies core when fragmentation sets in.

Objects may carry more core than they use. If the core longer than length bit (CLL) is on in the
OT, then the true core length is found above the top of the object (above HEADER or
OLENGTH). The idea behind this length inflation is so that "one size fits all’ for small objects
(avoids needlessly chopping up big blocks when a slightly too big small block is around) and so big
strings may grow without many allocations. (The first system will make minimal use of CLL). The
compactor shrinks all inflated objects.

Compaction

A compaction occurs between the low water mark (LWM) and the end of the data space. The low
water mark is found by searching the lists of free blocks for the lowest one. For objects in the OT
with core above LWM, we stuff the contents of their Oth or -1th core word into TSEG. In the core
word we put their oop. In the low bil of the TOFF ficld (TOL) we put a 1 if they had a -1th
word and a 0 if they didn’t (this information would be destroyed otherwise). During the core
sweep, free blocks are distinguished from objects by a zero in the REF ficld. The length of any
object or block may still be computed. Afler an object is moved, the new TSEG and TOFF are
computed by normalizing the current core location. No compactions are allowed while a recursive
free is in progress, since some state resides in blocks that are marked free.



Locking of Objects

Each piece of machine code that wants to lock an object must reserve within itself a locking block.
The block contains places for an oop, an offset, and a segment. At assembly time the routine
informs the core compactor of the location of its locking block. To lock an object, the routine finds
out the current core address of the object and enters both it and the oop in the block. If any
object creation or storage allocation occurs between two successive uses of the core address, that
address must be reloaded from the block into the machine registers. (As you might guess,
whenever a compaction occurs, a cleanup routine goes through all the locking blocks and maps the
oops to get the new core addresses). Objects are always free to move during a compaction. Since
objects are not actually locked, they- do not need to be unlocked. Format of a locking block:

00p

offset (low bits of core address)

segment (high 16 bits)

Reading the Data Structure Address Space Diagrams

Enclosed are diagrams that describe all the data structures and data paths in this vimem. To help
_you understand them, I will walk through the first page. Find Fig 1b, OT Format and mapping 1o
fields. The format of an OT entry is in the upper left-hand corner. The two OT words appear
with the fields labeled (a label is the name of a ficld, not its conlents). W will follow TSEG and
TOFF through a memory reference to the core of this object. The index of a field within the
object is added to TOFF and TSEG in the proper allignment. The result is TADR, a 20 bit
quantity. The large square in the center converts the 20 address entering at the top to a sclection
of one out of 2120 possibilities. Since the bottom address bit is 0 and since only some of the
values are never used (objects don’t start every 2 bytes), the words 'some 2’ appear in the square.
Since we only have 256K out of 1M, three quarters of the values are unused. The values that are
used are expanded to the left. The large open arrow with the word ‘byte’ in it means that the
values are used as byte addresses to a memory. The words 'memstart” name the starting location of
this table in the memory. The braces on the Ieft name two parts of the table. Individual examples
of places referenced in the memory are carried down to the lower part of the page. Three types of
objects are shown with various fields labeled.

In general, boxes are data structure formats except squares with diagonal lines which are "bits to
choice’ conversions. Braces and curved lines are correspondences between the same field in one
place and another. Words in boxes are field names. Numbers beside curved lines are numbers of
bits. Numbers beside vertical lines are maximums and minumums of value ranges. Numbers in
boxes are actual bit values. Text outside boxes are comments.

Hex Helper

(hex decimal octal english)

(01 1 01 one) 02 2 02 two)

(04 4 04 four) (08 8 010 eight)

(010 16 020 sixteen) (020 32 040 thirty-two)

(040 64 0100 sixty-four) (080 128 0200 one-twenty-eight)
(0100 256 0400 two-fifty-six) (0200 512 01000 five-twelve)
(0400 1024 02000 1K) (0800 2048 04000 2K)

(01000 4096 010000 4K) (02000 8192 020000 8K)
(04000 2114 040000 16K) (08000 2115 0100000 32K)

(010000 2t16 0200000 64K) (020000 2t17 0400000 128K)
(040000 2118 01000000 256K) (080000 2119 02000000 S512K)
(0100000 2120 04000000 1M) :

I will distribute this memo whenever there are major additions. Ingalls Robson Fairbairn Kay



Tesler Horn Kaehler Merry McCall Krasner Deutsch (11)



- Fis l?x

NoYERker

OoP  FoRMAT -

ooP

i

OBJecr oo?P éé}\w/ﬁ_ ;

AI O PMAPPING

5

C3T€cT oof

st

OT base

U +

it -

|NTeceR 0P i1

NOT UséD

Cobe S&g (cs)'

&3

OADR

30

ORIECT
TABLE -

o |

-1

. e . ,,'
3 “+

UUUITOFF

T3&G

S,

I¢

RO [ .._.;A. - //.- -j;;l'
b EN sk /

083-60- SFACG e N

NUSED
L

- ey
g

_’-c vl ——
1 OT7 ertrR1

Iyveser

VALUE OF
THE

|NSTANces OF CMQS\,

Y|~

ORI

NUMBeR

W e Y MR AR RIS A 38 10 g

'_ ,__._,.,

THE Cuass o THIS

_ORTELT |8 UNOERSTouD . .
Yo 8¢ INTecgr
(2crusL oop or [FTetea
15 ¥ sPeqa:.O;?.s)



CFle. 1b

T emvrt

[VEVAY)

Tsee

ToFF f

NoTevTAReR

OT Format { NAPPING Yo Flewds

FleLp

R L L
, .

i5

16

~+

1{&1\-

T Seé

v -

e
}
y
'

—— b el LTI

\lF Flet= ¢..-{¢
2

;
- N e —

24-2

k IF Flewd=Ak -—-—-{ ak!

ok

Acass (LC

Fleen 4

Fretg R

EXRCT O8T&T

e g

Flero £

OCrRvE OFTET

LC=0O

—{¢

&

k2

—{on |

BLeieth |

FRee ofTeeY =~



_Fla. 1

FRee oBzécT LensTH FoRMATS

Nu*ﬁeﬁ OFf _
Aytes OF Cere

i Y
:
o i

__loleMews | ocvawe gdJeer
@ —> |Adass -4 [

i NU"‘SGL@F .ﬁ_“!*es Ao ET7 NUMAGR oF pe@s—__ (OLé%ﬂQ/&"-l
Feces I V0E S (121

R S | (15 oDD,— Am,_ B.Gey !F FGLJS Aﬂ-e B‘ﬂ'es

: 3ce o Flews _,... @Jem -
B Q M}nsclL oe Sﬁes Of' w&e ' N%’” cr o8 flews = (OL ) o 2

¢ —slpas i 1T exter osveer  [L ¢ |

NURBER o€ RYTES : ' | R

0 N USE o AN ¢ - A
s _ :

(leobb, AD L L;e‘f/-

LE“GTR

~ —f S e e e —

e T T s INFLATED AuocATIoN.
TLENGTH }’j < LessTH zf M { TLENGTH

i f

| olgmeTR {gejAcLAsSLC| o e ¢ Fcwe=1 .TH{:-,N_,._L_‘
G—> ACLASS | LC s I 3

- i H P e S S SO

T%E- 5%:-5 of wﬂs L

Frelas ) f /L - F.‘Wﬂﬂ InN TLC—NGTH,N_AM

o]

' ;

,5;7 /.ff.-/~7.-_; . . . . L o O
l YN  Terue BYTesS oF 08Ty
z

i

- - : } H
T prptaper . H

A Ay CoRe

4 4 YA . . . e e B

i : A
/ ) :,," / ;;,:A H . /,/. 7 7 7 ) F{ZO['\ GT Q;JTR._% ) E
}. . _" H i ';" < _:’ ’ £ . 3 ]

: JNFLaTes AlocdTionw “{ N
GTTAVE ' € XAT T ‘
| ofTecr | o |  NoRmAL Aliocation <12

ORTecY




Fie 4d OCP OF Class

Filont Herder \JorD

Q35ecT

| AND

Deva N A Cless

< i e

Gbd &g '

SRR - N

', ‘ e et 4 e e
]} OcP OF CLASS. cé’ ‘Pne

N ‘m\s o@ieo' I< A CLAsS.

_ O8T€eT -

e p—

(!T l" AN INSTRNCE op CLASS)

Aew N S S S L S S S
? — 3 A L - ! 1 L
> |NSTSPEC }—-—-'-—-——{ Pfé-""aa A X , LoNG 1
- VAN g LN — C e s e - - : [
_ ,-,{ i e

R Veews nat
MRD

- BHves oF
Nenbeh AnD
DATa I8 TMIS
|NSTANCE

Flews ARe
" Raw BITS

, (8‘1‘{_‘@5 OF fiews

- 7 hea)

F 1&05 ARE B‘ﬂ'cs

“FRelds Arzs WoRDS

. Bg Nop~EERO

} ;}+ B'-gmﬂsosgﬁas The
G\j@nj‘p fézg‘mwa(é Kol

LoNG
: TH

!

TRiS LAS“' NAS‘

VFleLds 15

{

1,

CJT#A evﬁ'%s 0t=
_Fleuls THav ONL‘L
NS INSTakee HAS

 (Trei e tomren
AT TR @AD OF
. e pstadee)

)
i
N - et —



. ("rae!

TUHE ConBiNaTioN of

O.C’vec,xs ON F:’Zeé'uST/S
" TRan3goRMs AN 0P To (s FI e‘{gs in CoRE Tnﬂf lS

Fis do ano 1)

EMNPTY gnNvAEs |W O%;@q T,Aége‘- (O‘f')

PR (iS‘r 6F° Fﬁe.é

avoon)y | (e

) NDMAL z.mK/_/ Tore SgF

- oTased L

2 |
A s

Heap _
FLisy & _,

us‘oéﬁi’%’*
R

Bfe"‘ F:Qéé oscrsd‘ ,

«" P ‘QGAB -

Llﬁfcf' FRES
Mﬂﬁi*" P
(s1672<e) .. (Ad. aop)

S Y
A e g AT e

(o) 7

- LleNeTH. 3|7 wherDS

Fk@é osrecr CLJIT«A c,oze) LGNG’H &-17 Wokas

N‘oWL o

| Blewetn _
Link

o0P)

/

NDRAGL ,
BLevETH
LINE

F—— MaP

(AN 0aP)

NO ConSTRaSTS ON. ThE ORJsR O ANT FRreglisT

'F§/qg?“ﬂ‘qiv_>“ .

. (GMPW E&nNTRieS MAs Free Qass enTrlES OH The_éﬂﬁ) o

NO Frec Bleck MA? Nave Blewers 2(5*{k~3&) B1ves

PR AN FRee OBTELT,

ReF=df, cu=é

AGNO ‘

BleneTH

i)

ena,-v

&

=iy

- b
T

[ S———



OT  RevVersa

T Tol
g 3 ”'/

~—

; Duline

ReF

BRIV

¢¢

ACLASS

Lc

NUNEER ©o¢ 1words {Bﬂ’fcs/st} To A Yo ToFe Jo twre

OT FONT AT fRoER \WORD U obyecy Las oo ‘5\

HB‘KTwN z

f_

YoL=g

-

ReVooL

/TS;.

[Frewd 1)

[

CARAT O}Q\.Q'QT e . 6£ \' B [ ——
+ ' Pt

I-" CS + OTaAsc ' ;

18

E S (PS) | e e
— — _{,,_. . - s e o om—— 518 o i PINT =+ hdn e <k '
T ¢ 5 ; o
St i | I T
e s N L / T RS -‘__*w
S - L o
j / S N i
. ._4,.‘,...}.!,.7,,“ g AU SIS SR .r;;?,,o . - ~ - — - e e
~/ . . I 1 leweriy _ S i
B Y B B T et N

orhase

- .,,_.“':;‘__*.4 L e —
k)
- i R

3

/18‘1_
&f*w

ReF

ool

Ta1)

Bossate vl

et Jo——
4 X

3

A

OLENGTH

3

}/TOL
9.. /v\i

REF

TAVRY

&0

_

— OCYRVE ORT&T

~— FRee oBIscy —-

P.ev ooP
Acu ss

Lc

IGEYEE

{25\/ ooP

BLemsTH o lunky

___ FeR_ INFUATE) AlowTion 08T€eTS, e e

ZAME AS FoRTNOMIL 0 3TeLTS. N
Ceere sl o7 Newr € ylewew




I

 .\ Flg. lcj FRG‘FG,QQMCS Cou»r.

| ReFEaente  CousT

) REF ]
' g B
N " l ‘ ‘,-.. . . e . e me—a—. - N ——
e e e | OVERFLow H k —’/(/~ - SO U —— : T
. . yyaye : i 3 H
o o Han ' (-m . ’ n
[T S Yy SORRE . wv»-t»'u'— RN S MM_”—_“M ..._...__.__1“, [P PR, J : [ __._ -. ‘ . -
—— B — M—_“— e e ____,.-__rg e e .,.~4_‘.._:A...~V._. e e R
L ™ OSy&T 1S on A FRESUISY, o i
B e NOY M USEL. e R S
g B O\fc:‘ZFww _TNes& _68JeTs. 41*: SYueK LITH OVERELON Q&FO D o
o . THe? L neved 8€ Free).  cveRrerow VALUE IS WOD’I o
e C MIEN T GeTs T 0¢é Rad6E, IT IS 2sseT T pote. . e
o Trie RERCT:  ACTUAL NUMBER c¢ oB &S Po) rfwé AT YuIS oETsz‘;‘@‘?‘j;"fZ[ -
o _‘?—?G,;.. 1h  Torr VAWES E
Yef€ 1S NpRrauze) To Aitow OF“'@*“ oe £ & Bvves
W THovuT weszpwa o2 UnNieRFlow. ) o _
[ ToEF g
. h B h i f @ ) ] o
D . . N T, D U 1 - - ! " BRI “,_1;_1;,,»,
T e *‘{ N S
No&mu}eo ‘\‘oﬂ: ' R
? S ﬁ | ‘"‘.
e { e 7 S AN -
) L‘vGGAL:_ -" a "';I FARr Ay :;J' K _,-"{ \J i ) ~



Fie 1¢ , ORJT€<Y FoRrav DURING A Recuisiys grec,

~>| .BLenaTH B Jtieal aoP oz: c?usa\ we% Esc'.uas ve Fﬂ.ée— wAs Susﬂs
FATHER é- oa?v R€WG stﬁ‘a wAs Here, = <5 Fres THIS 68T, ’
Live & _Livg 0of 2R _[NTEEER S — 1 '

¢
g e e e

) LIVE B i
No&ﬂu&d er for ! ) ) Ly :
_w_____:?_ 8?.5@!6?%1 I e .__”_.“-._

: WHeRe

. - PR “‘ - - - . 6 - - ; . -, - V- . e e e = s e e .- —. en maa - .. - —mt e e mm—— B
oAy O o TTE S LA SR
b pE 1 P :
i e B M e e

LIVE . _OFFSET,0F NEXT FéLD To. QCF& R R S A

Fae 1/&, ENcodg O€ AN 0of [N AN INYeeeR

- " __oTaTs A | } ﬁ . ,_ S ,-,A.,.___

ST S S

o

TREL

K\<oo‘P X
Caeﬂ ewmseﬂ IN AN MT‘EGC@ o o S S

\ :



