
DRAFT

Euclid Report
by B. W. Lampson 1, J. J. Horning2 , R. L. London3, J. G. Mitchell" and G. J. Popek4

April 20. 1976

This document describes the Euclid language. intended for the expression of system
programs which are to be verified.

Comments are earnestly solicited. and may be addressed to any of the authors. To facilitate
comparison with the Pascal report, maleri31 in this report which is new is printed in large
type. that which is copied f fom the P3scal report is in normal type, and material in the
Pascal report which is omitted ·from the Euclid report appears here in small type.

Authors' addresses and support:

1. Xerox Research Center, 3333 Coyote Hill Road, Palo Alto. CA 94304

2. Computer Systems Research Group. University of Toronto. Toronto. Canada M5S 1 A4
Supported in part by a Research LeavG Grant from the University of Toronto.

3. USC Information Sciences Institute. 4676 Admiralty Way. Marina del Rey. CA 90291
Supported by tile Advanced Research Projects Agency under contract DAHC-15-72-C-0308.

4. 3532 Boelter Hall. Computer Science Department. University of California, Los Angeles. CA 90024
Supported in part by the Advanced Research Projects Agency under contract DAHC-73-C-0368.

The views expressed are those of the authors.

This draft is circulated for criticism only. It should not be widely reproduced or quoted. A
later version will be published.

DRAFT

1

Preface

This report describes a new language called Euclid, intended for the expression
of system programs which are to be verified. Euclid draws heavily on Pascal
for its structure and many of its features. In order to reflect this relationship
as clearly as possible, the Euclid report has been written as a heavily edited
version of the revised Pascal report.

Obviollsly, we are greatly indebted to Wirth, both for the aspects of the
language which are copied from Pascal, and for the structure and mllch of the
wording of the report. In addition, we have drawn on much other work in the
design of programming languages, and in program verification.

I. Introduction

Th~ dev~lopment of the language !'i!~t:::)1 is bas~d on two principal aims. The first is to make available a
language suitable to kach programming as a systematic discipline basl'l! on certain fundamental concepts dearly
and naturally reflected by the language. The second IS to devdop implementations of this language which are
both reliable and efficient on presently available computers.

The desire for a new language for the purpose of teaching programming is due to my dissatisfaction with the
presently used major languages wh()~e features and construct~ too often cannot be explained logically and
convincingly and which too often defy systematic TI:asoning. Along with this dissatisfaction goes my conviction
that the language in which the student is taught to exprcs~ his id~as profoundly influences his habits of thought
and invention. anl! that the disorder gowrning these langu:Jgcs directly imp(lsl's itsdf on[:) the programming
style of the students.

There is of course plenty of reason to be cautious with the introduction of yet another programming language.
and the objection against teaching programming in a languagc which is not widely used and accepted has
undoubtedly some justification, at least based on short term commercial reasoning. However, the choice of a
language for teaching based on its widespread acceptance and availability. together with the fact that the
language most widely taught is thereafter going tl) he the one most widely used. forms the safest recipe for
stagnation in a subJcct of such profound pedagogical influence. I consider it therefore well worth-while to
make an effort to break this vicious circle.

Of course a new language ·should not be developed just for the sale of novelty; existing languages should be
used as a basis for development whereever they meet the criteria mentioned and do not impede a systematic
structure. In that sense, Algol 60 was used as a basis fur Pascal, since it meets the demands with respect to
teaching to a much higher degree than any other standard language. Thus the principles of structuring, and in
fact the form of expressions, are copied from Algol 60. It was, however. not deemed appropriate to adopt Algol
60 as a subset of Pascal; certain construction principles, particularly thost' of declaratIOns. would have been
incompatible with those allowing a natural and convenit:nt representation of the additIOnal features of Pascal.

The main extensions relative to Algol 60 lie in the domain of data structuring facilities, since their lack in
Algol 60 W:JS considered as the prime cause for its relatively narrow range of applicability. The introduction of
record and file structures should make it possible to solve commerci:J1 type pruhlems with Pascal, or at least to
employ it successfully to demunstrate such prubkms in a programming course.

The language Euclid has been designed to facilitate the construction of
verifiable system programs. By a verifiable program we mean one written in
such a way that existing formal techniques for proving certain properties of
programs c~n be readily applied; the formal proofs might be either manual or

2

automatic. and we believe that similar considerations apply in both cases. By
system we mean that the programs of interest are part of the basic software of
the machine on which they run; such a program might be an operating system
kernel. the core of a data base management system, or a compiJer.

An important consequence of this goal is that Euclid is not intended to be a
general-purpose programming language. Furthermore, its design does not
specifically address the problems of constructing very large programs; we
believe most of the programs written in Euclid will be smaller than about 2000
lines. While there is some experience suggesting that verifiability supports
other desired goals, we assume the user is willing, if necessary, to obtain
verifiability by giving up some run-time efficiency. and by tolerating some
inconvenience in the writing of his programs.

In developing Euclid. we have sought to minimize deviations from the Pascal
base; existing features of Pascal have been left unaltered unless there was a
reason for change. We see Euclid as a (perhaps somewhat eccentric) step along
one of the main lines of current programming language development:
transferring more and more of the work of producing a correct program. and
verifying its correctness. from the programmer and the verifier (human or
mechanical) to the language and its compiler.

The main changes relative to Pascal take the form of restrictions. which allow
stronger statements about the properties of the program to be made from the
rather superficial. but quite reliable. analysis which the compiler can perform.
In some cases new constructions have been introduced, whose meaning can be
explained by expanding them in terms of existing Pascal constructions. The
reason for this is that the expansion would be forbidden by the newly
introduced restrictions. whereas the new construction is itself sufficiently
restrictive in a different way.

The main differences between Euclid and Pascal are summarized in the
following list:

Visibility: Euclid provides explicit control over the visibility of
identifiers, by requiring the program to list all the identifiers
imported into a procedure or record. or exported from a record.

Variables: The language guarantees that two identifiers in the same
scope can never refer to the same or overlapping variables. There is
a uniform mechanism for binding an identifier to a variable in a
procedure call. on block entry (replacing the Pascal with statement).
or in a variant record discrimination.

Pointers: This idea is extended to pointers, by allowing dynamic
variables to be assigned to collections, and guaranteeing that two
pointers into different collections can never refer to the same
variable.

Storage allocation: The program can control the allocation of storage
for dynamic variables explicitly, in a way which confines the
opportunity for making a type error as narrowly as possible. It is
also possible to declare that some dynamic variables should be
reference-counted, and automatically deallocated when no pointers
to them remain.

Constants: Euclid defines a constant to be an identifier whose value
is fixed throughout the scope in which it is declared.

Types: Types have been generalized to allow formal parameters, so
that arrays can have bounds which are fixed only when they are
created, and variant records can be handled in a type-safe manner.
Records are generalized to include constant components, so they
provide a facility for modularization.

For statement: A generator can be declared as a record type, and
used in a for statement to enumerate a sequence of values.

Loopholes: features of the underlying machine can be accessed, and
the type-checking can be overridden, in a controlled way. Except
for the expl icit loopholes, Euclid is believed., to be type-safe.

Assertions: the syntax allows assertions to be supplied at convenient
points.

Deletions: input-output, reals, multi-dimensional arrays, labels and
gotos, an'd functions and procedures as parameters.

Other considerations in the design of Euclid are:

It is based on current knowledge of programming languages and
compilers; concepts which are not fairly well understood, and
features whose im'plementation is unclear, have been omitted.

Although the language is not intended for the writing of portable
programs, it is necessary to have compilers which generate code for a
number of different machines, including mini-computers.

The object code must be reasonably efficient, and the language must
not require a highly optimizing compiler to achieve an acceptable
level of efficiency in the object program.

Since the total size of a program is modest, separate compilation is
not required (although it is certainly not ruled out).

3

4

2. Summary of the language

An algorithm or computer program consists of two essentiai parts, a description of actions
which are to be performed. and a description of the data which are manipulated by these
actions. Actions are described by statements, and data are described by type definitions.
A data type definition essentially defines a set of values and the operations which
may be performed on elements of that set.

The data are represented by values. A value may be constant, or it may be the value
of a variable. A value occurring in a statement may be represented by a
literal constant, an identifier which has been declared to be constant, an
identifier which has been declared as a variable, or an expression containing
values. Every constant or variahle identifier occurring in a statement must be
introduced by a constant or variable declaration which associates with it a data type, and
either a value or a variable.

In general, a definilion specifies a fixed value. type, procedure or function,
and a declaration introduces an identifier and associates some properties with
it. A data type may in Euclid be either directly described in the constant or variable
declaration, or it may be referenced by a type identifier, in which case this identifier must
be described by an explicit type declaration.

A conslanl declaration associates an identifier with a value; the association
cannot be changed within the scope of the declaration. If the value can be
determined at compi le-ti me, the constant is said to be manifest; the expression
defining a manifest constant must contain only literal constants, other
manifest constants, and built-in operations. '

The simple data types are the scalar types. Their definition indicaies an ordered set of
values. i.e .. introduces identifiers standing for each value in the set. Apart from the
definable simple types. there exist fOllr standard basic types: Boolean, integer, "cIlOr and
StorageUnit. The real type has been omitted. For each standard type, there is
a way of writing l1teral constants of that type: True and False for Boolean,
numbers for integers, and quotations for characters. Numbers and quotations
are syntactically distinct from identifiers. The set of values of type char is the
character set available on a particular installation.

A type may also be defined as a subrange of a simple type by indicating the smallest and the
largest value of the subrange.

Structured types are defined by describing the types of their components and by indicating
a structuring method. The various structuring methods differ in the selection mechanism
serving to select the components of a variable of the structured type. In Euclid, there are
three basic structuring methods available: array structure, record structure. and set
structure.

In an array structure, all components are of the same type. A component is selected by an
array selector. or computable index, whose type is indicated in the array type declaration and
which must be simple. It is usually a programmer-defined scalar type, or a subrange of the
type integer. Given a value of the index type, an array selector yields a value of the
component type. Every array variable can therefore be regarded as a mapping of the index

5

type onto the component type. The time needed for a selection does not depend on the value of the
selector (i ndex). The array structure is therefore called a !!!!}~Q!!!:!!££~~~_l!!!!!£!l!!~.

In a record structure, the components (called fields) are not necessarily of the same type.
In order that the type of a selected component be evident from the program text (without
executing the program). a record selector is not a computable value, but instead is an
identifier uniquely denoting the component to be selected. These component identifiers are
declared in the record type definition. Again. the time needed to access a sdected component does not

depend on the selector. and the record is therefore also a random-access structure. Records may
include constant as well as variable components; manifest constant
components, of course, occupy no storage. In particular, records may include
procedures, functions and types as components. In this way, the operations
which are defined on a data structure can be conveniently packaged with the
structure.

Record components cannot be accessed outside the record body (which
includes the bodies of procedure coniponents) unless they are explicitly
exported. Thus in a properly written program it is evident from the lexical
structure how the state of a record can be altered.

A record type may be specified as consisting of several l'ariants. This implies that different
variables, although declared to be of the same type. may assume structures which differ in
a certain manner. The difference may consist of a different number and different types of
components. The variant which is assumed by the current value of a record vartable is
indicated by a constant of some scalar type which is called the tag field. Usually, the
part common to all variants will consist of several components. . .

A set structure defines the set of values which is the powerset of its base type. i.e., the set of
all suhsets of values of the base type. The hase type must be a simple type, and will usually
be a programmer-defined scalar type or a subrange of the type integer.

A file structure is a sequence of components of the same type. A natural ordering of the components is
defined through the sequence. At any instance, only one component is directly accessible. The other
components are made acceSSible by progressing sequentially through the file. A file is generated by sequentially
appending components at its end. Consequently, ttie file type definition does not determine the number of
components.

Variables declared in explicit declarations are called static. The declaration associates an
identifier with the variable, and the identifier is used to refer to the variable. The
language guarantees that two identifiers which can legally be used in the same
scope cannot refer to the same variable, or to overlapping variables.

In contrast. variables may be generated by an executable statement. Such. a dynamiC
generation yields a pointer (a suhstitute for an explicit identifier) which subsequently serves
to refer to the variable. This pointer may be assigned to other variables, namely variables of
type pointer. Every pointer variable may assume values pointing to variables in a single
collec/ion. all of whose members are of the same type T. and it is said to be bound to
this type T. It may, however, also assume the value nil, which points to no variable. Because
pointer variables may also occur as components of structured variables, which are themselves
dynamically generated. the use of pointers permits the representation of finite graphs in full
generality. Although the language cannot guarantee in general that two pointer
variables do not refer to the same variable, it can make this guarantee for two

6

pointers In different collections.

A zone can be associated with each collection to provide procedures for
allocating and dealJocating the storage required by variables in that collection;
if the zone is omitted. a standard system zone is used. The program may free a
dynamic variable explicitly, in which case the program is responsible for
ensuring that no pointers remain to reference the non-existent variable.
Alternatively, the collection may be reference-counted, in which case each
variable is automatically freed when no pointers to it remain.

Throughout this report; then, the word variable means a container which can
hold a val ue of a specific type. A variable mayor may not be associated with
an identifier. A constant, by contrast, is simply a value of a specific type. The
fundamental difference is that assignment to a variable is possible.

A type declaration may have formal parameters; such a parameterized
declaration represents a set of types, one of which is specified each time the
type is referenced and actual parameters are supplied for the formals.

Two types are the same if their definitions are identical after any type
identifiers that have been declared as synonyms have been replaced by their
definitions. and any actual parameters and any identifiers declared outside the
lype h,ave been replaced by their values.

The most fundamental statement is the assignment statement. It specifies that a newly
compufed value be assigned to a variable (or components of a variable). The value is
obtained by evaluating an expression. Expressions consist of variahles. constants. sets.
operators and functions operating on the denoted quantities and producing new values.
Variables. constants. and functions, are either declared in the program or are standard
entities. Euclid defines a fixed set of operators. each of which can be regarded as describing
a mapping from the operand types into the result type. The set of operators is subdivided
into groups of:

1. arithmetic operators of additio'n. subtraction. sign inversion. multiplication,
division, and computing the remainder.

2. Boolean operators of negation. disjunction (or), and conjunction (and).

3. set operators of union. intersection. and set difference.

4. relational operators of equality. inequality, ordering. set membership and set
inclusion. The resuits of relational operations are of type Boolean.

The procedure statement causes the execution of the designated procedure (see below).
Assignment and procedure statements are the components or building blocks of structured
statements. which specify sequential, selective, or repeated execution of their components.
Sequential execution of statements is specified by the compound statement; conditional or
selective execution by the if silltemellt, and the case statemt'llt. and repeated execution by
the repeat stafement. the while statement. and the for statemell1. The ·if statement serves to
make the execution of a statement dependent on the value of a Boolean expression, and the
case statement allows for the selection among many statements according to the value of a
selector. The discriminating case statement provides a safe way of
discriminating the current variant of a variant record. The for statement is used

7

when a bound on the number of iterations is known beforehand, and the repeat and while
statements are used otherwise.

A block can be used to associate a set of declarations with a statement. The
identifiers thus declared have significance only within the block. Hence, the
block is called the scope of these identifiers, and they are said to be local to
the block. Since a block may appear as a statement, scopes may be nested. A
type declaration also defines a scope in a similar way.

A block can be given a name (identifier), and be referenced through that identifier. The
block is then called a procedure, and its declaration a procedure dec/aration. However,
an identifier which is not local to a given procedure body is accessible in that
body only if

it is accessible in the immediately enclosing scope, and

it is explicitly imported into the given procedure body.

Entiti.:s which are declared in the main program. i.e. not local to some procedure, are called g!0b;J!. A
procedure has a fixed number of parameters, each of which is denoted within the procedure
by an identifier called the formal parameter, which is local to the procedure body.
Upon an activation of the procedure statement, an actual quantity has to be indicated for
each p:lfameter which can be referenced from within the procedure through the formal
parameter. This quantity is called the actual parameter. There are two kinds of
parameters: constant parameters and variable parameters; procedure, function and
type parameters are not allowed. In the first case, the actual parameter is an
expression which is evaluated once. The formal parameter represents a local constant
whose value is the result of this evaluation. In the case of a variable parameter, the actual
parameter is a variable and the formal parameter is bound to this variable. Possible
indices or pointers are evaluated before execution of the procedure. In the case of procedure
or function parameters, the actual parameter is a procedure or function identifier.

Functions are declared analogously to procedures. The only difference lies in the fact that a
function yields a result, which may be of any type and must be specified in the function
declaration. Functions may therefore be used as constituents of expressions. In order to

eliminate side effects. assignments to non-local variables should be avoided within function declarations.

Ahhough Euclid does not forbid functions to have side effects, it is
recommended that "functions should not have side effects unless they are truly
necessary. To this end, variable formal parameters, and imported variables,
should be avoided within function declarations as much as possible.

Since Eucl id is intended for the writing of programs which are to be verified
(either mechanically or by hand), there are a number of explicit interactions
between the language and the verifier, in addition to the many aspects of the
language which have been motivated by the desire to ease verification. These
explicit interactions fall into two main categories:

embedding of assertions in the program: the special symbols assert,
im'ariant, pre and post prefix assertions which are written as
comments and ignored by the compiler, but presumably will be used
by the verifier, which can take advantage of their relationship to the

structure of the program.

compiler-generated assertions: in cases where the compiler needs to
be able to assume that some condition holds, but is unable to deduce
that it does, the compiler m~y generate an assertion (in a new listing
of the program) for the verifier. and then proceed as though
confident of its truth. The legality of the program may then depend
on the truth of the compiler-generated assertion.

8

9

3. Notation, terminology, and vocabulary

According to traditional Backus-Naur form, syntactic constructs are denoted by English
words enclosed between the angular brackets < and>. These words also describe the nature
or meaning of the construct, and are used in the accompanying description of semantics.
Possible repetition of a construct is indicated by enclosing the construct within metabrackets
{ and }. The symbol <empty> denotes the null sequence of symbols.

The basic vocabulary of Euclid consists of basic symbols classified into letters, digits, and
special symbols.

<letter> ::= A I B I C I 0 I ElF I G I H I I I J I K I LIM I N I 0 I P I Q I
R I SIT I U I V I W I X I Y I Z I a I b I c I d Ie If I g I hi
i I j I kl I I min I 0 I p I q I r I sit I u I vi wi x I y I z

<octal digit> ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

<digit> ::= <octal digit> I 8 I 9

<special symbol> ::=
+ I - I * I I I = I <> I < I > I <= I >= I (I) I
[I] I { I } I := I . I , I ; I : I ' I t I div I mod I
nil I in I or I and I not I if I then I else I elseif I fi I
case I of I discriminating I repeat I until I while I do I od I
for I dC('fcasing I dnwnto I begin I end I with I goto I ronst I var I
type I any I unknown I synonym I where I array I record I set I file I
p~lcked I collection I reference-counted I forward I hlbel I program I
function I procedure I inline I machine I code I unchecked I
dependent I aligned I at I word I bits I to I
imports I exports I pervasive I initially I finally I
assert I pre I post I . invariant

The construct
{ <any sequence of symbols not containing It}"> }

may be inserted between any two tokens: identifiers, literal constants (see 4), or special
symbols. It is called a comment and may be removed from the program text without altering
its meaning. The symbols { and } do not occur otherwise in the language, and when
appearing in syntactic descriptions they are meta-symbols like I and ::=. The symbol pairs
(* and *) are used as synonyms for { and }.

Throughout this report, various restrictions will be placed on legal Euclid
programs. Many of these restrictions cannot be checked syntactically, and in
some cases they involve dynamic conditions that are difficult (or impossible)
to check statically. Nevertheless, programs that violate them are not
considered to be meaningful Euclid programs. In general, it is the
responsibility of the compiler to verify as many of these properties as it can,
and to produce legality assertions for those that it cannot. Thus, any program
whose legality assertions can all be verified is a legal Euclid program, with
well-defined semantics. If checked is specified for a block (see 9.2.1), all
legality assertions in the block are compiled into run-time checks, as an aid in
detecting illegal programs, even before the verification process is complete.

10

3.1 Lexical structure

The text of a program is built up out of declarations and statements.
collectively called units, according to the syntax specified below. In general
units are separated by semi-colons. The syntax is constructed in such a way
that a unit may always be legally followed by one or more semi-colons. In
order to make it unnecessary to write semi-colons between units which appear
on separate lines, a semi-colon is automatically inserted at the end of a line
whenever the last token of the line is one of:

identifier, literal constant,),], nil, fi, od, or end possibly followed
by if, do, case, record, code or an identifier,

and the first token of the next line is one of:

identifier. literal constant. if, case, repeat, while, for, begin, const,
var, type, function, procedure, machine, packed, program, pervasive,
initially, finally, assert, pre, post, or invariant.

Commas are used as separators in scalar types, element lists, parameter lists
and identifier lists in declarations.

There are various kinds of brackets which are used to group declarations and
statements for various purposes. The following list gives the possible closing
brackets for each opening bracket.

if end or end if or fi

do

begin

case

record

code

end or end do or od

end, or end <procedure or function identifier> if the
block is the body of a procedure or function

end or end case

end or end record or end <record identifier> if the
record deClaration is the definition of a type
iden tifier.

end or end code or end <identifier>

11

4. Identifiers, numbers and strings

Identifiers serve to denote constants, variables, types, procedures and functions. Their
association must be unique within their scope of validity, i.e., within the block or type in
which they are declared (see 6, 10 and 11).

<identifier> ::= <Ielter>{ <letter or digit)}

<letter or digit> ::= <letter> I <digit>·

The usual decimal notation is used for numbers, which are the literal constants of the data
type integer (see 6.1.2.). The letter E preceding the scale factor is pronounced as "times 10 to the power

of". Numbers may also be written in octal or hexadecimal notation.
<digit sequence> ::= <digit>{ <digit>}

<unsigned integer> ::= <digit sequence>

< unsigned real> ::= < unsigned integer>. <digit sequence>
<unsigned integer).(digit scquence>E<scale factor> I
<unsigned integer> E <scale factor>

< unsigned number> ::= <unsigned integer) <unsigned real)

<scale factor) ::= <unsigned integer>
<sign> < unsigned integer>

<sign) ::= + I -

<hex digit> ::= <digit> I A I B I C I 0 I ElF
<unsigned number> ::= <digit> {<digit>} I

Examples:

<octal digit> {<octal digit>} #8
<hex digit> {<hex digit>} #16

1 100 717#8 CAD1#16 123#16

Sequences of characters enclosed by quote marks are called ~!!iDg~. Strings consisting of a single character are
the constants of the standard type char (see 6.1.2). Strings consisting of n () 1) enclosed characters are the
constants of the type (see 6.2.1)

p;I('kcd ;,rray [1..n] of char

Note: If the string is to contain a quote mark, then this quote mark is to be written twice.

<string) ::= '<character> {<character)},

Sequences of characters enclosed by quote marks are called literal string
constants. They are the literal constants of the standard type string (see
6.2.1). A character code which is not in the printing character set can be
represented in a literal string constant in two ways:

*ddd where each d stands for an octal digit, represents the character
code with the octal representation ddd;

*S, *T, *N, **, *', *" represent space, tab, newline, *, ' and "
respecti vely.

A ' may also be represented by two successive ' characters.

<literal string> ::= ' { <extended character> } ,

<extended character> ::= <character> I * <extension> Itt

<extension> ::= <octal digit) <octal digit> <octal digit> I SIT I N I
* I 'I ..

Examples:

12

, "A' ';' • , • , 'Here comes a null: *000 and there it went"
'Euclid' 'THIS IS A STRING' 'This*Sis*Sa*Sstring'

A single character preceded by a double quote is a I iteral constant of the
standard type char (see 6.1.2). The * convention may also be used in these
constants.

<literal char> ::= It <extended character>

Examples:

Ita
u*"

"*s {space character} "*000 {the NUL character}
{a double quote character, not a string containing a single *}

13

5. Manifest constants

A manifest constant is an expression which is a synonym for a literal constant
<manifest constant identifier> ::= <identifier>
<constant> ::= <unsigned number> I (sign><unsigned number>

<constant identifier> I <sign><constant identifier>. I <string>

<constant definition> ::= <identifier> = <constant>

<literal constant> ::= <unsigned number> I <literal string> I
<literal char> I <scalar value identifier>

<manifest constant> ::= <literal constant> I
<manifest constant identifier> I
<manifest constant expression>

14

6. Data type declarations

A data type determines the set of values which variables and constants of that type may
assume and the set of basic operations that may be performed on them, and
associates an identifier with the type. Parameterized types are introduced in 6.4. A
type identifier declared as a synonym is considered to be the same type as its
definition; otherwise the identifier is a different type.

A type declaration introduces a new scope in which the formal parameters of
the type, if any, are declared (see 6.4). If the type definition is a record type,
the new scope is closed (see 7.4), and identifiers defined outside are
inaccessible unless imported. If the type definition is not a record type,
however, the new scope is open and importing is not necessary.

An identifier must be delcared before it is used. \Vhen there are mutually
recursive procedures or types, however, it is impossible to give the definition
of every identifier before its use. In this situation, a definition of forward
may be given instead, and later another declaration, of the form type T= ... (or
procedure P= ...) must appear to provide the true definition.

<type) ::= <simple type) I <structured type) I <pointer type) I
<type identifier> I <parameterized type reference>

<type identifier) ::= <identifier)

<type declaration> ::= type <synonym> <type identifier>
<formal parameter list> = <type definition>

<synonym> ::= synonym I <empty>

<type definition) ::= <type) <where clause> I forward

<where clause> ::= where <formal parameter list> I <empty>

Examples:

type synonym SameOldType = SomeType
type NewType = SomeType

6.1. Simple types

<simple type) ::= <scalar type) I <subrange type>

6.1.1. Scalar types

A scalar type defines an ordered set of values by enumeration of the identifiers which
denote these values.

<scalar type) ::= «scalar value identifier) {,<scaJar value identifier>})

<scalar value identifier> ::= <identifier>

15

Examples:

type Color = (red, green, blue, orange. yellow. purple)
type Suit = (club, diamond, heart, ~spade)
type Day = (Monday, Tuesday, Wednesday. Thursday. Friday.
Saturday, Sunday)
type Sex = (female, male)

Function components implicitly declared for each scalar, subrange (see 6.1.3) and
index (see 6.2.1) type T (except real) are:

T .succ

T.pred

T.max

T.min

the succeeding value (in the enumeration)

the. preceding value (in the enumeration)

the last value (in the enumeration)

the first value (in the enumeration)

If x is of such a type T, then x.suce and x.pred may be written as shorthand
for T.suce(x) and T.pred(x).

For instance, Suit.max is spade, and Day.min is Monday (in both these cases,
the dot notation is used to invoke a parameterless function associated with an
object; e.g., max is a function associated with all objects whose types are
simple, and, in particular, the max associated with all Suit values can be
referred to as Suit.max).

6.1.2. Standard simple types

The following types are standard in Euclid, and are pervasive throughout the entire
program:

integer The values are a subset of the whole numbers defined by individual implementations. Its
values are the integers (see 4).

Its values are the positive and negative integers, in the
mathematical sense. It is not possible to declare a variable to be
of type integer. Instead, variables can be declared to be of some
suitable subrange type.

Every implementation has two standard types, signedlnt and
unsigned Int. These are the largest subranges of integer type
which can be represented in one machine word and which
contain:

for signedInt, equal numbers of positive and negative
numbers, or perhaps one more negative number.

for unsignedlnt, 0 and no negative numbers.

An operation is called well-behaved if its operands are In the

range signedlnt (unsignedlnt) and it yields an integer result in the
same range. Every implementation must support the evaluation
of any expression in which all the operations are well-behaved
(see 8.1). An implementation may also support the evaluation of
expressions involving larger integers.

real Il~ values are a subset of the real numbers depending on the particular implementation. The
values are denoted by real numbers (see 4).

Boolean Its values are the truth values denoted by the identifiers True and False.

char Its values are a set of characters determined by particular implementations.
They are denoted by the characters themselves preceded by a
double-quote.

StorageUnit Its values are undefined. This is the basic unit for storage
allocation (see 6.3). There are no operations defined on this type.

6.13. Subrange types

16

A type may be definl:d as a subrange of another simple type by indication of the least and
the largest value in the subrange. The first manifest constant specifies the lower bound.
and must not he greater than the upper bound. If type A is a subrange of type B. and
type B is a subrange of type C. we say that A is also a subrange of C. The succ,
pred, max and min function components are defined for all subrange types.

<subrange type> ::= <manifest constant> .. <manifest constant>

Examples:

type oneToOneHundred = 1 .. 100
type svmmetricRange = -10 .. +10
type Primary = red .. blue {the values of a Primary are red. green. or blue}

6.2. Structured types

A structured type is characterized by the type(s) of its components and by its structuring
method. Moreover. a structured type definition may contain an indication of the preferred
data representation. If a definition is prefixed with the symbol packed. this has no effect on
the meaning of a program (although it may render an otherwise legal program illegal. if a
component of the structure has been renamed as an entire variable; see 7.5), but is a hint to
the compiler that storage should be economiz.ed even at the price of some loss in efficiency
of access, and even if this may expand the code necessary for expressing access to
components of the structure.

<structured type> ::= <unpacked structured type> I
packed (unpacked structured type)

(unpacked structured type) ::= <array type> I <record type) I <set type) I
<collection type) I <file type>

6.2.1. Array types

17

An array type is a structure consisting of a fixed number of components which are all of the
same type, called the· component type. The elements of the array are designated by indices,
values belonging to the index type. The minimum element of an index type must
not be greater than the maximum element. The array type definition specifies the
component type as well as the index type.

<array type) ::= array «index type) {,<index type>J) of (component type)
<index type) ::= <scalar type) I <constant> .. <constant>
<component type) ::= <type)

If n index types are specified. the &rray type is called !!:~H!!!!;!!~!Q!!~!. anel a component is designated by n

indices. Only one-dimensional arrays are allowed.

There are two standard components of an array type T:
T.IndexType the index type
T.ComponentType the component type

They resemble parameters of the type in the sense that if a is a variable of
type T, then a.lndexType is the same as T.lndexType, and likewise for
Com ponen tType.

Examples:

array (1 .• 100) of Signed I nt
array (-10 .. 10) of 0 .. 99
array (Boolean) of Color

6.2.2. Record types

A record type is a structure conslstmg of a fixed number of components, possibly of
different types. The record type definition specifies for each component, called a field, its
type and an identifier which denotes it. The scope of these field identifiers is the record
definition itself, and if they are exported they are also accessible within a field
designator (cf. 7.2) referring to a record variable of this type.

Record components may be constants, variables, procedures, functions or
types, exactly like identifiers declared in procedures. Thus, a record serves as a
package for a collection of related objects. Identifiers declared in a record are
not known outside unless they are exported explicitly, so the packaging
supplied by the record also provides protection against improper use of
components which are intended to be known only within (he record
definition. The:= and = operations (assignment and equality) must be
exported explicitly; if they are not, assignment of records of the type, or
comparison of two such records for equality, will not be allowed. It is always
possible, however. to bind a record to a variable, or to use it as the definition
of a constant. A record containing no procedures or functions automatically
exports all of its identifiers, as well as := and =.

An exported identifier x is accessible (within a suitable field designator) in
any scope in which the record type is accessible. When a type is exported, any

18

identifiers defined in the type and exported by its definition are also
exported. This is relevant for record and scalar types; the latter export all
their identifiers.

Any type may be exported. Note, however, that any identifier used free in a
type (see 7.4) is treated like a parameter for the purpose of deciding whether
two types are the same (see 6.5). Thus for many purposes any identifier used
free in a type behaves like a formal parameter, whose corresponding actual
parameter on every call is the value of the identifier in the enclosing scope at
the time the type is referenced.

When a record definition appears in a type declaration, identifiers declared
outside the record are not known inside unless they are known in the
immediately enclosing scope, and either are pervasive or are explicitly
imported into the record by the imports clause of the formal parameter list in
the declaration "(see 7.4). An identifier can only be imported into a record as a
constant, never as a variable.

A record may include an initial statement which is executed whenever a new
variable of the record type is created. and a final statement which is executed
whenever such a variable is destroyed. It may also specify an invariant which
is supposed to be true during the lifetime of the record variable (I.e. after the
execution of the initial statement and before the execution of the final
statment), except perhaps when one of the procedures or functions of the
record has been called and has not yet returned. Like other assertions, thisone
is ignored by the compiler.

A record type may have several variants. In this case a constant of scalar type must
be used as a selector in a case construction which enumerates the possible
variants. This constant is called the tag, and its" value indicates which variant is
assumed by the record variable at a given time. Each variant structure is identified by a
case label which i~ a manifest constant of the type of the tag field. Usually the tag will
be a formal parameter of the type declaration in which the case appears (see
6.4).

There is a standard type string, declared as in the example below.

<record type> ::= record <exports clause> <record body>
< end record>

<end record> ::= end I end record I end <identifier>

<exports clause> ::= exports (<export item> {, <export item>}) I
<empty>

<export item> ::= <binding condition> <identifier> I ":= I =
<binding condition> ::= const I var I <empty>

<record body> ::= <field list> <initial action> <invariant>
<final action>

19

<field list> ::= <fixed part> I <fixed part> ; <variant part> I <variant part>
<filled part> ::= <record section> { ; <record section>}
<record section> ::= <field identifier> { . <field identifier>} : <type> , <empty>
<fixed part> ::= <declaration>

, <declaration> ::= <pervasive> <declaration part· >
{ ; <pervasive> <declaration part> }

<pervasive> ::= pervasive I <empty>
<declaration part> ::= <constant declar;:)tion part> I

<variable declaration> I
<procedure and function declaration>
< type declaration>

<constant declaration part> ::= const <constant. declaration>
{ ; <constant declaration> }

<constant declaration> ::= <id list> <type spec> = <constant definition>
<id list> ::= <identifier> { , <identifier> }
<type spec> ::= : <type definition> I <empty>
<constant definition> ::= <expression>

<variable declaration> ::= var <id list> <variable declarer> I
<machine-dependent variable declaration>

<variable declarer> ::= <type spec> <variable binding>
<variable initialization>

<variable binding> ::= == <variable> I <empty>
<variable initialization> ::= := <expression> I <empty>

<procedure or function declaration> ::= <procedure declaration>
<function declaration>

<variant part> ::= case <tag field> <type identifier> of
<variant> { ; <variant>}

<variant> ::= '<case label list> => «record body» I <empty>
<case label list> ::= <case label> { • <case label>}
< tag field> ::= <constant> , <empty>

< initial action> ::= initially <statement> I <empty>
<invariant> ::= im'ariant <assertion> I <empty>
<assertion> ::= (empty>
<final action> ::= finally <statement> I <empty>

Examples:

type Dat e = record
Day. 1 .. 31;

20

Montlr. (Jan. Feb, Mar. Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
Year. unsignedlnt

type

type

end record

Slring(maxLenglh: 1 .. 256) = record
length: 1 .. 256 := 0;
text: array (l .. maxLength) of Character·
end record

Person(sex: Sex) = record
name. first name: SIring;
age: 0 .. 200
married: Boolean
case sex of

female => (pregnant:
male => (enlisted:

end record

Boolean);
Boo/ean)

type Female = Person(female)

type Male = Person(male)

6.2.2.1 Machine-dependent records

A machine-dependent record. type is a restricted kind of record type which
allows the programmer to specify the exact position of each field. The
compiler's responsibility is to check that. fields do not overlap and that each
field is at least large enough to hold values of its type. The size of values of
machine-dependent records is determined by the largest word position
specified in the declaration.

A machine-dependent record may have const, procedure, function and type
components like an ordinary record. All its var components. however. must
have position specifications. It may not have any parameters, or import
anything except manifest constants, or have any variants.

An alignment clause in a machine-dependent record declaration forces a value
of the record type to be allocated so that the machine address of its first word
is divisible by some power of two.

<md record type> ::= machine dependent record <alignment clause>
<exports clause> <record body> <end record>

<alignment clause> ::= aligned mod <manifest constant> I <empty>

<machine-dependent variable declaration> ::=
var < identifier>
at word <manifest constant>,
bits <manifest constant> to <manifest constant>
<variable declarer>

Examples

type InterruptWord = machine dependent record aligned mod 8
var device at l\'ord 0, bits 0 to 2: DeviceNumber.
var channel at word 0, bits 3 to 5: 0 .. 7;
var slopCode at word 0, bits 6 to 7: (!inishedOk, errorStop,
po we rO!/); .
var command at word 1, bits 0 to wordSize:
ChannelCommand
end record

6.2.3. Set types

21

A set type defines the range of values which is the powerset of its base type. Base types
must be simple types. Operators applicable to all set types are:

+ union
set difference

* intersection
in membership

The set difference x-y is defined as the set of all elements of x which are not members of y.

<set type) ::= set of <base type)

<base type) ::= (simple type)

Examples:

type Hue = set of Color
type SubtractivePrimaries = set of red .. green
type SymSet = set of -5 .. +5

A file type definition specifies a structure consisting of a sequence of components which are all of the same
type. The number of components, called the length of the file, is not fixed by the file type definition. A file
with 0 components is called ~!!!Q!~.

<file type> ::= file of <type>

Files with component type char are called !~~!fi]~§, and are a special case insofar as the component range of
values must be considered as extended by a marker denoting the end of a line. This marker allows textfiles to
be substructured inlO lines. The type !~~! is a standard type predeclared as

type text = rile of char

6.3. Pointer and collection types

Variables which are declared in a program (see 7.) are accessible by their identifier. They
exist during the entire lifetime of the scope to which the variable is local, and these
variables .. are therefore called static (or statically allocated). In contrast. variables may also
be generated dynamically, i.e .. without any correlation to the structure of the program.
These dyn7imic variables are generated by the standard procedure new (see 10.1.2.); since they
do not occur in an explicit variable declaration, they cannot be referred to by a name.
Instead, access is achieved via a pointer value which is provided by new upon generation of
the dynamic variable. A pointer type thus consists of an unbounded set of values pointing

22

to elements of the same type. No operations are defined on pointers except the test for
equality, the pointer dereferencing operator t which yields the variable referred
to by the pointer, and the standard function Index which converts a pointer
into an unsignedlnt.

The pointer value nil belongs to every pointer type; it points to no element at all.

A dynamic variable must be an element of a collection. A collection is a
variable which behaves very much like an array variable. Just as an element of
an array variable A can be referenced by subscripting A with an index whose
type is the index type, A.lndexType, of A, so an element of a collection C can
be referenced by subscripting C with a pointer whose type is the pointer type,
tC, of C. There are two differences:

No two collections have the same pointer type. Hence the pointer
alone is sufficient to specify the collection, and we allow pt as
shorthand for C(p), where p is of type tc.
There are no operations which produce pointer results, except the
standard procedure new which creates a new variable. Hence the
storage allocation strategy for collections can be quite different
from the strategy for arrays.

The reason for having collections is that two pointers to different collections
are guaranteed to point to different variables. Hence collections are a means
by which the programmer can express some of his knowledge about the ways
in which his program is using pointers. If he prefers not to do [his, or has no
knowledge about pointers to variables of type T which can be expressed in this
way, he can simply declare a single collection of Ts and use it everywhere.

There are no operations on collections. A collection may not be assigned to
another collection. In fact, there is nothing to do with a collection except to
subscript it, or to pass it as an actual parameter.

Associated with eyery collection is a zone which provides storage for its
variables. A zone is a record with three special components (and possibly
other components):

a type StorageBlock which is a collection of a record type containing a
special component (and possibly other components):

Storage, an array of StorageUnit
a function Allocate(unsignedlnt) returns t StorageBlock

a procedure Deallocate('mf t StorageBlock)

These components need not be exported, since they are intended for use only
by the standard procedures new and free (see 10.1.2).

A collection declared without a zone will get a standard system zone.

23

A collection can be reference-counted, in which case a variable in the
collection will be freed automatically when no pointers to it remain. The
optional manifest constant is an integer which gives the maximum reference
count which should be maintained; any variable to which more than this
number of pointers ever exists at one time may never be freed.

<collection type> ::= <counted> collection of <object type> <zone>
<pointer type) ::= t<collection>
<object type> ::= <type>
<counted> ::= reference-counted I

rer erence-counted < man if est constan t>
<empty>

<zone> ::= in <zone identifier> I <empty>
<zone identifier> ::= <identifier>

Examples:

type Human = collection of Person(any) in EarthZone
V'1f thePresident, aParelll: t Human

6.4 Parameterized types

It is possible to declare a parameterized type by including a formal parameter
list in the type declaration:

type T(a: signed I nt, b: color) = ...
or equivalently by writing a where clause at the end of the definition:

type T = ... where (a: signed/nt, b: color)

The where clause is intended for declaring parameterized types in the formal
parameter lists of procedures, as In

procedure f(a: array (O .• n) of signedInt where (n: 1..1000), b: ...) = ...
Every reference to such a type, however, must have an actual parameter list
which supplies values for all the formal parameters. The formal and actual
parameters of a type are exactly like the formal and actual parameters of a
procedure, except that a formal parameter of a type cannot be a variable.

When a parameterized type is referenced in the formal parameter list of a
procedure, an actual parameter of the reference can be another formal
parameter of the procedure (see 10.). Thus procedures can be written to accept
actual parameters whose type is any reference to a parameterized type.

The syntax of type declarations allows a parameter to be used in one of the
following ways:

as an array bound;

as the tag field of a variant record;

on the right-hand side in a constant declaration, and the constant
might in turn be used in one of the above two ways;

as the collection name of a pointer;

as an actual parameter in a type;

as a constant in an initialization expression;

as a constant in an expression appearing in a statement (which could
be in an initial action, a final action, or a procedure or function
body).

24

The built-in type constructors array (Lj) of T, Lj (subrange), case c of ... , and
t C also take parameters; in fact, the first three can take parameters of any
simple type, and the last can take any collection, unlike user-defined
parameterized types, in which the types of the parameters are specified in the
formal parameter list. For subrange the parameters must be manifest
constants, so that a particular subrange type declaration in the program always
produces exactly the same type. For array and case the parameters must be
constants, but need not be manifest. Thus. textually identical occurrences of
one of these constructors do not necessarily produce the same type. The case
constructor is normally used in a type declaration in which its parameter is in
turn declared to be a formal parameter of the declaration.

Parameters of a type may be referenced like record components; thus after
type T(p: color); var x: T(red)

the expression x.p=red is True. Unlike record components, type parameters are
automatically accessible outside the type definition and need not be exported.

The special value any may be used as an actual parameter of a type reference,
provided that the corresponding formal is of scalar type, and its only use is as
the tag of a variant. Suppose V is .such a parameterized type, with a formal
parameter s, of scalar type T, used as a tag (there might be other formals, but
they are omitted in this example). Then V(any) is a type whose values are the
union of the values of V(i) as i ranges over all the elements of T. It differs
from any particular V(i) in two important ways:

If x is declared to be of type V(any). only those components of x
which are outside the case constructor with tag s can be referenced.
A discriminating case statement (see 9.2.2.2) can be used to bind x to
an identifier y whose type is V(i), and then all the components of y
can be referenced in the scope of the discrimination.

The value of the parameter x.s, and hence the choice of variant, can
be changed during execution by assignment to x.s (but not, of
course, to y.s if y is of type V(i». This is the only case in which any
property of a variable which is determined by the parameters of its
type can be changed after the variable has been created. Note that

25

when the type is changed in this way, any initializations specified
for the variant are performed.

The special value unknown may be used as an actual parameter in a type
reference. provided the reference appears as the object type of a collection. A
variable in the collection can only be created by the standard procedure new,
however (see 10.1.2), and when new is called , actual parameters must be
supplied for all the unknowns in the object type. Hence a type never involves
unknown except in the object type of a collection. When a pointer to
collection of T(... , unknown, ...) is dereferenced to yield a variable v, that
variable has type T(... , x, ...), where x is the value which was supplied to new
when v was created. As in other cases where the parameters of types are not
manifest constants, the compiler may have to generate legality assertions to
ensure that the type of a dereferenced pointer has some property demanded by
the context in which the dereferenced pointer is used. Note that any actual
parameters in an object type other than any and unknown are evaluated when
the collection is declared, not when a variable in the collection is created.

<parameterized type reference) ::=
< type identifier) « type actual parameter
{ , <type actual parameter) })

<type actual parameter) ::= <expression) I any I unknown

Examples of type definitions:

type FamilyA4ember(sex: Sex) = record
Identity: Person(sex);
Relations: record

Afother, Father, Sibling: t Human;
OldestChild: t Human
end record

end record;

type Family = record
The Root: t collection of FamilyAfember
end record

6.5 Type compatibility

Two types are the same if their expanded definitions are .equal. The
expanded definition of a type is obtained as follows:

start with the type;

replace each type identifier which was declared as a synonym by its
definition, substituting the actual parameters for the formals;

do this repeatedly until there are no more identifiers;
,',

the result is the expanded definition.

Two expanded definitions are equal if,

when all extended parameters of types (including array, subrange,
case and t constructors) are removed, they are identical sequences of
basic symbols;

each extended parameter in one sequence is equal to the
corresponding extended parameter in the other sequence.

26

The extended parameters of a type are the actual parameters, if any, together
with the values of all identifiers used free in the type.

If the compiler cannot determine whether two types are the same, and they
must be the same for the program to be legal, then the compiler will assume
that they are the same, and generate a legality assertion guaranteeing this fact
for the verifier to prove.

When a value is assigned to a variable, or a variable is bound to an identifier,
the types must be compatible according to the following rules:

an operand for any operator other than dot, subscripting, and t,
must have a type which is not parameterized;

In an assignment, both types must be the same, except that

ranges of variables on the left side may differ from the
ranges of the corresponding components on the right side
(note, however, that other parameters of types, such as
array bounds, may nol differ). In a legal Euclid program,
each actual value being stored will be within the range of
the corresponding variable. Where the compiler cannot
verify the legality of an assignment, it will generate one or
more legality assertions concerning the range of the actual
value.

occurrences of any as an actual parameter in the type of
the variable, and not within the object type of a pointer,
may correspond to occurrences of any value in the other.
Thus, a T(red) may be assigned to a T(any). but not the
reverse. Furthermore, a pointer to T(red) may not be
assigned to a pointer to T(any).

in a binding (see 7.5), the type Tv of the variable must be the same as
the type Tj of the identifier. If the binding is part of a procedure or
function call, however, actual parameters in the specification of Tj

may be other formal parameters of the procedure or function (see
9.1.2).

The following table summarizes the transitions which are possible:

To (formal I T(red) T(any)
Q!l~ft§iQ~t ___ L _____________ _

27

From (actual I
or right side) I

I
T(red) I bind assign

I assign
I

T(aIlY) I discriminate bind
I assign

28

7. Declarations and denotations of constants and variables

A constant declaration consists of an identifier denoting the new constant,
followed optionally by its type, and then by an expression which defines its
value. The defining expression is evaluated, and its value becomes the value of
the constant, which can never change thereafter. The type of the constant, if
specified, must be assignment-compatible with the type of the defining
expression.

<constant> ::= <expression>

A variable declaration consists of a list of identifiers denoting the new variables. followed
by their type, and/or binding. and/or initialization. The binding, if present,
specifies that the identifier (in this case there must be only one) is to refer to
an already existing variable. rather than to a newly created one (see 7.5). The
initialization is exactly equivalent to an assignment statement executed
immediately after the declaration of which the variable declaration is a part.
If the type is omitted. it is inferred from the binding or initial ization.

The syntax for constant and variable declarations appears in section 6.2.2,
since it is identical to the syntax for record components.

Every declaration of a file variable f with components of type T implies the additional declaration of a
so-called 9~[f~L.Y.~~!;!blo: of type 1'. ThiS buffer variahk is denoted by f1 and serves to append components to
the file during generation. and to access the file during inspection (see 7.2.3. and 10.1.1.).

Examples:

const i, j = -1 {i and j will be signed I nf. and have the value -I}
const typedConst: Color = red

var jimH, ralph, butler, jimAf, gerald: Person(male)
var k, I: -5 .. 5 := i {both variables initially have the value of i}
var tableEntrv: unsignedl nf. == table(j) {table(-1) must be a valid
reference and .. the type of table's elements must be unsigned/nt.
tableEntry is simply another name for table(-1) over the scope of this
declaration 1
var a == anotherVar {a is anotherVar for the scope of this declaration}
var a, b:= i {a and b are type signedlnt and initially have the value -I}

Denotations of variables either designate an entire variable. a component of a variable, or a
variable referenced by a pointer (see 6.3). Variables occurring in examples in subsequent
chapters are assumed to be declared as indicated above.

Associated with every variable is a main variable which is entire; the variable
is said to be part of its main variable. One variable is part of another if,
roughly, an assignment to either can change the value of the other, and the
space of possible values of the first variable is a (not necessarily proper)
subset of the space of possible values of the second variable. The following
sections define main variables and part precisely. "Part of" is a transitive
relation: if x is part of y and y is part of z then x is part of z. It is also

29

reflexive: x is part of x. Two variables are the same if and only if each is part
of the other. Two variables overlap if and only if one is part of the other.

<variable> ::= <entire variable> I <component variable> I <referenced variable>

7.1. Entire variables

An entire variable is denoted by its identifier, and is its own main variable. An
entire variable is never part of another entire variable (see 7.S).

<entire variable> ::= <variable identifier>
<variable identifier> ::= <identifier>

7.2. Component variables

A component of a variable is denoted by the variable followed by a selector specifying the
component. The form of the selector depends on the structuring type of the variable.

<component variable> ::= <indexed variable> I <field designator> I <file buffer>

<base variable> ::= <variable>

Corresponding to each kind of component variable described below. there is a
corresponding constant expression which differs from the component variable
in only one way: a constant record. array, collection or pointer appears in
place of the base variable.

7.2.1. Indexed variables

A component of an II-dimensional array variable is denoted by the variable followed by an
index expression. The main variable of the array variable is the main variable.
The indexed variable is part of the array variable. An indexed variable il is
part of another indexed variable ;2 if and only if either they have the same
array variable and the two indexes are equal, or the array variable of 11 is part
of ;2.

<indexed variable> ::= <array variable [<expression> {,<expression>}]

<indexed variable> ::= <array variable> (<expression>)
<array variable> ::= <base variable>

The type of the index expression must be the same as the index type declared in the
definition of the array type.

Examples:

~12)
a i+j)

red)

7.2.2. Field designators

A component of a record variable, or a formal parameter of the type of any

30

variable. is denoted by the variable followed by the field identifier of the component or
parameter. The field identifier or a record component must be exported in the
type definition. A field designator is a variable only if the component was
declared to be variable and exported as variable; otherwise it is a constant If a
field designator is a variable, its main variable is the main variable of the
containing variable, and the field designator is part of the· containing variable.
A field designator fl is part of another field designator 12 if and only if
either their containing variables are the same and their field identifiers are
identical. or jl's containing variable is part of fl..

<field designator> ::= <containing variable>.<field identifier>

<containing variable> ::= <base variable>
<field identifier> ::= <identifier>

Examples:

slr.length
aPerson.age
son1".f at her

At any time, only the one component determined by the current file position (read/write head) is directly
accessible. This component IS called the current file component and is represented by the file's 12!![f!:L.Y;HiflQ!~.

<file buffer> ::= <file variable>t

<file variable> ::= <variable>

7.3. Referenced variables

<referenced variable> ::= <co))ection variable> (<pointer variable>) I
<pointer variable>t

<collection variable> ::= <base variable>
<pointer variable> ::= <variable>

If p is a pointer variable whose co))ection C is of type T. p denotes that variable and its
pointer value. whereas pt is short for C(p), which denotes the variable of type T
referenced by p. The main variable of a referenced variable is the collection to
which the variable belongs. Two referenced variables overlap if and only if
their pointer variables are equal. A referenced variable is part of the
collection variable.

Examples:

plt.father
pIt .siblingt .father

7.4 Scope rules

31

A scope is established by a type declaration or block, or a for or
discriminating case statement. The scope extends from the type, begin, for or
case to the end, except that it does not include any binding expressions in the
variable declarations of the scope. A record type declaration, or a block which
is the body of a procedure or function, is called a closed scope; other scopes
are open. New identifiers are declared

as record components.
at the head of the block,
as parameters of a for or discriminating case. or
as formal parameters of a procedure, function or type.

These new identifiers are accessible within the newly estabiished scope. Note
that the name declared by a record type, procedure or function declaration is
not declared in the closed scope which is the body, and must be imported
explicitly into that scope if the definition is recursive.

An identifier used in a scope and not declared in that scope is said to be free
in that scope. Any identifier which is free in a closed scope must either be
declared pervasive in some enclosing scope, or be accessible in the
immediately enclosing scope and explicitly imported into the closed scope

A new identifier may not be introduced which is the same as any other
identifier accessible in the scope. Of course, an identifier accessible in the
enclosing scope of a closed scope, and not imported, is not accessible, and
hence may be reused.

An explicitly imported identifier has the same status as a newly declared one.
The imports clause can specify for each identifier that it is imported as a
variable, or as a constant (in which case it cannot be used as a variable, i.e. its
value cannot be changed). An identifier can be imported as a variable only if
is a variable in the enclosing scope. An identifier declared pervasive is
automatically imported as a constant into all inner scopes, and that identifier
may not be imported as a variable or redeclared in any inner scope.

A closed scope has the property that all its possible interactions with the rest
of the world can be determined by examining its imports list, its parameters.
and, in the case of a record, its exports list.

The definition for a constant, type, procedure or function declaration, and the
initialization expression for a variable declaration, are within the scope of the
block or record in which the declarations appear. Thus if this scope is closed,
these expressions can contain only identifiers which are imported into the
scope, occur as formal parameters to the procedure or record type, or are
declared earlier in the scope.

7.5 Binding

32

An identifier may be bound to a variable when it appears
as a var formal parameter in a procedure or function declaration;
preceding an == in a var declaration in a block or a discriminating case
statement.

We say that the variable is renamed. The scope of the binding is the scope of
the declaration, and within this scope the identifier represents the variable.
That is, the initial value of the identifier is the value of the renamed variable
at the time of binding, and the last value assigned to the identifier will be the
value of the renamed variable after control finally leaves the scope. If this
variable is part of a component of an array, its index is evaluated when the scope is
entered; if it is part of a referenced variable, the pointer variable is evaluated
when the scope is entered.

The type and range of the identifier being bound must be the same as the type
and range of the renamed variable to which it is bound (but see 10). A
component of a packed structure must not appear as a renamed variable.

For open scopes (blocks and discriminating case statements), any variable free
in the scope is considered to be renamed by the scope.

In order to allow a simple description of the rules for renaming variables, we
will assume for the rest of this section that a procedure does not have any free
variables (note that a record is already forbidden to do so). Any procedure
which does have free variables is to be rewritten as a procedure which accepts
the free variables as additional variable formal parameters, and every call is
rewritten to supply the same variables as additional actual parameters. This
also applies to procedures and functions in records: if a component of the
record is a free variable in the procedure or function, that component is
supplied as an additional actual parameter (in spite of the fact that it might
not be exported). The rewritten program will behave exactly like the original
one.

In order to ensure that the rewritten program is a legal one, however, we must
(and do) impose tl)e following requirement on the original program: any free
variable in a procedure or function must have the property that it would be

. accessible as a variable in every scope which contains a call of the procedure if
the field identifiers required to reach it were exported as variables.

The language ensures that an entire variable can never overlap (see 7.1) any
other variable accessible in the same scope which has a different main
variable, or in other words that

the value of an entire variable can change only
as the result of assignment to that variable or one of its parts, or

after exit from a procedure or function call in which that
variable was the main variable of an actual parameter
corresponding to a variable formal parameter;

33

an assignment to an entire variable can never change the value of any
other variable which is accessible in the scope containing the
assignment, except one of its oVln parts.

To prevent binding from destroying this non-overlap property, the following
restriction is imposed: no two variables which are renamed on entry to a scope
can overlap. If the compiler cannot determine whether or not two variables
overlap (e.g. a(i) and aU) overlap iff i=j) , it will assume that they don't, and
generate a legality assertion to that effect for the verifier to deal with.

Since binding expressions are not part of the scope S in which they appear
textually, but rather are in the enclosing scope, they may refer to identifiers
which are not accessible in S, and may not refer to any identifiers declared in
S.

Note that a pointer cannot be dereferenced within a given scope unless its
. collection is accessible in that scope, and cannot be dereferenced to a variable
unless the collection is accessible as a variable in that scope; these rules are
identical to the rules for indexed variables.

In general identifiers which are declared as constants cannot cause any aliasing
problems, since their values can always be copied. Of course the compiler is
free to use a pointer rather than copy the value if it can determine that the
meaning of the program is the same; this will certainly be true if the variable
involved does not overlap any variable accessible in the same scope. In other
cases the value must be copied.

Copying will not work for collections, however, and it may be very inefficient
for large arrays or records. Hence we impose a stronger rule for collections: if
a collection is accessible in a scope as a constant, no variable which overlaps
the collection can be renamed on entry to the scope. Furthermore, the same
restriction is imposed on large arrays and records; the definition of "large" is
implementation-dependent. If the· programmer reaUy wants a large array or
record to be copied, he can declare a constant for that purpose.

A variable can be allocated to a specific address in memory by binding it to an
element of the standard array Memory. This array is automatically declared in
the outermost block of the program, but it is not pervasive and must be
explicitly imported into any scope whiCh references it. Note that a record type
declaration, being a closed scope, will not be able to import Memory as a
variable. This is not a defect in the language. The reason for naming a record
type is so that multiple instances of the type can be conveniently declared, and
it is not appropriate to create multiple instances of a record which imports
Memory (or anything else) as a variable. It is perfectly all right to have

var x: record ... end
where the record can access Memory as a variable.

34

8. Expressions

Expressions are constructs denoting rules of computation for obtaining values of variables
and generating new values by the application of operators. Expressions consist of operands.
i.e.. variables and constants. operators. and functions.

The rules of composition specify operator precedences according to six classes of operators.
The multiplying operators have the highest precedence. then the adding
operators, then the relational operators, then not, then and. and finally, with
the lowest precedence, or. Sequences of operators of the same precedence are executed
from left to right.

The elements of an expression are evaluated strictly from left to right. and all
the elements are evaluated. except within expressions involving and and or; in
these expressions the right operand is not evaluated if the left operand
evaluates to False or True respectively.

The rules of precedence are reflected by the following syntax:

<unsigned constant> ::= <unsigned number> I <string> I
<con~tant identifier) I nil

<factor> ::= <variable> I < literal constant> I <function designator> I <set> I
«expression» I <adding operator> <factor> I nol <factor>

<set> ::= <simple type identifier> I [<element list>]

<element list> ::= <element> {.<element>} I <empty>

<element> ::= <expression> I <expression> .. <expression>

<term> ::= <factor> I <term><multiplying operator><faclor>

<sum> ::= <term> I <sum><adding operator><term>
<relation> ::= <sum> I <sum><relational operator><sum>
(negation> ::= <relation> I not <relation>
<conjunction> ::= <negation> I <conjunction> and <negation>
<simple expression> ::= <term> I

<simple expression> <adding operator><term> I
<adding operalOr)(term)

<expression> ::= <conjunction> I
<expression> or <conjunction>

Expressions which are members of a set must all be of the same type, which is the base type
of the set. [] denotes the empty set. and [x .. y] denotes the set of all values in the interval
X ... y.

Examples:

Factors: x
15
(x+y+z)
abs(x+ y)
[red, c, green] {where c is of type Color}

Terms:

Sums:

Relations:

Negations:

Conjunctions:

Expressions:

8.1. Operators

[1, 5, 10 .. 19, 23]
-x

x*y
i div (I-i)

x+y
hue} + hue2
i*j+l

x = 1.5
x not= 1.5
p <= q
(i<j) = U<k)
c in huel
c not in hue2

not (p not= q)
not q

x(=y and y(z
p and not q

p or (x>y)

35

If both operands of the arithmetic operators of addition, subtraction and multiplication are
of type integer (or a subrange thereof), then the result is of type integer. If one of the operands

is of type real. then the result is abo of type real. The compiler is expected to check that no
overflow will occur during the evaluation of an expression: if it is unable to
verify this, it must put out an assertion for the verifier to check.

The operator not denotes negation of its Boolean operand.

8.1.2. Multiplying operators

<multiplying operator) ::= * I / I div I mod I and

QQ~!f!!Q! QQ~n!!iQ!! !YQ~~LQQ~mm!~ !~Q~~L..!~~u I!

• multiplication real, integer real, integer
set intersection any set type T T

/ division real, integer real

div division with integer integer
truncation

mod modulus integer integer

8.1.3. Adding operators

<adding operator) ::= + I - or

0Rerator QQeration ~ of ~ranQ~ tYRe of result

+ addition
set union

integer. real
any set type T

subtraction integer. real
set difference any set type T

integer. real
T
integer. reat
T

36

When used as operators with one operand only, - denotes sign inversion, and + denotes the
identity operation.

8.1.4. Relational operators

<relational operator> ::= = I <> I < I <= I >= I > I in I not <relational operator)

QQ~!f!tO! !YQ~..Qf..QRer~nQ§ res!!!!

= <>
< > any scalar or subrange type Boolean
<= >=
in any scalar or suhrange type Boolean

and its set type respectively

Notice that all scalar types define ordered sets of values.

The operators <>. <=, >= stand for unequal, less or equal, and greater or equal respectively.
The operators < = and >= may also be used for comparing values of set type, and then denote
set inclusion. If p and q are Boolean expressions, p=q denotes their equivalence, and p<=q
denotes implication of q by p. . (Note that false < true).

The relational operators =. O. <. <=. >. >= may also be used to compare (packed) arrays with components of
type char (strings). and then denote alphabetical ordering according to the collating sequence of the underlying
set of characters.

8.1.5 Other operators

QQ~!!JtO! QQ~!!!HQn !YQ~..QLQQ~!~nQ§ !YQ~~f-I~~!!!!
not logical negation Boolean Boolean
and logical "and" Boolean Boolean

or logical "or" Boolean Boolean

8.2. Function designators

A function designator specifies the activation of a function. It consists of the identifier
designating the function and a list of actual parameters. The parameters are variables and
expressions, and are substituted for the corresponding formal parameters (cf. 9.1.2, 10, and
11).

<function designator> ::= <function identifier) I
<function identifier>(<actual parameter>

{. <actual parameter>})

<function identifier> ::= <identifier>

Examples:

Sum(a. 100)
GCD(147, k)
SumVectors(a, b)

37

38

9. Statements

Statements denote algorithmic actions, and are said to be executable. They may be prefixed by a
label which can be referenced by goto statements.

<st3.tement> ::= <unlabelled statement> I <Iabel>:<unlabelled statement>

<unlabelled statement> ::= (simple statement> I <structured statement>

<label> ::= <unsigned integer>

9.1. Simple statements

A simple statement is a statement of which no part constitutes another statement. The
empty statement consists of no symbols and denotes no action.

<simple statement> ::= <assignment statement> I (procedure statement>
<goto statement> I (escape statement> I
(assert statement> I <empty statement>

<empty statement) ::= <empty)

9.! .1. Assignment statements

The assignment statement serves to replace the current value of a variable by a new value
specified as an expression.

(assignment statement) ::= < variable) := (expression) I
<function identifier> := (expression>

The variable (or the function) and the expression must be of the same type, with the
following exceptions being permitted:

1. the type of the variahle is real. and the type of the expression is integer or a suhrange thereof.

2. the types of the expression and the variable are both subranges of the same
type. If the value of the expression is not within the subrange of the
variable's type, the program is illegal.

3. the type of the variable may· have any as an actual parameter of a type
where the type of the expression has some specific value (see 6.4).

Examples:

x := y+z
p := (1(=0 and (i<100)
hue := [blue, c.succ]

9.1.2. Procedure statements

A procedure statement serves to execute the procedure denoted by the procedure identifier.
The procedure statement may contain a list of actual parameters which are assigned or
bound to their corresponding formal parameters defined in the procedure declaration (cf.
10). The correspondence is established by the positions of the parameters in the lists of
actual and formal parameters respectively. There exist two kinds of parameters: constant
parameters and variable parameters; procedure parameters (the actual parameter is a

39

procedure identifier), and function parameters (the actual parameter is a
function Identifier) are not permitted.

In the case of a constant parameter, the actual parameter must be an expression (of which
a variable is a simple case). The corresponding formal parameter represents a local
constant of the called procedure, and the current value of the expression is the val ue of
this constant. In the case of a variable parameter, the actual parameter must be a
variable, and the corresponding formal parameter is bound to this actual variable (see
7.5) during the entire execution of the procedure. A variable parameter must be used
whenever the parameter represents a result of the procedure.

<procedure statement> ::= <procedure identifier> I
<procedure identifier> (actual parameter>
{.<actual parameter>})

<procedure identifier> ::= <identifier>

<actual parameter> ::= <expression> I <variable>

Examples:

Random
Sort(a, b)

< procedure identifier> I <function identifier>

A goto statement serves to indicate that further processing should continue at another part of the program ted,
namely at the place of the label.

<gota statement> ::= golo <label>

The following restrictions hold concerning the applicability of labels:

1. The scope of a label is the procedure within which it is defined; it is therefore not possible to
jump into a procedure.

2. Every label must be specified in a label declaration in the heading of the procedure in which the
label marks a stMement. .

9.1.3 Escape statements

An escape statement serves to indicate that further processing should continue
at the end of the smallest enclosing repetitive statement, or that control should
return immediately from the function or procedure currently being executed.
An expression must not appear in a return statement unless the statement is in
a function body, and in that case the type of the expression must be
assignment-compatible with the type of the function's result value.

A more elaborate escape construction such as Zahn's device can readily be
simulated with a case statement, as the following. example illustrates:

yar flag: (a, b, finished) := finished
for ... do

fl ag := a; exit;

fl ag := b; exit;

od
case flag of

a => .. .
b => .. .
finished =>
end case

<escape statement> ::= exit I return I return <expression>

9.1.4 Assert statements

40

An assert statement introduces an assertion which is supposed to hold
whenever control reaches that point in the program. The compiler treats it as
a comment, as it does with the assertions supplied by invariant. pre and post
clauses.

<assert statement> ::= assert <assertion>

9.2. Structured statements

Structured statements are constructs composed of other statements which have to be executed
either in sequence (compound statement), conditionally (conditional statements), or
repeatedly (repetitive statements).

<structured statement> ::= (compound statement> I <block> I
<conditional statement> I < repetitive statement>
<with statement>

9.2.1. Compound statements and blocks

The compound statement specifies that its component statements are to be executed in the
same sequence as the'y are written. The symbols begin and end act as statement brackets.

(compound statement> ::= <statement> {;<statement>}

Example: begin Z := X; X :=)~ y := Z end

A block is a compound statement within which new identifiers can be
introduced. The symbols begin and end act as brackets to delimit the scope of
the new identifiers. If begin is followed by checked, each legality assertion in
the block is compiled into a runtime check, which aborts execution of the
program if the assertion is false.

<block> ::= begin <checked> <declaration> <statement> end

<checked> ::= checked I <empty>

9.2.2. Conditional statements

41

A conditional statement selects for execution a single one of its component statements.

<conditional statement> ::= <if statement> I <case statement>

9.2.2.1. If statements

The if statement specifies that a statement be executed only if a certain condition (Boolean
expression) is true. If it is false. then either no statement is to be executed, or the statement
following the symbol else is to be executed.

The statement
if a then b elseif ... fi

is an abbreviation for
if a then b else if ..• fi fi.

<if statement> ::= if <expression) then <statement> <elseif clause>
<else clause> <end if>

<elseif clause> ::= { elseif <expression> then <statement> }

<else clause> ::= else <statement> I <empty>

<end if> ::= end I end if I fi
The expression between the symhols if or elseif and then must be of type Boolean .

.!:iQ!~: The syntactic ambiguity arising from the construct

if <expression- 1> then if <expression-2) then <statement-1>
el~e <statement-2)

is resolved by interpreting the construct as equivalent to

if <exrression-]) then
hegin if <expression-2) then <statement-I> else <statement-2)
end

Examples:

if x< 1.5 then z := x+ y; c := blue; else c := red; z := 0 end if
if pI not= nil then pI := pIt .father, p2 := nil fi
if str.text(1) = "$ then country := UnitedStates

elseif str.text(l) = "# then country := GreatBritain
else country := Unknown
fi

9.2.2.2. Case statements

The case statement consists of an expression (the selector) and a list of statements. each
being labelled by a constant of the type of the selector. It specifies that the one statement be
executed whose label is equal to the current value of the selector. A special label
otherwise can be used to label a statement which should be executed if none of
the other labels is equal to the current value of the selector.

If the selector is discriminating an object. each case list element of the case

42

statement becomes a new scope within which the identifier of the object is
declared, either as a constant whose value is the expression in the object. or as
a variable bound to the variable in the object. The expression or variable in
the object must be a variant record, say of type T(any), and the tag of this
record is used to select one of the case list elements. Within the element
selected by a particular value of the tag, say red, the identifier has the type
T(red) .. Thus

var anyx: T(any); ... ;
case discriminating x=anyx of

red => ...
green =>
end case;

is more or less equivalent to

var anyx. T(any); ... ;
case anyx.tag of

red => begin const x: T(red)=anyx; ... end
green => begin const x. T(green)=anyx; ... end

end case;

except that the constant declarations in the latter would not be legal, because it
is illegal to assign a T(any) to a T(red).

<case statement> ::= case <selector> of <case body> <end case>
<selector> ::= <expression) I discriminating <object>
<case body> ::= <case list element> {;<case list element>}

<otherwise element>
<case list element> ::= <case label ·Iist> => <statement> I <empty)
<otherwise element> ::= ; otherwise => <statement> I <empty>
<end case> ::= end I end case
<object> ::= <identifier> = <expression> I

var <identifier> -- <variable>

Examples:
case operator of

plus =)

minus =>
times =>

end

case i of
1 => c
2 => c
3 => c
4 => c

,-,-
,-,-
'-,-
,-,-

x := x+}~

x := x-yo
x:= x*y

red;
blue;
greert,
yellow

43

end case

9.2.3. Repetitive statements

Repetitive statements specify that certain statements are to be executed repeatedly. If a
bound on the number of repetitions is known beforehand. i.e., before the repetitions are
started, or if the repetition is controlled by a generator, the for statement is the
appropriate construct; otherwise the while or repeat statement should be used.

<repetitive statement> ::= <while statement> I <repeat statement> I <for statement>

9.2.3.1. While statements

<while statement> ::= while (expression) <invariant> do <statement> <end do>
<end do> ::= end I end do I od

The expression controlling repetition must be of type Boolean. The statement is repeatedly
executed until the expression becomes false. If its value is false at the beginning, the
statement is not executed at all. The while statement

while B do S od
is equivalent to

if B then
S;
while B do S od

fi

Examples:

while a(i) not= x do i := i+ 1 od

while i>O do
if (i mod 2) not= 0 then z := z* x fi
i := i div 2;
x := x*x
end do

9.2.3.2. Repeat statement

(repeat statement> ::= repeat < invariant> <statement> {;<statement>}
until (expression>

The expression controlling repetition must be of type Boolean. The sequence of statement
between the symbols repeat and until is repeatedly executed (and at least once) until the
expression becomes true. The repeat statement

repeat S until B

is equivalent to

begin S;
if not B then

repeat S until B
fi

end

Examples:

repeat k := i mod j;
i := j;
j := k

until j = 0

repeat P(ft); get(f) until NoM oreChar5{f)

9.2.3.3. For statements

44

The for statement indicates that a statement is to be repeatedly executed while a progression
of values is assigned to a new constant identifier called the parameter of the for
statement.

<for statement> ::= for <parameter> <decreasing> in <generator>
<invariant> do <statement> <end do>

<for list> ::= <initial value> to <final value> I
<initial value> downto <final value> I
<generator>

<parameter> ::= <identifier>
<initial value> ::= <expression>

<final value> ::= <expression)

<decreasing> ::= decreasing <empty>
<generator> ::= <record type> I <index type>

The control variable. the initial value. and the final value Illllst he of the same scalar type (or subrange thereof).
and must not be altered by the repeated statement. They cannot be of type real.

The body of the for statement is a new scope within which the parameter is
declared as a constant. The type of ,the parameter is the type of the elements
of the index type, or the type of the value field of the record type.

A for statement of the form

ror v := e 1 to e2 do S

is equivalent to the sequence of statements

v := el; S; v := succ(v); S; '" ; v ,- e2; S

and a for statement of the form

ror v := el downlo e2 do S

is equivalent to the sequence of statements

v '- el; S; v := pred(v); S; ... ; v := e2; S

A record type generator is a record type which has two components with
special names: a variable called value, and a function called next. These
names need not be exported. A for statement of the form

for v in x.recordTypeGenerator do S od
is equivalent to the block

begin var cree: x.recordTypeGenerator,

end

if crec.next(True) then
repeat begin const v=crec.value; Send
until not crec.next(False)
fi

45

The initial and final statements in the declaration of the generator record type
can perform any initialization or cleanup which may be appropriate; note that
the final statement is executed whenever control finally leaves the for
statement, whether normally or via an exit or return statement

A for statement involving an index type generator, of the form

for v in IndexType do S od
IS equivalent to the block

begin var vv:=1 ndexType.min
while True do

end

begin const v= Vl~ Send
if vv=lndexType.max then exit fi; vv:=succ(vv)
od

If decreasing IS present, interchange mtn and max, and replace succ by pred.

Examples:

for i in 2 .. 100 do if a(i»max then max := aU) fi end

for c in Color do Q(c) od

for relative in Family. members do {members must be a record type local
to Family's type}

if relative = thisPerson then exit fi
od

2:l:1:~!!!!_§!~!~!!!~!!!§

<with statement> ::= with < record variable list> do <statement>

<record variable list> ::= <record variable>{,<record variable>}

Within the component statement of the with statement, the components (fields) of the record variable specified
by the with clause can be denoted by their field identifier only, i.e., Without preceding them with t:1e denotation
of the entire record variable. The with clause effectively opens the scope containing the field identifiers of the
specified record vari:lble, so that the field identifiers may occur as variable identifiers.

Example:

with date do
if month = 12 then

begin month := 1; year '- year+ I
end

else month := month+l

is equivalent to

if date.month = 12 then
begin date. month := 1; date.year := date.year+l
end

else date.month := date.month+l

46

No assignments may be made in the qualified statement to any elements of the record variable list However,
assignments are possible to the components of these variables.

9.2.4 Other uses of binding

If a record variable is to be used a number of times in field designators, it is
often convenient to bind it to a short identifier.

Example:

begin var d == dateTable(i);
if d.month = 12 then d.month := 1; d.year := d.year+l
else d.monlh := d.monlh+l fi
end

IS equivalent to

if dateTable(i).month = 12 then
dateTable(i).month:= 1: dateTable(i).year:= dateTable(i).year+l

else d ateTable(i). mont h := d ateTabl e(i).mol1lh+ 1 fi
end

and, also equivalent to

begin var m == dateTable(i).month; var y == dateTableU).year;
if m = 12 then m := 1; y := y+1 else m := m+1 fi
end

47

10. Procedure declarations

Procedure declarations serve to define parts of programs and to associate identifiers with them
so that they can be activated by procedure statements. A machine-code procedure is
exactly like an ordinary procedure, except that its body is a sequence of machine
instructions, represented as manifest integer constants according to an
imp I em en tation -dependen t con ven tion.

<procedure declaration> ::= <procedure heading> = <body> I
machine code <procedure heading> =
<code block>

<body> ::= <block> <end identifier> I forward
<end identifier> ::= <identifier> I <empty>
<code block> ::= code <manifest constant> { ; <manifest constant>}

<end code>
<end code> ::= end I end code I end <identifier>
(block> ::= (label declaration part>

(const:mt definition part><type definition part>
(variable d.:daration part>
< prun:liure and fundion declaration pan>
<statement part>

The procedure heading specifies the identifier naming the procedure and the formal parameter
identifiers (if any). The parameters are either constant or variable parameters (cf. also
9.1.2). Procedures and functions which are used as parameters to other procedures and functions must have value
parameters only.

If the heading is prefixed by inline. this is a hint to the compiler that the
procedure body should be copied at each call. Such copying tends to result in
faster execution. at the expense of a larger object program. The meaning of the
program is not changed by the inline prefix.

<procedure heading> ::= procedure (identifier>; I
procedure <identifier> «formal parameter section>
{;(formal parameter section> I);

<procedure heading> ::= <inline> procedure <identifier>
<formal parameter list> <pre assertion>
<post assertion>

<inline> ::= inline <empty>
<formal parameter list> ::= <formal parameter clause> <imp()rts clause>
<formal parameter clause> ::= «formal parameter section>

{, <formal parameter section>}) I <empty>
<imports clause> ::= imports (<import item> {, <import item>})

<empty>
<import item> ::= <pervasive> <binding condition> <identifier>
<formal parameter section> ::= <pervasive) <binding condition>

<parameter group>
<parameter group> ::= <identifier>{,<identifier>} : <type definition> <unchecked>

<unchecked> ::= unchecked I <empty>

<pre assertion> ::= pre <assertion> I <empty>

<post assertion> ::= post <assertion> I (empty>

48

A parameter group or import item ,without a preceding const or var implies that its
constituents are constants.

A type specification for a formal parameter may have actual parameters which
are other formal parameters; thus

procedure f(n: 0 .. 1000, a: array (l..n) of signedInt) ...
is a legal declaration. This procedure might be called as follows:

begin var aa: array (1..200) of signedlnt; ... j{200, aa); ... end

Furthermore, in order to reduce the proliferation of parameters which would
otherwise be required, we make the following rule: the type of a formal
parameter may be a parametrized type with some or all of the actual parameters
omitted. The omitted parameters are treated as though they appeared as
additional formal pararneters, and the appropriate actual parameters are
supplied in every call. Thus

procedure f(a: array (l..n) where (n: integer» ...
is also legal and is equivalent to the previous declaration of f, except that all the
calls on f will be modified appropriately. The previous call would be written

... f(aa) ...
and would be modified to become

... f(aa.indexType.max, aa) ...

If unchecked follows the type definition for a formal parameter grouP. then an
actual parameter of any type may be passed. Obviously the language can offer
no guarantee of type-safety when this feature is used, and therefore its use
should be confined to situations of desperate need.

The !~IQ!:L~~£hml~j~Q_R!!r.! specifies all labels which mark a statement in the statement part.

<label declaration part> ::= <empty> I label <label> L< label > l;

The £Q!!1!!!!m_Q~fj!!H!Q!!_R!!n contains all constant synonym definitions local to the procedure.

<constant definition part> ::= <empty> I
const <constant definition> {;<constant definition>};

The n:]~~_~!:fj!!HjQ!!-1?!!!! contains all type definitions which are local to the procedure declaration.

<type definition part> ::= <empty> I
type <type definition> {:<type definition>}:

The Y!!!li!Q!!:_Q~~!!!!i!!!Q!!_Qi!!! contains all variable declarations local to the procedure declaration.

<variable declaration part> ::= <empty> I
var <variable declaration> {:<variable declaration> l:

The Q!Q£!:Q!!!!:_!!!l!Lf!!!!£!!Q!!_Q!:£!!!!!!!.!Q!!_I:'!!!! contains all procedure and function declarations local to the
procedure declaration.

<procedure and function declaration part> .. -
f <procedure or function declaration>;}

49

<procedure or function declaration> ::=
<procedure declaration> I <function declaration>

The l!~!!;!!!!e!!LI!~!! specifies the algorithmic actions to be executed upon an activation of the procedure by a
procedure statement

<statement part> ::= <compound statement>

All identifiers introduced in the formal parameter part. the constant definition part. the type definition part, the
variable-, procedure or function declaration parts are !Q!;~! to the procedure declaration which is called the ~QI!~
of these identifiers. They are not known outside their scope. In the case of local variables, their values are
undefined at the beginning of the statement part.

The use of the procedure identifier in a procedure statement within its declaration implies
recursive execution of the procedure.

Examples of procedure. declarations:

type VB = 1 .. 256; {a type used in the following procedures}

procedure TreeSort(var a: array (1..n) of signedInt where (n: VB» =
{these two procedures, TreeSorl and SiftVp together are a version of
Floyd's TreeSort algorithm in CACA!, 7 (1964), p. 701}

begin
for i decreasing in 1 .. n div 2 do SijtVp(a, i, n) od;
for i decreasing in J •• n do

begin const t = a(l); {swap a(i+ 1) and a(1) }
a(l) := a(i+1);
a(i+1) := t;
Si/tVp(a, 1, i)
end
end do

end TreeSort;

procedure SijtUp(var a: array (1..n) of signedInt where (n: VB, i, j: VB» =
begin
k, I: VB;
while True do

begin const k2 = 2* k;
if k2) j then return fi
if (k2+1»j or a(k2+1)<a(k2) then 1:= k2 else 1:= k2+1 fi;
if a(l)<a(k) then return fi;

begin const t = a(1); {swap a{i+ 1) and a(l)}
a(1) := a{i+1);
a{i+1) :=1;
end

end
end do

end Si/tUp;

procedure ZeroArray(var a: array (m .. n) of unsignedInt where (m, n:
signedInt» post {a(m)=O, a(n)=O} =

begin for i in m .. n do a(i) := 0 od

50

end ZeroArray

/0.1. Standard procedures

Standard procedures are supposed to be predeclared in every implementation of Euclid. Any
implementation may feature additional predeclared procedures. Since they are, as all standard
quantities, assumed as declared in a scope surrounding the program, no conflict arises from a declaration

redefining the same identifier wiihin the program. Standard procedures are pervasive, and
hence may not be redeclared. The standard procedures are listed and explained below.

put(f) appends the value of the buffer variable ft to the file f. The effect is defined only if prior to
execution the predicate eof(f) is true. eof(f) remains true, and the value of ft becomes undefined.

get(f) advances the current file position (read/write head) to the next component. and assigns the value of this
component to the buffer variable ft. If no next component exists, then eof(f) becomes true. and
the value of ft is not defined. The effect of get(f) is defined only if eof(f) = false prior to its
execution. (See 11.1.2.)

reset(f) resets the cllrrent file position to its beginning and assigns to the buffer variable ft the value of the first
element of f. eof(f) becomes false. if f is not empty; otherwise ft is not defined. and eof(f)
remains true ..

rewrite(f) discards the current value of f such that a new file may be generated. eof(f) becomes true.

Concerning the textfile procedures read, write, readln. writeln. and page. see Chapter 12.

/0./.2. Dynamic allocation procedures

new(p: 'tC) allocates a new variable vof type T in collection C and assigns the pointer
to v to the pointer variable p. New imports C as a variable. This
procedure works by calling Allocate for the pointer's zone (see 6.3)
with the number of StorageUnits required for a variable of type T. It
gets back a 'tcollection of. StorageBlock, and uses the Storage array in
this block for the newly created variable. It is up to the verifier to
ensure that this array has at least n components if Allocate(n) was
called, and that the storage allocated does not overlap with that of
any other variable (other than one of type StorageUnit). Any
initialization specified by the type of v is performed. If the object
type of C is parameterized, and any of the actual parameters are
unknown or any, then specific values for these parameters must be
supplied as additipnal parameters to new, so that the variable being
created will have a definite type.

free(p: 't C) frees the variable v pointed to by p and sets p to nil; there should not
be any other pointers equal to p. Any finalization specified by the
type of v is performed. Then the Deallocate procedure for Cs zone is
called with a pointer to the StorageBlock from which v was originally
allocated by new.

51

These two procedures, and the unchecked option for formal parameters, are
the only ways to change the type of a variable. They should be used with due
caution.

new(p. n. tn) can be used to allocate a variable of the variant with tag field values n. tn.

dispose(p) and dispose(p. n tn) can be used to indicate that storage occupied by the variable referenced by the
pointer p is no longer needed. (Implementations may use this information to retrieve storage. or
they may ignore it)

lO.I.3. Data transfer procedures

Let the variables a and z be declared by

a: array [m .. n] of T

z: packed array [u .. v] of T

where n-m >= v-u. Then the statement pack(a, i, z) means

for j in u .. v do z[j] := a[j-u+i] od
and the statement unpack(z, a, i) means

for j in u .. v do a[j-u+i] := z[j] od
where j denotes an auxiliary variable not occurring elsewhere in the program.

52

11. Function declarations

Function declarations serve to define parts of the program which compute a scalar value or a
pointer value. Functions are activated by the evaluation of a function designator (cf. 8.2)
which is a constituent of an expression.

<function declaration> ::= <function heading> = <body>.1
machine code <function heading> = <code block>

The function heading specifies the identifier naming the function, the formal parameters of
the function, and the type of the function.

<function heading> ::= function < identifier>:<result type>;
function <identifier> «formal parameter section>
{;<formal parameter section>}) : < result type>;

<result type> ::= <type identifier>

<function heading> ::= <inline> function <identifier>
<formal parameter list>
returns <result name> <type definition>
< pre assertion> < post assertion>

<result name> :::: <identifier>: I <empty>
The type of the function must he a scalar. subrange. or pointer type. Functions may return values of
any type except collections. If the result name is supplied, then within the function
declaration there may be one or more assignment statements assigning a value to the result
name, and the value of the result name when the function returns determines
the value of the function. If no result name is supplied, or if it is not assigned
to in the body, the result must be suppl ied in a return statement. A return
statement without any val ue is supplied automatically just before the end of the
body. Occurrence of the function identifier in a function designator within its declarati0'1
implies recursive execution of the function.

Examples:

function Max(a: array (m .. n) of signedlnt where (m, IT. signedInt»
returns index: signedInt =

index := /lr,
for i in m+l .. n do

assert {a(index) = max(a(m), ... , a(i-l»};
if a(i) > a{index) then index := i fi
od

assert {a{index) = max(a(m), ... , a(I1»};
return index
end A/ax

function Gcd(m, n: signedlnt) returns signedlnt =
begin if 11=0 then return m else return Gcd(n, rn mod n) fi
end

function Power(x: signedlnt, y: unsigned) nt) returns z: signedInt =
begin var w, i: signedlnt:
w := x; i:= y, z:= 1;
while i > 0 invariant {z*(w** i) = x** i} do

if odd(i) then z := Z*W fi;
i := i div 2;
w := W*W
end do;

assert {z = x**y};
return z
end Power

11.1. Standard functions

53

Standard functions are supposed to be predeclared in every implementation of Euclid. Any
implementation may feature additional predeclared functions (cf. also 10.1). Standard
functions are pervasive.

The standard functions are listed and explained below:

11.1.1. Arithmetic functions

abs(x) computes the absolute value of x. The type of x must be either real or a subrange
of integer. and the type of the result is integer.

sqr(x) computes x**2. The type of x must be either real or integer; the type of the result is the type of x.

si n(x)
cos(x)
exp(x) the type of x must be either real or integer, and the type of the result is real.
In(x)
sqrt(x)
arctan(x)

11.1.2. Predicates

odd(x) the type of x must be a subrange of integer, and the result is True if x is odd,
and False otherwise.

eof(f) eof(f) indicates whether the file f is in the end-of-file status.

eoln(f) indicates the end of a line in a textfile (see chapter l2).

11.1.3. Transfer functions

trunc(x) the real value x is truncated to its integral part.

round(x) the real argument x is rounded to the nearest integer.

ord(x) x must be of a scalar type (including Boolean and char), and the result (of type
integer) is the ordinal number of the value x in the set defined by the type of x.

chr(x) x must be of type integer, and the result (of type char) is the character whose
ordinal number is x (if it exists).

index(p) p must be a pointer, and the result, of type unsignedlnt, has no
properties except that it is guaranteed to be the same if p has the same
value.

54

11.104. Further standard functions

x.succ x is of any scalar or subrange type, and the result is the successor value of x (if it
exists).

x.pred x is of any scalar or subrange type, and the result is the predecessor value of x (if
it exists).

x.max X is of any scalar or subrange type, and the result is the largest value of
the type.

x.min x is of any scalar or subrange type, and the result is the smallest value
of the type.

55

12. Input and output

The basis of legible input and output are textfiles (cf. 6.2.4) that are passed as program parameters (cf. 13) to a
Pascal program and in its environment represent some input or output device such as a terminal, a card reader, or
a line printer. In order to facilitate the handling of textfiles, the four standard procedures !~l!!;!, ~!!!~, !~l!!!!.!!, and
~!l!~!.!! are introduced in addition to g~! and Q!!!. They can be applied to textfiles only; however, these textfiles
must not necessarily represent input/output devices, but can also be local files. The new procedures are used with
a non-standard syntax for their parameter lists, ailowing, among other things, for a variable number of
parameters. Moreover, the parameters must not necessarily be of type char, but may also be of certain other types,
in which case the data transfer is accompanied by an implicit data conversion operation. If the first parameter is
a file variable, then this is the file to be read or written. Otherwise, the standard files !!!Q!!! and Q!!!Q!!! are
automatically assumed as default values in the cases of reading and writing respectively. These two files are
predeclared as

far input, output: text

Textfiles represent a special case among file types insofar as texts are substructured into lines by so-called line
markers (cf. 6.2.4). If, upon reading a textfile f, the file position is advanced to a hne marker that is past the last
char3cter of a line, then the value of the buffer variable ft becomes a blank, and the stand3rd function ~Ql!l(f)
(~nd Qf line) yields the value true. Advancing the file position once more assigns to ft the first character of the
next line, and eoln(f) yields false (unless the next line consists of 0 characters). Line markers, not being elements
of type !;hl!!, can only be generated by the procedure ~!i!~l!!.

The following rules hold for the procedure !~l!!!; f denotes a textfile and v1...vn denote variables of the types char,
IIltegcr (or subrange of integer), or real.

1. read(vl, vn) is equivalent to read(input, vi, ... , vn)

2. read(f, vI, ... , vn) IS equivalent to read(f, vI); ... ; read(f, vn)

3. if v is a variable of type char, then read(f, v) is equivalent to v := ft; get(f)

4. if v is a variable of type integer (or subrange of integer) or real. then read(f. v) implies the reading
from f of a sequence of characters which form a number according to the syntax of Pascal (cf. 4)
and the assignment of that number to v. Prect:ding blanks and line markers are skipped.

H:.f: __ !hLQgl!;~Q!!!L!~;!Q!!!
l. readln(vI, vn) is equivalent to readln(input. vI, vn)

2. readln(f. vI, ... , vn) is equivalent to

read(f, vI. . .. , vn); readln(f)

3. readln(f) is equivalent to

while not eoln(f) do get(f);
get(f)

Readln is used to read and subsequently skip to the beginning of the next line.

The following rules hold for the procedure ~!i!~; f denotes a textfile. pl pn denote so-called write-parameters.
e denotes an expression, m and n denote expressions of type integer.

l. write(pl. . .. , pn) is equivalent to write(output, pI, ...• pn)

2. write (f. pl. . .. , pn) is equivalent to

write(f, pI); ... ; write(f. pn)

3. The write-parameters p have the following forms:

e:m e:m:n e

e represents the value to be "written" on the file f. and m and n are so-called field width
parameters. If the value e, which is either a number, a character. a Boolean value, or a string,
requires less than m characters for its representation. then an adequate number of blanks is issued
such that exactly m characters are written. If m is omitted. an implementation-defined default

56

value will be assumed. The form with the width parameter n is applicable only if e is of type real
(see rule 6).

4. if e is of type char, then

write(f, e:m) is equivalent to
ft := ' '; put(f); (repeated m-l times)
ft := e; put(f)

~Q.!~: the default value for m is, in this case, l.

5. If e is of type integer (or a subrange of integer), then the decimal representation of the number e
will be written on the file f, preceded by an appropriate number of blanks as specified by m.

6. If e is of type real, a decimal representatIOn of the number I.' is written on the file f, preceded by an
appropriate number of blanks as specified by m. If the parameter n is missing (see rule 3), a
floating-point representation consisting of a coefficient and a scale factor will be chosen.
Otherwise a fixed-point representation with n digits after the decimal point is obtained.

7. if e is of type Boolean, then the words TRUE or FALSE are written on the file f, preceded by a an
appropriate number of blanks as specified by m.

8. if e is an array (packed) of characters, then the string e is written on the file f.

1. writeln(pl, pn) is equivalent to IHlteln(output, pI. ... , pn)

2. writeln(f, pI. pn) is equivalent to write(f, pI. ... , pn); writeln(f)

3. wflteln(f) appends a line marker (cf. 6.2.4) to the file f.

page(f) causes skipping to the top of a new page, when the textfile f is printed.

57

13. Programs

A Euclid program consists of a procedure declaration.

<program> ::= <procedure declaration>

A Pascal program has the form of a procedure declaration except for its heading.

<program> ::= <program heading> <block>

<program heading> ::= program <identifier> «program parameters»;

<program parameters> ::= <identifier> {.<identifier>}

The identifier following the symbol program is the program name: it has no further significance inside the
program. The program parameters denote entities that exist outside the program. and through which the program
communicates with its environment. These entities (usually files) are called external. and must be declared in the
block which constitutes the program like ordinary local variables.

The two standard files !!!Q.!!! and Q!!!P'!!! must not be declared (cf. 12). but have to be listed as parameters in the
program heading, if they are used. The initializing ~tatements reset(input) and rewrite(output) are automatically
generated and must not be specified by the programmer.

Examples:

procedure VariousExamples = begin

type HashTable(pervasive size: l..large)
imports (pervasive Hash) exports (Search, Delete, Insert, CyclicScan) =

record
pervasive type CyclicScan(item: signedlnt) exports (Next, value) =

record
const start: 1 .. large = H ash(item);
var value := start;

--function Next(first: Boolean) imports (var value, const start)
returns Boolean =

begin
if first then return True fi;
if value = size then value := 1 else value:= value + 1 fi;
return (value not= start)
end Next

end record;

pervasive type State = (fresh. full, deleted);

type Entry (var flag: State) exports (key) =
record

case flag of
full => (key: signedInt)

end record;

var table: array (1 .. size) of Entry,

function Search(key: signedInt) imports (table) returns Boolean =
begin
for i in CyclicScan(key) do .

case discriminating entry = table(i) of

fresh => return False;
full => if entry.key = key then return True fi;
end case;

end do;
return False
end Search;

procedure Delete(key. signedlnt) imports (var table) =
begin -
for i in CyclicScan(key) do

case discriminating entry = table(i) of
full => if entrY.key = key then
table(i).flag :=. deleted; return; fi;
fresh => return;
end case

end do
end Delete;

procedure lnsert(key. signedlnt) imports (var table, Search) =
begin
if Search(key) then return fi;
for i in CyclicScan(key) do .

case discriminating entry = tab/e(i) or
fresh, deleted => .

end case
end do;

begin
I abl e(i).fl ag := full;
case discriminatmg var new == table(i) or

full => new.key:= key;
end case;

return
end

58

Error(Table is full') {where is the procedure Error defined?}
end Insert;

initially for i in IndexType(table) do table(i) := Entry(fresh) end do
end H ashTable;

type lnterval(a. b: signedlnt) exports (Next, value) =,
record .

. var value := a;
function Next(first: Boolean) imports (var value, const b)· returns
Boolean = .

begin
if not first then value := value + 1 fi;
return (value <= b)
end Next

end record;

type StringLength = 0 .. 247;

type Vstring(length: StringLength)

imports (String Length) exports (length, var text, Substr, SetSubstr) =
record
type Stringlndex = 1 .. StringLength.max;
var text: array (1 .. length) of Character,
function Substr(start: Stringlndex, len: StringLength)

imports (text, Vstring) returns Vstring = .
begin
var v: Vstring(len),'
for i in 1 .. len do v.text(i) := text(start+i) end do;
return v
end Substr,

59

procedure SetSubstr(start: Stringlndex, v: Vstring) imports (var text) =
for i in 1.. v.length do text(start+i) := v.lext(i) end do;

initially for i in l..length do text(i) := u*S

end Vstring;

function Catenate(to, from Vstring) imports(Vstring) returns Vstring =
begin '

end

var s: Vstring(to.length+ from length);
s.SetSubstr(l, to); s.SetSubslr(to.lengliz+l, from);
return s
end Catenate;

60

14. A standard for implementation and program interchange

A primary motivation for the development of Euclid was the need for a powerful and
flexible language that could be reasonably efficiently implemented on most computers. Its
features were to be defined without reference to any particular machine in order to facilitate
the interchange of programs. The following set of proposed restrictions is designed as a
guideline for implementors and for programmers who anticipate that their programs be used
on different computers. The purpose of these standards is to increase the likelihood that
different implementations will be compatible. and that programs are transferable from one
installation to another.

1. Jdenlifiersdenoting distillct objects must differ over their first 8 characters.

2. Labels consist of at most 4 digits.

3. The implementor may set a limit to the size of a base type over which a set can be
defined. (Consequently. a bit pattern representation may reasonably be used for
sets.)

4. The first character on each line of priritfiles may be interpreted as a printer control character with
the following meanings:

blank single spacing
'0' double spacing
'I' print on top of next page

Representations of Pascal .in terms of available character sets should obey the following rules:

5. Word symbols. such as begin. end. etc .• are written as a sequence of letters (without
surrounding escape characters). They may not be used as identifiers.

6. Blanks. ends of lines, and comments are considered as separators. An arbitrary
number of separators may occur between any two consecutive Euclid symbols
with the following restriction: no separators must occur within identifiers,
numbers. and word symbols.

7. At least one separator must occur between any pair of consecutive identifiers,
numbers, or word symbols.

15. Implementation notes

A later version of this report will include suggestions for implementation
techniques which can handle Euclid records and parameterized types efficiently.

