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Preface 

This report describes a new language called Euclid, intended for the expression 
of system programs which are to be verified. Euclid draws heavily on Pascal 
for its structure and many of its features. In order to reflect this relationship 
as clearly as possible, the Euclid report has been written as a heavily edited 
version of the revised Pascal report. 

Obviollsly, we are greatly indebted to Wirth, both for the aspects of the 
language which are copied from Pascal, and for the structure and mllch of the 
wording of the report. In addition, we have drawn on much other work in the 
design of programming languages, and in program verification. 

I. Introduction 

Th~ dev~lopment of the language !'i!~t:::)1 is bas~d on two principal aims. The first is to make available a 
language suitable to kach programming as a systematic discipline basl'l! on certain fundamental concepts dearly 
and naturally reflected by the language. The second IS to devdop implementations of this language which are 
both reliable and efficient on presently available computers. 

The desire for a new language for the purpose of teaching programming is due to my dissatisfaction with the 
presently used major languages wh()~e features and construct~ too often cannot be explained logically and 
convincingly and which too often defy systematic TI:asoning. Along with this dissatisfaction goes my conviction 
that the language in which the student is taught to exprcs~ his id~as profoundly influences his habits of thought 
and invention. anl! that the disorder gowrning these langu:Jgcs directly imp(lsl's itsdf on[:) the programming 
style of the students. 

There is of course plenty of reason to be cautious with the introduction of yet another programming language. 
and the objection against teaching programming in a languagc which is not widely used and accepted has 
undoubtedly some justification, at least based on short term commercial reasoning. However, the choice of a 
language for teaching based on its widespread acceptance and availability. together with the fact that the 
language most widely taught is thereafter going tl) he the one most widely used. forms the safest recipe for 
stagnation in a subJcct of such profound pedagogical influence. I consider it therefore well worth-while to 
make an effort to break this vicious circle. 

Of course a new language ·should not be developed just for the sale of novelty; existing languages should be 
used as a basis for development whereever they meet the criteria mentioned and do not impede a systematic 
structure. In that sense, Algol 60 was used as a basis fur Pascal, since it meets the demands with respect to 
teaching to a much higher degree than any other standard language. Thus the principles of structuring, and in 
fact the form of expressions, are copied from Algol 60. It was, however. not deemed appropriate to adopt Algol 
60 as a subset of Pascal; certain construction principles, particularly thost' of declaratIOns. would have been 
incompatible with those allowing a natural and convenit:nt representation of the additIOnal features of Pascal. 

The main extensions relative to Algol 60 lie in the domain of data structuring facilities, since their lack in 
Algol 60 W:JS considered as the prime cause for its relatively narrow range of applicability. The introduction of 
record and file structures should make it possible to solve commerci:J1 type pruhlems with Pascal, or at least to 
employ it successfully to demunstrate such prubkms in a programming course. 

The language Euclid has been designed to facilitate the construction of 
verifiable system programs. By a verifiable program we mean one written in 
such a way that existing formal techniques for proving certain properties of 
programs c~n be readily applied; the formal proofs might be either manual or 
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automatic. and we believe that similar considerations apply in both cases. By 
system we mean that the programs of interest are part of the basic software of 
the machine on which they run; such a program might be an operating system 
kernel. the core of a data base management system, or a compiJer. 

An important consequence of this goal is that Euclid is not intended to be a 
general-purpose programming language. Furthermore, its design does not 
specifically address the problems of constructing very large programs; we 
believe most of the programs written in Euclid will be smaller than about 2000 
lines. While there is some experience suggesting that verifiability supports 
other desired goals, we assume the user is willing, if necessary, to obtain 
verifiability by giving up some run-time efficiency. and by tolerating some 
inconvenience in the writing of his programs. 

In developing Euclid. we have sought to minimize deviations from the Pascal 
base; existing features of Pascal have been left unaltered unless there was a 
reason for change. We see Euclid as a (perhaps somewhat eccentric) step along 
one of the main lines of current programming language development: 
transferring more and more of the work of producing a correct program. and 
verifying its correctness. from the programmer and the verifier (human or 
mechanical) to the language and its compiler. 

The main changes relative to Pascal take the form of restrictions. which allow 
stronger statements about the properties of the program to be made from the 
rather superficial. but quite reliable. analysis which the compiler can perform. 
In some cases new constructions have been introduced, whose meaning can be 
explained by expanding them in terms of existing Pascal constructions. The 
reason for this is that the expansion would be forbidden by the newly 
introduced restrictions. whereas the new construction is itself sufficiently 
restrictive in a different way. 

The main differences between Euclid and Pascal are summarized in the 
following list: 

Visibility: Euclid provides explicit control over the visibility of 
identifiers, by requiring the program to list all the identifiers 
imported into a procedure or record. or exported from a record. 

Variables: The language guarantees that two identifiers in the same 
scope can never refer to the same or overlapping variables. There is 
a uniform mechanism for binding an identifier to a variable in a 
procedure call. on block entry (replacing the Pascal with statement). 
or in a variant record discrimination. 

Pointers: This idea is extended to pointers, by allowing dynamic 
variables to be assigned to collections, and guaranteeing that two 
pointers into different collections can never refer to the same 
variable. 



Storage allocation: The program can control the allocation of storage 
for dynamic variables explicitly, in a way which confines the 
opportunity for making a type error as narrowly as possible. It is 
also possible to declare that some dynamic variables should be 
reference-counted, and automatically deallocated when no pointers 
to them remain. 

Constants: Euclid defines a constant to be an identifier whose value 
is fixed throughout the scope in which it is declared. 

Types: Types have been generalized to allow formal parameters, so 
that arrays can have bounds which are fixed only when they are 
created, and variant records can be handled in a type-safe manner. 
Records are generalized to include constant components, so they 
provide a facility for modularization. 

For statement: A generator can be declared as a record type, and 
used in a for statement to enumerate a sequence of values. 

Loopholes: features of the underlying machine can be accessed, and 
the type-checking can be overridden, in a controlled way. Except 
for the expl icit loopholes, Euclid is believed., to be type-safe. 

Assertions: the syntax allows assertions to be supplied at convenient 
points. 

Deletions: input-output, reals, multi-dimensional arrays, labels and 
gotos, an'd functions and procedures as parameters. 

Other considerations in the design of Euclid are: 

It is based on current knowledge of programming languages and 
compilers; concepts which are not fairly well understood, and 
features whose im'plementation is unclear, have been omitted. 

Although the language is not intended for the writing of portable 
programs, it is necessary to have compilers which generate code for a 
number of different machines, including mini-computers. 

The object code must be reasonably efficient, and the language must 
not require a highly optimizing compiler to achieve an acceptable 
level of efficiency in the object program. 

Since the total size of a program is modest, separate compilation is 
not required (although it is certainly not ruled out). 

3 
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2. Summary of the language 

An algorithm or computer program consists of two essentiai parts, a description of actions 
which are to be performed. and a description of the data which are manipulated by these 
actions. Actions are described by statements, and data are described by type definitions. 
A data type definition essentially defines a set of values and the operations which 
may be performed on elements of that set. 

The data are represented by values. A value may be constant, or it may be the value 
of a variable. A value occurring in a statement may be represented by a 
literal constant, an identifier which has been declared to be constant, an 
identifier which has been declared as a variable, or an expression containing 
values. Every constant or variahle identifier occurring in a statement must be 
introduced by a constant or variable declaration which associates with it a data type, and 
either a value or a variable. 

In general, a definilion specifies a fixed value. type, procedure or function, 
and a declaration introduces an identifier and associates some properties with 
it. A data type may in Euclid be either directly described in the constant or variable 
declaration, or it may be referenced by a type identifier, in which case this identifier must 
be described by an explicit type declaration. 

A conslanl declaration associates an identifier with a value; the association 
cannot be changed within the scope of the declaration. If the value can be 
determined at compi le-ti me, the constant is said to be manifest; the expression 
defining a manifest constant must contain only literal constants, other 
manifest constants, and built-in operations. ' 

The simple data types are the scalar types. Their definition indicaies an ordered set of 
values. i.e .. introduces identifiers standing for each value in the set. Apart from the 
definable simple types. there exist fOllr standard basic types: Boolean, integer, "cIlOr and 
StorageUnit. The real type has been omitted. For each standard type, there is 
a way of writing l1teral constants of that type: True and False for Boolean, 
numbers for integers, and quotations for characters. Numbers and quotations 
are syntactically distinct from identifiers. The set of values of type char is the 
character set available on a particular installation. 

A type may also be defined as a subrange of a simple type by indicating the smallest and the 
largest value of the subrange. 

Structured types are defined by describing the types of their components and by indicating 
a structuring method. The various structuring methods differ in the selection mechanism 
serving to select the components of a variable of the structured type. In Euclid, there are 
three basic structuring methods available: array structure, record structure. and set 
structure. 

In an array structure, all components are of the same type. A component is selected by an 
array selector. or computable index, whose type is indicated in the array type declaration and 
which must be simple. It is usually a programmer-defined scalar type, or a subrange of the 
type integer. Given a value of the index type, an array selector yields a value of the 
component type. Every array variable can therefore be regarded as a mapping of the index 
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type onto the component type. The time needed for a selection does not depend on the value of the 
selector (i ndex). The array structure is therefore called a !!!!}~Q!!!:!!££~~~_l!!!!!£!l!!~. 

In a record structure, the components (called fields) are not necessarily of the same type. 
In order that the type of a selected component be evident from the program text (without 
executing the program). a record selector is not a computable value, but instead is an 
identifier uniquely denoting the component to be selected. These component identifiers are 
declared in the record type definition. Again. the time needed to access a sdected component does not 

depend on the selector. and the record is therefore also a random-access structure. Records may 
include constant as well as variable components; manifest constant 
components, of course, occupy no storage. In particular, records may include 
procedures, functions and types as components. In this way, the operations 
which are defined on a data structure can be conveniently packaged with the 
structure. 

Record components cannot be accessed outside the record body (which 
includes the bodies of procedure coniponents) unless they are explicitly 
exported. Thus in a properly written program it is evident from the lexical 
structure how the state of a record can be altered. 

A record type may be specified as consisting of several l'ariants. This implies that different 
variables, although declared to be of the same type. may assume structures which differ in 
a certain manner. The difference may consist of a different number and different types of 
components. The variant which is assumed by the current value of a record vartable is 
indicated by a constant of some scalar type which is called the tag field. Usually, the 
part common to all variants will consist of several components. . . 

A set structure defines the set of values which is the powerset of its base type. i.e., the set of 
all suhsets of values of the base type. The hase type must be a simple type, and will usually 
be a programmer-defined scalar type or a subrange of the type integer. 

A file structure is a sequence of components of the same type. A natural ordering of the components is 
defined through the sequence. At any instance, only one component is directly accessible. The other 
components are made acceSSible by progressing sequentially through the file. A file is generated by sequentially 
appending components at its end. Consequently, ttie file type definition does not determine the number of 
components. 

Variables declared in explicit declarations are called static. The declaration associates an 
identifier with the variable, and the identifier is used to refer to the variable. The 
language guarantees that two identifiers which can legally be used in the same 
scope cannot refer to the same variable, or to overlapping variables. 

In contrast. variables may be generated by an executable statement. Such. a dynamiC 
generation yields a pointer (a suhstitute for an explicit identifier) which subsequently serves 
to refer to the variable. This pointer may be assigned to other variables, namely variables of 
type pointer. Every pointer variable may assume values pointing to variables in a single 
collec/ion. all of whose members are of the same type T. and it is said to be bound to 
this type T. It may, however, also assume the value nil, which points to no variable. Because 
pointer variables may also occur as components of structured variables, which are themselves 
dynamically generated. the use of pointers permits the representation of finite graphs in full 
generality. Although the language cannot guarantee in general that two pointer 
variables do not refer to the same variable, it can make this guarantee for two 
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pointers In different collections. 

A zone can be associated with each collection to provide procedures for 
allocating and dealJocating the storage required by variables in that collection; 
if the zone is omitted. a standard system zone is used. The program may free a 
dynamic variable explicitly, in which case the program is responsible for 
ensuring that no pointers remain to reference the non-existent variable. 
Alternatively, the collection may be reference-counted, in which case each 
variable is automatically freed when no pointers to it remain. 

Throughout this report; then, the word variable means a container which can 
hold a val ue of a specific type. A variable mayor may not be associated with 
an identifier. A constant, by contrast, is simply a value of a specific type. The 
fundamental difference is that assignment to a variable is possible. 

A type declaration may have formal parameters; such a parameterized 
declaration represents a set of types, one of which is specified each time the 
type is referenced and actual parameters are supplied for the formals. 

Two types are the same if their definitions are identical after any type 
identifiers that have been declared as synonyms have been replaced by their 
definitions. and any actual parameters and any identifiers declared outside the 
lype h,ave been replaced by their values. 

The most fundamental statement is the assignment statement. It specifies that a newly 
compufed value be assigned to a variable (or components of a variable). The value is 
obtained by evaluating an expression. Expressions consist of variahles. constants. sets. 
operators and functions operating on the denoted quantities and producing new values. 
Variables. constants. and functions, are either declared in the program or are standard 
entities. Euclid defines a fixed set of operators. each of which can be regarded as describing 
a mapping from the operand types into the result type. The set of operators is subdivided 
into groups of: 

1. arithmetic operators of additio'n. subtraction. sign inversion. multiplication, 
division, and computing the remainder. 

2. Boolean operators of negation. disjunction (or), and conjunction (and). 

3. set operators of union. intersection. and set difference. 

4. relational operators of equality. inequality, ordering. set membership and set 
inclusion. The resuits of relational operations are of type Boolean. 

The procedure statement causes the execution of the designated procedure (see below). 
Assignment and procedure statements are the components or building blocks of structured 
statements. which specify sequential, selective, or repeated execution of their components. 
Sequential execution of statements is specified by the compound statement; conditional or 
selective execution by the if silltemellt, and the case statemt'llt. and repeated execution by 
the repeat stafement. the while statement. and the for statemell1. The ·if statement serves to 
make the execution of a statement dependent on the value of a Boolean expression, and the 
case statement allows for the selection among many statements according to the value of a 
selector. The discriminating case statement provides a safe way of 
discriminating the current variant of a variant record. The for statement is used 
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when a bound on the number of iterations is known beforehand, and the repeat and while 
statements are used otherwise. 

A block can be used to associate a set of declarations with a statement. The 
identifiers thus declared have significance only within the block. Hence, the 
block is called the scope of these identifiers, and they are said to be local to 
the block. Since a block may appear as a statement, scopes may be nested. A 
type declaration also defines a scope in a similar way. 

A block can be given a name (identifier), and be referenced through that identifier. The 
block is then called a procedure, and its declaration a procedure dec/aration. However, 
an identifier which is not local to a given procedure body is accessible in that 
body only if 

it is accessible in the immediately enclosing scope, and 

it is explicitly imported into the given procedure body. 

Entiti.:s which are declared in the main program. i.e. not local to some procedure, are called g!0b;J!. A 
procedure has a fixed number of parameters, each of which is denoted within the procedure 
by an identifier called the formal parameter, which is local to the procedure body. 
Upon an activation of the procedure statement, an actual quantity has to be indicated for 
each p:lfameter which can be referenced from within the procedure through the formal 
parameter. This quantity is called the actual parameter. There are two kinds of 
parameters: constant parameters and variable parameters; procedure, function and 
type parameters are not allowed. In the first case, the actual parameter is an 
expression which is evaluated once. The formal parameter represents a local constant 
whose value is the result of this evaluation. In the case of a variable parameter, the actual 
parameter is a variable and the formal parameter is bound to this variable. Possible 
indices or pointers are evaluated before execution of the procedure. In the case of procedure 
or function parameters, the actual parameter is a procedure or function identifier. 

Functions are declared analogously to procedures. The only difference lies in the fact that a 
function yields a result, which may be of any type and must be specified in the function 
declaration. Functions may therefore be used as constituents of expressions. In order to 

eliminate side effects. assignments to non-local variables should be avoided within function declarations. 

Ahhough Euclid does not forbid functions to have side effects, it is 
recommended that "functions should not have side effects unless they are truly 
necessary. To this end, variable formal parameters, and imported variables, 
should be avoided within function declarations as much as possible. 

Since Eucl id is intended for the writing of programs which are to be verified 
(either mechanically or by hand), there are a number of explicit interactions 
between the language and the verifier, in addition to the many aspects of the 
language which have been motivated by the desire to ease verification. These 
explicit interactions fall into two main categories: 

embedding of assertions in the program: the special symbols assert, 
im'ariant, pre and post prefix assertions which are written as 
comments and ignored by the compiler, but presumably will be used 
by the verifier, which can take advantage of their relationship to the 



structure of the program. 

compiler-generated assertions: in cases where the compiler needs to 
be able to assume that some condition holds, but is unable to deduce 
that it does, the compiler m~y generate an assertion (in a new listing 
of the program) for the verifier. and then proceed as though 
confident of its truth. The legality of the program may then depend 
on the truth of the compiler-generated assertion. 

8 
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3. Notation, terminology, and vocabulary 

According to traditional Backus-Naur form, syntactic constructs are denoted by English 
words enclosed between the angular brackets < and>. These words also describe the nature 
or meaning of the construct, and are used in the accompanying description of semantics. 
Possible repetition of a construct is indicated by enclosing the construct within metabrackets 
{ and }. The symbol <empty> denotes the null sequence of symbols. 

The basic vocabulary of Euclid consists of basic symbols classified into letters, digits, and 
special symbols. 

<letter> ::= A I B I C I 0 I ElF I G I H I I I J I K I LIM I N I 0 I P I Q I 
R I SIT I U I V I W I X I Y I Z I a I b I c I d Ie If I g I hi 
i I j I kl I I min I 0 I p I q I r I sit I u I vi wi x I y I z 

<octal digit> ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 

<digit> ::= <octal digit> I 8 I 9 

<special symbol> ::= 
+ I - I * I I I = I <> I < I > I <= I >= I ( I ) I 
[ I ] I { I } I := I . I , I ; I : I ' I t I div I mod I 
nil I in I or I and I not I if I then I else I elseif I fi I 
case I of I discriminating I repeat I until I while I do I od I 
for I dC('fcasing I dnwnto I begin I end I with I goto I ronst I var I 
type I any I unknown I synonym I where I array I record I set I file I 
p~lcked I collection I reference-counted I forward I hlbel I program I 
function I procedure I inline I machine I code I unchecked I 
dependent I aligned I at I word I bits I to I 
imports I exports I pervasive I initially I finally I 
assert I pre I post I . invariant 

The construct 
{ <any sequence of symbols not containing It}"> } 

may be inserted between any two tokens: identifiers, literal constants (see 4), or special 
symbols. It is called a comment and may be removed from the program text without altering 
its meaning. The symbols { and } do not occur otherwise in the language, and when 
appearing in syntactic descriptions they are meta-symbols like I and ::=. The symbol pairs 
(* and *) are used as synonyms for { and }. 

Throughout this report, various restrictions will be placed on legal Euclid 
programs. Many of these restrictions cannot be checked syntactically, and in 
some cases they involve dynamic conditions that are difficult (or impossible) 
to check statically. Nevertheless, programs that violate them are not 
considered to be meaningful Euclid programs. In general, it is the 
responsibility of the compiler to verify as many of these properties as it can, 
and to produce legality assertions for those that it cannot. Thus, any program 
whose legality assertions can all be verified is a legal Euclid program, with 
well-defined semantics. If checked is specified for a block (see 9.2.1), all 
legality assertions in the block are compiled into run-time checks, as an aid in 
detecting illegal programs, even before the verification process is complete. 
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3.1 Lexical structure 

The text of a program is built up out of declarations and statements. 
collectively called units, according to the syntax specified below. In general 
units are separated by semi-colons. The syntax is constructed in such a way 
that a unit may always be legally followed by one or more semi-colons. In 
order to make it unnecessary to write semi-colons between units which appear 
on separate lines, a semi-colon is automatically inserted at the end of a line 
whenever the last token of the line is one of: 

identifier, literal constant, ), ], nil, fi, od, or end possibly followed 
by if, do, case, record, code or an identifier, 

and the first token of the next line is one of: 

identifier. literal constant. if, case, repeat, while, for, begin, const, 
var, type, function, procedure, machine, packed, program, pervasive, 
initially, finally, assert, pre, post, or invariant. 

Commas are used as separators in scalar types, element lists, parameter lists 
and identifier lists in declarations. 

There are various kinds of brackets which are used to group declarations and 
statements for various purposes. The following list gives the possible closing 
brackets for each opening bracket. 

if end or end if or fi 

do 

begin 

case 

record 

code 

end or end do or od 

end, or end <procedure or function identifier> if the 
block is the body of a procedure or function 

end or end case 

end or end record or end <record identifier> if the 
record deClaration is the definition of a type 
iden tifier. 

end or end code or end <identifier> 
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4. Identifiers, numbers and strings 

Identifiers serve to denote constants, variables, types, procedures and functions. Their 
association must be unique within their scope of validity, i.e., within the block or type in 
which they are declared (see 6, 10 and 11). 

<identifier> ::= <Ielter>{ <letter or digit)} 

<letter or digit> ::= <letter> I <digit>· 

The usual decimal notation is used for numbers, which are the literal constants of the data 
type integer (see 6.1.2.). The letter E preceding the scale factor is pronounced as "times 10 to the power 

of". Numbers may also be written in octal or hexadecimal notation. 
<digit sequence> ::= <digit>{ <digit>} 

<unsigned integer> ::= <digit sequence> 

< unsigned real> ::= < unsigned integer>. <digit sequence> 
<unsigned integer).(digit scquence>E<scale factor> I 
<unsigned integer> E <scale factor> 

< unsigned number> ::= <unsigned integer) <unsigned real) 

<scale factor) ::= <unsigned integer> 
<sign> < unsigned integer> 

<sign) ::= + I -

<hex digit> ::= <digit> I A I B I C I 0 I ElF 
<unsigned number> ::= <digit> {<digit>} I 

Examples: 

<octal digit> {<octal digit>} #8 
<hex digit> {<hex digit>} #16 

1 100 717#8 CAD1#16 123#16 

Sequences of characters enclosed by quote marks are called ~!!iDg~. Strings consisting of a single character are 
the constants of the standard type char (see 6.1.2). Strings consisting of n () 1) enclosed characters are the 
constants of the type (see 6.2.1) 

p;I('kcd ;,rray [1..n] of char 

Note: If the string is to contain a quote mark, then this quote mark is to be written twice. 

<string) ::= '<character> {<character)}, 

Sequences of characters enclosed by quote marks are called literal string 
constants. They are the literal constants of the standard type string (see 
6.2.1). A character code which is not in the printing character set can be 
represented in a literal string constant in two ways: 

*ddd where each d stands for an octal digit, represents the character 
code with the octal representation ddd; 

*S, *T, *N, **, *', *" represent space, tab, newline, *, ' and " 
respecti vely. 

A ' may also be represented by two successive ' characters. 

<literal string> ::= ' { <extended character> } , 

<extended character> ::= <character> I * <extension> Itt 



<extension> ::= <octal digit) <octal digit> <octal digit> I SIT I N I 
* I 'I .. 

Examples: 

12 

, "A' ';' • , • , 'Here comes a null: *000 and there it went" 
'Euclid' 'THIS IS A STRING' 'This*Sis*Sa*Sstring' 

A single character preceded by a double quote is a I iteral constant of the 
standard type char (see 6.1.2). The * convention may also be used in these 
constants. 

<literal char> ::= It <extended character> 

Examples: 

Ita 
u*" 

"*s {space character} "*000 {the NUL character} 
{a double quote character, not a string containing a single *} 
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5. Manifest constants 

A manifest constant is an expression which is a synonym for a literal constant 
<manifest constant identifier> ::= <identifier> 
<constant> ::= <unsigned number> I (sign><unsigned number> 

<constant identifier> I <sign><constant identifier>. I <string> 

<constant definition> ::= <identifier> = <constant> 

<literal constant> ::= <unsigned number> I <literal string> I 
<literal char> I <scalar value identifier> 

<manifest constant> ::= <literal constant> I 
<manifest constant identifier> I 
<manifest constant expression> 
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6. Data type declarations 

A data type determines the set of values which variables and constants of that type may 
assume and the set of basic operations that may be performed on them, and 
associates an identifier with the type. Parameterized types are introduced in 6.4. A 
type identifier declared as a synonym is considered to be the same type as its 
definition; otherwise the identifier is a different type. 

A type declaration introduces a new scope in which the formal parameters of 
the type, if any, are declared (see 6.4). If the type definition is a record type, 
the new scope is closed (see 7.4), and identifiers defined outside are 
inaccessible unless imported. If the type definition is not a record type, 
however, the new scope is open and importing is not necessary. 

An identifier must be delcared before it is used. \Vhen there are mutually 
recursive procedures or types, however, it is impossible to give the definition 
of every identifier before its use. In this situation, a definition of forward 
may be given instead, and later another declaration, of the form type T= ... (or 
procedure P= ... ) must appear to provide the true definition. 

<type) ::= <simple type) I <structured type) I <pointer type) I 
<type identifier> I <parameterized type reference> 

<type identifier) ::= <identifier) 

<type declaration> ::= type <synonym> <type identifier> 
<formal parameter list> = <type definition> 

<synonym> ::= synonym I <empty> 

<type definition) ::= <type) <where clause> I forward 

<where clause> ::= where <formal parameter list> I <empty> 

Examples: 

type synonym SameOldType = SomeType 
type NewType = SomeType 

6.1. Simple types 

<simple type) ::= <scalar type) I <subrange type> 

6.1.1. Scalar types 

A scalar type defines an ordered set of values by enumeration of the identifiers which 
denote these values. 

<scalar type) ::= «scalar value identifier) {,<scaJar value identifier>} ) 

<scalar value identifier> ::= <identifier> 
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Examples: 

type Color = (red, green, blue, orange. yellow. purple) 
type Suit = (club, diamond, heart, ~spade) 
type Day = (Monday, Tuesday, Wednesday. Thursday. Friday. 
Saturday, Sunday) 
type Sex = (female, male) 

Function components implicitly declared for each scalar, subrange (see 6.1.3) and 
index (see 6.2.1) type T (except real) are: 

T .succ 

T.pred 

T.max 

T.min 

the succeeding value (in the enumeration) 

the. preceding value (in the enumeration) 

the last value (in the enumeration) 

the first value (in the enumeration) 

If x is of such a type T, then x.suce and x.pred may be written as shorthand 
for T.suce(x) and T.pred(x). 

For instance, Suit.max is spade, and Day.min is Monday (in both these cases, 
the dot notation is used to invoke a parameterless function associated with an 
object; e.g., max is a function associated with all objects whose types are 
simple, and, in particular, the max associated with all Suit values can be 
referred to as Suit.max). 

6.1.2. Standard simple types 

The following types are standard in Euclid, and are pervasive throughout the entire 
program: 

integer The values are a subset of the whole numbers defined by individual implementations. Its 
values are the integers (see 4). 

Its values are the positive and negative integers, in the 
mathematical sense. It is not possible to declare a variable to be 
of type integer. Instead, variables can be declared to be of some 
suitable subrange type. 

Every implementation has two standard types, signedlnt and 
unsigned Int. These are the largest subranges of integer type 
which can be represented in one machine word and which 
contain: 

for signedInt, equal numbers of positive and negative 
numbers, or perhaps one more negative number. 

for unsignedlnt, 0 and no negative numbers. 

An operation is called well-behaved if its operands are In the 



range signedlnt (unsignedlnt) and it yields an integer result in the 
same range. Every implementation must support the evaluation 
of any expression in which all the operations are well-behaved 
(see 8.1). An implementation may also support the evaluation of 
expressions involving larger integers. 

real Il~ values are a subset of the real numbers depending on the particular implementation. The 
values are denoted by real numbers (see 4). 

Boolean Its values are the truth values denoted by the identifiers True and False. 

char Its values are a set of characters determined by particular implementations. 
They are denoted by the characters themselves preceded by a 
double-quote. 

StorageUnit Its values are undefined. This is the basic unit for storage 
allocation (see 6.3). There are no operations defined on this type. 

6.13. Subrange types 
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A type may be definl:d as a subrange of another simple type by indication of the least and 
the largest value in the subrange. The first manifest constant specifies the lower bound. 
and must not he greater than the upper bound. If type A is a subrange of type B. and 
type B is a subrange of type C. we say that A is also a subrange of C. The succ, 
pred, max and min function components are defined for all subrange types. 

<subrange type> ::= <manifest constant> .. <manifest constant> 

Examples: 

type oneToOneHundred = 1 .. 100 
type svmmetricRange = -10 .. +10 
type Primary = red .. blue {the values of a Primary are red. green. or blue} 

6.2. Structured types 

A structured type is characterized by the type(s) of its components and by its structuring 
method. Moreover. a structured type definition may contain an indication of the preferred 
data representation. If a definition is prefixed with the symbol packed. this has no effect on 
the meaning of a program (although it may render an otherwise legal program illegal. if a 
component of the structure has been renamed as an entire variable; see 7.5), but is a hint to 
the compiler that storage should be economiz.ed even at the price of some loss in efficiency 
of access, and even if this may expand the code necessary for expressing access to 
components of the structure. 

<structured type> ::= <unpacked structured type> I 
packed (unpacked structured type) 

(unpacked structured type) ::= <array type> I <record type) I <set type) I 
<collection type) I <file type> 

6.2.1. Array types 
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An array type is a structure consisting of a fixed number of components which are all of the 
same type, called the· component type. The elements of the array are designated by indices, 
values belonging to the index type. The minimum element of an index type must 
not be greater than the maximum element. The array type definition specifies the 
component type as well as the index type. 

<array type) ::= array «index type) {,<index type>J) of (component type) 
<index type) ::= <scalar type) I <constant> .. <constant> 
<component type) ::= <type) 

If n index types are specified. the &rray type is called !!:~H!!!!;!!~!Q!!~!. anel a component is designated by n 

indices. Only one-dimensional arrays are allowed. 

There are two standard components of an array type T: 
T.IndexType the index type 
T.ComponentType the component type 

They resemble parameters of the type in the sense that if a is a variable of 
type T, then a.lndexType is the same as T.lndexType, and likewise for 
Com ponen tType. 

Examples: 

array (1 .• 100) of Signed I nt 
array (-10 .. 10) of 0 .. 99 
array (Boolean) of Color 

6.2.2. Record types 

A record type is a structure conslstmg of a fixed number of components, possibly of 
different types. The record type definition specifies for each component, called a field, its 
type and an identifier which denotes it. The scope of these field identifiers is the record 
definition itself, and if they are exported they are also accessible within a field 
designator (cf. 7.2) referring to a record variable of this type. 

Record components may be constants, variables, procedures, functions or 
types, exactly like identifiers declared in procedures. Thus, a record serves as a 
package for a collection of related objects. Identifiers declared in a record are 
not known outside unless they are exported explicitly, so the packaging 
supplied by the record also provides protection against improper use of 
components which are intended to be known only within (he record 
definition. The:= and = operations (assignment and equality) must be 
exported explicitly; if they are not, assignment of records of the type, or 
comparison of two such records for equality, will not be allowed. It is always 
possible, however. to bind a record to a variable, or to use it as the definition 
of a constant. A record containing no procedures or functions automatically 
exports all of its identifiers, as well as := and =. 

An exported identifier x is accessible (within a suitable field designator) in 
any scope in which the record type is accessible. When a type is exported, any 
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identifiers defined in the type and exported by its definition are also 
exported. This is relevant for record and scalar types; the latter export all 
their identifiers. 

Any type may be exported. Note, however, that any identifier used free in a 
type (see 7.4) is treated like a parameter for the purpose of deciding whether 
two types are the same (see 6.5). Thus for many purposes any identifier used 
free in a type behaves like a formal parameter, whose corresponding actual 
parameter on every call is the value of the identifier in the enclosing scope at 
the time the type is referenced. 

When a record definition appears in a type declaration, identifiers declared 
outside the record are not known inside unless they are known in the 
immediately enclosing scope, and either are pervasive or are explicitly 
imported into the record by the imports clause of the formal parameter list in 
the declaration "(see 7.4). An identifier can only be imported into a record as a 
constant, never as a variable. 

A record may include an initial statement which is executed whenever a new 
variable of the record type is created. and a final statement which is executed 
whenever such a variable is destroyed. It may also specify an invariant which 
is supposed to be true during the lifetime of the record variable (I.e. after the 
execution of the initial statement and before the execution of the final 
statment), except perhaps when one of the procedures or functions of the 
record has been called and has not yet returned. Like other assertions, thisone 
is ignored by the compiler. 

A record type may have several variants. In this case a constant of scalar type must 
be used as a selector in a case construction which enumerates the possible 
variants. This constant is called the tag, and its" value indicates which variant is 
assumed by the record variable at a given time. Each variant structure is identified by a 
case label which i~ a manifest constant of the type of the tag field. Usually the tag will 
be a formal parameter of the type declaration in which the case appears (see 
6.4). 

There is a standard type string, declared as in the example below. 

<record type> ::= record <exports clause> <record body> 
< end record> 

<end record> ::= end I end record I end <identifier> 

<exports clause> ::= exports ( <export item> {, <export item>} ) I 
<empty> 

<export item> ::= <binding condition> <identifier> I ":= I = 
<binding condition> ::= const I var I <empty> 

<record body> ::= <field list> <initial action> <invariant> 
<final action> 
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<field list> ::= <fixed part> I <fixed part> ; <variant part> I <variant part> 
<filled part> ::= <record section> { ; <record section>} 
<record section> ::= <field identifier> { . <field identifier>} : <type> , <empty> 
<fixed part> ::= <declaration> 

, <declaration> ::= <pervasive> <declaration part· > 
{ ; <pervasive> <declaration part> } 

<pervasive> ::= pervasive I <empty> 
<declaration part> ::= <constant declar;:)tion part> I 

<variable declaration> I 
<procedure and function declaration> 
< type declaration> 

<constant declaration part> ::= const <constant. declaration> 
{ ; <constant declaration> } 

<constant declaration> ::= <id list> <type spec> = <constant definition> 
<id list> ::= <identifier> { , <identifier> } 
<type spec> ::= : <type definition> I <empty> 
<constant definition> ::= <expression> 

<variable declaration> ::= var <id list> <variable declarer> I 
<machine-dependent variable declaration> 

<variable declarer> ::= <type spec> <variable binding> 
<variable initialization> 

<variable binding> ::= == <variable> I <empty> 
<variable initialization> ::= := <expression> I <empty> 

<procedure or function declaration> ::= <procedure declaration> 
<function declaration> 

<variant part> ::= case <tag field> <type identifier> of 
<variant> { ; <variant>} 

<variant> ::= '<case label list> => «record body» I <empty> 
<case label list> ::= <case label> { • <case label>} 
< tag field> ::= <constant> , <empty> 

< initial action> ::= initially <statement> I <empty> 
<invariant> ::= im'ariant <assertion> I <empty> 
<assertion> ::= (empty> 
<final action> ::= finally <statement> I <empty> 

Examples: 

type Dat e = record 
Day. 1 .. 31; 
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Montlr. (Jan. Feb, Mar. Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec); 
Year. unsignedlnt 

type 

type 

end record 

Slring(maxLenglh: 1 .. 256) = record 
length: 1 .. 256 := 0; 
text: array (l .. maxLength) of Character· 
end record 

Person(sex: Sex) = record 
name. first name: SIring; 
age: 0 .. 200 
married: Boolean 
case sex of 

female => (pregnant: 
male => (enlisted: 

end record 

Boolean); 
Boo/ean) 

type Female = Person(female) 

type Male = Person(male) 

6.2.2.1 Machine-dependent records 

A machine-dependent record. type is a restricted kind of record type which 
allows the programmer to specify the exact position of each field. The 
compiler's responsibility is to check that. fields do not overlap and that each 
field is at least large enough to hold values of its type. The size of values of 
machine-dependent records is determined by the largest word position 
specified in the declaration. 

A machine-dependent record may have const, procedure, function and type 
components like an ordinary record. All its var components. however. must 
have position specifications. It may not have any parameters, or import 
anything except manifest constants, or have any variants. 

An alignment clause in a machine-dependent record declaration forces a value 
of the record type to be allocated so that the machine address of its first word 
is divisible by some power of two. 

<md record type> ::= machine dependent record <alignment clause> 
<exports clause> <record body> <end record> 

<alignment clause> ::= aligned mod <manifest constant> I <empty> 

<machine-dependent variable declaration> ::= 
var < identifier> 
at word <manifest constant>, 
bits <manifest constant> to <manifest constant> 
<variable declarer> 



Examples 

type InterruptWord = machine dependent record aligned mod 8 
var device at l\'ord 0, bits 0 to 2: DeviceNumber. 
var channel at word 0, bits 3 to 5: 0 .. 7; 
var slopCode at word 0, bits 6 to 7: (!inishedOk, errorStop, 
po we rO!/); . 
var command at word 1, bits 0 to wordSize: 
ChannelCommand 
end record 

6.2.3. Set types 
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A set type defines the range of values which is the powerset of its base type. Base types 
must be simple types. Operators applicable to all set types are: 

+ union 
set difference 

* intersection 
in membership 

The set difference x-y is defined as the set of all elements of x which are not members of y. 

<set type) ::= set of <base type) 

<base type) ::= (simple type) 

Examples: 

type Hue = set of Color 
type SubtractivePrimaries = set of red .. green 
type SymSet = set of -5 .. +5 

A file type definition specifies a structure consisting of a sequence of components which are all of the same 
type. The number of components, called the length of the file, is not fixed by the file type definition. A file 
with 0 components is called ~!!!Q!~. 

<file type> ::= file of <type> 

Files with component type char are called !~~!fi]~§, and are a special case insofar as the component range of 
values must be considered as extended by a marker denoting the end of a line. This marker allows textfiles to 
be substructured inlO lines. The type !~~! is a standard type predeclared as 

type text = rile of char 

6.3. Pointer and collection types 

Variables which are declared in a program (see 7.) are accessible by their identifier. They 
exist during the entire lifetime of the scope to which the variable is local, and these 
variables .. are therefore called static (or statically allocated). In contrast. variables may also 
be generated dynamically, i.e .. without any correlation to the structure of the program. 
These dyn7imic variables are generated by the standard procedure new (see 10.1.2.); since they 
do not occur in an explicit variable declaration, they cannot be referred to by a name. 
Instead, access is achieved via a pointer value which is provided by new upon generation of 
the dynamic variable. A pointer type thus consists of an unbounded set of values pointing 
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to elements of the same type. No operations are defined on pointers except the test for 
equality, the pointer dereferencing operator t which yields the variable referred 
to by the pointer, and the standard function Index which converts a pointer 
into an unsignedlnt. 

The pointer value nil belongs to every pointer type; it points to no element at all. 

A dynamic variable must be an element of a collection. A collection is a 
variable which behaves very much like an array variable. Just as an element of 
an array variable A can be referenced by subscripting A with an index whose 
type is the index type, A.lndexType, of A, so an element of a collection C can 
be referenced by subscripting C with a pointer whose type is the pointer type, 
tC, of C. There are two differences: 

No two collections have the same pointer type. Hence the pointer 
alone is sufficient to specify the collection, and we allow pt as 
shorthand for C( p), where p is of type tc. 
There are no operations which produce pointer results, except the 
standard procedure new which creates a new variable. Hence the 
storage allocation strategy for collections can be quite different 
from the strategy for arrays. 

The reason for having collections is that two pointers to different collections 
are guaranteed to point to different variables. Hence collections are a means 
by which the programmer can express some of his knowledge about the ways 
in which his program is using pointers. If he prefers not to do [his, or has no 
knowledge about pointers to variables of type T which can be expressed in this 
way, he can simply declare a single collection of Ts and use it everywhere. 

There are no operations on collections. A collection may not be assigned to 
another collection. In fact, there is nothing to do with a collection except to 
subscript it, or to pass it as an actual parameter. 

Associated with eyery collection is a zone which provides storage for its 
variables. A zone is a record with three special components (and possibly 
other components): 

a type StorageBlock which is a collection of a record type containing a 
special component (and possibly other components): 

Storage, an array of StorageUnit 
a function Allocate(unsignedlnt) returns t StorageBlock 

a procedure Deallocate('mf t StorageBlock) 

These components need not be exported, since they are intended for use only 
by the standard procedures new and free (see 10.1.2). 

A collection declared without a zone will get a standard system zone. 
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A collection can be reference-counted, in which case a variable in the 
collection will be freed automatically when no pointers to it remain. The 
optional manifest constant is an integer which gives the maximum reference 
count which should be maintained; any variable to which more than this 
number of pointers ever exists at one time may never be freed. 

<collection type> ::= <counted> collection of <object type> <zone> 
<pointer type) ::= t<collection> 
<object type> ::= <type> 
<counted> ::= reference-counted I 

rer erence-counted < man if est constan t> 
<empty> 

<zone> ::= in <zone identifier> I <empty> 
<zone identifier> ::= <identifier> 

Examples: 

type Human = collection of Person(any) in EarthZone 
V'1f thePresident, aParelll: t Human 

6.4 Parameterized types 

It is possible to declare a parameterized type by including a formal parameter 
list in the type declaration: 

type T( a: signed I nt, b: color) = ... 
or equivalently by writing a where clause at the end of the definition: 

type T = ... where (a: signed/nt, b: color) 

The where clause is intended for declaring parameterized types in the formal 
parameter lists of procedures, as In 

procedure f(a: array (O .• n) of signedInt where (n: 1..1000), b: ... ) = ... 
Every reference to such a type, however, must have an actual parameter list 
which supplies values for all the formal parameters. The formal and actual 
parameters of a type are exactly like the formal and actual parameters of a 
procedure, except that a formal parameter of a type cannot be a variable. 

When a parameterized type is referenced in the formal parameter list of a 
procedure, an actual parameter of the reference can be another formal 
parameter of the procedure (see 10.). Thus procedures can be written to accept 
actual parameters whose type is any reference to a parameterized type. 

The syntax of type declarations allows a parameter to be used in one of the 
following ways: 

as an array bound; 



as the tag field of a variant record; 

on the right-hand side in a constant declaration, and the constant 
might in turn be used in one of the above two ways; 

as the collection name of a pointer; 

as an actual parameter in a type; 

as a constant in an initialization expression; 

as a constant in an expression appearing in a statement (which could 
be in an initial action, a final action, or a procedure or function 
body). 
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The built-in type constructors array (Lj) of T, Lj (subrange), case c of ... , and 
t C also take parameters; in fact, the first three can take parameters of any 
simple type, and the last can take any collection, unlike user-defined 
parameterized types, in which the types of the parameters are specified in the 
formal parameter list. For subrange the parameters must be manifest 
constants, so that a particular subrange type declaration in the program always 
produces exactly the same type. For array and case the parameters must be 
constants, but need not be manifest. Thus. textually identical occurrences of 
one of these constructors do not necessarily produce the same type. The case 
constructor is normally used in a type declaration in which its parameter is in 
turn declared to be a formal parameter of the declaration. 

Parameters of a type may be referenced like record components; thus after 
type T(p: color); var x: T( red) 

the expression x.p=red is True. Unlike record components, type parameters are 
automatically accessible outside the type definition and need not be exported. 

The special value any may be used as an actual parameter of a type reference, 
provided that the corresponding formal is of scalar type, and its only use is as 
the tag of a variant. Suppose V is .such a parameterized type, with a formal 
parameter s, of scalar type T, used as a tag (there might be other formals, but 
they are omitted in this example). Then V(any) is a type whose values are the 
union of the values of V(i) as i ranges over all the elements of T. It differs 
from any particular V(i) in two important ways: 

If x is declared to be of type V(any). only those components of x 
which are outside the case constructor with tag s can be referenced. 
A discriminating case statement (see 9.2.2.2) can be used to bind x to 
an identifier y whose type is V(i), and then all the components of y 
can be referenced in the scope of the discrimination. 

The value of the parameter x.s, and hence the choice of variant, can 
be changed during execution by assignment to x.s (but not, of 
course, to y.s if y is of type V(i». This is the only case in which any 
property of a variable which is determined by the parameters of its 
type can be changed after the variable has been created. Note that 
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when the type is changed in this way, any initializations specified 
for the variant are performed. 

The special value unknown may be used as an actual parameter in a type 
reference. provided the reference appears as the object type of a collection. A 
variable in the collection can only be created by the standard procedure new, 
however (see 10.1.2), and when new is called , actual parameters must be 
supplied for all the unknowns in the object type. Hence a type never involves 
unknown except in the object type of a collection. When a pointer to 
collection of T( ... , unknown, ... ) is dereferenced to yield a variable v, that 
variable has type T( ... , x, ... ), where x is the value which was supplied to new 
when v was created. As in other cases where the parameters of types are not 
manifest constants, the compiler may have to generate legality assertions to 
ensure that the type of a dereferenced pointer has some property demanded by 
the context in which the dereferenced pointer is used. Note that any actual 
parameters in an object type other than any and unknown are evaluated when 
the collection is declared, not when a variable in the collection is created. 

<parameterized type reference) ::= 
< type identifier) « type actual parameter 
{ , <type actual parameter) } ) 

<type actual parameter) ::= <expression) I any I unknown 

Examples of type definitions: 

type FamilyA4ember(sex: Sex) = record 
Identity: Person(sex); 
Relations: record 

Afother, Father, Sibling: t Human; 
OldestChild: t Human 
end record 

end record; 

type Family = record 
The Root: t collection of FamilyAfember 
end record 

6.5 Type compatibility 

Two types are the same if their expanded definitions are .equal. The 
expanded definition of a type is obtained as follows: 

start with the type; 

replace each type identifier which was declared as a synonym by its 
definition, substituting the actual parameters for the formals; 

do this repeatedly until there are no more identifiers; 
,', 

the result is the expanded definition. 

Two expanded definitions are equal if, 



when all extended parameters of types (including array, subrange, 
case and t constructors) are removed, they are identical sequences of 
basic symbols; 

each extended parameter in one sequence is equal to the 
corresponding extended parameter in the other sequence. 
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The extended parameters of a type are the actual parameters, if any, together 
with the values of all identifiers used free in the type. 

If the compiler cannot determine whether two types are the same, and they 
must be the same for the program to be legal, then the compiler will assume 
that they are the same, and generate a legality assertion guaranteeing this fact 
for the verifier to prove. 

When a value is assigned to a variable, or a variable is bound to an identifier, 
the types must be compatible according to the following rules: 

an operand for any operator other than dot, subscripting, and t, 
must have a type which is not parameterized; 

In an assignment, both types must be the same, except that 

ranges of variables on the left side may differ from the 
ranges of the corresponding components on the right side 
(note, however, that other parameters of types, such as 
array bounds, may nol differ). In a legal Euclid program, 
each actual value being stored will be within the range of 
the corresponding variable. Where the compiler cannot 
verify the legality of an assignment, it will generate one or 
more legality assertions concerning the range of the actual 
value. 

occurrences of any as an actual parameter in the type of 
the variable, and not within the object type of a pointer, 
may correspond to occurrences of any value in the other. 
Thus, a T(red) may be assigned to a T(any). but not the 
reverse. Furthermore, a pointer to T(red) may not be 
assigned to a pointer to T(any). 

in a binding (see 7.5), the type Tv of the variable must be the same as 
the type Tj of the identifier. If the binding is part of a procedure or 
function call, however, actual parameters in the specification of Tj 

may be other formal parameters of the procedure or function (see 
9.1.2). 

The following table summarizes the transitions which are possible: 

To (formal I T(red) T(any) 
Q!l~ft§iQ~t ___ L _____________ _ 
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From (actual I 
or right side) I 

I 
T(red) I bind assign 

I assign 
I 

T(aIlY) I discriminate bind 
I assign 
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7. Declarations and denotations of constants and variables 

A constant declaration consists of an identifier denoting the new constant, 
followed optionally by its type, and then by an expression which defines its 
value. The defining expression is evaluated, and its value becomes the value of 
the constant, which can never change thereafter. The type of the constant, if 
specified, must be assignment-compatible with the type of the defining 
expression. 

<constant> ::= <expression> 

A variable declaration consists of a list of identifiers denoting the new variables. followed 
by their type, and/or binding. and/or initialization. The binding, if present, 
specifies that the identifier (in this case there must be only one) is to refer to 
an already existing variable. rather than to a newly created one (see 7.5). The 
initialization is exactly equivalent to an assignment statement executed 
immediately after the declaration of which the variable declaration is a part. 
If the type is omitted. it is inferred from the binding or initial ization. 

The syntax for constant and variable declarations appears in section 6.2.2, 
since it is identical to the syntax for record components. 

Every declaration of a file variable f with components of type T implies the additional declaration of a 
so-called 9~[f~L.Y.~~!;!blo: of type 1'. ThiS buffer variahk is denoted by f1 and serves to append components to 
the file during generation. and to access the file during inspection (see 7.2.3. and 10.1.1.). 

Examples: 

const i, j = -1 {i and j will be signed I nf. and have the value -I} 
const typedConst: Color = red 

var jimH, ralph, butler, jimAf, gerald: Person(male) 
var k, I: -5 .. 5 := i {both variables initially have the value of i} 
var tableEntrv: unsignedl nf. == table(j) {table( -1) must be a valid 
reference and .. the type of table's elements must be unsigned/nt. 
tableEntry is simply another name for table( -1) over the scope of this 
declaration 1 
var a == anotherVar {a is anotherVar for the scope of this declaration} 
var a, b:= i {a and b are type signedlnt and initially have the value -I} 

Denotations of variables either designate an entire variable. a component of a variable, or a 
variable referenced by a pointer (see 6.3). Variables occurring in examples in subsequent 
chapters are assumed to be declared as indicated above. 

Associated with every variable is a main variable which is entire; the variable 
is said to be part of its main variable. One variable is part of another if, 
roughly, an assignment to either can change the value of the other, and the 
space of possible values of the first variable is a (not necessarily proper) 
subset of the space of possible values of the second variable. The following 
sections define main variables and part precisely. "Part of" is a transitive 
relation: if x is part of y and y is part of z then x is part of z. It is also 
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reflexive: x is part of x. Two variables are the same if and only if each is part 
of the other. Two variables overlap if and only if one is part of the other. 

<variable> ::= <entire variable> I <component variable> I <referenced variable> 

7.1. Entire variables 

An entire variable is denoted by its identifier, and is its own main variable. An 
entire variable is never part of another entire variable (see 7.S). 

<entire variable> ::= <variable identifier> 
<variable identifier> ::= <identifier> 

7.2. Component variables 

A component of a variable is denoted by the variable followed by a selector specifying the 
component. The form of the selector depends on the structuring type of the variable. 

<component variable> ::= <indexed variable> I <field designator> I <file buffer> 

<base variable> ::= <variable> 

Corresponding to each kind of component variable described below. there is a 
corresponding constant expression which differs from the component variable 
in only one way: a constant record. array, collection or pointer appears in 
place of the base variable. 

7.2.1. Indexed variables 

A component of an II-dimensional array variable is denoted by the variable followed by an 
index expression. The main variable of the array variable is the main variable. 
The indexed variable is part of the array variable. An indexed variable il is 
part of another indexed variable ;2 if and only if either they have the same 
array variable and the two indexes are equal, or the array variable of 11 is part 
of ;2. 

<indexed variable> ::= <array variable [<expression> {,<expression>}] 

<indexed variable> ::= <array variable> ( <expression> ) 
<array variable> ::= <base variable> 

The type of the index expression must be the same as the index type declared in the 
definition of the array type. 

Examples: 

~12) 
a i+j) 

red) 

7.2.2. Field designators 

A component of a record variable, or a formal parameter of the type of any 
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variable. is denoted by the variable followed by the field identifier of the component or 
parameter. The field identifier or a record component must be exported in the 
type definition. A field designator is a variable only if the component was 
declared to be variable and exported as variable; otherwise it is a constant If a 
field designator is a variable, its main variable is the main variable of the 
containing variable, and the field designator is part of the· containing variable. 
A field designator fl is part of another field designator 12 if and only if 
either their containing variables are the same and their field identifiers are 
identical. or jl's containing variable is part of fl.. 

<field designator> ::= <containing variable>.<field identifier> 

<containing variable> ::= <base variable> 
<field identifier> ::= <identifier> 

Examples: 

slr.length 
aPerson.age 
son1".f at her 

At any time, only the one component determined by the current file position (read/write head) is directly 
accessible. This component IS called the current file component and is represented by the file's 12!![f!:L.Y;HiflQ!~. 

<file buffer> ::= <file variable>t 

<file variable> ::= <variable> 

7.3. Referenced variables 

<referenced variable> ::= <co))ection variable> ( <pointer variable> ) I 
<pointer variable>t 

<collection variable> ::= <base variable> 
<pointer variable> ::= <variable> 

If p is a pointer variable whose co))ection C is of type T. p denotes that variable and its 
pointer value. whereas pt is short for C(p), which denotes the variable of type T 
referenced by p. The main variable of a referenced variable is the collection to 
which the variable belongs. Two referenced variables overlap if and only if 
their pointer variables are equal. A referenced variable is part of the 
collection variable. 

Examples: 

plt.father 
pIt .siblingt .father 

7.4 Scope rules 
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A scope is established by a type declaration or block, or a for or 
discriminating case statement. The scope extends from the type, begin, for or 
case to the end, except that it does not include any binding expressions in the 
variable declarations of the scope. A record type declaration, or a block which 
is the body of a procedure or function, is called a closed scope; other scopes 
are open. New identifiers are declared 

as record components. 
at the head of the block, 
as parameters of a for or discriminating case. or 
as formal parameters of a procedure, function or type. 

These new identifiers are accessible within the newly estabiished scope. Note 
that the name declared by a record type, procedure or function declaration is 
not declared in the closed scope which is the body, and must be imported 
explicitly into that scope if the definition is recursive. 

An identifier used in a scope and not declared in that scope is said to be free 
in that scope. Any identifier which is free in a closed scope must either be 
declared pervasive in some enclosing scope, or be accessible in the 
immediately enclosing scope and explicitly imported into the closed scope 

A new identifier may not be introduced which is the same as any other 
identifier accessible in the scope. Of course, an identifier accessible in the 
enclosing scope of a closed scope, and not imported, is not accessible, and 
hence may be reused. 

An explicitly imported identifier has the same status as a newly declared one. 
The imports clause can specify for each identifier that it is imported as a 
variable, or as a constant (in which case it cannot be used as a variable, i.e. its 
value cannot be changed). An identifier can be imported as a variable only if 
is a variable in the enclosing scope. An identifier declared pervasive is 
automatically imported as a constant into all inner scopes, and that identifier 
may not be imported as a variable or redeclared in any inner scope. 

A closed scope has the property that all its possible interactions with the rest 
of the world can be determined by examining its imports list, its parameters. 
and, in the case of a record, its exports list. 

The definition for a constant, type, procedure or function declaration, and the 
initialization expression for a variable declaration, are within the scope of the 
block or record in which the declarations appear. Thus if this scope is closed, 
these expressions can contain only identifiers which are imported into the 
scope, occur as formal parameters to the procedure or record type, or are 
declared earlier in the scope. 

7.5 Binding 
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An identifier may be bound to a variable when it appears 
as a var formal parameter in a procedure or function declaration; 
preceding an == in a var declaration in a block or a discriminating case 
statement. 

We say that the variable is renamed. The scope of the binding is the scope of 
the declaration, and within this scope the identifier represents the variable. 
That is, the initial value of the identifier is the value of the renamed variable 
at the time of binding, and the last value assigned to the identifier will be the 
value of the renamed variable after control finally leaves the scope. If this 
variable is part of a component of an array, its index is evaluated when the scope is 
entered; if it is part of a referenced variable, the pointer variable is evaluated 
when the scope is entered. 

The type and range of the identifier being bound must be the same as the type 
and range of the renamed variable to which it is bound (but see 10). A 
component of a packed structure must not appear as a renamed variable. 

For open scopes (blocks and discriminating case statements), any variable free 
in the scope is considered to be renamed by the scope. 

In order to allow a simple description of the rules for renaming variables, we 
will assume for the rest of this section that a procedure does not have any free 
variables (note that a record is already forbidden to do so). Any procedure 
which does have free variables is to be rewritten as a procedure which accepts 
the free variables as additional variable formal parameters, and every call is 
rewritten to supply the same variables as additional actual parameters. This 
also applies to procedures and functions in records: if a component of the 
record is a free variable in the procedure or function, that component is 
supplied as an additional actual parameter (in spite of the fact that it might 
not be exported). The rewritten program will behave exactly like the original 
one. 

In order to ensure that the rewritten program is a legal one, however, we must 
(and do) impose tl)e following requirement on the original program: any free 
variable in a procedure or function must have the property that it would be 

. accessible as a variable in every scope which contains a call of the procedure if 
the field identifiers required to reach it were exported as variables. 

The language ensures that an entire variable can never overlap (see 7.1) any 
other variable accessible in the same scope which has a different main 
variable, or in other words that 

the value of an entire variable can change only 
as the result of assignment to that variable or one of its parts, or 

after exit from a procedure or function call in which that 
variable was the main variable of an actual parameter 
corresponding to a variable formal parameter; 
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an assignment to an entire variable can never change the value of any 
other variable which is accessible in the scope containing the 
assignment, except one of its oVln parts. 

To prevent binding from destroying this non-overlap property, the following 
restriction is imposed: no two variables which are renamed on entry to a scope 
can overlap. If the compiler cannot determine whether or not two variables 
overlap (e.g. a(i) and aU) overlap iff i=j) , it will assume that they don't, and 
generate a legality assertion to that effect for the verifier to deal with. 

Since binding expressions are not part of the scope S in which they appear 
textually, but rather are in the enclosing scope, they may refer to identifiers 
which are not accessible in S, and may not refer to any identifiers declared in 
S. 

Note that a pointer cannot be dereferenced within a given scope unless its 
. collection is accessible in that scope, and cannot be dereferenced to a variable 
unless the collection is accessible as a variable in that scope; these rules are 
identical to the rules for indexed variables. 

In general identifiers which are declared as constants cannot cause any aliasing 
problems, since their values can always be copied. Of course the compiler is 
free to use a pointer rather than copy the value if it can determine that the 
meaning of the program is the same; this will certainly be true if the variable 
involved does not overlap any variable accessible in the same scope. In other 
cases the value must be copied. 

Copying will not work for collections, however, and it may be very inefficient 
for large arrays or records. Hence we impose a stronger rule for collections: if 
a collection is accessible in a scope as a constant, no variable which overlaps 
the collection can be renamed on entry to the scope. Furthermore, the same 
restriction is imposed on large arrays and records; the definition of "large" is 
implementation-dependent. If the· programmer reaUy wants a large array or 
record to be copied, he can declare a constant for that purpose. 

A variable can be allocated to a specific address in memory by binding it to an 
element of the standard array Memory. This array is automatically declared in 
the outermost block of the program, but it is not pervasive and must be 
explicitly imported into any scope whiCh references it. Note that a record type 
declaration, being a closed scope, will not be able to import Memory as a 
variable. This is not a defect in the language. The reason for naming a record 
type is so that multiple instances of the type can be conveniently declared, and 
it is not appropriate to create multiple instances of a record which imports 
Memory (or anything else) as a variable. It is perfectly all right to have 

var x: record ... end 
where the record can access Memory as a variable. 
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8. Expressions 

Expressions are constructs denoting rules of computation for obtaining values of variables 
and generating new values by the application of operators. Expressions consist of operands. 
i.e.. variables and constants. operators. and functions. 

The rules of composition specify operator precedences according to six classes of operators. 
The multiplying operators have the highest precedence. then the adding 
operators, then the relational operators, then not, then and. and finally, with 
the lowest precedence, or. Sequences of operators of the same precedence are executed 
from left to right. 

The elements of an expression are evaluated strictly from left to right. and all 
the elements are evaluated. except within expressions involving and and or; in 
these expressions the right operand is not evaluated if the left operand 
evaluates to False or True respectively. 

The rules of precedence are reflected by the following syntax: 

<unsigned constant> ::= <unsigned number> I <string> I 
<con~tant identifier) I nil 

<factor> ::= <variable> I < literal constant> I <function designator> I <set> I 
«expression» I <adding operator> <factor> I nol <factor> 

<set> ::= <simple type identifier> I [ <element list> ] 

<element list> ::= <element> {.<element>} I <empty> 

<element> ::= <expression> I <expression> .. <expression> 

<term> ::= <factor> I <term><multiplying operator><faclor> 

<sum> ::= <term> I <sum><adding operator><term> 
<relation> ::= <sum> I <sum><relational operator><sum> 
(negation> ::= <relation> I not <relation> 
<conjunction> ::= <negation> I <conjunction> and <negation> 
<simple expression> ::= <term> I 

<simple expression> <adding operator><term> I 
<adding operalOr)(term) 

<expression> ::= <conjunction> I 
<expression> or <conjunction> 

Expressions which are members of a set must all be of the same type, which is the base type 
of the set. [] denotes the empty set. and [x .. y] denotes the set of all values in the interval 
X ... y. 

Examples: 

Factors: x 
15 
(x+y+z) 
abs(x+ y) 
[red, c, green] {where c is of type Color} 



Terms: 

Sums: 

Relations: 

Negations: 

Conjunctions: 

Expressions: 

8.1. Operators 

[1, 5, 10 .. 19, 23] 
-x 

x*y 
i div (I-i) 

x+y 
hue} + hue2 
i*j+l 

x = 1.5 
x not= 1.5 
p <= q 
(i<j) = U<k) 
c in huel 
c not in hue2 

not (p not= q) 
not q 

x(=y and y(z 
p and not q 

p or (x>y) 
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If both operands of the arithmetic operators of addition, subtraction and multiplication are 
of type integer (or a subrange thereof), then the result is of type integer. If one of the operands 

is of type real. then the result is abo of type real. The compiler is expected to check that no 
overflow will occur during the evaluation of an expression: if it is unable to 
verify this, it must put out an assertion for the verifier to check. 

The operator not denotes negation of its Boolean operand. 

8.1.2. Multiplying operators 

<multiplying operator) ::= * I / I div I mod I and 

QQ~!f!!Q! QQ~n!!iQ!! !YQ~~LQQ~mm!~ !~Q~~L..!~~u I! 

• multiplication real, integer real, integer 
set intersection any set type T T 

/ division real, integer real 

div division with integer integer 
truncation 

mod modulus integer integer 



8.1.3. Adding operators 

<adding operator) ::= + I - or 

0Rerator QQeration ~ of ~ranQ~ tYRe of result 

+ addition 
set union 

integer. real 
any set type T 

subtraction integer. real 
set difference any set type T 

integer. real 
T 
integer. reat 
T 
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When used as operators with one operand only, - denotes sign inversion, and + denotes the 
identity operation. 

8.1.4. Relational operators 

<relational operator> ::= = I <> I < I <= I >= I > I in I not <relational operator) 

QQ~!f!tO! !YQ~..Qf..QRer~nQ§ res!!!! 

= <> 
< > any scalar or subrange type Boolean 
<= >= 
in any scalar or suhrange type Boolean 

and its set type respectively 

Notice that all scalar types define ordered sets of values. 

The operators <>. <=, >= stand for unequal, less or equal, and greater or equal respectively. 
The operators < = and >= may also be used for comparing values of set type, and then denote 
set inclusion. If p and q are Boolean expressions, p=q denotes their equivalence, and p<=q 
denotes implication of q by p. . (Note that false < true). 

The relational operators =. O. <. <=. >. >= may also be used to compare (packed) arrays with components of 
type char (strings). and then denote alphabetical ordering according to the collating sequence of the underlying 
set of characters. 

8.1.5 Other operators 

QQ~!!JtO! QQ~!!!HQn !YQ~..QLQQ~!~nQ§ !YQ~~f-I~~!!!! 
not logical negation Boolean Boolean 
and logical "and" Boolean Boolean 

or logical "or" Boolean Boolean 

8.2. Function designators 

A function designator specifies the activation of a function. It consists of the identifier 
designating the function and a list of actual parameters. The parameters are variables and 
expressions, and are substituted for the corresponding formal parameters (cf. 9.1.2, 10, and 
11). 

<function designator> ::= <function identifier) I 
<function identifier>( <actual parameter> 



{. <actual parameter>}) 

<function identifier> ::= <identifier> 

Examples: 

Sum(a. 100) 
GCD(147, k) 
SumVectors(a, b) 
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9. Statements 

Statements denote algorithmic actions, and are said to be executable. They may be prefixed by a 
label which can be referenced by goto statements. 

<st3.tement> ::= <unlabelled statement> I <Iabel>:<unlabelled statement> 

<unlabelled statement> ::= (simple statement> I <structured statement> 

<label> ::= <unsigned integer> 

9.1. Simple statements 

A simple statement is a statement of which no part constitutes another statement. The 
empty statement consists of no symbols and denotes no action. 

<simple statement> ::= <assignment statement> I (procedure statement> 
<goto statement> I (escape statement> I 
(assert statement> I <empty statement> 

<empty statement) ::= <empty) 

9.! .1. Assignment statements 

The assignment statement serves to replace the current value of a variable by a new value 
specified as an expression. 

(assignment statement) ::= < variable) := (expression) I 
<function identifier> := (expression> 

The variable (or the function) and the expression must be of the same type, with the 
following exceptions being permitted: 

1. the type of the variahle is real. and the type of the expression is integer or a suhrange thereof. 

2. the types of the expression and the variable are both subranges of the same 
type. If the value of the expression is not within the subrange of the 
variable's type, the program is illegal. 

3. the type of the variable may· have any as an actual parameter of a type 
where the type of the expression has some specific value (see 6.4). 

Examples: 

x := y+z 
p := (1(=0 and (i<100) 
hue := [blue, c.succ] 

9.1.2. Procedure statements 

A procedure statement serves to execute the procedure denoted by the procedure identifier. 
The procedure statement may contain a list of actual parameters which are assigned or 
bound to their corresponding formal parameters defined in the procedure declaration (cf. 
10). The correspondence is established by the positions of the parameters in the lists of 
actual and formal parameters respectively. There exist two kinds of parameters: constant 
parameters and variable parameters; procedure parameters (the actual parameter is a 
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procedure identifier), and function parameters (the actual parameter is a 
function Identifier) are not permitted. 

In the case of a constant parameter, the actual parameter must be an expression (of which 
a variable is a simple case). The corresponding formal parameter represents a local 
constant of the called procedure, and the current value of the expression is the val ue of 
this constant. In the case of a variable parameter, the actual parameter must be a 
variable, and the corresponding formal parameter is bound to this actual variable (see 
7.5) during the entire execution of the procedure. A variable parameter must be used 
whenever the parameter represents a result of the procedure. 

<procedure statement> ::= <procedure identifier> I 
<procedure identifier> (actual parameter> 
{.<actual parameter>}) 

<procedure identifier> ::= <identifier> 

<actual parameter> ::= <expression> I <variable> 

Examples: 

Random 
Sort( a, b) 

< procedure identifier> I <function identifier> 

A goto statement serves to indicate that further processing should continue at another part of the program ted, 
namely at the place of the label. 

<gota statement> ::= golo <label> 

The following restrictions hold concerning the applicability of labels: 

1. The scope of a label is the procedure within which it is defined; it is therefore not possible to 
jump into a procedure. 

2. Every label must be specified in a label declaration in the heading of the procedure in which the 
label marks a stMement. . 

9.1.3 Escape statements 

An escape statement serves to indicate that further processing should continue 
at the end of the smallest enclosing repetitive statement, or that control should 
return immediately from the function or procedure currently being executed. 
An expression must not appear in a return statement unless the statement is in 
a function body, and in that case the type of the expression must be 
assignment-compatible with the type of the function's result value. 

A more elaborate escape construction such as Zahn's device can readily be 
simulated with a case statement, as the following. example illustrates: 

yar flag: (a, b, finished) := finished 
for ... do 



fl ag := a; exit; 

fl ag := b; exit; 

od 
case flag of 

a => .. . 
b => .. . 
finished => 
end case 

<escape statement> ::= exit I return I return <expression> 

9.1.4 Assert statements 
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An assert statement introduces an assertion which is supposed to hold 
whenever control reaches that point in the program. The compiler treats it as 
a comment, as it does with the assertions supplied by invariant. pre and post 
clauses. 

<assert statement> ::= assert <assertion> 

9.2. Structured statements 

Structured statements are constructs composed of other statements which have to be executed 
either in sequence (compound statement), conditionally (conditional statements), or 
repeatedly (repetitive statements). 

<structured statement> ::= (compound statement> I <block> I 
<conditional statement> I < repetitive statement> 
<with statement> 

9.2.1. Compound statements and blocks 

The compound statement specifies that its component statements are to be executed in the 
same sequence as the'y are written. The symbols begin and end act as statement brackets. 

(compound statement> ::= <statement> {;<statement>} 

Example: begin Z := X; X := )~ y := Z end 

A block is a compound statement within which new identifiers can be 
introduced. The symbols begin and end act as brackets to delimit the scope of 
the new identifiers. If begin is followed by checked, each legality assertion in 
the block is compiled into a runtime check, which aborts execution of the 
program if the assertion is false. 

<block> ::= begin <checked> <declaration> <statement> end 

<checked> ::= checked I <empty> 

9.2.2. Conditional statements 
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A conditional statement selects for execution a single one of its component statements. 

<conditional statement> ::= <if statement> I <case statement> 

9.2.2.1. If statements 

The if statement specifies that a statement be executed only if a certain condition (Boolean 
expression) is true. If it is false. then either no statement is to be executed, or the statement 
following the symbol else is to be executed. 

The statement 
if a then b elseif ... fi 

is an abbreviation for 
if a then b else if ..• fi fi. 

<if statement> ::= if <expression) then <statement> <elseif clause> 
<else clause> <end if> 

<elseif clause> ::= { elseif <expression> then <statement> } 

<else clause> ::= else <statement> I <empty> 

<end if> ::= end I end if I fi 
The expression between the symhols if or elseif and then must be of type Boolean . 

.!:iQ!~: The syntactic ambiguity arising from the construct 

if <expression- 1> then if <expression-2) then <statement-1> 
el~e <statement-2) 

is resolved by interpreting the construct as equivalent to 

if <exrression-]) then 
hegin if <expression-2) then <statement-I> else <statement-2) 
end 

Examples: 

if x< 1.5 then z := x+ y; c := blue; else c := red; z := 0 end if 
if pI not= nil then pI := pIt .father, p2 := nil fi 
if str.text(1) = "$ then country := UnitedStates 

elseif str.text(l) = "# then country := GreatBritain 
else country := Unknown 
fi 

9.2.2.2. Case statements 

The case statement consists of an expression (the selector) and a list of statements. each 
being labelled by a constant of the type of the selector. It specifies that the one statement be 
executed whose label is equal to the current value of the selector. A special label 
otherwise can be used to label a statement which should be executed if none of 
the other labels is equal to the current value of the selector. 

If the selector is discriminating an object. each case list element of the case 
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statement becomes a new scope within which the identifier of the object is 
declared, either as a constant whose value is the expression in the object. or as 
a variable bound to the variable in the object. The expression or variable in 
the object must be a variant record, say of type T(any), and the tag of this 
record is used to select one of the case list elements. Within the element 
selected by a particular value of the tag, say red, the identifier has the type 
T(red) .. Thus 

var anyx: T(any); ... ; 
case discriminating x=anyx of 

red => ... 
green => .... 
end case; 

is more or less equivalent to 

var anyx. T(any); ... ; 
case anyx.tag of 

red => begin const x: T(red)=anyx; ... end 
green => begin const x. T(green)=anyx; ... end 

end case; 

except that the constant declarations in the latter would not be legal, because it 
is illegal to assign a T(any) to a T(red). 

<case statement> ::= case <selector> of <case body> <end case> 
<selector> ::= <expression) I discriminating <object> 
<case body> ::= <case list element> {;<case list element>} 

<otherwise element> 
<case list element> ::= <case label ·Iist> => <statement> I <empty) 
<otherwise element> ::= ; otherwise => <statement> I <empty> 
<end case> ::= end I end case 
<object> ::= <identifier> = <expression> I 

var <identifier> -- <variable> 

Examples: 
case operator of 

plus =) 

minus => 
times => 

end 

case i of 
1 => c 
2 => c 
3 => c 
4 => c 

,-,-
,-,-
'-,-
,-,-

x := x+}~ 

x := x-yo 
x:= x*y 

red; 
blue; 
greert, 
yellow 
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end case 

9.2.3. Repetitive statements 

Repetitive statements specify that certain statements are to be executed repeatedly. If a 
bound on the number of repetitions is known beforehand. i.e., before the repetitions are 
started, or if the repetition is controlled by a generator, the for statement is the 
appropriate construct; otherwise the while or repeat statement should be used. 

<repetitive statement> ::= <while statement> I <repeat statement> I <for statement> 

9.2.3.1. While statements 

<while statement> ::= while (expression) <invariant> do <statement> <end do> 
<end do> ::= end I end do I od 

The expression controlling repetition must be of type Boolean. The statement is repeatedly 
executed until the expression becomes false. If its value is false at the beginning, the 
statement is not executed at all. The while statement 

while B do S od 
is equivalent to 

if B then 
S; 
while B do S od 

fi 

Examples: 

while a(i) not= x do i := i+ 1 od 

while i>O do 
if (i mod 2) not= 0 then z := z* x fi 
i := i div 2; 
x := x*x 
end do 

9.2.3.2. Repeat statement 

(repeat statement> ::= repeat < invariant> <statement> {;<statement>} 
until (expression> 

The expression controlling repetition must be of type Boolean. The sequence of statement 
between the symbols repeat and until is repeatedly executed (and at least once) until the 
expression becomes true. The repeat statement 

repeat S until B 

is equivalent to 

begin S; 
if not B then 

repeat S until B 
fi 



end 

Examples: 

repeat k := i mod j; 
i := j; 
j := k 

until j = 0 

repeat P(ft); get(f) until NoM oreChar5{f) 

9.2.3.3. For statements 
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The for statement indicates that a statement is to be repeatedly executed while a progression 
of values is assigned to a new constant identifier called the parameter of the for 
statement. 

<for statement> ::= for <parameter> <decreasing> in <generator> 
<invariant> do <statement> <end do> 

<for list> ::= <initial value> to <final value> I 
<initial value> downto <final value> I 
<generator> 

<parameter> ::= <identifier> 
<initial value> ::= <expression> 

<final value> ::= <expression) 

<decreasing> ::= decreasing <empty> 
<generator> ::= <record type> I <index type> 

The control variable. the initial value. and the final value Illllst he of the same scalar type (or subrange thereof). 
and must not be altered by the repeated statement. They cannot be of type real. 

The body of the for statement is a new scope within which the parameter is 
declared as a constant. The type of ,the parameter is the type of the elements 
of the index type, or the type of the value field of the record type. 

A for statement of the form 

ror v := e 1 to e2 do S 

is equivalent to the sequence of statements 

v := el; S; v := succ(v); S; '" ; v ,- e2; S 

and a for statement of the form 

ror v := el downlo e2 do S 

is equivalent to the sequence of statements 

v '- el; S; v := pred(v); S; ... ; v := e2; S 

A record type generator is a record type which has two components with 
special names: a variable called value, and a function called next. These 
names need not be exported. A for statement of the form 

for v in x.recordTypeGenerator do S od 
is equivalent to the block 



begin var cree: x.recordTypeGenerator, 

end 

if crec.next(True) then 
repeat begin const v=crec.value; Send 
until not crec.next(False) 
fi 
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The initial and final statements in the declaration of the generator record type 
can perform any initialization or cleanup which may be appropriate; note that 
the final statement is executed whenever control finally leaves the for 
statement, whether normally or via an exit or return statement 

A for statement involving an index type generator, of the form 

for v in IndexType do S od 
IS equivalent to the block 

begin var vv:=1 ndexType.min 
while True do 

end 

begin const v= Vl~ Send 
if vv=lndexType.max then exit fi; vv:=succ(vv) 
od 

If decreasing IS present, interchange mtn and max, and replace succ by pred. 

Examples: 

for i in 2 .. 100 do if a(i»max then max := aU) fi end 

for c in Color do Q( c) od 

for relative in Family. members do {members must be a record type local 
to Family's type} 

if relative = thisPerson then exit fi 
od 

2:l:1:~!!!!_§!~!~!!!~!!!§ 

<with statement> ::= with < record variable list> do <statement> 

<record variable list> ::= <record variable>{,<record variable>} 

Within the component statement of the with statement, the components (fields) of the record variable specified 
by the with clause can be denoted by their field identifier only, i.e., Without preceding them with t:1e denotation 
of the entire record variable. The with clause effectively opens the scope containing the field identifiers of the 
specified record vari:lble, so that the field identifiers may occur as variable identifiers. 

Example: 

with date do 
if month = 12 then 

begin month := 1; year '- year+ I 
end 

else month := month+l 



is equivalent to 

if date.month = 12 then 
begin date. month := 1; date.year := date.year+l 
end 

else date.month := date.month+l 
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No assignments may be made in the qualified statement to any elements of the record variable list However, 
assignments are possible to the components of these variables. 

9.2.4 Other uses of binding 

If a record variable is to be used a number of times in field designators, it is 
often convenient to bind it to a short identifier. 

Example: 

begin var d == dateTable(i); 
if d.month = 12 then d.month := 1; d.year := d.year+l 
else d.monlh := d.monlh+l fi 
end 

IS equivalent to 

if dateTable(i).month = 12 then 
dateTable(i).month:= 1: dateTable(i).year:= dateTable(i).year+l 

else d ateTable( i). mont h := d ateTabl e(i).mol1lh+ 1 fi 
end 

and, also equivalent to 

begin var m == dateTable(i).month; var y == dateTableU).year; 
if m = 12 then m := 1; y := y+1 else m := m+1 fi 
end 
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10. Procedure declarations 

Procedure declarations serve to define parts of programs and to associate identifiers with them 
so that they can be activated by procedure statements. A machine-code procedure is 
exactly like an ordinary procedure, except that its body is a sequence of machine 
instructions, represented as manifest integer constants according to an 
imp I em en tation -dependen t con ven tion. 

<procedure declaration> ::= <procedure heading> = <body> I 
machine code <procedure heading> = 
<code block> 

<body> ::= <block> <end identifier> I forward 
<end identifier> ::= <identifier> I <empty> 
<code block> ::= code <manifest constant> { ; <manifest constant>} 

<end code> 
<end code> ::= end I end code I end <identifier> 
(block> ::= (label declaration part> 

(const:mt definition part><type definition part> 
(variable d.:daration part> 
< prun:liure and fundion declaration pan> 
<statement part> 

The procedure heading specifies the identifier naming the procedure and the formal parameter 
identifiers (if any). The parameters are either constant or variable parameters (cf. also 
9.1.2). Procedures and functions which are used as parameters to other procedures and functions must have value 
parameters only. 

If the heading is prefixed by inline. this is a hint to the compiler that the 
procedure body should be copied at each call. Such copying tends to result in 
faster execution. at the expense of a larger object program. The meaning of the 
program is not changed by the inline prefix. 

<procedure heading> ::= procedure (identifier>; I 
procedure <identifier> «formal parameter section> 
{;(formal parameter section> I); 

<procedure heading> ::= <inline> procedure <identifier> 
<formal parameter list> <pre assertion> 
<post assertion> 

<inline> ::= inline <empty> 
<formal parameter list> ::= <formal parameter clause> <imp()rts clause> 
<formal parameter clause> ::= «formal parameter section> 

{, <formal parameter section>}) I <empty> 
<imports clause> ::= imports ( <import item> {, <import item>}) 

<empty> 
<import item> ::= <pervasive> <binding condition> <identifier> 
<formal parameter section> ::= <pervasive) <binding condition> 

<parameter group> 
<parameter group> ::= <identifier>{,<identifier>} : <type definition> <unchecked> 



<unchecked> ::= unchecked I <empty> 

<pre assertion> ::= pre <assertion> I <empty> 

<post assertion> ::= post <assertion> I (empty> 
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A parameter group or import item ,without a preceding const or var implies that its 
constituents are constants. 

A type specification for a formal parameter may have actual parameters which 
are other formal parameters; thus 

procedure f(n: 0 .. 1000, a: array (l..n) of signedInt) ... 
is a legal declaration. This procedure might be called as follows: 

begin var aa: array (1..200) of signedlnt; ... j{200, aa); ... end 

Furthermore, in order to reduce the proliferation of parameters which would 
otherwise be required, we make the following rule: the type of a formal 
parameter may be a parametrized type with some or all of the actual parameters 
omitted. The omitted parameters are treated as though they appeared as 
additional formal pararneters, and the appropriate actual parameters are 
supplied in every call. Thus 

procedure f(a: array (l..n) where (n: integer» ... 
is also legal and is equivalent to the previous declaration of f, except that all the 
calls on f will be modified appropriately. The previous call would be written 

... f(aa) ... 
and would be modified to become 

... f( aa.indexType.max, aa) ... 

If unchecked follows the type definition for a formal parameter grouP. then an 
actual parameter of any type may be passed. Obviously the language can offer 
no guarantee of type-safety when this feature is used, and therefore its use 
should be confined to situations of desperate need. 

The !~IQ!:L~~£hml~j~Q_R!!r.! specifies all labels which mark a statement in the statement part. 

<label declaration part> ::= <empty> I label <label> L< label > l; 

The £Q!!1!!!!m_Q~fj!!H!Q!!_R!!n contains all constant synonym definitions local to the procedure. 

<constant definition part> ::= <empty> I 
const <constant definition> {;<constant definition>}; 

The n:]~~_~!:fj!!HjQ!!-1?!!!! contains all type definitions which are local to the procedure declaration. 

<type definition part> ::= <empty> I 
type <type definition> {:<type definition>}: 

The Y!!!li!Q!!:_Q~~!!!!i!!!Q!!_Qi!!! contains all variable declarations local to the procedure declaration. 

<variable declaration part> ::= <empty> I 
var <variable declaration> {:<variable declaration> l: 

The Q!Q£!:Q!!!!:_!!!l!Lf!!!!£!!Q!!_Q!:£!!!!!!!.!Q!!_I:'!!!! contains all procedure and function declarations local to the 
procedure declaration. 

<procedure and function declaration part> .. -
f <procedure or function declaration>;} 
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<procedure or function declaration> ::= 
<procedure declaration> I <function declaration> 

The l!~!!;!!!!e!!LI!~!! specifies the algorithmic actions to be executed upon an activation of the procedure by a 
procedure statement 

<statement part> ::= <compound statement> 

All identifiers introduced in the formal parameter part. the constant definition part. the type definition part, the 
variable-, procedure or function declaration parts are !Q!;~! to the procedure declaration which is called the ~QI!~ 
of these identifiers. They are not known outside their scope. In the case of local variables, their values are 
undefined at the beginning of the statement part. 

The use of the procedure identifier in a procedure statement within its declaration implies 
recursive execution of the procedure. 

Examples of procedure. declarations: 

type VB = 1 .. 256; {a type used in the following procedures} 

procedure TreeSort(var a: array (1..n) of signedInt where (n: VB» = 
{these two procedures, TreeSorl and SiftVp together are a version of 
Floyd's TreeSort algorithm in CACA!, 7 (1964), p. 701} 

begin 
for i decreasing in 1 .. n div 2 do SijtVp(a, i, n) od; 
for i decreasing in J •• n do 

begin const t = a(l); {swap a(i+ 1) and a(1) } 
a(l) := a(i+1); 
a(i+1) := t; 
Si/tVp(a, 1, i) 
end 
end do 

end TreeSort; 

procedure SijtUp(var a: array (1..n) of signedInt where (n: VB, i, j: VB» = 
begin 
k, I: VB; 
while True do 

begin const k2 = 2* k; 
if k2) j then return fi 
if (k2+1»j or a(k2+1)<a(k2) then 1:= k2 else 1:= k2+1 fi; 
if a(l)<a(k) then return fi; 

begin const t = a(1); {swap a{i+ 1) and a(l)} 
a(1) := a{i+1); 
a{i+1) :=1; 
end 

end 
end do 

end Si/tUp; 

procedure ZeroArray(var a: array (m .. n) of unsignedInt where (m, n: 
signedInt» post {a(m)=O, a(n)=O} = 

begin for i in m .. n do a(i) := 0 od 
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end ZeroArray 

/0.1. Standard procedures 

Standard procedures are supposed to be predeclared in every implementation of Euclid. Any 
implementation may feature additional predeclared procedures. Since they are, as all standard 
quantities, assumed as declared in a scope surrounding the program, no conflict arises from a declaration 

redefining the same identifier wiihin the program. Standard procedures are pervasive, and 
hence may not be redeclared. The standard procedures are listed and explained below. 

put(f) appends the value of the buffer variable ft to the file f. The effect is defined only if prior to 
execution the predicate eof(f) is true. eof(f) remains true, and the value of ft becomes undefined. 

get(f) advances the current file position (read/write head) to the next component. and assigns the value of this 
component to the buffer variable ft. If no next component exists, then eof(f) becomes true. and 
the value of ft is not defined. The effect of get(f) is defined only if eof(f) = false prior to its 
execution. (See 11.1.2.) 

reset(f) resets the cllrrent file position to its beginning and assigns to the buffer variable ft the value of the first 
element of f. eof(f) becomes false. if f is not empty; otherwise ft is not defined. and eof(f) 
remains true .. 

rewrite(f) discards the current value of f such that a new file may be generated. eof(f) becomes true. 

Concerning the textfile procedures read, write, readln. writeln. and page. see Chapter 12. 

/0./.2. Dynamic allocation procedures 

new(p: 'tC) allocates a new variable vof type T in collection C and assigns the pointer 
to v to the pointer variable p. New imports C as a variable. This 
procedure works by calling Allocate for the pointer's zone (see 6.3) 
with the number of StorageUnits required for a variable of type T. It 
gets back a 'tcollection of. StorageBlock, and uses the Storage array in 
this block for the newly created variable. It is up to the verifier to 
ensure that this array has at least n components if Allocate(n) was 
called, and that the storage allocated does not overlap with that of 
any other variable (other than one of type StorageUnit). Any 
initialization specified by the type of v is performed. If the object 
type of C is parameterized, and any of the actual parameters are 
unknown or any, then specific values for these parameters must be 
supplied as additipnal parameters to new, so that the variable being 
created will have a definite type. 

free(p: 't C) frees the variable v pointed to by p and sets p to nil; there should not 
be any other pointers equal to p. Any finalization specified by the 
type of v is performed. Then the Deallocate procedure for Cs zone is 
called with a pointer to the StorageBlock from which v was originally 
allocated by new. 
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These two procedures, and the unchecked option for formal parameters, are 
the only ways to change the type of a variable. They should be used with due 
caution. 

new(p. n. .... tn) can be used to allocate a variable of the variant with tag field values n. .... tn. 

dispose(p) and dispose(p. n ..... tn) can be used to indicate that storage occupied by the variable referenced by the 
pointer p is no longer needed. (Implementations may use this information to retrieve storage. or 
they may ignore it) 

lO.I.3. Data transfer procedures 

Let the variables a and z be declared by 

a: array [m .. n] of T 

z: packed array [u .. v] of T 

where n-m >= v-u. Then the statement pack(a, i, z) means 

for j in u .. v do z[j] := a[j-u+i] od 
and the statement unpack(z, a, i) means 

for j in u .. v do a[j-u+i] := z[j] od 
where j denotes an auxiliary variable not occurring elsewhere in the program. 
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11. Function declarations 

Function declarations serve to define parts of the program which compute a scalar value or a 
pointer value. Functions are activated by the evaluation of a function designator (cf. 8.2) 
which is a constituent of an expression. 

<function declaration> ::= <function heading> = <body>.1 
machine code <function heading> = <code block> 

The function heading specifies the identifier naming the function, the formal parameters of 
the function, and the type of the function. 

<function heading> ::= function < identifier>:<result type>; 
function <identifier> «formal parameter section> 
{;<formal parameter section>}) : < result type>; 

<result type> ::= <type identifier> 

<function heading> ::= <inline> function <identifier> 
<formal parameter list> 
returns <result name> <type definition> 
< pre assertion> < post assertion> 

<result name> :::: <identifier>: I <empty> 
The type of the function must he a scalar. subrange. or pointer type. Functions may return values of 
any type except collections. If the result name is supplied, then within the function 
declaration there may be one or more assignment statements assigning a value to the result 
name, and the value of the result name when the function returns determines 
the value of the function. If no result name is supplied, or if it is not assigned 
to in the body, the result must be suppl ied in a return statement. A return 
statement without any val ue is supplied automatically just before the end of the 
body. Occurrence of the function identifier in a function designator within its declarati0'1 
implies recursive execution of the function. 

Examples: 

function Max(a: array (m .. n) of signedlnt where (m, IT. signedInt» 
returns index: signedInt = 

index := /lr, 
for i in m+l .. n do 

assert {a(index) = max(a(m), ... , a(i-l»}; 
if a(i) > a{index) then index := i fi 
od 

assert {a{index) = max(a(m), ... , a(I1»}; 
return index 
end A/ax 

function Gcd(m, n: signedlnt) returns signedlnt = 
begin if 11=0 then return m else return Gcd( n, rn mod n) fi 
end 

function Power(x: signedlnt, y: unsigned) nt) returns z: signedInt = 
begin var w, i: signedlnt: 
w := x; i:= y, z:= 1; 
while i > 0 invariant {z*( w** i) = x** i} do 



if odd(i) then z := Z*W fi; 
i := i div 2; 
w := W*W 
end do; 

assert {z = x**y}; 
return z 
end Power 

11.1. Standard functions 
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Standard functions are supposed to be predeclared in every implementation of Euclid. Any 
implementation may feature additional predeclared functions (cf. also 10.1). Standard 
functions are pervasive. 

The standard functions are listed and explained below: 

11.1.1. Arithmetic functions 

abs(x) computes the absolute value of x. The type of x must be either real or a subrange 
of integer. and the type of the result is integer. 

sqr(x) computes x**2. The type of x must be either real or integer; the type of the result is the type of x. 

si n( x) 
cos(x) 
exp(x) the type of x must be either real or integer, and the type of the result is real. 
In(x) 
sqrt(x) 
arctan( x) 

11.1.2. Predicates 

odd(x) the type of x must be a subrange of integer, and the result is True if x is odd, 
and False otherwise. 

eof(f) eof(f) indicates whether the file f is in the end-of-file status. 

eoln(f) indicates the end of a line in a textfile (see chapter l2). 

11.1.3. Transfer functions 

trunc(x) the real value x is truncated to its integral part. 

round(x) the real argument x is rounded to the nearest integer. 

ord(x) x must be of a scalar type (including Boolean and char), and the result (of type 
integer) is the ordinal number of the value x in the set defined by the type of x. 

chr( x) x must be of type integer, and the result (of type char) is the character whose 
ordinal number is x (if it exists). 

index(p) p must be a pointer, and the result, of type unsignedlnt, has no 
properties except that it is guaranteed to be the same if p has the same 
value. 
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11.104. Further standard functions 

x.succ x is of any scalar or subrange type, and the result is the successor value of x (if it 
exists). 

x.pred x is of any scalar or subrange type, and the result is the predecessor value of x (if 
it exists). 

x.max X is of any scalar or subrange type, and the result is the largest value of 
the type. 

x.min x is of any scalar or subrange type, and the result is the smallest value 
of the type. 
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12. Input and output 

The basis of legible input and output are textfiles (cf. 6.2.4) that are passed as program parameters (cf. 13) to a 
Pascal program and in its environment represent some input or output device such as a terminal, a card reader, or 
a line printer. In order to facilitate the handling of textfiles, the four standard procedures !~l!!;!, ~!!!~, !~l!!!!.!!, and 
~!l!~!.!! are introduced in addition to g~! and Q!!!. They can be applied to textfiles only; however, these textfiles 
must not necessarily represent input/output devices, but can also be local files. The new procedures are used with 
a non-standard syntax for their parameter lists, ailowing, among other things, for a variable number of 
parameters. Moreover, the parameters must not necessarily be of type char, but may also be of certain other types, 
in which case the data transfer is accompanied by an implicit data conversion operation. If the first parameter is 
a file variable, then this is the file to be read or written. Otherwise, the standard files !!!Q!!! and Q!!!Q!!! are 
automatically assumed as default values in the cases of reading and writing respectively. These two files are 
predeclared as 

far input, output: text 

Textfiles represent a special case among file types insofar as texts are substructured into lines by so-called line 
markers (cf. 6.2.4). If, upon reading a textfile f, the file position is advanced to a hne marker that is past the last 
char3cter of a line, then the value of the buffer variable ft becomes a blank, and the stand3rd function ~Ql!l(f) 
(~nd Qf line) yields the value true. Advancing the file position once more assigns to ft the first character of the 
next line, and eoln(f) yields false (unless the next line consists of 0 characters). Line markers, not being elements 
of type !;hl!!, can only be generated by the procedure ~!i!~l!!. 

The following rules hold for the procedure !~l!!!; f denotes a textfile and v1...vn denote variables of the types char, 
IIltegcr (or subrange of integer), or real. 

1. read(vl, .... vn) is equivalent to read(input, vi, ... , vn) 

2. read(f, vI, ... , vn) IS equivalent to read(f, vI); ... ; read(f, vn) 

3. if v is a variable of type char, then read(f, v) is equivalent to v := ft; get(f) 

4. if v is a variable of type integer (or subrange of integer) or real. then read(f. v) implies the reading 
from f of a sequence of characters which form a number according to the syntax of Pascal (cf. 4) 
and the assignment of that number to v. Prect:ding blanks and line markers are skipped. 

H:.f: __ !hLQgl!;~Q!!!L!~;!Q!!! 
l. readln(vI, .... vn) is equivalent to readln(input. vI, .... vn) 

2. readln(f. vI, ... , vn) is equivalent to 

read(f, vI. . .. , vn); readln(f) 

3. readln(f) is equivalent to 

while not eoln(f) do get(f); 
get(f) 

Readln is used to read and subsequently skip to the beginning of the next line. 

The following rules hold for the procedure ~!i!~; f denotes a textfile. pl ..... pn denote so-called write-parameters. 
e denotes an expression, m and n denote expressions of type integer. 

l. write(pl. . .. , pn) is equivalent to write(output, pI, ...• pn) 

2. write (f. pl. . .. , pn) is equivalent to 

write(f, pI); ... ; write(f. pn) 

3. The write-parameters p have the following forms: 

e:m e:m:n e 

e represents the value to be "written" on the file f. and m and n are so-called field width 
parameters. If the value e, which is either a number, a character. a Boolean value, or a string, 
requires less than m characters for its representation. then an adequate number of blanks is issued 
such that exactly m characters are written. If m is omitted. an implementation-defined default 
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value will be assumed. The form with the width parameter n is applicable only if e is of type real 
(see rule 6). 

4. if e is of type char, then 

write(f, e:m) is equivalent to 
ft := ' '; put(f); (repeated m-l times) 
ft := e; put(f) 

~Q.!~: the default value for m is, in this case, l. 

5. If e is of type integer (or a subrange of integer), then the decimal representation of the number e 
will be written on the file f, preceded by an appropriate number of blanks as specified by m. 

6. If e is of type real, a decimal representatIOn of the number I.' is written on the file f, preceded by an 
appropriate number of blanks as specified by m. If the parameter n is missing (see rule 3), a 
floating-point representation consisting of a coefficient and a scale factor will be chosen. 
Otherwise a fixed-point representation with n digits after the decimal point is obtained. 

7. if e is of type Boolean, then the words TRUE or FALSE are written on the file f, preceded by a an 
appropriate number of blanks as specified by m. 

8. if e is an array (packed) of characters, then the string e is written on the file f. 

1. writeln(pl, .... pn) is equivalent to IHlteln(output, pI. ... , pn) 

2. writeln(f, pI. .... pn) is equivalent to write(f, pI. ... , pn); writeln(f) 

3. wflteln(f) appends a line marker (cf. 6.2.4) to the file f. 

page(f) causes skipping to the top of a new page, when the textfile f is printed. 
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13. Programs 

A Euclid program consists of a procedure declaration. 

<program> ::= <procedure declaration> 

A Pascal program has the form of a procedure declaration except for its heading. 

<program> ::= <program heading> <block> 

<program heading> ::= program <identifier> «program parameters»; 

<program parameters> ::= <identifier> {.<identifier>} 

The identifier following the symbol program is the program name: it has no further significance inside the 
program. The program parameters denote entities that exist outside the program. and through which the program 
communicates with its environment. These entities (usually files) are called external. and must be declared in the 
block which constitutes the program like ordinary local variables. 

The two standard files !!!Q.!!! and Q!!!P'!!! must not be declared (cf. 12). but have to be listed as parameters in the 
program heading, if they are used. The initializing ~tatements reset(input) and rewrite(output) are automatically 
generated and must not be specified by the programmer. 

Examples: 

procedure VariousExamples = begin 

type HashTable(pervasive size: l..large) 
imports (pervasive Hash) exports (Search, Delete, Insert, CyclicScan) = 

record 
pervasive type CyclicScan(item: signedlnt) exports (Next, value) = 

record 
const start: 1 .. large = H ash(item); 
var value := start; 

--function Next(first: Boolean) imports (var value, const start) 
returns Boolean = 

begin 
if first then return True fi; 
if value = size then value := 1 else value:= value + 1 fi; 
return (value not= start) 
end Next 

end record; 

pervasive type State = (fresh. full, deleted); 

type Entry (var flag: State) exports (key) = 
record 

case flag of 
full => (key: signedInt) 

end record; 

var table: array (1 .. size) of Entry, 

function Search(key: signedInt) imports (table) returns Boolean = 
begin 
for i in CyclicScan(key) do . 

case discriminating entry = table(i) of 



fresh => return False; 
full => if entry.key = key then return True fi; 
end case; 

end do; 
return False 
end Search; 

procedure Delete(key. signedlnt) imports (var table) = 
begin -
for i in CyclicScan(key) do 

case discriminating entry = table(i) of 
full => if entrY.key = key then 
table(i).flag :=. deleted; return; fi; 
fresh => return; 
end case 

end do 
end Delete; 

procedure lnsert(key. signedlnt) imports (var table, Search) = 
begin 
if Search(key) then return fi; 
for i in CyclicScan(key) do . 

case discriminating entry = tab/e(i) or 
fresh, deleted => . 

end case 
end do; 

begin 
I abl e( i).fl ag := full; 
case discriminatmg var new == table(i) or 

full => new.key:= key; 
end case; 

return 
end 
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Error(Table is full') {where is the procedure Error defined?} 
end Insert; 

initially for i in IndexType(table) do table(i) := Entry(fresh) end do 
end H ashTable; 

type lnterval(a. b: signedlnt) exports (Next, value) =, 
record . 

. var value := a; 
function Next(first: Boolean) imports (var value, const b)· returns 
Boolean = . 

begin 
if not first then value := value + 1 fi; 
return (value <= b) 
end Next 

end record; 

type StringLength = 0 .. 247; 

type Vstring(length: StringLength) 



imports (String Length) exports (length, var text, Substr, SetSubstr) = 
record 
type Stringlndex = 1 .. StringLength.max; 
var text: array (1 .. length) of Character, 
function Substr(start: Stringlndex, len: StringLength) 

imports (text, Vstring) returns Vstring = . 
begin 
var v: Vstring(len),' 
for i in 1 .. len do v.text(i) := text(start+i) end do; 
return v 
end Substr, 
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procedure SetSubstr(start: Stringlndex, v: Vstring) imports (var text) = 
for i in 1.. v.length do text(start+i) := v.lext(i) end do; 

initially for i in l..length do text(i) := u*S 

end Vstring; 

function Catenate(to, from Vstring) imports(Vstring) returns Vstring = 
begin ' 

end 

var s: Vstring(to.length+ from length); 
s.SetSubstr(l, to); s.SetSubslr(to.lengliz+l, from); 
return s 
end Catenate; 
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14. A standard for implementation and program interchange 

A primary motivation for the development of Euclid was the need for a powerful and 
flexible language that could be reasonably efficiently implemented on most computers. Its 
features were to be defined without reference to any particular machine in order to facilitate 
the interchange of programs. The following set of proposed restrictions is designed as a 
guideline for implementors and for programmers who anticipate that their programs be used 
on different computers. The purpose of these standards is to increase the likelihood that 
different implementations will be compatible. and that programs are transferable from one 
installation to another. 

1. Jdenlifiersdenoting distillct objects must differ over their first 8 characters. 

2. Labels consist of at most 4 digits. 

3. The implementor may set a limit to the size of a base type over which a set can be 
defined. (Consequently. a bit pattern representation may reasonably be used for 
sets.) 

4. The first character on each line of priritfiles may be interpreted as a printer control character with 
the following meanings: 

blank single spacing 
'0' double spacing 
'I' print on top of next page 

Representations of Pascal .in terms of available character sets should obey the following rules: 

5. Word symbols. such as begin. end. etc .• are written as a sequence of letters (without 
surrounding escape characters). They may not be used as identifiers. 

6. Blanks. ends of lines, and comments are considered as separators. An arbitrary 
number of separators may occur between any two consecutive Euclid symbols 
with the following restriction: no separators must occur within identifiers, 
numbers. and word symbols. 

7. At least one separator must occur between any pair of consecutive identifiers, 
numbers, or word symbols. 

15. Implementation notes 

A later version of this report will include suggestions for implementation 
techniques which can handle Euclid records and parameterized types efficiently. 


