A3801

Inter-Office Memorandum

To MPL group Date April 21, 1972
From Butler' Lampson Location Palo Alto
Subject New control transfer mechanism Organization PARC

1. Introduction

This memo describes the current state of a new design for MPL inter-
module transfers of control and frame allocation. The goals of the design:

1) Clear separation of control transfer from determination of the
context in which the new module will run.

2) A single control transfer mechanism which can model all existing
mechanisms (port call, procedure call, signal).

3) Ability to connect any kind of exit from a module with any kind of
entry.

Other desirable properties which seem ‘achievable within the general
framework described below but need further thought:

4) Accessible facilities for specifying the context of a module in
arbitrary ways.

5) Accessible facilities for specifying signal propagation paths.
6) Conventions for displaying the current control state. At the moment

we only understand how to do this well for procedure calls (using a
backtrace).

2. Control transfers

Control always enters a module through an inport, which simply consists
of a transfer location. Since inports cannot be moved freely, additional
information can surround the inport, i.e. the input can be imbedded in a
recoxd. We will call fields of this record other than the transfer

location parameters.

When control enters through the inport, the registers are set up in a
standard way and a transfer is made to the transfer location.

Control always leaves a module through an outport, which is simply a
pointer to the inport through which control is to enter the new module,

The primitive for control transfer is



NEW CONTROL TRANSFER MECHANISM
Butler Lampson

April 21, 1972

Page 2

xfer (o, i, a)

wihere o is the outport, i is a pointer to the inport through which control
should be returned, and a is a pointer to the arguments. In general the
module doing the xfer must first construct the return inport,

Normally the transfer location of an inport is an address in the static
storage of the context being entered, and there is one parameter which 1is
an address in the module to which control should go. The location of the
inport itself provides a second parameter whose interpretation depends on
the type of transfer. Note, however, that the basic transfer mechanism
does not know that this is the standard way of using it.

3. Describing the control state

A procedure-based language like Lisp has a very nice way of describing
the control state, called a backtrace. 1In the present imperfect state of
our understanding of inter-module control transfers, we have no chance for
such a clean mechanism. Some improvements on the present chaotic situation
do seem to be possible, however.

The basic entities which are related by control transfers we will call
contexts; there 1is a one-to-one correspondence between contexts and
inports. We will require that every context contain the following things
(normally declared to the compiler, which leaves information about their
location in the code segment for the context):

1) an owner outport. These are expected to define a tree called the
owner tree. The owner outport specifies the target for control faults
(i,e. the context which will get first chance at the resulting signal). It
has no other function except to guide display of the control state.

2) a signal path outport which specifies where a rejected signal should
go next. Perhaps this specification can be overridden by the catch phrase
which does the rejection.

3) a list (possibly empty) of key outports (see the discussion of links
below) .

4) possibly a return outport, If context A has a return outport which
points to context B, then B is A's caller. The list of contexts obtained
by following the chain of return outports starting from A is the return
chain segment based on A, If A is not anyone's caller, its return chain
segment 1is a return chain and corresponds to a stack in the present
implementation,

A context which does not have control may also have a current outport,
which is the one over which it has just given up control.



NEW CONTROL TRANSFER MECHANISM
Butler Lampson

“April 21, 1972

Page 3

If context A has an outpokt P which points to context B, A is connected
to B by P. If B is also connected to A by Q, and both P and Q are either
key or current, the P and Q form a link between A and B. This definition
is intended to characterize certain familiar relationships among contexts
such as the producer-consumer relation, It is not clear how well it does
this.,

All this apparatus gives us three ways of displaying the control state
of a computation, i.e. the current relationships among the contexts.

1) Return chains can be displayed linearly; such a display is called a
backtrace,

2) Backtraces may be connected in pairs by links. If the links arise
from producer-consumer relations the resulting display has a pleasing two-
dimensional structure.

3) Contexts without return ports can be displayed according to their

position in the owner tree., This is especially convenient when the tree
arises from a maze search.

4, Storage allocation

To make the new control mechanism more glamorous by association, we are
simultaneously introducing a wonderful new allocation scheme for procedure
frames, This scheme does not use a stack but instead allocates each frame
with a general storage allocator. Acceptable efficiency is (hopefully)
obtained by two tricks.

1) Frame sizes are quantized in some convenient way (perhaps increments
of 10%) so there will not be too many different ones.

2) A list of free blocks of each frame size is kept. When a new frame
of size n is needed, list n is first examined to see if it is non-empty.
If so, the frame can be obtained immediately (in two instructions). If
not, a more expensive, but hopefully infrequently used procedure must be
invoked. Freeing a frame requires nothing more than splicing it onto the
proper list. This also requires two instructions, and ohly the first of
them needs to know which list is involved. By putting this instruction in
the -1 word of the frame, we reap two benefits:

1) It is not necessary to keep track of the frame size;

2) More -elaborate deallocation procedures can be spliced in by
replacing the instruction with a call to some suitable routine,

An unresolved problem is how to prevent frames from existing without
any references to them, or conversely, references without any frames. A
reference count scheme adds some cost to most xfers, in return for which it



NEW CONTROL TRANSFER MECHANISM
Butler Lampson

April 21, 1972

Page 4

gives no new capabilities but only an error check. Maybe this 1is not a
real problem,

5. Inport types

The basic xfer mechanism is the same for all control transfers. The
actions required inside each module to allocate or free storage, establish
context and keep track of arguments, depend on what the programmer wrote,
however. Thus a return, a procedure entry and a port call all have quite
different internal bookkeeping. These differences are accomodated by the
code which is executed within a module before a transfer and by the code at
the transfer location. The transfer interface itself is the same for all
types of transfer, so that any one can be connected to any other,

It is, however, necessary to be able to go from an inport to a
description of the context (see below) to which it corresponds, This is
done by a function which takes an inport and rummages around in the
structure to which it points,

By the description of a context we mean:
1) The code segment for the context;
2) The program location within that segment;

3) A list of typed pointers to the records which contain the variables
accessible in the context. Unfortunately this is not very well defined and
needs further thought;

4) The owner, signal path, key, return, and current outports defined in
section 3.

‘

6. ExamEles

In this section we will see how to model ports, procedures and signals
using the ideas developed above, and in the next section we will see how to
encode these models on the 1f.

Notation: if an inport has transfer location tl and one parameter p,
we write it as (p,tl). We assume that a frame can be given control (i.e.
can be a transfer location) and that it then sets up the context it knows
about and sends control to the first parameter of the port addressed by o.

A port is a pair (inport, outport). The inport is (procret, process),
where process is the frame for the process which owns the port, and procret
is global code which transfers to the pc saved in the process frame. The
frame ‘'gets control' when the inport is used; it sets up the context and
sends control to procret, which sends it to process.pc. The outport, of



NEW CONTROL TRANSFER MECHANISM
Butlexr Lampson

April 21, 1972

Page 5

course, is a pointer to the connected inport. Then portcall (port, msg) is
just

process.pc « retloc;

xfer (port.out, address (port.in), msg);

retloc: o.,out + i;

The argument pointer is in a. If desired, it can be stored in a
message buffer associated with the port. The port through which control
returned can be identified by its address, which is i o.

This sequence sets up the context for the process which owns the port.
If the caller is some other process, it will have to do some more work to
set up its own context. An example of this is given in section 7,

A simpler kind of port which carries its own pc is closer to the spirit
of the basic mechanism (whether therefore better is unclear). The inport
is just (pc, frame) and its semantics is:

port.in,param + retloc;
port.in.tl <« frame; if necessary
xfer (port.out, address(port,in), msg); as before

retloc: port.out « i:

and the argument pointer is sitting in a. This is O0.K., since control only
comes to retloc through this port.

Procedures are messier, since storage allocation is involved and the
call and return are not symmetric., A procedure entry dinport is (entry
point, static storage segment) and a return inport is (pc, frame). Each
frame has room to store an inport and also keeps track of the static
storage and perhaps of other context. Then call(link, args) is

frame, inport + (retloc, frame); this is the return inport
xfer (link, address (frame.inport), axgs);

rethC: see
At the entry point we have

makeframe (size);

initializeframe (static storage segment [, other context])

frame.retport « i;



NEW CONTROL TRANSFER MECHANISM
Butler Lampson
April 21, 1972
Page 6 »
and return(results) is

freeframe ();

xfer (frame.retport, nil, results);
This is a 1little shady, since the results will usually be in the frame
which has just been freed, The proposed fix is to reallocate the frame if
anything which might demand storage is done during the storing of the
results. This is quite reasonable, since the compiler knows exactly what
is happening when it constructs the code to accept the results, except for
the possibility of a fault during the xfer. I am not sure what to do about
that. The alternative 1is to free the frame after storing the results,
rather than in the return sequence, and that has its own set of problems:
ineffeciency, and an unpleasant involvement of the caller in the internal
business of the called procedure., Of course a garbage collector would take
care of everything,

Signals are messier still, because of the binding algorithm embedded in
their definition and because of the complications of unwinding useless
frames, We deal first with signals generated by an explicit call of
SIGNAL. Recall that every context has a signal path outport. The
algorithm is

PROCEDURE signal (code, msg)
target « nil

loop: FOR p +« self.returnport, (p.signalpath if code # unwind else
p.returnport) WHILE p # target DO

self.signalpath « p.signalpath % bypass p if
catchprase generates signals %
CASE offersignal (p, code, msg)
=resume: RETURN unless code = unwind else error
=reject: IF code = unwind THEN
free (p); p <« self
% assume catchphrase requesting unwind resets inport
of anchor context %
=unwind: tafget + p:=self

code <« unwind



NEW CONTROL TRANSFER MECHANISM
Butler Lampson
April 21, 1972
Page 7
ENDCASE
ENDFOR
IF p # nil THEN xfer (p, nil, nil) % exit to anchor
context of unwind %
otherwise propagate signal somewhere else
Note that this code uses the procedure call machinery twice: once to
obtain a context in which to run SIGNAL, and once to obtain a context in

which to run the catch phrase.

When a linkage fault occurs it also generates a signal., It is
convenient to make this explicit by providing an intermediary procedure:

PROCEDURE ControlFaultHandler (o, i, a)
Signal (Control Fault, (o, i) % or whatever %)
% a resume means that the transfer should be attempted again %
free (self.frame)
xfer (o, i, a)

and the handler has disappeared from view.

7. PDP-10 implementation

We adopt the following convention for the state of the registers
immediately after an xfer:

o in £, the frame pointer

i and a in their own registers with those names
the target port [o] in d

the left half of [o] in tl

An inport occupies a right half-word and its first parameter is in the left
half of the same word, '

A dseg has two points which can be transfer 1locations, one for
procedure entries and one for port entries, more or less:

*port entries here



NEW CONTROL TRANSFER MECHANISM
Butler Lampson
April 21, 1972

Page 8
~3(d): movi d,frame ;frame is set up by a port call
movi tl,pc - ;likewise pc. These are the process frame and
pc
hrlm i, & (£) 2 ;railroad switching

*procedure entries here
@g(d): movi c,codebase
*1oad additional module-wide base registers here

jrst g(tl) ) ;recall tl has port, param if control enters
at @

We make use of a trick which encodes a few bits of parameter in jump
addresses by duplicating the beginning of the code jumped to once for each
parameter value. We also assume that we keep only one frame pointer and
that if it is used for pushes or pops the compiler keeps track of how much
it has moved.

A procedure call has two in line instructions (plus l/argument):

push f,argn

jsp tl,call[n] " :n is length of argument record
framestart outport ;opcode = f-start of the frame
call[n]: movi i,=-n(f) ;back up over arguments to get location for
inport
jrst call
call: hrli d4,1(tl) ;create return inport = (pc,d)
movem d,d(1) ;and store it
movi a,l(i) ;set up the argument pointer
move f,Q@(tl) ;pick up o

*These three instructions are the same for all the xfer sequences given
here. '

move d,#(f) ;pick up target port [o]



NEW CONTROL TRANSFER MECHANISM
Butler Lampson
April 21, 1972

Page 9
hlrz tl,d ; junpack its parameter into tl
jrst g(d)
At the entry point:
jsp tl,frame [m] ;m is the desired frame size
frame [m]}:skipg £,@list [m] :see below for frame format

jsp f,listempty

exch f,list[m]

movenm i,@(tl) :save i for return

jrst g(tl) ;and go to code body
This assumes that frames are chained together in word @, with a header in
list[m] for all frames of size m. We also assume that word -1 of the frame

contains one of the two instructions required to restore it to list [m].
Then a return is

jrst ret[n] ;n = length of result record +1
ret[n}: movi £,-n(f) ;£ €« start of frame
- jrst ret
ret: movi a,l(f)
xct @,-1(£f) snormally: exch £,list [m]
exch £,-1(a) ;finish splicing back frame and pick up
outport ’

*and the three standard instructions

Timing is 33 for call, 22.5 for return or 55 total., The call can be cut to
one instruction at the expense of about 15 us and pre-emption of the wuser
UUO mechanism.,

A port call is quite different, since the state has to be saved in the
process owning the port. We need one word for the port: (outport, dseg-
3). This word also serves as the inport for the return, which has no
parameter. There are again two in-line instructions:



NEW CONTROL TRANSFER MECHANISM

Butler Lampson
April 21, 1972
pPage ]O
push d,argn
movi i,outport
jsp tl,portcall(n]
portcall[n]: movi a,-n(d)

jrst portcall

portcall: move t2, @(i)
hrrm a,@g(tl)
hrrm t1,1(tl)

hlrz £,t2

sthe process has only 4, no £

;set up i pointing to return inport

;back up over arguments

;pick up port
;save d
;and pc in process change

;extract o from port

*and the three standard instructions

Timing is 3lus one way.

A port call to an external port (one owned by a process whose dseg is
not that of the caller) is messier, since the sequence above sets

wrong context,
push d,argn
movi i,outport

jsp tl,xportcall[n]

xportcallfn]: movi a,-n(f)

jrst xportcall

xportcall: movem d,-1(a)

movem tl,=2(a)

movi tl,xportret

and continue from port

xportret:

call +1l.

;save d

;and the pc in the frame

up the

Finally on return control will come to



NEW CONTROL TRANSFER MECHANISM
Butler Lampson
April 21, 1972
Page ]]
move f,d
move d,-1(f)
jrst @=2(f)

Timing is 45 one way.



