<DOCMPS>DOCRUNTIME.NLS;29, 21-MAR=72 20:33 WHP ;

MPS Runtime Referencé Manual
11 AUG 72
MPS 10.0

James G. Mitchells

Xerox rPalo Alto Research Centers
31860 Porter Drive
Palo Alto, CA QuL30L
~(h15) L93-1600

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025

(L15) 326=6200

MPS Runtime Reference Manual R MPS 10.0
Mitchell ; : 11 AUG 72

SRI/XPARGC ' © PAGE 1

This document describes the inplementation of the Modular
Programming System. It is intended for use by the implementors
of MPS, and contains the following sections:.PBS;,LBS=1;

The allocation of registers in the MPL run=-time environment:
(registers)

The layout of the fixed part of a dseg: (dseg)

The layout of the system dseg transfer vector and the glopal
fixed tables used in MPS: (sysdseg)

. The machinery which supports function call/return, both
compiler generated code and the run~time support code:
(functions) :

The machinery which supports ports and port calls (portcalls)

the description of MPL object modules, including the code and
symbol table information blocks: (modules)

Format of the object code block in an MPL module: {code)

structure of the symbol table information in an object module

2§ constructed by the MPL compiler: (symbols)
The implementation of SIGNALs: (signals)

kThe temporary string facilities prOV1ded for bootsbrapplng MPS:
(strinegs)

The free storage package used for the HEAP; (fsp)

An overview of the process by which the MPS is bootstrapved
into existence initially: (bootstrarp)

(registers).PRS;.LBS=1; Register Assignments: MPL definitions for
- register assignments can be found in (mps,mplregs,l:wn) and can
be INCLUDE'd.

O:NULMSG holds the null message for PORT system

“13Al first scratch ac
2342 scratch ad'z
2:RS result stack pointer
3143 serateh ac 3
LtAL scrateh ac b

=~

5:A5 scratch'acbs

MPS Runtime keference Manual , MPS 10,0 -

Mitchell 11 AUG 72
SRI/XPAERC ; . PAGE 2

63A6 scratch ac 6

7:RP | record pointer (for field variables)

10:M stack mark (frame pointer)

11:s stack pointer

12:P pointer to recent PORT

’13:0 code segment

14:D data segment

15:LB iink base register

16:8J for system JSP's

17:8D system data segnent

(dseg) .,PBS; Dseg Layout: MPL definitions for the fixed part of a
dseg are given both as record declarations and as a set of
displacements (compile=-tiine constants) in (mps,processdefs,l:wn)
which can be used as an INCLUDE file.
Base of frame
O: FakeEXtlLoc: ADDR SYSUFL(SD) to catch stack underflow
1: FakeRetWrd: 2 Retloc pointer to Retloc in this word
2: FakeOldM: WORD O fake oldF pointer
3: FakeSysWord: WORD O head of enable 1list, if any

Ties to stack segment, code segment, this data segnnt itself,
ard owner's dsg '

L: SegNunmsg:! XWD dsegnum,csegnum
53 Bases: ‘ZWD dsegbase,céegbaSe absolute adaresses
- 6: StackSesg: ADDR stackbase segmentéd address
State |
¢ Statepc: - 2 pc value for process
10: StateM: 7 base of current stack frame

1l: States: Z top of stack

MPS Runtime Reference Manual MPS 10.0
Mitenell ; 11 AUG 72
SRI/XPARC PAGE 3

Call/Return machinery

12: LocPtr: yA Retloc used to provide not=in-memory traps

13: Retloec: XCT ZSegInCore [MOVE C,Bases ; Bases

absolute)
1h: MOVS D,C losd code base register
15: ' JRST @=2(S) start at Extloc word in frame

(sysdseg) .PBS; . LBS=0;Systen Dseg Transfer Vector Area
: at the moment there is no MPL INCLUDE file for these

definitions; however, the vector is declared in mplrun, and a set
of the declarations appears in nucileus,

%eesblggest index used so far == 1568 %

greturn code®
sysrin=40B %3imple returns%
sysdrtn=124B %deallocation returns?%
%call trap cell%
fnt= L2B
%stack overflow®
sysovr= L4B %overflow on frame allocation%
sysov2= LéB %overflow from withiﬁ body of code%
sysov3= 508 %overflow on AOBJP of local cali%
%allocation% |
Xxmake= 52B %make arrayv#%
| xmkstr= 54B %make string%
%processes%
create= 568 %create processk
destroy= 60B %destroy process%

_runs 625 %run process’

MPS Runtime Reference Manual MPS 10,0
Mitchell : 11 AUG 72
SRI/XPARC PAGE L
stop= 64B %Stop process%
pshenv= 66B %push environment%
popenv= 70B %pop environment%
%ports®
megtrap=s 728
pendingfault= 743
portcalls 76B
%signals% |
si€=100B
sigport=1028
sigprocess=104B
errs1528
errport=15LB
errprocess=1568
ctunw=1l06B %cateh phrase unwind for exit%
ctunw=106RB %catch phrase unwind for exit%
resume=110B %"return" from signal%
propsig=1128 %propagate signal%
%Joins%
joinboth=11LB %Join PORT and PORT%
‘joinproc=llés
joinvar=1208
jointo=122B
bind=126B
% nunber of arguments cnecking % |
toofewargs=1308B % éaller supblied tbo few arguments %

toomanyargs=1328 % caller supplied 100 many arguments %

MPS Runtime Reference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPAEC PAGE 5

unboundfn=1348 % calls on unresolved fn descriptors come
through here %, :

undefinedsignal=1l36B % all signal variables are initially
pound to this signal code %3

% binding and other faults associated with control %

undefinedsignal=1368 % all signal variables are initially
bound to this code %, '

segfault=140B % segment out of VM fault %,

padportcall=1lL2B % system called code for invalid port call
% » ’

controlfault=144B % port call on a non=active process %,
resolutionfault=1lL6B % port call on an unccnnected port %
portretry =150B % pc of a process which stopped because of
a resolution or control fault points here for retry of the
port call %;

% fixed tables %
Xwdtab=1L03
argcheck=200B

(functions).PBS; MPS Function Calls
Function returns, arguments, and local varianles are stored on

a stack.

Two machine registers are reserved for addressing tne stack,
a tep-of-stack pc1nter S and a frame pointer F.

The stack has the fcllowing appearance:

S {temporaries]
{local variables] - K words
M> cld M

return 1link
saved return (inter=-segment calls)
farguments] = m words

old 8>

The stack is associated with the currently executing
process (docmos, nrocesses,.) ,

MPL declaratlons for a stack frame, both from the point of

MPS Runtime Reference Manual ' MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC | | | | PAGE 6

view of the frame pointer and from the point of view of a
pointer to the saved return word are contained in tnhe MPL
INCLUDE file (mps,processdefs,l:vn).

The function call F(al, .., 2N) results in the following code:

Same segnent Qother segnment
PUSH §,al J A
ces] == sane: push argumnents
FUSH 8,aN]
AOBJP 5,88¥YSOV3(SD) XcT @SUBR(D)
PUSHJ S,ENTRY(C) PUSHJ S,@SUBR+1(D)
. SUB S,XWDTAB+N] == game: delete areguments

XWDTAB is 2Zlobal and in a fixed location,
XWDTAB[J] contains XWD 3j+3,J3+3.

For inter=segment calls, the cells SUBR(DATA) and
SUBR+1(DATA) contain:

ADDR RETLOC
ADDR XENTRY(C)

The entry (F) PROCEDURE(pl, ..., PM) compiles the following
code; '

XENTRY: HRRZ Al,@0(S)
‘ XCT ARGCHEGK ~XWDTAB= M(Al)
Movs D,¢C
ENTRY: PUSH 5,M
XCT FNT(SD)
ADD S,XWDTAB+K=3
JUMPGE S,@SYSOVR(SD)

ARGCHECK is global and in a fixed location.
ARGCHECK[0J] contains PUSH 5,LOCPTR(D).
APGCHECK/=3] contains JSP SJ,8TOOFEWARGS.
ARGGHEGK/3] contains JSP SJ,@TOOMANYARGS.

The re gister sD contains the aaaress of the system data
seznent.

FNT(SD) contalns MOVE M,S or a jump to Lhe system if
currently tracing procedure calls.

SYSOVR(SD) contains a jump to system code to handle stack

MPS Runtime Reference Manual MP8 10.0
Mitchell 1l AUG 72
SRI/XPARC ' PAGE 7

K is the size of the stack frame for F's local environnment.
The statement RETURN compiles the following instruction:

JRST @SYSRTN(SD)
where SYSRTN(SD) points to RTINCOD
RTNCOD: MOVE RS,S

MOVE S,M

MOVE M, 0 (M)

JRST @=1(S)

The register RS (currently = A2, see REGISTEKS above) is used
by the caller to retrieve the resultse. v . :

Returns with multiple resPlts use the same system code.
The results are pushed in reverse order,
RETURN(rl, r2, ... rn) results in
PUSH S,rn

PUSH 8,r2
PUSH S,rl
JRST ASYSRTN(SD)

On the calling side, X ¢ p(: ml, m2, ... Mn) results in

ee's
SUB S,XWDTAB
POP RS,X
POP RS,ml

POP RS,mn

If the lhs's would endanger the results on the stack (e.g.
(£()]), then life becones more complex. The code for this

case is

SUB S,RS

MOVEM S,mrcell % mrcell is a compileé-allocated temporary
% ‘ '

MOVE §,RS
PCP's using S
ADD S,[n.,nJ

ADD S,mrcell

MPS Runtime Reference Manual : MPS 10.0
Mitchell ~ ’ : 11 AUG 72
SRI/XPARC ' PAGE 8

This scheme protects the results by moving the stack vointer
over them and allows the caller to accept any initizl segnent
of the multiple results, (I.e. if the routine returns i
results anéd you only want the first 2, then you need only
store the first two.) :

Multiwora scalars of length n are treated like n single word
scalars.

In addition, there are some global data structures associated
with the function machinery.

Each linkage (static data) segment contains a few words of
descriptive infermation:

BASES: XWD LBASE,CBASE; linkage and code base addresses
LOCPTR: ADDR RETLOC; Pointer to return routine

RETLOC: XCT ZSegInVM jabsclute address of cell in globsal
table

MOVS D,C

JRST @~2(S); Return through saved actual 1link

There iS a global table with one entry for each instance of a
code~gata pair: '

ZSegInvM is a two=-word cell containinv in its first word
either

MOVE C,BASES (BASES an absolute address), or

JSP SJ,&SegFault(SD) if the code segment associated
with the data segnmnent is not swapped 1ine.

The second word of each entry is used to save the BASES
address when the JSP instruction occcupies the first word,
ard the segment number ofi the associated code segnment {or
possibly a link chaining all the entries for one code
segment together).
"Times for function calls using this scheme:
Total local call/return is abcut 29 microseconds.
Total exterﬁal call/return is about uS mlcroseconds.

These times are for calls wiith no arguments. For n words of
args, add 3.9 ¥ n for PUSH'ing before the call.

(portcalls) .PBS;

~MPS port call machinery

MPS Runtime Raference Manual : - MPS 10.0

Mitehell | 11 AUG 72

SRI/XPARC | | PAGE 9
Format of a porv:

port: 2ZWD port,objectport % pointer to object port to
which connected and to nyself (absolute addresses) %

mse: XWD 1400000,0 % message buffer (initially contains
the null message % ’ , ,

dsegptr: ADDR dsegaddr % dsegaddr is the absolute address
of the dseg in which the port resides %

startup: JRST @statePC(LB) % usedqd by‘portcall machinery to
resume the process to which this port belongs %

MPL declarations for ports are contained in the INCLUDE file
- (mp8,processdefs,l:wn).

- Code for [lhs 'e] 'PORT !'(portname (', message] ('l ctchp] ');
In~line code:
‘The in-line code produced depends on
{a) whether the portname is local, and
(b) whether the PORT call is in an expression.
If the portname is not local, tnen the address of the port.
~is calculated and saved. If it is local, tnen it can
sinnly be aadressed directly.
If the POKT call is used in an expression, then control ,
nust reenter the process over the same port and there must

be a non-null messafe waiting in the port or an appropriate
trap is caused,

The following is a detailed description of the in-line code

rroduced.
First, it may be necessary to save certain registers on the
stack if the PORT call is part of a comnlex express1on
- being evaluated,
Message value is‘loaded into register Al.
If the portname'is local then
Load register p with the connection word from the port.
JSP SJ,8PORTCALLI(SD)

£ there is a catch phrase, pfoduce‘code for it here.

WO WD N WD R ey

MPS Runtime Reference Manual MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC - PAGE 10
Else (portname not local)
L.oad address of porte.

1.02d register P with the connection word from the port.

I1f the PORT call used in expression then push port.
address on stack so that can check later.

Push D register so can restore later,
This is necessary because may be doing PORT call for
some other process, which means D not eaqual to LB,
system code for port calls sets D to LE when starts up
process, So when control comes back to this process
will not have proper value in D.

JSP SJ,@PORTCALL(SD)

'If there is a catch phrase, produce code for it here.
Pop stack to D rezister.

- If the PORT call used in expression, then POP stack to
register so that can test later to ensure that control
has returned over sane port. (Register RP is used for
this currently). :

If the PORT call value Was to be loaded into some
register other than Al, then move it.

Now restore any registers which were saved initially.
If the PORT call was not used in an expression, then done.
Else, must check port and message,
 HRRZ P,P 10 make P = address of port.
1f portname was local then CAIE P,portaadr

Else CAME P,RP compare to address which was saved on
stack, ;

JSP SJ,@PENDINGFAULT(SD) to indicate that control did
not return over sane port that left.

CAMN ac,NULMSG compare message toO null nessage.

JSP SJ,&MSGTRAP(SD) to indicate that port call returned
‘null message.

If there was a cateh phrase, then produce (nonjumping)

MPS Runtime Reference Manual . : » MPS 10.0
Mitchell s , 11 AUG 72
SRI/XPARC , . PAGE 11

JUEP instruction here wnhich addresses the start of the
catch phrase code,

Finally, MOVEM NULMSG,PortMessageBuffer o indicate tnat
the message has veen "removed” for use in the expression.

code in MPLRUNTIME:

portcallX: HLRZ A2,P % must ensure that port belongs to
process in control %

CAME LB,dsegptr(aAz2) % conmpare controlling dseg address and
deseg addr to which subject port belongs % -

JUMPA BadPortcall(SD) % bomb out if not equal %

MOVEM S,States(LE)"save stack pointer of subject process
MOVEM M,StateM(LB) save frame pointer

MOVEM SJ,StatePC(LB) save program counter

MOVSM P, (P) make object port connected to sudbject port

HRRZ LB,dsegptr(P) begin startup of object process by
getting bacse of his dseg.

XCT RetLoc(LB) ¢%move Bases into register C (and check for
code segment not-in=nemory)

MOVE D,LB 1load D register (=LB contents)
MOVE M,StateM(LB) 1load frame pointer
MOVE S,States and stack pointer for object process
JRST startup(P) fire up the object process
(modules) .PBS;
(code) MPS Object Code Format: MPL declarations for the blocks
in an object module may be found in the INCLUDL fille :
{mps, noquledefs l:wn)e

~An MPS object code file consists of a series oi blocks, eacn
carrying length and type 1n£ornatlon

The first word of a block is XwD TYPE, LENGTH.
The TYPE is one of the followling codes:

0 = emptykspace

MPS Runtime Reference Manual ‘ MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC ‘ PAGE 12
1l ~ code

2 - hash table

3 = gymbol data

kb = name table

5 = structure table

The LENGTH is the number of words in the block, including
the header word.

LENGTH=0 i8 an error, except that TYPE=LENGTH=O
gignifies the end of the file,

The rest of the block (LENGTH=1l words) is interpreted
according to TYPE.

The first block in the flle always contains the code for a
module.

The first few words of the code block coentain inférmation
for the MPS loader.

Word 1 contains a zero if this is a DATA module;
otherwise

word 1 left half contains
the displacement of the first instruction of tne code
segnent after the initiallzation code (l.e. the
procedures) .,

Word 1 right half contains

the displacement of the first instruction of the
process body (i.e, after the procedures).

“Word 2 left half contains

the displacement of the first of the literals (i.e. the
word following the actual code).

vora 2 rlght nali contains
the size of the data segment,
Word 3 rieht halfycontains
hash index for module name.

“Werd 4 is the entry for the initialization code,

AP Ee O TGN % W ap AR

MPS Runtime Reference Manual . MPS 10.0
Mitchell | ' 11 AUG 72
SRI/XPARC | PAGE 13

This 18 a procedure of one argument (the number of
words of arguments passed to the CREATE operation).
These arguments have been stored into the first words
of the data segment. I1f the count is incerrect then
there will be a trap to the system like that for a)
procedure call with the incorrect number of arguments,

The code itself follows.

The code assumes that the CODE base register is loaded
with the origin of the file, i.e, the address of the
TYPE,LENGTH word of the code block.

Unlike the situation in L1O, ail subsequent words in the
code area are genuine instructions.

Literals follow the code.

Every module also has a hash table block, a block of semantic
entries, a block of name stirings, and a block giving
structural information relatlng the object code to the source
statnents,

A type 2 block (hash table) has an extra word following the
LENGTH word which contains in its 1e£t and right halves,
respectively, the following?!

The left value, X, 1s the size in words of the indexX
‘portion of the hash table which followus,

The right value, h, is the number of hash table entries
in the block beyond the index portiion of the tabple.

These two values are required by any routines using
symll0 to access the tabkles because the routine settbl
needs to pbe to0ld X and h as its seccnd ang fourtn
arguments, respectivelye.

Let m be the value in the rignt half of the 2B6 header;
then m, X, and h are related as

m=s 2 + X + 2%h :

i.€., M includes the two header words, the number of
index words, and the hash entvries (whicn currently
require two woras each).

All relative 1inks petween the hash table and the name and
semantic blocks are relative to the first data word of the
block; this is word 1 in the semantic and name blocks, and
werd 2 in the hash table block.

The format of semantic entries is described in
(DOCNPS DOCQYM) .

MPS Runtime Reference Manual v ; MPS 10,0
Mitchell ' 11 AUG 72
SRI/XPARC , PAGE 1

A type 5 (structure) block contains a sequence of words of
the form XWD 1lc,,bytles,

The 1lc¢ indicates the displacement in the code corresponding
- to the start of a source language statement (SL3).

The bytes are six bits wide and are used to encode the
structural position of this SLS relative to its predecesgsor
{or to the origin if vhis is the first SLS).

The first byte is treated specially:

Byte=N, N IN [0,63] == go up N levels in the structure.
In other words, depth in the tree is decreased by N.

All subsequent bytes are treated the same, nanmnely:
Byte=0 == stop here.

 Byte=N, N IN [1,63] == take Q=N MOD 16 successors, Q IN
{1,15), and then go down M=N/1l6 levels, M IN [0,3]). When
g0 Q successors, increment position at current deptn by
Q. When go down M levels, M » 0, increment depth by Q
and set the position at each new level O 1.

AS many words are used as necessary to encode the new

positions the lc is simply the same in each word. Most

common~relapionships can be encoded in a single word.

(symbéls) Context usage in MPL(A): MPL declarations for context

usage in object modules, and Symbol type declarations can ve
found in the INCLUDE file (mps,modulesymdefs,liwn)..PBS;

CTX pdctx

For module names, procedure descriptors, and directory 1l1link
strinegs,

CTX Xlctx

For first word of external or forward procedure calls -
not output.

CTX x2ectX

For second word of external or forward procedure calls ==
nct output.

CTX lscix

For literal strings.

'MPS Runtime Reference Manual MPS 10,0

Mitchell | 11 AUG 72
SRI/XPARC ' PAGE 15
CTX metctx

For tokens and speciai variables used with MPLMETA.
CTX mplctx

For special use in compiler == not output.
CTX pretix |

For outermost Scope of module,

currently pdetx=0, xlctx=l, X2ctx=2, lsctx=3, metctx=l,
mpletxs=5, pretvx=6.

The higher humbered contexts are used for
INCLUDE'd modules
procedures |
Format of semantic data entries: MPL declarations for the
symbol type field and its possible values can be found in the
INCLUDE file (mps,modulesymdefs,l:wn),
in first word of entry
attributes -->13 bits at position 19
frbm'riahb;to left in the.attrinute field
defned == defined id |
linked ==~ refefenced but not yet defined
const == compile=time constant
nobuﬁ == d0 not output to object file
type(5) == type of the id (see below)

word 2 of se holds system info

word 3 of se holds *V

word L of se is used for constval and dirlink

word 5 of se is}used for nwords and éontx
~word 6 of se is uéed for numarg

MPS Runtime Peference Manual ' : MPS 10,0
Mitchell ‘ 11 AUG 72
SRI/XPARC - PAGE 16

(symtypes) Types of entries

- UNDEF=0 undefinéd

Setiantic entries are initialized to zero, so type is
automatically UNDEF when entry created.

PROCD=1 local procedure
Under prectx
"*v is external entry point
(#*V+3 is internal entry point)

@contx holds the context number for local declarations
@numarg = number of WORDS of arguments

If has entry under pdctx
*V is location of procedure descriptor in dseg

This shculd be 1nitiallzed by CPREATE to hold actual
descriptor.

May have had entries under Xxlctx and x2ctx if there were
calls made on the procedure tefore it was defined., These
entries used to fixup such calls, then are "deleted" (not
output). ‘

LAB=2 1label

#V is location of first 1nstruction of the statement
following the label.

MWS=3 mnmultiword scalar
#V is loc of first word.
@nwords = number of words
POKT=l ports |
%V is loc of first word
enwords = nunher 0f words
- 8l1GCOD=5 signal code

#V is loc

MPS Runtime Reference Manual ~ MPS 10,0
Mitchell . : 11 AUG 72
SRI/XPARC : ' . PAGE 17

CREATE should initialize this cell to hold its own
segmented address. All sigcod's are in the dseg, even if
declared in a procedure,
~enwords = number of words
VAR=6 nornal identifier
'if @S const then tnis is constant and value is in @constval,'
else #V gives loc of variable
Under metctx == a special variable for compiler,
#V gives location in dseg. |
Neme indicates which variable,

‘nexttoken' == pointer to next input token (for META) .

'outword' == pointer to word holding next output (for
ouT) .

toutline' =~- pointer to string holding next output (for
SOuT). , _

FIELD=7 4d's declared as FIELD or in RECORD

if ©S const then this is a constant field and €constval
holds the field descriptor (byte pointer)

else is variable field and »V gives the loc
MODULE=6 nanes of modules
Under pdctix

if #V # O then this module was INCLUDE'd and #V = context
number for declarations in that nodule

else this module nanme was not INCLUDE'd but has been used
in CREATE or otner such statement -

if edirlink # 0 then module was INCLUDE'd and @dirlink =
hash of string used to access the module.

If the link contained (dir,file,junrk), tnen the string
will be <dirdfile followed by a zero character.

XPROC=9 external proceaure

Under pdctx

MPS Runtine Reference Manual ‘ v MPS 10.0
Mitchell 11 AUG 72 .
SRI/XPARC PAGE 18

if @dirlink # 0 then this name was listed in DIRECTORY.
and €d4dirlink = hash of string containing link fron
directory :

The string actually contains everything that was
written between the parentheses of the 1link,

@numarg = number of WORDS of args assumed (or =1 if no
calls actually made)

#V = loc of first word'of procedure descriptor in dseg.

CREATE should initialize descriptor to trap if used
before bound.

Entries under xXlectx and X2ctX used to fixup calls but not
output.

ARRAY=10 statically allocated arrays
#V contains addr of first word of array
RECORD=11l - for id used as nane of record

@nvwords contains RECORDSIZE (i.e. the number of words
‘needed to hold an instance of this recordl.

PROCV=12 variabhles declared to pe procedure
#V is loc of first word of descriptor

“Where possible (i.e. in dseg) these should be initialized
to trap.

@nwords is size of descriptor
STRING=13
~#V is loc of pointer to descriptor

Under lsctx |

literal string =- initialized by CREATE

Under other contexts == stiring variabléS‘
ARRAYV=1) - arfay.Variable (holds pointer to array)/
REGISTER=15 fixed location scalar
SIGVAR=16 .signal Variabie (holds signal code)

UXPROC=17 unreferenced external procedure == not output

MPS Runtime Reference Manual MPS 10.0

Mitchell : . 11 AUG 72

SRI/XPARC , S : PAGE 19
NODENAME=18 sSymbol used as tree name in MPLMETA construct

Under metctix.

#V gives location in dseg for name table index when
initialize the parser.

TOKEN=19 synbol used as token in MPLMETA construct
Under metctx.
#V gives location in dseg for token when initialize tne
parser.
Use of father=son linking capabilities
The se for the name of the module being complled is the root
of the tree,.

The hash index. for the module name is stored in the object
file as described elsewhere in this file. ‘

Immeaiate sons of this se are
1) ocutref XPROC's and literal strings
2) module arguments |
3) diréctdry names
if directory entry is an INCIUDE,'then tree for the
included declarations is under the se for the name of the
nodule.
L) variables declared in the module
5) procedure names
6) labels in the body of the module
sons of the procedure name se are
1) formal paranmneters
2) local declared id's
3) local labels

Records are structured as tree under the se for the record
_namne,

MPS Runtime Reference Manual - 8 ' MPS 10,0
Mitchell | o 8 11 AUG 72
SRI/XPARC | PAGE 20

The tree structure reflects the structure used in the
record declaration.
(signals) .PBS;
Significant features
Continued propagation through dynamic scope until signal
terminated,
Pass message as well as signal code,

Return value as result of signal.

.Special UNWIND signal to allow cleanup.
signal frane

A signal frame contains.

a flag sel in the return word indicating a signal frame

pointer to @he frame whose catch phrases are being eXecuted

.pointer 1o the proceSs which originated the signal

global name of signal code (segmented address)

signal message ;

a flag ihdicating whether RESUME is legal for this signal
The signal frame is always on the stack of the process whose
catch phrases are being executed.

Signai propagation and termination
A signal is said to bé terminated when sone catch statement‘
executes either o

a KESUME, or |
& branch out of the catch phrase (such s RETURN or EXIT).
In the first cése | . |

the signal frame is deleted

MPS Runtime Reference Manual ~ MPS 10.0
Mitchell : 11 AUG 72
SRI/XPARC T PAGE 21

If a RESUME is legal, then
the process which originated the signal is giveh control

Else a new SIGNAL is generated indicating attempt to resunme
after "unresumable" signal.

In the other cases

the stack of the process terminating the signal must be
unwound back to the point where the signal is being
terminated.

Before a frame is deleted, a special signal (UNWIND) is
given so thatl ahy necessary housekeeoing,can be performed.

If 2 signal is not terminated within a process, then it is
propagated Lo the creator of that process, The signal rrane
is deleted from one stackK and recreated on the other.

RESUME statement

RESUME can return a value and thus any sienal (SIGNAL, SIGNAL
POKT, or SIGNAL PROCESS) can be used in an expression.

If RESUME does not explicitly specify a value, then the
special value NULLMESSAGE is usea. If a signal is used in an
expression and gets back a NULLMESSAGE, then a MESSAGEFAULT
trap is caused. \

The same trap occurs when a PQORT is used in an expression
and fails to return a value and when a EMPTY specifies a
port containing NULLMESSAGE.

It is possible to attach a catch phrase to the signal to.
handle this trap or others. .

It will often ve the case that the signalling program is not
willing to te resumea, To make this explicit and to alliow
the system to intercept illegal attempts to0 resume, 'ERROR
may be used in place of 'SIGNAL. Thus ERROR, ERROR PORT, and
" ERROR PROCESS all bpehave like the corresponding SIGNAL
. statements, except contrel can not return be means of a
"RESUME, :

Scope of catch phrase and propogation of signals

A catch phrase cover;ng a statement list may cGcur at the
beginning of

MPS EKuntime Reference Manual ’ MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC _ ' - PAGE 22

the program body,
a procedure body, or
a block. ' | -

Such catch phrases are enabled throughout the execution of
the gstatement list, They are automatically disabled when the
statement 1list is completed or left by a branch statement.

A catch phrase wnicn covers a function ¢all or port call is
eriabied when control leaves and is disavled when control
rewurns.

A cateh phrase is never enabled Wwhen it 1s being executed,
In other words, the scope of the catch phrase does not
include the catch phrase itself,

Inplermentation

A systen routine is called to propagate signals.

This routine "calls" the innermost enabled catch phrase with
the signal code, signal message, and pointer to original
frame as argunments.,

The- C¢tch phrase is conpiled to use the p01nter %0 access
local variables of the orzaial frame.

Control returns to the system routine 1£ tne signal 1s 0 be
propagated beyond this frame,

Thue the main problem for the system routine is to determine
the entry point of the innermost enapnled catch phrase,

If control left the frame by a function or port call, then a
~cateh phrase associated w;th that call would necessarily be
the innermost one,

The reactivation location for the frame (stored as the
process PC or the return location of the frame above it on
the stack) is used to look for the presence of a catch onrase
asscciated with the call. ,

In the PpPpPlO implementation, catch phrases always pegin
with a JUMPA instruction wnich branches around the body of
the catch phrase, The system routine looks for the
presence of this instruction followinz at the reactivation
location to determine whether tnere is a catch phrase with
the call. : :

MPS Runtinme Reference Manual ~ MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC , , , ' PAGE 23

'If there is no catch phrase with the call, then the innermost
enabled catch phrase is associated with a statement list
containing the reactivation location.

To help the system routine f£find the entry point in this case,
all frames contain a pointer to the innermost enabled cateh
phrase which is associated with a statement liste.

If the pointer i1s zero, then there are no enabled statement
iist catch phrases.

A flag in the return word (which is automatically zeroed on
calls) indicates whether this pointer has been set. If the
flag is zero, then there are no enabled statement list
catch phrases.

If the signal is not terminated by the catch phrase, then it
must be provagated. If this is the last (i.e. outermost)
enabled catch phrase associated with the frame then control
ig simply returned to the systenm routine., Otherwise, control
is transfered to the innermost enclosing enabled catch phrase
{which can be determined at compile time since catch phrase
scope is lexical).

signal codes and signal variables

The signal codes name the signal. They occur as the first.
argument of the signal statement and at the head of catch
phrase cases. ‘

There are system defined codes (UNWIND, PORTFAULT, etc.) and
user defined codes.

User defined codes are simoly identifiers, There is no
special declaration for such codes., An identifier used as a
signal cannot be usea in other capacities withinrn that
context. .

Since signals can be passed betvween processes, it must be
possible to indicate that a signal code .in one process is to
be the same as another signal code in another process. . This
is simply a name binding problem and is handled by the usual
machinery (i.e. signal codes are pound by the same-
mechanisms that are usSed to bind external procedure names).

There are SIGNAL variables which can hold signal codes, o
(SIGNAL variables are to signal codes as PROCEDURE variables B
are to external procedure references). . 4

MPS Runtime Reference Manual MPS 10,0

Mitchell 11 AUG 72
SRI/XPARC PAGE 2L
‘Misé

In those caSes where a trap can be caused after control is
returned, srecial means are required to determine if there .
Wwas a catch phrase associated with the call.

Examples

PENDINGFAULT =~ control did not come back thru the same
port, |

MESSAGEFAULT == expecting message but did not get one

in the PDPLO implementation, these traps are initiated py
inline code following the call {(and following the catch
phrase if there ias one),

The trap is actually 2 call to a system routine which
generates an appropriate signal, 1If there 1is a cateh
phrase associated with the original call, then it must be

given a chance %o catch this signal. Since the pointer to .

the call is no longer available, it is instead stored by
the compiler as the address of a JUMP instruction (which 1s
actually a NOP) following the system call to produce the
trap. If there is no JUMP instruction following the systenm
call, tnen tnere is no catch phrase with the original call.

Since a test for PENDINGFAULT is always followed by a test.
for MESSAGEFAULT, there is only one JUMP instruction
produced whicih is "shared" by these two. The PENDINGFAULT
system routine knows to look past the inline code for the
MESSAGEFAULT test for the JUMP instruction.

(strings) .P8S;

This section describes a string systen for MPS which we will
inplement in order to 5et MPS off the grouna.

We intend that it be replaced by something closer to the
proposal in (DOCSTr,) at some future date,

Laneuage syntax and semantics

A variable of type STRING is meant to hold a pointer Lo 2
" . 8tring descriptor.

String descriptors are allocated from a "heap", either
automaticz2lly or by systen functions accessible te the
programmner. ;

A STRING variable gets a descriptor allocated for it on

MPS Runtime Reference Manual ’ MPS 10,0
Mitchell , 11 AUG 72
 SKRI/XPARC ' ~ PAGE 25

procedure entry (or process creation), and deallocated on
procedure exit (process destruction).

A dimensioned string, like a dimensioned array.;gets
its hody allocated in the same way. : -

Trne automatic allocator actually associates with each
frame or process a list of the storage allocated for it,
S0 the right thing happens even if 3 string variabvle is
subsequently used to hold a pointer to a user-allocated
descriptor.
Types of strineg descriptors:

1) Explicit=string descrintor

point3 to block of characters

Fields

Front

first character of text block which is contained in
‘this string '

Engd

first character of text block which follows this
string

Maxend

maximum value for End before overflow this text
plock

Pointer
address of text block

Ident
This field is avallable to hold program=-specific
information. It can be written and read by user
programs and is intended to hold information which
will help vhe program identify the string,

2) Implicit=string descriptor
Fields

" ReadFunction

MPS Runtime Reference Manual ‘ MPS 10.0
Mitchell ' v : : 11 AUG 72
SRI/XPARC » : PAGE 26

Descriptor of function used to read characters in
the strineg.
WriteFunction

Descriptor of function used to write characters in
the string.

LengthFunction

nDescriptor of function used to find and set the
length of the string.,.

- Ident
Same as above.
on a read access, the system returns the result of
ReadFuncticn(String, Position). |
on a write access to the string, the system calls
WriteFunction(String, Position, Char),

When the length of the string is requested, the systenm
returns

LengthFunction(string, 0).
To set the length of a string, the system perfornmns
LengthFunction(string, 1, Nchars).

The LengthFunction is intended as a catch=all for which
additional uses may be found in the future.,

There is no special syntax associated with strings.

Assignnent for strings is defined as simply copying the
pointer to the descriptor.

Mention of a string variable refers to the pointer.
Special}action is taken for literal stringse.

For the moment, 1l1literal strings may appear only in the
program, not as initialization or parameter values.

- Functions to be provided

Where 2 string is 1listed as an argument, 2 pointer to a
string descriptor is actually required., . . :

L E E & K X R & N K 1

MPS Runtime Reference Manual : L MPS 10.0
Mitchell ; ' B 9§ AUG 72
SRI/XPARC PAGE 27
Functions for setting the fields of string descriptors
MakeStrDesc(String, Front, End, Maxend, Pointer)
The descriptor pointed to by String is made an
explicit=string descriptor with fields set to the values
passed for the other argunents,

(The Ident field is unchanged by this overation. It is
initialized to Zero when the descriptor is created.)

The primary use of this function will be t0 make a
descriptor which points to a text body in a prlvate
storage area.

(I'm afraid this will require knowledge of how cnaracbers
are counted in text blocks.)

MakeImpStrlesc(8tring, ReadFecn, WriteFcn, LengthFen)
The descriptor pointed to by String is made a :
implicit=string dGescriptor with fields set to the values
passed for the other arguments,
(Again, the Ident field is unchanged.)
SetDescIdent(String, ldent)

The Ident field of the descriptor is set to the given
value,

NumWords ¢ WordsfForBody(Nchars)

Returns count of how many words will be required to held
the specified number of charactvers.

Functions for getting info from siring descriptors
From any string descriptor
STRTyve(String)
STRIdent (String)
STRLast(String)
Returns the index of the last charaéter in the string.
STRLength (String) |
Rethrns the current length of the string.

The values of STRLast and STRlength are calculated from

- MPS Runtime Reference Manual , MPS 10.0
‘Mitchell L ' 11 AUG 72

SRI/XPARC ' . - PAGE 28

the values of the Front and End fields for explict type
“strings and from the value of LengthFunction for inmplicit

type strings.,

~ The following functions sinply provide access to various
fields of the descriptors.,

From explicit=string descriptors

STRFront(string)
STREnd (String)
STRMaxend (String)

STRPointer(String)

From implicit-string descriptors
STRReadFen(string)
STR¥WriteFcn(String)
STRLengthFcn(String)

Functions,implementing language features

The following functions are needed to implement string
features which will soneday be added to0 the language.

Functions for accessing characters

These tWo functions are used to implement stringfexp) as
a left hand side in MPL.

NthChar (Strinz, Position)
10ads the character from the specified position. If

Position is not within the bpounds of the String a
special value EOS (End Of String) 1s returned,

setNthChar(sString, Position, Char)

Writes the character at the specified position. If
Position is peyond the end of String, an error is
generated.

Functions for string construction
SetStryull(string) '

Resets the string, i.e. sets End=Front.

MPS Runtine Reference Manual ' MPS 10,0

Mitchell : 11 AUG 72

SRI/XPARC | PAGE 29
setStriength(String, Nchars)

Sets the length of the string to Nchars, wnich must lie
in [0, Maxend-Front/.

AppendString{To, From)
AppendcChar(To, Char)
Appendsubstring(To, From, First, Last)

If First<o, First is taken as O3 if Last>STRLast(To),
L.ast is taken as STRLast(t0),

"AppendBlanks(To, Count)
Functions for creating and destroying strings
The lifetime of a declared string is limited to the
lifetime of the scope in which it is declared, 1In other
words, when a procedure returns or a process is destroyed
all strings which were declared in that vrocedure or
process are automatically deleted,

The following functions provide for the creation of strings
whose lifetime is explicitly controlled py the programmer,

‘refstring ¢ MakeString()

The function MakeString returns a pointer to a descriptor
for a null string.

Releasestring(refsiring)
The referenced string is deleted.
Functions for general storage allocation
There are also some procedures for allocating and
deallocating storage on the heap, whose use 15 not linmited
to strings.
refblock ¢ MakeBlock(n)

Returns a pointer to a newly created block of n words.
The block is guaranteed to contain only Zzeros.

ReleaseBlock(refplock)
Deletes the referenced block. As usuél, the programmer

1s resronsiple for ensuring that no pointers to the block
. remain, ‘

MPS Runtime Reference Manual MPS 10.0
Mitchell ' ' ‘ 11 AUG 72
SRI/XPARC . ~ -~ PAGE 30

Splitslock(refblock, n)

The referenced blecck is split., After the operation,
refblock refers to an n=word block consisting of the
first n words of the old block; the rest of the old block
is deleted, If n is greater than the length of the
block, an error occurs.

Blocksize(refblock)
Returns the length of the block in wordse.
Implementation

The RH of the syStem word of a procedure frame l1s the head of
a chain of automatically allocated blocks for that procedure.

This inecludes string descrlntors and suring and array
bodies.

The allocator chains all the blocks it creates through a
pointer in [=1,18:0) of the block,

[=1,17:18] 1s used for the block lengtn and [=1,1: 35} for
a free flag,

There is a bit in the retufn word in a frame which is cleared
by PUSHJ and set when the first block is allocated.

- The system and return words in the rfake frame in a dseg are
used in the sane way for the automatic storage for the
process.

The compiler generates a different return instruction for a
procedure return if it is possible that automatic storage hs.
been allocated.

The deallocator must check the bit, since in the future it
may be possible to have automatic storage which does not
show up eXplicitly in the declarations.

The DESTROY procedure nust check the bit for process
storage,

For the moment, the literal strings appearing in a progran
are collected together under a nevw reserved context in the
symbol table,
The context nunber is 3; the "name" is the text of the
literal; the "value" is the dseg 1ocatlon for the pointer
to the descrlntor. ,

When a process 1is created‘from the program, the CREATE

MPS Runtime Reference Manual : MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC » .. PAGE 31

procedure is resnon81b1e for allocating descriptors and
bodies for the strings, copying their text (which appears in
the symbol table) into the body area, and setting up p01nters
in the dsez.

The storage allocated in this way persists for the lifetine
of the process Jjust like static string variabvles.

(fsp) «PB3;

The free storage package provides a simplified zone type
gtorage allocation systen, :

The following procedures are found in (MPS, FSP,).

MakezZone (zone,size)
The "size" words of storage starting at location given by the
(virtual memory) address "zone" 1s initialized to be 23
storage Zone. After this has been done the zone can be used
as a parameter of the following procedures.
Links used by the free storage package are all maintained
relative to the startiing location of the zone., Thus the zone
nay be relocated without Jdisturbing its use.

Generates the following signal:

BadZoneSize == on FDP1l0 size must.be between 6 and 100000B
words. : |

node ¢ MakeNode(zone,size);

Returns (virtual memory) address of node of "size" words of
user storage in the specified zone,

Generates the following signals:
BadNodeSize =- size <z 0,
NéRoomInZone == cannot find space for node of size words.
NodeSize (zone,node) ; |
Return the size in Wwords of the node.
FreeNode(zone,node);
Release the storage occupied by‘tne node.,

SplitNode(zone,node,size);

MPS Runtinme Reference Manual : MPS 10,0
Mitchell . 11 AUG 72
SRI/XPARC : ' - PAGE 32

Split the specified node into two sections == the first of
which is a node of siZe words, the second of which 1s freed,

v(names).PBs;

This section describes how processes, as well as variables and
procedures in them and the modules from which they were created

are named and accessed.
The following rules and their consequences apply:

(a) The context in which a system routine is called, along
with complete qualification within that context are poth
required t0 name a process,

Process naming syntax:

processname :3= [processid/ $(', processid);

processid ::= ,

If the optional, leading processid is not present (i.e., if
the processname begins with a ".") then the context within
which the name match is to be performed is the root of the
segment naming tree., Otherwise, the conteXt within which.
the name is to be matched is the context of the process
whose dseg address is in the D register ("whose static data
is current" as opposed to "which is in control" = the L3
register is the zddress of the dseg of tne process wnich is

in control).
(b) Given the segment number of a dseg (possibly a stack

segment) = which may be obtained by coercing a processnane,
an cbject in the dseg can be referred to by the syntax

objectname ::= prccessname $('e. LID)3

Since a processname must be completely qualified, there is no
anbiguity in the meaning of the .ID's.

Mcdule and process nanes:
A complete TENEX file namne is a nodule name, A simple

- identifier used as & module name nmust be pound to a TENEX
file name, The mechanisms for accomplishing this are

(a) at compile time:
the directory of a MPL program contains an entry such as
(ModuleName) (directory,file) - |

Then any use of ModuleName is equivalent to using the

MFS Funtime PReference Manual MPS 10,0
Mitchell S \ 11 AUG 72
SRI/XPARC o ‘ PAGE 33

TENEX file <directory>file with the normal TENEX
conventions on file names and completion of incomplete
file nanes.

(b) at execution time:

The run=time segment space is accessed to deternmine if
there exigts a process whose name is ModuleName which is-
accessible by the conventions stated below for segment _
names, If such a process exists, a match has been found.
Otherwise, a stack of directory files is searched to map -
the module narme to a file name, A directory file is a
sequential text file with entries of tne form ’

‘{ .ID ') '(directory',file [!,nanej')

on separate lines (anything at all can follow the second
right parentnesis). ‘

A directory file is searched from l1line O to the last line
of the file, in order. If no match is found in the nost
current directory, the next most current directory is
searched until the directery stack is exhausted, at which
time a2 signal (UndefinedModule) i1s generated. ' g

Files can be pushed onto the directory stack or removed
by the MPL procecures NewDirectory(STRING filename) and
RenovedDirectory (STRING filename)l, If the argument to
RemoveDirectory is the null string, the directory file on
the top of the directory stack is removed; othewise the
named file is deleted from the directory stack, if in it.
NewDirectory puts the name of the file on the too of the
directory stack after first removing any occurrence of
the same name in the stack.

Binding Proedure Nanes

An external procedure p which is not declared as a procedure
variaple and is used in a2 process X is bound at run-time when
it is first called from within X. This can be overridden by
an explicit BIND statement at any time or by a call on the
system-supolied procedure BindProcedures{dsegname).

If there was an entry for p in X's compile=-time directory
then p will be bound to the procedure in the declared file,
if an instance of it exists. If no instance of tphat file
exists, the signal ModuleNotCreated is generated. 1If p had -
no directory entry in X, then the system will attempt to bind
p by finding an instance of a procedure wtih the same name,
The name is sought according to the following algorithm:

{NameSearch):

MPS Runtime Reference Manual o | "~ MPS 10,0

Mitchell

11 AUG 72

SRI/XPARC | _ ~ PAGE 3L

(a) X's sibline processes are Ssearched for an object named
p of the same type as p in X. 1If exactly one such is ‘
found, X.p is bounad to it; if more than one such is found,
a2 signal, Ambiguouslame is generated. -

{(p) If no mateh for p is found among X's sivblings, then X's
parent is searcheda for a match; 1if none is found, X's
grandparent is searched, etc. If the root of the segnent
tree is reached without a match, then the signal
kesolutionFault is generated.

Whenever an unbound procedure variablie is called, the :
ResolutionFault siznal is generated so that the binding nay’
bpe done by any program willing to catch the signal.

(bootstrap).PBS;

This section gives an overview o©f the bootstrapping process by.
which the MFS comes into existence, both initially, and later
whenh MPS exists to bootstrap itself, ‘

The non=MPS bpeginnineg

An 110 progZram (on the PDP=10) maps into the "bottom" of
memory the following files:

~ MPLNUCLEUS

this program will be given control after the L10 progran
has finished. It completes the job of creating the MPS
environment. It is described more fully in the next

section.

MPLRUNTIME

this program contains the run~time support code and
system transfer vector for MPS, The NUCLEUS will help it
1o set up the environment.

SEGRUN

This is the segmentation machinery. MPLNUCLEUS will pass

on information given it about the whereabouts of

| MPLMUCLEUS, MPLRUNTIME, and SEGRUN 8o that SKEGRUN can

The
for
The
are

initialize the segmet tables correctly.

L10 program then zllocates sSpace at the "top" of memory
data segnents for each O0f tne three above MPL prograns.
addresses of each of the programs and their data segments
placed in a fixed place in the MPLNUCLEUS dseg.

A stack segment is also allocated beiow the data segments at

MP3 Runtimé Reference Manual : | , MPS 10.0
Mitchell o 11 AUG T72.
SRI/XPARC ; o PAGE 35

the top of memory., It kelongs to MPLNUCLEUS and its address
will be placed in the standard place in MPLNUCLEUS' dseg.

The MPS bootstrapping NUCLEUS

Control is given to tvhe MPLRUNTIME "process" so that it
- can initialize the system transier vector, the 8D reglster,
and the ARGCHECX and XWDTAB vectors.

All procedure descriptors should either be bound by the
NUCLEUS (which means that it must know all the uses of SEGRUN
from within MPLRUNTIME and vice versa) or should cause a trap
which the NUCLEUS will translate into a call on the BIND :
routines in MPLRUNTIME (in this case, the NUCLEUS only needs
to know about a few procedure descriptors; all others will
be bound as they are used). '

Initializing the MPL runtinme package

Initializes the system vector, the ARGGHECK and XWDTAB
vectors. .

Initializing the segmentation machinery (SEGRUN)

SEGRUN can use almost all the normal MPLRUNTIME facilities to
initialize itself. It is passed the adaress of a table of
pairs of addresses (fileseg, dataseg) where, 1f fileseg=0, it
is ignored, and the associated dataseg address is taken to be
the address of a stacKk segment, and if fileseg==1l, the entry
marks the end of the tabhle. ’

Creating and starting the MPS debugger (the first true MPL
process) ‘

Once the MPL environment has been established, the NUCLEUS
CREATES the MPS DEBUGGER, using all the normal MPL
facilities.‘ , ‘

