PICO MANUAL

William M. Newman

Robert F. Sproull

July 1974

Xerox Palo Alto Research Center

Pico Manual Page 2

TABLE OF CONTENTS

PREFACE 4
SECTION 1: INTRODUCTION 5
SECTION 11: BASIC GRAPHICS FUNCTIONS 9
GRAPHICAL OUTPUT -- Segment-handling functions 9
OPENSEG 9
CLOSESEG 9
DELETESEG 9
APPIENDSEG 9
POSTSEG 9
UNPOSTSEG 9
RENAMESEG 9
CLEARSEGS 10
GRAPHICAL OUTPUT -- Updating the display 10
UPDATE 10
GRAPHICAL OUTPUT -- Graphical primitives i0
MOVETO 10
DRAWTO) 10
DRAWTEXT 11
BEGINFILL : i1
ENDFILL i1
SETCOLOR . 11
SETBACKGROUND 12
GRAPHICAL OUTPUT -- Transformations 12
DRAW) . ' 13
SETWINDOW 13
GRAPHICAL INPUT 16
READPOSITION ' , 16
READSTROKE i6
RECOGNIZE 17
HITDETECT 17
SETRECOGNIZER : 18
CLEARINK 18
HARD CoOPY 18
PLOTSEGS 18

MISCELLANEOUS 18

Pico Manual Page 3

SETFONT i8
CHARPROPERTIES : . 18
RESETGRAPHICS 18
INITGRAPHICS 19
GSTYPEFORM 19
SECTION II1: USE OF PICO 20
COMPILING AND LOADING 20
GENERATING HARD COPY 21
SECTION IV: ADVANCED FUNCTIONS 22
CURVE DRAWING) 22
DRAVCURVE 22
TRANSFORMATIONS 22
SETMATRIX 22
SAVEMATRIX ‘ 23
RESTOREMATRIX 23
TRANSLATE 23
SCALE) 23
ROTATE 23

COS 23
SETVIEWPORT 23
INPUT | | 24
GETEVENT 24
DELETEVENT 25
CLEAREVENTS 25
SETINPUTPARAMETERS 25
SCREENTOPAGE 25
REFERENCES ' 25
APPENDICES 26
Appendix 1: Free Storage Routines) » 26
Appendix 2: Floating-point Routines 28
Appendix 3: Training the Character Recognizer 30
Appendix 4: Creating .CC Font Files 32

Appendix 5: The XPLOT File Structure | 33

Pico Manual Page 4

PREFACE

Pico is a graphics package for people who want to write interactive
graphical programs, and for people who have programs to which they would
like to add graphical input/output. At present only BCPL programs may
call the Pico package, but versions for use with INTERLISP and Smalltalk
are on the way. Pico can be used with the following hardware systems:

{(a) Any standard Alto, preferably wth 64K menory;
(b) Ben Laws' run-code display and its parent Alto;
(c) The color graphics Nova systen.

Pico can handle inputs fromn nice and tablets; it can generate graphic
hardcopy with the aid of the XGP.

About this manual
You will find that this manual consists of four sections:

I: An introduction, where some of the essential features of Pico are
explained with the aid of examples. Everyone should read this
section.

II: A concise description of the basic functions of Pico. This section
should also be read by every potential user. Once you have read it,
you should be able to write your first program using Pico.

I11: Instructions on how to use Pico -- where to find the necessary
files, what to .load with your compiled program, and so forth. You
will need to read this section in order to run your program.

IV: A description of the more edvanced features of Pico. You won't need
these unless you wish to manipulate curves, perform speclial
transformations, or construct special input schemes.

At the end are several Appendices, describing the free storage system and
floating point routines that are integral to Pico, the online character
recognizer, and tha formats of font and hard-copy files used by Pico.

We hope this arrangement of the manual is agrecable to all. Some readers
may neced additional background information; if so, they will find some
useful references in the Bibliography. Comments about Pico and about this
manual will be gratefully received by the authors.

Acknouwledgenents

Pico was designed and implemented by the following members of the Graphics
Systems Group: Patrick Baudelaire, Mike Cole, Bob Flegal, William Newman,
Dick Shoup and Bob Sproull. Figures 3, 8 and 9 in this manual were drawn
by Bob Flegal with the aid of Smalltalk.

Pico Manual INTRODUCTION pPage 8§

SECTION I: INTRODUCTION

Pico contains functions both for generating graphic output on a display
screen or on the XGP, and for handling graphic inputs from a tablet or
mouse. These two classes of function, input and output, are kept almost
completely separate. VWe believe programnmers will find this scparation
convenient. We also think it is easier to explain Pico by treating input
and output separately: we will discuss output first.

Pictures gencrated by Pico are made up of basic entities of three kinds,
lines, curves and text; areas enclosed by lines and curves may be filled
with a uniform gray level or, if you have the hardware to do so, with a
color. The functions that define these basic entities are called
primitive functions. One can think of these functions almost as if they
add lines, curves and so forth directly to the information on the screen.
This is not quite true, however. Instead the information is deposited in
a display file; the screen is not updated from the display file except
when the function UPDATE is called. Thus you can obtain a simplified view
of the organization of the system by studying Figure 1, ignoring the light
gray boxes.
gfscqwcrtw
L Bandling
furcticps!
ST B
"y BCPL g
S Primitive
= -

input hendling functions
i ikl

o

! sy DiSplay

{ i

1l ol |

= Transfor== Lb{UPDATE [display

. I

progran o !nation &ﬁ file
Travsfor- 'fi‘

Comation e CHIpRING

Turctices; i* ;

Figure 1. mwmphumm.n

il

Since we are dealing with filled areas, it is possible for graphical
enities to overlap. Where two or more entities overlap, a simple rule
determincs what is seen: the thing most recently added to the display file
is always visible, and may hide things added less recently. Thus to
display text on a gray background, one calls the primitives to generate
the gray areca, then calls the text-display function. This 1is illustrated
in the example that follows.

The display file is not just a simple list of graphical primitives: it can
be divided into segments. The use of segments has two major advantages:
it permits individual parts of the picture to be changed independently of
each other, and it allows things to overlay each other independently of
execution sequence. The functions for manipulating segments include
routines to create new segments, replace segments, delete them, add to
them and change the order in which they are overlaid. Note that none of
these functions has any immediate effect on what is visible on the screen:
after the appropriate changes to the display file have been made, the
UPDATE function must be called to cause the screen picture to change.

Pico Manual INTRODUCTION Page 6

Primitive functions allow pictures to be defined in screen coordinates.
On a standard Alto display, for exanple, the screen coordinate system
places (0,0) at the bottom left-hand corner of the screen, and (605,799)
at the top right. This is not always convenient. Transformation routines
are therefore provided so that parts of the picture may be scaled and
rotated, and so that the whole picture may be defined in a coordinate
system independent of the particular display in use. The light gray boxes
in Figure 1 show how transformation and segment-handling functions relate
to the rest of the systen.

This completes cur brief outline of the graphical output facilities for
BCPL. The following example illustrates how they may be used. It
generates the "STOP" sign shown in Figure 2. The functions used in this

exanple are described in more detail in Section II.

GET "GSDEFS.SR"
LET MAIN() BE [
INITGRAPHICS()
OPENSLG(1)
MOVETO(50,0)

DRAWTO(50,200)

SETCOLOR(GRAY)
BEGINFILL()

MOVETO(0,200)
DRAWTO(0,275)
DRAWTO(100,275)
DRAWTO(100,200)
DRAWTO(0,200)
ENDFILL{()
SETCOLOR(BLACK)
MOVETO(35,230)

DRAWTEXT("STOP")
CLOSESEG()
POSTSEG(1)

UPDATE()

This file contains the definitions

needed for the use of Pico.

Initializes the graphics system.

This states our intention to begin
creation of segnent number 1.

This sets the current (x,y) position
to the botton of the post.

This adds to the display file a line
from (50,0) to (50,200). The current
position becomes (50,200).

This function sects the intensity of
the sign's rectangular area.

This indicates the beginning of a
"filled" area for the stop sign. The
following MOVETO and DRAWTO commands
specify the outline of the sign.

Signals the end of the polygon.
Specifies intensity for the STOP text.
Specifies the starting position of the
text.

Causes a text string to be added to
the display file.

Specifies the end of creation of
segnent 1 of the display file.
Specifies that the contents of segment
1 are to be shown on the screen the
next time the screen is updated.
Updates the screen by scan-converting
the information in all segments that
have been POSTed.

Figure 2.

Pico Manual INTRODUCTION ~Page 7

The next example shows the usc of one of the graphic input functions of
Pico, use of the DRAW function to perform simple transformations, and also
shows how to generate graphic hard-copy. It uses Pico's online character
recognizer. We assume that the recognizer has previously been "trained”
to recognize two symbols, a triangle and the letter "P", and that a file
SYMS.RC has been generated, containing the results of this training
session. Now when the user draws a triangle, such as the example shown in
Figure 3, a logic symbol for an inverter is added to the picture on the
screen. When the user prints "P", a file is generated for producing XGP
hard-copy.

Figure 3.

GET "GSDEFS.SR"

LET MAIN() BE [

INITGRAPHICS()

SETRECOGNIZER("SYMS.RC") The recognizer tables are loaded from the file
generated during the previous training

session. .
LET SN=0 Initialize the segment name sequence.
[LET V=RECOGNIZE() Wait for the user to draw a symbol, then

return a vector containing information about
the symbol.
SWITCHON V>>EVENT.CODE

INTO [The CODE entry in V contains the numeric code
of the recognized symbol.
CASE &T: The user drew a triangle (trained to return
code "T")
SN=SN+1 Create a new segnent name.
OPENSEG(SN) Start a new scgment.

DRAW(INVERTER, TRANSLATE, V>>EVENT.XLEFT, V>>EVENT.YBOTTOM)
Draw an inverter, using the procedure given
below; position the symbol with its bottom

left-hand corner aligned with the
corresponding corner of the drawn symbol.
CLOSESEG() Close the new seqment.
POSTSEG(SN) Add it to the list of posted segments.
UPDATE() Update the screen picture.
ENDCASE
CASE SP: The user drew a "P".
PLOTSEGS{"INV.XB") Output a file INV.XB for the XGP.
ENDCASE
]
] REPEAT Repeat this loop endlessly.
]
AND INVERTER() BE [Define the procedure to draw the inverter
symbol.

MOVETO(0,0); DRAWTO(0,50); DRAWTO(50,25)
DRAWTO(51,23); DRAWTO(53,23); DRAWTO(54,25)
DRAWTO(53,27); DRAWTO(S51,27); DRAWTO(50,25)
DRAWTO(0,0)

]

Pico Manual INTRODUCTION Page 8

Figure 4 shows a typical plot generated after a sequence of interactions.

{>,

> B

Figure 4.

Pico Manual BASIC GRAPHICS FUNCTIONS Page 9

SECTION I1: BASIC GRAPHICS FUNCTIONS

This section describes the basic functions of what may be called the
kernel of Pico. Programs written using this kernel will work on all three
classes of display mentioned above. Each display, however, has certain
characteristics of its own: these are menticned as appropriate below.

GRAPHICAL OUTPUT -- Segment-Handling Functions

The display file is divided into secgments; cach segment can be thought of
as an ordered collection of prinitive graphical entities. To crecate a
seqnent, the programner ‘“opens" a specific seqgnment, specifies the
primitive entities that are to be added to the scgnent, and then "closes"
it. FEach segment is assigned a 16-bit “name” by the programmer; this name
is used if later reference to the secqnent is necessary.

Note well: none of the following scgment-handling functions changes the
image visible on the screcen,

OPENSEG (segment-name). This function creates a new segment with the
specified name. If a seqment of the same name already exists, it
will be replaced by the new segnent. All subsequent graphical
primitives are added to this new "open" segnent. Before opcning the
new segment, any other segment still open is closed.

CLOSESEG (). This function closes the currently open segment. Any
existing scgment with this name 1is deleted. If no segment is open,
CLOSESEG has no effect.

DELETESEG (segment-name). This function deletes the specified segment.
If the specified segment does not exist, this function has no effect.
DELETESEG never deletes the "open" segment.

APPENDSEG (segment-nane). This function opens the specified segment for
additions. All subsequent graphical entities are added to the end of
the seqguent. If the specified segment does not exist, APPENDSEG 1is
equivalent to OPENSEG.

POSTSEG (segnent-name). This function adds the specified segment to the
list of those that should be displayed on the screen. This 1list is
called the "posted" list. If the specified segment is still open at
the time of the POSTSEG call, it is closed before posting. Thus the
sequence OPENSEG, <graphical primitives>, POSTSEG is sufficient. 1If
the specified segnent does not exist, this function has no effect.

UNPOSTSEG (seqment-name). This function renoves the specified segment
from the posted list. The graphical entities within the segment are
unaltered. At some later time, the same segment may be posted again.
If the specified segment does not exist, this function has no effect.

RENAMESEG (old-segnent-name,new-segnent-name). This function has no
effect on the contents of the display file, but merely changes the

Pico Manual BASIC GRAPHICS FUNCTIONS Page 10

name of the seqgment specified by "old-scgment-name" to "new-scgment-
nane." If a segnment with nane "new-segment-name" already exists, it
is deleted. If no segment named "old-segment-name" exists, the
RENAMESEG function has no effect.

CLEARSEGS (). Deletes all seagnments in the display file, including any

segmnent currently open. No changes are made to the image on the
display screcn.

GRAPHICAL OUTPUT -- Updating the Display

UPDATE (). This 1is the only function that causes the screen to be
updated, other than PLOTSEGS which performs an UPDATE in the process
of generating a hard-copy file (see below). If any segments have
been altered (created, unposted, posted, deleted, etc.) since the
previous call to UPDATE, the picture on the screen is changed
appropriately.

Each gqraphical object in the display file has a “priority" associated with
it. When the screen is UFDATED, it may happen that two distinct graphical
objects may appear at the same spot on the screen. In Fiqure 3, for
example, the characters "STOP" and pieces of the sign polygon fall on the
same dots on the screen. In this case, the graphical object with the
highest priority is displayed. The priority rule is very simple:

- Within a segment, the priority order corresponds to the order in
which the graphical objects were added to the segment; objects added
last have highest priority and thus overlay objects added earlier.
It is for this reason that the characters STOP take priority over the
sign polygon.

- Between segments, the signed 16-bit integer name is used to decide
priority; segment A overlays segment B if A > B. The RENAMESEG
function 1is provided so that inter-segment priorities may be
rearranged.

GRAPHICAL OUTPUT =-- Graphical Primitives

Graphical primitives are used to specify straight and curved lines,
polygons, filled curves (figures whose outlines are curves), and text.
These entities are transformed, clipped, and then added to the currently
open seqment. The color or intensity of entities 1is defined with the
SETCOLOR function.

MOVETO (x,Y)

DRAWTO (x,Y)
These functions specify the coordinates of line endpoints; MOVETO
sets the "current position® to (x,y). DRAWTO draws a vector from the
current position to (x,y) and then sets the current position to
(x,y). The coordinates are signed 16-bit quantities; since they will
typically be transformed (sce below), the coordinate system can be
chosen by the programner.

Pico Manual BASIC GRAPHICS FUNCTIONS Page 11

DRAWTEXT ("text-string")
The specified text string is displayed, starting at the current
position, and then in subsequent Horizontal character positions. Note
that no transformations are performed on characters, other than the
translation implied by setting the starting position with a MOVETO.
A standard font is used unless the program indicates otherwise with
the SETFONT function (see below).

BEGINFILL ()

ENDFILL ()
These functions permit MOVETO and DRAWTO functions to be used to
specify a filled polygon. A simple example of polygon specification
is BEGINFILL MOVETO, DRAWTO, DRAWTO, DRAWTO, ENDFILL. This would
normally produce a three-sided polygon. If the locations specified
by the initial MOVETO and the final DRAVWTO do not coincide, however,
Pico automatically inserts a DRAWTO to close the polygon. The
examples below demonstrate this.

"Holes" may be specified inside polygons by means of several MOVETO,
DRAWTO, DRAWTO, DRAWTO... sequences within one BEGINFILL, ENDFILL
- pair. Thus we can produce Figure 5 with the following statements:

BEGINFILL()
MOVETO(0,0); DRAWTO(20,40); DRAWTO(40,0);
MOVETO(10,10); DRAWTO(20,30); .DRAWTO(30,10);
ENDFILL()

BLER ORI
il
’g;il‘ i

Figure 5. " Figure 6.

The closed curves specified within one BEGINFILL, ENDFILL pair may
cross, producing effects such as Figure 6, in which the inner
triangle of Figure 5 has been displaced.

SETCOLOR (gray-level)

SETCOLOR (rcd-componcnt,grecn-component.blue—component)
The SETCOLOR function may be used with a single argument to set gray
levels between 0 (the default value, representing black) and 255
(representing white). Three manifest constants, BLACK, GRAY (=127)
and WHITE, may be used where appropriate. The effect of SETCOLOR
will vary somewhat with different output devices: the color graphics
system, if used in black-and-white mode, will generate 256 different

Pico Manual BASIC GRAPHICS FUNCTIONS Page 12

gray levels, the run-code display produces 32, but the XGP and the
standard Alto display produce only eight dot patterns of differing
densities. Note that large black areas do not reproduce on the XGP.

With three argunents, SETCOLOR may be used to generate colors on the
color graphics system. Components nust be in the range 0 to 255.

SETBACKGROUND (gray-level).

SETBACKGROUND (red-comnonent.qrecn-component.blue-component)
This function speccifices the intensity of the background, 1.e. the
intensity that 1is displaved where no graphical entity 1is visible.
Values have the same ranqge and interpretation as in the SETCOLOR
function. ELither WHITE (the default value) or BLACK should be used
with the standard Alto display, to save menory.

SETCOLOR and SETBACKGROUND mav be called at any point in the program. In
certain situations their effect is deferred, however: SETCOLOR, if called
after a BEGINFILL, will take effect only after the corresponding ENDFILL;
the effect of SETBACKGROUND is seen only when UPDATE is next executed.

GRAPHICAL OUTPUT -- Transformations

The first example of Section I defined a picture entirely in the screen
coordinate system. This system is always in effect unless the program
specifies otherwise. There are three main reasons why you may wish not to
use screen coordinates:

1. You may wish to use synhols that are defined in local coordinates,
and that are to be scaled, rotated or translated before they are
displayed, like the 'inverter' in our second example.

2. You may wish to define pictures too big to fit on the screen, and
then to sclect parts of such pictures to be displayed at various
enlargements.

3. You may wish to write prograns that are not affected by the
different screen characteristics of the different displays.

Pico includes a number of transformation functions that cater to these
needs. To understand them, it is important to recalize that Pico in fact
allows you to look through a conceptual window at a large page of
graphical information. This page, and the rectangular window onto it, may
use a coordinate system quite different from the screen's. Normally one
will define the window size with the SETWINDOW function, before opening
the segments on which this window operates. When Pico constructs a
segnent of display file, it transforns everything into the page coordinate
system; then it ‘clips' away everything lying outside the window, and
transforms the rest into screen coordinates. If, as 1in our earlier
exanples, SETWINDOW is not called, Pico uses default values that equate
the page and screen coordinate systems.

Symbols included in the page information must be transformed from their
local coordinate system into page coordinates, and Pico provides a DRAW

Pico Manual BASIC GRAPHICS FUNCTIONS Page 13

function to do this: DRAW uses the notion of describing symbols as display
procedures (sce Reference 1). Essentially, every time a symbol is to be
added to the currently open seqnent, a call is made to DRAW, specifying
(a) the name of the procedure defining the synbol, and (b) the
transformations to be applied to the symbol in order to place it correctly
in the page space.

The full form of the DRAW function's calling scquence is as follows:

DRAH(proccdure—name,proccdurc-arql.procodure-argz....
SCALE,sx, [[sy,] sw,]
ROTATE, theta,
TRANSLATE, translation-x, translation-y)

where:

'procedure-nane' is the name of the display procedure, and
‘procedure-argi’ etc., are its argunents, if any;

sx/sw and sy/sw are the scale factors in the x- and y- direction;
if sy is omitted, the procedure is scaled by sx/sw in both
directions, while if both sy and sw are onitted, sx is used as
an integral enlargement factor in both directions;

theta is the anti-clockwise rotation in degrees;

translation-x and translation-y are translations in the x-and y-
directions.

The DRAW function assembles all the transformations together into a
single matrix, combines this with any existing transformation, and
then calls the named procedure. The resulting transformation 1s
appliecd to all the primitives called by this procedure. When the
procedure returns, DRAW restores whatever transformation was
previously in effect, and then itself returns. This mechanism
permits display procedures to include calls to other such procedures
via the DRAW function.

The full form of the DRAW calling sequence is rarely necessary. Any
identity transformations may be omitted, and the display procedure
need not have arguments., If two or more transformations are given,
they will effectively be performed in the order specified. The order
given above, SCALE-ROTATE-TRANSLATE, is the normal sequence to use in
transforming symbols.

The SETWINDOW function is called as follows:

SETWINDOW (xleft,ybottom,xright,ytop).
This function defines a rectanqular window onto the page information,
using page coordinates. The bottom Jleft-hand corner of this
rectangle is at (xleft,ybotton), and the top right-hand corner is at
(xright,ytop). All infornation lying outside this window is excluded
from the displayed picturec.

Pico Manual BASIC GRAPHICS FUNCTIONS Page 14

The following program illustrates the use of SETWINDOW and DRAW. It
generates the output shown in Figure 7 overleaf.

GET “GSDE%S.SR"

LET MAIN() BE [
INITGRAPHICS()
SETWINDOW(-750,-1000,750,1000)
Set up a window 1500 x 2000 units, centered at
the origin of the page coordinate space.
OPENSEG(1)
DRAV(TRIANGLE, "1®, TRANSLATE, -100,100)
Draw the TRIANGLE symbol, positioned at (-
100,100) and labelad with the figure "1™,
DRAW(TRIANGLE,"2",SCALE, 2,3, 1RANSLATE, 200, 200)
Draw the trxdnqlc at (200,200) at 2/3 full size,
labeled 2%,
DRAW(TRIA\G[E "3" SCALE,,4,3,ROTATE, 30, TRANSLATE, 50,-600)
nrdw the triangle, scaled by 2 and 4/3 in the x-
and y-directions, rotated anti-clockwise through
30 degrees, and positioned at (50,-600). Label
this triangle "3".
POSTSEG(1)
UPDATE()
]

AND TRIANGLE(STR) BE [Now define the TRIANGLE display procedure.
MOVETO(0,0)
DRAWTO(100,400)
DRAWTO(200,0)
DRAWTO(0,0)
MOVETO(100,120) Position the label.
DRAWTEXT(STR)
]

Pico Manual BASIC GRAPHICS FUNCTIONS Page 15

Figure 7.

Pico Manual BASIC GRAPHICS FUNCTIONS Page 16

GRAPHICAL INPUT

Three basic functions are provided by Pico for graphic input. The first
accepts an (x,y) position from the tablet stylus or mnouse; the second
accepts a stroke generated in a single sweep of the stylus or mouse; the
third accepts one or more strokes and attenpts to recognize the character
or symbol they represent. All three return X and y values converted to
page coordinates.

whenever one of these functions is called, the progran waits until the
stylus switch, or one of the mouse switches, is depressed and released by
the user. The RECOGNIZE function waits an additional interval in case the
user wishes to add nore strokes. The anput data is then returned as a
pointer to a vector, which may be accessed with the aid of a BCPL
structure provided for the purpose. Thus no input is ever received from
these functions until the stylus or mouse switch has becn pressed and
released.

The threc basic functions are as follows:

READPOSITION (). After the stylus or mouse switch is released, this
function returns a pointer to a vector (V, say), containing:

in V>>EVENT.X) the page coordinates of the cursor
VD>O>EVENT.Y) when the switch was pressed.
in V>>EVENT.SWITCH switch number (tablet always returns 1).

READSTROKE (). While the stylus or mouse switch is depressed, a trail
of 'ink' records the path followed; after the switch is released, the
function returns a pointer to a vector V containing:

in V>>EVENT.XLEFT) The page coordinates of the bottom
V>DEVENT.YROTTOM) left and top right corners of the

in V>O>EVENT.XRIGHT) rectangle enclosing the stroke.
V>>EVENT.YTOP)

in V>>EVENT.STROKE A pointer to another vector, containing in
its first word a count N of the number of
recorded points, and then N pairs of x and
y coordinates recording in page coordinates
the path of the stylus or mouse (see Figure
8). V>>EVENT.STROKE is zero if the stylus
or nouse did not move while the switch was
depressed.

X1

vl
Figure 8. Vi

V>>EVENT . STROKE ye

xN
yN

Pico Manual BASIC GRAPHICS FUNCTIONS Page 17

RECOGNIZE (). This function continues to collect strokes until the
switch remains released for at least one sccond (a parameter that may
be altered, sce Section IV). An attenmpt is then made to recognize
the stroke or strokes by mnatching them against some predefined
descriptions. RECOGNIZE returns a pointer to a vector V containing:

in V>>EVENT.XLEFT) The page coordinates of the
VODEVENT.YROTTOM) corners of the rectangle
VO>OEVENT . XRIGHT) enclosing the character
VO>OEVENT.YTOP) (sece Figure 9).

in V>>EVENT.CODE The nunmeric code of the recognized symbol
(normally the ASCII code in the case of a
character).

in V>>EVENT.CONF The confidence, in the range 0 to 100, with
which the symbol was recognized.

The vectors in which input information is returned are provided by Pico,
and therefore should not be declared by the user program. Note that these
vectors are re-used the next time an input function is called, so the
relevant information must be extracted before another input function 1is
called. '

VOOEVENTHLEFT [~

VO O>EVENT YTOP _:

N

(_’,/ V>>EVENT, YBOTTOM

V>>EVENT JYRIGHT

Figure 9.
Three other functions are useful for input:

HITDETECT (x,y [,x-tolerance,y-tolerance]). This function is useful for
determining what the user is pointing at. It checks each displayed
entity for overlap with the rectangle whose center is at (x,y) in
screen coordinates, and whose "half-size" 1is x-tolerance by y-
tolerance. If any entity overlaps, HITDETECT returns a pointer to a
vector, V say, containing the following information:

in V>O>HIT.SEGNAME The name of the segment nearest to (x,y). In
anbiguous cases, the highest name is returned.

in VO>OHIT.DX) The horizontal and vertical distance from

Pico Manual BASIC GRAFHICS FUNCTIONS Page 18

VO>OHIT.DY) (x,y) to this nearest scgment.

If tolerance values are omitted, HIfDETECT uses the largest positive
integer. If there is no overlapping entity, HITDETECT returns zero.

SETRECOGNIZER ("filename"). This function sets up the tables used by
the RECOGNIZE function, by reading in a file of the given name.
Previously a file of this name should have been created by using a
training program (see Appendix 3). An argumnent of zero will clear
the tables. This function returns FALSE if no file was found, TRUE
otherwise.

CLEARINK (). Clears the ink from the screen, by performing an UPDATE.

HARD COPY

PLOTSEGS ("filename”) This function writes out a file for the XGP, using
the current contents of the display file. Hard-copy may be produced
by sending this file to any XGP Nnva, and then running the XPLOT
progran (See Section II1). If no file name is given, uniquc names in
the sequence P00.XB, PO1.XB, ... P99.XB are used. PLOTSEGS always
updates the screen contents as it gencrates the file.

MISCELLANEOUS

Several miscellanecous functicons complete the kernel facilities of Pico:

SETFONT ("font-name"). This specifies the character font to use in all
subsequent DRAWTEXT calls. The font-name is the name of a disk file
in "CC" format (standard "CU" fonts may be converted to this format
with a program described in Appendix 4). Several standard "CC" fonts
can be found on the MAXC <GRAPHICS> directory. SETFONT returns FALSE
if the specified font file could not be found; otherwise it returns
TRUE.

CHARPROPERTIES (character-code). This function is used to furnish
details about any character in the current font. It returns zero if
the character 1is undefined in the font; otherwise 1t returns a
pointer to a vector containing:

in V>>CHAR.WIDTH The width of the character in screen
coordinates.

in V>>CHAR.HEIGHT The height of the character above the base
line.

in V>>CHAR.DESCENT The descent of the character below the base
line.

RESETGRAPHICS (). - This function should be called before returning to

the operating system to ensure that the display is returned to its
normal state.

INITGRAPHICS ([frame-space]). This function initializes Pico. Its

Pico Manual BASIC GRAPHICS FUNCTIONS Page 19

single optional argument nay be used to create a larger or smaller
run-time frane space for BCPL (default value is 1000 decimal). The
function returns a pointer to a table of device-dependent parameters.
These may be accesscd with the aid of a BCPL structure definition and
sone manifest constant definitions, provided for the purpose.

V>>PICO.TYPLE Type of display device that this version of the
graphics system will drive. This will be equal
to STDALTO if configured for a standard Alto,
RUNALTO if configured for an Alto with a run-
lenath coded display device, or COLORNOVA if
configured for the color video system (NOVA).

V>>PICO.TABLET hWis is TRUE if a tablet 1is available on the
nachine in use, FALSE otherwise.
V>>PICO.XLEFT Linits of the screen coordinate system.

VO>>PICO.YROTTON
V> ICO.XRIGHT
V>>PICO.YTOPR

GSTYPEFORY (formatl.itoml.fnrmatZ,itomZ,...formatn,itnmn).

This routine may bo used for general-purpose string output to the
console. It accepts from one to eight items, each preceded by a
Sforriat in the shape of an inteqger from 0 to 10. The format number
indicates how the item is to be displayed. Formats 0 and 1 treat the
itern as a string pointer and as a character code, respectively.
Formats from 2 to 10 may be used to print integers to any radix in
that range. For example,

GSTYPEFORM(0,"The octal value of * 10,100,1,5*N,0,"is *,8,100)
would generate:

The octal value of 100
is 144

On the Nova, the output of GSTYPEFORM is sent to the console; on any
Alto, it is sent to the system area of the standard display.

Various pieces of ancillary software are included in the graphics system.
These consist of some BCPL packages that Pico uses, and that the user may
also find useful:

Free storage allocation. The INITGRAPHICS call "grabs" a substantial
amount of available memory for use in building display files, font
tables, etc. The user may make use of the free storage functions at
any time after the INITGRAPHICS call has been issued. See Appendix 1
for documentation on these subroutines.

Floating point routines. These routines, described in Appendix 2, are
available for users. Pico takes care to make all of its functions
transparent to the contents of the floating-point accumulators.

Pico Manual USE OF PICO Page 20

SECTION IIl: USE OF PICO

COMPILING AND LOADING

Before a graphics program can be successfully conpiled, loaded and run,
two vital files must be on the user's disk-pack. These are:

GSDEFS. SR. This is the source file containing definitions of external
procedure names, structures and constants used by Pico
prograns.

and onec of the following:

APICO.RR. The version of Pico for use with the standard Alto display;
BPI1CO.DR. The version for use with Ben Laws' run-code display;
CPICO.BR. The version for usc on the Color Graphics Nova.

A third file is generally essential:

DEFONT.CC. This is the standard Alto font in .CC format. A font file
such as DEFONT will be needed if any text display is
attempted. Additional font files are available.

These files, and all others relating to Pico, are stored on the {GRAPHICS>
directory on MAXC. They may be copied to disk-packs using NEWNMCA, MINX or
any other path. To simplify the transfer process, three Dump files are
kept on the <GRAPHICS> directory, containing the essential files for the
three different displays. These three files, and their contents, are:

APICO.DM: APICO.BR, GSDEFS.SR and DEFONT.CC
BPICO.DM: BPICO.BR, GSDEFS.SR and DEFONT.CC
CPICO.DM: CPICO.BR, GSDEFS.SR and DEFONT.CC.

The procedure for compiling and loading a Pico program is as follows:*

1. Make sure that the three essential files are on your disk-pack. If
they are not, copy (in binary mode) the appropriate .DM file from
<GRAPHICS> and type:)

LOAD/V xPICO.DM

where x is A, B or C as appropriate.

NSRRI s S it Rl il it i adindbathadididiag

x Due to a temporary anomaly, the files APICO.BR and BPICO.BR cannot
presently be loaded by the Alto BLDR. You nust therefore substitute in
their place about twelve separate .BR files. These files are for the time
being included in APICO.DM and BPICO.DM, together with a .CM command file
for use in loading. The comnand files are called APICL.CM and BPICL.CM.
After completing steps 1 and 2, you should edit the command file to
include the name of your program or programs, and then type @APICL.CM@ or
GBPICL.CM2 to invoke loading. Vhen this anomaly is eradicated, AP1CO.DM
and BPICO.DM will be modified to match the description.above.

Pico Manual USE OF PICO Page 21

2. Compile your source progran. This program should 1include the
statement GET "GSDEFS.SR" at its head.

3. Load the program with one of the following commands:

On the standard Alto:
BLDR 600/W <your program> APICO INITALTOIO

On the run-code display Alto:
BLDR 600/W <your progran> BPICO INITALTOIO

On the Color Graphics Nova:
BLDR 000/W <your proqramn> CPICO 101 102

The GO00/V switch setting 1is necessary to increase the space for
static variables.

GENIRATING HARD COPY

After the program has gencrated a hard-copy file, the file must be copied
over to an XGP and printed. The copying process should be performed with
the aid of the Ethernet or MCA, whichever is appropriate. To print the
file (let us say it is called P00.XB), type the following command to the
XGP Nova:

XPLOT POO.XB

After the usual preamble, the XGP will produce a one-page printout.
Several file-names may be included in the one XPLOT command in order to
print more than onec hard-copy file:

XPLOT P0O.XB P01.XB P02.XB

Switches may be used to vary some of the plotting parameters: a number may
be given in place of the file-name argument, followed by a slash, followed
by a switch:

n/E Sets enlargement to n (1,2,3,4; default 1)
n/L Sets left margin to n (0-1200; default 100)
n/T Sets top margin to n (0-2000; default 100)
n/s Sets number of scan-lines per page (default 2000/enlargement)

Pico Manual ADVANCED FUNCTIONS Page 22

SECTION 1V: ADVANCED FUNCTIONS

The functions described in this section are not particularly difficult to
use, but are probably likely to be used less frequently than those
described in Section 11. They fall into four categories: those for
performing special transformations, those for handling input events, the
DRAWCURVE function for drawing curves, and some miscollaneous other
functions. ~

CURVE DRAVING

DRAWCURVE (x',y',x'',y'',x'"',y'"'")
This functien may be wused in conjunction with MOVETO to draw
paranetric cubic curves. DRAVCURVE draws a curve from the present
{x,y) position through a locus specified by the first, second, and
third derivatives of the curve at the point (x,y). The curve traced
out 1s the locus of (X,Y) defined paranatrically by values of t
between 0 and 1 in the equation:

376 4 xth2 e xt

X 3 + X
yrrreY/o ¢ ytitt/2 ¢ y't &y

\I

n o

where (x,y) is the current position. Values of X and Y are
transforned by whatever transformation is in effect, before the curve
is displayed. The six paranmcters are pointers to packed floating-
point numbers (two-word format).

Bob Flegal's knot-selection and spline-solving software 1is available
(although not within Pico) for calculating derivative values from knot
lists and other representations such as hand-drawn input, or points and
boundary conditions.

Note that filled curves can be specified by calling BEGINFILL, following
this with calls to MOVETO and DRAWCURVE, and terminating with ENDFILL.

TRANSFORMATIONS

This section describes the primitive transformation functions used to
implement the DRAW function. Pico maintains a "current transformation
matrix," a 3x3 homogeneous transformation applied to each coordinate pair;
it also maintains the page-to-screen transformation parameters, and a
“clipping region," a region of the screen that describes the limits of the
visible display. Internally, Pico also keeps a temporary matrix (TM) that
accunulates the effects of a set of transformations specified with
TRANSLATE, SCALE and ROTATE. VWhen a graphical primitive is called, the TH
is postmultiplied by the current transformation matrix and the result
replaces the current transformation matrix.

SETMATRIX (pointer-to-3x3-matrix). Sets the current transformation
matrix from the matrix specified by the pointer. Whenever a new
seqment is opened, the matrix is autonatically set to the identity
matrix. The matrix is stored in packed floating-point format.

SAVEMATRIX (). Saves the‘current transformation matrix on a stack, and
setls &he TM matrix to the identity matrix. : .

Pico Manual ‘ ADVANCED FUNCTIONS Page 23

RESTOREMATRIX (). Restores the current transformation matrix from the
stack.

TRANSLATE (translation-x,translation-y). Postrnultiply the THMH by the
natrix specifying translation through (translation-x,translation-y).

SCALE (sx [[.syl.sw]). Postmultiply the TM by the matrix specifying
scaling by factors (sx/sw,sy/sw). If sy is omitted, the scale
factors are sx/sw in both directions; if sy and sw are omitted, the
scale factor is sx in both directions.

ROTATE (rotation-in-deqrceces). Postrultiply the TH by a matrix
specifying rotation through the specified angle about the origin.

C0S (inteqger-dengrees). This function returns, in floating-point
accunulator 1, the value of the cosine of the angle specified in the
call.

The above functions are used in transforming information into page
coordinates. As explained in Section 11, the SETWINDOW function may be
used to sclect a rectangular reqgion of the page for display on the screen.
Pico in fact allows control not only over this window, but also over the
viewport, a rectangular reqion on the screen onto which is mapped all the
information lying within the window:

SETVIEWPORT (xleft,ybottom,xright,ytop). This function specifies the
limits, in screen coordinates, of the viewport within -which
subsequent graphical information is to be displayed on the screen,

Thus SETWINDOW effectively says, "show me this much of the page", and
SETVIEWPORT says, "show it to me in this region of the screen”. The
SETWINDOW and SETVIEWPORT functions should be called before creating the
display file segments on which they are to operate, much as SETWINDOW 1is
called at the start of the example on page 14, Several different
viewports may be used in generating one display, thus:

LET MAIN() BE [
INITGRAPHICS() ’
SETWINDOW(wx11,wybl,wxri,wytl) // set first window
SETVIEWPORT(vx11i,vybi,vxrl,vytl) // and first viewport
OPENSEG(k)
...... // define first part of picture
POSTSEG(])
SETWINDOW(wx12,wyb2,wxre,wyt2) // set second window
SETVIEWPORT(vx12,vyb2,vxr2,vyt2) // and second viewport
OPENSEG(m)
e // define second part of picture
POSTSEG(n)
UPDATE() // update screen

LR N)

Pico Hanual ADVANCED FUNCTIONS Page 24

INPUT

It is not always possible to predict which device will next generato an
input to an interactive program. The user nay type on the keyboard, point
with the stylus or draw ‘a stroke. The READPOSITION, READSTROKE and
RECOGNIZE functions described in Section Il are designed for applications
where one can predict the order in which inputs occur. In cases where the
order of inputs is not known, it is necessary to use a more general set of
input routines that handle events. These routines collect events from the
input devices and store them in a qucue in their chronological order of
occurrence. The progranm nay call functions to wait for the next event to
arrive in the queue, to determine what sort of event it was, to read the
input data, and to delete the cvent fron the queue.

An ecvent is any one of the following:

1. A keystroke;

2. A stroke, generated by pressing and releasing the stylus or mouse
switch; the device may or may not he moved while the switch 1is
depressoed.

3. A timeout ecvent: the timer is always started on conpletion of a
stroke, and stops either when it times out, or when another stroke 1is
completed, whichever happens first. In the latter case, no event 1is
generated. On completion of timcout, the character recognizer
attempts to recognize all the strokes iﬁ the queue. If the queue 1is
empty of strokes (i.e. stroke events have been deleted as they
happen), no event is generated; otherwise the recognizer's best guess
is returned in the event data.

Whenever an event occurs, all events of other types are automatically
deleted from the queue. It is therefore unnecessary to delete events
except to prevent invocation of the recognizer.

The following functions are provided for event-handling:

GETEVEMT (). This function waits until the next event occurs, and then
returns to the program a vector, V say, containing in V>>EVENT.TYPE
the type of event (1, 2 or 3 as above). According to this value, the
rest of V contains:

if VO>DEVENT.TYPE equals 1 (keystroke):

V..EVENT.CODE the ASCII code of the character;
V> EVENT.KEYS four words containing the status of the
keyboard, in Alto format.

i1f VD>D>EVENT.TYPE equals 2 (stroke) or 3 (timeout):

V>>EVENT.CODE the code of the recognized character, an
eight-bit integer on which the recognizer
has previously been trained (see Appendix
3); zero in type-2 events.

Pico Manual ADVANCED FUNCTIONS Page 25

VODEVENT.XLEFT) the coordinates of the bottom left and

VODEVENT.YROTTON } top right corners of the rectangle

VODEVENT XRIGHT) surrounding the stroke or strokes;

VOO>EVENT.YTOP) these are in screen coordinates.

VO>OEVENT. INKED TRUE in the case of an inked stroke, FALSE
otherwise;

V>>EVENT.CONF Confidence (0 to 100) with which the
character was reconnized;

V>>EVENT.STROKE Pointer to stroke vector, in screen

coordinagtes, stored as in Figure 8; type-3
events return a vector, in identical
format, containing the coordinates of the
stroke centers.

VODEVENT.SWITCH Switch nunber (tablet always returns 1).

DELETEVENT (). This function deletes the nmost recent event., If no
evenls remain in the event queue, this function has no effect.

CLEAREVENTS (). This function clears the event queue of all events.

SETINPUTPARAMETERS (Limnunt-intnrvnl,ink-to]erance.sample-interva])

This function may be used to modify parameters controlling event-
handling. 1t specifins the tincout interval for character
recognition, in milliseconds (default is 1000), the distance to be
moved by the stylus or nouse before inking begins (default 1is 4
screen units), and the ninimum distance between points recorded in
the stroke vector (default is 4 screen units). If any of these
arguments are negative, the default values are inserted in their
place.

SCREENTOPAGE (screenx,screony,pointor-to-pagex,pointer-to-pagcy).
This routine may be used to convert coordinates back from screen
coordinates to page coordinates; it uses the most recent window and
viewport settings. The third and fourth argunents should be pointers
to two locations where the page-coordinate equivalents of the first
two arguments are to be stored.

REFERENCES

[N&S]. W.M. Newman and R.F. Sproull, Principles of Interactive Computer
Graphics, McGraw Hill, 1973.

[TENGR]. W.M. Newman and R.F. Sproull, "An Approach to Graphics System
bDesign,” Proceedings of IEEE, April 1974. (Available as CSL Graphics
archive 3GR-013)

[NCC]. W.M. Newman, "An Informal Graphics System Based on the LOGO
Language," Proceedings 1973 National Computer Conference.

Pico Manual APPENDICES Page 26

Appendix 1: Free Storage Routines

A free-storage package is provided as an integral part of Pico. The
packago provides the following procedures for allocating and releasing
variable size blocks:

INITFREESTORE (S}).
Organizes the free storage space as one large block of size N, such
that frame space of S words is if possible made available.
INITFRELSTORE sets up the appropriate globals:

FIRSTBLOCK::pointer to first block,

LASTBLOCK: pointer to last block,

AVATLMAXN: maxinum size of available block (see GETBLOCK),
AVAILTOTAL:total size of free space.

The last two variables are declared external in GSDEFS.SR.

INITFREESTORE returns the actual size of free storage, 1i.e. the
initial setting of AVAILTOTAL.

GETBLOCK (N).

GETBLOCKX (N).
Returns a pointer to the first free word of a block of size N. N is
the actual number of usable words. The actual size of the block will
be between N and N+E, so that no blocks of size smaller than £ -- a

small number -- will oxist (if NCE, N is set to E).

GETBLOCK and GETBLOCKX differ in the way error returns are handled.
GETBLOCK returns 0 (i.e. FALSE) if no block of size N is available.
The global AVAILMAX will then contain the size of the larger
available block. Notice that the content of this location 1is only
meaningful in this context. It is up to the caller to verify the

value returncd and decide whether to call again with a smaller value
(smaller than AVAILNAX) GETBLOCKX will instead print a message and
exit.

GETBIGRBLOCK (N)

GETBIGBLOCKX (N)
Returns the biggest block of size greater than N. Error returns are
as explained above.

PUTBIOCK(B[OCK POINTER)
Returns a block to free storage, merging it into a larger block 1if
possible. Also checks that the boundary tags are correct. The
argument should be a pointer previously returned by GETBLOCK or
GETBIGBLOCK.

TRIMBLOCK(BLOCK-POINTER, FREE-WORD-POINTER)
Returns to free storage the unused words at the end of a block if
there are more than £ of them),and resets the boundary tags. The
first argument is the usual block pointer; the second argument 1is a
pointer to the first unused word of the block.

Pico Manual APPENDICES ' Page 27

The free storage allocation procedures use the "boundary tag® technique

(Knuth, vol. #1i, p.#435). A free block of storago is structurad as
follows:

- (K+2)
forward poeinter
back pointer

(N-2)

wotrds

= (N¢2)

Figure 10.

A resaerved block looks like:

Ne2

&ldre s s ool

N words

Ne2

Figure 11.

Pico Manual APPENDICES Page 28

Appéndix 2: Floating-point Routines

The floating-point routines described below will run on a standard Alto
(<GRAPHICS>FLOATALTO.BR) or on a NOVA (<GRAVPHICS>FLOATNOVA.BR).

There are 16 floating-point accumulators, numbered 0-15. Each stores a
16-bit binary exponent and a 32-bit mantissa. These accumulators may be
loaded, stored, operated on, and tested with the operations described
below.

Conventions for the description: ‘acnumber' refers to an accunmulator
number (6-15); 'arg' is either an accumulator number (if targ' < 10) or a
pointer to a packed (Z2-word format) floating point nunber; 'ptr-to-fp-
number' is a pointer to a packed (2-word fornat) floating point number.
If a function returns a value, the symbol "==>" {s used to show the
result; functions that do not have the "==>" following them return their
first arqgument as a result.

FLD (acnumber,arqg)
Lead the specified accunulator from source specified by arg.

FST (acnumber, ptr-to-fp-number)
Store the contents of the accumulator into a 2-word packed floating
point format. Error if exponent is too large or small to fit into
the packed representation.

FTR (acnumber) ==> integer
Truncate the floating point number in the accumulator and return the
integer value. Error if number in ac cannot fit imn an integer
representation.

FLDI (acnumber,integer)
Load-imnediate of an accunulator with the integer contents (signed
2's complement).

FNEG (acnumber)
Negate the contents of the accumulator.

FAD (acnumber,arg)
Add the number in the accumulator to the number specified by arg and
leave the result in the accumnulator.

FSB (acnumber,arg)
subtract the number specified by ‘arg' from the number in the
accumulator, and leave the result in the accumulator.

FML {acnumber,arg) [also called FMP]
Multiply the number specified by ‘arg' by the number in the
accumulator, and leave the result in the ac.

FDV (acnumber,arq)
Divide the contents of the accumulator by the number specified by
arg, and leave the result in the ac. Error if attempt to divide by
zero.

Pico Manual APPENDICES Page 29

FCM (acnunber,arg) ==> inteqger
Compare the number in the ac with the number specified by targ'.
Return
-1 IF ARGI < ARG2
0 IF ARGY = ARG2
1 IF ARG1 > ARGZ

FSN (acnunher) ==> integer
Return the sign of the fleatina point nunber.

-1 if sign negative
0 if value is exactly 0 (quick test!)
1 if sign positive and number non-zero

FLDV (acnunber,ptr-ta-vector)
Read the 4-eclement vector into the internal representation of a
floating point nunber. The 4-word vector is arranged as follows: a
word for sign (-1 neans negative; 0 positive), a word of signed
exponent; two words of mantissa.

FSTV (acnumber,ptr-to-vector)
Write the accumulator into the 4-element vector in internal
represcntation.

The 2-word packed format is:

The first word is:
sign -- 1 bit
exponent -- excess 128 format (8 bits)
will be complemented if sign necgative
mantissa -- first 7 bits

The second word is:
mantissa -- 16 more bits

Note this format permits packed numbers to be tested for sign, to be
compared (by comparing first words first), to be tested for zero (first
word zero is sufficient), and (with sonme care) to be complemented.

If you wish to capture errors, put the address of a BCPL subroutine in the
static FPerrprint. The routine will be called with one parameter:

0 Exponent too large -- FTR

1 Exponent too largce -- FST

2 bividing by zero -- FDV

3 Ac number out of range (any routine)

The floating-point routines use a work area, pointed to by the static
FPwork, for storage of all accunulators, etc. The first word of that area
is its length. If FPwork is changed to point to another work table of
adequate length, the subroutines will use it for working area. This
permits subroutines to save and restore the contents of tho floating-point
accumulators.

Pico Manual APPENDICES Page 30

Appendix 3: Training the Character Recognizer

A program called TRAINER has been written to enable users to set up files
for the recognizer. The conpiled version of this program, suitable for
use on a standard Alto, is TRAINER.DM (a dump file) on <GRAPHICS>.

To start the program, type TRAINER. VYou will be asked if you want to add
to an existing file: if so, type the file name, followed by <return>; if
not, just type <return>. Then a display will appear similar to the one
overleaf, and you will be asked to draw a character.

Every time you draw a character, TRAINER will try to recognize it. If 1t
fatls, it will say so, and you should point to the letter that corresponds
to the symbol you drew. If it succeeds, you may point anywhere to confirm
correctnoess., If you wish to train to a character other than an upper-case
letter, point to the €@ character and then give the required octal value.
If you draw an inaccurate symbel, you may reject it by pointing to the
"rej" symbol.

The three targets at the top of the screen are to be used to clear the
screen of ink, to file the results of a training session, and to exit from
TRAINER.

As training proceeds, large anounts of nemory may be used up. You can
compact by writing out a file, then starting TRAINER again and recading in
the file. You should do this if arcas of the screen become unreceptive to
ink.

WRITING YOUR OWN TRAINER

Three special functions exist, in a file called GSTRAIN.BR on <GRAPHICS>,
that may be used in the construction of training programs. These three
functions are:

INSERTPROPS (). If called after calling RECOGNIZE or after receiving a
type=-3 event, this function saves the properties used by the
recognizer. They may later be inserted in the tables by means of the
INSERTCODE function.

INSERTCODE (code). This function enters into the recognizer tables the
properties saved by INSERTPROPS, identifying them with the specified
eight-bit code.

WRITEPROPTAB (filename). This function writes out the recognizer tables
onto a file of the specificd name.

Pico Manual APPENDICES Page 31

exit clean file

@ ABCDEFGHIJKLMNOPQRSTUVHKZXYZrel

Figurollz.

Pico Manual APPENDICES Page 32

Appendix 4: Creating .CC Font Files

Font descriptions in a format acceptable to the graphics system (hereafter
called CC format) can be created from any font in ".CU" format. All fonts
currently created at PARC are available in this format (consult Ben Laws,
or the <LAWS> directory on MAXC, for available styles). A LISP program is
used to create CC files from this format. The dialog below illustrates
the use of this program (characters typed by the user are underlined):

CLISE

INTERLISP-10 xxXxX

Good afterncon, faithful.
«LOAD(<GRAPHICS>CHAIN. COM)
CUHATNINS °

~CONVIRT()

Filename in .CU format to be convertedGACHA.CU
GACHA.CU; 1

GACHA.CC; i
Baseline for this font4

« v

..<prints cach character code in decimal as it is processed>

e

If error mossages are generated, consult the Graphics Group.

Pico Hanual APPENDICES - Page 33

Appendix 5: The XPLOT File Structure -

An .XB file consists of a header, followed by a texture table, followed by

any number of scan-line-streans. Each scan-line is processed in order of

its appearance in the file, from top to bottom of the page.

The header is a 4-word block that specifies:

word 0: enlarqgenment (1) /E
word 1: left margin (100) - /L
word 2: tep nargin (100) /T
word 3: scan-line-streams/page (2000/enlargenent) /S

These specify the coordinates (in XGP resolution units) of the upper left-
hand corner of the picture, the enlargenent (inteqger from 1 to 4), and the
nunber of scan-line specifications jn the file that should fall on one the
XGP page. . If an entry is zero, it is replaced by the default listed in
parentheses. The entries may also be overridden by switches specified in
thoe comnmand line.

A texture table is a count, n, followed by 2n words. The first n are
called the T table, the sccond n the W table.

A scan-line-stream is a count, n, followed by abs(n) words of either run
or bit-map data. If n 0, the words are interpreted as bits to be given
to the the XGP (high order bit of a word appears left-most on the page).
If n > 0, the words are interpreted as runs: cach word specifies a pattern
(H) and a run (R). The high order 8 bits are H, the low order R. The
idea is that the pattern specified by H will be repeated for R bit
positions on the scan-line. The next (H,R) pair will pick up where the
previous left off.

A run is specified by H and R as follows: H is an index into the T and W
tables. T[H] is a bit sequence to send to the the XGP; W[H] is the width
(or modulus) of the bit sequence (must be between 9 and 16 inclusive).
The algorithm for displaying runs (at enlargement 1) 1is:

while R W[H] do begin
show the high-order W[H] bits of the pattern T[H].
R « R-W[H]
end;
if R neq 0 then show the first R bits of the pattern T[H]

Note: for increased efficiency, H=0 always corresponds to the blank
sequence (i.e. white space on the the XGP).

Handy constants: an the XGP paqge is about 1300 dots across and 2100 scan-
lines long. Horizontal and vertical resolutions are thus about 200 dots
per inch.

