
PICO MANUAL

. Wi lliam 11. Nowman

Robert F. Sproull

July 1974

Xerox Palo Alto Research Center

Pico Manual

TABLE OF CONTENTS

PREFACE

·SECTION I: INTRODUCTION

SECTION II: nASIC GRAPHICS FUNCTIONS

GRAPHICAL OUTPUT -- Segment-hun(iling functions

OrENSEG
Cl.OSESEG
DEI.ETESEG
APPENDSEG
POSTSEG
UNPOSTSEG
RENA~IESEG
CLEAHSEGS

GRAPHICAL OUTPUT -- Updating the display

UPDATE

GRAPHICAL OUTPUT -- Graphical primitives

NOVETO
DRAWTO
DRAHTEXT
BEGINFILL
F.NIlFILL
SETCOLOR
SETIJACKGROUND

GRAPHICAL OUTPUT

DRAW
SET\-IINDOW

GRAPHICAL INPUT

REAorOSlTION
READSTROKE
RECOGNIZE
HITDETECT
SETRECOGNIZER
CLEAR INK

HARD COpy

PLOTSEGS

MISCELLANEOUS

Transformations

Page 2

4

5

9

9

9
9
9
9
9
9
9

10

10

10

10

10
10
11
11
11
11
12

12

13
13

16

16
16
17
17
18
18

18

18

18

Pico ~Innunl

SETFONT
CIIARPROPERTIES
RESETGRAPIfICS
INITGRAPHICS
GSTYPEFORM

SECTION III: USE OF PICO

COMPILING AND LOADING

GENERATING liARD COpy

SECTION IV: ADVANCED FUNCTIONS

CURVE DRAWING

DRA\./ClIRVE

TRANSFOiUIAT IONS

SET~lATR IX
SAVE~lATRIX
RESTORE~ll\ TR IX
TRANSLATE
SCALE
ROTATE
COS
SElVIEWPORT

INPUT

GETEVENT
DELETEVENT
CLEAR EVENTS
SETINPlJTPARAMETERS
SCREENTOPAGE

REFERENCES

APPENDICES

Appendix 1 : Free Storage Routines

Appendix 2: Flonting-point Routines

Appendix 3: Training the Character Recognizer

Appendix 4 : Creating .CC Font Files

Appendix 5: The XPLOT File Structure

Page 3

18
18
18
19
19

20

20

21

22

22

22

22

22
23
23
23
23
23
23
23

24

24
25
25
25
25

25

26

26

28

30

32

33

Pico Manual Page 4

PREfACE

Pico is a grnphics package for peoplo who want to write interactive
graphical pronrar.1S, and for people who havo pro~rams to which they would
like to ndd grnphicill input/output. At present only BCPL programs may
call the· Pica package, but versions for use with INTERLISP and Smalltalk.
are on tho wny. Pica can be used with the following hardware systems:

(a) Any standard Al to, pre ferau 1y ... 'th 64K menory;

(b) Ben Laws' run-code display and its parent Alto;

(c) The color graphics Nova systr.r.1.

Pico can handle inputs fron nice and tablets; it can generate graphic
hardcopy \'lith the aid of the XGP.

About this manual

You will find that this manual consists of four sections:

I: An introduction, ' here some of the essential features of Pico are
expluinod wi th the aid of examples. Everyone should read this
section.

I I : A conc ise descrt pt 1011 of the bas i c fu nct ions of P ico. Th is sect ion
Sllould also be rnad uy every potential user. Once you have read it,
you should be able to write your first program using Pico.

III: Instructions on hO\'1 to usc Pica -- where to find the necessary
files, what to ·load with your compiled program, and so forth. You
will need to read this section in o~der to run your program.

IV: A description of the more advanced features of Pica. You won't need
these unless you wish to manipulate curves, perform special
transformations, or construct 'special input schemes.

At the end are several Appendices, describing the free storage system and
floating point routines that are integral to Pico, the online character
recognizer, and th~ formats of font and hard-copy files used by Pica.

We hope this arrangement of the manual is agreeable to all. Some readers
may ·need additional background information; if so, they will find some
useful references 1n the Bihliography. Commnnts about Pico and about this
manual will be gratefully received by the authors.

Acknowledgements

Pico was designed and impleMented by the following memhers of tho Graphics
Systems Group: Patrick Baudelaire, Mike Cole, Bob Flegal, William Newman,
Dick. Shoup and Bob Spr'Qull. Finures 3,8 and 9 in this manual were drawn
by Bob Flegal with the aid of Srnalltalk.

Pico Nanual INTRODUCTION Page 5

SECTION I: INTRODUCTION

Pico contains functions both for generating grnphic output on a display
screen or on the XGP, nnd for handling graphic inputs from a tablet or
mouse. These two classes of function, input and output, are k~pt almost
completely separate. We believe progrnrruners will find this separation
convenient. We also think it is easier to explain Pico by treating input
and output separately: we will discuss output first.

Pictures generated by Pico are made up of basic entities of three kinds,
linos, curves and text; areas enclosed by lines and curves may bo Jilled
''lith a unifot'm gray level or, if you have the hard\'/are to do so, with a
color. The functions that define these basic entities are called
primitive fUllctions. One can think of these functions almost as if they
add lines, curv~s and so forth directly to the information on the screen.
This is not Quite true, however. Instead the information is deposited in
a display file; the screen is not updated from the display file except
when tho function UPDATE is called. Thus YOll can obtain a simplified view
of tho organization of tho system by studying Figure 1, ignoring the light
gray boxes.

BCPL

Figure 1.

!':!"s'i;~~ ;~~; ~~{':'!il
: h,u;d Ii 11] .' 1IIlIl::ID~_tJDDl:;"~
I fur,(t i (11iSj
.. ::.:.!..i .: ... ii.1

Since \'Ie are dealing with filled arens, it is possiblo for graphical
enities to overlap. Where two or more entities overlap, a simple rule
determines what is seen: the thing most recently added to the display file
is al\'1ays visible, and may hide things added less recently. Thus to
display text on a gray background, one calls the primitives to generate
the gray area, then calls the text-display function. This is illustrated
in the example that follows.

The display file is not just a simple list of graphical primitives: it can
be divided into segments. The use of segments has two major advantages:
it permits individual parts of the picture to be changed independently of
each other, and it allo\'/s things' to overlay each other independently of
execution SDQuence. The functions for manipulating segments include
routines to create new senments, replace segments, delete them~ add to
them and change the order in which they are overlaid. Note that none of
theso functions has any immediate effect on what is visible on the screen:
after the appropriate changes to the display file have been made, the
UPDATE function must be called to cause the screen picture to change.

Pico Milnuill INTRODUCTION Page 6

Prinitivo functions allow pictures to be defined in screen coordinates.
On a standard Alto display. for exanple, the screen coordinate system
places (0,0) ilt the bottom 1eft-hund corner of the screen, and (605,799)
at the top right. This is not always convenient. Transformation routines
arc therefore provided so thut pilrts of the picture mllY be scaled and
rota ted. ilnd so thil t the "'ho Ie pic ture milY be defined in a coord ina to
system indopendent of the particulllr display in usc. Tho light gray boxes
in Figure 1 show how transformation and segnent-handling functions relate
to the rest of the systen.

This completes our brief outline of the graphical output facilities for
nCPL. The following exar.lple illustrates how they nay bo used. It
gen(~r"tcs the "STOPtl siqn sho\':n in FirllJr£~ 2. The functions used in this
cxar.lPle are described in Dore detail in Section II.

GET "GSDEFS.SR"

LET ~IAIN() fiE [
INllTd\J\PHICS{)
OPENSEG(l)

NOVETO(50,O)

DRAWTO{50,200)

SETCOLOR(GRAY)

BEG HJFILL()

This file contains the definitions
needed for the use of Pico.

Initializes the graphics system.
This statos our intention to begin
creation of segnent number 1.
This sets the current (x,y) position
to the bot tor:! of the pos t.
This ildds to the dlsp1ilY file a line
fron (50,0) to (50,200). The current
position becomes (50,200).
This function sets the intensity of
the sian's rectangular area.

NOVETO(O,200)
DRAWTO(0,275)
l>RAHTO(100,275)
DRAWTO(100,200)
[) RA\.J TO (0,200)

This indicates the beginning of a
"filled" area for the stop sign. The
f0110\'/1ng NOVETO and DRAWTO commands
specify the outlino.of the sign. iT':''':'''',!:':'·'''':·''''''''':'l·

:c; 1(11"', ':1

ENDFILL()
SETCOLOR(BLACK)
NOVETO(35,230)

DRAWTEXT("STOP")

CLOSESEG()

POSTSEG(l)

UPDATE()

]

Signals the end of the polygon.
Specifies intensity for the STOP text.
Specifies the starting position of tho
text.
Cllllses a text string to be added to
the display file.
Specifics the end of creation of
segnent 1 of the displilY file.
Specifies that the contents of segment
1 are to he shm .. 'n on the screen the
next time the screen is lIpdated.
Upda te s th c screen by scan - convert ing
the inforniltion in all segments that
have been POSTed.

I

'!'
II!!:!; ;" it Ii; i: 1:: if ii! ~; ii. L i!t iii i~ ,; ~' . itli

Figure 2.

Pico H«nual INTRODUCTION Pago 7

The next example shows the use of one of the graphic input functions of
Pico, usc of the DI~Y function to perform simple transforoations, and also
shoHs ho\~ to generate graphic hard-copy. It uses Pico's online character
recognizer. \-Je assune that the reconnizer has previously been "trained"
to recognize two symbols, a trianole iwd the letter "PH, ilnd that a file
SYMS.RC has been generated, containinn the results of this training
session. NO\" when the user draws a trillngle, such as the exar.1ple shown in
Figure 3, a logic symbol for an inverter is added to the picture on tho
screen. \-Jhen the user pr in ts "P It. a file is genera ted for produc Ing XGP
hard-copy.

GET "GSllEFS.SR"
LET ~tAIN() l1E [
I NIT G itA I' II I C S ()
SETRECOGNIZER("SYMS.RC")

LET SN=O
[LET V=RECOGNIZE()

SWITCHO~ V»EVENT.CODE
INTO [

CASE 5T:-

Figuro 3.

The recognizer tiloles are loaded from the file
fjcneraled during the previous training
session.
Initialize the segment name sequence.
Ya i t for the user to draw a synbol, then
return a vector containing information about
the s~1:1bo 1.

The CODE entry in V contains the numeric code
of the recognized symbol.
The user drm'/ a triangle (trained to return
code "Til)
Create a new segment name.
Start a new segment.

SN=SN+1
OPENSEG(SN)
DRAW(INVERTER. TRANSLATE, V»EVE~JT .XLEFT, V»EVENT. YDOTTOM)

CLOSESEG()
POSTSEG(SN)
UrOATE()
ENOCASE

CASE sr:

]

PLOTSEGS("INV.XB")
ENDCASE

Drilh' an inverter, using the procedure given
below: position the symbol with its bottom
left-hand corner aligned with the
corresponding corner of the drawn symbol.
Close the new segment.
Add it to the list of posted segments.
Update the screen picture.

The user drew a liP".
Output a file INV.XD for the XGP.

] REPEAT
]

Repeat this loop endlessly.

AND INVERTER() BE [Define the procedure to draw the inverter

]

symbol.
NOVETO(0.0): D RA\.J TO (0,50): ORA\~TO(~O, 25)
D RA\.J TO (51,23); DRA'rITO(53,23); II RA'W TO (54,25)
ORAHTO(53,27); DRAWTO(51,27); DRA'rlTO(50,25)
DRAWTO(O,O)

Pico ~Innual INTRODUCTION Page 8

Figuro 4 shows a typical plot generated after a sequence of interactions.

[>.,

[>, ~'
C>' . [>,

[>,
[>.,'

[>,

Figure 4.

[>,

[>"

Pico rtanual BASIC GRAPHICS FUNCTIONS Page 9

SECTION II: BASIC GRAPHICS FUNCTIONS

This· section doscribes the basic functions of what may be called the
k.ernel of Pico. Programs written using this kernel will work on all three
classes of display r.wntioned ahove. Each display, however, has certain
characteristics of its O\ffl: these are mentioned as appropriato below.

GRAPHICAL OUTPUT -- Segr.lcnt-Hundling Functions

The display file is divided into sCQr./Cnts; each senr.wnt can be thought of
as i1l1 or-dered collection of prinitive urilphicill entities. To create a
senr:wnt. tho prO!)rllnr.wr "opens" a specific senr:wnt, specifics the
prir.1itivo entities that arc to be added to the s(!f)rlcnt, and then "closes"
it. Each senrnent is ilssigned a 16-hit "namn" hy the programmer; this name
is used if later reference to the segnent is necessary.

Note lIIell: none of the following segment-handling Junctions changes the
image Visible on the screen.

OPENSEG (segment-name). This function creates a new segment with the
specified nar.H? If a segment of the sarno nar.1C already exists, it
will be replaced by the new scnmcnt. All subsequent graphical
primitives are added to this new "open ll senment. Before opening the
now segment, any other segment still open is closed.

CLOSESEG (). This function closes the currently open segment. Any
existing segment with this nane is deleted. If no segment is open,
CLOSESEG has no effpct.

DELETESEG (scgT!1ent-niU:1e). This function deletes the specified segment.
If the specified SC~JI:lOnt docs not exist, this function has no effect.
DELETESEG never deletes the "open" sef)lilent.

APPENtJSEG (scgment-nar;1Q). This function opens the specified segment for
additions. All subsequerit graphical entities are added to the end of
the segl:lOnt. If the specified segment docs not exist, APPENDSEG is
equivalent to OPENSEG.

POSTSEG (segr:lOnt-nane). This function adds the specified segment to the
list of those that should he displayed on the screen. This list is
called the "posted ll list. If ttw specified segment is still open at
the time of the POSTSEG cull, it is closed before posting. Thus the
sequence OPENSEG, <graphical primitives), rOSTSEG is sufficient. If
the specified segment does not exist, this function has no effect.

UNPOSTSEG (sefJlilcnt-nilme). This function renoves the specified segment
from the posted list. The graphical entities within the segment are
unaltered. At sane later time, the same segment may be posted again.
If tho specified segment docs not exist, this function has no effect.

RENA~lESEG (old-segment-nane, new-segncnt-nilme). This function has no
effoct on the contents of the display file, but merely changes the

Pico ~lanual BASIC GRAPHICS FUNCTIONS Page 10

nilf:1C of the segr.lcnt spccified by "old-scnr.lOnt-nar:1e" to nncw-scgment
name. 1I If a segr:1Cnt with nane "new-segment-nilmc" already exists, it
is deleted. If no segr.1Cnt nar.lcd "old-segment-flilffio" exists, the
RENAMESEG function hilS no effect.

CLEARSEGS (). Deletes all scgncnts in thc' display file, including any
senDen t curren t ly open. No chilnges aro made to the image on tho
display screen.

GRAPHICAL OUTPUT -- Updating the Display

UPOATE (). This is tho oni!l fUllction that C(luses the screen to be
1I peJa tell, a ttl e r than PLOT SEG S \\'11 i ch pc r forms an Uf'DA TE in th e proce ss
of gcncrllting a h'lrd-copy fi Ie (sec below). If any scgments have
been nlterect (created. unpostcd, posted, deleted, etc.) since the
previous call to UPDATE, tho picture on the screen is changed
appropriately.

Each rtrnphicnl object in the display file has n "priority" ilssociatcd with
it. ~lhen tho scroen is UPDATI:n, it nay happen that two distinct graphical
objects ffiilY ilppear at the sane spot on the screen. In Figure 3, for
cxumple. the churacters "STOP" and pieces of the sion polygon fallon the
same dots on the screen. In this caso, the nr(lpilical object with the
highest priority is displayed. Tho priority rule is very simple:

- \4ithin a senment, the ·priori ty order corresponds to the order in
which the grilphical objects were added to the segment; objects added
last .have highest priority and thus overlay objects added earlier.
It is for this reason that the characters STOP take priority over the
51gn polygon.

- DetNeen segments, the signed 16-bit integer name is used to decide
priority; segment A overlays segment B if A > B. The RENAHESEG
function is provided so that inter-segment priorities may be
rearranged.

GRAPHICAL OUTPUT -- Grilphical Primitives

Graphical primitiVes are used to specify straight and curved lines,
polygons,. filled curves (figurcs whose outlines are curves), and text.
These entities are transformed. clipped, and then added to the currently
open segment. The color or intensity of entities is defined with the
SETCOLOR function.

rlOVETO (x,y)
DRA\~TO (x, y)

These functions specify the coordinates of line endpoints; MOVETO
sets the tlcurrent position" to (x,Y). DRAWTO draws a vector from the
current position to (x,y) and then sets the current position to
(x,y). The coordiniltes are signed 16-bit quantitlos; since they will
typically be transforr.lCd (sce below), the coordinate system can be
chosen by the prograr:v:wr.

Pico Manual BASIC GRAPHICS FUNCTIONS Page 11

DRAWTEXT (lltext-string ll
)

The spocified text string is displayed, starting at the current
position, and then in subsequent Horizontal character positions. Note
that no transformations arc performed on characters, other than thci
translation implied by setting the starting position with a MOVETO.
A standard font is used unless the program indicatos otherwise with
the SETFONT function (see below).

BEGINFILL ()
ENDFILL. ()

These functions permit ~10VETO and DRA\4TO functions to be used to
specify a filled polygon. A simple example of polygon specification
is BEG I NF I LL ~lOVETO, D RA'rJ TO , DRAHTO, DRA~1TO, ENDF I LL. Th is \'IOU ld
normally produce a three-sided polygon. If the locations specified
by the initial NOVETO and the final DRA\/TO do not coincide, hO\'leVel~,
Pico automatically inserts a DRA~ITO to close the polygon. The
examples below demonstrate this.

"lloles ll may bo specified inside polygons by means of severai MOVETO,
DRAWTO, DRAWTO, DRAWTO... sequences \'1ithin ono BEGINFILL, ENDFILL
pair. Thus \-Ie can produce Figure 5 with the following sta·tements:

BEGINFILL()
NOVETO(0,0); DRAWTO(20,40); DRA\ITO(40,0) ;
~10VETO(10 t 10); DRAWTO(20,30) ; ,DRA\1TO(30,10) ;

ENDFILL()

Figure 5. Figure 6.

Tho closed curves specified \'Iithin one BEGINFILL, ENDFILL pair may
cross, producing effects such as Figure 6, in which the inner
triangle of Figure 5 has been displaced.

SETeOLOR (Igray-Ievel)
SETCOLOR (red-component,green-component,blue-component)

Tho SETCOLOR function may be used with a single argument to set gray
levels between 0 (the default value, representing black) and 255
(representing white). Three manifest constants, BLACK., GRAY (=127)
and WHITE, may be used wh.ere appropriate. The effect of. SETeOLOR
will vary somewhat with different output devices: the color graphics
system, if used 1n black-nnd-white mode, will generate 256 different

Pico ~lanual BASIC GRAPHICS fUNCTIONS Page 12

fway levels, the run-code d1splilY produces 32, but the XGP and the
standilrd Alto displilY produce only eight dot patterns of difforing
densities. Note that large black areas do not roproduce on the XGP.

With threo argur1ents, SETCOtOR may be used to generate colors on the
color graphics system. Components must be in the range 0 to 255.

SET8ACKGROUNO (grily-Ievel).
SETBACKCiROUND (red-component.fJrecn-conponent.blue-component)

Thi!". function speclfies the intensity of the bllcknrollnd, 1.e. the
intensity that is displayed hhere no urilphical entity is visible.
Villues have the sane rilllqp. and interpretiltion as in the SETCOLOR
fUllctioll. Either ""'HITE (tho default villue) or BLACK should bo used
'''ith the standill"d Alto displilY, to save menory.

SETeOLOR und SETnACK(jHOll~[) nily be called at any point in the program.· In
certain situiltions their effect is deferred, hO\','(~vf!r: SETCOLOR, if called
n ftc r" a nEG I NFl L L. HilI t 11 k e e f fcc tOil 1 Y il f t e r the cor res po n din g END F ILL ;
the effect of SETBACK(jROU~~[) is seen only \-"hen UPDATE is next executed.

G RAT1!.J C~~! OUTPUT - - Trons forr.w t ions

The first eXtlmple of Section I defined a picture entirely in the screen
coordinate system. This system is illways in effect unless the program
specifies otherwise. There are three nilin reasons why you may wish not to
uso screen coordinates:

1. You may \-.'ish to use symhols that are defined in local coordinates,
and· that nrc to be scaled, rotated or translated before thoy are
displayed, like the 'inverter' in our second examplo.

2. You may wish to define pictures too big to fit on the screen, and
then to select parts of such pictures to be displayed at various
enlargements.

3. You may wish to write programs that are not affected by the
different screen characteristics of the different displays.

Pico includes a numher of transformation functions that cater to these
needs. To understand them, it is inportant to realize that PicD in fact
allows you to loak through a conceptual window at a large page of
graphical information. This poge, and the rectilngular window onto it, may
use a coordinate system quite different fron the screen's. Normally one
will define the window si7.n with the SEnlINDOt,.l function, before opening
the senr.1Cnts on "'hich this window operates. \lhen Pico constructs a
segmont of display file, it transforns everything into the page coordinate
S!JS tcm: then it 'clips' a\>lilY everything lying outside the window, and
t I' (l n s r 0 r m s the res tin to s c r e ell coo r din ate s . If, as in 0 u rea r I 1 e r
examples, SETt,.IINDOW 1s not callnd, Pico uses default values that equate
the page and screen coordinate systems.

Symbols included in the pago information must be transformed from their
local coordinatn system into ptlge coordinates, and Pico provides a DRAW

Pic 0 ~I an u a 1 BASIC GRAPHICS FUNCTIONS Page 13

function to do this: ORA\-! llses the notion of descrihing symbols as display
pro C c.c1 tJ res (sec It e fer e n c e 1). E sse n t i ill 1 Y , every t· i mea s ym b 0 Ii s to be
added to the cu rren t ly open sennen t, a Cil 11 is Dade to DRAW, spec i fying
(a) the flilne of the procedure defining the syr;lbol, and (b) the
transfor~ations to bo applied to the s~Jbol in order to place it correctly
in tho page SpilCC.

Tho full form of thc DRAW function's calling sCQuenco is as follows:

DRAH(proccdurc-Ollr.tc,proccdurc-argl,proccdlJre-arg2 ••..
SCALE, sx, [[sY,] S\,I,]

ROTATE,theta,
TRANSLATE,translation-x,trunslation-y)

where:

'procedure-nane' is the nane of the display procedure, and
'procedure-arn1' ctc., are its arguments, if any;

SX/SH and Sy/SN are the scale factors in the x- and y- direction;
i f S Y i s 01:1 itt (l d , the pro c e rJ II rei s s c ill e d by s x Is win bot h
diroctions, \<:l1i1e if both sy and sw are omitted, sx is used as
an integral enlargcnent factor in both directions;

theta is the anti-clockwise rotation in degrees;

translation-x and translation-yare translations in the x-and y
directions.

The ·DRAW function assembles all the transformations together into a
sinnle matrix, COMbines this with any existing transforr.tation, and
thon calls tho named procedure. The resulting transformation is
n p p 1 i cd to n 11 the p rim i t i v esc a II e d by t his p roc e d u r e . Wh en the
proccdur'c re turn s, DRA\-! res tores wha tever trans forma t ion was
previously in effect, and then itself returns. This mechanism
ponnits display procodures to include calls to other such procedures
via the DltAW function.

The full forn of tho DRAW calling sequence is rnrely necessary. Any
identity transformations r.wy be omitted, ilnd tho display procedure
need not have argunents. If two or more trunsformations are given,
they will effectively he pcrforned in the ordor specified. The order
givcn above, SCALE-ROTATE-TRANSLATE, is the normal sequence to use in
trnnsforning synbols.

The SEnlINOO\.l function is called as follows:

SE~INnow (xleft,yoottom,xriaht,ytop).
This function defines il rcctiln~J\llar window onto the page information,
using page coordinatc~. The bottom left-hand corner of this
rectangle is at (xleft.ybotton), and the top right-hand corner is at
(xright,ytop). All infornation lying outside this window is excluded
from the displayed picture.

Pico Nanual BASIC GRAPHICS FUNCTIONS Pngo 14

Tho following prograr.l illustrates the usn of SETWINDOW nnd DRAW. It
generates the output shown in Finuro 7 overloaf.

GET "(1SDEFS.SR"

LET rtAIN(~ fiE [
INITGRAPHICS()
S E ru IN 1 lO\·/ (- 750 , -1 000 , 750 , 1 000)

OPENSEG(l)

Sot up a \'/in<iow 1500 x 2000 units, centered at
tho origin of the page coordinate space.

[)RJ\\~(lIZ IA~JGLE. "1" , TRANSl.A TE, ..; 100,100)
Orah' the TRIA\:GLE synbol, positioned at (-
100 , 100) and 1 d!l P ll~ d Hit h the flO u r 0 "1".

DRA\-J (TR 1 ANG LE, "2" , SCALE, ?, 3 , llu\~~.sLA IE, 200,7.00)
n r il H till! t ria n a loa t (200, 200) a t 2/3 f u11 s i z e ,
labclpd "2".

DRAW (TR IANGLE, "3", SCALE, 6, '1,3, !\OTATE, 30, TRM~SLATE, 50, -600)

POSTSEG(l)
UPDATE()
]

ANDTRIANGLE(STR) BE [
rlOVETO(0 ,0)
DRA"'lTO(1 00, '100)
[)f\J\\·lTO (200,0)
D RA·H TO (0,0)
rlOVETO(100,120)
DRAHTEXT(STR)
]

Dr it H the t r i (Ill ~) 1 0, sea 1 0 d by 2 and 4 /3 in the X -
and y-diroctions, rotated nnti-clocK\'liso through
30 denrecs, and positioned at (50,-600). Label
this triilllgie "3".

Now define the TRIANGLE display procedure.

Position tho labolt

Pico Nanual BASIC GRAPHICS FUNCTIONS Page 16

GRAPHICAL INPUT

Three basi'c functions nrc providnd by Pico for graphic input. The first
accepts an (x,y) position fror:\ tho tablet stylus or mouso; the socond
accepts a stroke generated in a single sweep of the stylus or mouse; the
third accepts ono or more strokes and attempts to recognize the character
or symbol they represent. All three return x and y values converted to
page coordinates.

Whenever one of theso functions is called, the prouran waits until the
stylus sh'itch, or ono of the r:lOuse switches, is depressed and released by
the 11 s e r" • The R E COG ~n Z E r U 11 C t ion wa its dna d d i t ion ali n t e r v al inc a sot h e
lIser h'ishes to add nore strokes. The input data is then returned as a
pointer to a vector, hhich r:1tlY be Ilcccsscd with the aid of a BCPL
structuro provided for the purpose. Thus no input is ever received from
thoso functions until the stylus or mouse switch has been pressed and
released.

Tho throc basic functions nrc as follows:

READPOSITION (). After the stylus or mouse s\'litch is released, this
function returns a pointer to a vector (V, say), containing:

in V»EVENT.X
V»EVENT.Y

in V»EVENT.S\.IITCH

the page coordinates of the cursor
when the swi tch "las pressed.

switch nunber (tablet always ~eturns 1).

READSTROKE (). While the stylus or mouse switch is depressed, a trail
of I ink I records the path follm ... ed; after the switch is released, the
function returns a pointer to a vector V containing:

in V»EVE~T.XLEFT
V»F.VENT. \,ROTTO~I

1n V»EVENT.XRIGIIT
V»EVENT.YTOP

in V»EVENT.STROKE

Figure 8.

The page coordinates of the bottom
left and top right corners of the
rectangle enclosing the stroke.

A poi~ter to another vector, containing in
its first word a count N of the numbor of
recorded points, ilnd then N pairs of x and
y coordinates recording in page coordinates
the path of the stylus or mouse (sec Figure
8). V»EVENT.STROKE is zero if tho stylus
or ~ouse did not move whilo the switch was
depressed.

v> > EVENT. S WOKE

•
•

Pico Munll«1 BASIC GRAPHICS FUNCTIONS Pago 17

RE.COGNIZE (). This function continues to collect stroKes until tho
switch j"ena ins n~ 1 ea:-;nd for t1 t lOlls t one second (a parameter tha t may.
be altered, sec Section IV), An l1ttenpt is then made to recognize
the str"oke or strokes by Matching them against somo predefined
doscriptions .. RECOGNIZE returns a pointer to a vector V containing:

1n V»[VENT.XLEFT
V»EVENT, YBOTTO~t
V»EVF.NT.XRIGIIT
V»EVENT.YTOP

in V»EVENT.CODE

in V»EVENT.CONF

The page coordinates of tho
corners of the rectilngle
enclosing the chl1racter
(see Figure 9).

The nuncric code of the recognized symbol
(nofTldlly the ASCI I code in the caso of a
Chari\C ter) .
T IH~ con f ide n en, in the r II n n Q 0 to 1 0 0, wit h
which the s~nbol was recognized.

The vector"s in ·hich input jnforniltion is returned are provided by Pica,
and therefor'e should not be d(!clared by the user program. Note that thoso
vectors nrc re-llsed the next tin0. an input function is called, so the
relevant information must be extracted oefore another input function 1s
called.

Y»[\,[NT .>~[FT

v> > [V[NT • ,'TOP

V»EVENT.YBOTTOM

Y»EVENT .XRIGHT
Figure 9.

Threo other functions are useful for input:

HITDETECT (x,y [,x-tolerance,y-tolerancc]). This function is useful for
de 1. e r" min i 11 g w 11 a t the use r i s lJ 0 i n tin gilt . I t c h e c k s e il c h dis p I aye d
entity for overlllp \'Iith the rectangle whose center is at (x,y) 1n
screen coordinates. llnd whose "half-size" is x-tolerance by y
toler~ance. If ilny entity overlaps, HITDETECT returns a pointer to a
vect.or, V say, containing the follm·ling infornation:

1n V»HIT .SEGNA~1E

in V»HIT.DX

The nllne of the segment nearest to (x,y). In
anbiguous cases, the highest name is returned.

The horizontal ~nd vertical distanco from

Pico Nanual BASIC GRAPHICS FUNCTIONS Page 18

V»IIIT.DY (X,y) to this nearest segment.

If tolerance values arc onittcd, HITOETECT llses the largest positivo
integer. If ther·o is no overlapping entity, HITDETECT returns zero.

SETRECOGNIZER ("filenar:1C It
). This function sets up the tab los used by

thn RECOGNIZE function, by reading in a file of the given name.
Previously a file of this nano should have been created by using a
t r' a i n i n fJ pro g r' <'H:l (s e cAp pen d i x 3). ;\ n a r g 1I r.1 en t 0 f z e row ill c lea r
tho tables. This function returns FALSE if no file was found, TRUE
othen·/ise.

CLEARINK (). Clears the ink fron tIl(' screen, by performing an UPDATE.

HARD COry -- ---
PLOTSLC,S ("filenane ll

) This function 'to/rites out a file for the XGP, using
the current contents of tile display file. liard-copy may be produced
by senciinq this fil0 to any XGP Nova, and then running the XPLOT
p.·OrwaI:l (~;ec Section III). If no file nane is given, unique; names in
the sequenco POO.XU, rOl.Xn, P99.Xn arc used. PLOTSEGS al\'IaYs
updates the screen contents as it generates the file. .

~1 I SeE L Lf\NEOllS

Several ~iscellilneous f~rictions corn~lete the kernel facilities of Pico:

SETFONT (lifont-nilmr!"). This specifics the character font to use in all
subsequent. flRAWTEXT calls. The font-nar.1e is the name of a disk file
in "CC .. format (st.andard "CU" fonts may be converted to this format
with a program described in Appen<lix.4). Several stilfldard "cc" fonts
cun be found on the ~IA\C <GRAPHICS) directory. SETFONT returns FALSE
if the specified font file could not be found; otherwiso it returns
TRUE.

CHARPROPERTI ES (character-code). This function is used to furnish
details about any character in the current font. It returns zero if
the charilcter is undefined in the font; otherwise it returns a
pointer to a vector containing:

in V>)CIlAR. \/1 OTH The \-/i dth of the character in screen
coordinates.

in V»CItf\R.HEIGHT The height of tho character above the base
line.

in V»CIfAR.DESCENT The descent of the character below tho base
line.

RESETGRAPlIICS (). This function should be called before returning to
the operating system to ensure that the display is returned to its
normal state.

INITGRAPHICS ([frar.lO-space]). This function initializes Pico. Its

Pico Hanunl BASIC GRAPHICS FUNCTIONS Page 19

sinnlo optiOTllll tlrgur.Hmt nay be used to crcate a larger or smaller
run-timo franc space for BCPL. (defllllit value is 1000 decimal). The
function returns a pointf~r to a tithle of device-dependent parameters.
These may be accessed Iith the aid of a nCf'L structure definition and
soma manifest constilnt definitions, provided for tho purpose.

V»PICO.TYPE

V»PICO.TABLET

V»PICO.Xl.EFT
V >) P I (0 • Y BOT T 0 ~t
V»PICO.XIUGIIT
V»I'ICO.YTOP

Type of display device that this version of the
n r a ph i c s s y s t e r.l will d r i v e . Th is \,1 i 11 bee Qua 1
to STDAL TO if con figured for a standard Al to,
Rt.'~::\LTO if confiqurer.J for an Alto with a run
Ipnnth cod(~d display device, or COLORNOVA if
COil f i !J lJ red r 0 r the color v ide 0 s y s t em (~O V A) •
T his i s T I~ II E i fat lllJ 1 P. tis a v a 11 a b I e on tho
Dilchine in usc, FALSE otherwise.
Linits of the screen coordinate system.

G S T \' P E F 0 I Ut (f 0 r 1.1 il t 1 • i t e 1.11 • f () rT1 r1 l? • i t (' J:l?. . . . form it tn, 1 t e r.w) •
T his r· 0 uti n c r.1 a y b e u s r. cI for g ~ 11 era 1 - pur p 0 5 est r i (1 g 0 u t put tot h e
console. It accepts fr·om olle to einht. item.';, each preceded by a
jorl'lat. in the shapp. of un integer from 0 to 10. The format number
indicates how the iler.l is to be displayed. Formats 0 and 1 treat the
i t c m as it s t r' i n U' po in t e r il n cJ as il c h a I· act e r code J respective I y •
Formats from 2 to 10 r.lny be used to print integers to any radix in
that range. For example,

GSTVPEFORM(O,"The octal value of ",10,100,1,$*N,0,"is ",8,100)

would generate:

The octal value of 100
is 144

On tho Nova, tho output of GSTYPEFORM is sent to tho console; on any
Alto, it is sent to the system area of the standard display.

Various pieces of ancillary software are included in the graphics system.
These consist of some BePL packages that Pico usos, and that the user may
also find useful:

Free storage allocation. Tho INITGRAPHICS call "grabs" a substantial
«mount of available r.lenory for use in building display files, font
tahles, etc. The user r:t.1Y make use of the free storage functions at
(lny time after the INITGRAPHICS call has beon issued. See Appendix 1
for docllr.lentation on these subroutines.

Floatinn point routines. These routines, described in Appendix 2, are
available for users. Pico takes care to make all of its functions
transparent to tho contents of tho floating-point accumulators.

Pico Nanual USE OF PICO Page 20

SECTION III: USE OF PICO

CONPILING AND I.OADING

Before a ur~aph1cs progrm:l can be successfully conp11ed, loaded and run.
two vital files must bo on the user's disk-pack. These are:

GSDEFS.SR. This is the source file containing definitions of external
procedure nar:lCS, structures and constants used by Pica
progrilr.1S.

and one of the following:

APICO.BR.
BrICO.HR.
CPICO.BR.

The version of Pico for lise with the standard Alto display;
The version for lise \>lith Ben LaHs' run-code display;
Tho version for usc on the Color Graphics Nova.

A third file is generally essential:

Dr.FO~T.CC. This is the standard Alto font in .CC format. A font file
such ns DEFO:-JT Hill be needed if any text display is
attempted. Additional font files arc available.

The 5 e f i 1 e s, and a 11 0 the r· s reI a tin a toP i co, arc S tor e d on the < G RA P If I C S >
dircctor·y on ~tAXC. They milY he copied to disk-packs usinu NEh'~tCJ\, rlINX or
(lny other path. To simplify the trnnsfer process, three Dump files are
kept on the (GRAPHICS) directory, containing the essential files for the
three different displays. These three files, and their contents, are:

AprCO.n~l:
n PIC 0 . II ~t :
CP ICO. D~l:

ArICO.AR, GSnEF~.SR and OEFONT.CC
BPICO.BR, GSllEF~.SR ilncl DErO~T.CC
CPICO.BR, GSDEFS.SR and DEFONT.CC.

The procedure for compiling and loading a Pico program is as follows:~

1. Make sure that the three essential files are on your disk-pack. If
they are not, copy (in binary r.lodo) tho appropriate .OM filo from
< G RA PHI C S) and t y p e : .

LOAO/V xPICO.DM

where x is A, B or C as appropriate.

* Duo to a temporary anornaly, the files APICO.BR and BPICO.BR cannot
presently be lOllded by the Alto BI.OR. You Ollst therefore substitute in
their' place ahout tvwlve soparato .BR files. Those files are for the time
being included in APICO.OM and npICO.D~, together with a .eN command file
for use in loa din g . Tho co mn II n d f i Ins are calI e d A PIC L . C ~t and BPI C L • C ~1.
Aftor completing steps 1 and 2, you should edit the command file to
include the namn of your program or progra~s, and then type @APICL.CM@ or
@13PICL.C~W to invoke }oadinn. ~,'hen this anor.wly is eradicated, APICO.DM
and npICO.D~1 will be modified to r.latch the description.above.

Pic 0 ~1 n nun 1 USE OF PICO Pago 21

2. COr.lpile your source prograr.l. This program should includo the
stntement GET "GSDEfS.SR" at its head.

3. Load the program with one of the following cOr.uilunds:

On the standard Alto:
BLDR GOOIY <your program) APICO INITALTOIO

On the run-code display Alto:
BLDR 6001\-1 <your prourala) lWICO INITALTOIO

On tho Color Graphics 1\ova:
BLOR 600/\.1 <your proaram) CPICO 101 102

The 600/\/ sHitch settillfj is necessary to increase the space for
static variahles.

GEi\lERATING IIARTl COpy -------- --- --
After the program has generated a hard-copy file, the file must be copied
over to an XGP and printed. The copyin~J process should be performed with
the (lid of thp. Ethernet or ~lCA, whlchovcr is appropriate. To print the
file (let us say it is called POD .X[l) , type the following conunnnd to the
XCiP Nova: .

XPLOT POO.XB

After the usual preamble, the XGP will produce a one-page printout.
Sever(ll file-names may be included in the one XPLOT conunand in order to
print more than one hard-copy file:

XPI.OT POO .XIl PO 1 .XB P02.XB

Switches may be used to vary some of the plottina parameters: a number may
be given in place of the file-name argument, followed by a slash, followed
by a switch:

o

n/E Sets enlargement to n (1,2,3,4; default 1)
nIL Sets loft maruin to n (0-17.00; default 100)
nIT Sets top margin to n (0-2000; default 100)
n/S Sets number of scan-lines per page (default 2000/enlargement)

Pic 0 ~1 n n \J n 1 ADVANCED FUNCTIONS Page 22

SECTION IV: ADVANCED FUNCTIONS

Tho functions descrihed in this section nrc not pnrticulnrly difficult to
llSO, hut nre prohllbly likely to he used Inss frequently than those
d(~scribed in Section II. lhey fall into fOllr categories: those for
per-forming special transformations. thoso for handling input events, the
DRJ\\-JClIRVE function for drawing curves, and some miscollanoous other
functions.

CURVE [)RAH1~(j --- -_._----
DRA\-JClIRVE (x', y' ,x' • ,y' • ,x' , I, Y I I I)

This function may he u5,'d in conjunct.ion with ~toVETO to drmo(
ptl r,lnn tr" i C Cllb i C ClI rve s . [lRA\.KlIRVE dr (lWS a cu rye from the pre son t
(x,y) position t.hrolluh i1 locus specifi(~d by the first, second, nnd
t hit' d d (~ r i v it t 1 v c s oft h n cur v eat the poi n t (x , y) • Tho cur v 0 t rae e d
alit is tho loclls of (X,Y) defined par(lr.lOtrically by values of t
betHeon 0 ,mel 1 in the equation:

X = Xl' It 3 /6 + xllt.?'I? + xlt + x
\' = y 11l t 3 /6 + y' It2 /2 + yet + y

\4Jho"0 (x.y) is the current position. Villues of X and Yare
trilnsfornl~d by wlliltevo,' trllnsformation is 1n effect, before the curve
is displtlyed. the six parm-:1eters nrc pointers to packed floating
point numhers (two-word forr:lat).

nob Fle~l<\ 1 ' s knot- se lee t i on and sp 1 ine - so 1 V ing softwaro is ava i lab Ie
(althounh- not ,"-'ithin Pica) for calculating derivative values from knot
1 i 5 t s nil dot h p r rep r Q sen tnt ion s s \J C has han d - d r awn in put, or poi n t san d
bOll n d tl r" y con (Ii t ion s .

Note that filled curves can bc specified by calling BEGINfILL, following
this with calls to ~toVETO nnd DRAWCllRVE, and terminating with ENDFII..L.

TRfi.N S FOfU1A T ION S -----------

This section describes tho primitive tr"ilnsformation functions used to
implement the DRAW function. Pico maintains II "current transformation
matrix," a 3x3 homofJeneous transformation applied to each coordinate pair;
it also maint,lins the page-ta-screen transformat.ion parnmcters, and a
"clippino r"c!1ion," a renion of the screen that describes the limits of the
visible display. Internally. I'ico also keeps a temporary matrix (T~t) that
accl1r.1uliltes the effocts of a set of transformations specified with
TRANSLATE, SCAI.E and ROTATE. \-/hen a graphical primitive is callod, tho TM
1s pas tmu 1 tip 1 i ed by th e cu,'ren t trans format ion matrix and the resu 1 t
replnces tho current transforr.H1tion miltrix.

SETNATRIX (pointer-to-3x3-natrix). Sets the current transformation
mlltrix from the matrix specified by the pointer. Whenever a new
s e !I m 0 n tis ope ned, the mil t r 1 xis illl t 0 nil tic (\ 11 y set tot he ide n t 1 t Y
mntrix. Tho miltrix is stated in pncked flonting-point format.

SAVEMATRIX (). 5ilVOS the current transformation matrix on a stack. and
sets the TM matrix to the identity mntrix.

Pico Mttnuttl ADVANCED FUNCTIONS Page 23

RESTORfJ1J\TRIX (). Restores the current transformation matrix from tho
stuck.

TRANSLJ\TE (trnnslation-x, trnnslntion-y). Postmul tiply tho rrf by the
matrix specifyinn translation throufjh (translation-x,translation-y).

SCALE (sx [[.sY],sw]). Postmultiply the TM by the matrix specifying
scttling hy factors (sx/sw,sy/s\v). If sy is omitted, the scale
fnctors nro sx/sw in both directions: if sy and sw nrc omitted, the
s cal 0 fa C lo I· iss x in hot h d i n~ c t ion s .

ROTATE (rotation-in-degrees). Postr.mltiply tho T~I by a matrix
specifyin~J rotation thr'ou!}h tho specified annle about tho origin.

COS (intcqcr-denrecs). This function returns, in floating-point
accumulator 1, the villllO of the cosine of the nngle specified In the
cilil.

The nbove functions nre used in transforming informiltion into pane
coonlinat.os. As explilincd ill S(~ction I I, the SEH/HHlOh' function mny be
used to s(dect it recta1l01l1ilr reninn of the (lane for display on the screen.
Pico in fuct al10\ .. ·s control not only over this \'lindow, but also over the
viewport. n rectannular reqion on the screen onto which is mapped all the
infonniltion lyinn wi thin the \'Iirulmv:

S E TV I E \-l P 0 R T (xl eft, y bot tom, x r i n h t , Y top) . Th 1 s fun c t ion 5 p 0 c 1 fie s the
limits, in screen coordinates, of the viewport within 'which
subsor]lJp.nt graphicill information is to be displayed on the screen.

Thus SET\.JINDOW effectively SilYS, "show me this much of the page", find
SETVIE\-JPOltT Sill'S, "show it to me in this renioll of the screen". The
SETHINllOH ilnd SE1VIE\~PORT functions should bo culled before creiltinrr tho
dis play f i Ie seumen ts on \\'h i ch they ilre to opern te. much as SET\.JINDOW is
called at the start of the exnmple on pnge 14. Several different
vicwports may be used in generuting one displuY, thus:

LET t1/\ I N () n E [
I N I TGltAPll1 CS()
SEnn Nllo\·l(, ... xll, wyb 1 • wxr 1. wyt 1)
SETVIEh'PORT(vxll,vybl,vxrl,vytl)
OPENSEG(k)

POSTSEG(l)
SET\-J I N[)OW(Hx12. wyb2, wxr2, wyt2)
SETVIEWrORT(vx12,vyb2,vxr2,vytZ)
OPENSEG(m)

POSTSEG(n)
UPDATE()

II
II

II

II
II

II

II

set first window
and first viewport

define first part of picture

set second window
and second viewport

define second part of picture

update screen

P 1 C 0 ~I il Ill) U 1 ADVANCED FUNCTIONS

INPUT

It is not always possible to predict which device will next ncnf!rato an
input to nn interclctivo prO!)r,111. Til(! lIser fnilY type on the keyhoilrd, point
""i th the stylus or drm'l 'a stroke. The READPOSITION, READSTROKF. and
RECOGNIZE functions doscr-ihed in Section II i1l'e designed for npplicntions
'" her e 0 It e can p r (! d i c t the 0 r d e r i n w h i chi n put soc C \I r • Inc a sus \v her e tho
or~dt'r' of inputs is not knoh'Il, it is necessilry to lise a more nenera 1 set of
input routilH~S that hilndlp ('Uf'nt.s. Thpsp. rout1nps collect events from tho
ill put de vic e san d .s tor e ttw r.1 ina q tJ (' UP. i nth e i r c h ron 0 log i c il lor d e r 0 f
o c curT c n c e . The p r on rain r:I (1 Y C i.l 11 fun c t 1 on s tow il i t for the n ext oven t to
ilrrivo in the Qucue, to deterrline whilt sort of evunt it \-/as, to road the
input datil, and to delete the event fran the QlIelHL

An ovnnt is anyone of tho following:

1. 1\ kp.ys trol~p;
2.1\ str'oke, generated hy pressing and releusing the stylus or mouse

swi tch; t.he device mily or f:l<ly not be moved whilo tho s\'li tch 1s
de p r' e sse d .

3. A tir:wout event: the tinnr is ah"'clYS started on cOr.1pletion of a
stroke, and stops either \.,rhen it tines out, or ... ,hen another stroke is
com pIc t (~d. '<.J h i c h eve r' hit P P {' 11 S fir st. I 11 the lilt t e rca s e , no f! V e n tis ,
{] (1 n e r' il t P. d . 0 nco m p 1 (~ t ion 0 f t i r.w 011 t , tho C h il rae t err e c 0 rJ n i i e r
attempts to 'recoql1i7.e all the strokes i~ tho qup.ue. If the Queue is
empty of strokos (i.e. stroke events have been deleted as they
happen). no event is Hcnerated; othon'liso the recognizer's best guess
is returned in the event duta.

Whennvor nil event occurs. all events of other typos nre automatically
deleted from the Queue. It is therefore unnecessary to delote events
except to prevent invocation of the recognizer.

The following functions aro provided for event-handling:

GETEVENT (). This function waits until the next event occurs, and then
returns to the program a vector, V say, containing in V»EVENT.TYPE
the type of event (1. 2 or 3 as above). According to this value, the
rost of V contains:

if V»EVENT.TYPE equals 1 (keystroke):

v .. EVENT. CODE
V»EVENT.KF.YS

the ASCII codo of the character;
four words containing tho status of the
keyboard, in Alto format.

if V»EVENT.TYPE equals 2 (s~roke) or 3 (timeout):

V»EVENT.CODE thf! code of tho recogniz"ed character, an
eight-bit integer' on which the recognizer
has previously heen trainod (see Appendix
3); zero in type-2 events.

Pico Millluni

V»EVENT.XLEFT
v> >EVENT . YnOTTO~1
V»F.VENT .XHIGlIT
V»EVENT.YTOP
V»EVENT. HJKED

V»EVENT.CONF

V»EVENT.STROKE

V»EVENT.S\-IITCII

ADVANCED FUNCTIONS Page 25·

) tho coordinates of tho bottom left and
) top riuht. corners of the r·ectanglc
) surrounding t.he stroko or strokos;
) these ilre in .screen coordinate.s.
TRUE in tho caso of an inkod stroko, FALSE
otherwise;
Confidence (0 to tOO) with '''hich the
chilrilcter was recognized;
Pointer to stroke vector, in screen
coordinatc.5. stored as in FiUlirc 8; typc-3
events return il vector, in identical
f 0 n~lil t , COil t a i n i n g the coo r din ate s 0 f the
stroke contnr's.
SHi tell llllr.lher (tahlet ah't'ays returns I).

[l E LET EVE NT' () . T his fun c t ion d (! let est hen n s t r e c (1 n t eve n t . I f n 0
events ,'er:1(lin in the event Queue, this function has no effect.

CLEI\REVENTS (). This fUllction clears the event Queue of all events.

SET I ~ J' U T J' AI t" ~I E T E R S (t. i rl!~ 0 1I t - i n t e r val , ink - t ole r illl c e , sam pIe - i n t e r val)
This function may he lIsf'd to modify parilr:1~ters contr'0111nu event
hilndlin~J. It. spocifins tho tir.l~ollt interval for character
r e C O!l nit i on , in m j 11 i Sf' co (U Is (de f c1 tr 1 tis 1 0 a 0), the dis t lin c n t 0 be
m 0 v 0 d by tit 0 sty 1 u s 0 r' ~10 1I S e he for e ink j n a he gin s (de fa u 1 tis 4
sCI'een units), ilnd the minimum distilnco bct\'/een points recorded in
the stroke vector (default is I} screen units). If any of theso
argumen ts are negil t i vo, the de fall 1 t va 1 ue:; are inserted 1n tho ir
place.

SCREENTOPAGE (screenx,scroeny,pointor-to-pagex,pointer-to-pagey).
This routine may be llsed to convert coordinates back from screen
coordinatf's to page coordinatesj it 11505 the most recent window and
viCHport settinns. Tho third lind fourth arguments should bo pointof4 s
to two locations where the pilgo-coordinate equivalents of the first
two arguments are to be stored.

REFERENCES

[N&S]. W.M. NOh1T1all and R.F. Sproull, Principles of Interactive Computer
G r a ph i c.s, rl c G r il W 11111, 1 9 73 .

[TENGR]. W.M. Newman and R.F. Sproull, "An Approach to Graphics System
llosinn," Proceedings of IEEE, April 2974. (Available as CSL Graphics
archivo 3GR-013)

[NCe]. W.M. Newman, "An Informal Graphics System Based on tho LOGO
Languago," Proceedings 1973 Niltional Computer Conference.

P ico ~tanual APPENDICES Pago 26

Appendix 1: Free Storage Routines

A frcc- storage pnckngo 1 s prov idcd us an in tenrn 1 part of P ico. Tho
packnf}o provides tho folloNing procedures for allocating and releasing
varillblo sizo blocks:

INITFREESTORE (S).
Ornnn i 7.0.5 tho free s toruge spncc as ono larfJo b lock of size N, such
that frcll1!1 space of S words is if possible mado availablo.
I NIT F R E U) "lOR Ese t SliP tho a p pro p ria tog lob a Is:

FIRSTBI.OCK:point0.r to first block,
L J\ S T B L 0 ct~ : poi n t p r to las t h I 0 c k ,
AVAIU1AX: ITlilxinllrl si7.e of aVililahlo block (soo GETDLOCK),
AVAIL.TOTAL:total si7.e of frope spaco.

Tho last two variables ilre df!clnn~d external in GSDEFS.SR.

INITFrtEESTORE returns the actual siz~ of freo storage, i.e. the
initinl setting of J\VAILTOTAL.

GETBLOCK (N).
GETBLOCK . .\ (N).

Returns a pointer to thn first fren word of a hlock of size N.
tho actual nunher of uSilblc"'~(.)r-(fs:- Tho actual sizo of tho block
ho be two(~n Nand N+£, so tlla t no b locks of s i 2e sma 11et' than £
small numher -- will r!xist (if N(£, N is set to £).

N is
will
-- a

GETBLOCK and GETBLOCKX differ in thn way error returns aro handled.
GETf.lLOCK returns 0 (i.e. FtlU,E) if no block of s1ze N is available.
Thn 0]Ohil1 AVJ\IL~lA\ will then contain the siz~ of the larger
availablo block. Notice that tho content of this location is only
me ani n !J f u lin t his c on t 0 x t . I tis lJ Jl lot he call 0 r to ve r i f y the
value returned ilnd dncide whother to call again with a smaller value
(smaller than AVAIUIA'\). GETBLOCK-X \·1111 instead print a messago and
exit.

GETnJGnLOCK (N)
G E TB Hi Bl.OC)~.X (N)

Returns tho biggest block of size greater than N. Error returns are
as oxplained ahove.

PUTBLOCK(nLOCK-POINTER)
Returns a block to free stornge, merging it into a larger block if
possiblo. Also checks that tho boundary tags are correct. The
arf]Uf;wnt should be a pointer previously returned by GETBLOCK or
GETBIGOLOCK.

TR I ~tBLOCK (nt.OCK- PO INTER. FREE- \./OR[)- PO J NTER)
Returns to free stora~o tho unused words at the end of a block if
there are more than E of ther.l). nnd resets the boundary tags. The
first aruur.wnt is the uSllalblock pointer; the socond argument is a
pointor to tho first unused word of the block.

P ico ~lilnua 1 APPENDICES Page 2.7

Th Q f reo $ tor,1Uo all oc il t i on procodu rf! sus 0 tho n boundary ta£J" tochn lquo
(Knuth, vol. 11, p.r.?435) •. A froo block. of storago is structured as
fo110"l5:

- (N+2)

f(lr,*"rd pcd nler
bucK p(d nler

(N-2)

b:(lrds

- (N+2)

Fi~~llro 10.

A resorvod block looks liko:

N+2

llddrcss~

N I.l:ords

N+2

Figure 11.

Pico Manual APPENDICES Page 28

Appendix 2: Floating-point Routines

The flolltinn-point routines described below will run on a standard Alto
«GRAPlIICS)FLOATALTO.BR) or on a NOVA «GRAPIfICS)FlOATNOVA.BR).

Thero nrc 16 floating-point nccur:lUlntors. numbered 0-15. Each stores a
16-hit binary exponent and n 32-hit milntissa. Theso accumulators may be
loaded, stored, operated on, Clnd tested \'I'1th tho oporations described
below.

Conventions for the description: 'itcnllrli)(!r' refers to an accumulator
numilnr· (0-15); 'arn' is cithnr illl accur.llllator nlJr.liJcr (if 'arg' < 16) or a
poi n t e r to a P i\ C k r~ d (? - \'lor d for f1 it t) f I () a tin gpo i n t n lJ r.1 her ; I P t r· - to - f p -
n 1I m lH)f.l i sap 0 j 11 t (' r ton P it C k. (' d (7. - \,' 0 r d r 0 r n cl t) flo a tin U poi n t n u m her .
I far lJ net. ion r (' t \I r n S II v il III P , the s yn b 0 1 " = = > II i sus edt 0 S h 0\1{ the
result; functions that do (lot have the "==>" following them return their
fir·st anJllmenl as a result.

F L D (il c n 11 r.l h (! r • n r n)
Load tho specified aCCtH:lUliltor from source specified by argo

F S T (it C n u m h (~r, p t r - t 0 - f p - n 1I m her)
Store the contents of the ilcctlmulittor into a 2-\.,rord packed "floating
point format. Error if exponent is too IUf·ge or small to fit into
the packed represcntittion.

FTR (acnumber) ==> integer
Truncate the flollting point number in the nccum111ator and return the
intener value. Error if number in ac cannot fit in an integer
representation.

FLO! (acnurnher,inleger)
Lond-immediate of an accllmulntor wi.th the intuger contents (signed
2 I S complement).

FNEG (acnumber)
Neoate the contents of the accumulator.

FAD (ncilumber,arg)
A(ld the numher in the accumulator to the number specified by arg and
leavo the result in tho accumulator.

FSB (acnunbcr,arg)
Subtract the numher spncified by I llrg ' from the number in the
accumulator, and leavo t.ho result in tho accumulator.

F N L (il c n 1I m her, a r [J) [a 1 soc all e d F ~t P]
Nu 1 tip ly the numhor spec if i cd hy 'arg' by the number in the
accumulator, and leave the result in the ac.

FDV (acnumhcr,arg)
Divide the contents of the nccumulator by the number specified by
nrg, and leave the result in the ac. Error if attempt to divide by
zero.

P iCD ~Innunl APPENDICES Page 29

FCH (acnunher.nrg) ==) integer
COr.1I1C:u·O tho numher in the nc wi th the number spoc i f iod by.' arg I •

Roturn
-1 IF ARG1 < ARG2
o IF ARG 1 = ARG 2
1 I F ARG 1) ARG 2

FSN (ncnuf7lber) ==) integer
Return tho sion of tho

-1
o
1

floiltill9 point number.
if siqn neqiltivn
if vallio is £lXilctly 0 (Quick test!)
if sign positive and number non-zero

FLDV (ilcn\lnhor,ptr-to-vector)
R{~il(l the tl-elel:1ent vector into the internal representation of a
rl(lt\tifl~) point. nllnhcr. The tl-h'ord vector is arranged as follo\'ls: a
wonl for sinn (-1 mOilns (){lOiltive; 0 positive), a word of signed
exponent.; two wonls of ntliltissn.

F STV (acllur.llwr, p tr - to-vec tor)
Wri te the nccumulator into the 4-o1ement vector in internal
reprosentation.

Tho 2-h'onj packed for'ma t is:

The first \'Iont is:
sinn -- 1 hit
exponent -- excess 128 format (8 bits)

will he complemented if sign negative
mantissa -- first 7 bits

Tho second word is:
mantissa -- 16 more bits

Noto th i s forma t permi ts packed numbers to be tes ted for sign, to be
compared (by comparing first words first), t.o he tested for zero (first
wor'd ZO'"O is sufficiont), and (with 50/:10 care) to bo complemented.

If you wish to capture errors, put the address of a BePL subroutine in the
static FPerrprint. The routine Nill be called with one parameter:

o Exponent too large -- FTR
1 Exponent too lilrge -- FST
2 Dividing hy zero -- FDV
3 Ac number out of range (any routino)

Tho floilting-point routines usc a work ilroa, pointed to by the static
F r \oJ 0 r k , for s t () rag 0 0 f all a c c 1I n tJ] il tor 5, etc. The fir s two r d 0 f t hat are c1

is its 1 enq th . If FPwork is chiln!Jed to po in t to another work tab Ie of
adcQunto lcnuth, the subroutines will use it for working area. This
pormi ts subr'outinos to save and rostoro the contents of tho floating-point
accumulators.

Pico Manual APPENDICES Page 30

Appendix 3: Training the Character Recognizer

A program called TRAINER has been \'Iritten to enablo users to sot up files
for the rcconnizer. The conpilnd version of this program, suitable for
uso on a stanciill1 d Alto, is TRAINER.ml (il dump file) on (GRAPHICS>.

To start the pronrilm, typo TRAINER. You will be asked if you want to add
to an existing file: if so, type the file nllme, followed by <roturn>;!f
not, just type <return>. Then it display \-/i1l appear similar to the ono
o vcr lOll f, illl d yo 1I \OJi 1 I he il s k P. rI to d r in" a c h a r il c t e r .

Every timn YOI1 (km" il charllcter, TR!\I~ER will try to recognizo it. If it
fHils, it Hill SilY so, and you !".llOlild point to lho letter that-corresponds
to the 5),1'1h01 you dreh'. If it succeeds, you r:lilY point anywhere to confirm
correctllPss. 1 f you wish t.o t.rain to it character other thilll illl upper-case
lott.er-, point to the @ character ilnd th!.!n give the required octal value.
I f you d r- i~ wan i llil C cur ate s rm b a 1, you mit y r e j e c t ~ t by poi n tin g tot h e
"rej" SYl:lbol.

Tho three tnrgets at tho top of the screen arc to bo used to clear the
SCI1 ccn of ink, to file the results of a traininu session, and to exit from
TRAINER.

As t r a i n inn p r- 0 c e £! d s , 1 a r fJ n a In 0 1111 t s 0 f m P. m 0 r Y r:1 a y be usn d up. You can
compnct by \oll'itinn out a file, then stnrting TRAINER ngClin and reading in
tho file. You should do this if aroas of the screen becomo unreceptive to
ink.

WRITING ·YOUR OHN TRAINER ---- --- --- -_._--
Throo special functions exist, in a file called GSTRAIN.BR on <GRAPHICS),
that may be llsed in tho construction of training programs. Those three
functions nrc:

INSERTPROPS (). If called after calling RECOGNIZE or after - receiving a
tYlle-3 event, this fUllction saves the propertios used by tho
rccofjnizer. They may later be inserted in the tables by means of the
INSERTCODE function.

INSERTCODE (code). This function enters into the recognizer tables the
properties saved by ·INSERTPROPS. identifying them with the specified
eight-bit code.

WRITEPROI)TAD (filename). This function writos out tho rocognizer tables
onto a file of the specifiod name.

P 1 C 0 ~t an \l a 1 APPENDICES Pago 31

exit clean file

@ ABC D E f G H I J K l M N 0 P Q R STU V W X V Z rej

figuro 12.

Pico ~lanllnl APPENDICES Pago 32

Appondix 4: Creating .CC Font Files

Font descriptions in a forr.lllt Clccp.ptable to tho grilphics system (hereafter
c a 11 e dec f () r- mitt) C it n hoc r 0 a ted fro r:1 it n y f 0 n tin ". C U " for m i1 t . All f 0 n t s
c tJ r I- e n t 1 Y c 1"<.' it led a t PAR Car 0 a v ail a b 1 e i nth i s for r.1 a t (c 0 n sui t Bon La \'01 s ,
or the <LA~IS> diroctory on ttAXC, for available styles). A LISP prouram is
used to create CC filos from t.his format. Tho dialog below illustrates
the lise of this program (characters typed by tho user aro underlined):

@t.ISP

INTERLISP-l0 xxxx

Good aftornoon, faithful.

Cllt\ I NFNS .
+- r.O.~0\~ LI'~ ~I~ l).
Filpn<\I'w in .CtJ format to be converted ..•. GI\C1IA.ClJ
GACIIA.r.U;l
Filcnar.w for .CC version GI\(HA.CC
GACIIA.CC;l
8aseline for this font 4

•. (prints each character code in decimal as it is processed)

t-LOGOUT()
.@

If orror mossages are generated, consult the Graphics Group.

Pico Manual APPENDICES . Page 33

Appendix 5: The XPLOT Filo Structure·

An .XB file consi~ts of a hoarier, followed hy a texture table. followed by
ilny numher 0 f scan-l i ne- s t-rcilns: Each scan-l ineisProcesscd in order of
its uppcarnncc 1I1ulc-(ffo-:-(r-om top to bottom of tho page.

The header is a 4-word block that specifies:

''lord 0:
,.,.oro 1:
\-lord 2:
, ... oro 3:

cnlargrmcnt (1)
left margin (100)
top r.1tlruin (100)
sc un -1 i ne - s trear.lS Ipa~Jn (2000 I f!ll I argernen t)

IE
IL
IT
IS

These specify the coor-diniltes (in xrlP resolution units) of tho upper" 1eft
b(\llll corner of the pictlU-(!, t.he f'1l1arH(,I:H!nt (intpqer from 1 to 4). und the
J1t1nbor of sCull-line spocificatiolls in the file that ~hould fallon one the
XGP paqo •. If an entry is zero. it is rcplac(!rj by .the defilult listed in
par'onthosns. The nntries mily illso be overridden by switches specified 1n
tho comnand line.

A texture table is a count. n, fol1o\.,.ed by 2n words. The first n are
called the T tnble. the second n the W table.

A sCiln-line-streilm is a count., n, followed by ahs(n) words of eithor run
or bit-milp diltil. If n O. the words aro interpreted as bits to be given
to tho the XGP (high order bit of il word appeilrs left-most on tho pilge).
I f Ii > 0, tho h' 0 r d s are in t c r pre ted as run s: cae h \'10 r d s pee if! 0 sap a t t ern
(It) and a run (R). The high order 8 hits nre H. the low order R. The
idea is' thilt the pilttern spr.cified by If will be repeated for R bit
positions on the scun-line. The next (H.R) pair will pick up whero the
previous left off.

A r~ \I n iss pee i fie d by H il n d R il S foIl 0\'-1 s: II i sun 1 n de x in tot h eTa n d W
tnbles. T[II] is a bit s(~qlJence to send to the the XGP; W[H] is the width
(or modulus) of tho bi t sequence (must be betHeen 9 and 16 inclusive).
The algor~ithm for displaying runs (ilt en1nrgement 1) is:

whilo R W[II] do begin .
show the high-order W[II] bits of the pattern T[II].
R .. R-W[If]
end;

if R noq 0 then show the first R bits of tho pattern T[H]

Note: for increased efficiency, H=O nh"nys corresponds to the blank
sequence (1.0. white space on the the XGP).

Hilndy constilnts: an the XGP pilge is about 1300 dots across and 2100 scnn
linos long. Horizontal and verticill resolutions are thus about 200 dots
per inch.

