
Xr D0X ··[]\U·

To

From

Inter-Office Memorandum

UPS Group

J. l<t>rris

Pointer S,.,.inging vs.
Node Overwriting

Date August 20, 1973

Location Palo Alto

Organiz3tioll PARC/CSL

Pointer manipulation is tricky. A source of irritation is that a
programmer occasionally finds himself one step further down a list than he
would like to be. Another is having to fiddle at the beginning or end of a
st~ucture or treat the empty structure as a special case. The situation
can be ameliorated by taking the CPL view of data structures (S,P]. I was
exposed to this view several years ago, but only recently came to
appreciate it.

The most common and obvious method of altering a structure is to change the
co:nponent of a node (e.g. rplacd in LISP) which interpreted graphically
amounts to s\'linging a pointer; i.e. moving its arrm'led end. The CPL method
is to overwrite the entire node. Graphically this amounts to moving the
unarrowed end(s) of one or more pointers at once. Figure 1 illustrates
these two kinds of transformation.

It is easy to simulate pointer swinging by node overwriting:

rplacd(x;z] = overwrite x with cons[car[x];z]

It is not so easy to reverse the simulation because the overwrite scheme
allm<ls one to change the amount of information in a node. By implication,
noje over~~iting is more expensive to implement, either in terms of
space-time or complexity.

To:
From:
Subject:
page 2

Figure 1.

MPS Group
J. Morris
Pointer swinging vs. Node Overwriting

Two kinds of structure change.

x I 3 0 ~, I 4 Oy I
rplacd[xlz)

z I 5 • I

(a) Pointer Swing

_. --11~; 1,--4_0 ______ I rplaca[y,car[z} I I

zl5 ~--t-- rplacd[y,cdr[zl}

yr---~

•. x I 3 0-0 --t-+-.. I....-_--J

'z

(b) Node Overwrite

In principle node over\rriting is supported by any language with union types
and reference variables or their equivalents; e.g. ALGOL-68, PASCAL [vW,W].
I shall use PASCAL to illustrate it.

Suppose one wishes to implement lists of integers. He makes the
declaration

~ list = t ~ord hd: integer; tl:list gnd

which says that a value of type list is a pointer to a record consisting of
an integer and a list. The constant nil is impliCitly a pointer of any
type and is used to represent the empty list.

If x is declared a list, by

Y2£ x:list

the value of

Xt:

is its contents, a record, and the values of

To: MPS Group
From: J. Morris
Subject: Pointer Swinging vs. Node overwriting
page 3

xt.hd and xt.tl

are the respective components of the record. Thus getting the tail of a
list is a two step process: taking the contents of a pointer and selecting
a component of the contents.

There are basically two kinds of assignment

x:=y

changes the value of x,

xt:=z

changes the contents of the pointer x. An assignment like

E.hd :=3

should be regarded as an abbreviation for

E := <3, E.tl)

whatever E happens to be. E.g.

xt.hd :=3

changes the contents of the pointer x and happens to leave its tl
unchanged.

The representation chosen here for lists uses the pointer swinging
strategy. It induces the irritations discussed at the beginning, as the
following example illustrates.

suppose one wishes to delete all the odd numbers from a list 1. In this
representation a deletion must be accomplished by changing the tl of the
preceding element. Thus one must hang on to the element preceding the one
whose hd he is examining. To make matters worse, if the element is the
first one on the list, the deletion must be done by a simple assignment to
1. These facts contribute to the opacity of the program:

L: if l=nil th~~ got2 End;
if~odd(lt.hd) !he~ goto M;
1 :=It.tl; gotQ L;

M: x:=l;
while xt.tl#nil do

if odd(xt.tlt .hd)
then xt.tl:= xt.tl+.tl
else x:=xt.tl

End:

To: HPS Group
From: J. Morris
Subject: Pointer Swinging vs. Node over~~iting
page 4

The reader is invited to simplify the program; his taste may suggest using
two variables to scan the list, using LISP or ALGOL-W notation to avoid all
the 11+ .'lts, or eliminating the gQ1.Q's. It's still pretty bad. (A referee
who rewrote it to eliminate 99tQ's introduced a bug.)

The cure for the problems is to adopt an Itunobvious ll representation for
lists using the node overwrite strategy.

Statically the change seems quite minor: a list becomes a pointer to a
union type half of which is an empty indicator. PASCAL's way of saying
this is

tYQg list=t~ord £~ empty:Boolean of
true: ;
false: (hd:integer;tl:list)

The value of

xt • empty

will tell one if x is empty.

The dynamics of the situation are quite different. To change a structure
one usually overwrites the entire contents of a pointer; e.g ••

xt := xt .tlt

removes xt.hd from a list by changing both xt.hd and xt.tl.

Now the program to delete odd numbers from I is reasonable.
I

x:=l;
while ~xt.empty do

if odd (xt. hd)
1hen xt:=xt.tlt
el§.~ x:=xt.tl

Lest the reader suspect this example was cooked, several more are given in
an appendix.

To:
From:
Subject:
page 5

Figure 2.

MPS Group
J. Morris
Pointer Swinging vs. Node ovenlriting,

Two methods of list representation

1 {61 • I x~ .. 1 to , ~EB {xt.tl:cxt.tlt.tl}

(a) pointer swing

{xt:=xt.tlt}

(b) node overwrite

B.g£Qm~!l~tiQ!!§-fQr'Lflpgu~Desiqn and ImplementatiQ!!

The language should allow people to use the node overwriting strategy and
should not penalize them excessively by implementing structures naively.
Although PASCAL and ALGOL-68 allow it I suspect their implementors
discourage it.

An-±.!r1ill:g~ntatiQ!!

The most straightforward implementation (used in CPL) uses extra pointers
which the user cannot access directly. For example the list 1= (1,2,3) is
represented by

a3 a4 as a6 a7

The addresses of the smaller boxes represent pointer values; assignments
through pointers change the contents of these boxes. There is nothing the
user can say to change the contents of the larger boxes. In terms of
PASCAL notation '

To: MPS Group
From: J. Morris
Subject: Pointer Swinging vs. Node Overwriting.
page 6

1=a1

It=a2.

It.tl=a3

It .tlt=a4

etc.

However, recall that

It .tl := p

means It := <It.hd,p>

which changes the contents of a 1, not a2.

The reader's reaction to this description is likely to be what mine was:
"Hiding all those pointers from the user is a bad thing." considering how
long it took me to reject that view, I doubt anything I say can decisively
refute it. My only suggestion is that he try to write some of the example
programs using the pointer swinging strategy, and then multiply the hassle
he experiences by the number of programmers who will write similar
programs.

To: MPS Group
From: J. Morris
Subject: Pointer Swinging vs. Node Overwriting
page 7

Appendix: Further examples of node overwrite programs

Each of the examples is done using the node overwrite strategy. I found
the pointer swinging versions troublesome.

(a) List insertion.

Using the node overwrite definition of list. insert i in the ordered list
1.

Eroced~ insert (i:integer; l:list);
y~ n,x:list;
begin x:=l;

~nd

whi1g xt.empty & i<xt.hd do x:=xt.tl;
new (n); (allocate a new node}
nt: =xt;
xt.hd:=i; xt.tl:=n; xt.empty:=false

(PASCAL's syntax would be improved if one could replace the last line.
by something like

xt :=<i,n>)

(b) Tree insertion.

Given

~ tree=t ~£ord £as§ empty:Boolean 2£
true: ;
false: (data:integer;l.r:tree)

write a procedure to insert into a tree so that post-order scan orders the
numbers.

To: HPS Group
From: J. Morris
Subject: Pointer Swinging vs. Node overwriting
page 8

~Q£ed~ insert (i:integer;t:tree);
y.sg: x:tree;
begin x:=t;

whil~ ~xt.empty QQ
x:=i! i<xt.data

then x+.l
else xt.r ;

xt.empty:=false;-
xt.data:=i;
new (xt.l); xt.lt.empty:=true;
new (xt.r); xt.rt.empty:=true

This example illustrates a potentially disastrous waste of space caused by
the node overwrite strategy. The leaves of the tree are always empty yet
must be big enough to hold an integer and two painters; thus a tree
requires twice as much space as it should. A minor re-design of PASCAL
might allow the implementor to be clever and materialize empty nodes only
when there are multiple references to them.

(cl Radix Sort.

Qrocedure sort (n:list);
yar f,l: ~rr~y[0 •• 9) of list;

c,t: integer;
{assume all the numbers are <100000}
Qegin fo~ t:=O to 9 92 new (f[t);

c:=1;
whi1~ c<100000 do

begin for t:=O !Q 9 92 l[t]:=f[t];
,,:hile nt.empty do
beqin t:=n+.hd/c mQg10;

l[t]t:=nt;
l[t]:=n+ .tl;

n:= nt.tl
,§lQ;
fo!: t:=9 d~-lntQ 0 gQ
begin l[t]t:=n+; nt:=f(t]t ~nd

end

The pointer s\'Jinging approach '-1ill require one to "lOrry about empty lists;
here one only has to be sure to concatenate from back to front.

Another apparent expense of node overwriting is brought out by this
example. suppose the hds of lists were 80 character arrays. Then
assignments like l[t]t:=nt might involve many memory references. The

To: MPS Group
From: J. Morris
Subject: Pointer Swinging vs. Node overwriting
page 9

implementor can ameliorate things by using pointers behind the scenes. He
should resist the temptation to allow the user to swing these pointers.

(d) Two-way lists.

Node overwriting seems inappropriate for two-way lists. The same
declaration as for tree will suffice for nodes on two-way lists. To delete
a node x from its list one coulg say

t:= xt.r;
xt:= xt.lt;
x+.r:=t

but that seems strange and wouldn't work for two node circular lists. A
pointer swinging change

seems better.

xt.lt.r:=xt.r;
xt.rt.l:= x·t.l

(e) Expression evaluation.

Suppose arithmetic expressions are represented according to

!;YQg exp=tr~ord .££§.g op:etype of
const: (val: integer);
sum: (l,r: exp);

~g

The following procedure evaluates the expression, avoiding re-evaluation of
shared sub-expressions.

12!:Qcedu!:~ eval(e:exp);
Y2!: t:integer;
begin i! e+.etype=sum then

begin eval(et.l);
eval (et.r);
et.etype:=const;
et.val:=et.rt.val+et.lt.val

To: MPS Group
From: J. Horris
Subject: Pointer swinging vs. Node overwriting
page 10

The pointer swinging version of this program would involve assignments like
et.l:=v and et.r:=v. Aside from being clumsier it would have to perform
three additions instead of two on a structure like

[S]

[P]

[VW]

[W]

strachey, C.,CPL Working Papers, University of London Institute
of Computer Science, 1966.

Park, D., Some Semantics for Data structures, Maching !ntelligence
3, pp. 351-371, American Elsevier, 1968.

van Wijngaarden, et.al., Draft Report on the Programming Language
ALGOL-68, Mathematishe centrum, Amsterdam, 1968.

Wirth, N., The Programming Language PASCAL, Acta Informatics 1,1,
35-63 (1971).

Distribution

BAUDELAIRE, Patrick
BOBROW, Dan
DEUTSCH, Peter
ELKIND, Jerry
FIALA, Ed
GESCHKE, Chuck
GUIBAS, Leo
HEWITT, Carl
JEROME, Suzan
KAY, Alan
LAMPSON, Butler
MCCREIGHT, Ed
MITCHELL, Jim
MORRIS, Jim
SATTERTHWAITE, Ed
SIHONYI, Charles
STURGIS, Howard
SWEET, Dick
TAYLOR, Robert

