
\
\ \
\
\

OMNIGRAPH: SIMPLE TERMINAL­
INDEPENDENT GRAPHICS SOFTWARE
BY ROBERT F. SPROULL

CSL 73-4 DECEMBER 10,1973

This paper describes a graphics subroutine package for driving a number of
different display devices with any of three different programming
languages. The Omnigraah system is designed for routine graphics
appl ications, not for high-performance terminals. The success of the
design is largely due to the modest aims of the routines and to the
particularly simple framework chosen for the graphics facilities.

The paper cites a number of design errors in the initial Omnigraph
routines, and suggests improvements. The Omnigraph Reference Manual is
reprinted as an appendix.

XEROX
PALO ALTO RESEARCH CENTER
3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304

1

I. INTRODUCTION

The rapid development of low cost graphics terminals has created a new
customer for computer services who wants to view simple drawings or graphs
resulting from computer calculations. He is not an accomplished graphics
programmer and has probably never heard of Sketchpad; he attaches his
terminal to whatever computer resources can be found, preferably
timesharing services; his favorite programming language, if he is a
programmer, is doubtless FORTRAN. In short, this new user is nei ther
prepared to undertake construction of a graphics programming system nor
willing to devote time to issues tangential to his application.

Such a user often relies on "graphics subroutine packages" provided by
terminal manufacturers. This software presents speCial disadvantages both
to the user and to the computer facility which must support it.

The user suffers because the software is often poorly designed and
documented. None of the software aids in minimizing the number of
annoying and time-consuming screen erasures on storage-tube terminals; it
often fails to provide even rudimentary graphical operators such as
coordinate transformation and windowing; and furthermore, it is frequently
riddled with idiosyncratic features, such as curve-drawing capabilities,
that are unique to the terminal. Thus, in many ways the deSign of the
software needlessly obscures the basic simplicity of creating drawings.

Even when subroutine packages are thoughtfully designed, they are still
troublesome to the computer facility. The staff must support many
different subroutine sets, one for each different terminal or different
progranuning language desired by users. Users of different kinds of
terminals cannot share programs; programs written for one terminal require
alterations to use another. Similarly. the computer facility is hampered
in providing graphics services, such as graph-plotting, on many different
terminals because a separate program is required for each terminal. For
the same reasons, re-programming efforts are required whenever a user
decides to discard one terminal and rent another different one.

The Omnigraph display routines, implemented on a PDP-10 timesharing system
at the Computer Center of the National Institutes of Health, are designed
to solve these problems. They provide modest graphical services for
several terminal devices, and can be used with three programming languages
(SAIL, LISP 1.6, FORTRAN). From the user's viewpoint, the Omnigraph
routines are almost terminal-independent: the programmer is not concerned
with the intricacies of driving particular terminals.

The Omnigraph routines drive specific terminals from information provided
by the user's terminal-independent subroutine calls. Presently, a DEC 340

2

refresh display, and Ards, Tektronix 4010 and Computek 400 storage-tube
terminals are supported; programs for Adage AGT-30, IMLAC PDS-l and DEC
GT-40 displays are being designed. Many portions of the Omnigraph
software are identical for all terminals; less than lO% is actually
terminal-dependent.

The routines are deliberately designed to be a less-than-high-performance
graphical programming system. They are thus matched to the moderate
abilities of low-cost graphics terminals and to the modest graphical tasks
undertaken by typical users.

3

II. OUTLINE OF OMNIGRAPH ROUTINES

The paragraphs below briefly describe the facilities of the Omnigraph
routines; more detail is presented in tutorial, reference, and
implementation manuals [1]. Several of the concepts presented here are
mandatory for a graphics system of this kind; others are necessary to
establish a common vocabulary for all terminals.

Classification of the system. The Omnigraph system can best be
characterized in terms of the model of a general-purpose graphics system
presen ted in [2] (page 388; also see Figure 1). Omn igraph omi ts the
structured picture definition; the Omnigraph facilities are used to create
a 'transformed segmented display fiie.' All coordinate transformations are
performed prior to generation of the display file. The file is used to
refresh the display or (in the case of storage-tubes) to send appropriate
commands to the terminal in order to generate the display.

Terminal selection. Selection of the display terminal to be driven is
delayed until program-execution time. An initialization call loads the
device-dependent portion of the Omnigraph routines for the specified
display into a reserved space: all subsequent subroutine calls are
dispatched to these routines. This feature allows one execution module to
be used with any terminal supported by the Omnigraph routines.

The DINI call only loads device-dependent routines; the calls DGET and
DREL are used to sieze or relase the display hardware. This permits the
program to relinquish the display to others when the user does not need to
see the picture, such as during a long computation. All Omnigraph calls
still o~erate correctly, building or modifying pieces of the display file.
When the display is next seized, the results of the c·omputation may be
viewed.

Segmented displag file. A display file of some sort is necessary even for
the modes t aims of the Omnigraph routines: for refresh displays, the
display file is executed by a display processor in order to show the
picture; for storage-tube displays, the display file is used to repaint
portions of a picture meant to remain after a screen erasure. For
example, suppose the display file used to generate Figure 2 were composed
of two segments: segment 1 contains a list of vectors required to show the
curve, and segment 2 a list to show the coordinate axes. If the user
program requests that segment 1 be destroyed, the Omnigraph routines must
erase the entire storage-tube screen and then repaint the vectors in
segment 2. The display file is thus needed for repainting. (For terminals
with selective erasure capabilities, the display file for segment 1 is
used to transmit to the terminal a list of vectors to erase.)

The Omnigraph calls for handling segments of the display file are:

4

DOPEN (n)
Initialize segment n. If a segment numbered n already exists, it is
not yet destroyed (the routines automatically double-buffer). All
subsequent graphical primitives are added to the new segment.

DCLOSE
This call terminates generation of the currently-open segment.

DKILL (n)

Delete segment n and reclaim the space it occupies.

DPOST (n)
Cause segment'n to be displayed. (If segment n is currently open, it
is first DCLOSEd.)

DUNPOST (n)
Remove segment n from the set of segments being displayed, but do not
destroy it. (When a segment is DKILLed, it is first DUNPOSTed.)

Implementing the display file requires providing space for its storage
within the programming language environment; this difficulty may well
explain manufacturers' reluctance to provide display files in their
subroutine packages. The Omnigraph routines find space in one of two
ways: the user can specify in the DINI call a fixed-size array for
display-file use, or he may ask that the second segment facility of the
PDP-lO operating system be used. The second approach has the advantage,
that the space can be dynamically expanded to accomodate display files of
unexpectedly large sizes.

Erasure "inimization. A general strategy is required to min'imize the
number of times a storage-tube screen is fully erased. One can identify
synchronization points in a program driving such a display -- these are
pOints at which the picture currently visible must accurately show changes
requested by the program. A synchronization point is specified with the
DDONE call. For example, an interactive program requires synchronization
points just before demanding user inputs -- at these points, the user must
see an up-to-date picture.

Transmission to a storage-tube terminal occurs only at synchronization
points. At these points the Omnigraph routines decide how to make the
necessary changes in the visible picture with, at most, one full-screen
erasure. If zero or more segments have been DPOSTed since the last
synchronization, but no segments have been DUNPOSTed (or DKILLed), the
Omnigraph routines avoid erasure altogether, and merely transmit any new
segments to the terminal. Otherwise, the screen must be erased, and all
currently DPOSTed segments transmitted to the terminal.

5

Graphical primi tiues. Subroutine calls are provided for adding vectors,
dots and character strings to the open segment of the display file:

DMOVE (x,y)
Move beam to (x,y)

DDRAW (x,y)
Oraw a vector from present beam location to (x,y)

DDOT (x,y)
Put a dot at (x,y).

DVECT (xl,yl,xZ,yZ)
Same as D~10VE(xl.yl); DDRAW(x2,y2)

DTEXT (string)
Display text string starting at present beam location.

The Ornnigraph routines apply a coordinate transformation, a windowing
operator, and a viewport transformation to each line, dot or character
position specified. The coordinate transformation is accomplished by
forming the vector [x y 0 1] and multiplying by. a 4x4 transformation
matrix. This permits any combination of rotations, scalings, and
translation to be applied to values passed to the above routines. The
windowing operator uses a clipping algorithm to exclude all portions of
graphical items outside a specific rectangular window. (Characters that
lie wholly or partly outside the window may be excluded as well.) Finally,
a viewport transformation is applied to position an image of the
rectangular window somewhere on the display screen. These transformations
permit the user' s coordinate system to be independent of the display
terminal coordinate system.

A 'normal viewport coordinate system' is necessary to describe uniformly
viewports for all displays. Viewport specifications in terms of inches or
display resolution units are not sufficiently terminal-independent. The
solution is demonstrated in Figure 3: a unit square is defined to be the
largest square that will fit on the screen with its lower left-hand corner
coinciding with that of the screen. The casual programmer who specifies
viewport limits of x=O, x=l, y=O and y=1 will thus see a square picture as
large as the terminal can draw.

The transformations are controlled as follows:

6

DAPPLY (array)
Set the transformation matrix from the values of the array. The
transformation matrix is initially defaulted to the identity matrix.

DCOMPOSE (array)

OPUSH

DPOP

Multiply the matrix specified by the array by the current
transformation matrix, and replace the current transformation matrix
with the result. This is used for concatenating transformations.

Push the contents of the current transformation matrix onto a matrix
stack.

Pop the matrix on top of the stack into the current transformation
matrix.

OWIND (left,right,bottom,top)
Specify the edges of the clipping window. These edges are used for
the clipping operation until set again •. Initially the window limits
are set as if DWIND(-l,l,-l,l) had been executed.

OPORT (left,right,bottom,top)
Specify the edges of the viewport in the 'normal viewport coordinate
system.' Initially. the viewport limits are set as if DPORT(O,l,O,l)
had been executed.

The Omnigraph routines use hardware character generators to display text
strings, although the generators vary greatly among terminals. The
occasional user who wishes· to position characters carefully may select
among character sizes available on the terminal with the DTSCAL call; the
routines then provide accurate information about the size of a character
on the particular terminal he is using (see Figure 4). (A frustrating
idiosyncracy of pne terminal is that these measurements are not
commensurate with the coordinate system used to draw vectors and dots!)

Three-dimensional facilities. The Omnigraph routines also aid generation
of perspective views of three-dimensional scenes. The calls DMOVE3,
DORAW3, DOOT3 and DVECT3 are three-dimensional counterparts of the
primitives listed above; the 4x4 transformation matrix permits
transformations of three-dimensional coordinates; a three-dimensional
windowing algorithm is provided; and a perspective division by depth is
performed before th~ viewport transformat~on is applied.

Enllironment inquirl/. An "inquiry" subroutine DENQ' informs the calling
program of many technical details of the terminal: whether the terminal is

7

a storage-tube or 'refresh display, what input devices are available, the
actual screen size, maximum permissible values of the viewport
coordinates, the four dimensions shown in Figure 4 for the curren tly­
selected character size, current window and viewport limits, and various
other information. Knowing properties of the terminal permits the
application program to select interaction protocols that are appropriate
for the terminal. For example, typewritten commands can be used if no
input devices are available, or frequently changing images can be avoided
on storage tubes (e.g. rotations by small increments).

Accessing special device facilities. Some users are relatively
uninterested in device independence and are concerned with using special
features of a particlar terminal (e. g. the DEC340 display can display
gray-scale images in a special raster-scan mode). To access these
facilities, a special terminal-dependent call DCODE is provided that will
add specific codes to the display file or send specific control
information to the display terminal.

Hard Copies. The Omnigraph routine DPLOT copies the current display file
into a disk file that can be used later to drive an off-line plotter or
microfilm device. The off-line nature of these plots simplifies adding
special effects: overlays, multi-color plots, enlargements, identifying or
accounting information, etc. can all be added by the program that
translates the display file into plotter commands.

Input Devices. The Omnigraph routines attempt to provide for two­
dimensional input 'information and for common feedback mechanisms such as
tracking and inking. The routine DEVENT enables input devices and wai ts
for input "events" to occur. Examples of events are depressing a function
button, raising a tablet stylus after it has been depressed, and moving
the stylus slightly while it is depressed (for collecting tablet strokes).
The routine DOUT controls inking and lights under function buttons. These
facilities· are only moderately successful -- extremely low bandwidth to
the storage-tube termina Is necessitates greater device dependencies than
are desirable. These are in part due to the rather erratic design of low­
cost input hardware.

Errors. There are no fatal errors in the Omnigraph subroutines. Avoiding
fatal errors significantly complicates programming the routines, but is
absolutely essential for interactive systems -- a user who has invested
several hours in a session with the application program cannot afford to
lose that effort as a result of some unexpected condition in the graphics
routines. The most Significant such event is exceeding storage space
available for the segmented display file. If, during creation of a
segment, the Omnigraph routines exhaust available space, the segment being
generated is aborted, a brief message is typed out, and further segment-

8

generation' is inhibited until the next DOPEN command. In an interactive
situtation, it is often possible for the user to simplify the displayed
picture, thereby deleting segments and then to request that the aborted
segment be regenerated.

9

III. DISCUSSION

The construction and user-acceptance of the Omnigraph routines were
remarkably smooth. Th~ eccentricities of character generators and input
hardwarQ described above are among the few frustrations. Wide use of the
routines is due largely to their incorporation in MLAB [3], an interactive
curve-fitting program with rather sophisticated graph-plotting and
graphical facilities. Many MLAB users have no graphics or programming
experience, but are nevertheless able to make intelligent use of their
terminals. The atmosphere of a unifed graphics facility is similar to
that created by GINO [4].

The easy construction of these routines is a result of the modest
graphical. power of the design and the relatively uniform "universe" of
displays and users served. A clever programmer would probably be
frustrated by the' conservative design of the Omnigraph routines.
Similarly. exceptional terminal hardware would strain the terminal­
independent goal.

The achievement of reasonable device independence in this system is due
predominantly toothe Simplicity of a "segmented transformed display file."
Since the transf~rmations are performed in software, many device
dependencies can be included in the transformations as parameters (e. g.
screen coordinate addressing and character sizes). The routines for
building the display file fora refresh display must of course observe the
order code of the specified device. However, storage-tube displays can
all use one display file format; the only device-dependent code is about
100 instructions for encoding segments for transmission to the terminal
and for some special character processing.

As with any significant software system, ,hindsight uncovers design flaws
of major and minor importance. A minor improvement could be made by
supplying utility routines for creating transformation matrices from
specification of translation, rotation and scaling. Two major errors in
the deSign of the Omnigraph routines as described in [1] resulted from a
greedy attempt to exploit particular device features:

- The input routines, patterned after a high-performance graphics
terminal" are too device-dependent. Storage tube terminals with
crude input devices (e.g. crosshairs manipulated with thumbwheels)
cannot match the • stylus' and • interrupt' paradigms of the input
routines. Instead, it would be better to provide input routines that
attempt to provide an interaction sequence (e.g. pointing,
positioning, inking) on the terminal. DENQ could report what
interaction ~echniques can reasonably be used on the specific
terminal.

10

- The dynamic transformation capability of the Adage AGT-JO induced an
,addi tion to Omnigraph to permit specifying dynamic transformations.
This concept is counter to the Omnigraph philosophy of maintaining
transformed display files. The resulting mechanism is in no sense
device-independent. Perhaps a compromise would be to allow DCODE to
send dynamic transformation matrices to the Adage that' could be
applied to individual segments of the display file.

The Omnigraph approach offers an attractive alternative to efforts toward
display hardware standardization. The cost of construction of the
Omnigraph system is substantially less than that of devising and imposing
a hardware standard: the Omnigraph system demonstrates that a small amount
of software can achieve considerable device independence even among widely
varied displays. Wide acceptance of this philosophy would encourage
writing programs for 'use on many different terminals. It would encourage
manufacturers to offer more useful software with their terminals. It has
implications for design of network protocols for transmitting graphical
information and for controlling remote displays. 'AI though it has been
proved only on unpretentious graphical applications, the Omnigraph design
caters to precisely the modest graphical tasks and low to medium cost
display terminals so prevalent today.

11

ACKNOWLEDGEMENTS

The Omnigraph routines were developed while the author was at the Oivison
of Computer Research and Technology, National Institutes of Health. Gary
Knott, of that group, offered many helpful suggestions on the design and
documentation of the Omnigraph routines.

REFERENCES

[1] 'PDP-I0 Display Systems,' available from Computer Center Branch,
Division of Computer Research and Technology, National Institutes of
Health, Bethesda, Maryland 20014. (The Reference Manual is reprinted
as a supplement to this report.)

[2] Newman, W.M. and Sproull, R.F .• Principles of Interactiue Computer
Graphics, McGraw Hill, 1973.

[3] Knott, G.D. and Reece, O.K., 'Modelab: A civilized curve-fitting
system,' Proceedings ONLINE.72. Uxbridge, England, September 1972.

[4] Woodsford. P.A., 'The Design and Implementation of the GINO 3D
Graphics Software Package,' Software Practice and Experience, 1, 4,
335 (October 1971).

12

APPENDIX -- ERASURE MINIMIZATION FOR STORAGE TUBES

This appendix presents the algorithm used to manage the display file for
storage tubes in such a way as to minimize erasures. Each segment of the
display file is in one of 5 states, shown in the following table:

POSTED UNPOSTED KILLED

Painted PP UP KP

Unpainted PU Uo (free storage)

The table shows the effect of combining the 'logical' status of the
segment (POSTed, UNPOSTed, KILLed) with the actual state of the segment on
the display screen (if an image of the segment is on the screen, it is
'painted').
When a new segment is generated, it is added to the UU list. Then, if the
DPOST call is issued for it, the segment is moved from UU to PU. Thus,
the calls for manipulating segments can only cause changes in the
horizontal direction in the table; the calls do not directly change the
image on the screen.

When the DDONE (synchronizatio·n) call is issued. the screen must be
updated. If either UP or KP has some segments on it, then a currently-.
painted segment has been unposted, and a screen erasure will be required.
After the erasure (perhaps using selective erasure), those segments on KP
can be returned to free storage, and those on UP can be moved to UU. If a
full-screen erasure was required, the segments in PP must be retransmitted
to the terminal.

Even if no erasure is required. we must consider what new information, if
any, must be added to the display. The list PU contains newly created
segments that are not yet painted. These are sent to the terminal, and
then the PU segments are transferred to PP. Thus, when the DOONE call
terminates, segments remain either in PP (posted and painted segments) or
UU (unposted and unpainted segments). The other lists are empty.

Input Application
devices program

IR
IN
OUT
NON 1/0
BUILD
SPD
TRACE
CON CAT
T+C
DCG
TDF
DGEN

Graphic output
routines

Interrupt routines
Input routines (application program)
Output routines (application program)
Non 1/0 routines (application program)
Routines to build SPD
Structured picture definition
Routines to trace SPD
Concatenation routine
Transformation and clipping routines
Display code generator
Transformed display file
Display generator

Figure 1

13

14

o~-------o

Figure Z

I
I

I

I
r
I
I
I
I

I I.~

Figure 3

Figure 4

/---------

Omnigraph Display Routines

Reference Manual

Table of Contents

1.0 The Display-File Compiler
1.1 Free Storage
1.2 Notation
1.3 Initialization
1.4 Generating Pictures
1.5 Showing Pictures on the Display Screen
1.6 Deleting Pictures from the Display File
1.7 Updating the Display Screen
1.8 Generating lines

1.8.1 Coordinate Transformation
1.8.2 Windowing
1.8.3 Two-Dimensional Points and Lines
1.8.4 Three-Dimensional Points and Lines'

1.9 Text Display
1.10 Intensity Control
1.11 Display Subroutines
1.12 Dynamic Three-Dimensional Displays
1.13 Input Facilities
1.14 Plotting
1.15 Miscellaneous Subroutines
1.16 . Sequencing of Omnigraph Routine Calls
1.17 Technical Considerations

2.0 Language Considerations
2.1 SAIL
2.2 LISP
2.3 FORTRAN

3.0 Terminal Considerations
3.1 DEC340 Display
3.2 Computek 400 Terminal
3.3 Adage AGT-30 Display
3.4 ARDS Terminal
3.5 Tektronix 4010 Terminal

4.0 Error Reporting

References

15

16

This document describes a new set of subroutines available on the PDP-I0
for creating graphic displays. These routines are called the "Omnigraph
DisplaY,Routines", and have been designed so that they may be used with
three popu lar programing languages (SAIL, LISP, FORTRAN). and with a
variety of different display terminals (DEC-340, Adage AGT-30, Computek
400, ARDS, Tektronix 4010).

The description of the routines has three distinct sections. The first is
concerned wi th general concepts for creating, modifying, and destroying
pictures. These concepts are common to all programming languages and to
a 11 terminals served by the routines. The second section deals with
language dependencies: the precise usage of the routines in LISP differs
from that in SAIL, etc. The third section deals with particular terminal
dependencies: certain aspects of the terminals currently supported are
documented.

The general approach of these routines is that they should be able to
handle all simple graphical chores, and most complicated ones. The desire
to use the same general framework to drive display devices of quite
different characte~ has necessitated a compromise of some of the graphical
power of the fancier terminals.· For those who desire to make extensive
use of the·subtleties, these routines are occasionally inadequate.

In addition, these routines do not impose (yea, permit) any elaborate
fixed structure on the picture images. In some graphical applications,
the structure of the picture on the display screen can be related to a
data structure required by the graphical program (e.g. a circuit diagram
probably has a data structure which details connections among components
-- these connections are manifested as lines on the display screen).

, ,

Display subroutines are often useful in these circumstances to save space
and to reflect the program data structure in the ·display file itself.
These routines provide no aids to this process, because subroutining
interferes with windowing unless the display terminal has windowing
hardware.

1.0 The Di$play-File Compiler

These routines are properly called a display-file compiler. They
interpret subroutine calls from the userJs program, and create a file of
display instructions. This file is then used to actually create an image
on the termina 1. For example, in the case of the DEC-340 display, the
file is examined by a hardware device, called the di$play proceS$or, which
is responsible for actually drawing lines, text characters, etc. on the
face of the screen. In the case of the Computek 400, the file is

17

transmitted to the terminal in the form of graphical orders, and lines and
text are drawn in response to these orders.

The Omnigraph routines will interpret a variety of requests to add
graphical inst.ructions to a display file. For example, the user may
specify coordinates of points and lines in a two-dimensional coordinate
system. The coordinates are (1) transformed by an arbitrary matrix
trallsformation specified by the user, (2) checked against the limits of a
windollJ to see '''hat parts of the line specified should be visible, and
finally (3) instructions to draw the visible section of the transformed
1 ine are added to the display file. Notice that the transformations are
applied before a display file is built. The details of these three
operations are described below.

The display-file itself is divided into pictures or segments. Each
picture is probably a logically separate part of the display. Each
picture is identified by an integer number supplied by the user program.
For example, the display file might look like:

Picture 24

Picture 211

Picture 2

... etc

Each picture is a list of display instructions: orders to draw lines, to
display points, or to show text characters. The function of the display
file compiler is to create and manage these pictures.

The existence of a' picture in the display file is not inextricably linked
wi th its image on the display screen. Pictures may be created and not
immediately displayed. A picture which is shown is called pos ted; one
which is not shown is unposted. The idea is that unposted pictures may be

18

later posted and thus become visible on the display screen. We can thus
avoid using the display file compiler to regenerate the picture.

1.1 Free Storage

The Omnigraph routines store the display file in· a free storage area
specified by the programmer. As the number of display instructions in the
display file grows, so will the consumption of space in the free storage
area. In fact, the demands for space to store picture information may
exceed the size of the free storage area. What then? The Omnigraph
routines will, under certain circumstances, request more core from the
timesharing system in which to continue storing picture data.

The user may request that free-storage be handled in one of two ways:

(1) The user may specify a fixed array of core to be used for all free­
storage acti vi ties. If the demands for space exceed the size of the
array, the Omnigraph routines can take no corrective action (However, see
section 4.0).

(2) Alternatively, the user may specify that the Omnigraph routines are to .
create a second segment core area, and use that piece of core exclusively
for free-storage. If expansion of that area is .required, the Omnigraph
routines will issue the appropriate calls to the operating .system to
reques t expansion. Under most Circumstances, the area can expand, and
display-file generation can proceed. If, for any reason, the second
segment cannot expand, the OmniQraph routines can take no corrective
action (See section 4.0).

Both mechanisms for free-storage management are provided because: (1) some
of the display terminals (e.g. the 340) require that a second segment be
used to hold display files, and (2) some users may wish to use the second
segment facilities of the operating system for other purposes, e.g.
sharing a common program or run-time system.

1.2 Notation

In the description of the subroutine calls interpreted by the Omnigraph
routines, we shall adopt a common notation for describing the subroutine
name, . its argumen ts, and its return values, if any. These forms are
neither SAIL, nor LISP, nor FORTRAN, but a notation which will yield the
correct SAIL, LISP, or FORTRAN calling sequence if interpreted

19

appropriately.
interpretations.

The section on language conventions describes these

A subroutine call looks like:

result <- name (argument list)

The subroutine ca~led name is being described: it requires a list of
arguments, and may return a result. For some subroutines, the argument
list or the result may be omitted.

The argument list is composed of a list of specifications of the
arguments, e.g.

(picture number [integer], size [real])

Each argument is given a name for descriptive purposes, and its type is
gi ven inside square brackets ([]). Arguments are separated by commas.
All arguments are mandatory (i.e. if an argument is listed, it must be
given in the subroutine call).

The types are:

[integer]
[real]
[boolean]
[pointer]

integer value
real value (floating point)
either 'true' or 'false'
address of an entity in core

If a result is returned, it is specified in a fashion similar to an
argument (i.e. descriptive name and type).

1.3 Initialization

The most useful feature of these routines (and indeed, the hardest feature
to implement) is that the exact specification of which display terminal is
to be used can be deferred until the program begins execution. A program
may be loaded and 'SAVED' without specifying which display te"rminal is to
be used. Then, when the Omnigraph routines are initialized, the routines
for driving the particular terminal desired are loaded into your program
and executed.

The initialization of the routines is accomplished with the following
call :"

20

success [boolean] <- DINI (display-number [integer],
i/o-channel-number [integer],
free-storage-area [pointer],
free-storage-size [integer])

This call initializes the subroutine package for th~ correct display, and
initializes the free-storage area. The display-number argument specifies
which display terminal is to be used. 'The numbers corresponding to each
display are listed below with the terminal descriptions. (DINI will also
accept the SIXBIT name of the display. as given in section 3; as an
argument). The Omnigraph routines do not initialize the displau hardware
at this time, but merely load in the subroutines for driving that
terminal. These routines are stored on the system area.

The i/o-channel-number argument specifies the ,number of an ilo channel (in
the sense of 1/0 channels used by PDP-I0 user programs when communicating
with the timesharing system; a number between 0 and 15 decimal) which can
be used by tho display routines if needed. The exact use of this channel
varies from terminal to terminal, but it is certainly used when creating
plotter output.

The free-storage-area argument points to an array of core which will be
used by the display routines as free-storage. The free-storage-size
argument is the total length of this array. If the length is 0, then the
display routines will create a second segment core area, and use it for
free storage, expanding it as required.

If a display file currently exists and (perhaps) contains visible
pictures, DINI Will, with one exception, destroy the display file and re­
initialize the space (see more details in section 1.17).

The value returned by the initialization call specifies whether the'
initialization was successful. The possible reasons for failure are (I)
the free-storage-size was so smail that the routines could not adequately
initialize the area, or (2) the free-storage-size was 0, but the operating
system could not allocate 2048 words of core to the second segment.
Either of these circumstances will cause all subsequent subroutine, calls
to give meaningless results.

The subroutine call which actually seizes the display terminal is:

success [boolean] <- DGET

The Omnigraph routines attempt to reserve the use of the display terminal
requested by the user in the DINI call. If the terminal is available'

21

(i . e. not already seized by some other user). the DGET call returns
'true', otherwise 'false'.

If the display can be seized, then any pictures which are currently in the
display file (and POSTed; see below) are shown on the display screen.

The display terminal may be released so that others may seize it with ·the
call:

DREL

This call always succeeds, and leaves the screen blank. It has absolutely
no effect on the display file itself, i.e. the lists of display
instructions still reside in the free-storage area. If, at some later
time, DGET is used to seize the display, any pictures still in the display
file will be shown.

For displays which also serve as the user's 'keyboard' terminal, no other
user can ever 'seize' the display. In this case, DREL only serves to
inhibit picture transmission.

Modifications to the display file may be made with the subroutines listed
below even if the display terminal is not seized. Thus, t~e terminal may
need be seized only infrequently in order to view the results of some long
computation. It is good practice to design your graphics programs to
operate in this fashion. Contention for a particular sharable display
terminal such as the DEC-340 is then easily resolved because users are
utilizing the display terminals· only during the periods when they wish to
look at the pictures, and not during the periods when their programs are
performing long computations.

1.4 Generating ricture~

Each picture in the display file is a separate entity, identified by its
picture number. The subroutines described below are used for creating,
modifying, and destroying pictures. The general strategy is as follows:
we shall declare our intention to create a new picture by DOPENing a
picture, and specifying a number n which will identify that picture.
Then, we will issue a series of subroutine calls which request that
display instructions be added to the list of instructions for this
picture, e.g. lines, text, points. Each subroutine call will request that
a particular line, point, or text string be added to the picture. After
the last entry is made, we will DCLOSE the picture. Now picture n is
complete, and becomes part of the display file.

22

The picture will not appear on the screen during the process of
generation. Other Omnigraph routine calls are required in order to post
the picture which has been generated.

The actual subroutil;le calls to accomplish, opening and closing of pictures
are:

DorEN (picture-number [integer])

DeLOSE

Subroutine calls which add instructions to the display file are only legal
inside a DOPEN~DCLOSE sequence.

The DOPEN-DCLOSE subroutines automatically provide a double-buffering
ability. Consider the following sequence:

DOPEN (21)

DC LOSE

, ••• calls which generate display file
••• instructions (period A)

••• other activities (period B)

'"DOPEN (21)

DCLOSE

••• calls which generate display file
••• instructions (period C)

••• other activities (period D)"

During period A, picture number 21 is being generated. During period 8,
picture number 21 is part of the display file because it has been fully
generated (DOPENed and DCLOSEd). During period C, the first version of
picture 21 is still part of the display file, even though a new version of
picture 21 is being generated. After the new version is DCLOSEd (period
D). the new version becomes part ot the display file and the old version
is deleted.

The DAPPEND call all~ws a user to add display file instructions to any
picture already in existence. The call is:

DAPPENO (picture-number [integer])

For example: '

DOPEN (21)

DCLOSE

•.. calls which generate display file
... instructions (period A)

... other activities (period B)

DAPPEND (21)

DC LOSE

.•. calls which generate display file

... instructions to be ~dded to picture

.. ~number 21 (period C)

••• other activities (period D)

23

During period C, subroutine calls generate a list of display file
instructions which will be added to picture 21. When the DC LOSE is given,
the additions are actually made. During 'period 0, picture number 21 will
show the effects of the instructions generated during period A and during
period C.

1.5 Showing Pictures on the Displau Screen

The DOPEN-DCLOSE sequences listed above are only used to create display
file. They do not control the use'to which that display file is put. The
subroutines DPOST and DUN POST are used to add and delete pictures from the
display screen. The calls are:

post-number [integer] <- DrOST (picture-number [integer])

post-number [integer] <- OUNrOST (picture-number [integer]

The DPOST call adds the specified picture-number to the list of pictures
which should be displayed on the screen. The DUNPOST call removes the

24

specified picture-number from the list of pictures currently displayed on
the screen (UNPOSTing an unknown or already unposted picture causes no
error message). In ei ther case. the value returned is the number of
pictures posted after the call 1s interpreted.

Note that DPOST and DUNPOST may not have an immediate effect on the
displayed picture. (see DOONE, below).

As an added convenience, if DPOST is called for a picture which is
currently opened, a DC LOSE will be automatically done. Thus the sequence:

DOPEN (21)

.•• subroutine calls which add

.•• to the display file

DC LOSE
DPOST (21)

can be abbreviated:

DOPEN (21)

••• subroutine calls which add
••• to the display file

DPOST (21)

1.6 Deleting Picture$ from the Di$plag File

When the usefulness of a picture expires, it may. be deleted from the
display file. The space required to store the display instructions can
then be reused by subsequent Omnigraph routine calls. The deletion is
accomplished with the call:

DKILL (picture-number [integer])

The appropriate picture will be deleted from the display file. If the
picture was POSTed at the time of the DKILL call, it will be UNPOSTed
first.

25

1.7 Updating the Displau Screen

The operations DPOST, DUN POST , DKILL, and OAPPENO all may cause changes to
the visible display. DPOST adds graphic information; DUNPOST and DKILL
remove it. If we DAPPEND to a picture which has previously been DPOSTed,
then the effect of the append operation will be to make more graphic items
visible.

On some display terminals, the display screen can be changed very rapidly;
in th i s case, the effect of the DPOST, DUNPOST, DKI LL or OAPPENO ca lIs
will be immediately manifested on the screen. However, for those
terminals which use storage-tubes of any variety, updating the screen
frequently can consume great quantities of time. It would be preferable to
update the screen once after each colle~tion of changes (DPOSTs, DUNPOSTs,
etc.) is made.

The call

DOONE

requests that the screen be updated. This may cause a preliminary erasure·
of a storage-tube screen. For example, if the graphics program accepts
commands from the user's keyboard and and interprets them, possibly
creating a new display, a DDONE call should be performed after the
interpretation of every command. If any display information is to be
added to or deleted from the display screen, the operations will be done
at that time.

Using storage tube terminals interactively is inconvenient at best; the
Omnigraph subroutines permit several strategies which should help reduce
the absurdly long times required to update the screen with new displays.
The idea of the DOONE command is that it should be issued once for every·
group of display modifications. For example, suppose the user is prompted
to type in a command. The interpretation of that command may involve
several DOPENings and OCLOSings of pictures, DPOSTs, etc. However, we
should delay actually updating the screen (i.e. issuing the DOONE call)
unti I we are sure that the present rush of modifications is terminated.
If we issue DOONE too often, many screen erasures and-redrawings will be
required. The most natural time to issue DOONE is when the interpretation
of the user's command is finished and the program is about to prompt him
for another.

There is an addi tional problem on display terminals which are used for
both graphical output (pictures, lines, etc.) and for the echoing of text
typed at the keyboard. Most of these terminals have 'cursors', which
control the pOSition at which text will be added to the screen. It is

26

important, after each screen update, that the text cursor be positioned so
that text echoes will be visible to the typer. furthermore, the position.
of the text echo may be of some importance to the programmer. Thecall

DCURSOR (cursor-x [real],
cursor-y [real])

tells the. Omnigraph routines where to position the cursor at the
conclusion of the next DDONE operation. The x and y coordinates are
measured in the standard viewport coordinate system (see section 1.8.2).
The default position for the cursor is equivalent to DCURSOR (0,.95).

The user can request that the cursor be position immediately, rather than
at the e~d of the next DOONE operation, by specifying negative arguments
to DCURSOR.

1.8 Generating Ltne$

This section describes subroutine calls used to add' instructions to draw
lines to the the display file of the currently DOPENed picture. The
routines will draw lines from two-dimensional descriptions of the
endpoints of the lines, or will draw perspective views of lines from
three-dimensional descriptions of the endpoints. (If the display terminal
has hardware for showing three-dimensional pictures, as does the Adage
AGT-30, the perspective generation can be bypassed. The three-dimensional
information is then delivered intact to the terminal. where appropriate
views can be generated; see section 1.12).

The processing of a request to draw a line or point goes through three
separable operations:

1. Coordinate transformation
2. Windowing (and perspective generation)
3. Generating the display file instruction

These operations are described in the next sections.

27

1.8.1 Coordinate Transformation

Each group of coordinates used to describe a point or an endpoint of a
line may be first transformed by according to some parameters given by
your program. The transformation is capable of' introducing rotation,
scaling, and translation to your coordinate values before being displayed.
The transformations for two and three dimensions can be thought of as
operations on the coordinate vectors:

[x y] T ==> [x' y']

'(x y z] T ==> [x' y' z']

In practice" the transformation T is a 4x4 ma.trix supplied by your
program. The transformations may thus be accurately stated:

[x Y It I] ==> [x' y' It It]

[x y z 1] ==> [x' y' z' .]

The values (x,y,z) are those provided by the user; the values (x',y',z')
are the transformed counterparts of the user's values. The '.' entry in a
vector means that that position in the vector is unused. The array of '-'
symbols is the 4x4 matrix.

The 4x4 transformation matrix can be used to express any linear
transformation of the. x, y and z coordinate values. In the discussion
which follows, M[i,j] is an element of the transformation matrix: row i,
column j.

The identity transformation is simply
M[I,I] = M[2,Z] = M[3,3] = M[4,4] = 1.0, with all other elements equal to
zero. The effect of the identity transformation is to leave the
coordinate values unchanged. When the Omnigraph routines are initialized,
the transformation is set to the identity.

Translations can be achieved by modifying the identity matrix with:

M[4,1] = x translation
M[4,2]= y translation
M[4,3] = z translation

28

You can easily verify that the transformation schemes given above do
actually cause the 'translation' values to be added to the x, y, and z
values supplied by the user.

Simple rotations can be specified. For example, the rotation through an
angle theta about the origin of a two-dimensional domain is specified by
the following modifications to the identity matrix:

M[I,l] = M(2,2] = cos (theta)
M[I,2] = sin (theta)
M[2,I] = -sin (theta)

Throe-dimensional rotations about coordinate axes are similar.

Simple 4x4 matrix transformations can be concatenated to form more
complicated transformations by matrix multiplication. For example, if we
wish to first rotate an object and then translate it, we could express
this sequence of transformations as:

[xl yl • I] = [xO yO • I] "

followed by

[x' y' • •.] = [xl yl * 1] N

The matrices
respectively.

M and N are simple rotation and translation matrices
The two operations can be merged intQ one as follows:

[x' y' • •] = [xO yO • I] ".N

The two 4x4 matrices" and N can be multiplied together to form one matrix
Q, which has the effect of the combined transformations:

. [x' Y I * •] = [xO yO • 1] Q

The full ramifications of this technique are very useful in graphics
appl ications ~ References are given below to literature about computer
graphics which describes the properties of this approach.

Each point (x,y and possibly z) presented to the Omnigraph routines is
first transformed according to the current 4x4 transformation matrix. The
current matrix is established with the call:

DAPPLY (matrix [pointer], name [integer]

This call provides the Omnigraph routines 16 floating-point numbers which

29

are loaded into the current transformation matrix. All subsequent points
and I ines will be subject to this transformation, until the current
transformation is changed. The 'name' parameter should be zero for our
purposes; it is used for dynamic three-dimensional displays (see section
1.12). If the DAPPLV call is omitted in your display program, the
identity transformation will be assumed.

Note: the row/column conventions in the storage
identical to those of the programming language used.

of the matrix are
M[i,j] refers to row

i, column j regardless of the programming language used -- the versions of
the rou tines for the different progranuning languages take account' of the
differing storage schemes.

The usefulness of the matrix transformations is greatly enchanced by being
able to concatenate two transformations int9 one which has the same effect
as the sequential application of the two. The call

DCOMros£ (new-matrix [pointer], name [integer]

causes the current transformation to be replaced by the matrix product of
new-matrix and the current transformation matrix. The order of
multiplication is <new-matrix> • <current-matrix>.

The 16 values of the current transformation can be 'pushed' and 'popped'
from a stack provided by the Omnigraph routines. The call

DrUSH (name [integer])

causes the current 16 values to be copied into a piece of free-storage,
and placed at the top of the tran~/ormation ~tacl. (Again. 'name' should
be zero.) The call

DPOP (name [integer])

causes the 16 values on the top of the transformation stack to be stored
in the 16 locations of the current matrix; then these 16 values are
removed from the top of the stack.

1.8.2 Windoloing

The windowing operation is applied to each line or point before a display
instruction is generated. Windowing is described in detail in several of
the references; only a short sununary is given here.

30

In two dimensions t the user may specify a rectangular window which
surrounds th~ area of the two-dimensional plane which should be visible on
the display screen. Lines and points which lie partly or wholly within
the specified window area will be displayed; lines or portions of lines
which do not intersect the window area will not be displayed. In Figure
R-l. the 1 ine A will be displayed; B will not; a po,rtion of C wi 11 be
displayed.

The window rectangle is aligned with the x-y coordinate system in which
lines and points are specified. It can. thus be determined by four
numbers: the left, right, bottom, and top of the rectangle as measured in
the page coordinate system (the coordinate system used by the user in his
calls to have lines and points generated). This coordinate system is
Cartesian, but the actual size and position of the system is immaterial:
user's coordinates are compared to the window edge coordinates to decide
whether a line is visible. The call

DWIND (left-edge [real]. right-edge [real],
bottom-edge [real]. top-edge [real])

specifies the window to be used when processing all subsequent requests to
draw lines, pOints. or text in two dimensions.

This window area can be mapped onto any rectangular area of the display
screen; it need not fill the screen. The image of· the window on the
screen is called the uiewport, and is specified in the call

DPORT (left-edge [real], right-edge [real],
bottom-edge [real]. top-edge [re~l])

For .the purposes of the DPORT call. we establish a standard uiewport
coordi nate SiloS tem which will be useful for all types of display. The'
coordinate system is as follows:

x-coordinate
left edge of screen 0.0
right edge of screen 1.0

y';'coordinate
bottom edge of screen 0.0
top edge of screen 1.0

The standard viewport coordinate system is an attempt at making most
programs work correctly on most displays. However, some displays do not
have square screen areas. For these displays, the conventions are as
follows: the area of the screen represented by the viewport bounds

31

(0, 1,0, 1) wi 11 be the largest squa re area that can. be located on the
screen. The square area will be positioned at the botton left-hand corner
of the screen (see Figure R-2). If you wish to refer to areas outside
this square area, appropriate values outside the range 0 to 1 are
permi t ted in the DPORT call (see. DENQ, below). An empty viewport is
perfectly legal.

When the Omnigraph routines are first initialized, the default values of
the window and viewport edges are as if the following calls were executed:

DW I N D (-1, 1, - 1, 1)
DPORT (0, I, 0, 1)

The region of the page bounded by x and y of plus/minus 1.0 will be mapped
onto a square viewport on the screen.

1.8.3 Two-Dimensional Points and Lines

The following calls specify the generation· of points and lines in two
dimensions:

in [integer] <- O~lOVl (xl [real], yl [real])
in [integer] <- OORAW (xl [real]. yl [real])
in [integer] <- OVleT (xl [real], yl [real],

xl [real], yZ [real])
in [integer] <- DOOr (xl [reall. yl [real])

These subroutines can be viewed as manipulating a fictional beam in the
page coordinate system. DMOVE moves the fictional beam to the specified
point wi thout drawing a line. DDRAW moves the fictional beam from its
present posi tion to the specified pOint; if the fictional beam passes
through the window, a line-drawing instruction which will show the visible
part of the line will be add~d to the display file. DVECT (xl,yl,x2,y2)
is equivalent to the sequence OMOVE. (xl,yl); DORAW (xl,yl). ODOT causes a
dot to be displayed at the specified point, provided it is within the
window.

The value returned as a resul t of any of the 4 calls tells whether the
object was· wi thin the window, and hence displayed (true return), or did.
not result in any display (false return).

As. an aid to making other decisions about the relation of a display to the
current window, the following call

code [integer] <- DTEST2 (x [real]. y [real])

32

computes a code which tells whether the transform of the point (x,y) is
within the current window. If the code is 0, the point is within the
window. If the code is non-zero, four of the bits of the code specify in
which way the point is outside the window:

0001 (octal)
0010 (octal)
0100 (octal)
1000 (octal)

x value 1s to the left of the window
x value is to the right of the window
y value is below the bottom of the window
y value is above the top of the window

For example, the code 1001 (octal) means that the point is above and to
the left of the window.

1.8.4 Three-Dimensional Points and Lines

Generation of perspective views of ,three-dimensional objects can be
accomplished with calls very similar to the above two-dimensional calls:

in [integer] (. D~IOV£a (xl [real], yl [real], zl [real])
in [integer] (- DDRAWa (x2 [real], y2 [real], z2 [real])
in [integer] (- DVECTa (xl [real]. yl [real], zl [real].

x2 [real]. y2 [real], z2 [real])
in [integer] (- DDOT3 (xl [real], yl [real], zl [real])

The interpretations of the various calls are analogous to those for two
dimensions; the fictional beam now moves in a space with a three­
dimensional Cartesian coordinate system.

The coordinates are transformed by the current transformation matrix, and
then clipped, unless 'otherwise specified (see section 1.12). The clipping
operation for three-dimensional points is different from that for two­
d imens ional ones: a point must lie wi thin a three-dimensional viewing
pyramid in order to be visible. This pyramid is always shaped as shown in
figure R-3. The condition that .a pOint lie within the pyramid is:

-z i x i z
and

-z i Y i z

The transformation matrix can be used to deform the desired pyramid of
vision into this 'standard' pyramid used,for clipping.

Any vi~ible portion of a line is then subjected to the following
computation in order to compute a screen location:

screen x = (x/z) * (vicwportright - viewportleft)/2 +

(viewportright + viewportleft)/2

screen y = (y/z). (viewporttop - viewportbottom)/2 +
(viewporttop + viewportbottom)/Z

33

The division of x and y by z is the central operation in the generation of
a perspective display image. The viewport computations merely position
the image on the screen in some desired position.

Notice that the coordinate system used in these computations is a left­
handed one: if you face the display screen, the x axis points to the right
(.as does the x coordinate system on the 'display), the y axis points up,
and the z axis is directed ahead, into the screen. If the three­
dimensional coordinates of lines and points are in a right-handed system,
the transformation matrix can be used to convert it to a left-handed
system (merely setting M[3.3] = -1 will have the correct effect).

A function is available for testing pOints to see if they are inside the'
three-dimensional window. This function merely makes the tests described
above.

code [integer] <- DTEST3 (x [real], y [real], z [real])

The value of the code returned is similar to that for the two-dimensional
case:

0001 (octal)
0010 (octal)
0100 (octal)
1000 (octal)

1.9 Text Displall

x < -z
x > z
y < -z
y > z

All of the terminals supported by these subroutines have conventions for
displaying text. The Omnigraph routines transform a request for text
display into the form required by the particular terminal. Text display
will. therefore differ from one terminal to another: some will not have
lower-case characters; some will not be able to vary the size of
characters at all; some will be able to vary the size only in discrete
steps.

The call

34

OTSCAL (height [real])

sets the character size desired. The size is measured in the same units
used to specify the viewport. For example, if you desire characters 1/4
inch high on a screen which is 10 inches high, the appropriate size is
1/4 * (1/10) or 0.025. The Omnigraph routines will choose a size
available on the terminal you are using which corresponds most closely to
the size you have specified. The height setting remains in effect until
set with another DTSCAL call. There 1s no default.

The call

OTEXT (character-string [text])

is used to actually display text. The exact format of this call will vary
for different programming languages.

The Omnigraph routines will start displaying text at the position of the
fictional beam; the lower left-hand corner of the first character will
start where the fictional beam is. Thus, the DTEXT call will usually be
preceded by a DMOVE call (or whatever) to position the fictional beam in
the desired spot. After each character is drawn, the beam is positioned
to be at the lower left-hand corner of the next character. The Omnigraph
routines will decide what part of the text to display in one of two ways:

1. Display a character only if the entire character lies wi thin the
window.

2. Display a character regardless of whether it lies in the window. Jt
will not be displayed if any part of the character is off the
display screen.

The mode is determined by the .sign of the size parameter last given to
nTSCAL: if the size is positive or zero, mode 1 is used; otherwise mode 2.
Note that mode 2 may request text characters to be displayed which would
exceed the hardware limits of the screen; any such characters are
discarded.

The characters may be windowed in the 2D sense or the 3D sense, depending
which type of call was last executed before the DTEXT call. In other
words, if you are displaying 3D vectors, and call DTEXT, characters will
be windowed in three dimensions. The width and height of the character in
the three-dimensional object coordinate system are determined at the time
of the DTEXT call; this determination uses the current Z coordinate of the
fictional beam at the time of the call.

35

The fictional beam position in two or three dimensions is remembered when
DTEXT is called. This position is used as the left margin whenever a
carriage-return character is encountered in the text to be displayed.

For those who wish to posi tion characters accurately on the screen,
several aids are provided. The DENQ call (see below) and figures listed
with each terminal provide information about the actual size of characters·
on the screen. Four numbers are given: the x and y sizes of the actual
character, and the x and y sizes of the 'box' in which that character is
drawn (see Figure R-4).

Not all display terminals have the same character repertoires. The
Omnigraph routines adopt several conventions to facilitate character
display on a variety of terminals: (1) if the terminal has no lower case
facility, lower case characters will be converted to upper, (2) if a
character cannot be displayed on a terminal, a It is substituted. In
addition, the call

status [integer] <- OCHAR (character (integer])

can be used to discover whether the terminal in used can faithfully show
the ASCII character whose code is passed as an argument to DCHAR. The
function will return 0 if there
displayed, -1 if the display can
it can display the character
transliterated to upper case).

1.10 Intensitu Control

is no equivalent character that can be
display the character exactly, and 1 if
by transliteration (e.g. lower case

For those terminals which can draw lines of various intensities, the call

DINT (intenSity [real])

is provided. This will set the intensity value for any subsequent lines,
points, and text. The intensity is specified in a standard range: 0 is
the lowest intensity, 1 is the highest.

36

1.11 Display Subroutines

The Omnigraph display routines, as currently written, do not rule out
providing subroutine capabilities (e.g. SAIL display routines). These may
be added in the future. The complication of display subroutines is that
they interfere with windowing: a particular subpicture will appear
differently if drawn on different parts of the screen because different
parts of the subpicture will be clipped.

1.12 Dynamic Three-Dimensional Displays

The Omnigraph routines include special features to take advantage of
display terminals which have hardware for performing coordinate
transformations, p~ojective transformations, and viewport transformations.
The procedure described above for generating perspective displays is
called static: the transformations are all applied prior to building the
display file. Thus the only way to alter such a display is to regenrirate
segmen ts of the display file t perhaps using different transformations.
The dynamic process, on the other hand, builds display files which contain
x, y and z coordinates prior to· transformation the required
transformations are performed by special display hardware. This process
acquires a dynamic character because altering the transformations will
alter the display without regenerating the display file.

The ideal structure for the display file for dynamic displays would
include specifications for lines and pOints in three dimensions, for
applying, composing, pushing and popping transformations, and for viewport
limits.. The ideal structure is, however, unattainable with any present­
day display equipment, largely because of the lack of floating-point
hardware; at the very least, we must scale every coordinate so that it
lies within the limits of the display's fixed-point number system. The
discussion below presents the Omnigraph solution to this problem and to
others encountered when designing the driver for an Adage AGT-30 graphics
terminal. For additional details, see the Omnigraph Display Routines -­
Implementation Manual.

The coord ina tes (x, y, z) passed via a DMOVE3, DDRAW3, OVECT3 or DDOT3
call to the Omnigraph routines for dynamic display are transformed as
follows:

S W T

'static'
transforms

o p

'dynamiC'
transforms

31

S is called the 'static matrix transformation'; it is expressed as one
matrix, the current transformation matrix, just as described above for
static perspective generation. W is a 'box clip' step which clips lines
and points against a three-dimensional box specified with an Omnigraph
call, and T maps the box limits into fixed-point numbers acceptable for
the display hardware. These first three transformations are performed
before the display file is built. The display hardware applies one more
transformation, the combination D P, to the display-file points as the
display is refreshed. In the case of the AGT-30, the x,y,z point which
resul ts from the transformation is projected orthographically onto the
screen, i.e. the displayed point is at (x,y).

The hardware transformation 0 to be applied is computed as the display is
being refreshed. Codes may be placed in the display file which cause the
'current dynamic transformation' to be altered just as Omnigraph calls
cause the current static transformation to be altered: applying or
composing new matrices; pushing the current matrix onto a stack; popping
the stack into the current matrix. In order to alter the display imag~,
we need only alter the values of one of the matrices taking part in an
application or composition. We shall permit such 'dynamic matrices' to be
given names, integer numbers, which can be used later on to name a matrix
to be altered.

Matrices may be altered in two ways. first, the Omnigraph call DSETR will
change values in any named dynamic matrix. Thus tha graphics program can
control the view of a three-dimensional scene wi thout regenerating the
display file. Second, the graphics terminal itself may provide commands
which cause matrices to be given new values specified by dial readings,
keyboard values, or constantly-changing values (thus giving a 'tumbling'
effect). The AGT-30 software provides several commands of this sort; in
addition some commands affect the entire display, regardless of the user's
matrices.

The foregoing discussion represents a somewhat simplified view of the
display process. Let us describe in more detail the operation of the
Omnigraph routines and the AGT-30. The transformation applied to a point
is precisely:

T'Dm T ... T'D2 T T'D1 T T'PA

dynamic transformation

The Si sequence of transformations is expressed as one matrix, the product
of all the Si' This matrix is called the 'current static transformation'.
The boi clip has already been described. T is a scaling and translation

38

transformation which maps the box limits into the AGT coordinate system:
coordinate values vary from -1 to +1. The dynamic transform is one
matrix, composed from several entities:

1. A dynamic transformation sequence Om ... O2 01 modified by the
Omnigraph routines to include the effect of the transformation T (T' is
the matrix inverse, of T). Thus a floating-point matrix 0, specified by
an Omnigraph call, is actually given to the Adage as T'OT. The user of
the Omnigraph routines can thus ignore the fact that T has been applied
before the 0i; he should think of the transformation of each point as
being S W D P A.

This transformation sequence varies as the display file is executed,
i.e. 'apply matrix', 'compose matrix', 'push' and 'pop' commands in the
display file will cause this sequence to change.

2. P is a transformation which establishes the viewport. It is multiplied
by T' in order to account for the scaling.

3. A is a matrix controlled by the dials on the Adage. If values in A
change, the whole picture will appear to rotate, translate, etc. Thus,
even if the Omnigraph user provides no dynamic transformation 0, the
transformation A can still be used to alter the view of the scene.

Each of the matrices T'DiT, T'P, and A is constrained to have values in
the range -1 to 1. If the dynamic matrices are used solely to rotate the
image about the origin, this constraint should not offer difficulties.

The Omnigraph routines for controlling static and dynamic three­
dimensional display are listed below:

OBYP (n [integer])
This call is used to specify exactly now each point presented to the
Ornnigraph routines (O~IOVE3, OORAW3, OVECT3, ODOT3) is to be
processed. The default is the static process: static
transformation, pyramid clip, and perspective divide, as described
in section 1.8. That default can be altered by OBYP calls as
follows:

n =-1 Set 'static processing' mode. Static transformations"
pyramid clip, and perspective divide are the default
operations. These defaults may be overriden with further
calls to OBYP as described below.

n = 1 Set 'dynamic processing' mode. Static transformations,
box clip, the T transformation, and dynamic
transformations are the default operations. These
defau I ts can be overriden with further calls to OSYP as
described below.

39

n =-2 Omit the box-clip step.
n = 2 Enable the box-clip step.
n =-3 Disable pyramid clipping and perspective division.
n = 3, En~ble pyramid clipping and perspective division. If box

clipping is also enabled, it is performed first.
n =-4 Disables the use of T, i.e. sets T to the identity matrix.
n = 4 Enables use of T (see below).

DWIND3 (left [real], right [real], bottom [real], top [real],
zmin [real], zmax [real])

This call specifies the limits of the box to be used for the box
clipping step. It thus gives minimum and maximum values that the x,
y, and z coordinates can assume. If matrix T is enabled, it is set
to:

2

o o o
right-left

2
o o o

top-bottom

2
o o o

zmax-zmin

right+left top+bottom zmax+zmin
1

right-left , top-bottom zmax-zmin

DPORT (left [real], right [real], bottom [real], top [real])
This call is precisely as described in section 1.8.2. It defines
the area of the screen in which the picture is to appear. The
matrix P is set to:

right-left
o
o

left

o
top-bottom

o
bottom

o
o
1
o

DAPPLY (new-matrix [pointer], name [integer]

o
o
o
1

Static processing: ,If static processing is in effect, or if the
terminal has no dynamic transformation capability, this call has the
effect described in section 1.8.1: the new-matrix is loaded into the
current static transformation.

40

Dynamic processing: If dynamic processing is in effect, the value of
'name' controls the use of new-matrix: if name =-1, new-matrix
replaces the-current static transformation, as above. Otherwise, a
dynamic 'apply matrix' command, which references a copy of new­
matrix, is added to the display file. If name is positive, it is·
taken as the 'name' of the matrix. (If a matrix of the same name
already exists, new-matrix will not supersede it.) If the
transformation T is enabled, the matrix which will actually be
applied is T'OT, where 0 is new-matrix. Warning: applying a dynamic
matrix nullifies the effect of T'PA; OCOMPOSE is preferred.

DCOMPOSE (new-matrix [pointer], name [integer])
Static: This call has the effect described in section 1.8.1: the
product (new-matrix) • <current static matrix) replaces the current
static matrix.
Dynamic: If name =-1, the product <new­
matrix) • <current static matrix) replaces the current static
matrix. Otherwise, a dynamic 'compose matrix' command which
references a copy of new-matrix is added to the display file. If
name is ·positive, it defines a name for the matrix. (Again, if
matrix T is enabled, the matrix transmitted to t~e display terminal
is really T'OT, where 0 is new-matrix.)

OPUSH (name [integer]) OPOP (name [integer]
Static: The local stack is manipulated as required: OPUSH pushes a
copy of the' current top transformation back onto the local stack.
DrOp pops the local stack.
Dynamic: If name = -1, OPUSH and OPOP apply to the local stack.
Otherwise an appropriate 'push' or 'pop' cOlMland is added to the
display file. The Adage maintains a transformation stack which is
manipulated by the display-file commands 'push' and 'pop', just as
the local stack is maintained i~ the static protocol. The current
top of stack is the transformation in force at any time.
The stacks are both initialized with the identity transformation:
this initialization is performed in the Omnigraph routines when they
are loaded, and by the Adage each time a new picture segment is
refreshed. If ever OPOP is applied to an empty stack, an error
message is issued and the request is ignored.

OSETR (new-matrix [pointer], name [integer])
Statlc: this is a no-oPe
Dynamic: If name is positive, new-matrix replaces the previous
matrix with name 'name'. (Again, if transformation T is enabled,

. T' DT is the actual matrix used for replacement, where 0 is new­
matrix.) If no such matrix exists, an error message is issued and
tho DSETR request is ignored.

41

1.13 Input Facilities

Some of the terminals served by the Omnigraph routines have hardware for
inputing information to the program. This section describes two calls for
utilizing that hardware. Section 3 gives additional details about the
input facilities of each terminal.

The inp~t facilities are organized around euents. The user may enable
several different classes of input operations to be reported. The call

DEVENT (device [integer], op [integer], answer [pointer])

is used to control the recording and reporting of events.

Events may be generated by two devices: (1) a function key is depressed by
the user, (2) the tablet stylus is raised after having been depressed, or
(4) the tablet stylus is depressed and has moved a little bit since the

'last event. Notice that these devices are numbered as powers of 2, and
can therefore be combined. For example, to enable function key hits and
tablet 'pushes,' the 'device' parameter would be 3 (=1+2).

The lOp' argument specifies combinations of the following: (1) clear the
list of incoming events, (2) enable the 'device' or devices to report
events to the list, and (4) wait for an event to happen. Notice that the
numbers for these. operations are 1, Z and 4. They may be combined: 5
(=4+1) means clear the current list of events and then wait until an event
happens.

The general strategy for initializing input devices is to enable
appropriate devices and clear the event buffer. Thereafter, events can be
'read' from the buffer, using the 'wait' option if desired. The enable
option should be used sparingly; it is only necessary when changing input
devices. It' is a good practice never to clear the event buffer (except
initially); each ev~nt in the buffer repr~sents a user action which should
be processed in some way by the program.

The DEVENT routine is also used to retrieve events from the event buffer.
If an event has arrived, the DEVENT routine fills the 'answer' array with
information ahout the event. Answer[l] contains the number of the
'device' which caused the event (if it is 0, then no event is being
reported) . The remainder of the 'answer' array depends on the type of
event being reported.

If the reported event is a key-hit, Answer[l] is 1, and Answer[2] is the
(floating-point) number of the key which was depressed.

42

If the reported event is due to the raising of t.he tablet stylus,
Answer[I] is Z. and Answer[Z] and Answer[3] contain the x and y
coordinates of the pen when it was raised. The values for x and y arc in
the current page coordinate system, i.e. they are in the same coordinate
system as is used when passing arguments to the two-dimensional pOint and
line-drawing subroutines.

If the reported event is due to the motion of the tablet stylus, Answer[l]
is 4, and Answer[Z] and Answer[3] are loaded with the x and y page
coordinate values for the new stylus position.

The input devices often have output counterparts, e.g~ ~ key stroke may
want to be answered by turning off a light under the key, etc. The
following function controls the output effects of the tablet and keys:

Dour (device [integer], op [integer])

The DOUT call with d~vice = 1 can be used to turn a light on by giVing in
'op' the number of the light (same numbering system as that for keys) or
to turn a light off by giving the negative number of the light.
DOUT (1,0) turns all lights off.

The DOUT call with device = 2 is used to control the tablet. A DOUr (2,x)
must be given before any tablet events are expe'cted, and is used to
initialize the tablet-handling functions. If 'op' is positive, a trail of
ink on the display will follow the path of the stylus whenever the stylus
is depressed. In addition, a dot will follow the path of the stylus,
whether it is depressed or not. If 'op' is zero, the ink is disabled, but
the dot will still follow the stylus. If, 'op' is -1, ink and dot are
disabled. The DOUT (2,x), call may be repeated. In particular, it is used
to erase from the screen any ink left over from previous tablet input. A
positive value of 'x' passed to DOUT specifies (approximately) how long
the maximum ink trace can be (the actual value of x should be established
by trial; it corresponds roughly to inches of ink).

The following brief example is a SAIL program which does nothing but allow
inking -- a carriage return causes the DOUT (2,x) call to be executed
again, thus clearing any existing ink.

DINI (0,10,0[1],0); DGET;
WHILE TRUE DO BEGIN

END;

DOUT (2,40);
INCHWL;

MGET 340 DISPLAY"

"INITIALIZE AND CLEAR INK"
"WAIT FOR USER CARRIAGE RETURN"

43

1.14 flotting

An off-line plot of any display can be made with the call

DfLOT (buffer [pointer], filename [integer]

This call writes a small disk file which contains the display file
instructions for any pictures which are currently DPOSTed. If a non-zero
SIXBIT filename is specified, the. file will be so named (extension .PLX).
Otherwise, the file name will be chosen so as not to conflict with other
plot files already on the disk. (Names will be of the form OOOOOO.PLX,
OOOOOl.PLX, 000002.PLX, etc.)

The operation of writing the file requires the use of a 128-word core
buffer. Th is buffer cannot, in general t be obtained' from the display
free-storage, so the user is expected to supply a pointer to a free buffer
area. After the DPLOT subroutine returns, the buffer area can be used for
other purposes.

The buffer also provides a way of communicating to the plotting package a
variety, of special parameters related to the plot. At present, the
following conventions are established:

buffer [1]
buffer [2]
buffer [3]
buffer [4]
buffer [5]

buffer [6]

buffer (7]

buffer [8]

[real] 314159 (the number!)
[real] x scale value
[real] y scale value
[real] x offset value
[real] y offset value

[real] paper type:
1 standard
2 -- vellum
3 -- grid

[real] paper width:
11 inches
30 inches

[real] pen type:
1 -- ball point
2 -- felt tip pen
3 -- wet ink

44

buffer [9] [real] pen color:
I black
Z read
3 green
4 blue
5 turquoise
6 purple
7 yellow
8 orange
9 brown

10 pink
buffer [10] [real] overlay next plot

(if 1, will overlay)

If buffer('IJ is not· 314159, then default values are assumed for the.
remaining parameters: 1.0, 1.0, 0., 0., 1, 11, Z, 1. If entries 6, 7, ~,

or 9 are 0, they are individually defaulted to 1, 11, Z, and 1.

The plotter output will mirror, as successfully as possible, th~ display
image shown at the time of the DPLOT call (The display does not have to be
seized, however; DPLOT merely examines the display file). The' scale
factors and offset values can be used to enlarge the display when
plotting. If the scale factors are 1 and the offsets 0, then the plot
will be exactly the same size as the display was when it was viewed. The
following computation is performed:

(plotter x in inches) =
(x in standard viewport coords) *
(screen width in inches) * scale + offset

along with a similar computation' for y. The computation has the effect
that 'scale' is an enlargement factor and 'offset' is the offset in inches
of the lower left corner of the plot.

A program called PLOTX reads the .PLX files created and actually
accomplishes the plotting. This program will produce output for the off­
line Calcomp plotter, for the SC 4070 microfilm unit, and for the ZETA
plotter. The operation of the program is very simple, and is directed by
various promptings.

45

1.15 Miscellaneous Subroutines

The enterprising programmer may want to know several details about the
terminal actually being used. The subroutine call

DENQ (array [pointer)

can be used to enquire about many salient ch\racteristics of the terminal,
and about the current state of the display routines. The effect of the
subroutine is to fill the array .with floating-point numbers which describe
the terminal:

array[l]

array[2]

array[3]

array[4]

array[5)

array[6)

array[7]

array[8) .

array[9]

array[IO]

Storage Tube? This value is non-zero if the terminal does
not have a dynamic-refresh display. Otherwise, it is zero.

Three-Dimensional Hardware? This value is non-zero if the
terminal has hardware for. rotating three-dimensional
objects.

Tablet? This value is non-zero if the terminal has some
kind of stylus tablet attached to it.

Keys? This value is 1 if the terminal has function keys
attached. The value is 2 if the terminal has keys and also
has lights under the keys.

roints per unit Viewport. This is the number of resolvable
points which corresponds to a viewport value of 1.0.

Inches per uni t Viewport. This is the size (in inches) of
the screen which corresponds to a unit viewport (value =
1.0).

Maximum value oj X Viewport. This is the maximum value which
an X ,viewport value can take, in the DPORT call.

Naximum value oj Y Viewport. This is the maximum value
which a Y viewport value can take, in the DPORT call.

Character Height. This is the actual height of characters,
as set by the last DTSCAL call. The height is measured in
page coordinates, as specified in the last DWIND call.

Character Width. This is the width of characters, as set by
the last DTSCAL call, as measured in the page coord ina te
system.

46

array[ll]

array[12]

Character Box Height. This is. the height, in page
coordinates, of the box which surrounds a character.

Cho racter Box Width. This is the width, in page
coordinates, of the box which surrounds a character. It can
be used to answer questions like: "How many characters can I
fit between x = 1 and x = 5500 in the page coordinate
system."

array[13] Current Fictional X Beam.

array[14] Current Fictional Y Beam.

array[15] Current Fictional Z Beam.

array[16-19] Current Viewport Limit~. These four numbers are the left,
right, bottom, and top limits of the viewport. These are
merely copies of the last arguments passed to DPORT.

array[20-23] Current Windolu Limit~. These four numbers are the left,
right t bot tom and top limits of the window. These are
values of the last arguments passed to DWIND.

The display routines have a dynamic storage allocation facility for
managing the free-storage area. This facility is used extensively by the
various picture-generating routines described above. As a convenience,
the two basic subroutines are also made available to the user program.
They can be used to reserve and release space wi thin the free-storage
area. The calls are:

address [integer] (- DeORGET size [integer])

DeORREL address [integer]

DCORGET reserves a space of length 'siie,' and returns the address of the
first word of that space. If no core of that size can be found, 0 is
returned. DCORREL releases the space beginning at 'address.' Users should
be very careful to stay within the bounds of the piece of core given them;
a faulty program can destroy vital informaticin in t~e Omnigraph routines.

Several of the displays served by the Omnigraph routines have special
fea tures wh ich do not fi t in to the Omnigraph framework. In order to
partially circumvent this problem, the call

DeODE (code [integer])

47

can be used to specify special actions. for most remote terminals, the
• code' is merely transmitted to the terminal. Section 3 explains the
function of OCOOE for each terminal. Since this feature is terminal- .
dependent, use of OCODE is not recommended unless absolutely necessary.

1.16 Sequencing oj Omnigraph Routine Calls

Certain calls may be issued at any time; others can only be issued when a
picture has been DOPENed (or is being DAPPENDed to) .. All calls must follow
the DINI initialization call. The classes of calls are as follows:

1. Can appear anywhere:
DIN I
OGET, DREL, OCURSOR, DOONE, OKILL, DPOST, DUNPOST,
DOrEN, DAPPEND, DCLOSE, DCHAR
DAPPLY; DCOMPOSE, DPOP, DPUSH, OSETR, DBYP
OWIND, DPORT, DWIND3, DTESTZ, DTEST3,
DTSCAL, DINT, DPLOT, DENQ, DEVENT, DOUT.

(The effect of DTSCAL and DINT when called outside
a picture is to remember the parameters as global
defaul ts) ..

2. Can appear only inside DOPEN-DCLOSE pair:
DMOVE, o DRAW , OVECT, OOOT
O~10VE3, DDRAW3, DVECT3. DDOT3
OTEXT

1.17 Technical Considerations

This section describes some particularly complicated uses of the Omnigraph
routines and the various caveats which pertain to the complication:

Overlays: If you request that the second segment be used for display data,
then all internal data in the Omnigraph routines is saved there.
Even if the first segment is destroyed, and an entirely new one
is read in as an overlay, the second segment data remains
untouched. If a second segment exists when DINI is called, it
checks to see whether that segment was created by the Omnigraph
routines for the same display. If so, the DINI call does not
initialize the free-storage area, but leaves all pictures

48

intact. It is thus possible to create a picture with one
overlay, post it with a second, and kill it with a third!

The DINI call is required each time an overlay replaces the
place where the display subroutines were loaded. The effect of
the call is Simply to reload the device-dependent code for your
display.

Using several displays: DINI can be called once to read in the code
segment for one display. say the DEC340, and then again to read
in the code segment for another display, say th(! ARDS. The
usefulness of this strategy is questionable, but the routines do
permit the activity. The program should be sure to release
(DREL) the first display before reading in code for the second.
In addition, when the new routines are initialized, the display
file is of necessity destroyed completely. Your program will
thus have to regenerate the display.

49

2.0 Language Considerations

This section describes the special behaviour of the Omnigraph routines in
each of the three programming languages SAIL, LISP, and FORTRAN.

2.1 SAIL

A relocatable copy of the Omnigraph routines is saved as SYS:DISSAI.REL.
The SAIL 'REQUIRE' verb can be used to cause this file to be loaded with
your program.

The declarations to be included in your SAIL program are:

DEFINE EP="EXTERNAL PROCEDURE", EIP="EXTERNAL INTEGER PROCEDURE";

EIP DINI (INTEGER N,CH; REFERENCE INTEGER AR; INTEGER S);
EIP nGET;
EP nRELj

EP DOPEN (INTEGER N)j
EP DAPPEND (INTEGER N)j
EP DCLOSE;

EIP DPOST (INTEGER N)j
EIP DUN POST (INTEGER N);

'EP DKILL (INTEGER N);

EP DOONE;
EP DCURSOR (REAL X,Y)j

EP DAPPLY (REFERENCE REAL AR; INTEGER NAME);
EP DCOMPOSE (REFERENCE REAL AR; INTEGER NAME);
EP DPUSH (INTEGER NAME);
EP DPOP (INTEGER NAME);
EP OSETR (REFERENCE REAL AR; INTEGER NAME)j

EP DWIND (REAL L,R,B,T)j
EP DPORT (REAL L,R,B,T)j
EP OWIND3 (REAL L,R,B,T,ZMIN,ZMAX);

EIP OMOVE (REAL Xl,Yl);
EIP ODRAW (REAL X2,Y2);
EIP OVECT (REAL XI,Yl,X2,Y2);
EIP ODOT (REAL Xl,Yl);

50

2.2 LISP

EIP OTEST2 (REAL X,V);

EIP OMOVE3 (REAL XI,VI,ZI);
EIP DDRAW3 (REAL X2,Y2,Z2):
EIP DVECT3 (REAL Xl,Yl.Zl,X2,Y2,Z2):
EIP DDOT3 (REAL Xl,Yl,Zl):
EIP DTEST3 (REAL X,V,Z);
EP OSYP (INTEGER CODE):

EP DTSCAL (REAL S);
EP DTEXT (STRING S);
EIP DCBAR (INTEGER I);

EP DINT (REAL I);

EP DEVENT (INTEGER DEV,OP; REfERENCE REAL ANS);
EP DOUT (INTEGER DEV,OP);

EP DPLOT (REFERENCE REAL AR: INTEGER FILE);
EP DENQ (REFERENCE REAL AR):
EIP DCORGET (INTEGER SIZE);
EP DCORREL (INTEGER ADDRESS);
EP OCODE (INTEGER CODE);

REQUIRE "SYS:DISSAI" LOAD! MODULE;

The Omn igraph routines are loaded into LISP in two steps: first the
relocatable file is loaded; then a file of S-expressions is loaded which
actually defines all the appropriate SUBRs. The relocatable file is
SYS:DISLIS.REL; the S-expressions are SYS:DISLIS.LSP.

All of the Omnigraph subroutines become LISP functions after these two
files have been read into LISP. Integer and real numbers can be passed to
these routines in the. usual way:

(DWIND 0 1 0 1)

The Omnigraph routines will perform any ~ype conversions from integer-to­
real or real-to-integer which may be required. Pointers are passed to the
Omnigraph routines by means of LISP arrays, e.g.

(ARRAY FOO () @(1 • 4) @(1 .4»
(DAPPLV @FOO 0)

51

Text is passed to the Omnigraph routines via the call

(DTEXT .•.)

which precisely mimics (PRINT ...).

2.3 FORTRAN

The Omnigraph rout~nes for FORTRAN are found in the file SYS:DISFOR.REL.
You must specify that this file be loaded with the FORTRAN program, e.g.:

LOAD MV.F4,SYS:DISFOR

The arguments of type real, integer, and pointer may all be passed to
Omnigraph routines as you would pass arguments to any FORTRAN subroutine.
The Omnigraph routines will convert from integer-to-real and from real-to­
integer if' necessary. However, when pointers are specified, no
conversions are performed (i.e. be sure, that arrays passed to DAPPLY,
DCOMPOSE and DPLOT are floating-point).

The functions which return values will have to be declared INTEGER, unless
you wish their return values to be ignored (e.g. the DMOVE, DDRAW calls,
etc.).

Text is passed to FORTRAN in a rather uncomfortable way: the ENCODE
statement must. be used to create an array of ASCII text to be displayed.
Then the call

CALL DTEXT (asciiarray, length)

will display text from the ASCII array; 'length' specifies the number of
characters to be d~splayed.

52

3.0 Terminal Considerations

This section describes the idiosyncracies of the various terminals
supported by the Omnigraph routines. At the very least, each display
terminal is assigned a number which is used in the call to DINI to specify
which terminal is to be used.

3.1 DEC-340 Display: display number 0, name "DEC340"

The DEC-340 display is one of the higher quality display terminals we have
(alas), with the following properties:

Coordinate resolution: 1024 by 1024 points on a 10 inch square screen

Viewport maxima: X: 1.0; Y: 1.0.

Intensity resolution: 8 intensity levels

Character fonts: 64 ASCII characters, not including lower case; text can
appear in 4 sizes, corresponding to values of the DTSCAL parameter
of .0068, .0127, .0244, and .0479. The character and box dimensions
(in inches) are as follows:

DTSCAL CHARACTER BOX
width height width height

.0068 .0489 .068 .0586 .107

.0127 .0880 .127 .117 .215

.0244 .166 .244 .235 .430

.0479 .323 .479 .469 .860

Capacity: less than 200 inches of vectors

Input facilities: Lights and buttons are numbered 1 through 16. The'
Graphacon tablet provides inking and tracking facilities.

DCODE operation: refer to Omnigraph Implementation Manual.

The use of this display requires that free-storage come from a second
segment. The third and fourth arguments 'to DINI are thus ignored, and a
second segment is always used.

53

3.2 Computek 400: display number I, name "C400"

This is a direct-view-storage-tube display. connected to the PDP-I0 via
asynchronous communications lines. The terminal is used both for graphics
displays and for echoing text typed in by the user. Essential
characteristics are:

Coordinate resolution: 1024 by 780 points on a 8.25 by 6.4 inch screen

Viewport maxima: X: 1.279; Y: 1.0.

Intensity resolution: one intensity level

Character fonts: 96 character ASCII (including lower case) in exactly one
size, corresponding to a DTSCAL parameter of .015. The character
measures .0645 by .0968 inches, and resides in a box .0968 by .16
inches.

Capacity: extremely large, but the time required to draw compilicated
pictures may get quite large

Input facilities: none

DCODE operation: low-order 8 bits of the argument are sent directly to the
terminal.

Special features: the ability to draw curves of various kinds

3.3 Adage AGT-80: display number 2, name "ADAGE"

The AGT-30 is a high-performance display with analog vector generation and
three-dimensional rotation hardware built into the display. The hardware
does not produce an accura te perspective view, but it can be used to
achieve the kinetic depth effect, that is motions of the object in space
serve to communicate spatial relationships ..

Coordinate resolution: 16384 by 16384 points on a 10 by 10 inch screen.
(An area 12 by 12 inches can in fact be used, although some vectors
may be distorted. If you wish to use this larger area, the X and Y
viewport parameters may be set to 12/10 = 1.2.)

Viewport maxima: X: 1.0; Y: 1.0 (nominally -- see above).

Intensity resolution: 1000 or more

54

Character fonts: 96 character ASCII (lower case included), at discrete.
sizes corresponding to values of the DTSCAL parameter of .015, .030,
and .045.

DTSCAL CHARACTER BOX
width height width height

.015 .1 .15 .12~ .3

.030 .2 .30 .250 .6

.045 .3 .45 .375 .9

Capacity: about 15000 inches of vectors

Input facilities: Lights and buttons are numbered i through 16. Ink.ing
and track.ing facilities are provided.

DCODE operation: low-order 16 bits are transmitted to the Adage; refer to
'Adage Picture Transmission Language' for coding information.

Special features: 3-D transformation hardware.

3.4 ARDS: display number 3, name "ARDS"

The ARDS display is a storage-tube device. Characteristics:

Coordinate Resolution: 1080 by 1414 points on a 6.375 by 8.25 inch screen.

Viewport maxima: X: 1.0; Y: 1.309.

Intensity resolution: one intensity level.

Character font: 96 character ASCII (including lower case). The character
size corresponds to a DTSCAL parameter of .0134; it measures .067 by'
.086 inches; the box size is .08 by .165 inches.

Capacity: very large, but may tak~ some time to draw pictures.

Input facilities: none

DCODE operation: low-order 8 bits are sent directly to the terminal.

55

3.5 Tektronix 4010-1: display number 4, name "T4010"

The Tektronix terminal is a small, quiet, inexpensive storage-tube·
terminal. One nice feature of this terminal is that it can be quickly
changed' to 150, 300, 600, 1200. 2400, 4800 or 9600 baud asynchronous
operation. Characteristics:

Coordinate Resolution: 1023 by 780 points on an 8.25 by 6.4 inch screen

Viewport maxima: X: 1.311; Y: 1.0

Intensity resolution: one intensity level.

Character font: 64 character ASCII; no lower case. There is one character
size, corresponding to a oTSCAL parameter of .0179. The character
size is .09 by .12 inches; the box size is .10 by .16 inches.

Capacity: very large.

Input.facilities: The cross-hairs are used for two-dimensional input; they
are enabled whenever 'tracking' is requested. No inking is
possible. When the cross-hairs are enabled, the coordinates are
sent. to the PoP-lO (thus causing an 'event') by pressing the
'return' key.

DCODE operation: low order 8 bits are sent directly to the display
terminal.

56

4.0 Error Reporting

The Omnigraph routines report errors in a uniform manner. Each error
causes a message to be typed out on the user's terminal. If the error is
fa ta 1 , the terminal is returned to mon i tor mode; otherwise,' the user
program is allowed to continue.

Some care has been taken in the constr~ction of the Omnigraph routines to
insure that errors which may depend on the state of the time-sharing
system or on the exact size of the display file will not be fatal to the
entire program. For example, if the Omnigraph routines run out of free
storage and cannot acquire more from the operating system, the picture
currently being generated is flushed, and all subsequent requests to add
to the picture are 'ignored, up until the pic~ure is CLOSEd. If the
graphics program is interactive, perhaps the user could DKILL some
pictures he no longer needs, thus reclaiming some free storage space, and
could attempt the generation process again.

If the core routines must stop' generation of a picture, the message 'No
core for display' is typed on the console to warn 'you that some picture
may not be generated correctly.

The error message printed looks like:

?DISPLAY ERROR NUMBER 4; ROUTINE DKILL
CALLED FROM 5107

The error can be found in the table of errors given below, together with a
more verbose description of the difficulty. ,For debugging purposes, you
can put a DDT breakpoint at the location DERRHL. The breakpoint will stop
the program after the error message is printed, but before any action is
taken.

Error

1

2

3

Fatal?

no

no

yes

Description

Free storage is exhausted and we cannot get more from
the operating system. The generation of the present
picture is terminated. At the next DOPEN, however,
generation will be restarted.

The type of a subroutine argument is incorrect. This is
usually a programming error of some sort.

A subroutine attempted to generate a display file
instruction when no picture was currently DOPENed.

4 no

5 no

6 yes

7 no

9 yes

10 no

11 no

12 no

13 no

14 ' no

no

57

An attempt to OKILL a non-existent picture.

An attempt to OPOST a non-existent or already posted
picture.

An attempt to OAPPEND to a non-existent picture.

One of the parameters to OPORT is out of bounds.

Bad core pointer. The dynamic storage allocation
routines have discovered an inconsistency in the free­
storage ,mechanism.

DPLOT cannot write the .PLX disk file.

DPUSH cannot find a piece of core in which to save the
transformation.

DPOP is trying to 'pop' beyond the top of the stack
(i.e. you are popping more than you pushed).

Function is not implemented for this device.

Cannot find the code segment for the display you have'
requested in DINI.

Cannot find a piece of core for the event buffer, the
inking buffer, or some other function related to the
DEVENT/DOUT routines.

58

References

1. Guide to the fOP-10 Timesharing Sustem. This document describes the
DEC-340 display system in detail, and also the other two brands of
display routines available on the PDP-lO. (Available from the
Technical Information Office).

2. Sproull and Sutherland, A Clipping Diuider, fJCC 1968. This article
describes two-dimensional and three-dimensional clipping and windowing~

3. Sproull, Note:; for Computer Graphics. These notes for an NIH-CCB
seminar on computer graphics describe windowing and clipping
algorithms, transformation systems, etc. (Available in the OCRT
Library) •

4. Omn igraph Display Routines -- Implementation Manual. Available from
the DCRT Technical Information Office.

59

The PLOTX Program

PLOTX is a program which reads specially-formatted disk files and makes
off-line plots. The files are created as a result of the DPLOT Omnigraph
routine; they are essentially copies of the display files for all posted
pictures at the time DPLOT is called. The PLOTX program knows the format
of all display files used in the Omnigraph routines, and can decode them
and produce plots which mirror, as closely as possible, the display shown
on the screen.

PLOTX can also be used to accomplish a number of trivial transformations
on the picture as it is plotted. These include enlarging, offsetting, and
overlaying.

PLOTX is designed to produce plots on one of three devices:

Off-line Calcomp Plotter
SC 4060 Microfilm device (not implemented 8-72)
ZETA Plotter (not implemented 8-72)

The Calcomp plotter offers a number of additional options: selection of
paper type and size, and pen type and color.

The operation of PLOTX is best explained with an example (see below). The
dialog used by the· program observes several conventions: items listed
inside square brackets [] are default values or actions that will be
obeyed if the question is answered with 'carriage-return'. Items listed
inside parentheses () describe admissible answers to the question being
posed. Answers to'yes or no questions may be abbreviated to Y or N.

The first question is whether the operation is to be 'automatic',· or·
'manual'. Automatic operation means that all files with extension .PLX on
your disk area will be plotted. Any information included in the PLX file
about how the plot is to be done (see the description of DPLOT, above)
will be obeyed, but the user will not be prompted for additional commands.
In 'manual' operation, PLOTX will engage in an initial dialog to permit
changes to the plotting parameters associated with each PLX file. The
discussion below assumes manual mode is being used.

Next, PLOTX wants to know which plotter you intend to use. The default is
1, the Calcomp.

Now you must provide the names of the PLX files which are to be plotted.

60

A response of 'carriage-return' will cause all files with extension 'PLX'
in your disk directory to be plotted. They will be plotted in the same
order that they are listed ~n the directory. If you wish to specify
precisely which files are to be plotted, the names (without extensions)
may be typed in. If the name is a 6-digit number generated by DPLOT. then
only the number portion need be typed. Examples:

12,0,2
will plot OOOO12.PLX. OOOOOO.PLX, and 0OOOO2.PLX

l,nam
will plot OOOOOI.PLX, NAM.PLX

1 , 1 ,1
will plot OOOOOl.PLX. OOOOOl.PLX. and OOOOOl.PLX

The last example is useful when you wish to change the plotting parameters
so that each plot is different (e.g. enlarge one plot, make one in red
ink, etc.).

Now PLOTX will ask, for each of the files specified in the previous step,
whether you wish to make changes to the plotting parameters. The default
parameters are supplied by PLOTX unless the ,parameter portion of the PLX
file specifies valid parameters (see DPLOT, above). The defaults are:

X scale factor: 1
Y scale factor: 1
X offset: 0
Y offset: 0'
Paper type: 1
Paper widt'h: 11
Pen type: 2
Pen color: 1
Overlay: 0

(standard)
(II-inch)
(felt tip)
(black)
(no overlay)

These options are almost self-explanatory. The scale factor is applied
before the offset: the x coordinate of a point is x • scale + offset. The
offset is measured in inches. The overlay option allows the plotter
medium to be 'rewound' before plotting the next PLX file. The origins of
the two sucessive plots will thus coincide.

The remaining dialog depends on which kind of plotting medium is selected;
we shall assume that the off-line Calcomp has been chosen. In this case,
PLOTX must write a magnetic tape to drive the plotter -- it asks for the
number of a tape drive on which a scratch tape has been mounted.

It then asks for various accounting information: name, registered
ini tials. account number. and box number. The 'registered lnl tlals' •

61

'account number', and • box number' are assigned to CCB users by the
Project Control Office, Bldg. 12A, Room 3013. This information will be
scribed on your plot so the Calcomp operator can collect accounting
information.

Now PLOTX takes over and begins to wri ~e on magnetic tape appropriate
codes to plot the files you requested. It will type out the name of each
filc as it begins processing; it will also type out the text of
intervening messages to the Calcomp operator.

When all files have been cxamin~d and plots written on the magnetic tape,
it is rewound. PLOTX then asks if you would like to have the PLX files
deleted from your disk area. If you respond 'yes', it will delete only
those which have just been plotted.

Below is a teletype listing from a sample PLOTX run. All underlined
characters were typed in by the user; an underline as the last character
on a line means that the user pressed the 'return'key at that point .

. DIRECTORY JIC.PLX

000000 PLX
000001 PLX

3 (055) 16-Aug-72
3 (055) 16-Aug-72

DSKA:

Total' of 6 blocks in Z files on DSKA: (13,16]

.B PLOTX

AUTO~lATIC OR MANUAL OPERATION (A OR M)?tL
PLOTTER TYPE (I=CALCO~lP, 2=CO~l, 3=ZETA)[I]?L

[13,16]

GIVE PLX fILES, IN ORDER [ALL, IN DIRECTORY ORDER]:_
CHANGE PLOTX- OR FILE-SPECIFIED DEFAULTS FOR OOOOOO.PLX?Y-

OMIT PLOTTING THIS fILE? [NO] _
X SCALE fACTOR [1] _
Y SCALE fACTOR [1] _
X OfFSET (INCHES) [0] _
Y OFFSET (INCHES) [0] _
PAPER SIZE (11 OR 30 INCHES) [11] _
PAPER TYPE (l=REGULAR, 2=VELLUM, 3=GRAPH) [1] _
PEN TYPE (l=BALLPOINT, 2=FELTTIP, 3=WET INK) [2] L
COLOR (I=BLACK, 2=RED, 3=GREEN, 4=BLUE, 5=TURQUOISE

6=PURPLE, 7=YELLOW, 8=ORANGE, 9=BROWN, 10=PINK) [1] _
OVERLAY NEXT PLOT [NO] _

62

CHANGE PLOTX- OR FILE-SPECIFIED DEFAULTS FOR OOOOOl.PLX?Y­
OMIT PLOTTING THIS FILE? [NO] _
X SCALE FACTOR [1] _
Y SCALE FACTOR [1] _
X OFFSET (INCHES) [0] _
Y OFFSET (INCHES) [0] _

PAPER SIZE (11 OR 30 INCHES) [11] _
PAPER TYPE (I=REGULAR, 2=VELLUM, 3=GRAPH) [1] _
PEN TYPE (I=BALLPOINT, 2=FELTTIP, 3=WET INK) [2] _
COLOR (l=BLACK, 2=RED, 3=GREEN, 4=BLUE, 5=TURQUOISE

6=PURPLE, 7=YELLOW, 8=ORANGE, 9= BROWN , lO=PINK) [1] L
OVERLAY NEXT PLOT [NO] _

NOliNT A ~lAGNETIC TAPE. WHICH DRIVE (0,1 OR 2)?!.,.
NANE: SPROULL ----
REGISTERED INITIALS: RFS
ACCOUNT: XXXX
BOX: YY
NESSAGE: PDP-lO TAPE - 2 FILES - USE SINGLE PLOT
NESSAGE: NAME: SPROULL INITIALS: RFS ACCOUNT: XXXX BOX: YY
MESSAGE: USE II INCH REGULAR PAPER
MESSAGE: USE BLACK WET INK PEN
PLOTTING OOOOOO.PLX
MESSAGE: USE RED fELT TIP PEN
PLOTTING OOOOOI.PLX
FINISHED! DO YOU WANT TO DELETE PLOTTED FILES? [NO] L

EXIT

,
f ,
I

I
I
I

- -
A

Figure R-l

I.~,....----.....

, -------

0 ______
1
........

0 --_-.....
o /.s o

Figure R-2

y

---,. z

- ---- -.

Figure R ... 3

box width

Figure R-4

63

64

