

THE ANALYSIS OF
HASHING ALGORITHMS
BY LEONIDAS J. GUIBAS

CSL-76-3 JULY 1976 '

See abstract on next page.

KEY WORDS AND PHRASES

algorithmic analysis, arithmetic progression, hashing, information storage and retrieval,
generating function, recurrence relation, Farey series, clustering, hypergeometric
distribution, table overflow

CR CATEGORIES

3.74, 5.24, 5.25, 5.30

XEROX
PALO ALTO RESEARCH CENTER
3333 COYOTE HILL ROAD / PALO ALTO / CALIFORNIA 94304

ABSTRACT

In this thesis we relate the performance of hashing algorithms to the notion of

clustering, that is the pile-up phenomenon that occurs because many keys may probe

the table locations in the same sequence. We will say that a hashing technique exhibits

k-ary clustering if the search for a key begins with k independent random probes and

the subsequent sequence of probes is completely determined by the location of the k

initial probes. Such techniques may be very bad; for instance, the average number of

probes necessary for insertion may grow linearly with the table size. However, on the

average (that is if the permutations describing the method are randomly chosen), k-ary

clustering techniques for k) 1 are very good. In fact the average performance is

asymptotically equivalent to the performance of uniform probing, a method that exhibits

no clustering and is known to be optimal in a certain sense.

Perharps the most famous among tertiary clustering techniques is double hashing, the

method in which we probe the hash table along arithmetic progressions where the initial

element and the increment of the progression are chosen randomly and independently

depending only on the key K of the search. We prove that double hashing •. s also

asymptotically equivalent to uniform probing for load factors a not exceeding a certain

constant ao = .31 Our proof method has a different flavor from those previously used

in algoritilmic analysis. We begin by showing that the tail of the hypergeometric

distribution a fixed percent away from the mean is exponentially small. We use this

result to prove that random subsets of the finite ring of integers modulo m of cardinality

am have always nearly the expected number of arithmetic progressions of length k,

except with exponentially small probability. We then use this theorem to start up a

process (called the extension process) of looking at snapshots of the table as it fills up

with double hashing. Between steps of the extension process we can show that the

effect of clustering is negligible, and that we therefore never depart too far from the

truly random situation.

ii.

TO MY PARENTS

iii.

ACKNOWLEDGEMENTS

This thesis is principally due' to the encouragement of one man, my advisor Donald E.

Knuth. He taught me how to do research, more by his general outlook towards problems

than by specific guidance.

A lot of people contributed to the technical content of this thesis. The problems

discussed in Sections 2.3 and 2.4 were suggested by Don Knuth, as well as the

approach taken in Section 2.3. The entire analysis of double hashing (Chapter 3) ;s joint

work with Endre Szemeredi. His insights into the frequency of "well-distributed

configurations" were absolutely indispensible. The germ of the "pull-back process" idea

of Section 3.4 is due to Vasek Chvata/.

A number of people have read all or parts of this dissertation and made valuable

comments that helped improve the exposition and style. These include Luis

Trabb-Pardo, Mark Brown, and Janet Roberts who also helped in the production of the

final version of the dissertation.

General discussions with various individuals contibuted greatly to the content of this

thesis. Among them are Ed McCreight, Paul Cohen, Robert Tarjan, Ben Wegbreit, Daniel

Bobrow, Mike Paterson, and Peter Deutsch.

While a graduate student at Stanford University, the author was supported by the Hertz

Foundation, the Xerox Palo Alto Research Center, the Danforth Foundation, and Stanford

University.

Phyllis Winkler did a marvellous job of typing the original manuscript in record time.

Carol VanJepmond produced the first machine readable form of this thesis. A lot of the

more involved algebraic manipulation in this work, as well as the graphs displayed, were

done using the MACSYMA system at MIT (supported by ARPA contract

#NOOO 14-75-C-0661). Finally ,thanks are due to the numerous people at Xerox PARC

who provided the systems with which the current version of this thesis was produced,

and who always volunteered to help when problems arose. Foremost among them are

Charles Simonyi, Tom Malloy, Patrick Baudelaire, and William Newman.

iv.

NON-STANDARD NOTATIONS USED

C(m,n) denotes the binomial coefficient that counts the number of ways to choose n things

out of m without repetitions = mlln!(m-n)!.

C(m; n 1,n2, ... ,nm), where n1+n2+ ... +nm = m, denotes the multinomial coefficient that equals

mll n 1 In2!. .. nmL

For positive x, y x = y(1±£) means x E (y{1-f), y/{1-f)) if f<1 and x < y{1+f) otherwise.

Further notation is as in [Knuth1] or as defined in the text.

v.

TABLE OF CONTENTS

THE ANALYSIS OF HASHING ALGORITHMS

Page

CHAPTER 1. INTRODUCTION 1

1.1 Hashing Algorithms 2

1.2 Open Address Versus Chained Hash Techniques 4

1.3 Algorithmic Analysis 8

1.4 Clustering 10

1.5 Some Sample Analyses 13

1.6 Summary of the Results 19

CHAPTER 2. RECURRENCE METHODS 21

2.1 Chained Scatter Searching with Overflow 22

2.2 A Combined Open Address and Chained Hash Search 29

2.3 The Worst k-ary Clustering Techniques 38

2.4 The Analysis Random k-ary Clustering Techniques 46

CHAPTER 3. THE ANALYSIS OF DOUBLE HASHING 55

3.1 The Lattice of Arithmetic Progressions Coming 56

from a Set to a Point

3.2 The Tail of the Hypergeometric Distribution 61

3.3 The Farey Subdivision of the Circle 65

3.4 The Estimation of the Arithmetic Progressions, 70

and the Prevalence of Randomness

3.5 Double Hashing 82

3.6 The Seed Set and the Final Argument 85

3.7 The Lattice Flows and the Extension Process 89

3.8 The Propagation of Errors and the Impotence of Clustering 96

APPENDIX 117

vi.

LIST OF ILLUSTRATIONS

Figure Page

1.1.1 The hash function h as a mapping 3

1.4.1 The matrix for linear probing 12

1.4.2 The matrix for double hashing 12

1.5.1 Comparison of collision resolution methods 18

2.1.1 A chain with regular and overflow elements 25

2.2.1 Comparison of three algorithms 35

2.3.1 The Oracular Argument 47

2.4.1 The, matrix defining a secondary clustering 49

technique

3.1.1 The additive group Zm 57

3.1.2 The lattice structure of the types of 58

arithmetic progressions

3.1.3 An illustration of the "pull-back" argument 60

3.3.1 The subdivision into intervals of nonoverlapping 69

multiples near a fixpoint

3.4.1 The pull-back process 73

3.7.1 The lattice of types of arithmetic progressions 90

of a given length coming to a point

3.7.2 The mechanism of intertype flows 92

3.8.1 Camouflaging with the residual progessions 98

3.8.2 The good and bad insertions 100

3.8.3 The inflow and outflow of progressions from a type 107

3.8.4 The proliferation of S's 116

vii.

Introduction, Page 1

CHAPTER 1:

INTRODUCTION

In this chapter we introduce the basic notions of hashing and of algorithmic

analysis. We define terminology and notation to be used throughout this

thesis. Finally we present a summary of the results to be proved.

Introduction, Page 2

1 . 1 . Hashing Algorithms.

Hashing algorithms are a certain type of search procedure. We assume that we are given a

set of records, where each record R is uniquely identified by its key K. Besides K the

record R contains some unspecified useful information in the field INFO, as depicted in

Figure 1.1.1.

We wish to organize our records in such a way that (1) we can quickly find the record

having a given key K (if such a record exists), and (2) we can easily add additional records

to our collection. Since all retrieval and update requests are specified exclusively in terms

of the key of a record, we will ignore the INFO field in most of the discussion that follows. A

straightforward way to implement this organization is to maintain our records in a table. A

table entry is either empty, or it contains one of our records, in which case it is full. We can

look for a record with a given key by exhaustively examining all entries of the table.

Similarly, a new record can be inserted into the table by searching for an empty position. It

is clear that, unless we are careful, the searches in question can become quite protracted for

a large collection of records.

The idea of hashing is that of using a transformation h on the key K which gives us a "good

guess" as to where in the table the record containing our key K is located. Suppose our

table has m entries or positions, numbered 0,1 , ... ,m-1. Then h maps the universe of keys,

which we assume very large, into the set {O,1 , ... ,m-1}. We call h a hash function, and depict

it as a mapping, as in Figure 1.1.1.

If h(K) = s, then we will say that key K hashes to position s. Naturally, several keys may

hash to the same position. Thus if we are trying to insert a new key K into the table, it may

happen that entry h(K) of the table is already occupied by another key. In that event we

need a mechanism for probing the rest of the table until an empty entry is found. We will

speak of a probe that encounters a full entry as a collision, and we will call our mechanism, a
collision resolution strategy. (It may, of course, happen that we are trying to insert a new

key into an already full table, in which case we have an overflow.) Upon a retrieval request

for the same key, we follow the same probe path until the record containing the key is found.

We will assume that our collision resolution strategy is such that every table position is

examined exactly once before we return to the original location. The particular probe path

we follow during a search may depend on the key K and the state of the table at that

KEY

INFO

A RECORD

•

•

Introduction, Page 3

Figure 1.1.1.

THE HASH FUNCTION h AS A MAPPING

•

• •
the universe

of keys K
• •

• •

the hash table

o
/ / / /"

:/~,fJl ,/.~
empty

.....•. " ."'" /' .--
.;~,./·///'·"..i{j··U/~/ /.--

.,' ,. , / /
.. ,/ ./ .-- ,','" ./

empty
.,..... ..~.... • .. /'1 ",/,. ../ ./",

"l t' ,./ Cd' I U·s i {.}h...--l/ .
////// /

.-' .' ," /' .'.

,I~

the collision {""
'-­

resolution strategy ---; ;I~

/
,I

the probe path ~
\
m-.l_

I~
empty

Introduction, Page 4

moment, as the examples of the next section will make clear. We will also assume that our

hash function selects each of the table entries with equal probability. It is intuitively clear

that we want our function h to "randomly scatter" the keys over the entire table as much as

possible. We will elaborate on these probabilistic concepts in Section 1.3. For the moment

the point we wish to make is that, once the "uniformity" of h has been assumed, the collision

resolution strategy alone fully determines the behavior of the algorithm. Thus every hashing

algorithm we consider naturally breaks up into two parts: (1) the construction of the hash

function h mapping the universe of possible keys into the set {O,1 , ... ,m-1} so that each set

member is chosen with approximately equal probability, and (2) the formulation of an

efficient collision resolution strategy. Since in this thesis we are only concerned with the

analysis of the performance of hashing algorithms, we will completely ignore the problem of

constructing good hash functions. Similarly, if we use any additional randomizing

transformations (hash functions) in the collision resolution strategy, we will only need to

know the probability distribution of the values of such transformations. We will not concern

ourselves with how such mappings can be explicitly constructed, given a specific universe

of keys.

1.2. Open Address Versus Chained Hash Techniques.

A hashing algorithm is an open addressing method if the probe path we follow for a given

key K depends only on this key. Thus each key determines a permutation of {O,1 , ... ,m-1}

which indicates the sequence in which the table positions are to be examined. Let n denote

the number of records currently in the table. Perhaps the two best known open addressing

hash algorithms are linear probing and double hashing. We use the descriptions of these

algorithms given in [Knuth2]:

ALGORITHM L (Linear probing). This algorithm searches an m-node table, looking for a

given key K. If K is not in the table and the table is not full, K is inserted.

The nodes of the table are denoted by TABLE[i], for O<i(m, and they are of two

distinguishable types, empty and occupied. An occupied node contains a key, called

KEY[i], and possibly other fields. An auxiliary variable n is used to keep track of how many

nodes are occupied; this variable is considered to be part of the table, and it is increased by

1 whenever a new key is inserted.

This algorithm makes use of a hash function h(K), and it uses a linear probing sequence to

Introduction, Page 5

address the table.

L 1. [Hash.] Set +- h{K). (Now O<i<m.)

L2. [Compare.] If KEY[i] = K, the algorithm terminates successfully. Otherwise if TABLE[i]

is empty, go· to L4.

L3. [Advance to next.] Set +- i-1; if now i<O, set +- i+m. Go back to step L2.

L4. [Insert.] (The search was unsuccessful). If n = m-1, the algorithm terminates with

overflow. (This algorithm considers the table to be full when n = m-1, not when n = m.)

Otherwise set n +- n+1, mark TABLE[i] occupied, and set KEY[i] +- K. I

ALGORITHM 0 (Open addressing with double hashing). This algorithm is almost identical to

Algorithm L, but it probes the table in a slightly different fashion by making use of two hash

functions h1 (K) and h2(K). As usual h1 (K) produces a value between 0 and m-1, inclusive;

but h2(K) must produce a value between 1 and m-1 that is relatively prime to m. (For

example, if m is prime, h2 (K) can be any value between 1 and m-1 inclusive; or if m = 2
P

,

h2(K) can be any odd value between 1 and 2
P
-1.) The probe sequences in ~his case are

arithmetic progressions.

01. [First hash.] Set +- h1 {K}.

02. (First probe.] If TABLE[i] is empty, go to 06. Otherwise if KEY[i] = K, the algorithm

terminates successfully.

03. [Second hash.] Set c +- h2(K).

04. [Advance to next.] Set +- i-c; if now i<O, set +- i+m.

05. [Compare.] If TABLE[i] is empty, go to 06. Otherwise if KEY[i] = K, the algorithm

terminates successfully. Otherwise go back to 04.

Introduction, Page 6

06. [Insert.] If n = m-1, the algorithm terminates with overflow. Otherwsie set n .. n+1,

mark TABLE[i] occupied, and set KEY[i] .. K. I

We note that the main difference between these two algorithms is that in double hashing the

decrement distance c can itself depend on the key K. As we will see later, this additional

degree of freedom can have profound effects on the performance.

In non-open addressing methods the probe path of a key K depends on the previous history

of the table. This is usually accomplished by storing in each record an additional LINK field

which can be a pointer to another entry of the table. The probe path of a key is then

determined by hashing to a location s and following the links from that location. If we hash

to an empty entry or we come upon a null link, we know that the record we are looking for is

not in the table. We will call such hash algorithms chained. Among the simplest and most

widely used chained techniques are the following two:

ALGORITHM A (Bucket search). We assume that we have m list-heads HEAD[i], O<i<m-1,

each painting to (a possibly empty) list of records. Each record has an additional LINK field

that can be a painter to another record, or null. The lists of the algorithm are kept disjoint. If

a new record has h{K) = s, then this record is added to the end of the list pointed to by

HEAO[s]. We also assume that we have an operation x <= AVAIL that makes x point to a

block of memory where the new record can be stored.

A 1. [Hash.] Set .. h(k).

A2. [Is there a list?] If HEAO[i] = null then let j <= AVAIL, set HEAO[i] .. j and go to AS,

else set i .. HEAO[i].

A3. [Compare.] If K = KEY[i] the algorithm terminates successfully.

A4. [Advance to next.] If L1NK[i] ::¢; null then set i .. L1NK[i] and go back to A3, else let j

< = AVAIL and set L1NK[i] .. j.

AS. [Insert.] Set KEY[j] .. K, and L1NK[j] .. null.

Introduction, Page 7

ALGORITHM C (Chaining with coalescing lists). This algorithm searches an m-node table,

looking for a given key K. If K is not in the table and the table is not full, K is inserted.

The nodes of the table are denoted by TABLE[i], for O<i~m, and they are of two

. distinguishable types, empty and occupied. An occupied node contains a key field KEY[i], a

link field LlNK[i], and possibly other fields.

C1. (Hash.] Set +- h{K)+1. (Now 1 <i~m.)

C2. [Is there a list?] If TABLE[i] is empty, go to C6. (Otherwise 1 ABLE[i]' is occupied; we

will look at the list of occupied nodes which starts here.)

C3. [Compare.] If K = KEY[i], the algorithm terminates successfully.

C4. [Advance to next.] If LlNK[i] "* null, set +- LlNK[i] and go back to step C3.

CS. [Find empty node.] (The search was unsuccessful, and we want to find an empty

position in the table.) Decrease r one or more times until finding a value such that TABLE[r]

is empty. If r = 0, the algorithm terminates with overflow (there are no empty nodes left);

otherwise set LlNK[i] +- r, i +- r.

C6. [Insert a new key.] Mark TABLE[i] as an occupied node, with KEY[i] +- k and LlNK[i]

+- null. I

Chained methods require more storage because of the LINK field.; but, as the analyses in

[Knuth2] show, they usually outperform open addressing techniques with respect to number

of probes for given m and n.

Note that all algorithms we have presented handle both lookup and insertion.

Introduction, Page 8

1.3. Algorithmic Analysis.

We are concerned with analyzing the performance of algorithms such as those presented in

the previous section. A discussion of how the analysis of specific algorithms relates to

computational complexity is given in [Knuth3]. We first have to define the cost measure by

which we will evaluate the performance. The two usual cost n-.easures are the space and

time consumed by the algorithm. In the algorithms we conSider, the space cost will be either

fixed or trivially computable, except for one case which we analyze in detail. In order to

make our time costs implementation independent we will use the number of probes made

during a lookup as our basic cost function. This accounts, however, for only part of where

the running time of a hashing algorithm is spent. The computation of the hash function(s) is

another significant component. In comparing algorithms we cannot always factor this

component out, as double hashing, for example, uses two hash function computations per

search, vs. only one for linear probing. Having made this caveat we now strictly confine our

attention to the number of probes made.

With any hash function it can happen that all the keys we insert will select the same probe

sequence. In this unfortunate situation all the algorithms of the previous section reduce to a

linear search of the table. Thus the worst case of hashing methods .is not very interesting.

We will be concerned with performance on the average. Before we can make precise the

notion of the average number of probes, we need to specify the probability distribution of

the inputs to our algorithms. We assume that everyone of the hash functions we use will

select each of its allowed values with equal probability, independently of all the others.

Thus for Algorithms L, A, and C we will assume that h(K) = s (O<ssm-1) with probability

11m. For double hashing we will take m to be prime and then assume that (h1(K),h2(K» =
(i,j) with probability 1/m(m-1), for all (i,j) with O<ism-1, 1sj<m-1, i*j.

We now specify what we mean by the number of probes a bit more carefully. Let us

consider the insertion of a new record. For open addressing techniques we will include in

our count the very last probe in which an empty position was discovered. The other probes

correspond to comparisons between keys. To avoid monotony of language we will use the

terms probe and comparison interchangeably, even though this is misleading when it comes

to the last probe. For chained techniques we will count one probe if we discover that the

list is empty, and otherwise we will just use the number of list elements examined (i.e., in the

case of insertion, the length of the list).

Introduction, Page 9

We clearly need to distinguish a successful from an unsuccessful search. We will measure

the performance qf a hashing algorithm by the following two quantities:

DEFINITION 1.3.1. Given any hashing algorithm we define C' n to be the average number of

probes made into the table when the (n+1)-st record is inserted (unsuccessful search). We

include in this count the very last probe that discovered the empty position in an open

addressing technique, and count one for dtscovering' an empty list in .the case of chained

hashing. We assume all hash functions involved to choose each of their allowed values

independently with equal probability.

Similarly, Cn will denote the average number of comparisons (or probes) made in a

successful search using the algorithm, when the table contains n records. For Cn we assume

that we are equally likely to look up any record present in the table.

In an open addressing technique it is clear that the number of comparisons required to look

up a specific record is the same as the number of probes made when that record was

inserted. . This observation implies that

n-1

Cn = (1/n) ~ C'i

i=O

Thus in open addressing Cn is just an average C'n' For this reason C'n will be the principal

quantity we investigate for such algorithms.

The quantities Cn, G'n naturaHy also depend on m, the table size. We will find that a

convenient way to express the answers we seek is in terms of the load (or occupancy)

factor a of the table, where a= n/m. In several cases we will be unable to obtain Cn, C'n as

closed form expression of n, m. But in these cases we wiH stilt be able to obtain formulae

for C'n and Cn as functions of a (and possibly m) that are asymptoticatly valid. That is, as

the table size m gets large,if the load factor a, O<a< 1, stays fixed, these functions of a wilt

differ from the true values by errors of the order of O(11m), and which therefore rapidly

decrease as m increases. In terms of the load factor we may write Ca, C'(I rather than Cn,

Introduction, Page 10

C'n• In this "continuous" approximation the above relation between successful and

unsuccessful searches for open addressing becomes

We will have occasion to appreciate the power of this notation in the examples of Section

1.5., as well as in the following two chapters.

1.4. Clustering.

Since we are interested in the performance of hashing algorithms, we might ask the following

question: what is the probability that two keys will follow exactly the same probe path? We

can expect that the higher this probability, the more will different keys interfere with each

other, and therefore the worse the performance of our algorithm will be. This interference

phenomenon we will generally refer to as clustering. For example, in linear probing the

probability that two keys will follow the same probe path is identical to the probability that

they will hash to the same location, which is 11m. In double hashing this probability is easily

seen to be 1 Im(m-1). Thus we expect double hashing to have smaller C'n (and Cn) than

linear probing, as is indeed borne out by the analyses.

Another way to appreciate the effect of clustering is by observing that (loosely speaking)

configurations of occupied positions that have a relatively high . C'n grow with a higher

probability than configurations with a low C'n. For example, in linear probing a long block of

contiguous occupied positions gives us a large contribution to the total C'n. During the next

insertion the probability that such> a block will grow by one is proportional to the length of

the block. Thus long blocks grow into even longer ones with higher probability than short

ones. This "pile-up" effect accounts for the rapid increase in C'a for linear probing as a -+

1. Similarly, in double hashing the configurations that contribute greatly to the mean C'n are

those that contain a large number of arithmetic progressions among the occupied pOSitions.

In general the probability that a given empty position will be filled during the current insertion

is proportional to the number bf arithmetic progressions coming from the occupied positions

to that empty pOSition. Here we have made the convention that we have m-1 arithmetic

progressions of length 0, so as to properly account for the probability of hitting our position

Introduction, Page 11

on the first probe. Thus in double hashing, sets of occupied entries with an excessive

number of arithmetic progressions will tend to grow into sets with even more progressions.

The connection between, clustering and C'n leads us to introduce a new family of classes of

hashing techniques, those that exhibit secondary, tertiary, and in general k-ary clustering

([Knuth2]). A hashing technique is said to exhibit secondary clustering, if the search into

the table begins with one random probe, and then follows a fixed permutation which depends

only on the location of this first probe. A hashing technique is said to exhibit tertiary

clustering if it begins with two independently random probes into the table, and then probes

the remaining table positions in a fixed permutation that can depend only on the locations of

those first two probes. And in general a k-ary clustering technique begins the search in the

table with k independent random probes and then continues along a permutation that

depends on the locations of these first k probes only. (It is unfortunate that our terminology

is somewhat inconsistent: secondary clustering is 1-ary clustering, tertiary is 2-ary; we have

maintained the terms secondary and tertiary for historical reasons, while for the analyses in

Chapter 2 the above meaning of k is the natural one.) Thus linear probing exhibits secondary

clustering, whereas double hashing exhibits tertiary clustering. More formally, we can think

of a secondary clustering technique as being specified by an m x (m-1) matrix, where we

think of the rows of the matrix as indexed by {O,1 , .. ,(m-1)}, and the row corresponding to i

is a permutation of {O,1 , ... ,(m-1)} - {i} which specifies the order in which the remaining table

positions are to be probed. Thus for linear probing we have the matrix depicted by Figure

1.4.1.

Similarly, a tertiary clustering technique is defined by an (m(m-1» x (m-2) matrix, where we

think of the rows as indexed by (i,j), O<i:;t:j<m-1 and row (i,j) specifies in which order to

probe the remaining m-2 table positions when we make our first probe at i and our second

probe at j. Thus the matrix corresponding to double hashing (assuming that m is prime) is as

shown in Figure 1.4.2., where the rows specify the arithmetic progressions to be followed in

the search.

It is convenient to introduce at this pOint an open addressing technique that exhibits "no

clustering", namely uniform hashing (or probing). Uniform hashing has the property that after

n keys have been inserted, all C(m,n) possible subsets of occupied positions are equally

likely. To achieve this we first probe the table at h1 (K), then at h2(K) where h2 (K) :;t: h1 (K),

then at h3(K) where h3(K) :;t: h1 (K), h2(K), and so on. Here each hi is assumed to select each

of its allowed values with equal probability, independently of all the others. This method is

certainly of no practical interest, since we have to compute arbitrarily many independent

Introduction, Page 12

Figure 1.4~ 1. THE MATRIX FOR LINEAR PROBING

o I m-1 1 ~-21 · · · · 1 12 I.t
1 0 m-1
~ ~. m

m-11 m-2 I· · I 0 If
'------ ---~-~

~\r
m-l

Figure 1.4.2. THE MATRIX FOR DOUBLE HASHING

(0,1) I 2, I 3 I ·
(0,2).,..,. 4 . 6

i..
(m-l,m-2) t 01-3 I m-4 I

I :~; It
~.7f. .. m(m-l) <::....

I ° I
\.---'---

Introduction, Page 13

hash functions. On the other hand it is of theoretical importance, since Ullman has proved

that no other open addressing technique can have a smaller C'n for all n ([Ullman]). Thus

the performance of uniform hashing, which we will compute in the next section, can be used

as a benchmark against which to measure the success of other open addressing techniques.

The notion of clustering can also help us understand why we wisn to make our hash function

h uniform, i.e., to make it equally likely to hash to any table entry. Suppose we are dealing

with a technique with secondary clustering and let Pi denote the probability of hashing to

entry i, O<i<m-1. Then the probability that two keys will follow the same probe path is

m-1

i=O

2
P i

which, since ~O<i<m Pi = 1, is clearly minimized by setting

= Pm-1 = 11m.

1 .5. Some Sample Analyses.

For some simple hashing algorithms we can compute the average number of probes required

for a successful or unsuccessful search directly, uSing only elementary combinatorial

mathematics. In this section we will analyze uniform hashing and bucket search. We will

also present without proofs the results of the analyses of linear probing and Algorithm C;

detailed arguments can be found in [Knuth2]. These analyses will be a useful introduction

to the techniques of the next two chapters. The results will also be useful for future

reference.

We start with uniform hashing. Let Ptr denote the probability that we need r probes to insert

the (t+ 1)-st element into the table. We have

C' t = r Ptr'

Introduction, Page 14

It is often easier to compute this average another way, namely

C't =

where qtr = Ptr+Pt,r+1+'" is the probability that at least r probes are needed. It is easily seen

that, since all probes are random and independent,

Hence

Thus,

t (t-1) ... (t-r+2) (m-r+1)! (m-t)! t!

qtr = --------------------- = ------------------ ---------- =

C't =

m (m-1) ... (m-r+2) (m-t)! (t-r+ 1)! m!

= C(m-r+ 1 ,m-t)/C(m,t).

= 1/C(m,t) ~ C(m-r+ 1 Im-t) =
1<r<t

(by 1.2.6-(10) of [Knuth1]).

= C(m+ 1 ,m-t+ 1)/C(m,t) = 1 + t/(m-t+ 1).

C'n = 1 + n/(m-n+1).

For Cn we have

Cn = 1 In ~ C't = (m+1)/n ~ 1 l(m-t+1)

O<t<n-1 O<t<n-1

Introduction, Page 15

= (m+1)/n 1/t = (m+1)/n) (Hm+1 - Hm-n+1).

m-n+2 <t<m+ 1

Here Hi denotes the harmonic number ~1 <k<i 11k. In terms of a, we can write these

results as

C' a = 1 I (1 - a) + O(1 1m),

,
C a = (1 I a) log 1 I (1 - a) + O(1 1m),

where in the latter we have used the fact that

Hi = log i + Y + O(1 Ii),

with y being Euler's constant ([Knuth1]). We see that the load factor has led to simple

expressions. The relation

is evidently true.

Next we handle bucket search. We assume of course that all possible mn input hash

sequences are equally likely. Let Pnk denote the probability that a given list has ,length k.

There are C(m,k) ways to choose the set of keys in our sequence that will hash to the given

list, and (m-1)n-k ways to 'aSSign hash values to the other keys. Therefore

n-k n
Pnk = C{n,k) (m-1) 1m.

If we introduce the generating function ([Knuth1])

Introduction, Page 16

n

~ Pnk zk,

k=O

then

n
~ C(n,k) {(m-1)n-k/mn)zk = (1 + (z-1)/m)n

k=O

by the binomial theorem. Note that

P'n(1) = n/m, P"n(1) = n(n-1)/m
2

.

We now have

n

C'n = ~ (k+45kO)Pnk = p' n(1) + Pn(O).

k=O ~
counting one probe for discovering an empty chain

Thus

C'n = n/m + (1-(1/m»n.

For Cn consider the total number of probes to find all keys. A list of length k contributes

C(k+1,2) to the total; hence

n

(min) C(k+1,2) Pnk =
k=O

(m/n)(Ih P"n(1) + P'n(1» = 1 + (n-1)/2m.

Asymptotically then we have

C' a
-a = a + e + O(11m),

Ca = 1 + a/2 + O(1/m).

Introduction, Page 17

(Note that these results are valid also for a>1, since n>m is possible in this method).

In Section 6.4 of [Knuth2] it is shown that Algorithm C leads to

2a
C' a = 1 + (e - 1 - 2 a) I 4 + O(1 1m),

2a
C a = 1 + (e - 1 - 2 a) 18a + a/4 + O(1 1m),

which is only slightly worse than the performance of bucket search. The analysis of linear

probing is a considerably more difficult problem. Knuth shows that

C' a
2 = (1 + 1 / (1 - a)) I 2 + O(1 1m),

C a = (1 + 1 / (1 - a» / 2 + O(1 / m),

which is always worse than the performance of uniform probing, and much more so for load

factors a near 1. The graphs in Figure 1.5.1., reproduced from [Knuth2], summarize these

analyses. Algorithm S on these graphs refers to bucket search. We will have much more to

say about the graphs for U2 and 0 in the following two chapters.

It is interesting to note that in all these hash methods, if we fix the load factor a, then the

average number of probes is nearly independent of the table size m. Thus, loosely speaking,

hashing allows us to retrieve records with a bounded number of probes, irrespective of the

number of records we have. This is why it is so convenient to express the performance in

terms of the load factor a, which is independent of m. It is also one of the reasons why

hashing algorithms enjoy such popularity in software practice.

Introduction, Page 18

Figure 1.5.1. COMPARISON OF COLLISION RESOLUTION METHODS:
LlMITING VALUES OF THE AVERAGE NUMBER OF PROBES AS M ~ cO

.... os

2r---+---+---~--~~~--~---+---+---l--~

l~~~~~~~~~==~~--~~
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load factor, CI=N/l~f
(a) Unsucceesful search.

L=Linear probing=-Algorithm L
U2 ... Random Probing with secondary clustering
U =- Uniform hashing-Algorithm D t

3 B=Brent's variation of Algorithm D
C=Coalesced chaining Algorithm C
S = Separnt~ chaining .

SO-Separate chaining with ordered lists

E 2~---+---+---4----4---~--~~~-fo~~-
is

1 1
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Load factor, a=N/~(
(b) Succe5Sful search

Introduction, Page 19

1.6. Summary of the Results

The purpose of this thesis is to investigate and illustrate techniques for the analysis of

hashing algorithms. The traditional tools of algorithmic analysis are the tools of classical

combinatorial enumeration: special numbers (Le., binomial coefficients, Fibonacci numbers,

etc.), recurrence relations, and generating functions. In Chapter 2 we apply these tools to a

number of different hashing algorithms. In SectioJ1 2.1 we present an extension of Algorithm

C that handles overflows with reasonable efficiency. In Section 2.2 we analyze a method

combining open addressing and chained hashing; we prove that it is not as advantageous as

it seems at first sight. Section 2.3 discusses k-ary clustering techniques for which C'a is as

large as possible and in fact turns out to grow linearly with m. The method used in the

analysis indicates the power of the falling factorial power notation. The oracular argument by

which the extremality of these techniques is proven is also of interest, as one of the few

examples available where a certain algorithm in a class can be proven extremal on the

average. We can see from the results of that section that only when k grows as O(logm) will

we be able to maintain C'a bounded for the worst k-ary clustering techniques, as m --. 00.

On the other hand Section 2.4 shows that on the whole (Le., averaged over al/ techniques)

k-ary clustering techniques for k)1 are quite good. We prove that if the permutations

described in the definition of k-ary clustering for k) 1 are randomly chosen, then C' a is

asymptotically 1/(1-a), the same as for uniform probing, which exhibits no clustering. We

also analyze "random" secondary clustering (k=1), in which case we find that C'a is

asymptotically 1 /(1-a) - a - log(1-a). Thus secondary clustering techniques on the average

are worse than tertiary (since a + log(1-a) < 0), although better than linear probing.

In Chapter 3 we exclusively concern ourselves with the analysis of double hashing. It has

long been known from simulations that double hashing behaves essentailly identically with

uniform probing. We prove that for O<a~ao' where a o is an absolute constant, ao - .319,

this is indeed the case: C'a for double hashing is 1/{1-a) + O{ 1). This result is

considerably deeper than any of the other analyses we have carried out and the techniques

we use have a different flavor. We cannot appeal to recurrence relations or generating

functions. Instead we use a probabilistic argument to prove that the configurations of am
occupied positions that double hasing gives rise to have almost always nearly the expected

number of arithmetic progressions, and thus nearly the expected C' (x.

All of. the results presented in Chapters 2 and 3 of this thesis are new, with the exception of

the analysis of random secondary clustering that was previously done using a more

Introduction, Page 20

complicated method in exercise 6.4-44 of [Knuth2]. Perhaps the most significant

contribution is the method used in the analysis of double hashing, that allows one to prove

the asymptotic equivalence in the performance between an algorithm and a simplified model

of its behavior.

There are many open problems relating to the material of both c"'.apters. Are there secondary

clustering techniques with C' a better than 1 I(1-a) - a - log(1-a)? If we let h2 (K) = f(h 1 (K»

in double hashing, are there simple f (e.g., f(x) = m-x) for which the resulting algorithm is

asymptotically equivalent to random secondary clustering? (Simulations support this

contention for the f given in parentheses.) Are there any open addressing techniques with

C'a < 1 I(1-a) for almost all a? Most of these questions correspond to open problems in

Section 6.4 of [Knuth2]. Perhaps we can prove that "almost all" k-ary clustering with k) 1

techniques have a C'a which is (1 ±E)/(1-a). For Chapter 3 the most obvious next step is to

extend the argument to work for all a, O<a< 1. The argument also can be applied to a

modified double hashing algorithm, in which h2(K) is restricted to a linear segment of the

table of size Am, for any fixed A, 0< A:$1. The number of probes in the modified algorithm

can be proven to be asymptotically equal to that of double hashing. This modified algorithm

allows us to handle tables of non-prime size. Perhaps we can prove this for h2(K) restricted

in any subset of size Am. A number of purely number theoretic questions about arithmetic in

the finite field 2m of m elements also arise (m is prime). We make the following two

conjectures (1) Let 1 be fixed, 0< 1< 1 12, S = {1 , ... ,m/}, T any ml
-elem,ent subset of Zm' ST =

{st / sES, tET}. Then as m ~ 00, there exists a small constant E such that /ST/>m 2/
-

E
; (2) if

~ -
O<x<m 2, then no set of x elements of 2m can have more than O(x

2
/k) arithmetic

progessions of length k among its members, for any k = 1,2, ... ,x. Settling either of these

conjectures would prove double hashing equivalent to uniform hashing for all a.

The appendix at the end of the thesis illustrates a rather curious application of the

exponential sums technique of analytic number theory to the problem of enumerating

arithmetic progressions, which is treated by more combinatorial methods in Chapter 3.

CHAPTER 2:

Recurrence Methods, Page 21

"cog;to ergo sum" = "/ think, therefore I sum",

graffiti in eMU Science Hall restroom

RECURRENCE METHODS

In this chapter we present four different hashing analyses. These fall into

the traditional paradigm of algorithmic analysis, that is they,. involve either

direct counting or the recurrence relation/generating function techniques
expounded in [Knuth1], [Knuth2]. In these algorithms we are fortunate to

have probability distributions varying so regularly with the number of

records in the table, that the desired performance either satisfies a closed

form recurrence or can be explicitly calculated. The first two sections
analyze two algorithms that allow one to handle overflows from a hash

table gracefully. These methods work best if the number of records

inserted is below a certain bound, but also· handle larger quantities of
records with only a moderate degradation in the performance. The last

two sections discuss secondary, tertiary, and in general k-ary clustering

techniques. Section 2.3 shows that the worst k-ary clustering techniques

have an average number of probes linear in the table size. No fixed

number of independent probes into the table can ever be sufficient by
itself to guarantee sublinear performance. The subsequent probes are of
paramount importance. In Section 2.4 the average performance over an

entire class of hashing methods is computed. Perhaps most interesting is
the result that a "random" k-ary clustering technique is asymptotically
equivalent to uniform probing for k) 1.

Recurrence Methods, Page 22

2. 1 . Chained Scatter Searching with Overflow.

A common way of resolving collisions in hashing is to chain, or link, together all records

whose keys hash to the same address. When a record is to be looked up, the search begins

at the table entry where its key hashes. If this entry is empty, then the record is not in the

table and can be inserted right there. Each full entry in the table contains a link field which

can be a pointer to another entry, or null, indicating the end of a chain. If the original entry in

the table we came upon was full, and the record sitting there was unequal to our record,

then this link field indicates the next entry to try. We keep repeating this process until

either (1) we find the record we are looking for, or (2) we run off the end of the chain we

are following. In case (2), we know the record is not in the table. In order to insert it, we

first find an empty entry (or give up, if the table is full). Then we place the record there and

plant a link to that entry in the last member of the chain we just exhausted. This completes

the lookup process.

The above is an informal description of Algorithm C (Chained scatter table search and

insertion) in Section 1.2. This algorithm is analyzed in exercises 6.4. 39-42 of [Knuth2].

The key results of the analysis are as follows: Let m be the total number of entries in the
table and let n be the number of records currently in it. Assume that all mn possible input

hash sequences (i.e., sequences of possible hash values for the keys of our n records, in

order of their insertion) are equally likely. Assume also that it is equally likely that we will

search for any of the records presently in the table. Then the average number of

comparisons in an unsuccessful search C'n is given by

(1) C'n = 1 + «1 + 2/m)n - 1 - 2n/m)/4 = 1 + (e
2a

- 1 - 2a)/4 + O(1/m),

where a = nlm = occupancy factor of the table. For a successful search, the average

number Cn of comparisons is

(2) Cn = 1 + (m/8n) «1 + 2/m)n - 1 - 2n/m) + (n-1)/4m

2a = 1 + (1/8a)(e - 1 - 2a) + al4 + 0(1/m).

We proceed below to analyze a modification of Algorithm C that uses a table of size m' > m.

Only the first m locations are used for hashing, so the first m'-m overflow items will go into

the extra locations of the table. For fixed m', what choice of m in the range 1 ~m<m' leads

Recurrence Methods, Page 23

to the best performance?

We will need a number of facts from the answer to exercise 39 of Section 6.4 of [Knuth2].

A key quantity in the analysis of Algorithm C is the function c(k1,k2, ... ,kn), which denotes the

number of possible hash sequences of length n that give rise to kl chains of length 1, k2

chains of length 2, ... etc., in the table. Note that 1 kl + 2k2 + 3k3 + ... = n. These numbers

satisfy a nice recurrence which can be used to show, among other things, that

(3) n n+1 = 1/2 (m(m+2) - m).

To proceed, we observe that the new algorithm we propose, call it Algorithm C', behaves

exactly like C, until the first m locations of the table are filled. Let the vector (k1,k2,k3, ...)

represent the chain size distribution when this occurs (i.e., kj = # of chains of length i,

k1 +2k2+3k3+ .. · = m). Suppose that subsequently p overflow items have been inserted

(p <m'-m). Each of these overflow entries will be part of a chain that originates in the

regular hash area. Let the vector (l1,12""'/m) denote the distribution of these items among the

chains of various lengths, i.e., Ij = # of overflow items that have been "hung" from a chain

that had length i when the regular part of the table was just filled up. ClearlY"l + '2 + '3 + ...

= p. The following important observation states that the vectors Is. and 1 are adequate

information for obtaining the average behavior of Algorithm C'.

Observation. As far as the average number of comparisons in an unsuccessful search is

concerned, how the Ij overflow items (that got hung from chains of length i) are distributed

among these kj chains is immaterial.

Proof: We assume, of course, that an unsuccessful search is equally likely to originate" in

any of the m hash locations. Now if r overflow items get added to the tail of an i-chain, the

effect is simply to increase the number of comparisons for an unsuccessful search by r, for

each such search originating at one of the elements of the i-chain. Thus the total number of

comparisons for all possible unsuccessful searches originating in that chain is incremented

by ir. This is a linear function inr, and therefore, the total number of comparisons does not

Recurrence Methods, Page 24

depend on the exact distribution of overflow items among chains of the same length. I

(Thus we can assume, without loss of generality, that all 'i overflow entries that have been

attached to chains of length i have, in fact, been attached only to one of them.)

Now a chain with t regular elements and s overflow elements attached to its tail contributes

to the total number of comparisons for all. possible unsuccessful searches

(4) (t+s) + (t-1 +s) + ... + (1 +s) = t(t+1)/2 + ts.

as illustrated in Figure 2.1.1.

As we noted, there are c(k1,k2 , ...) hash sequences of length m that give rise to a chain length

distribution Is = (k 1,k2, ...). In how many ways can each such sequence be extended to one of

length m+p, that gives rise to an overflow item distribution 1 = (/1,'2"")?

Each of the 'i items that go to chains of length i must hash to one of the ikj regular table

locations occupied by these chains. This, together with the fact that the order in which the

overflow items are inserted is unimportant (as far as 1 is concerned), shows that there are

exactly

m

C(p; '1,12,··.,/m) IT (iki)'j

i=1

ways to make the extension demanded above.

Using (4), we can now compute the total number of comparisons for all unsuccessful

searches after p overflow items have been inserted, summed over all mm+
p

possible input

hash sequences. This number is

Recurrence Methods, Page 25

Figure 2.1.1.

A CHAIN WITH REGULAR AND OVERFLOW ELEMENTS

"-----
t

(5)

Recurrence Methods, Page 26-

m
~ «kj-1)i(i+1)/2 + i(i+1)/2 + iii C(p; 11,/2",,) n Okj)/j c(k1,k2, ...)

i>1

11 + '2 + ... = P

k1 +2k2 + ... = m putting all Ij

overflow items

on one of the kj

i chains.

j=1

We will use the following algebraic identity:

m

~ iii C(p; '1 ,/2 ,·.·} n x/j =
i~1 j=1

So (5) can be rewritten as

m
~ (~ C(p; 11 ,/2",,) n Okj)lj)) ki i(i+ 1)/2 c(k1,k2, ...) +

i> 1 11 +12+", = P j=1

k1+2k2+ ... = m

"'" 2 2 2 p-1 + ~ p(1 k1 +2 k2+ .. ·+m km} m c(k1,k2, ...) =
k1 +2k2 + ... = m

i~1 i>1

k1 +2k2 + ... = m k1 +2k2 + ... = m

It is now not difficult to see that the left sum is simply the total number of comparisons for an

unsuccessful search when the regular part of the table has been filled. Its value can be

conveniently computed from (1) (let m = n and multiply by mm+1). Similarly, the right sum is

given to us by (3). To obtain the average number of comparisons for an unsuccessful
search in Algorithm C', we need to divide the above expresion by mm+p+1 (namely mm+p to

Recurrence Methods, Page 27

account for all hash sequences, times m to account for all initial hash values of our particular

search). Thus C'p is

(6) C'p = (1 + 2/m)m/4 + 1/4 + p(1 + 2/m)m/2m - p/2m.

Note that when p = 0, this formula agrees with (1) if we set n = m, as it should. When m = 1,

the above formula says that C'p = 1 +p which is certainly true, for we then have a chain of

p+ 1 records linked together, with every unsuccessful search necessarily starting at the head

of the chain.

We can also observe that as m -+ 00, (1 + 2/m)m tends to e2
. In fact, (1 + 2/m)m increases

monotonically to e
2

, though rather slowly, the difference e2
- (1 + 2/m)m being of the order

-1
m . Thus for m sufficiently large the above formula can be approximated by

C'p ~ (e
2

+ 1)/4 + p(e2 - 1)/2m ~ 2.097 + 3.194(p/m).

This formula gives us a rough idea of the degradation of search efficiency with increasing

size of the overflow area. In a moment, we will have more to say on this point.

Let us also determine the average number of comparisons in a successful search by

Algorithm C'. We will assume that each of the m+p table entries is equally likely to be

sought. The key observation is that a successful search for a record uses one more

comparison than the unsuccessful search made when the record was first inserted. There is

one exception to this, namely when the record originally hashed to an empty location. Then

we count one comparison for both the successful and unsuccessful searches. Thus the

desired average is given by

m m m+p

Cp = (m + p - l: (m-k)/k + l: C'k + l: C'k)'

k=O k=O k=m+1

~ l'
from (1) from (6)

or

Recurrence Methods, Page 28

(7) Cp = «1 + m«1 .. 2/m)m /8 - 3) + m/4 - 1/4) ,+

+ p + «1 + 2/m)m - 1)p(p+1)/4m)/(m+p).

Note that when p = 0, this agrees with (2) if we set n = m. If m = 1, (7) gives (p+2)/2 which

certainly is the average number of comparisons in a successful linear search down a list of

length p+1.

If we use the fact thatp+m = m', we can rewrite (6)' as

C'p = (m'/2m - 1/4) «1 + 2/m)m - 1) + 1/2.

Keeping m' fixed, we can now ask for the m in the interval 1 <m<m' that minimizes C'p' The

approximation to e used above suggests that this occurs when m = m'. (p/m = 0, so C'p =
2.1). It can be shown analytically that m' is a local minimum for m' sufficiently large: Briefly

we have

m'-Am
(m'/2(m'-Am) ~ 1/4) «1 + 2/(m'-Am) -1) + 1/2 =

m' 2
(1/2 + Am/2m' -1/4) «1+2/m') - 2Am/m' - 1) + 1/2 =

, 2
C' + Am(1 +2m,)m 12m'- Am/m' + higher order terms.

p t... ------y J

This quantity positive for m'> 1.

This shows that for m' large, a small decrement in m (= m') will increase C'p'

A number of empirical tests were run on a computer for fifty values of m' between 10 and

1000. In all cases, the minimum occurrred for m = m'.

The above results establish that, from a time-efficiency viewpoint, there is nothing to be

gained over Algorithm C by adding the overflow area.

Algorithm C', however, could still be useful in a situation where the number of entries to be

put in the table only rarely exceeds a certain bound. In this situation, the storage allocated

Recurrence Methods, Page 29

permanently to the table can equal the usual bound. Aditional storage need not be committed

until really required, for Algorithm C' uses the overflow area only after the regular part of the

table has been filled. And, as we saw in the above analysis, for any reasonable sized

overflow area, the performance of our algorithm suffers only moderate degradation.

2.2. A Combined Open Address and Chained Hash Search.

In this section we offer an analysis of a hashing technique originally proposed by D. G.

Bobrow. The algorithm is described in [Bobrow] as follows:

" ... the following nonhomogeneous algorithm seems to combine the

best of both [open address and chained techniques]. In open

address search, two keys are forbidden: 0 (say) which indicates an

empty slot, and -1 (say) which indicates a deleted slot. In both these

cases the value associated with the key is meaningless. If now

instead of one area we allocate two, the first a one-shot (no

collision) open address hash table, and the other a linearly allocated

chain linked area, then we can use the first for open addressing.

However, if there is a collision at an address then the pair at that

address is moved to the linear collision (overflow) table. Then the

key -1 is used to indicate that the value in the open address table

corresponding to this key is a pointer into the overflow area.

Thus when the table is mostly empty it acts as an open address

scheme, and when it is almost full it acts like a bucket search.

Ordering can be used on the overflow lists to cut down search times

for failure. The collision case obviously takes exactly one more

probe than it would in the chain hash search [to discover it is the

chain case] ... "

Bobrow's technique uses a fixed hash table and an overflow area that is allocated

dynamically. In its simplest form the technique maintains the overflow area as a set of

disjoint linked lists, each list consisting of keys that have hashed to the same address of the

fixed table. In case of a collision both colliding entries are moved to the overflow area and a

Recurrence Methods, Page 30

special key (say -1) is stored at the h(K)-th entry, indicating that the value field of that entry

is a pointer to the beginning of a list in the overflow area. Thus records are stored in the

fixed table until a collision occurs at their position, in which case they are moved to the

overflow. For convenience· of description we shall term this method Algorithm B in what

follows.

In the analysis of Algorithm B the following quantities are important:

m = size of fixed table (number of entries),

n = number of records inserted so far,

a = nlm = the load factor of the table

k = size of the key field of an entry (say in words),

v = size of the value field of an entry (clearly if v is big it is best to store

only a pOinter to it in the table itself), and

= size of the link field of an entry.

Algorithm B assumes that v> I and uses m(k+v) words of fixed table and k+v+1 words per

entry in the overflow area. One of the desirable properties of this algorithm is that no link

field need be allocated in the fixed table; thus if the overflow area is only rarely used,

Algorithm B offers us the storage economy of an open address technique, together with the

speedy search of a chained method. We will use the quantity

fJ = II(k+v+/)

to represent the average savings factor of our technique.

In the analyses below we assume that all mn possible sequences of the hash values of the n

inserted keys are equally likely.

Perharps the most interesting of the computations is that of the average size of the overflow

area in Algorithm B. The number of entries in the overflow area equals the number of keys

Recurrence Methods, Page 31

inserted at whose hash address at least one collision has occurred. Let p{m,n,k) represent

the probability that exactly k non-special (i.e., '* 0,-1) keys are present in the fixed table. In

this event the overflow area has size n-k.

A given sequence of n keys to be inserted can be thought of as a mapping from a set of n

objects (the keys) to a set of m objects (the possible hash adt!resses). Any such mapping

defines a partition of its domain into disjoint classes, each class containing all keys hashing

to the same address. In this model we can interpret p(m,n,k) as the probability that a random
mapping has exactly k classes of size 1. Let O(m,n,k) = m"p(m,n,k) = number of mappings

with the given property. Then, by separating out the k elements that form the singleton

classes, we obtain the recurrence

(1) O(m,n,k) = C(m,k) C(n,k) k! O(m-k,n-k,O)

The numbers O(m,n,O) count the number of mappings with no singleton classes. By

selecting one of the elements in the range of such a mapping we can get the recurrence

(2) O(m,n,O) = C(n,t) O(m-1,t,0) (1 - 8(n-t)1)'

Since we cannOl explicitly solve (1) and (2) we now proceed to introduce the exponential

generating functions [Liu]

~ C(m,n,O) zn In!

n>O

Gmk(z) = ~ C(m,n,k) zn In! .

n>O

and

z We have G1 (z) = e -z, because when m = 1 there exists exactly one mapping for all n,

except when n = 1, in which case our condition is violated.

Equation (2) translates to the recurrence for Gm

Recurrence Methods, Page 32

rn>1

which coupled with the above remark implies that

From this and (1) we finally get the generating function we want

k z m-k
Gmk(z) = C(m,k) z (e -z) .

The average number of non-special keys present in the fixed table is

k p(m,n,k) = 1/m
n

By interchanging the order of summation we obtain

n)O

nA nl I m nZ n. =
k)O

k Q(m,n,k).

k2;:O

(m-1)z = mze .

Therefore An = n(1 - 1 Im)n-1, and so the average size of the overflow area is

By similar manipulations we can compute the variance of the size of the overflow area to be

Vn = ~ , (An-k)2 p(m,n,k) =

O<k<n

n-2 n-1 2 2n-2 = n(n-1)(1 - 1/m)(1 - 21m) + n(1 - 11m) - n (1 - 11m) '.

which is rather small (the n
2

terms cancel).

The computation of Cn and C' n' the average number of comparisons done in a successful or

unsuccessful search respectively, proceeds along standard lines.

Recurrence Methods, Page 33

Let At = the average number of comparisons needed to find the t-th key that was inserted. If

pt(r) denotes the probability that the list to which the t-th key hashes has r-1 entries in the

overflow area, then

Thus

pt(r) =
r-l t-r

C(t-1,r-1) (11m) «m-1)/m) and

~ t-1
At = ~ (r+1)pt(r) - pt(1) = 2 + (t-1)/m - «m-1)/m) .

r>1

Cn = 1 In ~ At = 2 + (n-1)/2m - (m/n)(1 - (1 - 1/m)n).

1<t~n

Similarly for an unsuccessful search, let p'n(k) = probability that the list we search has k

entries in the overflow area. Then

C(n,k) (1 Im)k «m-1)/m)n-k and

C'n = (k+1)p'n(k) - p'n(1) =

= 1 + (n/m)(1 - (1 _1/m)n-1).

In summary, the asymptotic performance of Algorithm 8 is given by

average number of comparisons
-a

for a successful search = 2 + a/2 - (1 - e)1 a,

and

average number of comparisons
-a

for an unsuccessful search = 1 + a(1 - e),

where the given values are in fact approximations with an error of the order of O(11m).

Our storage analysis has proved that

average number of entries

Recurrence Methods, Page 34

in the overflow area of

Algorithm B = n(l -(1 - (l/m»n-l) = n(l-e-a) + 0(1),

and the distribution has a rather small variance, i.e. the the variance equals (e -a +a)n + O(1).

In order to interpret these numbers we compare Algorithm B with two other methods, a pure

bucket search, in which the fixed table consists only of list-heads, and Algorithm C. of

Section 1.2 in which there is no overflow area and the lists are maintained in the fixed table

itself. The bucket search uses ml locations for the listheads and n(k+v+/) for the entries,

whereas Algorithm C uses just a fixed table of size m(k+v+/).

The two graphs of Figure 2.2.1. compare the average time spent in a search by each of

these hash methods. Under the reasonable assumption that look-ups will be a lot more

frequent than insertions, we conclude that the time performance of Algorithm B is relatively

disappointing. It appears that at every load factor a successful search by Algorithm B wil be

more expensive on the average than one by the other two methods. This is so because an

extra comparison with the special key (-1) will be involved in all successful searches except

those succeeding in the first probe. The presence of this special key will also complicate

the programming of the search loops in Algorithm B.

The table below indicates, for various savings factors p, the load factor a at which the

average storage requirements of Algorithm B exceed those of Algorithm C. (It can be shown
that for m>500 these load factors a vary with m only within a tolerance of 10-3

).

a

.1 .344

.3 .637

.5 .864

.7 1.00

.9 1.00

Figure 2.2.2. plots the storage requirements of these three techniques in the case k = v = I
(so P = 1/3). (Table size m = 1000 was used, but the relative magnitudes of the graphs are

fairly independent of m.) The storage requirements of Algorithm B are sandwiched between

those of Algorithm A and Algorithm C, with a cross-over point at approximately a = .67. Thus

we can conclude that in the case k = v = / Bucket Search has a better running time and

simpler progrm than Algorithm B, at the cost of only slightly worse storage economy at high

load factors. Therefore Bucket Search is preferable, unless very special information

Recurrence Methods, Page 35

8[
[

6[
[

4[
[

" " .
"*"
"#"

REPRESENTS ALGORITHM A
REPRESENTS ALGORITHM 8
REPRESENTS ALGORITHM C

**

2[###.****#################

[*****

O[****
[******

8[******

[********

6[*************

[
4[

[
2[

[
0[..

o 2 4 6 8 0 2 4 6 8 0 246 8 0 2 468 0 246 8 0 246 8 0 2 4
XORG=1.0 YORG=1003:t) XDELTA=16.0 YDELTA=170.0

XMAX=993.0 YMAX=3979.0

AVERAGE AMOUNT OF STORAGE USED AS A FUNCTION OF THE
NUMBER N OF ENTRIES IN THE TABLE; HERE M = 1000

Figure 2.2.1. COMPARISON OF THREE ALGORITHMS

B[
[

6[
[

4[
[

2[
[

O[
[

B[
[

6[
[

4[
[

2[
[*********

Recurrence Methods, Page 3.6

##****
#*****

******#

******##. 0 •••••••

0[************

o 2 4 6 8 0 2 4 6 8 0 2 468 0 2 4 6 B 0 2 4 680 2 4 6 B 0 2 4
XORG=O.O YORG=1.0 XDELTA=O.016 YDELTA=0.06
XMAX=O.99200006 YMAX=2.0719432

AVERAGE NUMBER OF COMPARISONS FOR AN UNSUCCESSFUL
SEARCH AS A FUNCTION OF THE LOAD FACTOR a

. Figure 2.2.1. (CONTINUED)

8[·
[

6[
[

4[
[

2[
[

O[
[

8[
[

6[
[

4[
[

2[

[****

.* ••
.**.

**.*
••• * HHHH

**** HHHH
**** HHHHH

**.. HHHHH
**** HHH.,

**** HH
**. # ..•.•..

Recurrence Methods, Page 37

* •• **
** •• HH

* •• * HH#
. H##

H#H
HHHH

HH#
.......

.......

0[. * ..

o 2 4 680 2 468 0 2 4 6 8 0 2 468 0 2 4 6 8 0 2 468 0 2 4
XORG=1.0E-9 YORG=1.0 XDELTA=O.016 YDELTA=O.056
XMAX=O.99200006 YMAX=2.0

AVERAGE NUMBER OF COMPARISONS FOR A SUCCESSFUL
SEARCH AS A FUNCTION OF THE LOAD FACTOR a

Figure 2.2.1. (CONTINUED)

Recurrence Methods, Page 38

concerning the keys and the searches is given which allows us to conclude that for this

particular application Algorithm B is more, desirable.

2.3. The Worst k-ary Clustering Techniques

In this section we will discuss k-ary clustering techniques whose average number of probes

grows linearly with the table size. One obvious way to Cause substantial clustering is to

force the probe paths of all keys to be identical after the first k random probes have failed.

The technique described below is a natural generalization of that presented in exercise

6.4-46 of [Knuth2].

The hashing technique uses k distinct independent random probes, first at h1 (K), the second

at h2(K), where h2(K):;eh1 (K), etc., up to a probe at hk(K). If we have collisions in all these

probes, then we make a left to right scan of the table for an empty slot, skipping over any

positions already examined.

As usual we let m = table size and n = number of entries in the table. The key quantity is

H(m,n,j) = number of possible hash sequences of length n

[more precisely, sequences of n k-tuples (h1 (K),h2(K), ... hk(K»]

such that locations 1 ,2, ... ,j of the table get occupied and location

j+1 is empty.

By considering the remaining n-j entries we obtain

H(m,n,j) = C(m-j-1,n-j) F(m,n,j),

where F(m,n,j) denotes the number of sequences of n k-tuples (h1(K),h2(K), ... hk(K» that

occupy positions 0,1 , ... ,j-1 ,j+ 1 , ... ,n (thus leaving position j empty). We observe that the

numbers F(m,n,j) satisfy the following recurrence based on n:

(*) F(m,n+ 1 ,j) = k (f(m,n) + n-) ~ F(m,n,/) + (n+ 1-j)f(m,n)F(m,n,j),

O<I<j

Recurrence Methods, Page 39

where k k ° k-1 1 k-2 k-1 ° f{m,n) = (m--n-)/{m-n) = n-{m-1)- + n-{m-2)- + ... + n-{m-k)-.

(T~is last identity is left as an exercise to the reader).

To see this we distinguish two cases:

Case 1: When n keys are present, position j is empty and all the other positions 0,1 , ... ,j-1

occupied. Now note that F also counts the number of hash sequences that occupy positions

0,1, ... ,j-1 leave position j empty, and then occupy any fixed n-j positions among j+1, ... ,m-1.

Before the (n+1)-st key is inserted, we must have a situation in which positions 0,1 , ... ,j-1 are

occupied, position j is empty, and among positions j+1, ... ,n+1 exactly one is empty. This

empty position has to be filled with the next insertion. As there are n-j+1 such candidate
positions, this can happen in (n-j+1)(m-1)li:.1 ways on the first probe, or (n-j+1)n(m-2)~
ways on the second probe, ... , or (n-j+1)nJs.:.1 on the last of the random probes. This covers

all possible ways, and so we get the term (n+1-j)f(m,n)F(m,n,j).

Case 2: When n keys are present, position 1 is empty, 1 < j, positions 0,1, ... ,1-1 are occupied,

position j is empty, and positions 1+1 , ... ,j-1 ,j+1 , ... ,n+1 are occupied. The (n+1)-st insertion
has to fill position I. This can happen on the first probe in (m-1)!s.:.1 ways, on the second
probe in n(m-2)~ ways, ... , on the k-th probe in nt:..1 ways, and finally on succeeding

probes (i.e. during the linear scan from left to right) in n~ ways, for a total of f(m,n)+n~ ways.

Summing this contribution over all 1 we obtain the first term on the right hand side of (*).

The proper initial values for this recurrence are easily seen to be

k-1
F(m,1,0) = F(m,1, 1) = (m-1)-.

If C'n denotes the average number of comparisons to insert a new element in the table when

n are already present, then clearly

where

C'n = 1 + ~ H(m,n,j)P(m,n,j)/(m.i.s)n,

O<j<n

P(m,n,j) = average number of collisions when inserting a random

k-tuple (h1 (K),h2(K), ... hk(K» in a configuration of n

occupied positions of the type counted by H(m,n,j).

Recurrence Methods, Page 40

The quantity P(m,n,j) can be broken down according to the number of collisions that occured

during the random probes:

P(m,n,j) = (m-n) ~ in!/mi+1 + (nls/mls)(j + k(n-j)/n);

O::;i<k

here j + k(n-j)/n is the average number of collisions after all k random probes have failed.

This sum can be computed in closed form by expressing the falling powers in terms of

factorials and then in terms of binomial coefficients and finally appealing to the well-known

identity 1.2.6-11 of [Knuth1]. Since the manipulations are similar to those illustrated below

for the more important sum of the H's, they will be- omitted. The result is

P(m,n,j) =

Therefore

C'n =

k k nm- - (n + k(m-n»n-

1 +

k m-(m-n-1)

+ (n.!s/m.!s)(j + k(n-j)/n).

k k
nm- - (n + k(m-n»n-

k m-(m-n-1)

k k n+1 + «n-1)-/(m-)) ~ jH(m,n,j).

O::;j<n

We have used above the fact that

k n
H(m,n,j) = .(m-) ,

O<j::;n

but it will be useful for our purposes to verify this directly. We will use the recurrence

relation (*) to prove this fact inductively.

We have for n= 1

as desired.

Now

Recurrence Methods, Page 41

~ H(m1,j) = H(m,1,0) + H(m,1,1) =

0<j<1

(m-1)F(m, 1,0) + F(m,1, 1) k-1 = m.(m-1)- = mis,

~ H(m,n+ 1,j) = ~ C(m-j-1 ,n+1-j)F(m,n+1 ,j) =

~ ~ C(m-1-j,n+ 1-j)(f(m,n)+nls)F(m,n,/) +

O<I<j

~ C(m-1-j,n-j)(m-n-1)f(m,n)F(m,n,j) =

~ F(m,n,/)[(f(m,n)+nls) ~ C(m-1-j,n+ 1-j) + (m-n-1)f(m,n)C(m-1-I,n-/)] =

O<I<m I<j<m

~ F(m,n,/)C(m-1-I,n-/)[f(m,n) + n~ + (m-n-1)f(m,n)] =
O<I<n

mls ~ F(m,n,/)C(m-1-I,n-/) = mls ~ H(m,n,j).

O<I<n

This completes the inductive proof.

Next we evaluate IO<j~n jH(m,n,j) in a similar manner.

We have

~ jH(m,n+ 1,j) = ~ jC(m-j-1 ,n+1-j)F(m,n+1,j) =

Recurrence Methods, Page 42

~ ~ C(m-1-j,n+1':j)(f(m,n)+n1s)jF(m,n,1) +

0:5 /<j

~ C(m-1-j,n-j)j(m-n-1)f(m,n)F(m,n,j) =

~ F(m,n,/)[(f{m,n)+n1s) ~ jC(m-1-j,n+ 1-j) + (m-n-1)f{m,n)C{m-1-I,n-/)/] =

O<I<n I<j<m

~ F(m,n,/)[C(m-1-/,n-/)(f(m,n)+n1s)(m+{m-n-1)k))/(m-n) +

O<I<n

(m-n-1)f(m,n)C(m-1-I,n-l)/] =

k k [m- - (f(m,n)+n-)/(m-n)]
~ k n k
,Lj lH(m,n,/) + m(m-) (f(m,n)+n-)/(m-n).

O:=:;/<n

Thus if we write

An = ~ jH(m,n,j)/{mJs)n,

then we have shown that

k k k k [1 - (f(m,n)+n-)/m-{m-n)] An + m{f{m,n)+n-)/m-(m-n).

It is easy to show that A1 = 11m.

It is perharps best to write this recurrence as

k k k k
An+1/m = [1 - (f(m,n)+n-)/m-(m-n)] An/m + (f(m,n)+n-)/m-(m-n),

from which it is easy to verify that

n-1

An = m - (m-1/m) n [1 - (f(m,i)+ils)/m1s(m-i)]

i=1

Recurrence Methods, Page 43

n-1

= m - (1 + 1 Im)(m-n) n [1 + (1-ils/mls)/(m-i)].

i=1

(We interpret the empty product to be 1).

Thus we finally have an explicit formula for C'n' namely,

k k nm- - (n + k(m-n»n-

C'n = 1 +
k k -------------------------- + kn-/m- +

mls{m-n-1)

n-1

+ «n-1)1s/mls)[m - (1 +1 Im){m-n) n [1 + (1-i ls/mls)/(m-i)]].

i=1

Since this is a rather complicated expression, we proceed now to derive the asymptotic

growth of C'n for n = an, a fixed, m --. 00, Let us look at the asymptotics of the product.

Taking logarithms we have, si~ce f(m,i)/m~ = D(11m),

-~ log(1 +(1-ils /m!S)/(m-i» f(m,i)/mls + D(11m) =

1~i<n

-~ ~ -11 i±.1 0(11) ~ ~ ,.i /mi+1 + 0(1/m) = ~ 1m + m=-~.£..j

1 <i<n O<j<k

- ~ ni+1
1(j+1)mi+ 1 + D(11m) =

O~j<k

- ~ a
j ! j + D(11m),

1<j<k

Substituting into the formula for C'n we see that

Recurrence Methods, Page 44

Thus we can see that C' ex increases linearly with the table size m. The implied constant

above can be made absolute if we restrict a to any interval O~a<ao' for any absolute

constant ao < 1. Thus we have

THEOREM 2.3.1. A k-ary clustering technique that probes the table in a fixed sequence after

the first k random probes have been "exhausted (naturally igr.oring any positions in this

sequence already examined) has a performance that as m -. 00, n = am, 0< a< 1, and a, k

fixed given by

C'n =

Proof. Clearly the above argument applies for any fixed permutation of probing the table

entries after the intitiaJ k probes. •

From the above analysis we see that k has to get as high as ~(Iog m) before we can hope to

cause these worst k-ary clustering techniques to have a bounded number of comparisons on

the average, as m -. 00.

We now prove that the above considered techniques are indeed the worst possible k-ary

clustering techniques, that is they have the largest possible average number of probes per

insertion. The oracular argument given below is interesting, as it is one of the few examples

where we can prove certain algorithms extremal on the average. To prove this we will find it

easier to \ prove a somewhat stronger result.

THEOREM 2 .. 3.2. For aU fixed n, among all hashing techniques that begin the search into the

table with k independent random probes and then continue the search in any manner

whatsoever, no methods will exhibit a worse C' n than those which after the initial k probes

follow a fixed permutation, skipping over any positions already examined.

Proof. By just renaming the table positions it is immediately clear that the performance of the

the method is independent of which specific permutation we use, and thus the "worst

performance" mentioned above is welf defined.

For the proof we shall think of a method under consideration as being defined by an oracle

Recurrence Methods, Page 45

which, when the initial k random probes occur, decides, on the basis of the size of the table,

the key being inserted, and even perhaps by consulting random variables, which of the

remaining empty positions to fill.

Let us number the table entries 0,1 ,2, ... ,m-1 according to the sequence in which they are

encountered during the final test search, Le. during the insertion of the (n+1)-st key. Thus

without loss of generality in the sequel we will be thinking of the final search as being a

linear scan of the table from left to right. The number of comparisons made will then be the

length of the leftmost contiguous group of occupied positions.

The assertion of th.e theorem is equivalent to stating that the oracle a that always fills the

leftmost available slot in the table causes the average length of the leftmost group of

occupied positions to be at least as large as any other oracle.

In each case the table gets filled by a sequence of moves which are of two kinds: either an

R-move (random) in which an empty position is filled during the initial k random probes, or

an O-move (oracle) in which an empty slot is filled by the oracle. Note that

(1) At each moment each empty slot is equally likely to be filled

by an R-move

(2) At each insertion the probablility that it wil be an R- vs an 0-

insertion is independent of the oracle we are using.

We will now represent the sequence of insertions by a string over the integers among 1, ... ,m

and the character "0". The integer i will indicate an R-move that fills the i-th available

position from the left. The "0" will indicate an O-move. For example, with a certain oracle,

the following insertion sequence S

might fill the table as follows (the subcripts of the R's are the corresponding R-moves; those

of the O's are just used to distinguish the different oracle moves):

Recurrence Methods, Page 46

whereas our "worst" oracle 0 would produce the configuration

The above remarks imply that, given any two oracles 0 1 and 0 2 the above way of

representing insertions is a 1: 1 correspondence of the ways of filling the table with the two

oracles such that the corresponding ways are equiprobable.

The following inductive assertion will prove that our oracle 0 leads to an initial contiguous

occupied group that is at least as long as that produced by any other oracle 0 for each

insertion specification sequence S, and thus prove the Theorem.

Assertion: For each n, for each insertion sequence S, and for each i, 1 <i <m-n+ 1, when the

n-th insertion is made, the i-th empty position from the left will not be a lower numbered

entry of the table if we were using our oracle 0 as compared with any other oracle O.

The above example illustrates this principle. For the proof we induct on n. We can trivially

check it for n= 1. So all that remains is to verify that our assertion is preserved when the n-th

key is inserted. Now if this new insertion is an R-move the effect is to simply take out a pair

of corresponding positions in the two configurations, so the assertion clearly remains true.

See Figure 2.3.1., part (a).

If the new insertion is an O-move, then again Figure 2.3.1., part (b) makes it obvious why the

assertion is preserved.

Thus our proof of the theorem is complete, by applying the assertion for i=1. I

2.4 The Analysis of Random k -ary Clustering Techniques

In this section we will determine the performance of a k-ary clustering technique, when the

permutations describing the method are chosen at random. What we mean by this is that we

consider all possible (m-l)!m selections of m permutations defining a secondary clustering
matrix such as described in Section 1.4. as equally likely. Similarly, we have (m_2)!m(m-1)

Recurrence Methods,

part (a): empty positions numbered from left to right
random insertion

Page 47

1 2 3 I \ 4 5 our oracle 0
-----+--~------~------~--~--~~----~-

3 / 6 take out after
2

4-t---!~----I--

new insertion

2 3

1 2 3 4 5 any oracle

1,2, ... = new numbering

1,2.... = old numbering

part(b): oracle insertion
1 2 3 5 our oracle 0

5 / 6

same)/om here on

16

5 any oracle

Figure 2.3.1. THE ORACLE ARGUMENT

Recurrence Methods, Page 48

choices in the case of tertiary clustering, and so on. The analysis of random secondary

clustering was first carried out correctly in exercise 6.4-44 of [Knuth2] by a considerably

more complicated method. The results we get are interesting because they provide us with

an idea of how other methods very similar to linear probing and double hashing might

perform. We find, for example, that the random k-ary clustering technique with k) 1 has

e'n = l/(l-a) + O(l/m), n = am, m -+ 00.

This is interesting from several viewpoints: 1) as we saw in Section 2.3., there are k-ary

clustering techniques whose performance is very bad, that is for which G'n grows linearly

with m; 2) as we remarked earlier, 1 I(l-a) is also e'n for uniform hashing, which implies, for

example, that on the average tertiary clustering techniques are very good, since they

perform just as well as uniform hashing which needs to compute an arbitrary number of

independent hash functions, not just two. For secondary clustering we find that

e' n = 1 / (1 - a) - a - log (1 - a) + O(1 1m),

which is significantly better than linear probing. This can be realized in practice by letting

h2(K) = f(h 1(K» in the double hashing algorithm, where f is some easily computable function.

We now begin the mathematical portion of this section where we perform the analyses

described. The calculations are somewhat involved, so we will emphasize only the key

steps. Let Pn,s denote the probability that when the (n+ 1 }-st key is inserted in the table s

probes will be. made. We let p = l/mJs, q = l-p, and make use of our falling-factorial power

calculus. The following two identities are easily proved by induction or by techniques

analogous to those used in Section 2.3.:

(11) = 1/(b-a), and

(12) = a/(b-a+ 1)(b-a),

O<t<a

where we interpret xQ = 1. Let us now look at Figure 2.4.1. which illustrates the matrix

defining a secondary clustering technique. The basic observation is that we need not know

Recurrence Methods, Page 49

nl n-1 previously

~ --I: rnserted keys ~- m-1 ~'-
[h<K) I~ ~------------------------~\

v----k
-

1

./ 1-1 " ..

+
already specified -r----.... ~ t 4.~ ___ --'first emp y

one foun<

specified when Kn
is inserted

Figure 2.4.1.

THE MATRIX DEFINING A

SECONDARY CLUSTERING TECHNIQUE

m

Recurrence Methods, Page 50

what an element of this matrix is, until we have a need to look at it. When the (n+ 1)-st key

Kn+1 is inserted, the only row of the matrix that is of interest to us is row h(Kn+1), in which

case a portion of this row has already been specified. Specifically assume that t-1 initial

elements of this row have been specified. Since we want to compute the probability of

making s probes, it follows that we will have to specify s-t additional elements of this row.

The first s-t-1 must specify table positions that have already been occupied, whereas the

last one must specify an empty position. We now break Pn,s into a number of components,

according to the greatest isn for which h(Kj) = h(Kn+1). We further note that the probability

of filling the remaining s-J positions of the row as described above when s>k (in this case

k=1) is

s-t-1 s-t (m-n)(n-t)--/(m-t)- ,

because for the t-th we have n-t choices of occupied positions to be selected among the

m-t possibilities for continuing this row, for the (t+ 1)-st we have n-t-1 choices among the

m-t-1, and so on till the last one. This last one, however, is exceptional because it must hit

an empty position, so we have m-n choices out of m-s+ 1. As a result of all this we can write

down a recurrence relation for the probabilities Pn,s' For the general k-ary clustering case

we obtain the following:

Pn,1 =

Pn,2 =

Pn,k =

Pn,s =

(m-n)/m,

n(m-n)/m(m-1),

k-1 k
(m-n)n-/m-, since the first k probes are independent and

(m-n)[
n-i

pq

1si<n

random, and for s>k we have

~ s-t-1 s-t
.tU Pi,t (n-t)--/(m-t)- +

k<t<s

+(1 -~ P .
~ n-i ~ s-k-1 s-k

-.tU pq (1 - .tU pi,j»(n-k)--/(m-k)-]. n,J

1<j<k 1<i<n

Recurrence Methods, Page 51

fhe factor pqn-j is the probability that h(Kj } = h(Kn+1} and for i<j<n, h(Kj } '¢ h{Kn+1). Similarly

the multiplier of (n-k).§.:Js.:.l l(m-k)U on the next line is the probability that h(Kj) '¢ h(Kn) fOI

1 <i <n and that the first k probes collide. If we now set

a'n = ~ (s-1 lPn,s

1~s<n

= C'n - 1,

we see that the above recurrence for Pn,s can be transformed into one for a'n' In order to

perform this manipulation we need the relation

(s-1)(n_t)S-t-1 I(m-t)s-t = m/(m-n)(m-n+1) + (t-1)/(m-n+1),

t<s~n

which is an easy consequence of (11) and (12). If we interchange summation on sand t we

obtain a recurrence for a'n in terms of a'i' i(n, which can be most easily stated if we use the

substitution:

a"n = a' - «k-1) - ~ (k-j)p .) n n,J

1 <j<k

This aforementioned recurrence is

no" -
'1,4 n - (m-n)/(m-n+1)

a"o = O.

If we now set

Pn = (m-n+1)a"n/(m-n)

n-i
pq a"i +

k k (m-k+1)n-/(m-n+1)m-,

we can subtract two versions of the above recurrence, one for n and one for n-1, to obtain a

recurrence in which Pn depends only on Pn-1:

Recurrence Methods, Page 52

Pn = (1 - 1 l(m1s(m-n+2») Pn-1 +

r(m,n) - (1 - 1 l(m1s(m-n+2») r(m,n-1),

Po = 0,

where

r(m,n) = (m-k+1)n1sl(m-n)m1s.

This in turn can be simplified a great deal if we use the identity

and define

k k ~ (m-k+ 1)n-/(m-n+ 1)m- + «k-1) - k.A (k-j)p .) = n,J n/(m-n+1),

Xn = Pn - r(m,n) = (m-n+1) (a'n - n/(m-n+1» I (m-n).

The final result is contained in the following theorem:

THEOREM 2.4.1. For random k-ary clustering we have

C'n = (m+1)/(m-n+1) + (m-n)Xn/(m-n+1), where

Xn = (1 - 1 l(m1s(m-n+2») Xn-1 + (n-1)!s/(m!sm
k

-
1
(m-n+2»,

Xo = O.

Asymptotically we have, for k=1 (secondary clustering)

C' a = 1 I (1 - a) - a - log (1 - a) + O(1 1m),

while for k-ary clustering with k) 1 we have

Recurrence Methods, Page 53

C'a =
k-1

1/(1-a) + O(1/m),

as m --. 00, n = a(m+1), fixed a < 1.

Thus random tertiary and higher clustering techniques are asymptotically equivalent to

uniform probing.

Proof. Note that (m+1)/(m-n+1) is the exact performance of uniform probing as analyzed in

Section 1.5. Also note that C'n equals this value exactly until n exceeds k, for until then no

clustering can occur. The argument preceding the Theorem has established the recurrence,

so we only have to prove the asymptotic results. For k= 1 we have

Xn = (1 - 1/(m(m-n+2») Xn-1 - 11m + (m+1)/m(m-n+2)).

If we let

1/In = 1/In-1 - 11m + (m+ 1)/m(m-n+2» (1fo = 0),

it is clear that 1/In = Xn + O(11m) and that

1/In = -n/m + (m+1)/m [Hm-n+2 - Hm- 2],

from which the assertion of the Theorem for k= 1 is clear.

For k) 1 the argument that bounds Xn is even more obvious, showing that this quantity only

contributes to the 0 term. •

For k = 1 and 2 (and possibly all k) we can obtain a "closed form" expression for C'n as a

finite product. The manipulations are somewhat involved, but the final results are:

Recurrence Methods, Page 54

for secondary clustering (p = 11m)

n-1

C'n = 1 + m + (m-n)[p/(1-p)] - [(m+1-p)/(1-p)] II (1 - p/(m-i+1»,

i=1

and for tertiary clustering (p = 1 Im(m-1»

C'n = 1 + m + (m-n)[p(3-p)/(1-p)(2-p) + pn/(2-p)m]

n-1

- [2(m+1-p)/(1-p)(2-p)] n (1 - p/(m-i+1» .

i=1

The above two product formulae are due to a suggestion of ([Paterson]).

· Double Hashing, Page 55

"breed the best and forget the rest",
cattle ranch advertisement on California route 132

CHAPTER 3:

THE ANALYSIS OF DOUBLE HASHING

This entire chapter is devoted to the analysis of one algorithm, double
hashing. The technique used is distinctfy different from that of the
analyses of the introduction and the previous chapter. We can no longer

obtain exact recurrence relations for the means. Instead, we prove our

asymptotic limit by showing that configurations of occupied positions on

the table that would exhibit an average number of probes very different
from this limit have negligibly small probability. In spirit the method is

mostly akin to the probabilistic method of Erdos ([Erd-Spen]). The one

fact that makes the argurt:lent possible is that the probability of being at
least a fixed percent away from the mean in a series of n Bernoulli trials is
exponentially small in n. Since arithmetic progressions are the natural

probe paths for double hashing, we begin this chapter with a study of the

occurrence of arithmetic progressions in random subsets of specified

cardinality that are composed of entries in our table.

Double Hashing, Page 56

3.1 .The Lattice of Arithmetic Progressions Coming From a Set to a Point

Let Zm denote the additive group of integers modulo m. We can think of these integers

arranged in a circle, with a following m-1, as depicted in Figure 3.1.1.

In the entire context of this chapter m is a (sufficiently large) prime number. For any subset

HkZm we can count the number of arithmetic progressions that begin at a and whose next k

elements lie in H. By an arithmetic progression we mean a sequence xO,x1' ... ,xk ' such that Xo

= 0, x1,x2, ... ,xk are elements of H, and xi+1-xi (mod m) is the same for all i = 1,2, ... ,k-1. (The

point a need not itself belong to H.) The primality of m guarantees that all the Xi will be

distinct. We will speak of such an arithmetic progression as a progression of length k

coming from H to O. We can generalize this concept if we allow that for each i, 1 <i <k, we
specify whether the corresponding element of the progression is to be in H, or in the

complement of H. Thus we arrive at the concept of a type of a progression. A type T of

length k can be thought of as a boolean vector of k bits. An arithmetic progression of length
k coming to a is of type T if the i-th element of the progression is in H or in the complement

of H, according to whether the i-th bit of T is a 1 or a O. A 1 of the type will also be called a
hit, whereas a a will be called a miss (for obvious reasons). We will display a type by
writing down the corresponding bit vector, e.g., T = (10110001). Any type T has a length

that will be usually denoted b}t k, and a number of hits, that will be usually denoted by I,

O~/~k. Thus the above type has k = 8, I = 4. We will reserve the expression "a
progression of length k coming from H to 0" to mean a progression of the type (11 ... 1) with
k hits. For any type T and set H we can consider all the progressions of that type coming to

O. We will speak of these progressions as belonging to T. For a fixed length k, the set of all
types of that length forms a boolean lattice (or algebra), in the usual way. Figure 3.1.2.

illustrates some' of the ordering relationships.

The above lattice structure will not be important immediately, but will playa significant role

in the latter half of this chapter.

To fix the ideas let us now confine our attention to arithmetic progressions of length k
belonging to the type of all hits. Clearly the number of progressions belonging to this type

depends heavily on the set H. We can expect at most to make a probabilistic statement

about the distribution of the number of these arithmetic progressions. We will be interested

in such an estimation for large m with H of specified cardinality IHI = ."m, where 0< 11< 1. All
subsets of this cardinality will be considered equally likely. As we let m get large, we will

allow both k and ." to vary with m. However, in order to make our argument work, we will

see that we have to restrict the growth of k and/or the speed with which." can approach 0

Double Hashing, Page 57

Figure 3.1.1.

THE ADDITIVE GROUP Zm

\

Double Hashing, Page 58

• • • • •

Figure 3.1.2. THE LATTICE STRUCTURE OF THE TYPES
OF ARITHMETIC PROGRESSIONS

•

10 ... 0

Double Hashing, Page 59

or 1. In this and all subsequent sections, unless otherwise stated, our 0 and 0 notations will

always refer to m -+ 00. The implied constants, unless otherwise stated, will be absolute.

What is the expected number of arithmetic progressions of length k coming from H to O?

There are m-1 arithmetic progressions in Zm coming to 0, one for each possible distance

1,2, ... ,m-1. Each such progression occurs in H with probability

1Jm(1Jm-1) 00' (1Jm-k+ 1)

= (1 + o(1» 11k,
m(m-1) ... (m-k+1)

if k is suitably small (log k < (lh-e) log m will do, though in our applications we will always

use a k that is O(log m» and 'I is bounded away from O. Thus the expected number of
arithmetic progressions of length k coming from H to 0 is (1 + o(1))1Jkm. Let 8 denote any

small positive constant. In the following three sections we will prove that the fraction of

choices of H for which the number of these arithmetic progressions is outside the range
1Jkm(1 ±8) is exponentially small in m. By exponentially small we mean that there ~xist
pOSitive constants C, s such that this fraction is

. 4 k s 3 -k-1
exp[-C8 'I m/(k log ('I 8 »]

provided rtm > mIL, where Ii denotes any positive constant.

Our method is briefly the following. In Section 3.2 we consider the hypergeometric,

distribution, which arises when we compute the probability that two subsets of size am, 13m
of a set of m elements have an intersection of the expected size af3m. We show that the
probability of the intersection having a size outside the range af3m(1 ±e) is exponentially
small in m. In Section 3.3 we use the Farey series to subdivide the circle formed by the

reals (mod 1) into arcs, such that all arcs except those containing certain fixpoints have the

property that any two among such an arc's first k multiples are disjoint. By the j-th multiple
of an arc (interval) [x,y) we mean the arc [jx,jy) (mod 1). In Section 3.4 we use this

subdivision, together with our estimation of the tail of the hypergeometric distribution, to
prove the desired result.

The idea of Section 3.4 can be illustrated by an example. Suppose k = 2 and consider an

arc [x,y) which is diSjoint from the arc [2x,2y), as shown in figure 3.1.3.

Now suppose we pick H, a random set of '1m points of the circle. What is the expected

Double Hashing, Page 60

Figure 3.1.3. AN ILLUSTRATION OF THE "PULL-BACK" ARGUMENT

o [) [•
x y x

o

)
y

J(2x,2y)

'" \
\ r

,..-ef
J I

/ I
/

Double Hashing, Page 61

number of arithmetic progressions of length 2 coming from H to 0 whose first pOint lies in

the set J(x,Y) = {zEZmlx::;(z/m)<y}? Instead of repeating the argument given earlier, we can

proceed as follows. The interval J(x,Y) has size (y-x)m. Consider the set 2J(x,y) =
{2zlzEJ(x,y)}~J(2x,2y). This set also has cardinality (y-x)m, and is the locus of the second

points of progressions whose first point is in J(x,Y). We expect (y-x)1Jm of the paints of

2J(x,y) to be hit by H. The set of hit pOints can now be "pulled-back" to J(x,y) to give us

the candidate first pOints of these progressions. Since J(x,y) and J(2x,2y) are disjoint, the

expected number of points in this subset of J(x,y) that will be hit is (y-x).,,2m. So (y-x).,,2m

is the desired average. This argument illustrates how we can translate our knowledge of the

probabilities for the size of set intersections to probabilities for the occurrence of arithmetic

progressions in H.

All of the above remarks apply verbatim to types other than the type with k hits. If our type
has I hits then we only need to replace ."k by .,,'(1_.,,)k-' everywhere in the above discussion,

and restrict ." away from both 0 and 1. Circular symmetry implies that our results also hold

for any point of Zm' not just O. Our method solves the corresponding problem when we do

not allow wrap-around or when we specify an upper bound on the number of times we can

wrap around. We do not need this result, so we will not dwell on it any longer here. We

will, however, need a slight generalization of the case k = 2 shown above. Given two pOints

x,yEZm, we will say that these pOints are in the ratio a:b if xb = ya (mod m). Given a fixed

ratio a:b, 1 <a,b::;k, we will want to estimate the number of pairs of points (x,y) of H that are

in the ratio a:b.

3.2 The Tail of the Hypergeometric Distribution.

In this section we estimate the tail of the hypergeometric distribution a specified percent

away from the mean. Properties of the hypergeometric distribution are discussed, for

example, in ([Feller]). Since we are interested in large deviations, the normal approximation

will not be useful to us. Instead we will need an approximation more like the one done for

the tail of the binomial distribution in ([Renyi]).

Suppose we have a sample space of size n, and we select from this space two subsets, one

of size an, the other of size jJn (O(a,jJ< 1).

Double Hashing, Page 62

The probability. that the cardinality of the intersection of the two subsets is k is

ak = C(an,k) C« l-a)n,pn-k) I C(n,pn).

)- ~ [C.

"' choose k of choose others total number of
pn's from from rest ways to choose

an of n

The expected value of k is easily computed to be apn(1 +o(1 ». We will estimate the
probability that k lies outside the range apn (1 ±£). For this section only, our 0 notation will
refer to n -+ 00.

THEOREM 3.2.1. Let Y(n,a,/3,e) denote the probability that if we randomly select two sets of

sizes an and /3n respectively out of a set of size n, their intersection will have cardinality
outside the range a/ln(l ±E). Then as n -+ 00, provided

o < a,/3 and a(l+£), /3(l+E) < 1,

where a, p, £ can vary with n, we have

Y(n,a,/3,E) < K(l +1 IE)e -ep(E)a/3n,

where epeE) > (l+E)log(l+.£)-£ + Ih£2[apI(1-a)(1-/3) + al(l-a) + /3/(1-13)]

and K is an absolute constant.

The same conclusion holds if one of the two sets in question stays fixed.

Proof. We will first estimate the tail of the distribution above the mean. The tail below can
be estimated in an essentially identical fashion.

We wish to estimate the sum

C(an,k) C«l-a)n,,8n-k) I C(n,/3n).

k>a/3n(l+E) k;?: a,8n(1 +E)

Note that the ratio of two successive terms in this sum is

Double Hashing, Page 63

ak+1/ak < (an-kH/ln-k)/k({ 1-a-/l)n+k),

which is a decreasing function of k in the range of interest, i.e., apn < k < an,pn.

For k = apn(1 +E) this ratio is less than

p = [(a-ap-apE) (p-ap-ape)] I [(ap+a/Je) (1-a-/J+a/J+ape)].

1t easily follows that p < 1. Therefore our sum is majorized by a convergent geometric

series of ratio p, and we get a bound of

[1/(1-p)] C[an,a/Jn(1+E)] C[(1-a}n,(p-ap(1+E))n] I C(n.pn).

Since, as we can easily check,

1/(1-p) = 1 + (1-a-aE}(1-p-PE)/E < 1 + 1/e,

we are only left with estimating the density of the hypergeometric distribution. at k =
apn(1 +e), as given above.

We will use Stirling's approximation for the factorial:

log n! = n log n - n + llzlog n + 1f2 log 2'1T + O(1 In}.

From this we can easily derive the following fact:

log C«x+y)n,xn) = (n+1f2) «x+y}log(x+y) - xlogx -ylogy) - 1fzlogn + O(1}.

We can now apply this fact to the binomial coefficients we have and obtain after

simplification

log [C(an,a/Jn(1 +E)) C((1-a)n,(/J-ap(1 +e »n) I C(n,pn)] =

-[ap(1+E) log(1+e)

+ a(1+/J){1-[(/JE)/(1-P)]} log{1 - [(/Je)/(1-p}]}

+ /J(1-a){1-[(aE)/(1-a}]} log{1 - [(ae)/(1-a}]}

Double Hashing, Page 64

+(1-a)(1-ji){1 + [(ajie)/(1-a)(1-p)]} log{1 + [(ajie)/(1-a)(1-ji)]}] n

+ 0(1).

The following two inequalities are elementary:

(1+x) log(1+x) ~ x for x > 0,

2
(1-x) log(1-x) ~ -x + (x 12) for O<x<1.

Since a(1+e)<1 is equivalent to ael(1-a)<1, and similarly for P, we can apply these

inequalities to the above expression to obtain the upper bound

-[ape + afl[(1+e) log(1+e) - e]

2 2
-ape + a pe 12(1-a)

from which the conclusion of the theorem is immediate.

For the lower tail a similar argument gives an upper bound of

2 2 2 -[ap[(1-£)log(1-£)+e] + Iha p £ 1(1-a)(1-fl)] n + 0(1).

Now (1-£)log(1-£)+£ > (1+£)log(1+e)-e and the theorem follows .•

Remark 1. Notice that the above argument does not require £ to be small.

Remark 2. If, however, £ is small, say e:::;eo' then q>(e)~(l+e) log(1 +e)-e~C£2 where C

depends on eo' If apne
2

/10g(1 Ie)) N, where N is a sufficiently large constant, then we can

take C so small that the factor K(1 + 1 Ie) is absorbed in the reduced exponent. Then we can

state our conclusion as

Double Hashing, Page 65

COROLLARY 3.2.1

Y(n,a,p,e) ::; exp(-Ce2 apn) for e<eo' apne2
/log(1 I e)) N, Nand C positive

constants depending on eo'

This is the form in which theorem 3.2.1 will be used most often. In our applications in fact,
apne2

/10g(1 I e) will tend to 00 with n.

The key property of our estimate is that it is exponentially small in n. An estimate obtained

by using the variance and Chebycheff's inequality can only give us a bound for this tail that
vanishes no faster than an inverse power of n.

3.3. The Farey Subdivision of the Circle.

The Farey series F n of order n is the ascending series of irreducible fractions between 0

and 1 whose denominators do not exceed n. For example, F 5 is

Oil, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1.

The Farey series possesses many fascinating properties ([Hardy]).

Property 1. If h/k, h'/k' are two successive terms of F n' then kh'-hk' = 1.

Property 2. If h/k, hIt Ik", and h'/k' are three successive terms of F n' then

h"/k" = (h+h')/(k+k').

Property 3. If h/k, h'/k' are two successive terms of F n' then k+k')n.

Property 4. If n> 1, then no two successive terms of F n have the same denominator.

Property 5. The number of terms in the Farey series of order n is asymptotically 3n2 I w2

+ O(nlogn).

We will be interested in the circle of the reals (mod 1), denoted by U. The set U forms a

group under addition. Consider the mappings

Double Hashing, Page 66

Tj: x ix (mod 1), xEU

for each i = 2,3, ... ,k. (T 1 is the identity.) It should be clear that the fixpoints (Le., pOints x

for which Tjx = x for some j) of these mappings are the fractions alb with O<a<b<k.

These are exactly the elements of Fk_1CU.

We wish now to partition U'into a collection of disjoint intervals (taken to be left closed,

right open) J with the property that (1) if VEJ, then T1V, T2V, T3V, ... , TkV are all disjoint if

V does not contain one of the above fixpoints, and (2) the VEJ that contain a fixpoint can

be made arbitrarily small in length.

Let <J>n denote (the cardinality of F n)-1. We now consider the subdivision of the circle

defined by the Farey series F 2k-2' Clearly this contains the fixpoints discussed above

(F k-1 CF 2k-2) and subdivides the circle into <J>2k-2 intervals. We have

LEMMA 1. No two fixpoints (i.e., elements of Fk-1) are adjacent in F 2k-2'

Proof. If fixpoints h1/k1, h2/k2 are adjacent in Fk-1, then k1+k2<2k-2. Hence by Property

3 they cannot be adjacent in F 2k-2' I

For i = 1,2, ... ,<J>k_1' let us name Lj and Ri respectively the intervals of the above

subdivision that lie to the "left" and to the "right" of the i-th fixpoint (in the standard

order).

From Lemma 1 it follows that the other endpoint of each Lj and Rj is not a fixpoint. We

name the remaining intervals Ni, i = 1,2, ... ,(<J>2k-2-2<J>k-1)'

LEMMA 2. Let X stand for one of the Lj or Rj• Then any two of

will overlap only if they have an endpoint in common.

Proof. Let the i-th fixpoint be h1/k1 and to make things concrete suppose we are dealing

with Rj (the case of Lj is entirely analogous). Let h2/k2 be the other endpoint of Ri. Then

Double Hashing, Page 67

Thus the length of any of the TjR j is « 1 Ik1). But all multiples of (h1 Ik1 ,h2/k2) start at a

multiple of h1/k1. These multiples are spaced at least 1/k1 apart, so no two of the

multiples of Rj will overlap unless they share a common left endpoint. I

LEMMA 3. Let Y denote one of the Nj• Then the intervals

are all disjoint.

Proof. Suppose intervals A and B in the above sequence intersect. By construction A

and B do not share any endpoints. Thus if they intersect, we can assume that the left

endpoint of B lies within A. Let Y be (h1 Ik1 ,h2/k2). The distance between the left

endpoints of A and B cannot be less than 1 Ik1, since the left endpoints are multiples of

1/k1. However even the longest multiple has only length k{h2/k2-h1 Ik1) = k/k1 k2 < 1 Ik1'

since k2> k as no endpoint is a fixpoint. But this contradicts our assumption that the left

endpoint of B lies within A. I

We now describe how to subdivide the Lj and Rj further, so as to make the intervals with

an endpoint at a fixpoint as small as we please, while still maintaining the property that all

other intervals have disjoint multiples. We describe the construction for Rj, that for Lj

being analogous. Let us define for each i a subdivision into intervals RSjj, j = 1,2, ... ,1, and

RMj • If Rj = [x,y), these subintervals are defined as follows:

RSij = [x+({k-1)/k)i(y-x), x+{{k-1)/k)j-1(y-x», = 1 ,2, ... ,1

RM j = [x, x+({k-1)/k)'(y-x».

The following facts are then obvious:

(1) RMj U
I

U RSjj = Ri,
j=1

Double Hashing, Page 68

(2) any two of RSj1 , RSi2, ... , RSj/, RMj are disjoint,

'-1 I
(3) RSjj has length «k-1)/k)J (y-x)/k, and RMj has length «k-1)/k) (y-x) (y-x =

length of Rj).

LEMMA 4. Let Y denote any of the RSij' Then the intervals

are disjoint.

Proof. We first prove the lemma for i = 1, i.e., for a subdivision of the interval R 1 whose

left endpoint is a (= 1). As 1/kEF2k_2, R1 e[a, 11k) so we dOh't have to worry about

wrap-around problems for any of the RS1j. To complete our argument we only need

show that the right endpoint of the (t-1)-st multiple does not exceed the left endpoint of
t-th multiple. This is tantamount to

(t-1)«k-1)/k)j-1 :::; t«k-1)/k)j

or

{t-1)/t < (k-1)/k,

which is certainly true, as t only takes the values 1,2, ... ,k. This subdivision is nicely

illustrated by Figure 3.3.1.

Now to handle the case of i> 1 we need only recall from Lemma 2 that two multiples of Rj

overlap only if they have a common left endpoint. But then the situation at each such

endpoint is a subcase of the situation described above for i= 1 around a. So by the same

argument the multiples of RSjj are disjoint. I

We can of course repeat the whole construction and the proof of Lemma 4 for the Lj •

Thus we obtain intervals LSij' j = 1,2, ... ,1, and LMj that also satisfy (1), (2), and (3) above.

Before we recapitulate what we have derived in this section we need to make a comment

about the lengths of the intervals. Each Rj or Li' being an interval [h1/k1,h2/k2) between

•

Double Hashing,

Figure 3.3.1.

THE SUBDIVISION INTO INTERVALS OF NON-OVERLAPPING
MULTIPLES NEAR A FIXPOINT

k = 5

o

\ \" i
\\" . \

non-overlapping multiples
of a subinterval

Page 69

Double Hashing, Page 70

2
two elements of F 2k-2' has length 1 Ik1 k2> 1 14k. On the other hand either k1 or k2 is

> k, so the length is at most 11k.

Combining all our constructions we have the following theorem.

THEOREM 3.3.1. We can construct a partition of the reals mod 1 into disjoint subintervals

Nj' = 1 ,2, .. ·,q>2k-2 -2C:Pk-1'

LSjj , LMi' RSij' RMi, = 1,2,· .. ,q>k_1 = 1,2, ... ,1

so that

1. each of the Ni' LS ji , RSij has (a) disjoint first k multiples and (b) length at least

«k-1)/k)'-1 14k2, and

2. each of the LMi' RM j has (a) an endpoint (the right or left one, respectively)

which is a fixpoint and (b) length at most «k-1)/k)'/k.

3.4. The Estimation of the Arithmetic Progressions, and the Prevalence of Randomness.

We first map intervals on U to intervals on Zm' Corresponding to an interval [x,y) C U we

have the set of a" iEZm with the property that x«ilm)<y. (This should be interpreted

cyclically; that is, if x)y, then we mean x~ilm or ilm<y). We will now use the names of

the intervals introduced in Section 3.3 to denote also the corresponding intervals in Zm'

For an interval T = [x,y) we will denote by t its length in U (t = (y-x» and by ITI the

number of integers it contains in Zm' Clearly we have ITI = (number of i such that

xm~i<ym) = ryml - rxml. Thus

ITI = tm±2.

We will write this as

(i) ITI = tm(1±e),

where e will be a quantity used below. This is justified as long as e is not too small. As

Double Hashing, Page 71

we will see below, the smallest e we will use will be O(1 1(log m)r) for some positive r,

while the smallest t will be such that tm>mA for some positive~. So as m -+ 00,

equation (i) is justified; its form will simplify some of the computation below.

Recall that we are selecting a random subset H of Zm of cardinality 1Jm. For any interval

(in fact any subset) T of Zm' we can ask for the number of elements of H that will fall in

T. From Theorem 3.2.1 we know that the number of these elements will be ITIT,(1 ±e),

except with probability Y(m,ITl/m,1J,e), i.e., it will be 1}tm(1 ±e)2 except with probability
Y(m,t(1 ±e),1},e).

Consider now the collection D of intervals composed of all the Ni, LSii' RSjj' and the

collection e composed of these same intervals and their first k multiples. In this latter

case we are dealing with a total of k(2CPk-1'+CP2k-2-2CPk-1) intervals. For each interval T in

the collection e we assume that H will intersect it in 1}tm(1 ±e)2 elements, as in the

discussion above. This will always be the case except for a fraction of choices of H that
is bounded by

Q = ~ Y(m,t(1 ±e),1},e).

Tee

(This argument does not need any independence assumptions concerning the various
choices of T.) Thus with probability 1-Q, our choice of H will intersect each interval in

the collection about as often as we expect.

We now restrict T to be one of the elements of D. In the sequel e will denote a small
quantity that will define all our relative errors. We allow e -+ 0 as m -+ 00, and we also

allow e to depend on our choice for T. (We write er when we need to make this

dependency explicit.) Let us consider the first k multiples of T, and focus our attention
on the last one T k T. This interval has tkm(1 ±e) elements, and will almost certainly

receive tk1)m(1 ±e)2 elements of H. Within T k T we have a subset Sk of cardinality

tm(1 ±e), consisting of those elements that are k-fold multiples of elements of T. How

many elements of this subset will H hit? (Note that these points are the endpoints of

arithmetic progressions starting at 0, having their .first element in T, ... , and their k-th in

T k T.) Now within T k T itself we can invoke Theorem 3.2.1 to show that, except for a

fraction of possibilities that does not exceed Y(tkm(1 ±e),(1 Ik)(1 ±e)2,1}(1 ±e)3,e) the

Double Hashing, Page 72

number of elements of Sk that H will hit will be "tm(1 ±e)7.

Consider now the "tm(1 ±e)7 progressions thus specified. We apply the "pull-back" process

illustrated in Section 3.1. and in the following Figure 3.4.1. What about the (k-1)-st points of

these progressions -- how many of these points will be hit by H? By construction, all these

pOints from a subset Sk-1 of Tk-1T, an interval disjoint from TkT. By Theorem 3.2.1 confined

now to the interval Tk_1T we see that the intersection of Sk-1 and H will be .,,2t(1±e)13m

pOints, except with probability Y(t(k-1)m(1±E),(1]I(k-1»(1±E)8,1](1±e)3,e). (To amplify, we

have here an interval of t(k-1)m(1±e) points; the set Sk-1 is of size (."/(k-1})(1±E}8 times

the size of Tk-1T; and 1](1±E)3 is the.probability that a point in Tk-1T will be hit by H. The

basic rule we are using throughout is that if x = X(1 ±e)i, y = Y(1 ±E)j, then xy = XY(1 ±E)i+j,

x/y = (X/Y)(1 ±E)i+j. To make these rules precise it is best to define x = X(1 ±E) to mean

xE(X(1-e), X/(1-E». Note that this redefinition of 1±E leaves Theorem 3.2.1.valid.)

We now have a set of progressions whose last two elements are guaranteed to be hit by H.

At the next step we consider the (k-2)-nd pOints of these .,,2tm(1 ±E) 13 progressions, which

define a subset Sk-2 of T k-2 T. By analogous computation we obtain that .,,3tm(1 ±e) 19 of

these pOints will belong to our random set H, except with probability
Y«k-2}tm(1±E),(.,,2/ (k-2})(1±E)14,1](1±E)3,E}. We now continue in this fashion with the

(k-3)-rd, ... ,1-st points of the arithmetic progressions. The illustration 3.4.1. depicts this

pull-back process in which we successively commit H in the intervals TiT, i = k,k-1 , ... ,1. At

the last step of this process we are considering T itself. After that step the number of
candidate arithmetic progressions left will be 1]ktm(1 ±E}6k+1. These are now confirmed to be

entirely in H. The fraction of choices for H that we have eliminated in this process is
bounded by the sum

k-1
~ Y«k-i)tm(1±E), (1]i / (k-1»)(1±E)6i+2, 1](1±E)3, E)

i=O

of all the excluding probabilities.

We now conceive of this process of selection of candidate arithmetic progressions as being

carried out for T referring in turn to each of the intervals in D. The total fraction of choices

for H thus excluded is bo~nded by

Double Hashing, Page 73

Figure 3.4.1. THE PULL-BACK PROCESS

Sk-1

Double Hashing, Page 74

k-1

~
TED i=O

What has all this accomplished? After excluding the choices for H accounted for in Q and

W, we can be sure that the number of arithmetic progressions of length k coming from H to
a, and whose first point is T, is llktm(1 ±ET)6k+1, where T is any of the above intervals. Thus

the total number of arithmetic progressions coming to a from H of length k is

~ llktm (1±Er)6k+1 + E

TED

where E is a correction coming from the fact that we cannot apply our argument to the

fixpoint intervals LM j and RM j • But each of these special intervals cannot contribute more

arithmetic progressions than its length. Thus the error committed is bounded by

I a ~ lEI ~ 2((>k-1 [(1 IkH (k-1)/k) m+2].

(See Theorem 3.3.1 and recall that there are 2((>k-1 such intervals).

Now let ~ be a given small positive constant. We choose I to be the smallest positive

integer such that

(ii) I k
2((>k_1(1/k)((k-1)/k)m < II m~/4.

Thus I = r(klog(1 Ill)+log((>k_1-3Iog2+log(1 18))/(log((k-1)/k»l. By choosing 8 small enough,

and using the fact that lJog(1-1 Ik)1 ~ elk for k> 1 and some positive constant C, we see

that I will always satisfy

(iii) ~ 2k.

Since llkm > ml' it is also clear that for m sufficiently large

(1 Ik)((k-1)/k)'m > 2,

and so

Double Hashing, Page 75

(iv) lEI < 2q>k-1 [(1 Ik)(k-1)/k)'m+2] < TJkmB12.

The total number of intervals in our partition is then

If t denotes the length of an interval in our collection 0, then from Theorem 3.3.1. we have

> S .. t B/k
4 for some positive constant S.

We can therefore write

(See Properties 3 and 5 of Section 3.3).

For an interval TEO of length t, let er be defined by

1/(1-e
r

) = (1 + BI(2tF))1/(6k+1),

so we assign larger relative errors to smaller intervals.

Now we are ready to total the number of arithmetic progressions we have of length k coming

from H to O. This number cannot exceed

+ ~ 1Jkmt(1+8I(2Ft)) ~ 1Jkm(812) + TJkm + 1Jkm (812)

TeD

In order to obtain a lower bound we use the elementary inequality

Then we have

Double Hashing, Page 76

We must avoid, however, situations where 812tF comes too close to 1. We stipulate

therefore that we will not attempt to maintain a lower bound during the pun-back process for

an interval T, unless tF > 8. Thus we win ignore lower bounds for intervals T much smaller

than the average (the average length of an interval is 1/F). As our intervals form sequences

with Jengths in geometric progressions, we expect that the total fength of the uncontroUed

intervals (we include in thi.s the LM j and RM j) will be small. First of all it is easy to see that if

8 is smaU enough then none of the intervals Ni will violate the condition tF> 8. In each

sequence the totaf length of the intervals violating our condition is certainty less than
00

(8/F) ~ ({k-l)/k)i = &k/F

1=0

for a total contribution not exceeding

But we have F2::2fq>k_l>4kq>k_1 by (Hi), and so the total length of the uncontrolled intervals

does not exceed 012. Therefore the total of progressions we are counting is at least

~ k k k k
£.l 11 mt(1-(812tF}) ~ (1-(0/2»11 mt - ." m{012) = 11 m{1-8).

TED

tF>8

In summary, the fotat of our progressions is

as we had hoped to prove. (Note again 1 +8< 1/(1-8».

This, of course,. is a useful result only if we can show that the sum Q+W of the excluding

probabilities is small. To prove this we will need to restrict our." and k. We will assume that

where p is any s.mall positive constant. We now show that each term in Q or W is

exponentially small in m. We wilt determine an upper bound for the largest term, which

Double Hashing, Page 77

certainly occurs in W. A candidate term has the form

(_ ()(1+)(6i+6)/(6k+1) i+1 t)
exp <p Er -Er " m.

We first treat the 1 - Er case. For any interval T we are attempting to control we have

1-e
r

> (1-(812tF»1/(6k+1) > (1/2)1/(6k+1).

Thus the absolute value of the above exponent is at least

For the case 1 +Er we have

(1 +(812tF»(6i+6)/(6k+1)'lJi+1tm ~ (1 +(812tF»(6i+6)/(6k+6) 'lJi+1 t m

> . (812F)(6i+6)/(6k+6) t6(k-i)/(6k+6) 'lJi+1 m

> (812F) t6(k-i)/(6k+6) "i+1 m,

as certainly we can take 8< 1. Let now t have its smallest value S'lJk8/k4 (from (v» and

obtain a lower bound of

Thus the largest term does not exceed

2 4 k+1 exp(-<p(Er)(S8 12Fk)'lJ m).

Finally for <peEr) we have

by Theorem 3.2.1; note also that (1 +x)log(1 +x)-x is an increasing function of x. Now

Er = 1 - (1 + (812tF»-1/(6k+1) >

1 - (1 + (8k/2F»-1/(6k+1).

Double Hashing, Page 78

Since 1-(1 +x) -1 /p > c(x/p) if Q<x<p< 1, where p is an integer and c a constant depending

on p, we can conclude

Er>(c16IF),

for some positive constant c1, jf 6 is small -- say 6< 1 12. Therefore

for some other positive constant c2• Combining all of the above we see that there exists a

positive constant c3 such that no term of Q or W exceeds

4 k+1 4 3
exp(-c36 11 m/k F).

From the definition of I we see that

I = O(k
2
'og(1/1})+klogk+klog(1/6», F = O(k

2
/)

where the implied constants are absolute. We can finally find an absolute positive constant

C that incorporates also the effect of these O-constants and that of adding all the terms in Q

and W. For that constant C we can then conclude that

4 k+1 16 3 Q+W < exp(-C8 1} m/[k (klog 1 11}+logk+log1 16)]).

We are now basically done. It only remains to check that the assumptions we used were

justified. It is very easy to check that assumption (i) is satisfied for. the values of Er we have

chosen. For our repeated applications of the set intersection theorem we need to know that

Now

t/(1-Er) = t(1 +(612tF» 1
/(6k+1) < t (1 + 6/(2(6k+ 1)Ft»

< t + 61(2(6k+ 1)F) < 1 since t< 1 12, 6< 1.

k 6k+1 .
Now note that when we choose Er we can assume that." 1(1-Er) < t, for certainly we

Double Hashing, Page 79

cannot have more progressions than the length of T. Thus to check .,,/(1-£r)4 < 1 we look at

.,,6k+1 / (1_£r)4(6k+1). Now

4 .
Thus .,,/(1-£r) < 1 is also proved. This completes the argument for the following result:

THEOREM 3.4.1. If p., 60 are positive constants while .", 6, and k can vary with m so that

o < ." < 1,

1 < k = O(log m),
."km 2:: m",
o < 8 < 60,

then there exists a constant C depending at most on 60 such that as m -+ 00, except with

probability not exceeding
exp(-C64 ."k+ 1 m/[k 16(klog1 /.,,+Iogk+log 1 /6)3]),

a selection H of ."m points in Zm will have

."km(1 ±8)

arithmetic progressions of length k coming from H to O. .

THEOREM 3.4.2. If T is a type of length k and I hits, then Theorem 3.4.1 applies to the
enumeration of progressions of type T coming to 0, if throughout we replace ."k by .,,'(1-."t- l

•

That is under the assumption that
I k-I " .,,(1-.,,) m 2:: m ,

we can conclude that the number of arithmetic progressions of type T coming from H to 0

will be
.,,'(1-.,,)k-'m(1 ±8),

except with probability not exceeding
exp(-C64 ."k+1 (1-.")k-I+1 m/[k 16(klog(." -1 (1-.,,) -1)+logk+log1 /6)3]).

Proof. In the argument above intersect with H or the complement of it according to whether

the type specifies a hit or a miss .•

CORROLARY 3.4.1. The conclusion of Theorem 3.4.1 or Theorem 3.4.2 can be made to

apply simultaneously for all progressions coming to all points x in Zm and all types not

exceeding a certain length ko = O(log m).

Double Hashing, Page 80

Proof. Simply took at the sum of all the excluding. probabilities. The total number of

conditions we are imposing is a polynomial in m (e.g., <number of types) x <number of

pOints». Now use the fact that P(m)exp(-C1m"} < exp(-C2m"> as m ~ 00 if P denotes a

polynomial and C2<C1" •

This fast corollary illustrates the power of the exponentially small bounds.

COROLLARY 3.4.2. Under the conditions of Theorem 3.4.1, a selection H of 'llm points in Zm

will have no more than

2
2'll m

pairs (x,y), x,yEH, of paints in the specified ratio a:b, 1 <a,b<k, except with probability not

exceeding

k+1 16 3 exp(-Cll m/[k (klog1/'ll+logk)]).

Proof. Assume the ratio a:b is in lowest terms. Then apply the argument of this section

while only conSidering TaT and T b T in the pull-back process for each interval T. I

The following generalization of Corollary 3.4.2 is needed in Section 3.8. The arbitrary

notation used below is chosen to correspond to the context of that section.

THEOREM 3.4.4. Let A denote a fixed subset of Zm of cardinality at least m 1/4+82. Let 'll =
m -1/4-

8
1, where ~1' ~2 are small positive constants satisfying ~2) ~1' Then there exists a

small positive constant ~ such that: if a subset H of 11m elements is randomly chosen in Zm'

then the number of pairs of points (u,v) in H with vEA, and u, v in the prespecified ratio a:b,
1 ~a<b<k=O(log m), is O('ll/Alm -8), except with probability that does not exceed exp(-m8).

Proof. Let ~3 be such that ~1 < ~3 < ~2' Consider the pull-back process for a certain interval

T of the partition. Let Sb denote as before the b-th multiples of pOints of T. Then Sb is a

subset of T b T. Let x denote the number of pOints of A in Sb' We distinguish two cases.

Double Hashing, Page 81

1/4+83 ' Case 1: x > m . We will apply the pull-back argument to only TbT and TaT. We start by

a weak bound on the intersection of A and H in Sb' What is the probability that this

intersection will exceed xm-8 in size, where 8 is positive but less than 81, 83-81, and 82-83 ?

We use our Theorem 3.2.1. We have

a = x/m, /:J=TJ,
1 +f = m -8 /TJ 2: m 1/4

Then

for some positive constant C. Thus the probability under consideration is exponentially small,

and we may assume that our intersection does not exceed xm-8
, We now pull back this

intersection to TaT, thereby defining Sa' This is a disjoint set from Sb' and applying once

more our intersection theorem with E this time small, say E= 1/2, we immediately conclude

that, except with probability not exceeding

the number of pairs (u,v) with uEHnTa T, vEHnAnT b T, u,v in the ratio a:b, is no greater than

-8
O(TJxm).

Case 2: x < m 1/4+83. We now simply don't bother with the T b T step of the above argument.

Just pull back the entire AnSb to TaT in order to obtain Sa' Thus Sa has size < m 1/4+83, and

since we are interested in maximizing the number of pairs (u,v), we will in fact assume that

Sa has size m 1/4+83, Applying Theorem 3.2.1. to Sa and H we obtain that, except with

probability not exceeding

83-81 8 exp(-C'xfJ) < exp(-C'm) < exp(-m),

the total of pairs (u,v) with uEHnT aT, vEAnT b T (and a fortiori those for which vEAnHnT aT)

and u, v in the ratio a:b, is no greater than

83-81 O(XTJ) = O(m).

Double Hashing, Page 82

Now we sum the contributions over all T. The contributions from Case 1 are O("'(~Tx)m-8).
Since the mapping z -+ bz is 1-1, we must have LrX < IAI. Thus the total from case 1 is

O(,.,IAlm -8), which is at least Lmc52-c5rc5, by our assumption about the size of A. By taking L

sufficiently large (say L = Cklog m,for some constant C) we can make the contribution of the
fixpoint intervals negligible compared to this, say no more than mc53- c51 . Also the contributions

of Case 2 are no more than O(k3(log m)mc53- c51) (just let all T's have a Case 2 contribution),

and that too is negligible.

By choosing the 8 in the statement of the theorem slightly smaller than the 8 we have used

in the proof, the result follows .•

Clearly the results of the last Lemma and Theorem can also be generalized so that they

apply to all points and all ratios and types up to some maximum length ko = O(log m)

simultaneously.

In a certain light what we have shown is that the occurrence of one arithmetic progression of

length k in H influences very little the occurrence of another such progression. These

progressions are nearly independent in the sense that they give rise to a distribution

analogous to that of independent Bernoulli trials. This is why the results of this section could

not have been obtained by variance arguments alone. It is interesting that for k=3 a similar

result can be proved using the exponential sums technique of analytic number theory (see

Appendix). Unfortunately that proof does not appear to generalize to k)3.

3.5. Double Hashing

A common technique for collision resolution in hashing is known by the name of double

hashing. We described the technique briefly in Section 1.2. Here we review some of the

definitions, before we embark on the analysis of this technique in the following sections.

Our hash table consists of records, each uniquely identified by a key K. Entries in the table

are either occupied or empty. The letters h,g will denote hash-functions, Le., mappings from

the set of all possible keys to an appropriate subset of the integers {O,J , ... ,m-1}, where m is

the table size. We will ignore the complication of detecting a full table. With these

assumptions the double hashing algorithm is (as in [Knuth2]):

Double Hashing, Page 83

DOUBLE HASHING: Assume m is a prime integer. Let h have range {O,1 , ... ,m-1} and 9 have

range {1 ,2, ... ,m-1}.

01. [First hash.] Set i .. h(K).

02. [First probe.] If TABLE[i] is empty, go to 06. Otherwise if KEY[i] = K, the algorithm

terminates successfully.

03. [Second hash.] Set c .. g(K).

04. [Advance to next.] Set i .. i-c; if now i(O, set i .. i+m.

05. [Compare.] If TABLE[i] is empty, go to 06. Otherwise if KEY[i] = K, the algorithm

terminates successfully. Otherwise go back to 04.

06. [Insert.] Insert new record at TABLE[i].

The primality of m is essential in order to ensure that in step 04 all table positions are

generated before a repetition occurs.

A way to measure the performance of a hashing algorithm is by the average number of

probes required to insert a new element into the table. Of course this average depends on

how full the table is. If the table contains n elements, then this average is denoted by C'n'

Since we speak of averages we need to define the probability distribution involved. The

assumption we make, which is both natural from a theoretical viewpoint and quite justified in

practice, is that h,g both select each of their allowed values with equal probability,

independently of their values on other keys.

If we let m get large, with n = am, a a fixed constant (1, it has been known from simulations

that

C'n '" 1/(1-a)

with agreement to 1 or 2 tenths of a percent even for m""1 000 (see [Bell-Kam], [Brent]). In

the following sections we will prove that

C'am = 1/(1-a) + 0(1) as m -+ 00,

Double Hashing, Page 84

provided a<ao' where ao is some absolute constant (whose value lies between 114 and

1/3). Thus we see that for 0< a<ao double hashing is asymptotically equivalent to uniform

hashing, a technique we described and analyzed in Section 1.5.

This equivalence is somewhat surpnsmg, since we would expect double hashing to do

substantially worse than uniform hashing. The reason for this is that all probes in the case of

uniform hashing are independent, while this is not so for double hashing. In other words,

double hashing exhibits clustering; the probability that two keys will follow the same path is
O(11m2) not "zero" (O{ 11m!» as for uniform hashing. The bad configurations for double

hashing are sets of occupied positions containing an excessive number of arithmetic

progressions. Such sets will tend to grow into sets with even more arithmetic progressions,

as a bit of thought will show. So it is by no means true that all sets of n occupied entries

are equally likely under double hashing. The sets with an abnormally high number of

arithmetic progressions are those that will make C'n large and are also exactly those most

likely to be obtained by double hashing. The effect of our results is to show that the

clustering effect is negligible in the limit.

We will use the terms entry, cell, slot, and point interchangeably to denote a position of the

table. The word element or the adjective occupied will be used to distinguish the occupied

positions. If we consider an arithmetic progression x, x+d, x+2d, ... , x+kd (where we

interpret all algebraic operations mod m), then d will be called its distance and k its length.

We will speak of it as an arithmetic progression coming to x. If x+d, x+2d, ... ,x+kd all lie in

some set S, then we will speak of it as an arithmetic progression from S. Given a point x

and a set S~ to, 1 , ... ,m-1} of cardinality am, the expected number of arithmetic progressions
of length k coming to x from S is approximately akm, when we consider all such sets equally

likely. This is so because there are (m-1) choices for the distance d and for each such

progression we have a probability of

k C(m-k,am-k)/C(m,am) ,.. a

of belonging to S. In Section 3.5 we saw that except for a fraction of selections of S which

is exponentially small, the number of arithmetic progressions of length k coming from S to x
will be in the range akm(1 ±6), for any small postive 8. This result gives us hope to prove

what we want, as it shows that sets with an abnormally high number of arithmetic

progressions are exceedingly rare.

Double Hashing, Page 85

3.6. The Seed Set and the Final Argument.

In this section we prove that double hashing is asymptotically equivalent to uniform hashing

for O<a~ao by using the results of the following two sections. Here ao denotes an absolute

constant, 1 14<ao< 1 13. Let us prestate here Corollary 3.8.1, which is the result we will need:

COROLLARY 3.8.1. Given any a,p such that O<p<a~ao' there exists a constant Ca and an

initial configuration of pm occupied positions such that for any small positive constant (J, if

we add (a-/J)m points to the table using the double hashing process then, except with

probability less than exp(-Com 80), we will arrive at a configuration of am occupied elements

such that for each point x of the table and for each length k, 2 <k~k' a = C a log m the number
k

of arithmetic progressions of length k coming to x from the occupied points is a m(1 ±!ta,k)'

Here the !!'a.k denote relative errors satisfying

k' a

(a) ~ .!a,ka
k

< (J,

k=2

and
k' m 1/2-8' (b) a

< a (1 +!!.a,k')m
a

where 8' and 80 are small positive constnats, and Co is a constant depending on (J only.

What is the average number of comparisons we need in order to find an empty slot in the

resulting configuration, using double hashing? (Recall that, as in Chapter 1, we count the

final probe into an empty slot as a comparison). As we make such a search, let p I denote the

conditional probability that we will make at least (1+ 1) comparisons before we find an empty

slot, O</(m, given that we hit at least one of the occupied pos·itions. Thus we must on the

first probe (h(K» select one position among the set S of occupied positions, and then select

a distance (g(K» that leads to an arithmetic progression of length (at least) I among

elements of S. The average number of comparisons for an unsuccessful search will then be

m-1

(i) 1 + a~
1=0

We first dispose of the arithmetic progressions of length greater than k' a' Let us consider an

Double Hashing, Page 86

occupied point xES (all such points are equivalent for the computation below). We claim

that there are no arithmetic progressions coming from S to x of length exceeding

(m 1/2-8'+1)k'a' This is so, since if we had such a progression, then we would have more

than m 1/2-8' progressions of length k'a coming to x from S. (If d is the distance of the

original progression, then d, 2d, 3d, ... , (m 1/2-8'+1)d would all be distances of progressions

of length k'a that are subsets of the long progression). But this contradicts condition (b) of
1/2-8'

the above corollary. Now for lengths between k'a and k'a(m +1), we can have at most

as many arithmetic progressions as we have at k'a' The total contribution of these to (i) is

1/2-8'
k'a(m +1)

~ 1/2-8' X

a~ =: a ___.m..----J
choices for x ~ ~ontribution of

all distances
in question

=
-28'

O(k' am) = o(1) as m-+ oo,
since k'a = O(logm).

1/m(m-1)

71
probability of choosing
a specific x and a
specific distance

Here we have ignored the contribution of the excluded configurations, but these can

contribute at most a total of

maximum number of probes for any search to the mean, and so from now on they will be

ignored for good. ' For the shorter k we see that our corollary implies

and certainly Po = 1, P1 = a. So the contribution of short lengths to ~Pk is

k'a

1 + a + ~ a '(1 ±O a,/)

1=2

= ± (J = 1 1 (1 - a) ± (J + o(1),

1=0

Double Hashing, Page 87

where we have used conclusion (a) of the corollary and the fact that

00

= 0(1} as m-+oo

since k'a -+ 00 as m -+ 00. Combining all of our conclusions, we have proved that the

average number of comparisons needed to find an empty position in a table filled up to load

factor a as described in the corollary is

1 + al(1-a} ± a.D + 0(1} =

(ii) 1/(1-a) ± aD + 0(1}.

Unfortunately we are not done, because we did not start from an empty tab/e. The double

hashing algorithm was applied only after an initial seed of 13m points was already

strategically placed in the table.

In order to complete our argument, we need to investigate the effect of these initial 13m

points. We have added (a-{3)m keys using the double hashing process. What if we had

added these same (a-{3)m keys to an initially empty table using double hashing? Let us

select a specific hash sequence (h(K1),g(K1 », (h(K2)),g(K2)), ... and so on. Let S denote the

set obtained by adding pOints with this sequence to the initial pm set, and S' the

corresponding set obtained by adding points using the same hash sequence to an initially

empty table. Then we claim S'~S. Consider the first pOint K in our sequence, whose

insertion would cause an alleged violation of this condition. Either our key K ends up in the

same position in both S' and S, in which case there can be no violation, or our key continues

on a longer search path in S than it did in S'. But then the location where K ends up in S'

must have already been occupied in S, and so again no violation is possible. The above

remark implies that the average number of probes to find an empty slot with configuration S

is an upper bound for C' (a-p)m' i.e.,

C'(a-{3)m < 1 I(1-a) + aD + o(1),

or

C'am ~ 1 I(1-a-p) + (a+p)D + o(1),

by a simple change of variable. (Assume {3 is so small that a+p< 1.)

Next we get a lower bound for C'am' For this paragraph only Op will mean 0 with reference

Double Hashing, Page 88

to fJ -+ O. We just saw that if we start with fJm points rather than an empty table, we can

only do worse. But how much worse? Again let us fix our attention to the particular

hash-sequence on hand (h(K1),g(K1», (h(K2),g(K2» ... etc. In the set difference 8-8' we

have fJm points. Now suppose we are at the final configuration 8 and let us look at an

arithmetic progression of length k of occupied cells in 8 coming to x. If this progression

contains at least one pOint in 8-8', we shall say that it is destroyed. (This means that it

contributed to the the computation of PI for a but will not contribute to the one for a-fJ). No

pOint in 8-8' can destroy more than k such progressions, so the total number of

progressions of length k coming to x that is destroyed is bounded by kfJm. Of course we

can never destroy more arithmetic progressions than there are, which is akm(1 +,{la.k)' Now

let ko = fog{ 1 I fJ)/log{ 1 I a). Then the number of progressions coming to x of length greater

or equal to ko that can possibly be destroyed is

m-1

~ k k
a m{ 1 +!ta,k) = O{ a am) = O(fJm),

where we estimated the sum as we estimated sum (i) (using also the obvious fact that the

errors !ta,k are bounded for fixed k, as m -+ 00). From 1 to ko we can destroy at most

2 2
ko fJm = OfJ(fJ log (1//J)m)

arithmetic progressions. Thus the total of destroyed progressions coming to x is

2
OfJ{fJ log (1 I/J)m),

and we have shown

2
C'am > 1/{1-a-fJ) - (a+fJ)8 - OfJ<fJ log (1/fJ» + 0(1)

by arguing as in the previous paragraph.

To summarize, we have

2
1/{1-a-fJ) - (a+fJ)O - OfJ{fJ log (1/fJ» + 0(1) < C'am

Double Hashing, Page 89

< 1 I(1-a-/3) + (a+/3)(J + o(1).

Since (J, fJ can be taken to be arbitrarily small, we have proved.

THEOREM 3.6.1. The average number of comparisons needed to find an empty slot with

double hashing in a table of size m, filled up to load factoi a, a<ao' is

C'am = 1/(1-a) + 0(1) as m -+ 00.

3.7. The Lattice Flows and the Extension Process.

Let x be a point of the table, and let T be a type of length k with h hits and k-h misses. If ym

points of the table are occupied, 0< y< 1, then the expected number of arithmetic
progressions of type T coming to x is yh(1_y)k-hm. In this and the following section we

show that if we start with a configuration of pm occupied pOints in which every point has

nearly the expected number of arithmetic progressions of every type and grow this table to

am elements using the double hashing process, then if we only exclude an exponentially

small fraction of possibilities, we can be sure that the resulting configuration of am points

will also have nearly the expected number of arithmetic progressions of every type coming

to every point.

To illustrate the argument we first discuss how we can prove such a statement if the

additional (a-p)m elements were randomly inserted. We add the new points in groups of 1Jm

at a time, where 1J is very small compared to a or /l Suppose we currently have ym

elements in the table and are about to add 1Jm new ones. Fix a point x of the table and

consider the arithmetic progressions of length k coming to x. The various types to which

these progressions may belong form a boolean lattice, as illustrated by Figure 3.7.1.

As the new 1Jm points are added, there will be flows upwards in this lattice, that is, some

arithmetic progressions will shift into types with more hits. For example, the first point of a

progression of type (001) may become occupied by one of the 1Jm points, whereas the

second may stay empty, thus causing the progression to shift into type (101). In order to

estimate the magnitude of these inter-type flows we need to introduce some notation.

Double Hashing, Page 90

THE LATTICE OF TYPES OF ARITHMETIC PROGRESSIONS

OF A GIVEN LENGTH COMING TO A POINT

arrows indicate

inter-type flows

Figure 3.7.1.

k = 3

~ --..

"1" denotes a hit
"0" denotes a miss

Double Hashing, Page 91

DEFINITION 3.7.1. Let x be a point of the table, l' a type of length k, i an integer 1 <i <k, and

r a configuration of I'm occupied positions; then by S(i,1',x,r) we will denote the set of the

i-th points of the arithmetic progressions of type l' coming to x. We also introduce the

density

0'(1',X,r) = IS(i,1' ,x,r)l/m,

which is clearly independent of (since m is prime).

Throughout the arguments that follow we will be dealing with inequalities on the 0'(1',X,r). We

introduce the symbol 0'(1',1') to stand for any of O'(1',X,r), where x ranges over all points and r

over all non-excluded configurations of I'm occupied pOSitions. Thus when we write

0'(1',1') = A(1±11),

we mean A(1-11) < O'(1',X,r) < A/(1-11) for all x and r as described above.

We now present a heuristic argument for the case of random insertions. Assume that our
configuration r is such that 0'(1',1') = I'h(1-1')k-h for all types 1', where h denotes the number

of hits and k-h the number of misses of the type. Thus S(i,1',x,f) = I'h(1-I')k-hm. What

happens to the arithmetic progressions of type l' coming to x as the new 1Jm points are

added? Consider a type 'T' which is l' except a hit of 'T in the i-th position is a miss in 1",

e.g., 'T = (101), 'T' = (001) in the example above. Then for each pOint of S(i,'T,x,r) that is hit

by the 1Jm, a progression may change from type 'T' to type 'T. This is illustrated in Figure

3.7.2.

There are (1-y)m unoccupied elements, of which we are choosing 1Jm, thus the probability of
selecting a pOint is 1J/(1-y). By hypothesis the size·of S(i,'T,x,f) is yh-1(1_y)k-h+1 m, and

therefore the expected size of its intersection with the 1Jm is 1Jyh-1 (1_y)k-hm. Since l' has h

hits, there are h possible positions at which such inflows into type 'T can occur (Le. there are
h-1 k-h

h possible feeder types 'T'), for a total of h1JY (1-y) m. Now some of the progresions of

type 'T can move out of this type. For each i that corresponds to a miss of 1', this will

happen whenever the set S(i,'T,x,f) is intersected by the 1Jm. We easily compute the size of
the outflow to be (k-h)1Jyh(1_y)k-h-1m. In the above we have. ignored the possibility that a

transition between two types can occur with more than one of the pOints of a progression

being hit by the 1Jm. Any flows arising out of such transitions, however, will have an

Double Hashing, Page 92

Figure 3.7.2.

THE MECHANISM OF INTER-TYPE FLOWS

l'
___ fIO w ___ ~> 1"

~-~- S(2,x;r,r)

out

x
oufflow from l'

~~--H

Double Hashing, Page 93

expected magnitude of O(k2
.,,2m) and since we take." to be very small, they can be ignored.

To total up, when the new ."m points have been added, the expected number of arithmetic

progressions of type l' coming to x will be

h k-h h-1 k-h h k-h-1
y (1-y) m+h."y (1-y) m-(k-h)."y (1-y) m

h k-h
Thus S(i,1',x,r) = (y+.,,) (1-y-1) on the average, as we had hoped. By iterating this

heuristic argument we see how we can grow from pm to am elements while having the

expected number of arithmetic progressions of any type at each point at each step.

In the next section we will show how to carry out this argument rigorously. For the

remainder of the current section we confine ourselves to some definitions and general

remarks. We shall use the term the extension process for this process of building up the

table we are describing. This process consists of steps of adding 1)m pOints at a time.

During each step, given any two types of progressions coming to a point x, there may be

transitions of actual progressions from one type to the other. These inter-type transitions

will be called flows. For each type we will have a certain inflow and outflow of progressions

from it. Naturally we cannot assume that a type will have exactly the expected number of

progressions, as we have done in the heuristic argument above. We introduce relative

errors 8 Y,T on this expected value that describe the deviation we are willing to allow. In

other words, when we are at load factor y, we assume that for each paint x and each type"

of length k (k not exceeding a certain maximum) and h hits, we will have

h k-h
y (1-y) m(1±Oy,k)

arithmetic progressions of type l' coming to x. Here we have already adopted the

convention that we will follow in the actual argument and suppressed the dependency of ° Y,T

on anything but the length k of 1'. We will find that the errors 0y,k grow faster for larger k,

but if we compute the total number of arithmetic progressions coming to x of types

consisting entirely of hits, then the relative error on this total we will be able to make as

small as we please. Now double hashing chooses each of the empty points with probability

proportional to the number of arithmetic progressions coming from the occupied points to

that paint. The above remark then implies that during the current step every empty pOSition

is nearly equally likely to be filled. So we are not too far from the random situation. But

how can we be sure that we will maintain the same good situation during the next step?

Double Hashing, Page 94

Here we invoke Theorem 3.2.1 to assure that all intersections between the 11m points and the

various sets S(i,T,x,r) of Definition 3.7.1 are nearly the same size. In doing this we exclude

an exponentially small fraction of choices of the 11m points, while increasing the relative

errors (J y,k to (J~+'1,k for the next step. We will speak of using Theorem 3.2.1 for controlling

the intersections, and therefore the flows. In order to keep the error propagation equations

for (J y,k relatively clean, we will allow certain additional absolute errors as well (the

"residual" progressions of the next section). During any step, if there is a number of

progressions flowing between two types that is allowed by our control but cannot be

accounted for in the relative errors we allow, this number we will speak of as an excessive

flow. The gist of the argument then is that by excluding an exponentially small fraction of

possibilities, we maintain at each step every empty pOSition nearly equally likely to be filled.

We never give clustering a chance to build up a really bad configuration.

We now make a number of remarks that the reader should keep in mind while reading the

next section.

Remark 1. The types that ultimately play a role in double hashing are those consisting

entirely of hits. Because, however, the population of types changes by inter-type flows, we

have to attempt to control all types at once.

Remark 2. Suppose we wish to maximize the number of progressions in a type T consisting

of k hits. During each step the significant inflows into T are those from types with k-1 hits.

Obviously we should maximize these inflows. Now these inflows are also outflows from the

"feeder" types one step below in the lattice. In order to maximize those same inflows during

the next step, we want to maximize the growth of the feeder types during the current step.

But these types have their outflows already chosen, so the best we can do is to maximize

the inflows into them. An inductive extension of this argument shows that all flows in the

lattice should take their maximum allowed value during every step, if we are interested in

maximizing the growth at the apex of the lattice. Similarly if we wish to minimize this growth,

all flows should be minimized. The point made here is important and somewhat subtle, and

the reader should dwell on it for a moment. Another way to see the pOint is this. Consider

one of the sets S corresponding to one of the feeder types. At the current step a fraction P1

of S will flow, where P1 is allowed to vary within certain limits. At the next step a fraction P2

of the part of S that is left will flow, and so on, say up to p". Then it is simple to see that the

total fraction of S that has flowed is

Double Hashing, Page 95

1

i=1

and this expression is maximized when all of the Pi are maximized. The intuitive

interpretation of this is that if we wish to maximize the total flow between two types, we

should never trade the certainty of a specific transition in the current step for the probability

of that same transition in some future step.

Remark 3. If we are interested in maximizing the flows, it will only hurt our upper bound to

make any of the sets S of Definition 3.7.1. that partake in the controlled intersections larger

than it really is.

Remark 4. Since we are dealing with non-negative quantities, a relative error smaller than -1

clearly does not make sense. We do, however, allow such fictitiously large negative errors

in the argument of the next section, since they can only make our lower bounds worse and

they avoid consideration of special cases.

Remark 5. If P(m) denotes any polynomial in m, C, 81, 82 constants with C>O, 82 >81)0, then

for m sufficiently large

Remark 6. let 8 denote an arbitrarily small positive number and let t/!(m) be a quantity which

is o(1) as m -+ 00. Then we will say that t/! can be incorporated in 8 to mean that, given any

positive constant 8', for m sufficiently large we can assume that the sum 8+t/!(m) does not

exceed (Jf. We use this terminology on a number of occasions. This is justified because it

will be trivial to check that the sum of the t/!(m) over all instances of the terminology that

refer to the same 8 is o(1).

Remark 7. We will make some use of the 0,0 -notations. They always refer to m -+ 00, and

the implied constants are either absolute or depend at most on a, which is a constant of the

entire problem. In Corollary 3.8.1. we also use the notations ~, ~ with their usual heuristic

meaning. If the reader wishes to have an exact meaning, then he may take, in the context
where these occur, f ~ 9 to mean gm-~ < f< gm~, and f ~ 9 td mean f S gm -~, for some

small positive 8.

Double Hashing, Page 96

Remark 8. The reader should realize that the process of intertype flo.ws we have described

is only a model for what occurs in the real table. The model will be used to bound the

number of progressions we can actually have in the table. It need not be the case that the

flows we use in the estimations of the next section can actually be realized by some

sequence of insertions into the actual table.

3.8. The Propagation of Errors and the Impotence of Clustering

We will now carry out a precise estimation of the error propagation in the extension

process. We assume a,p are fixed constants, p small, O<p<a<l. In the course of the

computation we will find that we have to restrict a to be berow some absolute constant a o'

ao < 1. We take

and define

kp = [(3/4-82)/log(1/P)] logm

(i)

ka = [(1/2+83)/log(1/a)] logm k (so a am

where 80 , 81, 82, 83 , 84 are small positive constants such that

Our choice for 11 is a compromise between two conflicting requirements. On the one hand

we want to make 11 as large as possible so as to get the maximum benefit from the law of

large numbers and Theorem 3.2.1. On the other hand we want to take 11 sufficiently small so

that we can ignore the interactions of the 11m points among themselves.

Double Hashing, Page 97

During the extension process we need to maintain control over arithmetic progressions of

length ka since the argument of Section 3.6 depends heavily on our ability to push the
1f2

number of arithmetic progressions of length ka below some power less than m .

Unfortunately in the early stages of the extension process we are then out of luck. For

types '1' of length ka and many hits, the expected number of progressions of that type coming

to a point will be too small to either assert anything initially, or to control the intertype flows

by bounding the size of the intersections with the 11m points. To circumvent this

shortcoming we introduce a technical device. For each point x and for each type '1' of length
between kp and ka we introduce an initial maximum positive "error" of size Eo = m 1 /4+~2 in

the number of arithmetic progressions of type '1' coming to x. This error is in addition to the

regular relative errors discussed in Section 3.7. As we will see, it provides us with a way of

masking out the fact that we cannot control the size of the relative errors during the early

stages of the extension process. These additional progressions will of course flow among

the types like the normal ones we have already considered. We will call them the residual

progressions and will control their flows independently of the regular progressions.

We will ignore the outflow of residual progressions from any given type. Thus their number

can only grow and will never become less than Eo. By analogy with Definition 3.7.1. we

introduce the notations R(i,'1',x,r), p('1',X,r) to denote the corresponding quantities for the
residual progressions. Thus p{ '1',X,r) ;::: m-3/4

+l)1. If at any moment during the extension

process we have

O'('1',X,r) < p('1',x,f)

then we will not attempt to control the intersection of any of S(i,'T,x,r) with the 11m. Instead

we will control only S{i,'T,x,r) U R(i,'1',x,r), which has cardinality (O'('1',X,r)+p('T,x,r»m. We

also use the notation

r('T,X,r) = IR(i,'T,x,r)l.

If the intersection of the 11m with S(i,'1',x,r) was excessively large, then any excess we will

relabel as residual progressions for the receiving type. Thus we can guarantee that none of

the regular flows (i.e., flows of regular progressions) will be excessive, by allowing

sometimes the residual flows to be excessively large (by at most the same relative error).

The quantitative argument will be given in the proof of Theorem 3.8.1. Figure 3.8.1. attempts

to summarize this camouflaging with the residual progressions.

Double Hashing, Page 98

Figure 3.8.1. CAMOUFLAGING WITH THE RESIDUAL PROGRESSIONS

H

,
(. .)
\~ R)

~
Case 1: IRI < lSI

/~

f~:: :j:l' . \,... . .
, ---=-~...:..-

I
I
I , H

,
\ . o / ...

(0 • • •

(. . .

\

\, R

~

Case 2: IRI > lSI

Double Hashing, Page 99

DEFINITION 3.8.1. The generic variable Py wI! stand for any of p(T,X,r), the densities of the

residual progressions.

As we saw in the last section, it is our goal to perform the extension process so that at each

step all empty points are nearly equally likely to be filled. Since at each step we introduce

not one but 1Jm points all at once, we have to understand the interactions among the 1Jm

pOints themselves. It is possible that an initial fragment of the 1Jm pOints will be placed so

badly that it will greatly affect where the remaining of the 1Jm points will go. This, however,

can only occur if during an insertion one of the 1Jm points interacts heavily with those

previously inserted.

DEFINITION 3.8.2. Suppose we have a configuration r of ym occupied positions and are

inserting 1Jm additional points. An insertion of one of these points will be called bad if its

probe path (Le., the sequence of examined pOints before insertion)

(1) contains an initial segment of length at least ka consisting of positions of the ym

and at most one position occupied by one of the 1Jm points,

or

(2) contains (at least) two of the m pOints among its first ka (or fewer) steps.

An insertion which is not bad will be called good. We let by denote the total number of bad

insertions that have occurred when we reach a load factor of y.

Figure 3.8.2. illustrates the different cases of good and bad insertions.

What we will prove below is that the conditional probabilities that any two empty positions

will be filled, given that they are filled with good insertions, are nearly equal. We introduce

the quantity Xy to capture the relative error in the probabilities (recall 8y,1 =0).

DEFINITION 3.8.3. We let
ka

Xy =

k=2

Bad Insertions

Good Insertions

(1)

(2)

Double Hashing, Page 100

Probe Path

)k a ~
.,------------------------------~
.'.--"-"-----___ ~f"""!":.---------~

ym

~ k a 1----""\
~L---~~/~·'------~/'~----~

-"';- '---------~ _--y---/
ym ym ym

-.- 1J'fll

~ ka J~
(3) .. ~-------------~ .. ~

y
ym

1Jm

Figure 3.8.2- THE GOOD AND BAD INSERTIONS

Double Hashing, Page 101

We now have all the concepts we need to begin the quantitative argument.

THEOREM 3.8.1. Let a, P be positive constants such that O<p< a< ao. There exist absolute

positive constants s, 0 such that, given an arbitrarily small positive constant 0, there exist

positive constants iO' Co (tending to 0 as (J -+ 0) such that: if we begin the extension

process with a configuration of pm elements placed so that for each point x and type ". of

length less than or equal to ka we have the expected number of arithmetic progressions of

that ty~e coming to x within a relative error of iO and (for those ". of length at least kp) a

residual error of at most Eo= m 1/4+~2 progressions, then, except with probaiblity

exp(-CtJm~O) where 00 is a constant, 0<00<02-01 01' 02 as defined by TI, ka in (i), when we

reach a load factor y we will have

(a)

(b)

(c)

(d)

O «1 ') 50(ys/s) - 1
y,k - +10 e

s
Xy < Oy

P
m < E m(1/2 + 03)log[1 + 210g(1/{1-y»]/log(1/a)

y - 0

where 0y' k, Xy' Py' by are as given by Definitions 3.7.2, 3.8.3, 3.8.1, and 3.8.2, respectively.

Proof. We will prove assertions (a), (b), (c), and (d) by induction on the number of steps in

the extension process. Thus we will assume that they hold for y and prove them for y+1J.

For y=p all assertions are true trivially, except for (b) that requires that we take

itJ<8 pps(1-/J), as we certainly can. We will see how to choose the constants 0, s in the

course of the proof.

The proof is in two parts. First we examine the effect of the bad insertions, and second we

look at the propagation of the errors.

What is the probability of a bad insertion? Let us go back to Definition 3.8.2. An initial

segment of length at least ka will be entirely within the ym with probability O'("'o'y), where "'0

Double Hashing, Page 102

is the type of ka hits. Similarly, the probability of encountering one of the 11m points in this

segment is certainly bounded by kau('T 1 ,y), where 'T 1 denotes any type of length ka and ka-1

hits. Thus t'he probability of condition (1) of the definition being satisfied does not exceed

(iii)

We estimate the probability that condition (2) will be satisfied somewhat differently. We ask

how many pairs (h(k), g(k» are there that lead to a probe path satisfying (2). The probe

path is completely specified once we know the two 1}m poitns involved, and the positions of

the two points on the path, say they are the b-th and c-th pOints respectively. Since we can

take 1 <b<c<ka we have at most 112 ka 2 1}2 m2 distinct probe paths. Each candidate pair

(h(k),g(k» defines a distinct path. Since each pair occurs with probability 1 Im{m-1), we

have an overall probability (per insertion) of satisfying (2) that is bounded by ka 2112.

From assertion (a) we have
5(J(y5/s)k

(J k S (1 +i(J)e a_ 1 y, a

and since

ka = [(1/2+03) log m]/[log 11 a]

it follows that

5(J(y5/S)[[(1/2)+0]/(109 1/a)]
(J y,k

a
< (1 +i(J)m 3

which can be made <m85 by taking (J sufficiently small, where °5 is such that 0 < °5 < °3-0,

2°1-0. Thus the quantity specified in (iii) is less than or equal to m -1/2-86 for some °6>0,

and so is ka 21}2 as the reader can easily check. The residual progressions of the types

accounted for in (iii) have to be added in also, of course, but their number as given by (c) is

less than or equal to

m 1/4+02 m(1 12+03)log[1 +310g(1 1(1-y»]/log(1 la)

m

which is less than m -1/2-
8

6 for ysa<ao as can be easily checked. We will encounter this

ao later also, so we will not dwell on its value any longer here. Thus we have proved

Double Hashing, Page 103

Claim 1. The probability of a bad insertion is never greater than m-
1
/
2
-8 for fJ<y~a<ao'

By Theorem 3.2.1 (or its equivalent for Bernoulli trials) the probability that we will have more
than Dm-1/2-811m = DlIm 1/2-8 bad insertions, for some constant 0 slightly larger than 1, is

less than exp(-C(D-1)21Jm 1/2-8) < exp(-m 1/4-28-81) and thus this event can be excluded.

Therefore we can assert that at load factor Y+lI the total of bad insertions will not exceed

1/2-8
D(Y+1J)m ,

as we desire in order to prove (d). Although we cannot say anything about where the badly

inserted points will go, their number is so small that, as we shall see, they cannot destroy

the final assertion of regularity of our configuration.

We next show that any two empty positions have nearly equal probabilities of being filled

with good insertions. Under double hashing the probability that a given empty position will

be filled is proportional to the number of arithmetic progressions coming to that position

from the occupied positions. Recall also that in a good insertion, the probe path is at most ka

long and in this path at most one of the new 11m points can occur. Let x be any empty point.

The number of regular (Le. non-residual) arithmetic progressions of length k, OSkSka'

coming to x from the occupied pOints is by assumption yk(1 ±8 y,k}m, for a total of

ka

~ yk(1 ±8y ,k)m ,

k=O

or the discrepancy over the expected value is in absolute value at most

ka

=
k=O

Each of the new 1Jm points can occur in the path, and each such point can introduce at most

k additional progressions of length k coming to x (by being the 1 st, 2nd, ... ,k-th point of the

progression), for a total of

ka

(iv) ~k
k=O

Double Hashing, Page 104

The number of residual progressions coming to x is at most

(v)

ka

~ pym

k=kp

k
1/2-8

am

for a<ao' Finally the previously badly inserted points can introduce each at most k

progressions of length k, for a total as in (iv) of at most

ka

(vi) ~k
k=O

k 20 1/2-8
a 1m

progressions. We only demand in (b) that Xy can be made as small as any prescribed

constant, and so the combined effect of (iv), (v), and (vi) can be accounted for by asserting

that the deviation of the number of the arithmetic progressions coming to x from the

expected value does not exceed 2Xym. Thus we have proved

Claim 2. The probability that at a certain moment any specified empty point will be filled

with a good insertion during the y to y+." step is «1±2Xy)/(1-y»m, independently of where

any previously inserted elements among the ."m were located.

(We have written 2Xy instead of 2(1-y)Xy so as to incorporate the error that the (1-1) in the

denominator can really vary between (1-y) and (1-y-.,,).) The unavoidable bad insertions

and the above small deviation from randomness is the way that clustering manifests itself in

this argument. When we insert the new 11m points, the probability that an empty position will

be filled is

(vii) 11· = .,,(1 ±2Xy)/(1-y).

This ignores the effect of the bad insertions, but their contribution can easily be incorporated

in the over-generous factor of 2 introduced above, since their number is O(m 1/2-~) which is
3/4-81

much less than 11m = m .

We are now ready to begin excluding those choices of the ."m points that would cause any

of the inter-type lattice flows to be excessively different from the expected value. We do

Double Hashing, Page 105

this Simultaneously for the lattices corresponding to all k, 2<k:5ka (k=0,1 cannot vary from

the average) and all points x. We control the flows by allowing a maximum relative error of

80 f~r the intersections of our 1)m pOints with each of the sets S(i,T,x,r) of Definition 3.7.1,

where r denotes our current configuration of ym occupied positions. By Theorem 3.2.1 we

can do this while excluding only an exponentially small fraction of the choices of the 11m

pOints as long as the expected size of the intersection is not too small. At the beginning of

this section we introduced the residual progressions as a device for handling the small

S(i,T,x,r). For each i, T, and x we demand that the intersections of both S(i,T,X,r) and

R(i,T,x,r) with the 1Jm are within (1 ±80) of what we expect if IS(i,T,x,r)l ;?: IR(i,T,x,f)l,

otherwise we only demand this of the (disjoint) union S(i,T,x,r) U R(i,T,x,f). In the latter

case the intersection will have up to (O'(T,x,f)+p(T,X, r)) 1J*(1 +8p)m points. By relabelling

some regular progressions as residual we can then still claim that the flow corresponding to

the intersection of S(i,T,x,r) with the 1Jm is 1J* 0'(T,X, r) (1 ±80)m, provided we allow the flow

corresponding to R(i,T,x,r) to get as large as p(T,X,r) 1J*(1 +80)m. Furthermore now no set

whose intersection with the m we desire to control has cardinality less than EO=m 1 /4+~2.

Theorem 3.2.1 then implies

Claim 3. During the step from load factor y to load factor y+1), if we exclude a fraction of

choices of the 1Jm points that does not exceed exp(-C(Jm~4) (for 84 as in (ii)), then we can

assume that the intersection of the 1Jm points with each of S(i,T,x,r) (T a type of length at

most ka) will have cardinality 0'(T,x,f) 1J*(1 ±80)m, and the intersection of the 1Jm with each

of R(i,'T,x,f) will not be larger than p(T,X,r)1)*(1 +80)m.

We now compute the relative error 8y+
1J

,k in terms of 8y,k' Let T, the type we are now

considering, have length k and I hits; We saw in Section 3.7. that in order to maximize the

relative error for the type of k hits, we may assume that all inter-type flows are maximal. As

we will see momentarily, we can ignore any flows caused by progressions hit by more than

one of the 1Jm points. Thus the maximal number of progressions of type T we can have at

any point when we reach load factor (Y+1J) is

[y /(1-y)k-/(1 8) 11-1(1)k-I+1(1 8) *(1 8) + y,k + y -y + y,k 1J + 0

"" /f' I k-I / \ C-(k-/)y(1-y) (1+8y ,k)1J*(1+80)]m

inflow outflow L "+" since all already

there flows are maximal

Double Hashing, Page 106

Figure 3.8.3. illustrates the inflow and outflow of progressions from a type.

Ignoring the factor of m we can write the above expression as

This has to , k-'
equal (Y+1J)(l-Y-1J) (l+iJy+

1J
,k)' and so we get

Y'(1-y)k-1

1 + lJy+1J,k = ----------------------[1 + iJy,k + ['1Jly] (1 +8 y,kH 1 +2XyH 1 +(0)

{Y+1J)'(1-y-1J)k-1

-[(k-')1J/{ 1-y)](1 +8y,kH 1 +2XyH 1 +(0)].

Now

If we ignore the 1J2 terms, then we can rewrite the above as

The effect of the 1J2 terms can be incorporated in the constants 80 or X
Y

' and so these terms

can be justifiably ignored. We "maximize the error 8 + k by taking '=k above, so our final
(y 11.

error propagation equation becomes

Double Hashing, Page 107

Figure 3.8.3. THE INFLOW AND OUTFLOW OF PROGRESSIONS
FROM A TYPE

~ 7 miss miss

?~
r 7 7 \

miss x. • • • • • •
hit hit hit

/"~ ~ 0 y--•. -(..-1. 1-"--••.

/ \ l \~ / \

type is (1 0 0 1 1 0)

•

Double Hashing, Page 1 08

Now we have xy5:o*'l and we take 00 <Oy5, where s is a constant to be chosen below. For

6 sufficiently small we will have 00 <1 and so we can make the errors 6y+
fI

,k only larger by

writing

(x) 6y+1J,k

Going back through the above derivation and changing the signs of 6y+
71

,k' 6y,k' 60, and Xy

gives us the error propagation equation for the negative errors. (Now we want all flows to

be minimal.) We get the equivalent of (viii) for the absolute value of the error:

Since y<ao which we can take less than 1/2, we have y~1-y, and so we can conclude that

(ix) is valid for the absolute value of the negative errors as well. Thus equation (x) is

justified for the absolute value of both positive and negative errors.

We still have to estimate the size of the flows that involve more than one of the 1Jm points.

Let us look at an arithmetic progression of length k coming to x that changes type by

receiving two of the 1Jm pOints. Suppose these two points occupy pOsitions i and j of the

progression respectively, 1 <i<j~k. Let us fix the two types involved, which fixes i and j,

and then ask how many'progressions can flow between these two types. If the donating

type is T, then at most one such progression can flow for each pair (a,b) of the 1Jm pOints

, with the property that aES{i,T,x,r) and a and b are in a distance ratio i:j from x. If we allow

the 11m points to range over all m points, not just the remaining (1-y)m ones, we can only

increase the flow in question. But now we are exactly in the situation covered by Theorem

3.4.4. and thus we can assert that our flow, except with exponentially small probability, will

be O(11IS(i,T,x,r)lm -6). Summing over a/l possible choices of i and j we still get a total
2 1-2 k-I+2 1-6

possible inflow into the receiving type of O(ka y (1-y) 11m) only, where I denotes

the number of hits of the receiving type T'. A trivial extension of the above argument shows

Double Hashing, Page 1 09

that any flows into 'T' arising from types with 3 (or 4, etc.) fewer hits will not be any greater.

Thus the total magnitude of these flows combined will be o(y'(1-y)k-'1)m) and can therefore

be incorporated into the relative errors permitted in equation (ix). Our derivation of equation

(x) by ignoring type transitions which involve more than one of the Tlm points has been

justified.

We are finally at the point where we can push assertion (a) of our theorem through the

induction step. We would like to prove

and since (J can be taken arbitrarily small, this is

s-1 2 = (1 +(J y,k){ 1 +50y k1)+ O(k1) » - 1

again the O(k1)2) term is negligible compared to the 50y8-1 k1) terms, and can be incorporated

in the constant O. Thus we need

which is exactly what we have proved in (x).

Next we prove (b) and determine the constant s. It will be Simpler to let the sum

ka

Xy = ~ OY,kyk

k=2

Double Hashing, Page 110

go to infinity, which we are allowed to do, since this can only increase the bound for Xy' So

then substituting f) 'Y.k from (a) and· letting

we get

. 2 2A A 2
(1+IO)Y e 1(1-ye) - y 1(1-y)

. 2 2A A A 2 A A A = If}Y e 1(1-ye) + (e -1)y (1+e -ye)/(1-y)(1-ye).

For small f) we have e
A

""' 1, eA-1 Sf)(yS/s), and so if we take s so lage that

and if} so small that

then we will have

as desired. Note that s is independent of f) and y.

The last object of interest is the residual sets. How fast can they grow? Let r'Y (k,/) denote

p(T, y)m for T a type of length k and I hits. The change in the r 'Y's as we go from y to y+1J

load factor can be computed in a manner analogous to the above. The maximum flow into T

during the current step will be

Double Hashing, Page 111

We are not counting the outflows, so we obtain the recurrence relation

(k,/)
r.Y+fJ

(k,/) 2 I (k,/-1) 1(1-) = r.y + r.y fJ Y,

((k,/) _ E) rp - O.

O<I<k

(Here we see that types with more hits will grow faster than types with fewer, since they

have more types feeding into them. The same, of course, was true in our computation of the

relative errors, but there we decided to ignore this improvement. Because the residual sets

cause the argument to fail for large a, we want to do a beUer job of estimating their growth.)
Since all initial values are identical, it is clear from (xi) that r y (ka,ka) is the maximally growing

type. In what follows therefore we restrict ourselves to estimating its growth. Again, since fJ

is infinitesimal compared to I or r y' we can easily check that the solution to the above

difference equations (which we can think of as the system of differential equations

dr{k,/)/dy = 2/r(k,I-1)/(1-y), O::;/<k)

is of the form

Thus

and so

(k,I)
ry = EO (1 + 210g (1/(1-y» - 210g (1/{1-,B»)1

I
< EO {1 + 210g (1/(1-y»)).

< [](1 12+83)logm/log(1 I a)
EO 1 + 2log{ 1 I{ 1-y»

(1 12+83)log[1 +210g(1 I(1-y»]/log(1 I a)
= EO m ,

(
(1/2+83) 109[1+2109(1/{1-Y»]/IOg{1/a»)

Py ::; EOm 1m,

as (c) of Theorem 3.8.1 requires.

1/4+8 . k . k + 1
There are at most 111) = m 1 steps, at most m POints x, at most ~2<k<k 2 a < 2 a __ a

= 2m(1/2+83)IOQ2/10Q(1/a) distinct types and at most ka values for i in the context S(i,'T,x,f).

Thus the total number of excluded cases is a p01ynomial in m, and no case has probability

Double Hashing, Page 112

higher than exp(-ComB4). Thus as m gets large the total of the probabilities of the excluded

cases is less than exp(-ComBO), where 80 is as constrained in (ii).

This completes our proof of Theorem 3.8.1. I

COROLLARY 3.8.1. Given O<p< a<ao< 1, for any small positive constant fJ, there exists an

initial configuration of pm occupied paints, such that if we add (a-p)m additional pOints using

the double hashing process, then except with probability exp(-Com80), we will arrive at a

configuration of am occupied positions such that for each point x and for each length k,

2 <k <k' a' the number of arithmetic progressions coming to x of length k from the occupied

points will be a
k

(1 ±~a.k)' Here the ~a.k are relative errors satisfying

k' a
(a) ~ !l.a,ka k

~ fJ, and

k=2

(b) k')m ~
1/2-8' a a(1±fJ k' m -a, a

for some positive constants 80' 8'. (Notice that we have excluded any references to bad

insertions or residual progressions.)

Proof. This is a direct consequence of Theorem 3.8.1, except for a few items that we need

to check. First is the existence of a good initial configuration, the "seed" of the extension

process. We have to choose a configuration of pm points so that for each paint x and each

type l' of length k and I hits we have

progressions of type l' coming to x, with io' k, I restricted as in the theorem. Now if

P'(1-f3t-'m~m 1/4, then by Theorem 3.4.2., all configurations except for a fraction not
exceeding exp(-Cin 2m 1/5) of them will satisfy the above condition. If P'(1-p)k-'m ~ m 1/4,

then let 1'1 denote a shorter type which is an initial segment of 1', of length k1 and 11 hits,

such that P'1(1-{J)k1-/1 m ~ m1/4
. Then we can apply Corollary 3.4.2 to 1'1 and claim it has

at most O(m 1/4) progressions. Clearly l' cannot have more progressions than 1'1' so

Double Hashing, Page 113

therefore the excess of progressions ". can have is at most O(m
1
/4). Any such excessive

progressions we label as residual for out type".. This is consistent with the assumptions of

Theorem 3.8.1. that allow initial residual errors as large as m 1/4+62 per type. Therefore all

configurations of the pm points except for an exponentially small fraction of them satisfy the

initial conditions of Theorem 3.8.1. We start the extension process by choosing one of

them. This is an interesting "non-constructive" aspect of our proof. We do not know how to

find a specific such good configuration, though we have just proved that almost all

configurations are good.

We now perform the extension process till we reach the load factor a, as described in
Theorem 3.8.1. The number of points inserted with bad insertions is O(m 1/2-6). For each

point x and each length k, no bad point can introduce (influence) more than k progressions
of length k coming to x. Thus the bad points can introduce at most O(km 1/2-6) progressions

of length k coming to x, k<ka=O(log m). The number of residual progressions of length k

coming to x is at most

(1 12+83)log[1 +210g(1 I(1-a»]/log(11 a)
EOm

1/4+8
2
+(1 12+83)log[1 +210g(1 I(1-a))]/log(11 a)

= m .

The absolute constant ao is chosen so that

114 + 82 + (1/2+83)log[1+210g(1/(1-a»]/log(1/a) < 112 - 8

for a<ao' A rough numerical computation shows that

ao - .319.

Thus the contribution of the residual progressions at any length is at most O(m 1 /2-6). Let

now 8', 8" be such that 0<8'<8"(8,83 , Let k'a (ka be such that
k' 1/2-8"

a am = m ;

such a k'a clearly exists since
k 1/2-8

3 a am = m .

We have

50(a5
/s)k'

1 +0 a k' = (1 +iO)e a =
, a

Double Hashing, Page 114

(1 .) 50(a
s
/s)(1/2+8")/log(l/a) = +10 m .

Recall that io-+O as 0-+0, and so by choosing 0 sufficiently small we can obtain

~'" :s; m (I , for 8'" < 8"-8'.

So we have

k' Ih-8"+8'"
a am(1+0a k' < m .

, a

We can add to this the contribution of the bad insertions and the residual progressions, and

since they both are Oem 1/2-8"), the grand total of progressions of length k' a coming to x is

This proves part (b) of the Corollary.

For part (a) we work analogously. We know that

ka

(xii) ~ (J a,kak < (Jas :s; IJ.

k=2

The contributions of the bad insertions and the residual progressions estimated as above are
O(m 1/2-8") even when summed over all allowed lengths k. Thus these contributions to (xii)

can be incorporated in the constant (J. Since k'a <ka, we have shown that the true relative

errors satisfy

as desired.

k' a

~
k=2

k
tla,k a :s; IJ

Double Hashing, Page 115

By Theorem 3.8.1. the probability of the excluded events is exp(-ComBO). This completes

the argument. I

Remark. It is worth pOinting out the reason why we have carried out the computation of the

growth of the residual progressions separately from the regular ones. For the regular

progressions, the initial number of progressions of a type T of length k and I hits is
approximately P'(1-p)k-'m. Thus for p small and a particular k we have most regular

progressions in types with few hits. The initial number of residual progressions, however, is

the same for all types, thus giving rise to a quantitatively different mode\.

FiglJre 3.8.4. is to be used for reference. It summarizes the various 8's we have introduced

and the relations among them.

DEFINITIONS.

-1/4-8
." = m 1

pkflm = \ m 1/4+82

akam = m 1/2-83

Eo = m 1/4+82

prb. of excluded events = e -Com80

Prb. of bad insertion =

CONSTRAINTS.

-1/2-8
m

Double Hashing, Page 116

Figure 3.8.4. THE PROLIFERATION OF DELTAS

Appendix, Page 11 7

Appendix

On the Distribution of Arithmetic Progressions of

Length 3 in a Random Sample of Integers

1,2, ... ,N -- A Derivation Using the

Exponential Sums Technique

We consider subsets S of [1 ,N] generated by the following random process: each xE[1 ,N]

is chosen to belong to S with a fixed probability A, O<A< 1, independently of all the other x.

[Caveat: We have chosen this probability model versus the one in which we regard all S

with lSI = AN as equally likely because the manipulations are easier; almost certainly the

identical derivation holds for this second model -- places in the argument where the two

models differ are indicated by :f:.]

If we consider the exponential sum (aER)

Sea) = ~ e(ax), (we write e(t) for e
27Tit

),

then it is easy to see that the number of arithmetic progressions of length 3 in S is given by

S 1 2
o S (a)S(-2a)da.

If we set T(a) = A ~ e(ax), then it is again easy to see that the average number of arithmetic

progressions of length 3 of a set S generated as above is

S 1 2 3 2 .
(:j:) 0 T (a) T (- 2 a) d a = A N /4 + O(N) as N 00 .

The constants implied in all our uses of the 0 notation will be absolute.

A set S generated by the above process will be called (m,€)-equidistributed, € ~

min {A, 1-A}, msN, if for all q, 1 <qSN
l
/
2

, and for all n, 1 <nsN-mq, the number of elements

of S that lie on the arithmetic progression n, n+q,n+2q, ... ,n+(m-1)q, is not more than (A+€)m,

and furthermore ISI>(A-€)N.

Appendix, Page .118

In order to study the deviations of the number of arithmetic progressions of length 3 from the

average, we need the following three fundamental lemmas.

The first lemma is just a summary of trivial but useful properties.

LEMMA 1. We have, with S,T as above

(1) S(a), T(a) are periodic of period 1;

(2) Sea) = O(AN), T(a) = O(AN) as N. -+ 00;

(3) So 1IS(a)/2da = AN;

(4) T(a) = O(A/"a"), as "a" -+ 0, where "a" denotes the distance from a to the

nearest integer. I

The next lemma asserts that for equidistributed sets S, S(a) is well approximated by T(a).

LEMMA 2. If a set S generated by the above process is (m,e)-equidistributed, then for m =
O(N

i
/
Z

)

% (5) IS(a)-T(a)1 ~ 3eN+O(mN). I

The last lemma shows that non-equidistributed sets are extremely rare.

LEMMA 3. The probability that a set S generated by the above process is not (m,e)

-equidistributed is

3/2 -e
2m O(N e), as N,m -+ 00 I

Using those three lemmas we can then prove our main result, which is

2
THEOREM. With probability 1-0(N3/2 e -e m) we have

S 1 2 S 1 2 loS (a)S(-2a)da - 0 T (a)T(-2a)dal ~

Appendix, Page 119

Lemma 1 is obvious except possibly for part (4). This is easily done by summing the

geometric series involved.

We now make two comments and then proceed to prove Lemmas 2 and 3 and the Theorem.

Comment 1. From the proof of Lemma 2 it will be clear that we could have allowed up to

O(mN%) "exceptions" (i.e., selections of arithmetic progressions not satisfying the stated

conditions) and still gotten our result. This almost certainly implies that in our proof of
2 2

Lemma 3 we can get a sharper estimate, possibly O(N3/2 e -e m).

Comment 2. The optimal value of m for the theorem is to choose m as large as possible

while still consistent with the assumption m = O(N 112). The theorem then, loosely speaking,
1/2-8

states that for any small 8)0, with probability 1-0(e-l'{e)N), where p.(£) is some function

of £)0, the number of arithmetic progressions of length 3 in a set S generated by the above

process will lie in the interval [«~?/4) - £)N2
, (A3 /4) + £)N2

], as N -+ 00.

Proof of Lemma 2. By looking at the continued fraction expansion of a, we can find h,q,p

such that

We now start from the relation

q m
S(a) = (1/mq) ~ ~ e(ax) + O(mq);

r=1 n=1 nsx(n+mq

xES, x:=r(mod q)

this relation is true because, for given x,m,q, there are exactly mq integers n satisfying

nsx<n+mq,

and these integers n also satisfy 1 sn<N provided that mq<x<N-mq. Thus the coefficient of

e(ax) on the RHS is unity except when x<mq or x2::N-mq, these cases being compensated

for by the error term.

Appendix, Page 120

We also have e(ax) = e(rh/q)e(pn) + O(mqIPI). For each r,n the number of terms in the

inner sum is at most (A+e)m by our assumption of (m,e)-equidistribution, thus it is (A+e)m -

D(m,n,q,r), where D~O.

Therefore

q N

(a) Sea) = (A+e) (1/q) ~ e(rh/q) ~ e(pn) -

r=1 n=1

q M

-(1 Imq) ~ e(rh/q) ~ e(pn)D(m,n,q,r) + O(mq) + O(MmqIPI).

r=1 n=1

If we put P=O and h=O (legitimate since we have not yet used (h,q) = 1) in the above we get

q M

(b) lSI = (A+E}N - (1 Imq) ~ ~ D(m,n,q,r) + O(mq).

r= 1 n= 1

Since S is equidistributed we have (A-e)N~ISI«A+e)N; using this and the facts that q~NI/2,
1/2

qlPI < 1 IN , we can combine (a) and (b) into

q N
~ ~ ~ IS(a) - (A/q) ~ e(rh/q) £..j e(pn)i < 3£N + O(mN }.

r=1 n=1

1/2
We now distinguish two cases. If IIall~1 IN ,then we have h=O, q=1, p=a and the above

relation becomes

%
IS(a) - T(a)! ~ 3EN + O(mN)

1/2
which is what we want. If however IIall) 1 IN ,then we cannot have q= 1. But in the event

q)1,

q

~ e(rhl q) = 0,

%
so the above relation becomes IS(a)I~3eN + O(mN). But from Lemma 1, (4) we have

T(a) = O(A/llall) = O(AN~),

and therefore again

Appendix, Page 1 21

Q.E.D. I

I/Z 18(a)-T(aU < 3eN + O(mN).

Proof of Lemma 3. We use the following fundamental property of the binomial distribution:

(.) ~ C(a,t)paqa-t < exp[(a-k) log(aq/(a-k» + k log(ap/k)]

where the sum is either over t such that t>k, or over t such that t:::;k, provided that k>pa or

k<pa respectively.

For 8 not to be equidistributed we must have

(a) lSI:::; (X-e)N or

(b) 3 n,q S.t. the number of elements of 8 in the progression n,n+q, ... ,n+(m-1}q

is >(A+e)m.

Using the elementary fact that

[(1-A±e) log(1-A)/(1-A±t:) + (A+t:) 10g(A/(x+t:»)] <
2 -e

2

we see that the probability of (a) happening is O(e -t: N) (set k = (A-t:)N, a=N, P=A, q=1-X in

(.)), and the probability of (b) happening is certainly less than

(set k = (A+e)m, a=m, P=A, q=1-A in (.».

80 the probability of either (a) or (b) happening is

2

0(N
3/2 e-t: m) as N -+ 00, m -+ 00,

as the lemma asserts. I

Proof of the Theorem. (For 0 notation: N -+ 00, 8 -+ 0.) By Lemma 3 we may assume that

8 is (m,t:) -equidistributed. We have

Appendix, Page 122

I(S2(<<)-T2(o»8(-2a) + T2(a)(S("'20)"'T(-20»1 $

IS{ "'20)(8(a)+ T(o.)(S(£d" T(a))f + IT2(a}{S(-2a)-T(-2«»1

and by lemma 2 and lemma 1, (2) it follows that

2 2 2 3 (6) IS («)8(-2<<) ... T (a)T{-2a)l ;; O(~A N).

From Lemma 2 and Lemma 1, (4), we have

and thus

which, together with Lemma 1, (3), implies. that

S 1-8 2 2 2 3/2
(7) l .8 S '(a)S(-2a)dal $ 3~AN: + O(-A Nlog8 + AmN·).

By (6), Lemma .1, (2), we also have

S a 2 S 82 2 3
(8) -8 S {a)S(-2a)d«:; .. -8 T (a}T("'2a)da + O(~AN 8).

FinaHy, from Lemma 1, (4) and Cauchy-Schwartz we have

So

J 1-8 2 3. -3/2
(9) t. 8 T (a}T(-2a)daf = O(A 8), 8 ...-+ O.

We now write

Appendix, Page 123

S 1 2 J 1 2
loS (a)S(-2a)da - 0 T (a)(-2a)dal ~

S 8 2 S 8 2 I -8 S (a)S(-2a)da - -8 T (a)T(-2a)dal +

S 1-8 2 S 1-8 2
\ 8 S (a)S(-2a)dal + \ 8 T (a)T(-2a)dal :s;

(by (7), .(8), (9»

Setting 8 = N-
1

-
1/5 in the above to get minimum growth of the 0 term, we obtain the desired

result:

If S is (m,e)-equidistributed, then

S12 S'12 , 2
\ 0 S (a)S{-2a)da - 0 T (a)T(-2a)da\ ~ 3eAN +

O{AmN3/2 + A 2(A+e)N9/5).
I.

The arguments in this appendix were motivated by the discussion of [Roth].

Page 124

REFERENCES

[Bel-Kam]

Bell, J. R. and Kaman, C. H., "The Linear Quotient Hash Code", CACM 13, 11 (November

1970), 675-677

[Berge]

Berge, Claude, Principles of Combinatorics, Chapter 1, Academic Press, 1971

[Bobrow]

Bobrow, Daniel G., "Combined Open Address and Chained Hash Search", Internal Memo, Xerox

Palo Alto Research Center, January 1974

[Brent]

Brent, Richard P., "Reducing the Retrieval Time of Scatter Storage Techniques", CACM 16, 2

(February 1972), 105-109

[Chernoff]

Chernoff, H., "A Measure of Asymptotic Efficiency for Tests of Hypotheses Based on a Sum of

Observations", Ann. Math. Stat. 23, 493-509

[Erd-Sp]

Erdos, Paul and Spencer, Joel, Probabilistic Methods in Combinatorics, Academic Press, New

York, 1974

[Feller]

Feller, William, An Introduction to Probability Theory and its Applications, Vol. 1, Third Edition,

Section 11.6, John Wiley and Sons, 1968

[Hardy]

Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, Fourth Edition,

Chapters III, X, Oxford, 1968

[Knuth1]

Knuth, Donald E., The Art of Computer Programming, Vol. 1, (Fundamental Algorithms) Section

6.4, Addison-Wesley, Second Edition, 1975

[Knuth2]

Knuth, Donald E., The Art of Computer Programming, Vol. 3, (Sorting and Searching) Section

1.2, Addison-Wesley, 1973

Page 125

[Knuth3]

Knuth, Donald E., "Mathematical Analysis of Algorithms", Information Processing Letters, 1971,

North-Holland (1972), 19-27

[Liu]

Liu, C. L., Introduction to Combinatorial Mathematics, Chapter II, Mc-Graw Hill, 1968

[Renyi]

Renyi, Alfred, Probability Theory, Chapter VII, North Holland, 1970

[Paterson}

Paterson, Michael, Personal Communication, 1976

[Roth]

Roth, Klaus, F., "On Certain Sets of Integers", J. London Math. Soc. 28, (1953), 104-109

[Ullman]

Ullman, J. D., "A Note on the Efficiency of Hash Functions'\ JACM 19 (1972), 569-575

INDEX

algorithm A (bucket search)

algorithm C (chained hashing with coalescing lists)

algorithm D (double hashing)

algorithm L (linear probing)

algorithmic analysis

arithmetic progression

bad insertion

chained hash algorithm

clustering

collision

collision resolution strategy

comparison

controlling the intersections

double hashing

excessive flow

exponential generating function

extension process

Farey series

fixpoint

flow

generating function

hash function

hit

hypergeometric distribution

key

linear probing

link

Page 126

PAGE

6
7

5,83

4

8

4,10,56ff

99

6
10

2

2,4

9
94

4,83

94
31

93

65

66

93

15,21

2,4

56

61

2

4

6

Page 127

miss 61

open addressing 4

overflow 2

record 2

residual progression 97

recurrence relation 21

type (of a progression) 56

secondary clustering 11

tertiary clustering 11

uniform hashing (or probing) 11

