
• ~
\ ~

\ \
\
\

THE INTERLISP VIRTUAL MACHINE
SPECIFICA TION
by J Strother Moore 11-

CSL 76-5 September 1976.

The INTERLISP Virtual Machine is the environment in which the INTERLISP System
is implemented. It includes such abstract objects as "Literal Atoms", "List Cells",
"Integers", etc., the basic LISP functions for manipulating them, the underlying
program control and variable binding mechanisms, the input/output facilities, and
interrupt processing facilities. In order to Implement the INTER LISP System (as
described in The INTERLISP Reference Manual by W. Teitelman, et. al.) on some
physical machine, it is only necessary to implement the INTERLISP Virtual Machine,
since Virtual Machine compatible source code for the rest of the INTERLISP
System can be obtained from publicly available files. This document specifies the
behavior of the INTER LISP Virtual Machine from the implementor's point of view.
That is, it is an attempt to make explicit those things which must be implemented
to allow the INTERLISP System to run on some machine.

KEY WORDS AND PHRASES

programming language semantics, LISP, dynamic storage allocation, interpreters,
spaghetti stacks, abstract data types, function objects, FUNARGs, applicative
programming languages, control structures, interactive systems, DWIM,
programmer's assistant, automatic error correction, eval, error handling, interrupt
characters, breaks, coroutines, hashing, property lists, list structures

CR CATEGORIES

4.22,5.24,3.69,4.10,4.12,4.2,4.21,4.41,6.21,6.22

Formerly at the Computer Science Laboratory, Xerox Palo Alto Research Center, Palo Alto. Ca.

94304, currently at the Computer Science Laboratory. Stanford Research Institute. Menlo Park. Ca.
94025.

This work was supported by the Advanced Research Projects Agency of the Department of Defense

and was monitored by the Office of Naval Research under contract N00014-75-C-0626.

XEROX
PALO ALTO RESEARCH CENTER
3333 COYOTE HILL ROAD I PALO ALTO I CALIFORNIA 94304

ACKNOWLEDGEMENTS

In January of 1975, Warren Teitelman (of Xerox Palo Alto Research Center) asked
me to write a document which would enable people outside the original Bolt,
Beranek and Newman and Xerox PARC communities to implement the INTERLISP
System on machines other than the PDP-10. Since most of the system is written
in INTERLISP itself, we decided the document should identify that subset of the
INTERLISP language which, if implemented on some machine, would enable the rest
of the existing INTERLISP source code to run.

During the next two years Warren and I, along with Peter Deutsch and Larry
Masinter (both of Xerox PARC) and Alice Hartley and Daryle Lewis (both of BBN)
spent countless hours in discussions about how INTERLISP worked and why.
Sometimes it was as simple as Daryle spending several hours explaining the READ
function to me. Sometimes it was as difficult as several weeks' worth of messages
between BBN and PARC trying to find out what anybody knew about some
particular feature and how many system functions would fail to work if that feature
were not faithfully implemented. In the end this document emerged.

I am sure I have made omissions, left ambiguities and introduced downright bugs in
it (and I welcome cards and letters noting these inadequacies). It is certainly not a
mathematical exercise and probably will root appeal to my friends in the program
verification or formal specification community: But if so much as one (or maybe
two) new INTERLISP implementations result from the availability of this document
the project will have been worthwhile to all of us.

Needless to say, I'd like to thank Warren Teitelman, Peter Deutsch, Larry Masinter,
Alice Hartley. and Daryle Lewis for their total commitment to this project. Without
their dedication and participation, any effort to define the INTERLISP Virtual
Machine would have been both meaningless and hopeless.

Of course, one must always thank the person who is actually responsible for
producing the only version of the manuscript anyone but the author can read. In
this case that person is Carol Van Jepmond, and if you want to better appreciate
the magnitude of the task she undertook, consider the fact that no words were
underlined in what I gave to her.

TABLE OF CONTENTS

1. INTRODUCTION . . .

2. PRIMITIVE CONCEPTS

3. CONVENTIONS FOR VM FUNCTION SPECIFICATIONS .

4. CONVENTIONS AND DEFINITIONS USED IN THIS DOCUMENT

5. LOGICAL OPERATORS .

6. DATA TYPES

7. LIST CELLS

8. LITERAL ATOMS

9. INTEGERS . . .

Page

1

2

4

6

9

10

11

12

16

1 O. FLOATING POINT NUMBERS. 21

11. ADDITIONAL ARITHMETIC FUNCTIONS 24

12. STRINGS 27

13. ARRAYS 31

14. HASH ARRAYS 32

15. USER DEFINED DATATYPES. 35

16. FUNCTIONS AND FUNCTION OBJECTS. 37

17. STACK POINTERS. .. 43

18. EVALUATION .

19. RESTRICTIONS ON THE IMPLEMENTATION OF VM FUNCTIONS

20. THE COMPILER

21. FILES AND FILE NAMES

22. READ TABLES.

23. TERMINALS

24. TERMINAL TABLES

25. INTERRUPTS

ii

52

63

67

70

77

84

86

92

26. OUTPUT

27. INPUT

28. STORAGE ALLOCATION .

29. MISCELLANEOUS VM FUNCTIONS

98

105

116

118

REFERENCES .. 120

iii

1 . INTRODUCTION

INTER LISP is an interactive LISP system. It consists of a large and sophisticated
collection of user support facilities (such as DWIM and the Programmer's Assistant
[TEl]) built on top of a fairly conventional LISP language.

We call this underlying conventional language "Virtual Machine" (or simply VM)
LISP. The user support facilities are written entirely in VM LISP, and are in the
public domain. Thus, if VM LISP is implemented on some machine, the rest of
INTERLISP can be obtained from publicly available files 1.

Although the INTERLISP System is extensively documented at the user level in the
INTERLISP Reference Manual [2], it is not possible to implement the system from
that documentation. The purpose of this document is to specify VM LISP as fully
as possible from the implementor's point of view. Consequently, this document
emphasises clarity and conciseness over intuitive appeal. It is expected that a
prospective implementor will have access to the INTERLISP Reference Manual for
explanations of the justification or implications of certain specifications.
Furthermore, since its purpose is mainly a practical one (i.e., to tell an implementor
what must be done), the document is not altogether formal.

Because INTERLISP evolved under the rather sophisticated BBN TENEX2 time
sharing system, it assumes the presence of capabilities (such as user-defined
interrupt characters) which may not be found in the implementor's environment. If
an implementor is forced by such circumstances to forego the implementation of
certain INTERLISP features, the user-support facilities may not perform as
described in the Reference Manual. The implementor assumes responsibility for
the documentation of such deficiencies.

A great deal of care has been taken in the preparation of this document to
determine the assumptions made in the high-level facilities about features in the
underlying VM. Because of the size and complexity of the system we cannot
guarantee that we have identified them all, and therefore do not assure the
prospective implementor that the rest of INTERLISP will run perfectly upon loading
it into the just implemented VM. However, this document goes a long way toward
that admirable (and probably impossible) goal.

2. PRIMITIVE CONCEPTS

2

For information write Dr. W. Teitelman. Computer Science Laboratory. Xerox Palo Alto

Research Center. 3333 Coyote Hill Road. Palo Allo. Ca. 94304.

The INTERLISP implementation on the DEC PDP-10. called INTERLlSP-10. was developed

under the management of researchers at Xerox Palo Alto Research Center and Bolt. Beranek and

Newman. Comprehensive user documentation is provided in the INTERLISP Reference Manual [2].

1

Below we introduce several concepts and terms used throughout this document.
We do not attempt formal definitions of these concepts because we feel they are
sufficiently clear.

object Anything which can be given to an
INTERLISP program as data or
returned by an INTER LISP program as
a result of a computation.
Equivalently, an object is anything
that can be the value of an
INTERLISP variable. Examples: NIL,
143, (F X V).

INTERLISP programs can dynamically create "new" objects using "creation
functions" supplied by the Virtual Machine. These functions return objects that did
not exist in the user's Virtual Machine immediately before the creation function was
invoked. That is, they return objects that no other VM function could have
returned prior to the invocation of the creation function. Most implementations
accomplish the implied illusion of infinite space by secretly reclaiming the space
occupied by an object once no VM LISP function can detect the absence of the
object.

The details are presented in Section 28.

We will have occasion to talk about concepts which are not objects in the Virtual
Machine but which have relevance to an implementation of the Virtual Machine.
Such meta-objects include devices and buffers as well as mathematical entities
such as sets, character sequences, and n-tuples.

meta-object

form

Any thing or concept, other than an
INTERLISP object, which can be
discussed in English.

Any object used as the argument to
the function EVAL (cf. Section 16).
Examples: NIL, 143, (F X Y) if they
are given to EVAL.

Note that the determination of whether something is a form is made on the grounds
of how it is used rather than how it is constructed or how it is written down.
However, typically, forms are just List Structures or Atoms.

Value of a form The object returned by EVAL when
given the form. Examples: The
value of NIL is NIL. The value of·
(ADD1 142) is 143. The value of
(CONS (QUOTE F) (QUOTE (X Y»)
is (F X V).

Note that not all forms have values: some cause errors or otherwise alter the flow
of control so that EVAL does not return to the point of invocation (e.g., the goto
statement).

2

The next concept is probably the single most important concept used in this
document.

field A "place", usually associated with an
object or meta-object, that can be
used to "hold" another object or
meta-object. Example: A List Cel!
is an object with two fields, named
the CAR and CDR fields, each of
which can hold an object.

There are two operations on fields: "accessing" and "replacing". If x is an object
with a field which contains y, then it must be possible to compute y given x. This
is called "accessing" the field. Furthermore, it must be possible to modify that
field of x so that it is made to contain another object instead of y. This operation
will be called either "replacing" (the contents of) the field or "setting" the field.

In general, only the implementor has full access and replacement rights on a field.
In some instances the user is given limited rights to fields.

Note that fields are not objects: A variable may have as its value the contents of
a given field, however a variable cannot have as its value the field itself. We will
always be specific about whether the contents of a field is an object or meta­
object, and what. if any, restrictions are placed on the contents. Unless otherwise
stated, any field said to contain an object can contain any object whatsoever.

The final primitive concepts are concerned with communication between the VM
and the "outside world". The most abstract and important of these concepts is
that of the "character".

character A graphic mark in the alphabet
available to the machine's
input/ouput facilities. Examples
usually include such characters as
'A', 'a', and ,(" as well as "non­
printing" characters such as space,
tab and form-feed.

A character is a meta-object because it exists outside the machine. We assume
the implementor has designated a set of characters to be used in input/output
transactions with the VM. This set will be called the "standard VM character set".
For each character in this set there is a unique INTERLISP object either in the set
of Literal Atoms or the set of Integers which is identified with that character.
These particular objects are called Characters (note capitalization).

A certain subset of the characters are known as "control characters". These
characters are usually "non-printing" (in the sense that outputting such a character
causes no mark to be made) and usually perform control or formatting functions on
certain physical devices. Since these characters are non-printing, we associate
with each control character a printing character. called the "tequivalent"
(pronounced "uparrow equivalent"). Sometimes the control character will be
printed by printing the character '1" followed by the tequivalent of the control
character.

3

It is assumed there is a character (and hence, a Character) called the "carriage
return" character, which causes output devices to position their print mechanisms
so that subsequent characters will be printed starting at the left-hand margin and
immediately below the last line. In some systems, more than one character must
actually be sent to certain devices to achieve this effect (e.g., one character to
return the print mechanism to the left margin and another to advance the line).
Reading and writing more than one character per carriage return character is
permitted. In fact, the precise characters transferred may be device dependent.
However, the implementor is expected to maintain the illusion of the single carriage
return character by translating to and from the appopriate sequences when fetching
and depositing characters (cf. Section 21).

We assume that there is a one to one mapping from the standard VM characters
onto a subset of the integers. The INTERLISP Small Integers (cf. Section 9) in the
range of the above mapping are called "character codes". The number of bits
required to represent the largest character code is called "standard VM bytesize".

If the ASCII mapping is used, the integers are those from 0 to 127. The control
characters are those with character codes from 0 to 31 and the character codes of
their tequivalents are obtained by adding 64. Thus. the character "control-A" has
character code 1, its tequivalent is the character 'A' and has code 65. "control­
A" is sometimes printed as "tA". If a mapping other than ASCII is used, the
implementor is expected to define these character sets in accordance with their
properties above.

character sequence a meta-object consisting of a
succession of characters.

The ith character in a character sequence cannot be changed without producing a
different character sequence. (In Section 12 we will introduce a meta-object,
called a string, which allows its characters to be replaced without the production
of a new meta-object.)

file a meta-object which is used as a
character source or sink for
input/output operations.

Physically. files may be represented as sequences of character codes stored on a
disc or other external storage device, or sequences of character codes coming
from or going to any available input or output device.

Technically, files are meta-objects and not objects, because INTERLISP programs
cannot directly manipulate them. However, INTERLlSPassumes that each file is
uniquely identified by a "file name" which is representable as an INTERLISP Literal
Atom. The Virtual Machine provides for input/output on named files, using Literal
Atoms to indicate the source or destination file.

3. CONVENTIONS FOR VM FUNCTION SPECIFICATIONS

This Section and the next explain the conventions used in this document when

4

specifying the VM LISP functions. These conventions should not be confused with
the INTERLISP facilities which allow the user to define new INTERLISP functions.

The precise nature of a VM LISP function is fully specified in Section 16. However
some background information is necessary to understand the form and meaning of
the function speCifications.

In this document we use the word "function" in an extended mathematical sense to
refer to the abstract association or mapping between some n-tuple of "arguments"
and a value or effect. A function is named by an INTERLISP object called a Literal
Atom (cf. Section 8) which contains a function object (cf. Section 16) in its
function definition field. The function object is essentially a program, which tells
EV AL how to compute the value and/or effect of the function named by the Literal
Atom.

In this document, when we specify some function we will first write down the
function name (a Literal Atom). Following that will be a list of the function's
parameter names. Each name will be in lower case and separated from the others
by';'. The entire list will be enclosed in '[' and 'J'. If the function takes an
indefinite number of arguments we will use an ellipsis (.......) in the parameter list.
(Such a function is called a "nospread" function; otherwise, the function is a
"spread" function. See Section 16 for the details.)

The parameters are merely. placeholders. The particular names used in this
document are not important.

Following the parameter list we will write down English text which specifies, in
terms of the parameter names given, the actions performed by the function when it
is applied to some argument objects. As is made clear in the next Section, the
parameter names are understood to represent the objects supplied as arguments.
The text defining the behavior of the function, called the "body" of the
specification, will be indented to distinguish it from surrounding explanatory
material. There are numerous examples of such specifications in the following
pages.

Sometimes (cf. AND in Section 5) we will write "(NOEVAL)" after the parameter list
in a function specification. We say that the corresponding function object is
"noevaHype". Otherwise, it is said to be "evaHype". Informally, whether a
function object is eval-type or noeval-type determines whether EVAL will bind the
parameter names to the values of the forms in the argument positions, or the forms
themselves. (See the specification of EVAL in Section 18.)

From the implementor's viewpoint it is important to understand that each function .
specification in this document does two things:

(1) It specifies the nature of a function object.

(2) It specifies that the function object shall initially be found in the
function definition field of a certain Literal Atom (the function
name).

5

4. CONVENTIONS AND DEFINITIONS USED IN THIS DOCUMENT

We will use certain conventions and definitions when specifying functions. Usually
they will be introduced before they are used the first time. Below we present
those most commonly used.

Convention: Lower-case character sequences will be used as meta-variables to
denote both INTERLISP objects and meta-objects. We will have occasion to refer
both to the meta-variable itself and to the value (object or meta-object) it denotes.
For example, we may wish to say "Let the meta-variable x denote the sum of the
values currently denoted by the meta-variables x and y." To distinguish a meta­
variable from its value we will use an underline. When a meta-variable is
underlined the construction is understood to denote the value of the meta-variable.
When not underlined the construction denotes the meta-variable itself. Thus, the
above example can be abbreviated to "Let x be ~+y." Note that if x denotes y (the
meta-variable itself, not its denotation), then while "let x be 1" affects the
denotation of x, "let ~ be 1" affects the denotation of y.

Note: The reader should not confuse meta-variables with the notion of variables
provided by INTERLISP. Meta-variables are strictly a notational device for
communicating with the reader. Variables (as implemented in INTERLlSP) are
INTERLISP objects, namely Uteral Atoms, which are used as forms. This document
carefully distinguishes the two concepts.

Convention: If x1' x2' ... Xr.s denote objects and f denotes a VM function name,
then whenever the specification of some computation uses the construct
_f[~1 ;~2;'''~k] it is understood to imply that at that point in the computation the
computation specified as defining the n-ary function f should be executed with the
successive n parameter names of f denoting the corresponding first n elements of
the sequence ~1 '~2""'~k,NIL,NIL,NIL, ... , and the construct is to denote the object (if
any) "returned" (see the next convention) by that computation.

Convention: Successive sentences in the function specification body specify
successive computational processes that are to be carried out sequentially when
the function is applied to some arguments. We use clauses beginning with the
words "if", "elseif", and "else" (separated by";") to specify the conditional
structure of the function. When the scope of a "then-clause" is ambiguous the
entire clause is further indented. The phrase "return x" means that if a
computation reaches that point of the specification then all subsequent statements
in the specification are to be ignored (as specifying the computation along a
different path through the function) and ~ is to be considered the value of the
function application.

Convention: When we refer to objects in a boolean context (in constructions using
the English words "if", "or", "and", and "not") the object NIL is identified with
falsity and all other objects are identified with truth.

Conventi·on: Whenever the body for some function specification does not specify
an action for some possible argument combinations, the implementor is free
perform any action desired. It is assumed this freedom will be used to
merely avoid certain type checks (e.g., assume the argument to CAR is a List Cell
and accept the consequences on other types of objects). Should the

6

implementor's default action for any VM function be meaningful to the user (e.g.,
CAR of an atom always returning NIL) the implementor is expected to document the
fact that such behavior is not standard. Furthermore, the implementor is expected
to document those default actions which may result in harm to the user's Virtual
Machine (e.g., a replacement function which, when improperly used, will destroy
meaningful data or confuse the garbage collector).

Convention: When we refer to an object in the set of INTERLISP Integers we will
capitalize the word "integer". We will leave it in lower case when referring to the
mathematical entity.

Convention: We will write down integers and real numbers in standard
mathematical notation in base-10. When referred to as objects they shall denote
the corresponding INTERLISP Integer or Floating Point Number (cf. Section 10). In
this document, al\ Floating Point Numbers will be written with at least one digit to
the right of the decimal point to distinguish them from integers followed by
periods. (That is, the real 10.0 will be written (in this document) with the
redundant 0, to distinguish it from the integer 10.)

Convention: We will occasionally use meta-variables which denote INTERLISP
Integers and Floating Point Numbers in constructions involving standard
mathematical notation. In this context the meta-variables are understood to be
abbreviations for the mathematical entities represented by their values. (That is, if
x denotes an INTERLISP Integer -- an object which merely behaves somewhat like
a certain mathematical entity -- then in the construction ~+ 1, x is treated as though
it denotes the mathematical entity the Integer represents.) This convention allows
the use of standard mathematical notation involving objects even though the
notation is formally defined on meta-objects.

Convention: When we refer to a character sequence enclosed in quotation marks
as though it were an object, it denotes an INTER LISP String (cf. Section 12) with
the character sequence as its pname.

Convention: We will often use the name of a field to refer to the contents of the
field, if such use is unambiguous. For example, we will refer to the CAR of a List
Cell, when we mean the contents of the CAR field of the List Cell.

Convention: Whenever we say some computation should be done for each x in a
specified sequence (e.g., "for i from 1 to n do or "for each xi do) we mean
that the computations should be performed in the same order as the x's occur in
the sequence. That is, the computation for the first ~ should precede that for the
second, etc.

We now present the commonly used definitions. The purpose of a definition is to
introduce a suggestive phrase that has a precise formal meaning. Usually the
defined phrase involves one or more meta-variables. Whenever an instance of a
defined phrase is used the meaning is that obtained by reading the definition with
the meta-variables of the definition denoting the objects or meta-objects indicated
by the instance of the phrase used.

We will occasionally use an English variant of a defined phrase and expect the
reader to recognize that we are still speaking formally. For example, later we
define the phrase "the representation of x as an Integer". We may use the phrase

7

"return the representation as an Integer of ~" or "represent ~ as an Integer and
return it" or even "represent and return as an Integer ~." It is hoped that all three
of these will obviously be understood by the reader to mean: "Let temp be the
representation of ~ as an Integer. Return!:.e..!I:!Q." The reason we use such variants
is that they occasionaly allow us to reduce the number of meta-variables the
reader must contend with (as above) and they allow a more natural style of
specification.

Definition: "f[xl ; ... xk]", where f denotes a non-VM function, means
"APPLY·[1;~l ;"'~k]'" Since APPLY· is a VM function, this definition is meaningful.
The reason we cannot appeal to the convention on VM function application (above)
to make sense out of ![~ 1 ;"'~k] is that since f is not a VM function it does not
have a specification in this document and the above convention on the meaning of
VM function application was based on the body of the specification of the function.
It also happens that while VM calls to other VM functions (as almost all calls in this
document are) can be implemented by any technique desired, calls to user
functions must use a well-defined stack structure defined in Sections 16-20. This
definition makes this clear because APPLY· in fact manipulates the stack. Finally,
for sanity, it should be pointed out that the effect and value of f[~l ; ... ~~ is in fact
the same (except for the effect on the user's stack) as "APPLY·U;~l;"'~k]"
whether ! is a VM function or not.

Definition: "cause error n with culprit x" means "ERRORX[LlST[n;~]]. Perform any
unspecified (but presumably meaningful) computation'''. ERRORX is not in the VM
but is defined as part of the user-support facilities of INTER LISP. It is the main
entry into the error handling routines. Nominally ERRORX never returfls to the
computation which called it (i.e., to the compuation which "caused the error") but
(using the stack manipulating functions discussed in Sections 17 and 18) returns to
some higher process. However. the user can redefine ERRORX and therefore it
may be altered so as to return control to the point of invocation. Implementations
should therefore allow for this (by, for example, following the call to ERRORX by
the equivalent of RETTO[T] (cf. Section 18».

Definition: "pname of x" means "the character sequence that would be printed to a
file other than the terminal by PRINl [~]. when the radix field contains 10 (cf.
Section 26). If PRINl [~] would cause error n with culprit z, then 'cause error n
with culprit ~."

Definition: "PRtN2-pname of x with respect to y" means "the character sequence
that would be printed to a file other than the terminal by PRIN2[~;NIL;y] when the
radix Held contains 10. If PRIN2[~;NIL;~] would cause error n with culprit z, then
cause error n with culprit ~."

Definition: "the Literal Atom x" means "the Literal Atom whose pname is ~."

Convention: When we refer to a sequence of all capital characters as though it
were an object. we mean the Literal Atom with that pname. Examples: NIL, T,
LlSTP. When such a' sequence is underlined. it denotes the binding or value (in
the EVALV sense -- see Section 18) of the Literal Atom. Thus, RANDSTATE
means the Literal Atom with pname "RANDSTATE". while RANDSTATE means
EVALV[RANDSTATE] -- the current value of that Literal Atom. .

Definition: "the Character (note capitalization) corresponding to (the character) x",

8

means "the Literal Atom or Integer whose pname consists only of the single
character ~."

Convention: When we refer to a character as a Character we mean the Literal
Atom or Integer with the character as its pname. For example, we will refer to the
ith Character in a character sequence.

Definition: A "Number" is either an Integer or a Floating Point Number.

Definition: An "Atom" is either a Literal Atom or a Number.

5. LOGICAL OPERATORS

EQ[x;y] If ~ and 1 are the same object, return T;
else, return NIL.

The following function tests the equality of Numbers, and Stack Pointers (cf.
Sections 9, 10, and 17).

EQP[x;y] If ~ = 1, return T;
elseif STACKP[~] and STACKP[1]:

If ~ and 1 contain the same frame extension, return T;
else, return NIL;

elseif NUMBERP[~] and NUMBERP[1]:
If FIXP[~] and FIXP[1]:

If ~ and 1 represent the same integer, return T;
else, return NIL;

else (~ or 1 is a Floating Point Number):
If not FLOATP[~], let x be FLOAT[~].
If not FLOATP[1], let y be FLOAT[y].
If ~ and 1 represent the same real, return T;
else, return NIL.

else, return NIL.

Note: In a sense, EQP tests the equality of meta-objects contained in boxes (cf.
Section 9). The implementor is free to extend EQP to test such equality on other
classes of objects which use such representation (e.g., Strings). However, the
next function, EQUAL, is responsible for the more general abstract equality of two
objects.

EQUAL[x;y] If ~ = 1 or EQP[~;1] or STREQUAL[~;1]' return T;
e1seif LISTP[~] and LISTP[1]:

return AND[EQUAL[CAR[~];CAR[1]];EQUAL[CDR[~];CDR[1]]];
else return NIL.

AND[Xl;X2;" ,xk] (NOEVAL)
Let val be T.
For each Xi (until some !i "evaluates to NIL") do:

Let val be EVAL[!i]'
If W = NIL,

(we say ~i "evaluated to NIL") return NIL.
Return val.

9

NOT(x]

NULL[x]

For each xi (until some !i "evaluates to non-NIL") do:
Let val be EVAL[!i]'
If val 1= NIL,

(we say !i "evaluated to non-NIL") return val.
Return NIL.

If !=NIl. return T:
else, return NIL.

Return NOT[!]

6. DATA TYPES

Every object in the VM is a member of a unique class. All of the objects in a
given class have certain common properties which define the class.

Associated with each class is a unique Literal Atom, called the "data type" of the
class. Given any object it is possible to obtain the data type of the object's class.

The VM provides 11 primitive classes, plus facilities permitting the definition of
new classes. Below we list the data types of the primitive VM classes. We will
discuss the defining properties of each of these classes in the following Sections.
Section 15 deals with the introduction of new classes.

Definition: A "data type" is a Literal Atom associated with a class of objects. No
two classes may have the same data type. The j-nitially exist,ing classes and their
data types are given below:

List Cells
Literal Atoms
Small Integers
Large Integers
Floating Point Numbers
Strings
Arrays
Hash Arrays
Stack Pointers
Read Tables
Terminal Tables

Data Type

LlSTP
UTATOM
SMALLP
FIXP
FLOATP
STRINGP
ARRAYP
HARRAYP
STACKP
READTABLEP
TERMTABLEP

The implementor may add additional primitive classes provided they are assigned
unique data types.

TYPENAME[x] Return the data type of the object !.

7. LIST CelLS

10

Definition: A "List Cell" (or "List Structure") is an object with two fields called
the CAR field and the CDR field, each containing arbitrary objects. The List Cells
constitute a distinct class of objects with class name LlSTP.

The VM requires the existence of a field, called the "CONS count" field, which
contains an integer. The initial contents of the CONS count field is 0 The
functions which reference the CONS count field are CONS and CONSCOUNT.

LISTP[x] If ~ is a list Cell. return ~;
else. return NIL.

CONS[x;y]

CAR[x]

CDR[x]

RPlACA[cell;val]

RPlACO[cell;val]

CONSCOUNT[n]

Increment the contents of the CONS count field by one
and store the result in the CONS count field.
Create and return a new list Cell
with ~ in the CAR field and 1 in the CDR field.

If LISTP[~].
return the contents of the CAR field of ~;

elseif lITATOM[~]:
If ~ is NIL, return NIL;
else, return any value desired (but cause no error).

If LISTP[~],
return the contents of the COR field of ~;

elseif LITATOM[~]:
If ~ is NIL, return NIL; .
else, return any value desired (but cause no error).

If cell=NIl:
If val=NIL, return NIL;
else, cause error 7 with culprit val;

elseif LISTP[cell]:
Set the CAR field of cell to val.
Return cell;

else, cause error 4 with culprit cell.

If cell=NIl:
If val=Nll, return NIL;
else, cause error 7 with culprit val;

elseif lISTP[cell]:
Set the CDR field of cell to val.
Return cell;

else, cause error 4 with culprit cell.

If fl is NIL, represent and return as an Integer
(cf. Section 9) the integer contained in the CONS count
field;
else,

If not FIX-P[.!!]. let n be FIX[fl].
Replace the contents of the CONS count field with
the integer represented by .!! and return n.

11

Definition: The "CDR chain from (some arbitrary object denoted by) x" is the
ordered sequence of objects defined as follows: If ~ is not a List Cell; the CDR
chain from ~ is the empty sequence. If ~ is a List Cell, the CDR chain from ~ is
the sequence obtained by adding ~ to the front of the CDR chain from the CDR of
~.

Note that CDR chains will be infinite if some List Cell occurs twice in the chain. If
a computation is specified in terms of operations on the end of a CDR chain (e.g.,
involving the last List Cell in the CDR chain), the computation is considered to be
unspecified for infinite chains.

Definition: A "proper list (of a sequence of n objects)" is the Literal Atom NIL if n
is zero, and otherwise is a List Cell with the first object in the CAR field and a
proper list of the remaining 0-1 objects in the CDR field. The "length" of such a
proper list· is n. The "ith element" of a proper list of n objects, 1 =<i=<n, is the
contents of the CAR field if 1 is 1, and otherwise is the i-1 st element of the proper
list in the CDR field. A "new" proper list is one for which new List Cells are in
the CDR chain.

Note that these are definitions of terms we will use in this document. They do not
define INTERUSP functions but merely allow us to refer to "proper lists" with
precision. Also note that. a proper list, ~, always has a finite CDR chain.
Furthermore, the CDR of the last List Cell in the CDR chain is always the Literal
Atom NIL.

Convention: When we display a List Structure in this document we will use the
notation produced by the function PRIN2. Thus (1 . 2) represents some· List Cell
with 1 in the CAR and 2 in the CDR, and (1 2 3) represents a proper list of the
three Integers shown.

8. LITERAl- ATOMS

Definition: A "Literal Atom is an object with the following properties: .

3

(1) There is a field containing a (meta-object) character sequence
called the "name" of the Literal Atom, such that no two distinct
Literal Atoms have the same name and no Literal Atom has a name
defined by (integer) or (floating point number> (cf. Sections 9
and 10). (It is permitted to limit the number of characters in the
name of a Literal Atom. The limit is unspecified3.)

(2) There is a field, called the "top-level value" ·field, which may
contain any object.

(3) There is a field, called the "property list" field, which may
contain any object.

INTERLlSP-1Q limits it to 99.

12

(4) There is a field, called the "function definition" field, which
may contain any object.

The Literal Atoms consitute a distinct class of objects with class name UTATOM.

Informally, the name of a Literal Atom is the character sequence used to identify
the object on input and output. The top-level value field contains the object to be
interpreted as the top-level value of the Literal Atom when it is used as a variable
in a form. The property list field usually contains a proper list and is used to
associate additional information with the Literal Atom. When the Literal Atom is
used as a function name (by being applied to some arguments), the contents of the
function definition field is used as a program which should be run to compute the
results.

The user has no access or replacement rights on the name field of a Literal Atom.
However, the user can obtain the nth Character in the name of any Literal Atom (cf.
NTHCHAR below).

Initially, the Literal Atom NIL shall exist and have NIL in its top-level value, property
list, and function definition fields. In addition. the Literal Atom T shall exist and
have T in its top-level value field. Of course, the names of aI/ VM functions are
also ·initially existing Literal Atoms with function objects (which behave according
to the VM specifications) in their function definition fields.

LITATOM[x]

ATOM[x]

MKATOM[x]

PACK[x]

If ! is a Literal Atom, return T;
else, return NIL.

If LITATOM[!] or FIXP[!] or FLOATP[!], return T;
else return NIL.

Let charseq be the pname of !.
If charseg conforms to the syntax of an Integer:

represent and return as an Integer the integer
denoted by charseg (cf. Section 9);

elseif charseg conforms to the syntax
of a Floating Point Number:

represent and return as a Floating Point Number
the real denoted by charseg (cf. Section 10);

elseif charseg is the name of a Literal Atom, litatom,
already created:

return litatom;
elseif there are more characters in charseg than
the implementation allows in a Literal Atom name:

cause error 11 with culprit NIL;
else:

Create a new Literal Atom, litatom, whose name
is charseg.
Set the top-level value field of litatom
to the Literal Atom NOBIND.
Set the property list field and the function definition
field of litatom to NIL.
Return litatom.

If ! is a proper list of objects, (Xl Xz ... xk):
return MKATOM[CONCAT[!l;!Z;"'!k]];

13

PACKC[x] If ~ is a proper list of objects, (xl Xz ... xk):
return MKATOM[CONCAT[CHARACTER[~l]:

CHARACTER[~Z] :

CHARACTER[~k]]]:

GETTOPVAL[litatom]
If LITATOM[litatom], return the contents of the
top-level value field of litatom:
else, cause error 14 with culprit litatom.

SETTOPVAL[litatom;val]
If litatom is NIL and val is not NIL,

cause error 6 with culprit val:
elseif LITATOM[litatom]:

Set the top-level value field of 1itatom to val.
Return val;

else, cause error 14 with culprit litatom.

Note that SETTOPVAL maintains the top-level value of NIL at NIL.

GETPROPLIST[litatom)
If 1itatom is NIL, return NIL;
e1seif LITATOM[litatom], return the contents
of the property list field of 1itatom;
else, cause error 14 with culprit, litatom.

SETPROPLIST[litatom;proplist)
If litatom is NIL:

If prop1ist is NIL, return NIL;
else, cause error 7 with culprit proplist.

e1seif LITATOM[litatom]:
Set the property list field of litatom to prop1ist.
Return prop1ist;

else, cause error 14 with culprit litatom.

Note that SfTPROPLIST maintains the property list of NIL at NIL.

GETO[l itatom] If LITATOM[litatom], return the contents of
the function definition field of 1itatom;
else, return NIL.

PUTD[litatom;defn]
If LITATOM[litatom):

Replace the contents of the function
definition field of 1itatom with defn.
Return defn;

else, cause error 14 with culprit litatom.

The following three functions take Read Tables as arguments. These are objects
that affect the way objects are printed. Read Tables are described in Section 22.

NCHARS[x;flg;rdtbl]
If ~, represent and return as an Integer the
number of characters in the PRIN2-pname of ~
with respect to rdtbl;
else. represent and return as an Integer
the number of characters in the

14

pname of !.

NTHCHAR[x;n;f1g;rdtb1]
If not FIXP[n]. let n be FIX[n].
If n<O. let n be NCHARS[!:flg;rdtb1]+n+1.

If n<O or n=O or n>NCHARS[!;flg:rdtbl]. return NIL;
e1seif .f.!g:

return the nth Character
in the PRIN2-pname of ! with respect to rdtbl;

else:
return the nth Character in the pname of !.

UNPACK[x;f1g;rdtb1]
If flg:

Create and return a new proper list
containing the successive Characters
in the PRIN2-pname of ! with respect to rdtbl;

else:

CHCON[x;f1g;rdtb1]

Create and return a new proper list of the successive
Characters in the pname of !.

(Same specification as for UNPACK except
use "character codes" for "Characters".)

DUNPACK[x; scratch 1 s t: f1 g: rdtb 1]
If not LISTP[scratch1st]. cause error 17 with
culprit CONS["DUNPACK: SCRATCHLIST not a 1ist";scratch1st];
e1seif scratch1st is a proper list:

If flg. let char seq be the PRIN2-pname of !
with respect to rdtb1;
else. let char seq be the pname of !.
Let n be the length of charseg.
If the length of scratchlst is greater
than or equal to n:

Let sublst be the terminal sublist of scratch1st
containing n elements.
Using RPLACA deposit the successive Characters in
charseg into the CAR fields of successjve List Cells
in the CDR chain of sublst. starting with the first.
Return sublst;

else:
Return UNPACK[!;flg:rdtbl].
(Note: The CARs of successive List Cells in
scratchlst may be replaced with Characters from
charseg before taking this exit.)

else cause error 17 with culprit
CONS["DUNPACK: unusual CDR in SCRATCHLIST";scratchlst].
(Note: The CARs of successive list Cells in
scratchlst may be replaced with Characters from
charseg before taking this exit.)

Note: The notes in DUNPACK allowing the CARs of scraLchlist to be replaced
before exiting permit the proper list check to be made as the function is running.

DCHCON[x:scratchlst;f1g;rttbi]
(Same specification as for DUNPACK except use
CHCON for UNPACK and "DCHCON" for "DUNPACK" and
use "character codes" for "Characters".)

15

CHCON1[x)

CHARACTER[n)

MAPATOMS[fn]

9. INTEGERS

If the pname of ! is the empty sequence, return NIL;
else, return character code of the first character
in the pname of !.

If not FIXP[n), let n be FIX[n).
If n is a character code,

return the Character with character code n.

For every literal Atom, x, currently
represented in the Virtual Machine do:

fn[!].
Return NIL.

Definition: The "Integers" (note capitalization) are objects that as far as possible
obey the laws of arithmetic for integers (the mathematical entities). The Integers
do not necessarily constitute a distinct class of objects. Some Integers must be
so-called "Small" Integers (see below) with class name SMALLP. Unless all
Integers are Small Integers, there must exist another class, with class name FIXP,
containing the remaining Integers.

When characters are being read in (ct. Section 27) certain sequences denote
Integers, namely those defined by (integer) below:

< oct digit> ::= 011121314151617
<digit> ::= <oct digit>1819
<oct seq> ::= <oct digit>QI<oct digit><oct seq)
<oct integer> ::= <oct seq>I+(oct seq)I-:(oct seq>
<dec seq> ::= <digit>l<digit><dec seq)
<dec integer) ::= <dec seq>I+<dec seq>I-(dec seq)
(integer> ::= <oct integer)l<dec integer)

A character sequence defined by < oct integer> denotes an Integer object which
represents the positive or negative integer whose base-8 expansion is the
sequence of octal digits given. A character sequence defined by <dec integer)
denotes an Integer object which represents the positive Or negative integer whose
base-10 expansion is the sequence of decimal digits given. In both cases, if no
sign (+ or -) is present, + is assumed.

The set of Integers is distinct from the subset of Floating Point Numbers (cf.
Section 10) which have fractional part equal to zero.

The machine upon which the VM is implemented will have some internal
representation of integers. This bit pattern is a meta-object, called an "unboxed
value". It is usually not possible for the implementor to distiguish an arbitrary
unboxed value from an address, an9 in particular, the address of some object.
Therefore, Integers must usually be represented in some way other than by their
unboxed values. There are two standard ways of representing Integers in the VM.

16

The first method exploits the knowledge that certain addresses, (e.g., those known
to reference the machine instruction codes for the VM itself) cannot possibly point
to objects. Any bit pattern which is such an address and is used as an object can
then be treated as though it represented some Integer.

This representation has two desirable properties, noted in the definition below. Of
course, only a relatively few Integers can be so represented, so it is desirable to
represent the commonly used Integers in this fashion. Since the Integers occuring
most frequently in user programs are clustered around 0, we call Integers
represented in this fashion "Small Integers".

It is not usually the case that the bit pattern representing a Small Integer is also
the unboxed value of the integer. Thus, the unboxed value of a Small Integer is
obtained by applying some transformation to the bit pattern representing the
Integer. This is called "unboxing" the Integer. The inverse transformation is
applied to unboxed values to obtain a Small Integer. For example, if addresses
less 2001 are to be considered Small Integers, and if it is desired to represent the
integers -1000 to 1000 as Small Integers, then the unboxed value of a Small
Integer would be obtained by subtracting 1000 from the address of the Small
Integer.

Definition: A "Small" Integer is an Integer represented in such a way that two
Small Integers represent the same integer if and only if the bit patterns
representing the two Small Integers are identical. That is, no two distinct Small
Integer objects represent the same meta-object. Consequently, Small Integers
require little storage and boxing and unboxing them are efficient operations.

The VM requires that the character codes be Small Integers.

The second method of representing Integers is more general but consumes more
space. Namely, the Integer is represented by the address of one or more storage
locations known to contain the unboxed value of the Integer. The location is called
a "box" and an Integer represented in such a way is called a "boxed" or "Large"
Integer. Unboxing and boxing for boxed Integers is done by accessing and
replacing the contents of the box.

Definition: A "Large" Integer is an Integer other than a Small Integer. The usual
representation of a Large Integer is as a pointer to a storage location known to
contain the unboxed value of the Integer. Two distinct Large Integers may
represent the same integer.

In order to allow the user to discover how many boxes have been constructed, the
VM requires the existence of a field, called the "Large Integer box count" field,
which contains an integer. The initial contents of this field is O. This field is
updated during the process of constructing an Integer (see the definition below),
and by the function BOXCOUNT.

The above discussion of boxes applies equally well to the implementation of
Floating Point Numbers (see the next Section). In that case of course. an unboxed
value is to be interpreted a!? the machine's representation of a Floating Point
Number.

The Virtual Machine must allow for the possibility of arithmetic overflow or

17

underflow. We assume the existence of a field, called the "arithmetic overflow
flag" field, which contains either T, NIL, or (the Integer) O. The initial contents of
this field is O. The contents can be changed with the function OVERFLOW (below)
and determines the behavior of the VM in both Integer and Floating Point overflow
and underflow. The definition below, whi'ch specifies the process of constructing
the Integer representation of an integer, formally specifies the use of this field for
Integer arithmetic (and a similar definition in Section 10 does so for Floating Point
arithmetic).

Definition: The "representation of (the integer) x as an Integer", is the value of the
meta-variable result {if any} after the following computation:

"If! is too large to be represented as an Integer:
If the arithmetic overflow flag field contains T,

cause error 5 with culprit 1;
elseif the arithmetic overflow flag field contains NIL,

let result be the representation of the largest possible Integer;
else. let result be some unspecified Integer;

elseif ! is too small (large negative) to be represented as an Integer:
If the arithmetic overflow flag field contains T,

cause error 5 with culprit -1;
elseif the arithmetic overflow field contains NIL.

let result be the representation of the smallest (large
negative) possible Integer;

else, let result be some unspecified Integer;'
elseif ! can be represented as a Small Integer,

let result be the Small Integer representing !;
else:

Increment the contents of the Large Integer box count field by 1
and store the result in the Large Integer box count field.
Let result be a newly created boxed Integer representing !."

Note that if an overflow or underfow occurs while the arithmetic overflow flag field
is 0, the Integer result of the above process is unspecified. The most natural
behavior is that which would result if the overflow had not been detected: The
Integer result represents whatever bit-pattern the hardware produced during the
arithmetic operaUon.

Definition: The "floor of x", where ~ is a number, is the largest integer less than
or equal to~. The "ceiling of x" is the smallest integer greater than or equal to ~.

Thus, the floor of 2.7 is 2 and the ceiling is 3. The floor of -2.7 is -3 and the
ceiling is -2.

Definition: The "integer part of x", where ~ is a number, is the floor of ~, jf ~ is
non-negative, and is the ceiling of ~, if ~ is negative.

OVERFLOW[flg] Let oldflg be the contents of the arithmetic overflow
flag field.
If not flg = T and not f!g = NIL,

let flg be the Integer O.
Set the arithmetic overflag flag field to flg.
Return oldflg. .

FIXP[x] If ! is an Integer, return !;
else, return NIL.

18

SMALlP[x]

IEQP[i;j]

If ! is a Small Integer. return !;
else, return NIL.

If FIXP[i] and FIXP[j]:
If i and j represent the same integer. return T;
else, return NIL;

Note: IEQP is only specified for Integer arguments. This is so that the check can
be made reasonably efficiently. That is, the two arguments can be unboxed and
compared without regard for the consequences if they are in fact not Integers
(provided the unboxing does not destroy. the state of the VM).

SETN[nvar;valform] (NOEVAl)
If LITATOM[~]:

let n be EVAl[nY!!].
let val be EVAL[valform].
If not NUMBERP[val]. cause error 10 with culprit val;
elseif n is neither a boxed Integer
nor a boxed Floating Point Number.

return SET[nvar;val];
else. store the unboxed value of val
in the box associated with n. and return n;

else. cause error 14 with culprit nY!!.

Note that if the box itself affects the determination of what number its contents
represents, then SETN[nvar:valform] will not necessarily make nvar represent the
same number as valform. For example, if i is a boxed Integer and ~ is a Floating
Point Number, then SETN[i;~] merely deposits the unboxed value of ~ into the box
associated with i. When i is used, the contents of that box will be interpreted as
an integer. That integer will usually not be the number represented by ~.

BOXCOUNT[type;n]

FIX[n]

If n=NIl:
If ~=NIL. represent and return as an Integer the
integer in the Large Integer box count field;
else. represent and return as an Integer the
integer in the Floating Point Number box count field.

else. let n be FIX[n].

If ~=NIL. replace the contents of the Large Integer
box count field with the integer represented by n;
else. replace the contents of the Floating Point Number
box count field with the integer represented by n.

Return n.

If FIXP[n]. return n;
e1seif FLOATP[n]:

Represent and return as an Integer
the integer part of n;

else, FIX[ERRORX[LIST[lO;n]]].

IGREATERP[i;j] If not FIXP[1]. let i be FIX[i].
If not FIXP[i]. let j be FIX[i].
If i > j. return T;
else. return NIL.

19

ILESSP[i ; j] If not FIXP[iJ, 1 et
If not FIXPU]. let
If i < j, return T;
else, return NIL.

be FIX[n.
j be FIX[j).

IPLUS[nl;n2;···nk]

IDIFFERENCE[i;j]

IMINUS[n]

For each ni' if not FIXPL!!i], let ni be FIXL!!d.
If ~ is zero, return the Small Integer 0;
else, represent and return as an Integer
the integer ~1+~2+" '+~k'

If not FIXP[n. let i be FIX[iJ.
If not FIXPU]. let j be FIX[j].
Represent and return as an Integer
the integer i-j.

If not F IXP[~], 1 et n be FIX[~].
Represent and return as an Integer the
integer -~.

ITIMES[nl;nZ;" .nk]
For each ni' if not FIXP[~d, let ni be FIX[~d.
If ~ is zero, return the Small Integer 1;
else, represent and return as an Integer
the integer ~1*~2·· "~k'

IQUOTIENT[i;j] If not FIXP[iJ, let i be FIX[iJ.
If not FIXPU], let j be FIX[j].
If j=O. cause error 5 with culprit j.
Represent and return as an Integer the integer
part of jlj.

IREMAINDER[i;j] If not FIXP[i]. let i be FIX[i).
If not FIXPU]. let j be FIX[j).
If j=O, cause error 5 with culprit j.
Return IDIFFERENCE[i;ITIMES[IQUOTIENT[i;j];j]].

Definition: The "N-bit binary expansion of (Integer) n" is the ordinary binary
representation of the integer (represented by) n, in either 1 or 2's complement
notation (implementor's choice) and employing ~ bits, with the high-order bits (and
sign) to the left. .

In the following, ~ must be at least large enough to allow an ~-bit binary expansion
of every Integer.

LOGAND[nl;n2;" .nk]
For each ni' if not FIXP[~i]' let ni be FIX[~i]'
If ~ is zero, return an Integer whose
~-bit binary expansion contains all l's;
else, return an Integer whose ~-bit binary
expansion has a 1 in bit position j (l=<j=<~),

if and only if the ~-bit binary expansion of each
~i has a 1 in bit position j.

LOGOR[nl;n 2;·· .nk]
For each ni , if not FIXP[~i]' let ni be FIX[ni]'
If ~ is zero, return an Integer whose

20

N-bit binary expansion contains all O's;
else, return an Integer whose N-bit binary expansion
has a 1 in bit position j (l=<j=<~). if and only
if the ~-bit binary expansion of some Ei has a
1 in bit position j.

lOGXOR[nl;n2;···nk]
For each ni' if not FIXP[Ei]' let ni be FIX(Ei]'
If ~ is zero, return an Integer whose N-bit
binary expansion contains all O's;
else. return an Integer whose N-bit binary·
expansion has a 1 in bit position j (l=<j=<N).
if and only if an odd number of the Ei have l's in
bit position j.

llSH[n;factor] If not FIXP[n]. let n be FIX[E].
If not FIXP[factor]. let factor be FIX[factor].
Return an Integer whose
N-bit binary expansion is obtained from that of E
by shifting it factor bit positions to the left
(and filling with O's) if factor)O. and shifting
if factor bit positions to the right (and filling
with O's) if factor<O.

Note: "LLSH" stands for "logical left shift".

lRSH[n;factor] Return LLSH[n;IMINUS[factor]].

LSH[n;factor] If not FIXP[n]. let n be FIX[n].
If not FIXP[factor]. let factor be FIX[factor].
If the floor of n·2~factor can be represented
as an Integer. represent and return as an
Integer the floor of n·2~factor;
else. return an unspecified Integer.

Note: In INTERLlSP-10 LSH is implemented as an arithmetic sh,ift instruction. If the
high-order bits are lost on the shift, the result is just the Integer representing the­
remaining bits.

RSH[n;factor] Return LSH[n;IMINUS[factor]].

GCO[i;j] If not FIXP[l], let i be FIX[l].
If not FIXP[j], let j be FIX[j].
Represent and return as an Integer the
greatest common divisor of 1 and j.

10. FLOATING POINT NUMBERS

Definition: "Floating Point Numbers" are objects that as far as possible obey the
laws of real arithmetic. The Floating Point Numbers constitute a distinct class of
objects with class name FLOATP.

21

During input (cf. Section 27), Floating Point Numbers are denoted by character
sequences defined by (floating pOint number> given below in terms of the Integer
syntax:

<dec real> ::= <dec integer).<dec seq>l<dec integer>. I.<dec seq>
<floating point number> ::= <dec real)l<dec integer>E<dec integer)1

<dec rea1)E(dec integer)

A character sequence defined by (dec real> denotes a Floating Point Number
object which represents the real number whose decimal expansion is the sequence
of characters given, followed by an infinite sequence of O's. In the absence of a
sign (+ or -). + is assumed. A sequence defined by (dec integer)E(dec integer)
denotes a Floating Point Number object which represents the real obtained by
multiplying the first denoted integer by 10 raised to the power denoted by the
second (e.g. 125E3 denotes a Floating Point Number representing the real
125000.0.) A sequence defined by <dec real)E(dec integer) is interpreted
analogously (e.g., 125.4E3 denotes a Floating Point Number representing the real
125400.0).

Although a given Floating Point Number represents exactly one real, it is not the
case that any real can be represented. It is recognized that Floating Point
Numbers inherently have a finite magnitude and precISion. Neither the maximum
magnitude nor the minimum precision is specified since these quantities are largely
determined by the host machine's architecture.

Definition: We say ~~(the Fioating Point Nurnber) x represents (the real) y to
maximum precision" when the real deviation between y and the real denoted by X
is as small as possible given the host machine's internal representation of Floating
Point Numbers.

The VM requires the existence of a field. called the "Floating Point Number box
count" field. which contains an integer. The initial contents of the field is O. The
field is updated by the process which constructs Floating Point Numbers and by
the function BOXCOUNT.

Definition: The "representation of (the real) x as a Floating Point Number" is the
value of the meta-variable result (if any) after the following computation:

"If! is too large to be represented as a
Floating Point Number:

If the arithmetic overflow flag field contains T.
cause error 5 with culprit 1.0;

elseif the arithmetic overflow flag field contains NIL.
let result be the representation of the largest possible
Floating Point Number;

else. let result be some unspecified Floating Point Number.
elseif ! is too close to 0 to be represented
as a Floating Point Number. let result be the representation as a
Floating Point Number of the real 0.0;
elseif! is too small (large negative) to be
represented as a Floating Point Number:

If the arithmetic overflow flag field contains T.
cause error 5 with culprit -1.0;

elseif the arithmetic overflow flag field contains NIL.
let result be the representation of the smallest
(large negative) possible Floating Point Number;

22

else, let result be some unspecified Floating Point Number.
elseif ~ is to be represented as a bo~ed
Floating Point Number (implementor's choice):

Increment the contents of the Floating Point Number box count
field by 1 and store the result in the Floating Point Number box
count field.
Let result be a newly created boxed Floating Point Number
representing ~ to maximum precision;

else, let result be the unboxed Floating Point Number representing! to
maximum precision."

FLOATP[x]

FLOAT[n]

FGREATERP[x;y]

FLESSP[x;y]

If ~ is a Floating Point Number, return !;
else, return NIL.

If FLOATP[~], return ~;
elseif FIXP[~]:

Represent and return as a Fioating Point
Number the real obtained by
appending a decimal point followed by
an infinite sequence of O's to the right
of the decimal expansion of ~.

else, FLOAT[ERRORX[LIST[10;~]]].

If not FLOATP[~], let x be FLOAT[~].
If not FLOATP[1] , let y be FLOAT[1].
If x > 1, return T; else, return NIL.

If not FLOATP[~]. let x be FLOAT[!] ..
If not FLOATP[1), let y be FLOAT[1].
If ! < 1, return T; else return NIL.

FPLUS[nl;n2;" .nk]

FDIFFERENCE[x;y)

FMINUS[n)

For each ni' if not FLOATP[~i]'
let ni be FLOAT[~i)'

If ~ is zero, represent and return as a Floating Point
Number the real 0.0;
else, represent and return as a Floating Point
Number the real ~1+~2+" '+~k'

If not FLOATP[~], let x be FLOAT[!].
If not FLOATP[1], let y be FLOAT[1].
Represent and return as a Floating Point
Number the real !-1.

If not FLOATP[~), let n be FLOAT[fl].
Represent and return as a Floating Point
Number the real -fl.

FTIMES[nl: n2;" .nk]
For each ni' if not FLOATP[fli]'

let ni be FLOAT[~i]'
If ~ is zero. represent and return as a
Floating Point Number the real 1.0;
else, represent and return as a Floating Point
Number the real ~1·~2·· .. ·flk'

FQUOTIENT[i;j] If not FLOATP[j), let i be FLOAT[l].
If not FLOATP[j), let j be FLOAT[j].
If j=O.O, cause error 5 with culprit j.
Represent and return as a Floating Point

23

Number the real i/j.

FREMAINDER[x;y] If not FLOATP[~]. let x be FLOAT[~].
If not FLOATP[~]. let y be FLOAT[~].
If ~ = 0.0. -cause error 5 with culprit ~.
Represent and return as a Floating Point Number
the real representing the difference between ~ and
the un boxed value of (~/~)·~.

Note: FREMAINDER is non-zero only due to the finite precision of the host
machine's floating point arithmetic.

11 . ADDITIONAL ARITHMETIC FUNCTIONS

The following VM functions could be defined in terms of those in the last two
Sections. However, it is useful to consider them primitive.

NUMBERP[x] If FIXP[~] o~ FLOATP[~]. return T;
else return NIL.

MINUSP[x] If FLOATP[~]. return FMINUSP[~];
else return IMINUSP[~].

GREATERP[x;y] If FLOATP[~] or FLOATP[~]. return FGREATERP[~;~];
else return IGREATERP[~;~].

LESSP[x;y] (Same specification as for GREATERP except use
FLESSP instead of FGREATERP and ILESSP instead of
IGREATERP.)

PLUS[xl;xZ; ... xk]

DIFFERENCE[x;y]

. MINUS[x]

If FLOATP[~i]' for any 1=<i=<1:
FPLUS[~1;~2;" '~k];

else IPLUS[~1;~2; "'~k]'

(Same as GREATERP except use FDIFFERENCE for
FGREATERP and IDIFFERENCE for IGREATERP.)

If FLOATP[~]. return FMINUS[~];
else return IMINUS[~].

TIMES[xl; x2; ... xk]
(Same specificat ion as for PLUS except u'se
FTIMES for FPLUS and ITIMES for IPLUS.)

QUOTIENT[x;y] (Same specification as for GREATERP except
use FQUOTIENT for FGREATERP and IQUOTIENT
for IGREATERP.)

REMAINDER[x;y] (Same specification as for GREATERP except
use FREMAINDER for FGREATERP and IREMAINDER for
IGREATERP.)

24

EXPT[x;y]

SQRT[x]

LOG[x]

ANTILOG[x]

If not NUMBERP[!]. cause error 10 with culprit !;
elseif not NUMBERP[~]. cause error 10 with culprit ~.

If FIXP[!] and FIXP[~] and ~>=O:
Represent and return as an Integer !~~;

elseif !<O and not EQP[I:FIX[I]]:
Cause error 17 with culprit
CONS["Illegal exponentiation:"LIST[:EXPT;!:I]];

else. represent and return as a Floating Point
Number the real !~l.

If not NUMBERP[!]. cause error 10 with culprit !;
elseif !<O. cause error 17 with culprit
CONS["SQRT of negative value";!].

Represent and return as a Floating Point Number
the square root of ! (note that! may be
a Floating Point Number or an Integer).

If not NUMBERP[!]. cause error 10 with culprit !;
elseif !<O. cause error 17 with culprit
CONS["LOG of negative value":!].

Represent and return as a Floating Point Number
the natural logarithm of ! (note that! may be
a Floating Point Number or an Integer).

If not NUMBERP[!]. cause error 10 with culprit !.

Represent and return as a Floating Point Number the
real whose natural logarithm is ! (note that! may be
a Floating Point Number or an Integer).

SIN[x:radiansflg]
If not NUMBERP[!]. cause error 10 with culprit !.

Represent and return as a Floating Point
Number the sine of ! (measured in radians
if radianflg. otherwise in degrees)
(Note that! may be a Floating Point Number
or an Integer.)

COS[x:radiansflg]
(Same specification as for SIN except use
"cosine" instead of "sine".)

TAN[x:radiansflg]
(Same specification for as SIN except use
"tangent" instead of "sine".)

ARCSIN[x:radiansflg]
If not NUMBERP[!]. cause error 10 with culprit !:
elseif ! < -lor! > 1. cause error 17 with
culprit CONS["ARCSIN: arg not in range":!].

Represent and return as a Floating Point Number
the angle (measured in radians if radianflg
and otherwise measured in degrees) between -90 and
+90 degrees whose sine is ! (note that! may be a
Floating Point Number or an Integer).

25

ARCCOS[x;radianflg]
(Same specification as for ARCSIN except use
"cosine" for "sine", "ARCCOS" for "ARCSIN"
"0" for "-gO" and "180" for "+90".)

ARCTAN[x;radianflg]
If not NUMBERP[!], cause error 10 with culprit !.

Represent and return as a Floating Point Number
the angle (measured in radians if radianflg
and otherwise measured in degrees) between 0 and
180 degrees whose tangent is ! (note that! may be a
Floating Point Number or an Integer).

The following function, RAND, is used to generate pseudo-random numbers. It is
assumed that in order to so operate, RAND must save some state information from
one call to the next. The VM assumes this state information (called a "RAND
state") is contained in an implementor defined object (ca"ed a "RAND State" -
note capitalization) and is stored in the value field of the Literal Atom RANDSTATE.
The VM also assumes that a RAND State can be destructively modified so as to
represent any given RAND state. (Thus, a RAND State might be a boxed Integer
capable of representing many integers. In INTERUSP-10 it is a List Cell containing
two boxed Integers.) This allows RAND to save its new (next) state in the object
representing its current state, thereby avoiding the creation of a new object.
Finally. it is assumed that such a state entirely determines the next number
generated by RAND (for a given pair of arguments). (That is. if a copy of the
current RAND State is saved and then RAND is used to generate some sequence
of "random" numbers, the same sequence can be generated in the future by
restoring the saved State (with RANDSET) and executing the same sequence of
calls to RAND.)

RAND[lower;upper]
Let stateobj be RANDSTATE.
If stateobj is not a RAND State:

Let stateobj be RANDSET[T].

If FIXP[lower] 'and FIXP[~]:
Using the RAND state in stateobj as
the current state, generate a psuedo-random integer,
i, lower=<i=<~, and a new state, !.
Destructively modify stateobj so that it represents !.
Represent and return as an Integer the integer i.

else:
Let lower be FLOATP[lower].
Let upper be FLOATP[~].
Using the RAND state"in stateobj as the current
state, generate a psuedo-random real,
!, lower=<!=<~, and a new state. !.
Destructively modify stateobj so that it represents !.
Represent and return as a Floating Point Number
the real !.

RANDSET[state] If state=T:
Let news tate be a new RAND state created from any
(pseudo-) random source available (e.g., a run-time

26

12. STRINGS

clock).
Let newstateobj be a new RAND State (note upper case)
representing newstate (i.e .. newstateobj is a new object
as well as being a representation of a new state).
SETQ[RANDSTATE;newstateobj].

elseif state is an object that represents a
valid RAND state:

Let news tate be the RAND state represented
by ill.,1!.
Let newstateobj be a new RAND State (note upper case)
representing newstate (i.e .• newstateobj is a new object
representing the old state represented by state).
SETQ[RANDSTATE;newstateobj].

elseif state /= NIL:
Cause error 17 with culprit
CONS["arg not previous value of RANDSET";state].

Return a new RAND State (note upper case)
representing the state represented by RANDSTATE
(i.e .. return a new object which
represents the current RAND state).

Strings are objects which represent character sequences. However, the String
handling functions expose a certain amount of the internal represention of Strings.
It is possible to form two distinct Strings which share the same internal structure.
This can be detected by replacing the characters in either String and observing
side-effects on the other. Therefore, Strings have a richer and more complicated
structure than mere character sequences.

We must first introduce the concept of a "string" (note lower case). Intuitively, a
string is like a character sequence in that it specifies some succession of
characters. However, unlike a character sequence. the ith character in a string can
be changed without producing a new string. This can be formalized as follows:

Definition: A "string (of length n)" is a meta-object having 0 fields, each identified
with an integer, 1 =<1=<0 (provided 0>0), and each containing a Character. At any
instant a string "represents" the character sequence with the same succession of
Characters.

Definition: A "String" is an object with the following properties:

(1) There is a field, called the "source" field,- which may contain either
a character sequence or a string.

(2) There is a field. called the "position" field. which contains a
positive integer, with the restriction that the integer cannot be
greater than the number of characters in the source.

(3) There is a field. called the "charcount", which contains a non­
negative Integer, with the restriction that the position plus

27

charcount of a String cannot exceed the number of characters in
the source of the String.

Strings constitute a distinct class of objects with class name STRINGP.

At any instant, a given String, x, with position, i, and charcount, n, represents the
. character sequence consisting of the n characters in the source of)5., starting at
the ith. This is the pname of the String.

The reason the source field may contain either a character sequence or a string is
that it is convenient to produce Strings directly from the contents of the name
fields of Literal Atoms without converting those character sequences into character
strings (ct. MKSTRING). Ot course, since it is impossible to change the characters
in a character sequence, the source at such a String must be replaced by a string
the first time a character is to be changed (ct. RPLSTRING).

Definition: An "empty String" is one with charcount O. The source and position
fields of an empty String are irrelevant.

Definition: "Create a new String representing (character sequence) x" means
"Create a new String, with source set to a new string representing ~. position set
to 1, and charcount set to the length of ~." Whenever the source, position, or
charcount of a new String is not as specified above, we will be explicit.

NCHARS (cf. Section 8) returns the number of characters in the pname of a String.
NTH CHAR (cf. Section 8) returns the ith Character in the pname of a String.

STRINGP[x) If ! is a String. return !; else return NIL.

STREQUAL[x;y] If STRINGP[!] and STRINGP[I]:
If the character sequence represented by ! is
the same as that represented by I. return !;
else. return NIL.

MKSTRING[x;flg;rdtbl]
If f.!.g:

Create and return a new String representing the
PRINZ-pname of ! with respect to rdtbl.

elseif STRINGP[!]. return !;
elseif LITATOM[!]. create and return a new
String with source set to the name of !.
position set to 1. and charcount set to the number
of characters in the name of !;
else:

Create and return a new String representing the
pname of !.

CONCAT[X1;xz;··· xnl
If fl is zero, create and return a new empty String;
else:

Create and return a new String representing the
character sequenc~ obtained by concatenating the
pnames of !1 through !n (in that order).

RPLSTRING[str;n;newchars]
If not STRINGP[str]. let str be MKSTRING[str).
If !! is NIL, let n be 1;

28

e1seif not FIXP[~]. let n be FIX[Q].

If ~<O. let ~ be NCHARS[str]+~+1.
If ~<o or ~=O or n>NCHARS[str].

cause error 27 with culprit newchars.

If newchars is a Literal Atom or a String
and ~+NCHARS[newchars]-1 > NCHARS[str].

cause error 27 with culprit newchars;
else:

If the source of str is a character sequence
(rather than a string). replace the source of
str with a string representing the source of str.
Let strsource be the source of !1r.
Let i be the position of str.
Let 1 be the charcount of str.
Replace the contents of the successive Character fields
of strsource. starting with the 1+~-1st. with the
successive Characters from the pname of newchars (from
left-most through right-most). and if this process requires
the replacement of a field beyond the 1+1-1st one.
cause error 27 with culprit newchars.
Return str.

SUBSTRING[str;n;m]

GNC[str]

GLC[str]

If not STRINGP[str] and not LITATOM[!1r].
let str be MKSTRING[str].·

If ~ is NIL. let n be 1;
elseif not FIXP[~]. let n be FIX[~].
If m is NIL. let m be NCHARS[str];
e1seif not FIXP[m]. let m be FIX[m].

If ~<O. let n be NCHARS[str]+n+1.
If m<O. let m be NCHARS[str]+n+1.
If ~<o ~r n=O or n>m. return NIL.

If STRINGP[str]:
Let i be the contents of the position field of str.
Create and return a new String with source
set to the source of str. position to 1+n-1.
and charcount to m-~+l;

else:
Create and return a new String with source
set to the name of str. position to Q. and charcount
to m-~+1.

If not STRINGP[str]. let str be MKSTRING[str].
If str is an empty string.

return NIL;
else:

Let y be the first Character in the pname of str.
Let i be the contents of the position field of str.
Set the position field of str to 1+1.
Return y..

If not STRIN~P[str]. let str be MKSTRING[str].
If str is an empty string.

return NIL;
else:

Let y be the last Character in the pname of str.
Let n be the charcount of str.

29

Set the charcount field of str to n-J.
Return y..

The next function searches one string for the first occurrence of another.
However, wild card characters are allowed. Thus, we will define the notion of two
character sequences being equal with respect to some wild card character:

Definition: "(character sequences) seq1 and seq2 (each of length n) are equal
with respect to the wild card skip", where skip is an arbitrary object, means "For
each i from 1 to n, either the lth Character in ~1 is .s..!sl.R.. or is the ith Character
in seQ2'"

STRPOS[pat;str;start;skip;anchor;tai1]
If start=NIL. let start be 1;
e1seif NUMBERP[start] and start<O:

let start be NCHARS[str]+start-1.

If not FIXP[start]. let start be FIX[start].
Let patlen be the length of the pname of pat.
Let strlen be the length of the pname of str.
If anchor, let max be start;
else, let max' be strlen-patlen+1.

If there is an integer. i. start=<i=<max,
such that the pname of pat and the, pat 1 en long
substring of the pname of str starting ati are
equal with respect to the wild card skip:

let i be the smallest value denoted by such an i.
If tail, represent and return as an Integer i+pat1en+1;
else, represent and return as an Integer i;

else, return NIL.

The following two functions are used to search strings for the first occurrence of
anyone of a set of characters. In order to make this efficient. the VM allows the
user to call a function (MAKEBITTABLE) which preprocesses a proper list of
characters codes and produces an object which represents the corresponding set
of characters in an efficient way. We call this representation, of a set of
characters a "bittable", The implementor is free to represent bittables in any way
desired4 , The VM allows for the possibility that the object representing a bittable
can be modified (by replacing the contents of fields within it) so that the set it
represents is changed.

MAKEBITTABU[lst;complimentflg:oldbittable]
If 1st is not a proper list,

4

Let charset be an unspecified set of characters;
else:

Let charset be the set of precisely those characters, c,
such that either (1) the character code of f is in
(the proper list) 1st, or (2) f is the first character
in the pname of some non-FIXP element of 1st.

In INTERLlSP-10 they are arrays,

30

If comp1imentf1g. let charset be the compliment
of charset with respect to the set of all characters.

If oldbittable is an object representing a bittable
and can be modified to represent charset:

Modify oldbittable so that it represents charset.
Return oldbittable;

else. create and return a new bittable representing
charset.

STRPOSL[bittable;str;start;complimentflg]

13. ARRAYS

If start=NIL. let start be 1:
e1seif NUMBERP[start] and start<O:

Let start be NCHARS[str]+start-l.

If not FIXP[start]. let start be FIX[start].
If bittab1e is not a bittab1e.

let bittable be MAKEBITTABLE[bittab1e].

Let char set be the set represented by bittable.
If comp1imentf1g. let charset be the compliment
of charset with respect to the set of all characters.

If there is an integer. i. start=<i=<NCHARS[str].
such that the ith character in the pname of str
is in charset:

Let i be the smallest value denoted by such an i.
Represent and return as an Integer the integer i:

else. return NIL.

Definition: "Arrays" are objects that contain a fixed number of fields, each
identified by a positive Integer "subscript". An Array containing n fields is said to
have size n. There are two kinds of Arrays which differ according to the class of
objects which may be contained in their fields. The fields in a "Pointer" Array may
contain any objects whatsoever. The fields in an "Integer" Array may only contain
Integers. Arrays constitute a distinct class of objects with class name ARRA YP.

It is assumed that the implementation will take advantage of the restriction on the
contents of Integer Arrays to avoid unnecessary boxing and un boxing of Integers.
The implementor is free to provide arrays of other types and to generalize the
functions ARRAY. ARRAYTYP, ELT, and SETA to handle them.

ARRAYP[x] If ! is an Array. return!
else return NIL.

ARRAY[n;typ;initva1]
If not FIXP[~]. let n be FIX[fl].
If fl<O. cause error 27 with culprit fl.

If ill = FIXP:
If initva1 is NIL. let initva1 be 0;

31

ARRAYSIZE[array]

elseif not FIXP[initva1], let initva1 be FIX[initva1].
Create and return a new Integer Array of size ~,
each field of which initially contains (unboxed) initval;

e1seif 1YQ = NIL or 1YQ : POINTER:
Create and return a new Pointer Array of size ~,
each field of which initially contains initval.

If ARRAYP[array],
return an Integer representing the the size of array

else, cause error 28 with culprit array.

ARRAYTYP[array] If ARRAYP[array]:
If array is an Integer Array, return FIXP;
e1seif array is a Pointer Array, return POINTER;

else, cause error 28 with culprit array.

ELT[array;n] If not ARRAYP[array], cause error 28 with culprit array.
If not FIXP[~], let n be FIX[~].

If 1=<~ and ~=<ARRAYSIZE[array]:

SETA[array;n;va1]

If array is an Integer Array,
represent and return as an Integer the integer
represented by the contents of the ~th field of array;

elseif array is a Pointer Array,
return the contents of the ~th field of array;

If not ARRAYP[array], cause error 28 with culprit array.
If not FIXP[~], let n be FIX[~].
If n<1 or ~>ARRAYSIZE[array],

cause error 17 with culprit CONS["Out of bounds SETA";~].

If array is an Integer Array,
Let val be FIX[va1].
Replace the contents of the ~th field of array with
the results of unboxing val (as an Integer) and return val;

e1seif array is a Pointer Array,
Replace the contents of the ~th field of
array with val and return val.

14. HASH ARRAYS

Hash Arrays are objects that provide an efficient way of associating arbitrary
objects. To define a Hash Array we must first introduce the notion of a "hash­
link".

Definition: A "hash-link" is a meta-object having two fields. The contents of the
first field is called the "hash-item" of the hash-link. The contents of the second
field is called the "hash-value" of the hash-link. The hash-link represents the
association of the hash-item with the hash-value.

Definition: A "Hash Array" of "size" n is an object having n fields, each of which
may contain a hash-link. Hash Arrays constitute a distinct class of objects with
class name HARRA YP.

32

Roughly speaking, it is possible to fetch and replace the hash-value associated
with some hash-item in a given Hash Array. In addition, subject to certain
constraints, it is possible to add a new hash link to a Hash Array, and to remove
an old one.

The process of finding the hash-link (if any) in a given Hash Array for some hash­
item is called "hash linking" from the hash-item. It is assumed that hash coding is
used to make this efficient. The hash coding algorithm used is not specified. It is
assumed that the hash coding algorithm implemented will come reasonably close to
using all n possible fields before declaring the Hash Array "full".

Initially, the value field of the Literal Atom SYSHASHARRA Y shall contain a List Cell
whose CAR is a Hash Array and whose CDR is the Floating Point Number 1.5. This
Hash Array is used as the user's default Hash Array (i.e., supplied when the Hash
Array parameter of the functions below are NIL), and the number indicates the
factor by which it is expanded when fullS. The initial size of the Hash Array is not
specified6 . This Hash Array may not be used to implement any VM facility; it is
available only for the user.

The following definition is one of several in this document that involve meta­
variables which are understood to take as values the names of other meta­
variables and change the denotation of the those (other) meta-variables.

Definition: To "get Hash Array harray", where the meta-variable harray denotes a
meta-variable which currently denotes an arbitrary object, means:

"Let obj be the Object denoted by (the meta-variable) harray
(note underlining).
If obj is NIL. let harray (note underlining) be SYSHASHARRAY.
If LISTP[obj] and HARRAYP[CAR[obj]]:

let harray (note underlining) be CAR[obj];
elseif not HARRAYP[obj]:

cause error 17 with culprit CONS["Arg not hash array";obj)."

The reader should understand that if the meta-variable x denotes some non-Hash
Array object when the phrase "Get Hash Array x" is used in 'a specification, then
either an error is caused or else the denotation of x is changed (in particular to
some Hash Array).

HARRAYP[x]

HARRAY[size]

If ~ is a Hash Array, return ~;
else, return NIL.

If not FIXP[size], let size be FIX[size].
Create and return a new Hash Array
of size size containing no hash-links.

HARRAYSIZE[harray]

5 This expansion is not done in the VM but in ERRORX when error 26 is caused.

6 In INTERlISP-10 it is 512.

33

Get Hash Array harray.
Represent and return as an Integer the size of harray.

PUTHASH[item;val;harray]
Let origharray be harray.
Get Hash Array harray.

If val is NIL,
If item is the hash-item of any hash-link in harray.
remove that hash-link from harray.
Return NIL;

elseif item is the hash-item of any hash-link in harray,
Set the hash-value of that hash-link to val.
Return val;

elseif harray is full,
cause error 26 with culprit origharray;

else:
Add a new hash-link to harray, with item as the
hash-item and val as the hash-value.
Return val.

GETHASH[item;harray]
Get Hash Array harray.
If item is the hash-item of any hash-link in harray,

return the hash-value of that hash-link;
else, return NIL.

CLRHASH[harray] Let origharray be harray.
Get Hash Array harray.
Remove all hash-links from harray.
Return origharray.

MAPHASH[fn;harray]
Get Hash Array harray.
For every hash-link, x, in harray, compute fn[val;item],
where item is the hash-item of ~ and val is the hash-value.
Return NIL.

REHASH[oldharray;newharray]
Get Hash Array oldharray.
CLRHASH[newharray].
For every hash-link, x, in oldharray, perform
APPLY*[PUTHASH;item;val;newharrav], where item is the
hash-item of ~ and val is the hash-value.
(The reason APPLY* is used above is only to insure
that a frame extension (cf. Sections 17 and 18) is built for
the call to PUTfiASH. Thus, if newarray is fi lled and
ERRORX is called by PUTHASH, ERRORX can find the call to
PUTHASH, generate a suitably expanded Hash Array,
initialize it, add the new hash link from item to val which
previously could not be added, and then use the stack
function RETFROM to exit from PUTHASH and continue the
REHASH.)
Return newharray.

15. USER DEFINED DATATYPES

34

The VM allows the user to define new classes of objects. Associated with each
such class is a new data type.

In general an object in such a class contains a fixed number of fields (determined
according to the definition of the class) each of which may be restricted to contain
only certain other kinds of objects or meta-objects. Facilities are provided for
declaring the number and type of the fields for a given class, creating objects of a
given class, accessing and replacing the contents of the fields of such an object,
and interrogating such objects.

In order to define a new class of objects, the user must supply a new data type
name and specifications for each of the fields in the objects of the new class.

Oefinition: A "field specification" is either one of the Literal Atoms POINTER, FIXP,
or FLOATP, or else is a proper list of the form (SIGNEDBIT j) or (BIT i), where i is
an Integer less than the word length of the host machine.

Definition: A field "satisfies a (field specification) spec", if the following
relationship holds between .s.ruiC. and the possible contents of the field:

POINTER
FIXP
FLOATP
(SIGNEDBIT j)

(BIT j)

Contents of field

Any object
Any representable integer (note lower case)
Any representable real (note lower case)
Any representable integer (note lower case)
whose absolute value is less than 21'1
Any representable non-negative integer (note
lower case) whose value is less than 21'i.

Oefinition: We say that an object "fields satisfying spec l' spec2' ... specn" if each
of the n fields of the object satisfies a distinct speci' In this case, we say that the
field satisfying specj is the jth field (however, nothing is implied about the actual
order of the fields in the representation of the object).

Field specifications are used to communicate to the function" DECLAREDA TATYPE
(below) the number of and restrictions on the fields in a new class.
DECLAREDATATYPE is free to arrange the storage allocation for the fields in any
way desired by the implementor. DECLAREDATATYPE then returns a proper list of
objects, called "field descriptors", which encode the information regarding the
position and type of each field. The user can pass such a field descriptor to the
functions FETCHFIELD and REPLACEFIELD (below) to access and replace the
contents of a given field in an object of the new class. A field descriptor can be
any object the implementor wishes to use to carry this information from
DECLAREDAT ATYPE to FETCHFIELD and REPLACEFIELD.

Definition: A "field descriptor" for the Ith field in some object is any object the
implementor wishes to use which communicates (from the function
DECLAREDATATYPE to the functions FETCHFIELD and REPLACEFIELD) sufficient
information to allow the contents of the jth field to be accessed and replaced.
(Typically, a field descriptor for" the ith field must specify the field's type, size, and
relative location within the actual representation.)

35

Convention: If ~ is a field descriptor for some field of some object then we
may refer to the field as the "~ field" of the object.

DEClAREDATATYPE[type;speclst)
If not LITATOM[~).

cause error 17 with culprit CONS["Illegal data type";.lY.I!.!];
elseif ~ is the data type of an existing class,

return GETDESCRIPTORS[.lY.I!.!]:
elseif speclst=NIL. cause error 17 with culprit
CONS["Illegal field specification list";NIl).

Assume speclst is a non-empty proper list of length g and let
speci_ l=<l=<g. be the elements of speclst.
If any speci_ l=<l=<g. is not a recognized
field specification. cause error 17 with culprit
CONS["Illegal field specfication";speci).

Create a new class of objects with data type ~
such that any object of this class shall have g fields
satisfying spec1' specZ' ... specn.

Create and return a new proper list. containing g
objects. such that the lth element of the proper list
is a field descriptor for the lth field in objects of data
type .llI!!.

FETCHFIElD[descr:obj)
If descr is a field descriptor for some data
type, type, and the type of obj is ~:

Let spec be the field specification of the ~
field of obj.
let val be the contents of the descr field of obj.
If spec is POINTER. return val;
elseif spec is FIXP or of the form (SIGNEDBIT j)
or (BIT j).

represent and return as an Integer the integer val;
e1seif spec is FlOATP.

represent and return as a Floating Pointer Number the
real val.

REPlACEFIElD[descr;obj;val)
If descr is a field descriptor for some data type.
type. and the type of obj is ~:

Let spec be the field specification for
the descr field of obj.
If spec is POINTER:

let x be val;
elseif spec is FIXP:

let val be FIX[val).
let x be the integer represented by val.

elseif spec ;s FLOATP:
Let val be FLOAT[val).
Let x be the real represented by val.

elseif spec ;s of the form (SIGNEDBIT j):
Let val be FIX[va1).
If the absolute value of val is less than Ztj,

let x be the integer represented by val;
else. truncate val so that its absolute value
is less than 2tj {see below}, and let x be the
integer represented by the result;

elseif spec is of the form (BIT j):

36

let val be FIX[val].
If val is a non-negative integer less than 2~j.

let x be val:
else. truncate val so that it is less than 2~j
(see below). and let x be the integer represented
by the result.

Replace the contents of the descr field of obi with !.
Return val.

Note: We do not define the process of "truncating" an Integer, other than require
that it be an operation on Integers that produces an Integer of smaller absolute
value. Truncation could be defined to merely produce the low-order digits of the
number.

NCREATE[type;oldobj]
If ~ is not the name of a previously declared
user data type, cause error 17 with culprit
CONS[" I 11 ega 1 data type" :.!l1!!].

Let newobj be a new object of data type
.!l1!!. the fields of which have unspecified
initial contents.

If TYPENAME[oldobj] is ~. replace the contents of
successive fields in newobj'with the objects or
meta-objects in the corresponding fields of oldobj.

Return newobj.

GETFIELDSPECS[descr]
If descr is not the field descriptor of a previously
declared user data type. type. cause error 17 with culprit
CONS["Illegal field descriptor";descr].
Return a field specification which is EQUAL to the one
supplied for the descr field of Objects of type ~.

GETOESCRIPTORS[type]
If not LITATOM[~]. let type be TYPENAME[!YQ!].
If ~ is the name of a user data type.

create and return a proper list of the field descriptors
for the n fields of objects of type !lQ!.
ordered from 1 to n:

else. return NIL.

16. FUNCTIONS AND FUNCTION OBJECTS

In the introductory Sections of this document we introduced several conventions
that were central to understanding this document. These conventions concerned
the form of function specifications, the notion of meta-variables, the rules
governing the use and denotation of meta-variables, and the meaning of the
notation "f[xl ;",xk]". These definitions are all at the meta-level in the sense that
th~y tell the reader what the specifications mean.

37

But the issues involved are central to any programming language. Each of the four
meta-concepts above have realization in the VM itself: the representation of
INTERLISP programs (function objects), the representation of INTERLISP variables
as objects, the processes for accessing and binding INTER LISP variables, and the
process for running a function object on given arguments and obtaining the result.

We now begin the discussion of these issues. This Section describes the
representation of INTERLISP programs; Section 17 specifies the structures used for
binding INTERLISP variables to their values and for keeping track of subroutine (in
fact, coroutine) calls; Section 18 specifies the processes for binding and accessing
INTERLISP variables and evaluating INTER LISP function objects; Sections 19 and 20
present additional restrictions, refinements and extensions relating to the
implementation of the above facilities.

Intuitively, a function object is a program which can be "run" on some arguments to
compute some result. A function is just a Literal Atom which has a function object
in its function definition field. When a function is applied to a proper list of
arguments it is actually the associated function object which is evaluated.
Therefore, this Section deals primarily with function objects.

The function· objects do not form a disjoint class of objects. For example, some
proper lists are function objects. We will discuss the representations of function
objects later in this Section.

Every function object must specify how the result of an application is to be
computed in terms of the arguments supplied. This specification is done by the
"body" of the function object. Of course, with each application the arguments
supplied will generally be different. Thus, the computation is specified in terms of
Literal Atom "parameter names" which are treated (during the interpretation of the
function object by EVAl) as variables representing the actual arguments to be
used.

Recall that when we formally specify a VM function we give a list of meta-variables
used as parameter names for the VM function specification. The Literal Atom
parameter names in a function object are just the realization of these meta­
variables. However, nothing is implied about the particular parameter names the
implementor should choose when coding the VM functions.

When the function object is applied to some proper list of argument forms, the
actual value to be used in place of each parameter name is determined. This.
raises the following question: Are the parameter names to stand for the values of
the argument forms or the forms themselves? In INTERLISP this is determined by a
property of the function object being evaluated. The VM allows for two types of
function objects: Those of "eval" type are to have their arguments evaluated
before the function is activated. Those of "noeval" type are to be activated on the
argument forms themselves.

Recall that some ot the VM function specifications include the phrase "(NOEVAl)"
after the parameter list (ct. AND in Section 5). Formally this means that the
function object corresponding to the specification is to have noeval type. All other
VM functions are to be of eval type. .

In addition to the evallnoeval distinction, INTERLISP provides another property of

38

function objects: A given function object may either take a fixed or variable
number of arguments. A function object which takes a fixed number of arguments
is called a "spread" type function object, because at application time the
arguments are spread across (associated one-to-one with) the parameter names of
the function object (with extra arguments ignored and extra parameter names being
associated with NIL). If a function object takes a variable number of arguments,
then at application time the entire k-tuple of arguments supplied is assOCiated with
one parameter name. Such function objects are said to be of "nospread" type.

Those VM function specifications which involve the use of an elipsis (" ... ") in the
parameter list of the specification (cf. AND in Section 5) are to be implemented as
nospread function objects. All other VM functions are to be spread function
objects.

The parameter names of a function object must be distinct Literal Atoms other than
NIL and T, and they must be available to the implementor at application time so that
they may be used to set up an association between the names and the values to
be used during a particular computation. For spread type function objects, the
implementor must be able to obtain an n-tuple of parameter names. This is called
the function object's "parameter n-tuple". For nospread type function objects, the
implementor must be able to obtain a single parameter name, simply called the
function object's "parameter".

The next two Sections present the details 'of the parameter/value association
mechanisms and processes.

The body of a function object specifies a computation in terms of the values of the
parameters. The body may be written either in some language which is directly
executable by the processor which is running the Virtual Machine, or it may be
written as an INTERLISP form which must be interpreted by the Virtual Machine. A
function object is called "directly executable" if its body is of the first type.

Most of the functions specified in this document will be implemented as directly
executable function objects which have been hand-coded by the implementor.
When executed, this code should perform the computations specified in the
corresponding VM function specification.

The only kinds of function objects the user himself can create are those that are
interpreted. However, most INTERUSP systems provide a compiler which will
convert an interpreted function object into a directly executable one. The VM
does not require the existence of a compiler. However, it does recognize that a
compiler may exist7 .

Finally, some function objects specify a variable binding environment in which the
body is to be evaluated. Such function objects are called FUNARGs. FUNARGs
have all the properties of other function objects in addition to specifying a Stack
Pointer (cf. Section 17) which specifies additional variable bindings to be used
during evaluation of the body of the FUNARG.

7 The VM puts certain constraints on the compiler if one exists. See Section 20.

39

Definition: A "function object" is an object with the following properties:

(1) There is a flag specifying whether fnobj is of eval or noeval type.

(2) Either a parameter n-tuple or a parameter is available to the
implementor, depending on whether the function is a spread or
nospread function object.

(3) There is a body, obtainable by the implementor, which defines
some computation either with directly executable code or with a
form to be interpreted.

(4) For FUNARG function objects, there is a Stack Pointer which
specifies additional variable bindings.

The function objects do not constitute a distinct class of objects. They may be
represented in a variety of ways (as discussed below) and may exploit the
presence of other data types8 .

Definition: A "SUBR" is a directly executable function object written by the
implementor: An "EXPR" is either an interpreted function object or a FUNARG. A
"CEXPR" is a directly executable function object generated by the compiler.

We now consider how function objects are represented.

SUBRs may be represented as any objects the implementor desires, provided:

(1) The implementor can recognize such objects as hand-coded
function objects.

(2) The object can be determined to be of eval or noeval type (as
appropriate).

(3) The parameter n-tuple or parameter (as appropriate) can be
obtained from the object (by the implementor).

(4) The body of the function object can be obtained and directly
executed.

Additional constraints on the implementation of SUBRs are listed in Section 19.

EXPR function objects other than FUNARGs are represented by proper lists whose
first elements are either the Literal Atoms LAMBDA or NLAMBDA. Any List Cell
whose CAR is LAMBDA is considered to be a non-FUNARG EXPR function object
of eval type. Any List Cell whose CAR is NLAMBDA is considered to be a non­
FUNARG EXPR function object of noeval type. If fnobj is a non-FUNARG EXPR
function object as above, then fnobi may be assumed to be a proper list of length
at least 2. The second element of fnobj determines whether fnobj is a spread or

8 For example. in INTERLlSP-10 Arrays are used to hold directly executable code.

40

nospread function object. If the second element of fnobj is NIL or a List Cell, fnobj
is a spread function object and its second element may be assumed to be a
proper list of Literal Atom parameter names: the parameter n-tuple of fn.Q..!;ll is just
the n-tuple consisting of the successive elements of the second element of fnQb1
If the second element of fnobj is not NIL or a List Cell, then fnobj is a nospread
function object and its second element may be assumed to be a Literal Atom to be
used as the parameter of fnobj9. The body of an EXPR function object is just the
proper list of elements after the second. This proper list is treated as a proper
list of forms to be evaluated as specified in the next Section.

CEXPR function objects may be represented as any objects the implementor
desires, provided that the restrictions noted in Section 20 are met.

Finally, FUNARG function objects are represented by proper lists. Any List Cell
whose CAR is the Literal Atom FUNARG is considered to be a FUNARG function
object and may be assumed to be a proper list of length 3. The eval/noeval type,
spread/nospread type, parameter n-tuple/parameter and the body of the FUNARG
expression are (recursively) those of the second element of the proper list. The
third element of the proper list is assumed to be a Stack Pointer. The details of
the use of this Stack Pointer are presented in the next Section.

We can summarize the above discussion in three definitions.

Definition: "x is a function object" if either (1) X is a SUBR or CEXPR (which we
assume the implementor can determine) or (2) if LlSTP[~] and either CAR [X] =
LAMBDA or CAR[x] = NLAMBDA (in which case X is a non-FUNARG EXPR) or (3) if
LlSTP[x] and CAR[x] = FUNARG (in which case x is a FUNARG EXPR).

Definition: "x is of eval type" if X is a function object and one of the following
three statements is true: (1) X is a SUBR or CEXPR of eval type (which we
assume the implementor can determine) or (2) if X is a non-FUNARG EXPR and
CAR[x] = LAMBDA or (3) if ~ is a FUNARG EXPR and CAR[CDR[x]] is of eval
type. "x is of noeval type" if ~ is a function object and not of eval type.

Definition: "x is a spread function object" if ~ is a function object and one of the
following three statements is true: (1) X is a SUBR or CEXPR spread function
object (which we assume the implementor can determine) or (2) if X is a non­
FUNARG EXPR and CAR[CDR[x]] is either NIL or a List Cell or (3) if X is a
FUNARG EXPR and CAR[CDR[x]] is a spread function object. "x is a nospread
function object" if X is a function object and not a spread function object.

ARGTYPE[fnobj] If LITATOM[fnobj]. let fnobj be GETD[fnobj].

9

If fnobj is not a function object:
Return NIL;

elseif fnobj is of eval/spread type:
Return 0;

elseif fnobj is of noeval/spread type:
Return 1;

However. if the Literal Atom is T. the implementor may choose to cause an error when the

function object is applied.

41

FNTVP[fnobj]

SUBRP[fnobj]

EXPRP[fnobj]

elseif fnobj is of eval/nospread type:
Return 2;

elseif fnobj is of noeval/nospread type:
Return 3.

If lITATOM[fnobj]. let fnobj be GETO[fnobj).

If fnobj is not a function object:
return NIL;

e1seif fnobj is a SUBR:
If fnobj is of eval/spread type. return SUBR;
elseif fnobj is of noeval/spread type. return FSUBR;
elseif fnobj is of eval/nospread type. return SUBR·;
else (fnobj is of noeval/nospread type). return FSUBR·;

elseif fnobj is a non-FUNARG EXPR:
If fnobj is of eval/spread type. return EXPR;
elseif fnobj is of noeval/spread type. return FEXPR;
elseif fnobj is of eval/nospread type. return EXPR·;
else (fnobj is of noeval/nospread type). return FEXPR·;

elseif fnobj is a FUNARG EXPR:
Return FUNARG;

else (fnob j 1"S a CEXPR):
If fnobj is of eval/spread type. return CEXPR;
elseif fnobj is of noeval/spread type. return CFEXPR;
elseif fnobj is of eval/nospread type, return CEXPR·;
else (fnobj is of noev.a1/nosprea'd type). return CFEXPR·;

If lITATOM[fnobj]. let fnobj be GETO[fnobj].

If fnobj is a SUBR. return T;
else, return NIl.

If LITATOM[fnobj]. let fnobj be GETO[fnobj].

If fnobj is a list Cell that does not represent
a SUBR or a CEXPR.

return T;
else, return NIL.

Note: EXPRP actually recognizes more than merely the EXPRs, since it will return
T on lists that do not have LAMBDA or NLAMBDA in their CARs (as long as such a
list does not represent a SUBR or CEXPR.) Since FNTYP actually recognizes only
those EXPR function objects described in the text above, it is possible for
'FNTYP[fn] to be NIL while EXPRP[fn] is T.

CCOOEP[fnobj] If lITATOM[fnobj]. let fnobj be GETO[fnobj].

If fnobj is a CEXPR, return T;
else, return NIL.

ARGLIST[fnobj] If LITATOM[fnobj],
Let fnobj be OR[GETD[fnobj];GETP[fnobj;EXPR]].

If fnobj is not a function object:
Cause error,17 with culprit
CONS[ItArgs not available:lt;fnobj]:

else1f fnobj is a FUNARG function object:
Return ARGLIST[CAR[CDR[fnobi]]];

42

NARGS[fnobj]

elseif fnobj is a nospread function object:
Return the parameter of fnobj;

elseif fnobj is a spread function object:
If fnobj is a (non-FUNARG) EXPR:

Return CAR[CDR[fnobj]];
else (fnobj is a SUBR or CEXPR):

Create and return a new proper list of the
successive parameter names in the parameter
n-tuple of fnobj.

If lITATOM[fnobj], let fnobj be GETO[fnobj].

If fnobj is not a function object,
return NIL;

elseif fnobj is a SUBR or CEXPR:
If fnobj is of nospread type, return 1;
else, return the Integer representing the number
of parameters in the parameter n-tuple of fnobj;

elseif fnobj is a FUNARG function object:
Return NARGS[CAR[CDR[fnobj]]];

else (fnobj is a non-FUNARG EXPR):
If fnobj is of nospread type, return 1;
else. return the Integer reprsenting the length of
the (assumed) proper list CAR[COR[fnobj]].

1 7. STACK POINTERS

The INTERLISP VM provides a control and access environment structure modeled
on the one described by Bobrow and Wegbreit in [1]. The structure is described
here, as in [1], as a collection of linked "frames". Although frames are meta­
objects, the VM provides a new class of objects, Stack Pointers, as a means of
referencing them.

It should be emphasized that the INTERLISP structure is not an exact
implementation of the Bobrow-Wegbreit model, but a minor variation of it. The
most important difference is that the available frame descriptors are somewhat
more restricted and behave differently than in [1].

We present the following (very brief) overview of the INTERLISP stack structure to
set the stage for the specifications below and to introduce the terminology to be
used. .

Function objects and PROG forms share an important property: They are the only
objects whose evaluation requires the allocation of storage to hold the values of
named local variables. The data structure represented by this allocated storage is
called an "access environment" because it is through this structure that the values
of variables are accessed. We call function objects and PROG forms "uniform
access modules" since their evaluation is responsible for constructing the access
environment.

43

We use the word "activation" to refer to a specific instance of the process of
evaluating such a module. An activation of some module requires information in
addition to the bindings of named locals. Therefore, associated with each
activation of a uniform access module is a meta-object called a "frame extension"
which in some sense "contains" all of the access and control information
necessary for that activation.

This information includes a pOinter to a meta-object which binds variable names to
values. Such a meta-object is called a "basic frame" and the field in the frame
extension which contains it is called the "blink" or "basic frame link" of the frame
extension. Another field in the frame extension, the "alink" or "access link",
contains another frame extension which recursively specifies the bindings of all
non-local variables. A third field in the frame extension, the "clink" or "control
link", pOints to the frame extension associated with the activation to which control
is to return when the current activation is terminated. Also included in a frame
extension is a field which specifies the process associated with the frame (i.e., the
computation which is being run in the frame) and which contains storage allocated
for unnamed intermediate results and internal control1o.

It is convenient to separate the local binding information (contained in a basic
frame) from' the more global access and control information (contained in a frame
extension). One reason is that basic frames are of fixed size depending upon the
number of locals to the module, while the storage allocated to frame extensions
depends upon how many temporaries are needed during the computation. Another
reason is that it is useful to allow two processes to communicate by sharing
variables in a common basic frame.

Every activation of a uniform access module is associated with a basic frame and
frame extension. Because a frame extension specifies the basic frame with which
it is used, it is sufficient to speak merely of the frame extension associated with
any activation.

Convention: When speaking informally we will sometimes use the word "frame" to
mean "frame extension".

We can now formally specify the properties of the meta-objects we have
introduced above.

Definition: A "binding" is a meta-object containing two fields. The first field is
called the "argname" field and contains an object, usually a Literal Atom used as a
named local variable. The second is called the "argval" field and contains ali
object, usually interpreted as the value of the corresponding variable.

Definition: A "basic frame of size n (0)=0)" is a meta-object with the following
properties:

10 In this field we ·include the "continuation point" for the module when its activation has been
suspended for any reason. The continuation pOint merely indicates where in the module
execution is to resume when the activatipn is continued. Usually the continuation point is just the
instruction counter for the code running the process associated with the activation. The Bobrow­
Wegbreit paper makes explicit mention of the continuation point field. We include it in the
"temporaries" simply because its content is entirely determined by the implementor.

44

(1) There are n bindings, each identified by an integer between 1 and
n (provided 0>0).

(2) There is a field, called the "frame name" field, which may contain
an arbitrary object.

Definition: A "copy of a basic frame" means "a new basic frame of the same size
as that of bframe, and containing the same sequence of argnames and argvals and
the same frame name."

Definition: "(Literal Atom) var is bound to val in (basic frame) bframe" if there is a
binding in bframe with argname var and the last such binding (i.e., the one
identified with the largest integer) has argval val. val is said to be the "value" of
var in bframe. (It is possible for var to be the argname of two or more bindings in
bframe. The last such binding is the only one considered. This is because the
search for bindings is usually implemented to start at the back of the basic frame
and move up the stack toward the front of the basic frame.)

Definition: A "frame extension" is a meta-object with the following properties:

(1) There is a field, called the "blink" field, containing a basic frame.

(2) There is a field, called the "alink" field, containing a frame
extension or NIL.

(3) There is a field, called the "clink" field, containing a frame
extension or NIL.

(4) There is a field, called the "temporaries" field, containing an
unspecified meta-object which specifies all other information
specific to the activation associated with the frame extension.

A NILaiink indicates that the top-level values of all non-locals are to be used. A
NIL clink indicates that there is no higher process and control cannot return from
the frame.

Definition: There is a distinguished frame extension, called the
extension" which is associated with the top-level process.
specified as follows: "Repeatly execute (without termination)
alink and clink of the top-level frame extension are NIL. All
unspecified.

"top-level frame
The process is
EV ALOT[]." The
other fields are

There can be frame extensions other than the top-level one with NIL alink and/or
clink. In particular, one cannot necessarily reach the top-level frame extension by
simply ascending through the alinks or clinks of successive frames from some
starting frame. However, we assume the implementor can always obtain the
(original) top-level frame extension.

Definition: The frame (or process or module) from which (or for which) the cpu is
currently executing instructions is called the "active" frame (or process or module).

The VM requires the existence of a field. called the "active frame extension" field,
which always contains the active frame. This field is available only to the

45

implementor. Except during interrupt processing, the physical machine upon which
the Virtual Machine is realized is always executing the instructions for the process
associated with the frame in this field. Initially, the active frame extension field
contains the top-level frame extension. The function calling and return mechanisms
(specified in the next Section) are responsible for maintaining the contents of the
active frame extension field.

Definition: The symbol "*actframe*" is an abbreviation for the phrase "the contents
of the active frame extension field". Thus, "Let x be *actframe*" is an abbreviation
for "Let x be the contents of the active frame extension field." Similary, "Set
actframe to ~" is an abbreviation for "Set the contents of the active frame
extension field to ~." (The slight pun operating here is quite useful.)

If the active process must invoke a "lower" module then control passes to the
lower module (i.e., a new frame extension is built to hold the activation information
associated with the lower module and that frame is stored in the active frame
extension field) and the previously active process (or frame) is said to be
"suspended" awaiting the result of the invoked computation. When a suspended
process (or frame) is "reactivated" (with some specified result) then the
computation in that module continues where it left off, using the result as the value
of the lower module. The point from which processing is to continue is called the
"continuation point".

We assume that all control information for the process is maintained in the frame
extension. Thus, we no not usually make explicit statements in our specifications
regarding saving continuation points before changing the active frame.

Occassionally we will refer to a "copy" of the meta-object in the temporaries field
of a frame extension.

Definition: A "copy, tempcop, of the contents, temp, of the temporaries field of a
frame extension, frame" is a meta-object containing the same information as 1e.!nJ:2
but which will not be directly affected by continuing the computation in ~.
That is, if after obtaining tempcop we allow the computation in frame to continue
(which will cause the information in temp to be changed as the computation
proceeds) we could get the same behavior (subject to certain obvious but hard to
state conditions on the extent to which the computation side-effects the rest of
the VM) by replacing the (now modified) temporaries field of frame by tempcop
and resuming the computation in frame again. .

When a specification constructs a new frame extension without specifying the
contents of the temporaries field, the same specification will (almost immediately)
make the newly constructed frame the active frame. We mean to imply that the
temporaries field of the frame should be so initialized so that the process
associated with the frame is that specified after the frame becomes the active
frame. .

The following concept is analogous to CDR chains from List Cells. It will allow us
to talk about the sequence of frame extensions in a chain starting with a given
frame extension.

Definition: The "alink chain from frame", where. frame is a frame extension or NIL,
is that ordered sequence of frame extensions defined recursively as follows: The

46

"alink chain from NIL" is the empty sequence. The "alink chain from frame
extension frame" is that sequence obtained by adding frame to the front of the
chain of alinks from the alink of frame. We assert the analogous definition of the
"clink chain from frame". The "length" of such a chain is just the number of frame
extensions in it. Note that if the chain of alinks (or clinks) from frame has non­
zero length, then the first element of the chain is always ~.

The manipulation functions specified below insure that no infinite alink/clink chains
can be created (i.e., no circular painter structures through the alink/clink fields can
be constructed).

Definition: "var is bound on the access chain from frame" means "some frame
extension on the access chain from frame has a basic frame binding var." The
"value of var on the access chain from frame" means "the first value of var found
by inspecting the successive basic frames on the access chain from frame, starting
at frame."

Definition: "(frame extension) x is immediately below (frame extension) y" if Y. is
the alink or clink of~. The relation "below" (applied to frame extensions) is just
the transitive closure of "immediately below". We extend this notion to the
processes or activations associated with frame extensions as well.

We allow the user to reference a frame extension with a new class of objects:

Definition: A "Stack Pointer is an object having one field which contains a frame
extension or a special mark, called the "released mark" (see below).

Frames are usually implemented by allocating storage on a stack of finite length.
The stack space occupied by the representation of a frame extension cannot be
reclaimed as long as it is possible for control to reach it. In particular, it cannot
be reclaimed if the user has a Stack Pointer which references the frame extension.
Therefore, we allow the user to explicitly sever the link between a Stack Pointer
and the frame extension it contains. This is done by depositing a speCial meta­
object, called the "released mark", in the Stack Pointer. The function RELSTK
does this. Of course, whether the storage associated with the frame extension can
then be reclaimed still depends upon whether it is possible for control to reach the
frame extension.

Definition: The "released mark" is a special meta-object which is distinct from any
frame extension and which can be deposited in the field of a Stack Pointer. Its
presence in such a field indicates that the Stack Pointer no longer references a
frame extension.

Section 18 will formally describe the functions which are responsible for activating
modules and interpreting the contents of frames as environments. We now
proceed with the specification of "the functions which manipulate Stack Pointers as
data-objects.

Because it is inconvenient (and causes the allocation of additional storage) to
obtain a Stack Pointer to reference a particular frame extension. we allow a variety
of objects to describe certain' frame extensions. In general, T and NIL describe the
top-level and current frame extensions (respectively). Other Literal Atoms
describe the lowest frame extension with that Literal Atom as its frame name, and

47

Integers describe the frame extension a given distance down the alink or clink
chain (depending on the algebraic sign). We formalize this below in another
definition which takes as a parameter a meta-variable name and assigns that meta­
variable a new value.

Definition: The phrase "get frame extension x", where x denotes a meta-variable
which denotes an object means:

"let obj be the object denoted by!.

let actstkptr be a Stack Pointer containing *actframe*.
(Below we will call VM functions to interrogate the
stack and. since we cannot call such a function on *actframe*
directly (since frame extensions are meta-objects) we must assume the
existence of the redundant stack pOinter actstkptr.)

If STACKP[obj]:
If RELSTKP[obj]. cause error 30 with culprit obj;
else. let obj be the frame extension contained in obj;

elseif obi = T. let! be the top-level frame extension;
elseif obj = NIL. let! be *actframe*;
elseif LITATOM[obj]:

If STKPOS[obj;-1;actstkptr]. let! be the frame extension
contained in STKPOS[obj;-1;actstkptr];
else. cause error 19 with culprit obj;

elseif obi is a Number;
If STKNTH[obj;actstkptr). let! be the frame extension
contained in STKNTH[obj;actstkptr);
else. cause error 19 with culprit obj;

el se. cause error 19 with culprit obj."

Note that if we say "Get frame extension frame" where frame is some object such
as a Stack Pointer, NIL, T, a function name or an Integer, then thereafter frame
denotes a (meta-object) frame extension (or else an error was caused). The frame
extensions described by objects other than T and Stack Pointers are defined
relative to the frame extension which is running the stack function which uses the
"get frame extension" notation (i.e .. the frame extension which is *acHrame*). This
is at variance with the Bobrow-Wegbreit model which computes these frame
extensions relative to the frame which called the stack function. This means that
the frame descriptors here behave somewhat differently than in the Bobrow­
Wegbreit model.

In order to avoid creating Stack Pointers most stack functions can be made to
reuse an existing Stack Pointer when one is given. We introduce the following
definition to make this convenient.

Definition: To "return a Stack Pointer containing frame (using stkptr)", where f.rnrn.e
is a frame extension and stkptr is an arbitrary object, means:

"If SlACKP[stkptr]:
Set the contents of stkptr to frame.
Return stkptr;

else. create and return a new Stack Pointer containing frame."

Note that after replacing the contents of stkptL with frame. the storage associated
with the previous contents of stkptr may be subject to reclamation.

48

STACKP[x] If ! is a Stack Pointer, return !;
else, return NIL.

STKPOS[name;n;frame;stkptr]
Get frame extension frame.
RELSTK[stkptr].
If Q is NIL, let n be -1;
elseif not FIXP[Q], let n be FIX[Q].
If Q;O, let n be 1.
If Q<O, let chain be the clink chain from frame;
elseif n>O, let chain be the alink chain from frame.
If there are at least Inl elements of chain
containing basic frames with frame name name:

Let newframe be the IQlth such element.
If newframe is *actframe*,

cause error 19 with culprit NIL.
Return a Stack Pointer containing newframe (using stkptr);

else, return NIL.

STKNTH[n;frame;stkptr]
Get frame extension frame.
RELSTK[stkptr].
If n is NIL, let n be -1;
elseif not FIXP[Q], let n be FIX[n].
If Q=O, let n be 1.
If Q<O, let chain be the clink chain from frame;
e 1 s e if n> 0, 1 etc ha in bet h e" ali n k c h a i n from frame.
If Q;O:

If frame is *actframe*,
cause error 19 with culprit NIL;

else, return a Stack Pointer containing frame
(using stkptr);

elseif the length of chain does not exceed IQI,
return NIL;

else, return a Stack Pointer containing the IQI+1st
element of chain (using stkptr).

MKFRAME[frame;alink;clink;flg;stkptr]
Get frame extension frame.
RELSTK[stkptr].
If alink is NIL, let alink be the alink of frame;
else, get frame extension alink.
If clink is NIL, let clink be the clink of frame;
else, get frame extension clink.

Let bframe be the basic frame of frame.
If f.lg:

Let bframe be a copy of the basic frame bframe.

Create a new frame extension, newframe, such that:
The blink field of newframe contains bframe.
The alink field of newframe contains alink.
The clink field of newframe contains clink.
The temporaries field of newframe contains a copy of the
meta-object in the temporaries field of frame.

Return a Stack Pointer containing newframe (using stkptr).

STKNARGS[frame] Get frame extension frame.
Represent and return as an Integer the size
of the basic frame of frame.

49

STKARGNAME[n;frame]
Get frame extension frame.
let bframe be the basic frame of frame.
If LITATOM[n]

If there is a binding in bframe with argname n,
return n;

else, cause error 19 with culprit n;
else:

If not FIXP[n], let n be FIX[n).
If n>O and there are at least n bindings in bframe,

return the argname of the nth binding in bframe;
else, cause error 19 with culprit n.

STKARG[n;frame] Get frame extension frame.
Let bframe be the basic frame of frame.
If LITATOM[n]

If there is a binding in bframe with argname n,
return the argval of the last such binding;

else, cause error 19 with culprit n;
else:

If not FIXP[n], let n be FIX[n).
If n>O and there are at least n bindings in bframe.

return the argva1 of the nth binding in bframe;
else, cause error 19 with culprit n.

SETSTKARGNAME[n;frame;name]
Get frame extension frame.
Let bframe be the basic frame of frame.
If lITATOM[n)

If there is a binding in bframe with argname n:
Set the argname field of the last such binding to name.
Return ~;

else, cause error 19 with culprit n:
else:

If not FIXP[n], let n be FIX[n].
If n>O and there are at least n bindings in bframe:

Set the argname field of the nth binding
in bframe to name.
Return name;

else, cause error 19 with culprit n.

SETSTKARG[n;frame;va1]
Get frame extension frame.
let bframe be the basic frame of frame.
If LITATOM[n]

If there is a binding in bframe with argname n:
Set the argval field of the last such binding to val.
Return val;

else, cause error 19 with culprit n;
else:

If not FIXP[n], let n"be FIX[n].
If fl>O and there are at least n bindings in bframe:

Set the argval field of the nth binding in bframe to val.
Return val;

else. cause error 19 with culprit n.

STKNAME[frame] Get frame extension"frame.
Return the contents of the frame name field
of the basic frame of frame.

RELSTKP[stkptr] If STACKP[stkptr] and stkptr contains the released mark,

50

RELSTK[stkptr]

ClEARSTK[flg]

return stkptr;
else, return NIL.

If STACKP[stkptr],
set the contents of stkptr to the released mark.

Return stkptr.

If f!g:
Create and return a new proper list of
all existing Stack Pointers that do not
contain the released mark;

else:
For every existing Stack Pointer, x, that does
not contain a released mark,

set the contents of x to the released mark.
Return NIL. - ..

Definition: A "copy of the alink chain of startframe to endframe", where startframe
and endframe are frame extensions and endframe is in the alink chain of startframe,
means:

"If startframe=endframe:
A new frame extension with:

Blink set to a copy of the basic frame of startframe.
Alink set to the alink of startframe.
Clink set to the clink of startframe.
Temporaries set to a copy of the temporaries of startframe.

else:
A new frame extension with:

Blink set to a copy of the basic frame of startframe.
Alink set to a copy of the alink chain of the alink
of startframe to endframe.
Clink set to the clink of startframe.
Temporaries set to a copy of the temporaries of startframe."

COPYSTK[startframe;endframe]
Get frame extension start frame.
Get frame extension endframe.
If endframe is not in the alink chain from startframe:

Cause error 19 with culprit NIL.
let newframe be a copy of the alink chain from
startframe to endframe.
Create and return a new Stack Pointer containing newframe.

FRAMESCAN[var;frame]
Get frame extension frame.
If the basic frame of frame contains a binding
with argname ~:

let i be the integer associated with the
last such binding in the basic frame of frame.
Represent and return as an Integer the integer i;

else, return NIL.

STKSCAN[var;frame;oldptr]
Get frame extension frame.
RELSTK[oldptrJ.
If there is a frame extension on the alink chain
from frame which has a binding with argname var:

Let x be the first such frame extension.
Return a stack pointer containing ~ (using oldptr);

else, return NIL.

51

STKNTHNAME[n;frame]
Let actstkptr be a Stack Pointer containing *actframe*.
Return STKNAME[STKNTH[n;frame;actstkptr]].

Note: This function is so frequently used that it is best implemented so as to
avoid the unnecessary construction of a new Stack Pointer by STKNTH.

18. EVALUATION

This Section specifies the INTERLISP interpreter and how the process of
interpretation interacts with the access and control stack described in the previous
Section.

The VM allows the user to discover certain information about the internal state of
several VM functions. These functions are EVAL, APPLY, COND, PROG, PROGN
and PROG1. This state information is maintained in several fields associated with
particular activations of the functions. We call these fields the "blip fields".

Definition: A "blip field" is a field used to store information regarding the internal
state of the VM functions EVAL, APPLY, COND, PROG, PROGN and PROG1. These
functions are called the "blip-using functions". There are four types of blip fields.
Each type of blip field is named by a Literal Atom and may contain any object.
The name of each type of blip field and its usual contents is given below:.

blip field name

FN
ARGVAL
*FORM­
-TAIL-

usual contents

any function or function object
any object
any form
any proper list of forms (or clauses -- see COND)

There may be at most one -FN*, *FORM-, and *TAIL- blip field for any activation of
a blip-using function. There are generally a variable number of -ARGVAL - fields.

Not every activation of a blip-using function will necessarily have a blip field
associated with it. The specifications of the blip-using functions explicitly deal
with the allocation and manipulation of blip fields. The functions BLIPSCAN,
BLlPVAL, and SETBLlPVAL (defined in Section 19) allow the user to access and
replace the contents of these fields.

Basically, these fields just represent those temporaries necessary to actually
implement the blip-using functions. For example, when EVAL is computing the
values of the arguments to be supplied to some function, it uses the *FN- field to
hold the function which will (ultimately) be evaluated, the *ARGVAL* fields to hold
the argument values already computed, the *FORM· field to hold the argument form
currently being considered, and the -TAIL· field to hold the proper list of argument
forms not yet considered. As we wiil discuss in the next Section, it is possible to
implement the blip-using functions in such a way that these fields are literally local
variables bound in a basic frame.

52

To make it convenient to refer to the contents of these fields we make the
following convention.

Definition: The symbol ""fn"", used in the context of some activation of a blip­
using function, is an abbreviation for "the contents of the "FN" field associated
with this activation". We make the analogous conventions for "form" and "tail".
(We will not need such a convention for the "ARGVAL" fields.)

We now begin the formal account of how a form is evaluated. This account
essentially depends on two fundamental issues: the way local variables are bound
and the way functions are called and return results. These concepts' are
formal ized below.

We first specify how the variables in a module are bound to their values for a
particular activation of the module. This is done by constructing a basic fr;:lme
from the module's name, the associated function object, and a proper list of forms
supplying the arguments. This procedure is also responsible for associating and
maintaining the blip fields for activations of EVAL and APPLY.

Definition: To construct a "new basic frame, x, from fnname, fnobi. and arglist",
where x denotes a meta-variable, fnname is a Literal Atom, fnobi is a function
objec"t, and arqlist is a proper list of k forms, the following procedure is followed:

"Create and associate a new "FN" field. a new "FORM" field
and a new "TAIL" field with this activation of the blip-using function
using this definition.
Set "fn" to fnname.

If fnobj is a nospread function Object of noveval type:
Let k be 1.
Create and associate a new "ARGVAL" field with this
activation.
Replace the contents of this "ARGVAL" field with arglist.

else (we must consider the successive elements of arglist):
S~t "tail" to arglist.
For i from 1 to ~ do the following:

Set "form" to CAR["tail"].
If fnob; is of noeval type, let val be "form";
else. let val be EVAL["form"].
Create and associate a new "ARGVAL" field with this
activation. and replace the contents of this field by val.
Set "tail" to COR["tail"].

(We have now stored all of the argument values in knew "ARGVAL"
fields and are prepared to build a suitable basic frame.)

In the following. consider the ~ "ARGVAL" fields in the reverse order
of their creation, i.e .. let the 1st "ARGVAL" field be the one most
recently created and associated with this activation. and the ~th

"ARGVAL* field be the one first created and associated with this
activation.

(We must now inspect the contents of the "FN" field in case it has
been modified (with SETBLIPVAL) during an interrupt or a lower call to
EVAL.)

53

Let fnname be ·fn·.
If fnname is a function or function object:

(We only actually build a basic frame. bframe. if fnname is
still a function or function object. If the contents of the
·FN· field was replaced by some other kind of object.
no basic frame is constructed and special action is taken
by the procedure which employed this definition.)

If fnname is a function:
Let fnobj be GETD[fnname];

elseif fnname is a function object:
Let fnobj be fnname.

If fnobj is a nospread function object:
Let param be the parameter of fnobj.
If fnobj is of noeval type:

Create a new basic frame. bframe, of size 1.
Let the frame name of bframe be fnname.
Let the binding in bframe have argname param and argval the
contents of the 1st *ARGVAL* field associated with this
activation (or NIL if ! is 0) ..

else (fnobj is of eva1.type):
Create a new basic frame. bframe. of size !+1.
Let the frame name of bframe be fnname.
For i from 1 to ! do the following:

Replace the argname field of the jth binding in
bframe by some unspecified object or meta-object
other than a Literal Atom.
Replace the argval field of the jth binding in
bframe by the contents of the !-j+lst *ARGVAL* field.

Let the !+lst binding in bframe have argname param and argval the
representation of ! as an Integer.

else (fnobj is a spread function object):
Let n be the number of parameter names in the parameter n-tuple
of fnobj and let parami (l=<j=<n) be the jth component of this

n-tuple.
Create a new basic frame. bframe. of size n.
Let the frame name of bframe be fnname.
For i from 1 to n do the following:

Replace the argname field of the jth binding in
bframe by parami.
If j =< !:

Replace the contents of the argval field of
the jth binding in bframe by the contents of the
!-j+lst ·ARGVAL* field associated with this activation.

else:
Replace the contents of the argval field of the jth
binding in bframe by NIL.

Let! be bframe."

Note that after a use of the phrase "construct a new basic frame, basic, from In.
fnobi. and arglist". new blip fields will be associated with the frame extension of
the function concerned, and, unless the *FN* field does not contain a function or
function object, the meta-variable basic will denote a new basic frame constructed
as described above.

The existence and use of the blip fields (and the existence of the function
SUPVAL) allow DWIM to discover the context in which certain errors occur. In
particular, DWIM can find out the function which is waiting to be called (*FN*), the

54

values of the argument forms already evaluated (the *ARGVAL* fields), the
argument form currently being evaluated (*FORM*), and the proper list of remaining
argument forms (*TAIL*). The function SETBlIPVAL allows DWIM to alter these
fields if the error is diagnosed, so that the interpreter continues with the evaluation
as if no error had occurred.

Continuing with the discussion of bound variables, we now make two useful
definitions regarding references to variables.

Definition: A literal Atom is said to be a "local variable" of a function object or
PROG form if the literal Atom is referenced as a variable (see the specifications of
EVAL) in the body of the function object or PROG form, and is always bound in a
basic frame at or below the one in which the function object or PROG form is
evaluated. In particular, the local variables of a function object include its
parameter names and the locals of PROG, LAMBDA, and NLAMBDA express.ions
appearing (structurally) within the body.

Definition: A literal Atom is said to be a "non-local" or "free" variable of function
object or PROG form if it is referenced as a variable in that form but is not a local
variable of the function object or PROG.

We next formalize the notions of function call and return.

Definition: The "result of evaluating (or calling) fnname on arglist", where fnname
is a function or function object and arglist is either a proper list of forms or a
basic frame, is the object denoted by the meta-variable result after the following
computation:

"If LITATOM[fnname]:
Let fnobj be GETD[fnname];

else (fnname is a function object):
Let fnobj be fnname.

If fnobj is a FUNARG function object:
Let blink be a new basic frame with frame name NIL and 0 bindings.
Let stkptr be CAR[CDR[CDR[fnobj]]].
If not STACKP[stkptr] or RELSTKP[stkptr].

cause error 19 with culprit stkptr.
Let alink be the frame extension contained in stkptr;

else:
If arglist is a basic frame:

Let bframe be arglist;
else (arglist is a proper list of forms):

(In this case we must construct the appropriate basic frame.)
Construct a new basic frame, bframe, from fnname, fnobj, and arglist.
(We must now treat the contents of the *FN* field as though it
is the function or function Object to be applied.)
Let fnname be the contents of the *FN* field created and associated
with this activation during the construction of bframe.
If fnname is not a function and is not a function Object:

Let argvals be a new proper list of the contents of the *ARGVAL*
fields associated with this activation, in the order of their
creation.
Return FAULTAPPLY[fnname;argvals);

elseif LITATOM[fnname]:
Let fnobj be GETD[fnname];

else (fnname is a function object):

55

let fnobj be fnname.
let blink be bframe.
let alink be *actframe*.

let frame be a new frame extension such that:
The blink field of frame contains blink.
The alink field of frame contains alink.
The clink field of frame contains *actframe*;

Set *actframe* to frame.
If fnobj is a FUNARG function object:

let result be the result of evaluating CAR[CDR[fnobj]] on arglist.
elseif fnobj is directly executable:

let result be the result of executing the instructions
in the body of fnobj;

else (fnobj is not directly executable):
For successive elements, form, in the (assumed proper list)
body of fnobj:

let result be EVAl[form].

Set *actframe* to the clink of *actframe*."

The preceding definition is only used by EVAL and APPLY and consequently, use
of those functions (or their variants) are the only way the user can evaluate forms
or apply functions. Thus, user calls to VM functions always have frames
associated with them.

The action of the interpreter, EVAL, on forms other than Literal Atoms, Numbers,
and List Cells is determined by a table, called the "EVAL table":

Definition: The "EVAL table" is a meta-object which has as many fields as there
are existing data types. Each field is identified by one the Literal Atom data type
names, and may contain any object. Note that the size of the EVAL table
increases with each new user defined data type.

When EVAL encounters a form whose data type is other than one of those
mentioned above, the data type's entry in the EVAL table determines the actions of
EVAL. If the entry is T, EVAL will return the form as its value. If the entry is a
function object, EVAL will apply the function object to the form and return the
result as the form's value. The function DEFEVAL (specified below) allows the
user to modify the entries in this table.

The initial configuration of the EVAL table is that the entries for LlTATOM, FIXP,
FLOATP, and LlSTP are unspecified (they are never inspected since the behavior
of EVAL on such forms is built-in) and the entry for every other existing data type
is T. Whenever a new data type is created by the user, the associated field in the
EVAL table is initialized to T.

EVAl[form) If lITATOM[form):
If form = NIL or form = T, return form;
else:

(We say that form "has been referenced as a
variable" in any form whose evaluation might
arrive at this point.)
If form is bound on the access chain from *actframe*,

Return the binding of form;

56

elseif GETTOPVAL[form) = NOBIND:
Return FAULTEVAL[form]:

else, return GETTOPVAL[form);
elseif FIXP[form] or FLOATP[form):

Return form;
elseif LISTP[form]:

(Note: form is assumed to be a proper list.)
If CAR[form] is a function or function object:

Return the result of evaluating CAR[form] on CDR[form];
else, return FAULTEVAL[form].

else (form is other than a Literal Atom, Number,
or List Cell):

Let type be TYPENAME[form).
Let fnobj be the contents of the ~ field in the
EVAL table.
If fnobi = T, return form:
else, return APPLY[fnobj;CONS[form;NIL]].

Note: We assume that EVAL is implemented as a directly executable function (or
else "evaluate fnobj on arglist" would never be a terminating process on EXPR
function objects).

EVALV[var:frame]

SET[var;val]

(We asssume var to be a Literal Atom.)
Get frame extension frame.
If there is a frame extension in the alink chain of
frame with a basic frame containing a binding
with argname ys!:

Return the contents of the argval field of the last
such binding in the first such basic frame:

else return GETTOPVAL[var].

If there is a frame extension, x, in the access
chain from *actframe*, which binds var:

let bframe be the basic frame of the first such
frame extension.
Set the argval field of the last binding of var
in bframe to val.
Return val;

else, SETTOPVAL[var;val].

SETQ[var;val] (NOEVAl)
Return SET[var:EVAL[val]].

EVALA[form:alist]
(We assume alist is a proper list of list Cells.)
Let n be the length of alist.
Construct a new basic frame, bframe, of size n
such that the frame name is NIL and the ith binding
has argname ~ and argval !. where ~ and! are the
CAR and CDR (respectively) of the ith element of
alist (1 =(i =(n).

Construct a new frame extension. frame, such that:
The blink. field of frame contains bframe.
The ali nk field of frame contains *actframe*.
The c 1 ink field of frame contains *actframe*.

Set *actframe* to frame.

57

let val be EVAl[form].
Set *actframe* to the clink of *actframe*.
Return val.

DEFEVAl[type;fnobj]
If 1IQ! is not the name of an existing data type:

Cause error 33 with culprit ill..!;
e1seif!YR! is one of the literal Atoms LITATOM.
FIXP, FLOATP, or lISTP:

Cause error 33 with culprit ill..!; "
e1seif fnobi is NIL:

Return the contents of the 1IQ! field of the EVAL table;
else:

Let oldval be the contents of the !YR! field of
the EVAL table.
Set the contents of the ~ field of the EVAl table
to fnobi.
Return oldval.

FUNCTION[form;env] (NOEVAL)
If !n!=Nll, return form;
elseH STACKP[!n!], return lIST[FUNARG;form;env];
e1seif lISTP[env]:

(We assume env to be a proper list of n Literal Atoms.)
Construct a new basic frame, bframe, with frame name
FUNARG and containing n bindings, such that the
ith binding, (1=<i=<n) has argname .!! and argval EVAlV[.!!],
where ~ is the itt. element of ~.

Construct a new frame extension, frame, such that:"
The blink field of frame contains bframe.
The alink field of frame contains *actframe*.
The clink field of frame contains NIL.

Construct a new Stack Pointer, stkptr, containing frame.

Return LIST[FUNARG;form;stkptr]:
else, cause error 27 with culprit !n!.

ENVEVAL[form;alink;clink;aflg;cflg]
Let origalink be alink.
Let origclink be clink.
Get frame extension alink.
Get frame extension clink.
let frame be a new frame extension such that:

The blink field of frame contains a basic frame
containing no bindings and frame name Nil.
The alink field of frame contains alink.
The clink field of frame contains clink.

If STACKP[origalink] and aflg. RELSTK[origaljnkl.
If STACKP[origclink] and cflg. RELSTK[origclink].

Save the continuation point for the active frame in
actframe so that, if *actframe* is ever reactivated
with result !. this activation will return !.

Set *actframe* to frame.
Let val be EVAL[form].
If the clink of *actframe* is NIL,

cause error 3 with culprit val.

58

Set *actframe* to the clink of *actframe*.
Reactivate the process in the clink of *actframe*
with result val.

RETFROM[frame;val;flg]
Let origframe be frame.
Get frame extension frame.

If STACKP[origframe] and flg. RELSTK[origframe].

If the clink of frame is NIL,
cause error 3 with culprit val.

Set *actframe* to the clink of frame.
Reactivate the process in the clink of frame
with result val.

RETTO[frame;val;flg]
Let origframe be frame.
Get frame extension frame.

If STACKP[origframe] and flg. RELSTK[origframe].

Set *actframe* to frame.
Reactivate the process associated with frame
with result val.

APPLY[fn;arglist]
(Assume arglist is a proper list.)
If fn is not a function or function object.

return FAULTAPPLY[fn;arglist].

Return the result of evaluating fn on arglist (treating
fn as though it were of noeval type).

APPLY*[fn;argl;arg2;· .. arg n]
Return APPLY[fn;LIST[!£g1;arg2; ... !£gn]].

Note: APPL y* is used so frequently it is best implemented so as to avoid creating
a proper list of the argi's when possible. For noeval/nospread functions It is not
possible to avoid creating the list.

ENVAPPLY[fn;arglist;alink;clink;aflg;cflg]
Let origalink be alink.
Let origcl ink be, cl ink.
Get frame extension alink.
Get frame extension clink.
Let frame be a new frame extension

The blink field of frame contains
no bindings and frame name NI L.
The alink 'field of frame contains
The clink field of frame contains

such that:
a basic frame

alink.
clink.

If STACKP[origalink] and !fIg. RELSTK[origalink].
If STACKP[origclink] and £!!n. RELSTK[origclink].

59

containing

Save the continuation point for the active frame in
actframe so that, upon reactivation with result ~,
this activation of ENVAPPLY will return ~.

Set *actframe* to frame.
Let val be APPLY[fn;arglist].
If the clink of *actframe* is NIL,

cause error 3 with culprit val.
Set *actframe* to the clink of *actframe*.
Reactivate the process associated with the clink
of *actframe* with result val.

A~G[var;n] (NOEVAL)
Let n be EVAL[n].
If var is not bound on the access chain from
actframe. cause error 27 with culprit !!r.
Let k be the value of var on the access chain
from *actframe*, and let bframe be the basic
frame containing the binding of var to !.
Let size be the size of bframe.
If ~ /= size-l, cause error 27 with culprit var;
elseif n < 1 or n > ~, cause error 27 with culprit n.
Return the argval of the nth binding in bframe.

SETARG[var;n;val] (NOEVAL)
Let val be EVAL[val].
Let n be EVAL[n].
If var is net bound on the access chain from ·actframe*~
cause error 27 with culprit ~.
Let k be the value of var on the access chain
from *actframe*, and let bframe be the basic frame
containing the binding of var to ~.
Let size be the size of bframe.
If ~ /= size-l, cause error 27 with culprit var;
e1seif n < 1 or n > ~, cause error 27 with culprit n.
Set the argval of the nth binding in bframe to val.
Return val.

COND[clausel;clause2; ... clause n] (NOEVAL)
(Each clausei is assumed to be a proper list of forms
and is called a "clause".)
Associate new *FORM* and *TAIL* fields with *actframe*.
Let *tai1* be the contents of the first argval
field of *actframe*.
(This will be the proper list of c1ausei's in
the COND form being evaluated).
Until *tail* is NIL do the following:

Let *form* be CAR[CAR[*tail*]].
Let val be EVAL[*form*].
If val is not NIL:

Let *tail* be CDR[CAR[*tai1*]].
Until *tai1* is NIL do the following:

Let *form* be CAR[*tai1*].
Let val be EVAL[*form*].
Let *tai1* be CDR[*tai1*].

Return val.
Let *tail* be CDR[*tail*].

(If control reaches this point, the CAR of
each clausei EVALd to NIL.)
Return NIL.

60

PROG[localvars;forml;formz; ... formn] (NOEVAL)
(Note: localvars is assumed to be a proper list.)
Let progbody be the argval of the first binding in
the basic frame associated with *actframe* (this will
be the proper list of arguments to the PROG form
being evaluated).

Mark the temporaries field of *actframe* so that it can
be recognized as a frame in which an activation of
PROG is running (see Note below).

Let k be the length of loca1vars.
For i from 1 to ~ do the following:

Let x be the ith element of 10calvars.
If ~ is a Literal Atom:

Let vari be ~.
Let va1 i be NIL;

else (~ is assumed to be a proper list with
a Literal Atom in its CAR):

'Let vari be CAR[~].
Let va1 i be EVAL[CAR[CDR[~]]].

Construct a new basic frame. bframe. with frame name
*PROG*LAM and containing ~ bindings such that the lth
binding. 1=<1=<~. binds vari to vali.

Construct a new frame exten.ion. frame. such that:
The blink field of frame contains bframe.
The a1ink field of frame contains *actframe*.
The clink field of frame contains *actframe*.

Set *actframe* to frame.
Associate new *FORM* and *TAIL* fields with *actframe*.
Let *tai1* be CDR[progbody].

Until *tai1* is NIL do the following:
Let *form* be CAR[*tail*].
If *form* is not a Literal Atom. EVAL[*!orm*].
Let *tai1* be CDR[*tail*].

Set *actframe* to the clink of *actframe*.
Return NIL.

Note: The following two functions. GO and RETURN, are used to modify "the flow
of control in PROG. They do this by inspecting the stack and reactivating the
appropriate frames (possibly modifying the blip fields used by PROG). Thus, it is
important that these two functions be able to recognize PROG frames. It is not
sufficient to assume that the frame name of such frames will always be PROG.
This is because some of the high-level functions in the INTERLISP user support
facilities (e.g .. the ADVISE feature) may deposit the function object associated with
PROG in the function definition field of another Literal Atom and activate it by
applying that Literal Atom instead of PROG.

GO[label] (NOEVAL)
If there is"a frame extension in the control chain from
actframe that is marked as a PROG frame (cr. PROG above)
and label is an element of the (assumed) proper list
in the first argval field of its basic frame:

Let progframe be the first such frame extension.

61

RETURN[va1]

Let progbody be the contents of the first argval
field in the basic frame of progframe;

else, cause error 8 with culprit label.

(If progframe exists then the call to EVAL running in the
frame named frame in the specification of PROG above
is suspended while waiting for the results of the computation
that involved this application of GO.)

Let lowerprogframe be the frame immediately under
progframe (i.e., the frame called frame in the speci­
fication of PROG above).

Let progtail be the terminal sublist of progbody
starting with the first occurrence of label in progbody.

Set the contents of the *TAIL* blip field in 10werprogframe
to progtail.

Reactivate the process in 10werprogframe with result NIL
(i.e., continue the "Until" loop running in 10werprogframe
just as though the call to EVAL had returned NIL).

If there is a frame extension, frame, in the control chain
from *actframe* that is marked as a PROG frame
(cf. PROG above):

Let frame· be the. first such frame.
If the clink of frame is NIL,

cause error 3 with culprit frame.
Set *actframe* to the clink of frame.
Reactivate the computation associated with
actframe with result val.

else, cause error 3 with culprit NIL.

PROGN[forml;form2;" .formn] (NOEVAL)
Let val be NIL.
Associate new *FORM* and *TAIL* fields with *actframe*.
Let *tail* be the contents of the first argval
field in the basic frame of *actframe* (this will
be the proper list of forms supplied as arguments to the
PROGN form being evaluated).
Until *tai1* is NIL do the following:

Let *form* be CAR[*tai1*].
Let val be EVAL[*form*].
Let *tai1* be CDR[*tail*].

Return val.

PROG1[forml;form2;" .formn] (NOEVAL)
Associate new *FORM* and *TAIL* fields with *actframe*.
Let *tail* be the contents of the first argva1 field
in the basic frame *actframe* (this will be the proper list
of forms supplied as arguments to the PROGl form being
evaluated).
If *tai1* is NIL. return NIL.
Let *form* be CAR[*tai1*].
Let val be EVAL[*farm*].
I.et *tail* be CDR[*tail*].
Until *tail* is NIL do the following:

Let *form* be CAR[*tail*].
EVAL[*form*].
Let *tail* be CDR[*tail*].

62

Return val.

BACKTRACE[framel;framez;flags]
Get frame extension framel'
If frame z is NIL, let frame z be T.
Get frame extension frame z .

If not FIXP[flags], let flags be FIX[flags].
Let n be some integer greater than 3 and let
bO' bl , ., bn be the binary digits so that
flags = QO + Ql*zl + ... + Qn*zn.

If Q4=l, let chain be that subsequence of
the a1ink chain from framel to (and including)
frame z (or, if frame z is not in framel's alink chain,
the top-most frame extension in framel's alink chain)
else, let chain be that subsequence of the clink
chain from framel to (and including) frameZ (or, if
framez is not in framel's clink chain, the top-most
frame extension in framel's clink chain).

For each frame, frame, in chain, do the following:
let fn be the frame name of the basic frame of frame;
Write (to the terminal and in any format desired)
the following information (provided the conditions
on the Qi's and fn are satisfied):

(1) fn (provided Q3=O).
(2) both components of each binding in the.

basic frame of frame (provided either
(a) QO=l and not SUBRP[fn]

or
(b) Qz=l and SUBRP[fn]).

(3) names and values of all temporaries used
by EVAl (provided Ql=l and Qz=O).

(4) names and values of all temporaries
(whether used by EVAL or not) whose values can be
meaning1y displayed (provided Qz=l).

Return T.

19. RESTRICTIONS ON THE IMPLEMENTATION OF VM FUNCTIONS

There are several important points which should be made relating to the actual
implementation of the VM functions specified in this document.

The first concerns the CONS count, and the Large Integer. and Floating Point
Number box count fields. Many specifications use CONS (or LIST) or the numeric
functions from Sections 9, 10, and 11. to construct objects for internal use. For
example, many functions use FIX to convert their arguments to Integers, even
though in many cases the user cannot actually obtain the Integer constructed (cf.
IPLUS in Section 9). In these ·cases the implementor would naturally be tempted to
avoid actually constructing the new object. However, because of the counter
fields above, this would be in technical violation of the specifications {since even
though the user could not obtain the results of the constructions he could detect

63

whether something was constructed}. Since these fields are intended merely to
provide the user with a way to monitor his use of these resources, the
implementor is hereby encouraged to adopt the more efficient implementations
(avoiding the constructions) when possible, despite the technical violation of the
specifications.

User calls to VM functions are always associated with frame extensions (simply
because such calls are always evaluated using EVAL or APPLY or one of their
variants). However, frequently the specifications for VM functions reference other
VM functions. Given the conventions on the meaning of f[~1;"'~k] where f is a VM
function (ct. Section 4), no constraints are placed on the implementor regarding
how these internal calls to are be handled. For example, the implementor may
choose to implement these calls with the stack mechanism available to the user or
to implement them on a private stack used only by internal calls, or to code them
"inline".

It is understood that this flexibility with regard to internal control is detectable by
the user. For example, calls to STKNTH from within interpreted code will be
sensitive to whether or not the recursion of EVAL is visible.

Of course, this private control information is considered part of the "continuation
point" of the user process which invoked the VM function evaluation, since, should
this process be suspended, the private control information would be necessary in
order to resume the process later. Hence, if a private stack for internal control of
VM functions is employed, it is considered to be merely a part of the temporaries
field of the frame extension of the associated user process.

Because a frame extension is regarded as containing all of the access and control
information associated with any function activation (implementations differ only in
whether this information is explicitly visible to the user or hidden in the
temporaries field), we introduce the following unifying definition:

Definition: A function activation is "controlled from" a frame extension if the frame
extension contains the access and control information associated with that function
activation.

It is possible for one frame extension to be controlling more than one activation of
a VM function. This happens whenever there are several levels of internal calls to
VM functions pushed on the private stack within the frame's temporaries field:.

We now present the restrictions upon the use of the user's stack by VM functions:

(1) No VM function activation which binds the parameter names of the
VM function in a user-visible basic frame may modify the bindings
found in that basic frame during the execution of the function body.

(2) A basic frame built to bind the variables (i.e., parameter names or
PROG variables) of a VM function may not introduce bindings (of
Literal Atoms) which are visible in the access chain from any
activation of a user function.

Because user calls to VM functions are always represented on the stack, the error
handling facilities can inspect the stack to discover (and possibly diagnose and fix)

64

the cause of the error. One fairly common error handling scenario is as follows:
After control has been passed from some VM function to the error package
(ERRORX), the package discovers (by inspecting the stack) that the VM function
was given the wrong arguments. It decides what the "right" arguments were and
modifies the expression being interpreted so that on subsequent encounters with
the expression the error should not reoccur. It is desirable to continue the
computation at this point, but control cannot be returned to the VM function which
caused the error because no assumptions are made about how that function will
behave after an error. Thus, the error handler obtains the argument values for the
VM function by fetching them from the basic frame of the function (it cannot afford
to assume the argument forms can be reevaluated without unintended side-effects)
and then applies the VM function to the correct list of values to obtain the result.
The error handler then uses RETFROM to jump out of the error and the call to the
VM function on the stack, so as to continue the computation without further
interruption.

Restriction (1) allows ERRORX and the other user-support facilities (such as
DWIM) to use STKARG to recover the initial values of the parameters to the
function, thereby permitting the possible diagnosis and recovery from the error.

This restriction has the following implication for the specifications in this document:
If a VM function is implemented with some Literal Atom parameter, say X, as the
realization of of some meta-variable, say x, in the specification, then X will be
bound in the basic frame associated with the activation of the function. If the
specification contains a sentence such as: "Let x be ~+1", the obvious
implementation is to rebind X to the value of (ADD1 X) in the basic frame. This is
in violation of restriction (1), since it would destroy the initial binding of X.
Instead, the implementor must allot additional storage (either in a lower basic frame
or the temporaries field) for the current value of X (and all other modified
parameters). We use phrases like "let x be ~+1"! where x appears as a parameter
in the speCification, to reduce the number of meta-variable names the reader must
wade through.

Restriction (2) prevents variable clashes between VM and user functions.
Basically, if a VM function call binds its variables in the usual way and then
evaluates user forms, the bindings of the VM function's variables must not conflict
the bindings set up for the user. There are two obvious ways to avoid this
problem: (1) The contents of the argname fields of the basic frames set up for VM
functions can be objects other than Literal Atoms (thereby precluding the
possibility of rebinding any user variable) and the code in the body of the function
object can reference the argval fields directly (by position rather than argname), or
(2) the alink fields of user frames can be set so that no access chain from a user
frame includes the basic frame set up for a VM function.

Finally. note that a basic frame is "visible" to the user only if the user is given the
opportunity to inspect the stack. In general this may occur during the evaluation of
a VM function provided either (1) the VM function itself inspects the stack, (2) the
function contains some "safe function calls" (cf. Section 25) permitting interrupts
to occur, (3) the function calls EVAL or APPLY on a user supplied form. or (4) the
function causes an error. There are many functions for which the first three
possibilities do not arise (e.g:, LlSTP, CONS, etc.). Therefore. these restrictions
do not prevent fairly efficient implementations of calls to VM functions, provided
appropriate action is taken to update the user stack in the event of an error.

65

We now consider the implementation of the blip fields. It should be clear that the
information contained in the blip fields is necessary for any implementation of the
blip-using functions. That is, the fields are really just temporaries of the functions
concerned. Should the blip-using functions use the variable binding mechanism
supplied to the user, then blip fields are merely the argval fields in basic frames.
If blip-using functions use a private access and control mechanism, then the
representation of blip fields is entirely up to the implementor. (Of course, even in
this case, as part of the private control information for the blip-using function, we
consider the blip fields to be in the temporaries field of the frame extension
controlling the blip-using function activation.)

To permit the user to inspect and update the contents of the blip fields regardless
of the implementation, we provide the functions BliPSCAN, BLlPVAL, and
SETBlIPVAL (specified beiow). The specifications of these functions rely upon the
following definitions.

Definition: A frame extension is said to "contain blip fields" (or "have blip fields")
if such fields are associated with the activation of a blip-using function controlled
from that frame extension. This definition thus ignores the issue of whether the
blip fields are in the basic frame or temporaries field.

Since a frame extension may control more than one VM function activation (in
some implementations), a frame extension might contain more than one collection
of blip fields.

We must be able to talk conveniently about the ith blip field of a given type from a
given frame. We therefore introduce the following definitions.

Definition: The "bliptype blip field sequence of frame", where frame is a frame
extension, is the empty sequence if bliptype is not one of the Literal Atoms *FN·,
*ARGVAL·, ·FORM-, or ·TAIL-, or if frame contains no bliptype blip fields.
Otherwise, it is the sequence of blip fields obtained by ordering the blip fields of
type bliptype in frame in the reverse order of their creation. That is, if frame has
n, n > 0, bliptype blip fields. then the 1 st element of the bliptype blip field
sequence of frame is the newest bliptype blip field in frame (i.e., that which was
most recently created), and the nth element is the oldest bliptype blip field in
frame.

Definition: The "bliptype blip field sequence in chain", where chain is a chain of
frame extensions, is the sequence of blip fields obtained by concatenating (in the
order the frames occur in chain) the bliptype blip field sequences of the
successive frames in chain.

We now specify the blip processing functions.

BLIPSCAN[bliptype:frame]
Get frame extension frame.
If there is a frame extension in the clink chain of frame
which contains a bliptype blip field,

create and return a Stack Pointer containing
the first such f~ame extension;

else. return NIL.

BLIPVAl(bliptype:frame;n]
Get frame extension frame.

66

If ~ NIL. let n be 1.

If ~ T:
Represent and return as an Integer the number
of bliptvpe blip fields contained in frame;

else:
If not FIXP[~]. let n be FIX[~].
let blipseq be the bliptype blip field sequence
in the clink chain of frame.
If blipseg contains at least ~ elements.

return the contents of the ~th blip field in blipseg;
else. return NIL.

SETBlIPVAl[bliptype;frame;n;val]
Get frame extension frame.
If ~ = NIL. let n be 1;
elseif not FIXP[n]. let n be FIX[~].

let blipseq be the bliptvpe blip field sequence in
the clink chain from frame.
If blipseg contains at leat n elements:

Set the contents of the ~th blip field in blipseg to val.
Return va 1 ;

else. return NIL.

20. THE COMPILER

The Virtual Machine does not require the existence of a compiler. However,
should one be present, the VM puts certain constraints on it. These are listed
below.

The compiler is a function which maps from EXPRs to CEXPRs -- that is, the
output of the compiler for a given interpreted function object is a directly
executable function object. In some sense, this directly executable function object
behaves the same way under evaluation as the original EXPR.

If expr-fnobj is an EXPR function object, and cexpr-fnobj is the output of the
compiler for expr-fnobi. then the following conditions must be satisfied:

(1) The implementor can recognize cexpr-fnobj as a function object
produced by the compiler.

(2) The parameter n-tuple, eval/noeval type, and spread/nospread type
of kelillr-fnobj must be the same as those of expr-fnobj.

(3) The body of cexPf-fnobj may be obtained (by the implementor) and
directly executed.

(4) The execution of the body of ~.e-l<'pr-fn_oJli on any collection of
arguments shall cause the same series of function calls (with the
same visible effects on the user's stack) as calling expr-fnobj on
those arguments, with the following exception: The implementor

67

may designate (and document) a set of so-called "open functions,"
the code for which may appear "inline" in cexpr-fnobj where calls
on these functions appear in expr-fnobj. The code compiled for
these open functions may be made more efficient than that
executed during interpreted calls by eliminating error checking
(provided that incorrect arguments cannot render the state of the
VM meaningless), and by eliminating the allocation and maintenance
of blip fields. Except for these cases, the code compiled for open
functions must cause the same user-visible side-effects (if any)
and return the same results as interpreted calls to these functions.

(5) The functions CALLSCCODE and CHANGECCODE must be
implementable.

The previous Section makes it clear that the basic frame and frame extension built
for a call to a compiled function object is indistinguishable (to the user) from that
which would be used for the same call to the interpreted version of that object.
Furthermore, given the definition of "ca"", it is clear that a compiled function can
call an interpreted one (and vice versa).

The implementor may wish to provide a range of options for producing more
efficient code. This is permitted so long as some arrangement of the options
produces code which meets the restrictions above.

Below we introduce definitions which indicate two fairly obvious options. The VM
does not require these options of a compiler, however the terms defined below are
used in the function CALLSCCODE.

Definition: "(Literal Atom) var is a global variable of (CEXPR) fnobi" if var is a
variable of the EXPR funcion object from which fnobj was produced and selected
variable references to var in fnobj have been compiled so as to access the top­
level value field of var directly (rather than after a search of the access chain).

In light of this definition, we will refine the notion of "non-local" variables to be
those that are not local variables but still involve a search through the access
chain.

Definition: A "linked function call" in compiled code is an implementation of the
INTERLISP function calling mechanism whereby the function object referenc~d in
the code is that which was in the function's function definition field at the time of.
the compilation.

Presumably, linked calls are faster since they avoid the reference through the
Literal Atom function name and the check to verify that the object is a function
object.

CALLSCCODE[fnobj;flg]
If LITATOM[fnobj]. let fnobj be GETD[fnobj].

If fnobj is a CEXPR:
Let localvars be a new proper list of all of the
Literal Atoms used as local variables in fnobj.
Let nonlocalvars be a new proper list of all of
the Literal Atoms used as non-local variables in fnobj.

68

Let globa1vars be a new proper list of all of the
Literal Atoms used as global variables in fnobj.
If !l9:

Return LIST[NIL;NIL;loca1vars;nonlocalvars;globa1vars];
else:

Let linkedcalls be a new proper list of all of
the functions called with linked calls in the
code in fnobj.
Let othercal1s be a new proper list of all of
the functions called without linked function calls
in the code in fnobj.
Return LIST[linkedcalls;

othercalls;
localvars;
nonlocalvars;
globalvars].

The following function, CHANGECCODE, destructively replaces all references to
one object in some CEXPR by references to another object. We assume the
references can be of any nature: named variables, constants, function calls, etc.
Note that CHANGECCODE actually modifies the function object rather than copying
it.

In order to allow higher level functions to "undo" the effects of the modification we
introduce the notion of a "reference map".

Definition: A "reference map for (CEXPR) fnobj" is any object the implementor
wishes to use to indicate selected references to objects by the compiled code in
fnobi. The function CHANGECCODE constructs and uses references maps.

It is assumed that if a reference map, refmap, gives the locations of (say) all
references to some object, x, in fnobi. then after CHANGECCODE is used to
replace those references to ~ by references to some other object, y, refmap can
be validly interpreted as a refence map to selected occurrences of 'i in fnobj.
That is, a reference map does not specify the object referenced, but the
references themselves.

CHANGECCODE[newref;refmap;fnobj]
If LITATOM[fnobj]. let fnobj be GETO[fnobj].

If fnobj is a CEXPR:
If refmap is not a reference map,

let refmap be a new reference map for fnobj glvlng
the locations of all references to the Object refmap
in fnobj;

elseif refl11ap is not a reference map for fnobj.
cause error 17 with culprit
CONS["Inconsistent reference map";CONS[refmap;fnobj]].

Modify fnobj so that all references indicated in
refl11ap become references to newref.

Return refmap.

69

21 . FILES AND FILE NAMES

As noted in Section 2, files are not objects, but are assumed to be uniquely
identified by file names which are represented as Literal Atoms.

Definition: "the file x" means "the file named ~".

Files are used as sources and sinks for input and output functions. These
functions are specified in Sections 26 and 27 and deal entirely with transferring
sequences of characters to or from files. However, there are some facilities in the
VM which involve files but tlo not cause the transferral of characters. These
functions are specified in this Section and embody all the file handling capability of
the VM other than mere character transfer.

In many implementations file conventions and file handling facilities are determined
by the host operating system, and are beyond the control of the VM LISP
implementor. The discussion and specifications in this Section attempt to
summarize the assumptions INTERLISP makes about the host filing system. For
convenience, we will tag with the phrase "File Assumption" any paragraph
describing properties of INTERLISP files.

Two distinct kinds of meta-objects are treated as files: input/output devices such
as terminals and lineprinters, and secondary storage· devices such as discs and
drums.

Like strings, files specify a sequence of Charaters. We associate with each
character in a file an integer "address" which specifies the number of characters to
the left of the addressed character. Thus, the first character in a file has address
O. The characters in a file may be inspected sequentially or (in some cases)
randomly.

Convention: The lowest level input operation on a sequentially accessed file will
be called "fetching" and returns the next Character in the file. When discussing
the analogous operation for random access files we will specify the position from
which the Character is to be fetched. The lowest level output operation on a
sequential file will be called "depositing" and transfers a character to the file.
When discussing the corresponding random access operation we will specify the
target position. None of these operations is available in the VM. We reserve the
words "reading" and "writing" for the higher level VM file transfer operations.
Reading and writing are specified in terms of these low level operations (cf.
Sections 26 and 27).

File Assumption 1: It is assumed the user is directing the computational processes
of the VM from an interactive terminal. The assumptions made about the terminal
are specified in Section 23.

File Assumption 2: It is assumed that most files will require some initialization
before they can be read or written. This will be called "opening" the file and the
user must explicitly open a file (except the terminal) before using it. It is assumed
that the intended use of a file is deciared when it is opened, and this use may be
enforced. The uses are declared by supplying "access modes" when the file is
opened. These are defined below. Implementations may limit the number of files

70

open simultaneously 11. Finally, when a file is opened the user may specify the
"bytesize" of the file. This is the number of bits which must be fetched or
deposited to represent one Character on the file. In general the VM supports only
one bytesize: the standard VM bytesize. When a VM function is called upon to
fetch from or deposit to a file with a non-standard bytesize, the implementor is
free to truncate or pad the character codes as necessary. The implementor is also
free to extend the VM facilities for reading from such files, or to provide additional
fetching and depositing facilities.

Definition: An "access mode" is one of the Literal Atoms INPUT, OUTPUT, BOTH,
or APPEND. The relationship between the access mode used when a file is
opened and subsequent use of the file is specified below:

Access ~

INPUT

OUTPUT

BOTH

APPEND

The file may be read from only. When the file is
opened its file pointer field must be set to 0 (see
below).

The file may be written to only. When the file is
opened its file pointer field must be set to O.

The file may be read from and written to. When
opened the file pointer field must be set to O.

The file may be written to only. When the file is
opened its file pointer field must be set to the
contents of the end of file pointer field (see below).

The VM associates three fields with every open file. The names of these fields
are:

(1) position field,
(2) file pointer fiBld,
(3) end of file pointer field.

Each field contains an integer (note lower case). The contents of these fields are
specified below.

The intuitive purpose of the position field is to maintain an indication of how many
characters have been deposited to (or fetched from) the file since the last carriage
return character was written (fetched). The precise manipulation of this field is left
to the implementor. The least sophisticated procedure is outlined below:

(1) Whenever a file is opened, its position field is set to O.

(2) Whenever any non-carriage return character is fetched from a file

11 INTERLlSP-10 restricts it to 16.

71

the contents of the position field of that file is incremented by 1
and stored back into the position field.

(3) Whenever a carriage return character is fetched from a file the
position field of that file is set to O.

(4) Whenever any non-carriage return character is deposited in a file,
the contents of the position field of that file is incremented by 1
and stored back into the position field.

(5) Whenever the carriage return character is deposited in any file, the
position field of that file is set to O.

The implementor may choose to implement (and document) elaborations on this
procedure. For example, the procedure might be sensitive to the primary Terminal
Table (see Section 24) when dealing with the terminal since some characters (such
as (tab) or (form-feed» might require more than one character position to print.

The intuitive purpose of the file pointer field is to specify the target address from
which (or to which) a character is to be fetched (deposited). The initial contents
of a file's pointer field is determined according to how the file is opened and is
specified in the function OPENFILE. The definitions of reading and writing
characters specify the actual use and manipulation of the file pOinter field.

The end of file pointer field always contains the number of characters in the file.
When a file is opened, this number is computed and stored in the end of file
pointer field for the file. (The end of file pointer field is unspecified for the
terminal.) The next file assumption specifies how the end of file pOinter is
maintained.

File Assumption 3: If a character is deposited in a file at an address, n, which is
less than the end of file pointer, eof, the old character at address 0 is overwritten
with the new character. If n is equal to or greater than .e.gf, the file is expanded
by the addition of o-eof+ 1 unspecified characters to the right of the current last
character, the end of file pointer is set to 0+ 1, and the character is then deposited
at address o.

File Assumption 4: When operations on a file are complete, it is assumed some
terminating actions may be performed. This is called "closing" the file and usually
files are explicitly closed by the user.

File Assumption 5: If a non-existent file with an acceptable name is opened for
output the effect is the same as though an existing file, having the same name and
containing no characters. had been opened.

Convention: A file is said to permit "random access" if it is possible for the user
to set the file's file pointer.

File Assumption 6: The user can create, read, and write stored filespermiting
random access.

It is recognized that some file systems allow certain abbreviations and default
conventions when speCifying file names in various contexts. Thus we distinguish

72

two kinds of file names, those that contain abbreviations or rely upon defaults
supplied by the underlying file system, and those that represent the fully specified
file name.

Convention: A "full file name" is a character sequence not depending on
abbreviations or defaults to specify a unique file.

For convenience we allow character sequences which do not represent full file
names to be "recognized" as abbreviations for full names, should the host filing
system or implementor choose to supply such a scheme. We allow such an
abbreviation to actually denote one of several files and introduce the notion of a
"recognition mode" to distinguish precisely one of the possible matches.

Definition: A "recognition mode" is one of the Literal Atoms OLD, NEW, or
OLDEST. The mode places certain restrictions on the file denoted by a
recognized name. These restrictions are given below.

Definition: "(character sequence) name is recognized in (recognition mode) mode"
if the filing system's naming conventions allow name to denote a unique file, file,
with full file name, full name, satisfying the property required by mode. The mode
properties are:

OLD

NEW

OLDEST

property

file is the most recently created existing file
which name could denote.

file does not yet exist, but the user could create
a new file with full name full name.

file is the oldest existing file which name could
denote.

File Assumption 7: INTERLISP assumes that both full file names and those that can
be recognized are the names of Literal Atoms (i.e., neither denotes an INTERLl5P
Number).

It is actually the case that the high level facilities in INTERLISP make some
assumptions about the form and characteristics of file names themselves. For
example, in INTERLlSP-10, which relies on the file naming conventions of TENEX,
functions which create new files "know" that file names have extensions and
version numbers appended to the end of the "main name" and separated by the
characters '.' and ';' respectively. The VM does not require these naming
conventions, but it is probable that that part of the high level code which generates
file names will have to be reimplemented to suit the local conventions. This was
deemed more practical than trying to standardize file name conventions.

Definition: A "File Name" (note capitalization) is a Literal Atom whose name is a
file name. We will use the adjectives "recognizable" and "full" in the obvious way.

The File Name T is reserved for the interactive terminal the user is presumed to be
using. The file T is always open for both input and output. The implementor is
free to supply an arbitrary number of reserved recognizable File Names for online
site-dependent devices such as lineprinters, etc.

73

The VM also provides a facility for producing "typescript" files, that is, files
containing all of the input/output transactions with the terminal. The user may
designate one file to be used for this purpose (see DRIBBLE below). Sections 26
and 27 specify what is written to this file.

INTERLISP maintains three distinguished full file names (and thus, three
distinguished files). These file names are the default file names for input and
output (i.e., they are used when any VM file handling function is given NIL instead
of a File Name) and the name of the current typescript file (if any). The
corresponding files are called the "primary input file", the "primary output file", and
the "dribble file". Initially, the first two are T and there is no dribble file.

FULLNAME[litatom;recog]
If not LITATOM[litatom], cause error 14 with culprit litatom;
elseif recog is NIL. let recog be OLD;
elseif recog is not a recognition mode,

cause error 27 with culprit recog.

If litatom is recognized in recognition mode recog as an
abbreviation for some file with full name fullname,

return fullname;
else, return NIL.

OPENFILE[file;access;recog;bytesize]
Let fu11name be FULLNAME[file;feco9].
If ful1name is NIL, return NIL.
If access is not an access mode.

cause error 27 with culprit access.
If bytesize is NIL,

let bytesize be the standard VM bytesize;
else. let bytesize be FIX[bytesize].
If the implementation defined limit on the
number of open files has been reached,

cause error 15 with culprit NIL.

Open file fullname with access access and byte size
bytesize. and should it be found impossible to
do so (e.g., due to a protection violation)
cause error 9 with culprit fu1lname.
Return fullname.

OPENP[fi1e;access;recog]
If file is not a Literal Atom,

cause error 27 with culprit file;
e1seif file is NIL:

If access is NIL:
Create and return a proper list of the full File Names
of all open files (excluding T and the dribble file.
if any);

elseif access is an access mode:
Create and return a proper list of the full File Names
of all files open for the mode of access specified
by access (excluding T and the dribble file. if any);

else (file is a non-NIL literal Atom):
If access is NIL, let access be INPUT.
If recog is NIL:

If access is OUTPUT. let recog be NEW;
else. let recog be OLD.

let fullname be FULLNAME[file;recog].
If fu11name is open for the mode of access specified

74

by access. return fullname;
else, return NIL.

INPUT[file] If file is NIL. return the full File Name of the
current primary input file.
Let fullname be OPENP[file;INPUT].
If fullname is NIL, cause error 13 with culprit file.
Let oldfile be the full File Name of the current
primary input file.
Set the primary input file to fullname.
Return oldfile.

INFILE[file] Return INPUT[OPENFILE[file;INPUT;OlD]].

INFILEP[file] Return FULLNAME[file;OLD].

OUTPUT[file] If file is NIL, return the full File Name of
the current primary output file.
Let fullname be OPENP[file;OUTPUT].
If fullname is NIL. cause error 13 with culprit file.
Let oldfile be the full File Name of the current
primary. output file.
Set the primary output file to fullname.
Return oldfile.

OUTFILE[file] Return OUTPUT[OPENFILE[file;OUTPUT;NEW]].

OUTFILEP[file] Return FULLNAME[file;NEW].

IOFILE[file] OPENFILE[file;BOTH;OLD].

DRIBBLE[file] If file=T. let file be NIL.
If there is a dribble file:

let oldfile be the full File Name of the dribble file.
If oldfile is the primary output file,

set the primary output file to T.
Cl-ose oldfile;

else. let oldfile be NIL.

If file /= NIL:
If OPENP[file;OUTPUT]. let newfile be OPENP[file;OUTPUT];
else. let newfile be OPENFILE[file:OUTPUT;NEW].
Set the dribble file to newfile.

Return oldfile.

DRIBBLEFILE[] If there is a dribble file.
return the full File Name of the current dribble file;

else. return NIL.

CLOSEF[file] If file is NIL:
If the primary input File Name is not T.

let fullname be the primary input full File Name;
elseif the primary output File Name is not T,

let fullname be the primary output full File Name;
else return"NIL;

else:
Let fullname be OPENP[file].
If fullname is NIL, cause error 13 with culprit file.

If fullname is the primary input File Name.

75

set the primary input file to T.
If fullname is the primary output File Name.

set the primary output file to T.
If there is a dribble file and it is fullname:

Return NIL;
else:

Close file fu11name.
Return fullname.

Note: The dribble file cannot be closed with ClOSEF.

ClOSEAll[] let 1st be a new proper list of the full names of all open
files (except T and the dribble file. if any).
For each filename in 1st do:

ClOSEF[filename];
Return 1st.

RANDACCESSP[file1

GETFILEPTR[file]

GE TEOFPTR[fil e]

If file is NIL. let file be the primary input file:.
elseif OPENP[file]. let file be OPENP[fi1e):
else. cause error 13 with culprit file.
If file permits random access. return file;
else. return NIL.

If file is NIL. let file be the primary input file:
elseH OPENP[file]. let file be OPENP[file):
else. cause error 13 with culprit file.
Represent and return as an Integer the cOntents
of the file pointer field of file.

If file is NIL, let file be the primary input file;
elseH OPENP[file]. let file be OPENP[file):
else cause error 13 with culprit file.
Represent and return as an Integer the contents
of the end of file pointer field of file.

SETFIlEPTR[file;val)
If RANDACCESSP[file]. let file be RANDACCESSP[fi1e):
else. cause error 17 with culprit file.
If not FIXP[val). let val be FIX[val].
If val < -1. cause error 27 with culprit val;
elseH val =-1:

Set the file pointer field of file to the
contents of the end of file pointer field of file.
Return val;

else:

POS IT ION [f i 1 e; val)

Set the file pointer field of file to the integer
represented by val.
Return val.

If file is NIL. let file be the primary output file;
elseif OPENP[file). let file be OPENP[fileJ;
else. cause error 1.3 with culprit file.

Let oldval be the Integer representing the
contents of the position field of the file file.
If val is NIL. return oldval.
If not FIXP[valJ. let val be FIX[va1J.

76

Set the position field of file to the integer
represented by val.
Return oldval.

DELFILE[file] Let fullname be FULLNAME[file;OLDEST].
If fullname is not NIL:

If fullname is open, cause error 17 with culprit
CONS["Close file before deleting";fullname].
Delete file fullname.
Return fullname;

else, cause error 23 with culprit file.

RENAMEfILE[file;newname]
Let file be INFIlEP[file].
If file is NIL, return NIL.
If file is open, cause error 17 with culprit
CONS["Close file before renaming";file].
Let newname be OUTFILEP[newname].
If newname is an existing file, return NIL.
Rename the file file to have name newname.
Return'newname.

22. READ TABLES

Read Tables are objects that specify the syntactic properties of characters for the
input (and some output) routines. Since the input routines are concerned with
parsing incoming character sequences into objects, the Read Table in use at the
time determines which sequences are recognized as Literal Atoms, List Structures,
etc.

We will present the specifications of the input/output functions in Sections 26 and
27. This Section is concerned with the manipulation of the Read Tables
themselves.

Each character must belong to precisely one "syntax class". By definition of a
syntax class, all characters in a given syntax class exhibit identical syntactic
properties. There are nine basic syntax classes, each associated with a primitive
syntactic property, and then an unlimited assortment of user-defined syntax classes
(jointly referred to as "read macros" but individually constituting unique syntax
classes).

For example, the characters which indicate the beginning of (a character sequence
representing) a List Structure form a basic syntax class. The general property
uniting all read macro characters is that a user-specified computation is performed
to determine the syntactic effect of each character.

It should be noted that a "syntax class" is an abstraction provided by the VM.
There is no object referencing a collection of characters and called a Syntax
Class. A Read Table provides the association between a character and its syntax
class, and the input/output routines enforce the abstraction by using Read Tables
to drive the parsing.

77

To allow the user to specify the association between Characters and syntax
classes we must introduce names for the basic syntax classes and the attributes of
read macros.

Definition: A "basic syntax class" is one of the Literal Atoms LEFTPAREN,
RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET, STRINGDELlM, ESCAPE,
BREAK CHAR, SEPRCHAR, and. OTHER.

The properties of these classes are defined in Sections 26 and 27. Briefly, the
first four classes mark character sequences representing List Structures,
STRINGDELIM marks Strings, BREAK CHAR and SEPRCHAR mark Literal Atoms and
Numbers, ESCAPE provides a mechanism for inputting these syntactically special
characters, and OTHER is the class of all other characters except those that are
read macros.

It is convenient to refer to some of these clases jOintly.

Definit;on: The "break syntax classes" are LEFTPAREN, LEFTBRACKET,
RIGHTPAREN, RIGHTBRACKET, STRINGDELlM, and BREAKCHAR.

The syntactic properties of read macros are determined by the vaues of five
attributes.

Definition: The five read macro attributes are "type", "context", "wakeup mode"
"escape flag", and "body". Each attribute may take on one of the discrete "legal"
values shown below:

attribute

type
context
wakeup mode
escape flag
body

legal value

MACRO, SPLICE, INFIX
ALWAYS, FIRST, ALONE
WAKEUP, NOWAKEUP
ESCQUOTE. NO ESC QUOTE
a Literal Atom or function object

Briefly, the meanings of these attributes are as follows: The body specifies a
computation to be performed when the character is read in a certain syntactic
context specified by the context attribute. The type attribute determines what is
done with the value of the computation. The wakeup mode attribute is important
only when the macro is read from the terminal and. if it is WAKEUP, means that the
reading routines should begin reading and parsing the characters in the line buffer
as soon as the read macro character has been deposited in that buffer (see
Sections 23 and 27). The escape flag attribute affects how the character is to be
printed.

It is convenient to define a read macro specification itself as a 5-tuple meta­
object, containing INTER LISP objects. We use the notion of a meta-object because
the user specifies the individual components but does not supply a read macro
specification as an object.

Definition: A "read macro specification" is a 5-tuple meta-object containing
INTERLISP objects: (type. context. wakeup mode. escape flag. body> where the
components are legal values of the corresponding read macro attributes.

78

Definition: A "syntax class specification" is either one of the basic syntax classes
or a 5-tuple read macro specification.

It is sometimes desirable to prevent all read macros in a Read Table from invoking
computation, even though their attributes would otherwise allow it. When in such a
state, we say that the read macros are "disabled". This is controlled by a flag
field in the Read Table.

Definition: A "Read Table" is an object with the following properties:

(1) For each character, c, there is a field which contains a syntax
class specification, called the "syntax class of ,C ...

(2) There is a binary field, called the "read macros enabled" field,
which may contain T or NIL.

Read Tables constitute a distinct class of objects with class name READTABLEP.

Definition: "(character) char is a LEFTPAREN of (Read Table) rdtbl", if the
contents of the char syntax class field of rdtbl contains LEFTPAREN. Analogous'
definitions are asserted for the other syntax classes. A "break character of rdtbl"
is any character having one of the break syntax classes in its syntax class field of
rdtbl. A "separator" character is one having SEPRCHAR in its syntax class field of
rdtbl.

Because the user is allowed to specify the syntax class to which each character
belongs, we must define the process by which the implementor. translates user­
supplied objects describing read macros into (meta-object) read macro
specifications.

Definition: To "obtain the 5-tuple corresponding to (proper list) 1st (with length n)"
means:

"If n<2. cause error 27 with culprit 1st.
If CAR[lst] is a legal type. type,

let the type of the 5-tuple be ~:
else cause error 27 with culprit 1st.
If the last element of 1st is a legal body. body.

let the body of the 5-tuple be body.
else cause error 27 with culprit 1st.

Consider the remaining n-2 elements in 1st as a set. remainder.
but using ESCQUOTE in place of all occurrences of ESC
and NOESCQUOTE in place of all occurrences of NOESC.

If there is more than one legal context (or wakeup mode or escape flag)
attribute value in remainder,

cause error 27 with culprit 1st.
If any element of remainder is not a legal context or wakeup mode or
escape flag value.

cause error 27 with culprit 1st.
If there is no context value in remainder.

add ALWAYS to remainder (i.e .• let remainder be the new set
obtained by adding the element ALWAYS to remainder).

If there is no wakeup mode value in remainder.
add NOWAKEUP to remainder.

79

If there is no escape flag value in remainder,
add ESCQUOTE to remainder.

Let the context, wakeup mode, and escape flag components
in the 5-tuple be the context. wakeup mode, and escape flag
values in remainder."

Similarly, we must define the process used by the implementor to construct an
object (for the user) which contains all of the information in a read macro
specification.

Definition: To "create a proper list corresponding to (a read macro specification)
<type. context, wakeup, escape, body)" means
"LlST[~;context;wakeup;escape;body]".

Thus, the proper list the user supplies to a Read Table to define a read macro is
not the same (EQ) proper list the user obtains when querrying the Read Table. In
fact, the two proper lists may not even be the same length or contain the same
elements. However, both translate into the same 5-tuple.

The VM maintains three distinguished Read Tables. The first is called the "original"
Read Table.' This Read Table may not be obtained by the user and is used to
provide a way to recover the initial settings in the other two distinguished Read
Tables. The second is called the "system" Read Table, and is the one used when
the system itself is interacting with the user's terminal (e.g., reading for the top­
level input to EV ALQT). The third is called the "primary" Read Table, and is the
default Read Table for user programs. The latter two Read Tables initially contain
copies of the original Read Table (i.e., they are distinct Head Table objects
containing the same settings). We will be precise regarding the use of these three
tables when precision is required. For the moment it is sufficient simply to state
the existence of these three Read Tables.

Provided the characters are available in the implementation, the following
associations should be found in the original Read Table:

Character

<tab)
<carriage return)
<Iineteed)
<formfeed)
<end-at-line)
<blank)

<percent>
(
)
[
]

Initial Syntax Class Specification

SEPRCHAR
SEPRCHAR
SEPRCHAR
SEPRCHAR
SEPRCHAR
SEPRCHAR
STRINGDELIM
ESCAPE
LEFTPAREN
RIGHTPAREN
LEFTBRACKET
RIGHTBRACKET

All other characters should have sy~tax class OTHER. The read macros enabled
field of the original Read Table is set to T.

READTABLEP[x] If ~ is a Read Table, return ~;
else. return NIL.

80

GETREADTABLE[rdtbl]
If rdtbl is NIL, return the primary Read Table;
elseif rdtbl is T, return the system's Read Table;
elseif READTABLEP[rdtbl], return rdtbl;
else, cause error 38 with culprit rdtbl.

SETREADTABLE[rdtbl;flg]
Let rdtbl be GETREADTABLE[rdtbl].
If f.!.g:

Let oldrdtbl be the system's Read Table.
Set the system's Read Table to rdtbl.
Return oldrdtbl.

else:
Let oldrdtbl be the primary Read Table.
Set the primary Read Table to rdtbl.
Return Qldrdtbl.

RESETREADTABLE[rdtbl;source]
If not R£ADTABL£P[rdtbl],

let rdtbl be GETREADTABLE[rdtbl].
If not READTABLEP[source]:

If source • ORIG,
let source be the orignal Read Table;

else, let source be GETREADTABLE[source].

If the read macros enabled field of source is T,
set the read macros enabled field of rdtbl to T;

else, set the read macros enbabled field of rdtbl to NIL.

For each character, c, replace the f syntax class field in
rdtbl with the contents of the f syntax class
field in source.

Return rdtbl.

COPYREADTABLE[rdtbl]
Let newrdtbl be a new Read Table.
Return RESETREADTABLE[newrdtbl;rdtbl].

The following two functions operate on both Read Tables 'and Terminal Tables.
Terminal Tables are described in Section 24. One of their functions is to specify
"terminal syntax classes" for characters. For details and definitions of terms used,
see Section 24.

GETSYNTAX[char;tbl]
Let origchar be char.
If char is a Character or character code
(treat Characters 0 through 9 as character codes),

let char be the corresponding character.

If not READTABLEP[tbl] and not TERMTABLEP[tbl):
If char is a terminal syntax class:

If tbl • ORIG,
let tbl be the original Terminal Table;

else. let tbl be GETTERMTABLE[tbl];
elseif tbl"= ORIG,

let tbl be the original Read Table;
else. let tbl be GETREADTABLE[lQl];

If char is a character:

81

If READTABlEP[tbl]:
let class be the contents of the char syntax class
field in tbl.
If class is a 5-tup1e.

create and return a prooer list corresponding to class;
else return the basic syntax class class;

else (tbl in a Terminal Table):
Return the contents of the terminal syntax
class field of char in tb1;

e1seif char is a basic syntax class:
If TERMTABLEP[tb1]. cause error 38 with culprit tb1.
Create and return a proper list of all of the
character codes whose syntax class fields in tb1
contain char.

e1seif char = BREAK:
If TERMTABLEP[tbl]. cause error 38 with culprit tb1.
Create and return a new proper list of all of the
character codes whose syntax class fields in
tb1 contain one of the break syntax classes.

elseif char is a terminal syntax class:
If READTABLEP[tbl]. cause error 39 with culprit tb1.
Create and return a proper list of all of the character
codes whose terminal syntax class fields in tb1
contain char;

else. cause error 27 with culprit origchar.

SETSYNTAX[char;c1ass;tbl]
Let origchar be char.
If char is a Character or character code (treat
Characters 0 through 9 as character codes),

let char be the corresponding character;
else. cause error 27 with culprit char.

If not READTABLEP[tbl] and not TERMTABLEP[tbl]:
If TERMTABLEP[class] or class is a Terminal Syntax Class.
let tbl be GETTERMTABLE[tbl];
else. let tbl be GETREADTABLE[tbl];

If READTABLEP[class] or TERMTABLEP[c1ass]
or class = NIL or class = T or class = ORIG:

Let class be GETSYNTAX[charcode;class].
where charcode is the character code corresponding to char;

elseif class is a Character or character code:
Let class be GETSYNTAX[class;tb1];

elseif class = SEPR:
Let class be SEPRCHAR.

Let oldclass be GETSYNTAX[char;tb1].

If class is a basic syntax class:
If TERMTABLEP[tbl]. cause error 38 with culprit tbl.
Set the char syntax class field in !Ql to class.
Return oldclass;

elseif class = BREAK:
If TERMTABLEP[tbl]. cause error 38 with culprit tbl.
If oldclass is not a break syntax class or a read
macro specification. set the char syntax class field
in tbl to BREAKCMAR.
Return oldclass.

elseif LIS1P[class]:
If TERMTABLEP[tbl]. cause error 38 with culprit tbl.
Obtain the 5-tuple corresponding to class. and
set the char syntax class field in !Ql to this 5-tuple.

8~

Return oldclass.
elseif clas.s is a terminal syntax class name:

If READTABlEP[tblJ, cause error 39 with culprit tbl.
If class = NONE, set the char terminal syntax class
field in tbl to NONE;
elseif char is not a special terminal
character, cause error 27 with culprit origchar.
else:

If there is any character, c, whose
terminal syntax class field in tbl contains class,
set the f terminal syntax class field in tbl to NONE.
Set the char terminal syntax class field
in tbl to class.
Return oldclass;

else, cause error 27 with culprit £l!!!.

GETBRK[rdt~l] Return GETSYNTAX[BREAK;rdtbl].

GETSEPR[rdtbl] Return GETSYNTAX[SEPRCHAR;rdtbl]

SETBRK[lst;flg;rdtbl]
If 1st",T:

If rdtbl=T, let 1st be GETBRK[ORIG];
else, let 1st be GETBRK[T].

(We as-sume 1 s tis a proper li st of either
Characters or character codes.)

If flg=NIl:
For every element. char. of GfTBRK[rdtbl] do:

SETSYNTAX{char;OTHER;rdtbl].
For every element, char, of 1st, do:

SETSYNTAX[char;BREAKCHAR];
e1 self flg=O:

For every element. char, in 1st do:
SETSYNTAX[char;OTHER;rdtbl];

elseif flg=l:
For every element. char. in lst do:

SETSYNTAX[char;BREAKCHAR;rdtbl].

Return NIl.

SETSEPR[lst;flg;rdtbl]
(Same specification as for GETBRK except
use GETSEPR for GETBRK and SEPRCHAR for BREAKCHAR.)

READMACROS[flg;rdtbl]
If not READTABLEP[rdtbi J.

let rdtbl be GETREADTABLE[rdtbl]..
Let oldflg be the contents of the
read macros enabled field of rdtbl.
If flg. set the read macros enabled field of rdtbl to T;
else. set the read macros enabled field of rdtbl to NIL.
Return oldflg.

23. TERMINALS

83

This Section describes the assumptions the VM makes about the terminal
input/output capabilities of the underlying operating system or machine.

As File Assumption 1 makes clear, the VM assumes the user is directing the
computations of the VM from an interactive terminal. The VM allows the
implementor to class terminals as either "display" or "non-display". The only
distinction made by INTERUSP is that if the user's terminal is a display terminal
some of the high-level facilities assume that information can be displayed to the
user faster than with a non-display terminal, and hence (in their default mode)
supply more information.

The next assumption about the terminal concerns interrupt characters.

Terminal Assumption 1: Whenever certain characters (determined under software
controi) are typed at the terminai, an impiementor suppiied procedure is
immediately invoked, regardless of any ongoing computational processes. If a
character causes such an invocation, it is called an "interrupt character". Section
25 deals with the VM interrupt facilities.

We next introduce the concept of a "buffer" and define the operations of
"fetching" and "depositing" on buffers. Intuitively, a buffer is just a queue of
characters.

Definition: A "buffer" of length n)O is a meta-object with the following properties:

(1) There are n character fields, each identified by an integer, 1 =<1=<0.

(2) There is a field, called the "deposit pointer" field, which contains a
non-negative integer not exceeding n.

When a buffer is created, its deposit pointer field is set to O.

Definition: If the deposit pointer of a buffer is 0, the buffer is said to be "empty".
To "clear" a buffer is to set its deposit pOinter to O. If the deposit pointer is
equal to the length of the buffer, the buffer is said to be "replete". We reserve
the word "full" for future use (cf. Section 27).

Definition: If a buffer, buff, is non-empty, then to "fetch" the next character from it
means:

"Let c be the character in the first field of buff.
Let n be the deposit pointer of buff.
For every integer i. 2=<i=<~. set the contents of
the .i-1st field of buff to the contents of the ith field of buff
(i.e .. shift all of the characters in buff to the left. by 1).
Set the deposit pointer of buff to n-l.
Return c."

Definition: If a buffer, buff, is not replete, then to "deposit" a character, c, in the
buffer means:

"Let n be the contents of the deposit pointer field of buff.
Set the deposit pointer field of buff to n+1.
Set the n+1st character field of buff to c."

84

Of course, buffers fleed not be implemented this way -as long as the lunctiona1
behavior of depositing and fetching is preserved.

At any instant a buffer can be considered to correspond to the character sequence
which would be obtained by fetching successive characters from the buffer until it
was empty.

Terminal Assumption 2: There is a buffer of unspecified length, called the "system
input buffer", with the property that whenever any character, char, is typed at the
terminal, the following procedure is followed:

"If char is the CTRLV character of the primary
Terminal Table (cf. Section 24):

Let char be the next character typed at the terminal.
If the system input buffer is replete:

Send the bell character to the terminal (i.e., G in ASCII,
or, if unavailable, some character which when sent to the
terminal will alert the user that typein is being ignored);
Ignore char.

else, deposit char in the system input buffer;
elseH char is a valid interrupt character (cf. Section 25) and the
interrupt class of char, class, is something other than NONE:

(Note: The terms used in this clause are defined in Section 25.)
If the interrupts armed fieldconta ins T, immediately

perform the computation specified for the class interrupt:
else, set the saved interrupt character field to char.
Ignore char (i.e., do not deposit it in the system input buffer).

else:
If the system input buffer is replete:

send the bell character to the terminal {and ignore char):
else, deposit char in the system input buffer."

Terminal Assumption 3: Whenever a fetch is requested from the system input
buffer while that buffer is empty, all of the user's computational processes are
halted until the user begins typing at the terminal.

Recognizing that the VM is often implemented in a time shared environment, the
following assumption is made.

Terminal Assumption 4: There is a buffer of unspecified length, called· the "system
output buffer", with the property that whenever any character is "depOSited in the
terminal" it is actually deposited into this buffer. It is assumed a concurrent
process is actually fetching characters from this buffer and transferring them to the
actual terminal.

In the next Section we outline the distinguishing characteristics of terminal
input/output and present the data structure which specifies how the input/output
routines should behave with respect to the terminal.

DISPLAYTERMP[] If the terminal is a display terminal, return T;
else, return NIL.

DOBE[] Wait until the system output buffer
is empty and then return NIL.

Note: "DOSE" stands for "dismiss until output buffer empty".

85

24. TERMINAL TABLES

Terminal Tables are objects which supply the input/output routines with information
specifically pertaining to the file T, Because the terminal is an interactive
source/sink it has characteristics not found in any other file.

The following special characteristics are recognized for terminal input/output:

(1) Some characters should cause interrupts as soon as they are
typed (to allow the termination of infinite computations, for
example).

(2) Some subset of the characters may be reserved for editing type-in
during input by the user.

(3) Many control characters in the alphabet do not usually perform
meaningful functions when deposited in the terminal and there
should therefore be special provisions for outputting them.

(4) It' is usually necessary to echo (i.e., print to the terminal)
characters read from the terminal.

(5) It is sometimes necessary to perform' lower to upper case
conversion on characters read from the terminal.

These characteristics suggest a variety of facilities that are offered by the VM
input/output routines when dealing with the terminal. All of these facilities except
those suggested by (1) are controlled by Terminal Tables.

In this Section we will deal with Terminal Tables as data objects. Sections 26 and
27 will actually specify how they interact with the input/output routines. Section
25 deals with the facilities suggested by (1).

As usual, we will present a brief discussion of the features controlled by Terminal
Tables, simply to motivate the contents of the various fields involved. We start
with the editing of characters, as suggested by (2).

To permit interactive editing of typed input, characters are fetched one ata time
from the system input buffer and deposited in an internal VM buffer (called the
"line buffer") where they are subject to editing until a "wakeup" character is read.
The wakeup character constitutes one of several "terminal syntax classes". There
are four editing operations which can be performed on characters in the buffer, and
each operation may be triggered by no more than one character. Each operation
has a name and defines a distinct terminal syntax class of the same name. We
then add a sixth terminal syntax class which contains all the rest of the characters.

Definition: A "terminal syntax class" is one of the Literal Atoms WAKEUPCHAR,
CHARDELETE, UNEDELETE, RETYPE, CT~LV, or NONE.

We will briefly (and informally) explain the editing operations. Their formal
definitions are in Section 27. The first five classes can contain at most one
character each. The WAKEUPCHAR character breaks the incoming stream into

86

segments to be edited independently. The CHARDELETE character causes the
deletion of the last non-editing character read. The LlNEDELETE character causes
the entire line buffer to be cleared. The RETYPE character causes the line buffer
to be printed to the terminal for inspection. The CTRLV character provides a
mechanism for entering control characters into the sequence (even those with
editing or interrupt functions). Finally, NONE is the class of all remaining
characters. (NONE is used instead of OTHER so that GETSYNTAX and
SETSYNTAX can distinguish a Read Table syntax class from a Terminal Table
syntax class.)

Recognizing that some operating systems have flexible terminal editing and control
facilities based on a preferred subset of characters, it is permissable to limit the
WAKEUPCHAR, CHARDELETE, LlNEDELETE, RETYPE, and CTRLV characters to
those preferred by the host system.

Definition: A "special terminal character" is a character permitted by the
implementation to be in the terminal syntax classes WAKEUPCHAR, CHARDELETE,
LlNEDELETE, RETYPE, and CTRLV. The set of special terminal characters must
contain at least 5 distinct characters and must be documented by the implementor

The output protocol during the character and line deletion operations in the line
buffer can be specified by the user. There are five "messages" (character
sequences) associated with these two operations.

Definition: A "deletion control message name" is one of the Literal Atoms
LlNEDELETE, 1 STCHDEL, NTHCHDEL, POSTCHDEL, and EMPTYCHDEL.

Briefly, the five respective messages are printed when the LlNEDELETE character
is read, when the first of a series of CHARDELETE characters is read, when the
nth consecutive CHARDELETE character is read, when the first non-CHARDELETE
non-editing character is read after a CHARDELETE, and when a CHARDELETE
character is read when there are no characters in the buffer.

It is also possible to specify whether or not the characters deleted by
CHARDELETE are echoed when deleted.

Finally, there is a mechanism which allows the user to defeat the line buffering.

This concludes the survey of faciiities suggested by characteristic (2) of terminal
input/output. Section 27 presents the details. Next. we consider the problem of
non-printing control and formatting characters.

It does not make a great deal of sense to deposit most control and formatting
characters to the terminal. This is either because the functions traditionally
performed by such characters are not meaningful in an user-controlled interactive
environment (e.g.. end-of-transmission). or because the necessary hardware
formatting capability is not present in the terminal (e.g .. form-feed). It is therefore
useful to provide a range of "control character echo modes" for each control
character (independently). These modes specify different ways of dealing with the
problem of echoing or writing c:ontrol characters to terminals.

Definition: A "control character echo mode" is one of the Literal Atoms IGNORE,
REAL. SIMULATE. or UPARROW.

87

If a control character has echo mode IGNORE, then it is simply not deposited in
the terminal. If the mode is REAL, the control character is deposited and the
terminal hardware is expected to deal with it. If the mode is SIMULATE then (when
possible) a sequence of characters will be deposited which simulate the effect of
the character (e.g., a simulated tab will deposit a sequence of spaces). Finally, if
the mode is UPARROW the character is printed as the 't' character followed by
the control character's tequivalent. The details are presented in Section 26.

Characteristics (4) and (5) of terminal input/output imply that the user should
exercise control over whether any characters are echoed, and whether they are
converted to upper case. The facilities for these features are specified in Section
27.

We are now in a position to state the characteristics of a Terminal Table.

Definition: A "Terminal Table" is an object with the following properties:

(1) For each character there is a field containing a terminal syntax
class, with the restrictions that at most one character may have
CHARDELETE (or LlNEDELETE or RETYPE or CTRLV) in its field
and only special terminal characters may have CHARDELETE,
LlNEDELETE, RETYPE, CTRLV, or WAKEUPCHAR in their syntax
class fields.

(2) For each deletion control message name. there is a field containing
a (meta-object) character sequence (possibly limited to an
unspecified number of characters 12).

(3) There is a binary field, called the "control" field, containing either T
or NIL (determining whether line buffering is performed).

(4) For each control character there is a field containing a control
character echo mode.

(5) There is a binary field. called the "deleted character echo mode"
field. which contains either ECHO or NOECHO.

(6) There is a binary field, called the "global echo mode" field, which
contains either T or NIL.

(7) There is a ternary field, called the "Iower-to-upper case
conversion mode" field. containing either T, 0, or NIL.

Terminal Tables constitute a distinct class of objects with class name
TERMT ABLEP.

Definition: "(character) x is the (or a) CHARDELETE character of (Terminal Table)
y" if the ~ terminal syntax class field of y contains CHARDELETE. Analogous
definitions are asserted for the other terminal syntax classes.

12 INTERLlSP-10 limits these character sequences to 5 characters.

88

There are two distinguished Terminal Tables, called the "original" Terminal Table
and the "primary" Terminal Table. The original Terminal Table is analogous to the
original Read Table. The primary Terminal Table is initially set to a copy of the
original Terminal Table and is used when any input/output operation uses the file T
(which is the only time any Terminal Table is ever used).

Initially, the original Terminal Table shall contain the following settings, assuming
these characters are available as special terminal characters:

character terminal syntax class

tA
(end-of-line)
1'0
fR
tV

CHARDELETE
WAKEUPCHAR
LlNEDELETE
RETYPE
CTRLV

If any of these character is not available, the implementor should designate and
document suitable replacements. All other characters should have terminal syntax
class NONE.

deletion control message name message

LlNEDELETE
1STCHDEL
NTHCHDEL
POSTCHDEL
EMPTYCHDEL

(carriage-return)
\
<the empty sequence)
\
< carriage-return)

The control field should be set to NIL. The deleted character echo mode field
should be set to ECHO. The global echo mode field should be set to T. The
lower-to-upper case conversion mode field should be set to NIL.

The control character echo modes should be set as follows:

character

fA
1'0
tR
tV

control character echo mode

IGNORE
IGNORE
IGNORE
UPARROW

The controi character echo mode of <end-of-line> should be set so as to cause to
the standard terminal in use to print subsequent characters on the line below the
last, starting at the left-hand margin. If the sequence of characters used as the
carriage return characters can be obtained singly, they must have echo mode
REAL. The implementor may set the remaining control character echo mode fields
at his own discretion (presumably being sensitive to the characters available and
the hardware properties of th~ terminals used by prospective users).

TERMTABLEP[x] If x is a Terminal Ta~le. return ~;
else. return NIL.

89

GETTERMTABLE[termtbl]
If termtbl is NIL, return the primary Terminal Table;
elseif TERMTABLEP[termtbl], return termtb1;
else, cause error 39 with culprit termtbl.

SETTERMTABLE[termtb1]
If not TERMTABLEP[termtbl].

let termtbl be GETTERMTABLE[termtbl].
Let oldtermtbl be the current primary Terminal Table.
Set the primary Terminal Table to termtbl.
Return 01dtermtb1.

RESETTERMTABLE[termtbl;source]
If notTERMTABLEP[termtb1].

let termtb1 be GETTERMTABLE[termtb1].
If not TERMTABLEP[source]:

If source = ORIG. let source be the original
Terminal Table;
else, let source be GETTERMTABLE[source].

For every character. char. set the char terminal
syntax class field in termtbl to the contents
of that of char in source.

For each deletion control message name. n. set
the n deletion control message field in termtbl
to the contents of that of n in source.

Set the control field of termtbl to the contents of
that of source.

For every control character, char, set the char control
character echo mode field in termtbl to
the contents of that of char in source.

Set the deleted character echo mode field of termtbl
to the contents of that of source.

Set the global echo mode field of termtbl to the
contents of that of source.

Set the lower-to-upper case conversion mode
field of termtbl to the contents of that of source.

Return termtbl.

COPYTERMTABLE[termtb1]
Let newtermtbl be a new Terminal Table.
Return RESETTERMTABLE[newtermtb1;termtbl].

ECHOCONTROL[char;mode;termtbl]
Let origchar be fhar.
If char is a Character or character code (treat
Characters 0 through 9 as character codes),

let char be the corresponding character;
else. cause error 27 with culprit char.

If char is not a control character:
If char is the ~equivalent of a control character,
let char be that control character;

90

else. cause error 27 with culprit origchar.

If not TERMTABLEP[termtbl].
let termtbl be GETTERMTABLE[termtbl].

Let oldmode be the contents of the char control
character echo mode field of termtbl.

If mode is NIL:
Return oldmode.

elseif mode is a control character echo mode:
Set the char control character echo mode field
of termtbl to mode.
Return oldmode;

else, cause error 27 with culprit mode.

DELETECONTROL[msgname;msg;termtbl]
If not TERMTABLEP[termtbl].

let termtbl be GETTERMTABLE[termtbl].
If msgname is DELETELINE,

let msgname be LINEDELETE.
If msgname is a deletion control message name:

If msg is NIL:
Create and return a String representing the
msgname deletion control message of termtbl;

elseH STRINGP[msg] 01' LITATOM[msg]:
If NCHARS[msg] is longer than the maximum
deletion control message length.

cause error 17 with culprit
CONS["Illega1 message length - DELETECONTROL";msg].

Create a new string. oldmsg. representing
the msgname deletion control message of termtbl.
Set the msgname deletion control message
of termtbl to the character sequence in the
current pname of msg.
Return oldmsg;

else, cause error 17 with culprit
CONS["Illegal message type - DELETECONTROL";msg];

elseif msgname is a deleted character echo mode:
Let oldmode be the current deleted character
echo mode of termtbl.
Set the deleted character echo mode field of termtbl
to msgname.
Return oldmode;

else, cause error 27 with culprit msgname.

CONTROL[mode;termtbl]
If not TERMTABLEP[termtbl],

let termtbl be GETTERMTABLE[termtbl].
Let oldmode be the contents of the control field of termtbl.
If mode, set the control field of termtbl to T;
else, set the control field of termtbl to NIL.
Return oldmode.

ECHOMODE[flg:termtbl]
If not TERMT.ABLEP[termtbl],

let termtbl be GETTERMTABLE[termtbl].
Let oldflg be the contents of the global echo mode
field of termtbl.
If ~ is NIL, set the global echo mode field
of termtbl to NIL;

91

else, set the global echo mode field of termtbl to T.
Return oldflg.

RAISE[flg;termtbl]
If not TERMTABLEP[termtbl],

let termtbl be GETTERMTABLE[termtbl].
Let oldflg be the contents of the lower-to-upper case
conversion mode field of termtbl.
If flg, set the lower-to-upper case conversion
mode field of termtbl to T;
elseif flg is NIL, set the lower-to-upper case conversion
mode field of termtbl to NIL;
else, set the lower-to-upper case conversion mode field
of termtbl to O.
Return oldflg.

25. INTERRUPTS

As noted in the previous Section, it is desirable to provide the user with the ability
to interrupt computational processes by typing special characters at the terminal.
The VM provides a very flexible interrupt facility, based on Terminal Assumptions 1
and 2 (cf. Section 23).

Briefly, the user can associate "interrupt classes" with any of several "interrupt
character codes". Whenever interrupts are "armed" (a condition under user
control) and one of these interrupt character codes is typed an appropriate
"interrupt process" is invoked by the process defined in Terminal Assumption 2.
Some of these processes provide handles for user specified computations. If an
interrupt character is typed while interrupts are disarmed the character is ignored
(as far as the system input buffer is concerned) and the interrupt process
associated with that character is not invoked until interrupts are re-armed. The VM
requires only that the last interrupt character typed while interrupts are disarmed
be remembered for processing when interrupts are re-armed. Implementations may
be more general, for example, by stacking interrupts while they are disarmed.

Recognizing that interrupts require special provisions in most operating systems
and that often the available character codes are limited. the implementor is allowed
to designate those character codes which may trigger interrupts. .

Definition: A "valid interrupt character" is any character permitted by the
implementation to trigger interrupts on terminai typein.

We will now describe the details of the interrupt capability.

The VM requires the existence of the following two fields to specify the state of
the interrupt arm/disarm feature:

(1) the "interrupts armed" field, which contains either T or NIL, and

(2) the "saved interrupt character" field, which contains either NIL or a
valid interrupt character.

92

When the interrupts armed field contains T we say interrupts are "armed".
Otherwise they are "disarmed".

The initial contents of the interrupts armed field is T and the initial contents of the
saved interrupt character field is NIL. These fields are used by the process
defined in Terminal Assumption 2 and the function INTERRUPTABLE.

There is a third meta-object necessary to the specification of the interrupt facility
and that is the "interrupt table". The interrupt table is somewhat like a Read or
Terminal Table, in that it associates an "interrupt class" with each valid interrupt
character.

Definition: A "basic interrupt class" is one of the Literal Atoms HELP, PRINTLEVEL,
RUB OUT, ERROR, RESET, OUTPUTBUFFER, BREAK. ERRORX, INTERRUPT, or
NONE.

Definition: The "interrupt table" is a meta-object such that for each valid interrupt
character there is a field which contains either (1) a basic interrupt class, with the
restriction that each of the first seven basic interrupt classes above may be in the
field of at most one character, or (2) an arbitrary Literal Atom other than NIL or T.

Definition: The "interrupt class of (valid interrupt character) char" is the basic
interrupt class or other Literal Atom in the char field of the interrupt table.

Each of the basic interrupt classes causes a certain VM specified process to be
invoked when the associated characters are fetched from the. terminal. If a
character's interrupt class is a Literal Atom other than a basic interrupt class. the
Literal Atom is used as a flag and set to T when the character is typed.

Before we can specify the processes invoked by these interrupts, we must clarify
precisely when interrupts can occur.

It is not possible to interrupt an arbitrary process of the VM at an arbitrary point
and then continue the interrupted process after an arbitrary VM computation. This
is because the Virtual Machine is actually realized by an abstraction imposed upon
a physical machine. The Virtual Machine is carried from one well-defined state to
another by a series of "virtual steps" each of which is realized as a series of
"actual steps" carried out by the physical machine. If the sequence of actual
steps is interrupted at an arbitrary point the configuration of the physical machine
may not correspond to the imposed abstraction, so that certain VM computations
may not have any meaning (e.g., a function call when the stack is improperly
configured due to the interruption).

We therefore assume that there are some implementor defined "safe" points at
which arbitrary VM computations can be performed.

Definition: A "safe function call of fn on args" is a pOint during a computation at
which the physical machine is in a "clean" state (one corresponding to a state of
the Virtual Machine) and is about to do the equivalent of calling some function, ill.
on some proper list of argumen~s, args.

The obvious safe calls are precisely those at which the Virtual Machine is about to
execute a function call of a VM or user defined function fn on the proper list of

93

arguments args. However, it is possible that there are additional safe states,
depending on the implementation.

Interrupts are actually processed as soon as the corresponding interrupt character
is typed (provided, of course, that interrupts are armed). Since interrupts involve
computations entirely controlled by the implementor, it is assumed the interrupt
handling can be done whether or not the physical machine is in a "clean" state.
However, some interrupts provide the user with the illusion of being able to invoke
an arbitrary user-specified computation at interrupt time. This, as we have seen, is
not always meaningful. Therefore, at interrupt time these interrupts merely store
sufficient information to cause the user-speCified computation to be performed at
the next safe point.

Some of the specifications for the interrupt processes below involve VM function
calls, such as "CLEARBUFF[T]". It may not always be possible to execute such
calls in the manner non-VM function calls would be executed (Le., by building
frames on the user stack), given the arbitrary state of the physical machine at the
time the interrupt character is fetched from the terminal. What is meant by these
specifications is that the actions specified for the called VM function should be
performed (and the precise mechanism of the call is unspecified). If a non-VM
function is to be called by an interrupt process, the specifications will explicitly
say that the stack should be destructively backed up to an acceptable state (i.e.,
any partially constructed frame at the end of the stack is removed and the user is
to understand that this represents an irrecoverable detour in the flow of control).

One of the interrupt classes, PRINTLEVEL, uses special auxilary buffers in which to
save the contents of the line and system buffers while interacting with the user.
This requires the existence of two distinct buffers.

Definition: The "interrupt line buffer" is a buffer of the same length as the line
buffer 13. The "interrupt system buffer" is a buffer of the same length as the
system buffer. These four buffers are all distinct.

The following definition allows us to "copy" one buffer from another (and empty
the first in the process).

Definition: To "copy buff1 to buff2" (where buff 1 and buff2 are buffers of the
same length) means:

"Cl ear buff2.
Until buffl is empty. fetch characters from buff1
and deposit them in buff2."

We can now specify the processes associated with each interrupt class. Recal!
Terminal Assumption 2. Let char be the character just fetched from the terminal.
Assume chg[is a valid interrupt character, not preceded by the CTRLV character,
assume interrupts are armed. and let charcode be the character code of char.
Finally, let classname be the interrupt class for ~tLq[. Then the process invoked
when char is typed is specified below, according to classname:

13 The "line buffer" is defined in Section 27.

94

classname

HELP

PRINTlEVEl

Process

Clear the system output buffer.
Send the bell character to the terminal.
CLEARBUF [T].
Save sufficient information so that
INTERRUPT[fn;args;l] is evaluated at
the next safe function call of some
function fn on argument list args.

Copy the line buffer to the interrupt
line buffer.
Copy the system buffer to the interrupt system
buffer.
Send the bell character to the terminal.

let seq be the character sequence obtained
by fetching characters directly from the
terminal up to and including the first
character which is neither a <digit> (cf. Section 9)
nor a ',' (comma).

Let lastchar be the last character fetched.
Let seq be a new sequence obtained by removing
the last character in ~.
If (the new) ~ contains a ' '.

Let carval be the integer denoted by
the digit sequence to the left of the
, " in ~ (with the empty sequence
denoting 0).
Let cdrval be the integer denoted by
the digit sequence to the right of the
',' in ~ (with the empty sequence
denoting 0).

else:
Let carval be the integer denoted by
~ (with the empty sequence
denoting 0).
Let cdrval be NIL.

If lastchar is '!':
Set the temporary car print level field
to carval (cf. Section 26).
Set the car print level field to
carval.
Set the temporary cdr print level field
to cdrval.
Set the cdr print level field to
cdrval.

elseif lastchar is '.':
Set the temporary car print level field
to carval.
If cdrval. set the temporary cdr
print level field to cdrval.

Copy the interrupt system buffer to the
system buffer.
Copy the interrupt line buffer to the
1 ine buffer.
Continue the interrupted computation
without further change of state.

95

RUBOUT

ERROR

RESET

OUTPUTBUFFER

BREAK

Clear the system input buffer.
Send the bell character to the terminal.

Continue the interrupted computation
without further change of state.

Clear the system output buffer.
Send a carriage return character to
the terminal.
CLEARBUF[T].
If the interrupted process was adding
a new frame to the stack, clear off
any uncompleted frame (thereby backing
the stack up to the last completed function
call and allowing a normal non-VM function
call to be executed).
ERROR![).
Note: If the interrupted process is any VM
process which, if terminated prematurely, is
liable to leave the VM in a meaningless state
(such as a garbage collector or storage compactor
might) the execution of ERROR![) should be delayed
until"the process has terminated normally.

Clear the system output buffer.
Send a carriage return character to
the terminal.
CLEARBUF[T].
If the interrupted process was adding
a new frame to the stack, clear off
any uncompleted frame (thereby backing
the stack up to the last completed function
call and allowing a normal non-VM function
call to be executed).
RESET[).
Note: If the interrupted process is any VM
process which, if terminated prematurely, is
liable to leave the VM in a meaningless state
(such as a garbage collector or storage compactor
might) the execution of RESET[] should be delayed
until the process has terminated normally.

Clear the system output buffer.
Send the carriage return character to the terminal.
Continue the interrupted computation
without further change of
state.

Clear the system output buffer.
CLEARBUF[T).
If the interrupted process was adding
a new frame to the stack, clear off
any uncompleted frame (thereby backing
the stack up to the last completed function
call and allowing a normal non-VM function
call to be ~xecuted).
Cause error 18 with culprit NIL.
Note: If the interrupted process is any VM
process which. if terminated prematurely, is
liable to leave the VM in a meaningless state
(such as a garbage collector or storage compactor

96

ERRORX

INTERRUPT

NONE

might) delay causing the error until the process
has terminated normally.

Clear the system output buffer.
ClEARBUF[T].
If the interrupted process was adding
~ new frame to the stack. clear off
any uncompleted frame (thereby backing
the stack up to the last completed function
call and allowing a normal non-VM function
call to be executed).
Cause error 43 with culprit charcode.
Note: If the interrup·ted process is any VM
process which. if terminated prematurely. is
liable to leave the VM in a meaningless state
(such as a garbage collector or storage compactor
might) delay causing the error until the process
has terminated normally.

Clear the ·system output buffer.
Send the bell character to the terminal.
ClEARBUF[T] .
Save sufficient information so that
INTERRUPT[fn;args;charcode+65] is evaluated at
the next safe function call of some function
fn on argument list ·args.

Cause no inte~rupt.

all other classes Immediately perform SETQ[c1assname;T].
where c1ass~ame is the literal Atom which
is the name of the interrupt class of charcode.
Continue the interrupted computation without
further change of state.

The functions for manipulating the state of the interrupt armed field and the
interrupt table are specified below.

INTERRUPTABlE[f19 1;···fl9k]
let 01df1g be the contents of the interrupts
armed field.

If ! > 0:
If f!g1'

Set the interrupts armed field to T.
If the saved interrupt character field contains a
character, char, (rather than NIL) with interrupt
class, class:

Set the saved interrupt character field to NIL.
Perform the computation specified for the class
interrupt.

else. set the interrupts armed field to NIL.

Return oldflg.

Note: The purpose of the saved interrupt character field is to insure that if an
interrupt character is typed while interrupts are disarmed then the last such
interrupt is processed once interrupts are re-armed. The implementor may choose

97

a more general regime, such as stacking or queuing the interrupts (even though
that means that the last interrupt may not be processed because an earlier one
aborted the entire computation).

GETINTERRUPT[char]
Let origchar be char.
If char is a Character or character code
(treat Character 0 through 9 as character codes).

let char be the corresponding character.

If char is an interrupt class.
create and return a new proper list of all of the
valid interrupt character codes which have char in
their field of the interrupt table;

elseif char is a valid interrupt character.
return the contents of the char field of the
interrupt table;

else. cause error 27 with culprit origchar.

SETINTERRUPT[char;class]

26. OUTPUT

Let origchar be char.
If char is a Character or character code
(treat Character 0 through 9 as character codes).

let char be the corresponding character.

If char is not a val id interrupt character.
cause error 27 with culprit origchar.

If class = NIL or class = T.
cause error 27 with culprit class.

let oldclass be the contents of the char field of the
interrupt table.

If class is a basic interrupt class other than
ERRORX. INTERRUPT, or NONE:

If any valid interrupt character. c. has
class in its field of the interrupt table.

set the f field of the interrupt table to NONE.
Set the char field of the interrupt table to class.
Return oldclass;

else:
Set the char field of the interrupt table to class.
Return oldclass.

The output routines are responsible for transferring characters from the VM to the
terminal and other files. These routines therefore translate objects into character
sequences.

Because almost every function in th~s Section deals with a file, a Read Table, and
the primary Terminal Table, the following definitions are useful.

Definition: To "check File Name file for output" where file denotes a meta-variable
which denotes an object, means:

98

"Let obj be the object denoted by file.
If obj is NIL. let file be the primary output file;
elseif obi is T. let file be T (no-op):
elseif OPENP[obj;OUTPUT]. let file be OPENP[obj;OUTPUT];
else. cause error 13 with culprit obj."

We also assert the analogous definition for "check File Name file for input"
(replace "output" above by "input", and replace OUTPUT by INPUT).

Note that after "check File Name x for output" is used, x denotes the full File
Name of a file open for output (or else an error was caused").

Definition: To "check Read Table rdtbl" where rdtbl is a meta-variable denoting a
meta-variable which denotes an object. means "Let obj be the object denoted by
rd1QJ., If not READTABLEP[QQl], let rdtbl be GETREADTABLE[QID)."

Convention: All references to a Terminal Table refer to the primary Terminal Table
at the time of the operation specified. Example: "the terminal syntax class of
char" means "the contents of the char terminal syntax class field in the primary
Terminal Table."

Convention: Any operation which requires a file or Read Table but does not
specify one will implicitly refer to some file or Read Table which was disting;.rished
earlier in the same definition or specification" by the phrase "use File Name (or
Read Table) x implicitly below."

The most basic definable output operation is that of writing a Single character to a
specified file. This relies upon the primitive idea of "depositing" a character in a
specified file. However writing is compHcated by the possible involvement of a
Terminal Table.

Definition: To "write (character) char to (file) file" means:

"If file is T:
If char is a control character:

Let mode be the control character echo mode of char ..
If mode = REAL, deposit char in the terminal;
elseif mode = SIMULATE. invoke the control character simulation
procedure for char (see Note below);
elseif mode = UPARROW:

Deposit the character .~. in the terminal.
Deposit the ~equivalent of char in the terminal.

else. deposit char in the terminal.
If there is a dribble file.

write character char to the dribble file;
elseif file is an addressable file:

Let i be the file pointer of file.
Deposit char in the ith character field of file.
Set the file pointer of file to i+1;

else, deposit char in file file."

Note: We assume that for each control character there is a simulation procedure
which computes some sequence of characters and writes them successively to the
file in question. The precise sequence computed for any control character in any
situation is unspecified. It is supposed that the sequence attempts to immitate,
when possible, the formatting function normally performed by the control character.

99

The following trivial extension of our terminology is useful.

Definition: To "write (character sequence) seq to file" means to "write the
successive characters in §§.g to file."

It is convenient to allow the user to globally specify certain parameters influencing
output. These include the maximum allowable line length, the depth to which List
Structures are printed, the length to which List Structures are printed, and the radix
used to print integers. These parameters are held in fields accessible to the user
through certain functions.

The VM requires the existence of the following six fields:

(1) There is a field. called the "line length" field, which contains an
integer.

(2) There is a field, called the "car print level" field, which contains an
integer. .

(3) There is a field. called the "temporary car print level" field, which
contains an integer.

(4) There is a field, called the "cdr print level" field, which contains an
integer. .

(5) There is a field, called the "temporary cdr print level" field, which
contains an integer.

(6) There is a field, called the "radix" field, which contains an integer
in an implementor specified range which must include 2 through 10
and may include other integers (see discussion below).

The output ·functions specified below (PRIN1, PRIN2, PRIN3, PRIN4, SPACES,
TERPRI and PRINT) use these fields to control printing. The functions L1NELENGTH.
PRINTLEVEL and RADIX are available for accessing/replacing these fields.

The initial contents of the line length field is to be determined by the implementor,
with due regard to the line length of the standard terminal in use. The car print
level field initially contains 1000. The cdr print level field initially contains -1.
The contents of the two temporary print level fields are unspecified, since they are
always initialized before use. The radix field initially contains 10. The contents of
the radix field determines the base in which Integers are printed. The following
definition specifies the restrictions on the contents of the radix field by defining
the relationship between the contents of the radix field and the character sequence
used to output an Integer.

Definition: By "let seq be the base-r representation of (Integer) i", where seq
denotes a meta-variable, [is an integer which the implementor allows to be in the
radix field and i is an Integer. we mean the following:

"If 2=<r=<10 (the implementor must allow this range in the radix):
Let ~ be the standard base-r notation for the integer i.
employing the usual digits 0 through r-1. being explicitly
signed (with '-') only if negative, and having leading O's removed;

100

elseif r > 10 (for this to occur the implementor
must have chosen a set of characters
to be used as digits beyond 'Q' allowing consistent
notation in base-r):

Let seg be the standard base-r notation for the integer j.
employing the implementors extended alphabet and
following the sign and 0 conventions above;

else (r is negative, the implementor allows representation
in base-Irl, and the host machine uses complements representation
of integers):

If j<O:
Let b be the bit pattern representing the integer j
in the host machine.
Let i' be the positive integer with binary expansion ~
(i.e., with no special interpretation of the sign bit).
Let seq be the base-III representation of j':

else. let seq be the base-Irl representation of .1;"

We assume that the notion of balanced (or "matched") parentheses is understood.

The following function, PRIN1, is the basic output function in the VM. The
specification of PRIN1 is recursive: PRIN1 is called several times from within the
specification. We assurrie that the notion of the "top-level" call is understood to
mean an invocation not contained within the specification below.

PRINl[x;file] Check File Name file for output and use file implicitly below.
Let pos be the contents of the position field of file.
Let lnlen be the contents of the line length field.
Set the temporary car print level field to the contents
of the car print level field.
Set the temporary cdr print level field to the contents
of the cdr print level field.
If file is T, set plv1flg to T;
elseif PlVLFIlEFLG, set plvlf1g to T;
else. set plvlflg to NIL.
(Note: plvlflg is set to T when PRINI is to be
sensitive to the print level fields -- i.e .. terminate
the printing of lists after a certain depth/length.
The value of the literal Atom PLVLFILEFlG determines
whether the print levels are to influence Qutput to
files other than the terminal.)

If LITATOML!J:
Let n be the number of cha~acters in the name of !.
If lnlen>=O and Q2!+n>lnlen,

write a carriage return character.
Write the name of !.
Return !;

elseH FlXP(!]:
Let r be the contents of the radix field.
Let seq be the base-r representation of ~.
Let n be the number of characters in seq.
If 1n1en)=0 and pos+n>lnlen.

write a carriage return character.
Wri te seg ..
Return !:

elseif FLOATP[!]:
Let seq be a character sequence defined by
(floating point number) (cf. Section 10)
denoting the real represented by!.

101

(The implementor is allowed to choose the
form of ~ desired.)
Let n be the number of characters in ~.
If Inlen>=O and QQ§+n>lnlen,

write a carriage return character.
Write ill
Return !;

elseif STRINGP[!]:
Let seq be the character sequence represented by!.
Write ill.
Return !;

elseif lISTP[!]:
If plvlflg and the number of unmatched '('s
printed by the "Write '('." statement (see below)
thus far under the top-level call to PRIN1 is equal
to or greater than the absolute value of the
contents of the temporary car print level field:

Write '&'.
Return !;

elseif plvlflg and the contents of the temporary
car print level field is negative and the last character
printed by PRINI was the ')' written by the "Write ')'."
statement below,

write the carriage return character.

let origx be !.
Let cdrcnt be O.
Write '('.
(The above "Write" increments the current number
of unmatched '("s printed thus far.)
Until "x has been printed" (defined below), do the
following:

ex is reset during this "Until" loop.)
If plvlflg and the contents of the temporary cdr
print level field is equal to cdrcnt:

Write '--'.
We now say that x has been printed and the
"Until" loop should be immediately exited.

elseif not lISTP[!]:
Write '.'.
Write ' '.
Decrement the contents of the temporary cdr print
level field by 1 and store the results back in the
temporary cdr print level field.
PRINl[!;file].
Increment the contents of the temporary cdr print
level field by 1 and store the results back in the
temporary cdr print level field.
We now say that x has been printed and the
"Until" loop should be immediately e~ited.

else,
Decrement the contents of the temporary cdr print
level field by 1 and store the result back in the
temporary cdr print level field.
PRINl[CAR[!];file].
Increment the contents of the temporary cdr print
level field by 1 and store the results back in the
temporary cdr print level field.

Let x be CDR[!].
If ! is NIL, we say x has been printed and the
"Until" loop should be immediately exited.

102

Write ' '.
If plvlflg and the number of unmatched '('s
printed by the "Write '('." statement (see above)
thus far under the top-level call to PRINt exceeds
the absolute value of the contents of the temporary
car priflt level field:

Write "--".
We say that x has been printed a~d the "Until"
loop should be immediately exited;

else, continue the "Until" loop.
Write ')'.
(This "Write" decrements the current number of
unmatched '(' 's printed thus far.)
Return origx;

else, write some (unspecified) sequence of characters.

Note that for objects other than Literal Atoms, Numbers, Strings, and List Cells' the
VM does not specify the sequence of characters printed (beyond the requirement
that some sequence be printed).

PRIN2[x;file;rdtbl]
Check File Name file for output and use file
implicitly below.
Check Read Table rdtbl and use rdtbl implicitly below.
Let pos be the contents of the position field of file.
Let lnlen be the contents of the line length field.
Set the temporary car print' level field to the contents of
the car print level field.
Set the temporary cdr print level field to the contents of
the cdr print level field.
If file is T, set plvlflg to T;
elseif PLVLFILEFLG, set plvlflg to T;
else, set plvlflg to NIL.
(Note: plvlflg is set to T when PRINt is to be
sensitive to the print level fields -- i.e., terminate
the printing of lists after a certain depth/length.
The value of the Literal Atom PLVLFILEFLG determines
whether the print levels are to influence output to
files other than the terminal.)

If LITATOM[!]:
Let seq be the character sequence formed from
the name of ! by placing a '<percent>' character
immediately before every character, c,
in the name of ! such that:

f is a break character, a separator character,
or an ESCAPE character, or f is a read macro whose
escape flag component is ESCQUOTE.

Let n be the number of characters in !!9.
If lnlen>=O and ~+~>lnlen,

write a carriage return character.
Write seg.
Return !;

If FIXP[!]:
PRIN1[!;file].
If the contents of the radix field is 8, write 'Q'.
Return !;

elseif FLOATP[!], PRIN1[!;file];
elseif STRINGP[!]:

Let seq be the character sequence formed from
the character sequence represented by

103

~ by placing a '<percent>' character
immediately before every character. c.
in the character sequence represented by
x such that:
f is a break character, a separator character,
or an ESCAPE character. or f is a read macro whose
escape flag component is ESCQUOTE.

Write , .. ,
Write seq.
Write ''''.
Return ~;

elseif LISTP[~]:
(Same specification as in the LISTP[~] clause
in PRIN1 except that "PRIN2" should be used instead
of "PRIN1" (and "rdtbl" should be added as a third
argument in those PRIN2 calls).

else, write some (unspecified) sequence of characters.

PRIN3[x;file;] (Same specification as (or PRINI except that
all statements involving the meta-variable pos
and all statements involving the meta-variable lnlen
are left out.)

PRIN4[x;file;rdtbl]
(Same specification as for PRIN2 except that
all statements involving the meta-variable pos
and all statements involving the meta-variable 1nlen
are left out.)

SPACES[n;file] If !!=NIL. let n be 1;
elseif not FIXP[n]. let n be FIX[n].

If !!<O. let n be O.

Let str be a String of length n. containing n
space (i. e.. ' ') characters.
PRIN1[str;file].
Return NIL.

Note: SPACES is used so frequently it is best implemented so as to avoid actually
constructing a new String .s1L.

TERPRI[file] Let str be a String consisting of a single
carriage return character.
PRIN1[str; file].
Return NIL.

PRINT[x;file;rdtb1]
PRIN2[~;file;rdtbl].

TERPRI[file].

LINELENGTH[n] Let oldn be the representation as an
Integer of the contents of the line length field.
If n is NIL. return oldn.
If not F IXP[n]. 1 e't n be FIX[!!].
Set the line length field to the integer represented by!!.
Return oldn.

PRINTLEVEL[carval;cdrval]

104

RADIX[n]

27. INPUT

let oldval be CONS[oldcarval;oldcdrval]. where oldcarval
is the representation as an Integer of the contents of
the car print level field. and oldcdrval is the
representation as an Integer of the contents of the cdr
print level field.

If lISTP[carval]:
Let cdrval be CDR[carval].
let carval be CAR[carval].

If carval is not NIL:
Set the car print level field to the integer represented
by FIX[carva 1].

If cdrval is not NIL:
Set the cdr print level field to the integer represented
by FIX[cdrval].

Return oldval.

Let oldn be the representation as an
Integer of the contents of the radix field.
If n is NIL. return oldn.
If not FIXP[n]. let n be FIX[n].
If the implementation does not allow
the radix field to contain n (i.e .• the implementation
does not allow base~n representation as defined above).

cause error 27 with culprit n.
Set the radix .field to the integer represented by n.
Return oldo.

The input routines are responsible for transferring characters from files into the VM.
These routines parse the incoming sequences into objects, acpording to information
contained in Read and Terminal Tables available at the time of the transfer.

The most basic definable input operation is reading the "next" character from a
specified file. We rely on the analogous primitive operation, that of "fetching" the
next character from a dynamic stream from some device, or of "fetching" the
character at some address of a stored file. Reading and fetching are distinguished
because the former must give the latter a file pointer from which to fetch, and must
interpret the resulting character in light of the Read Table in use.

The process of reading from the terminal is even more complicated due to the
involvement of a Terminal Table. We introduce the idea of the "line buffer" to
define the operation of reading from the terminal. Then we will return to the
problem of reading from files in general.

Definition: The "line buffer" is a buffer of unspecified length. used to hold
characters obtained from the· system input buffer while they are still subject to
user controlled editing operations.

Recall that we assume that characters from the terminal are continuously being

l05

deposited into the system input buffer. Whenever an input request is made by the
VM, characters are fetched from the system input buffer and deposited in the line
buffer as described below. Two buffers are required for two reasons: The system
buffer must continue to accept characters even while the editing operations or
other computational processes occupy the line buffer (thus, the system buffer is at
a very low level), and the method -by which the line buffer is filled from the system
input buffer is very sensitive to computational context within the VM (thus, the line
buffer is at a very high level).

Convention: Because the system input buffer is usually below the level we need
for our specifications, we will henceforth refer to the line buffer simply as "the
buffer".

Definition: To "fill the buffer until p", where Q is some statement describing a
situation means:

"In the following, use the system input buffer implicity
for all fetches, the terminal for all writes, and whatever
Read Table has been distinguished as the one in use.

Until the buffer is "full" (defined below), do the following:
If the ~uffer is replete,

the buffer is said to be "full" and the filling process
is complete, and the "Until" should be immediately exited.

Fetch tbe next character, cbar.

If char is lower case and tbe lower-to-upper case conversion
mode field is 0, let char be -the corresponding upper case character.
If the global echo mode is T, write char.
Let class be the terminal syntax class of char.

If statement .I! is true or class = WAKEUPCHAR or char is a read
macro (in the distinguished Read Table) with wakeup mode WAKEUP:

If char is lower case and the lower-to-upper case conversion
mode is T, let char be the corresponding upper case character.
Deposit char in the buffer.
The buffer is now said to be "full", the filling process
is complete, and the "Until" should be immediately exited;

elseH class = CHARDELETE
If the buffer is empty:

Write the EMPTYCHDH deletion control message;
else:

Let oldchar be the character code fetched from T immediately
before char was fetched (note that this is
not necessarily the last character in the buffer).
If oldchar was the CHARDELETE character code,

write the NTHCHDEL deletion control message;
else, write the lSTCHDEL deletion control message.
If the deleted character echo mode is T:

Let char' be the character in the line buffer field
indicated by the deposit pointer.
Write char'.
If char' was preceded when fetcned by an ESCAPE character, escchar,

write escchar.
Decrement the line buffer deposit pointer field by 1
and store the result in the line buffer deposit pointer field.
If the next character to be fetched is not the
CHARDELETE character, write the POSTCHDEL deletion control messa~e;

106

elseif class = LINEDELETE:
Write the LINEDELETE deletion control message.
Clear the buffer;

elseif ~ = RETYPE:
Write the carriage return character.
Write the character sequence currently corresponding to the buffer;

elseif class = CTRLV:
Fetch the next character, char.
If char is the ~equivalent of some control character,

let char be the control character;
elseif char is lower case and the lower-to-upper case
conversion mode is T,

let char be the corresponding upper case character.
Deposit char in the buffer;

else (class must be NONE):
If char is lower case and the lower-to-upper case conversion
mode is T, let char be the corresponding upper case character.
Deposit char in the buffer.

Continue the "Until"."

Convention: If no statement p is supplied for a filling operation, p is assumed to
be always false. If we say "filling until T", we mean p is considered always true,
which is equivalent to saying deposit exactly one character in the buffer and then
consider it "full".

Of course, in general, the statement p just allows higher level routines to specify
conditions under which the buffer should be considered to be fU,1I (e.g., when a
matching right parenthesis is fetched).

Note that whether the buffer is "full" depends upon the process which controlled
filling it. The buffer is "replete" when every field in it contains a character. This
condition is independent of the controlling process.

Once the buffer is full, we think of it as a queue of characters, precisely like the
system input buffer.

We can now specify what it means to "read" a character from a specified file.

Definition: To "read a (or the next) character, char, from (File Name) file (filling
until plIO, where char denotes a meta-variable means:

"If file is T:
If the line buffer is empty:

If the control mode is T, fill the buffer until Q;
else, fill the buffer.

Fetch the next character, c, from the buffer.
If there is a dribble file, write character
c to the dribble file.

elseif file is an addressable file:
Let i be file pointer of file file.
If 1 is equal to or greater than the end of file pointer of file:

CLOSEF[file].
Cause error 16 with cu~prit file.

Fetch the character, c, in field 1 of file.
Set the file pointer of file to 1+1.

else, fetch the next character, c, from file.
Let char be f."

107

Note that if the file is T, the character is actually fetched from the line buffer.
Note also that the parenthetical clause specifying the statement p has no effect if
the file is other than T, or if the control mode in the primary Terminal Table is NIL.

We have now formally specified the effect of every field in a Terminal Table. We
have also defined the two basic input/output operations, upon which the VM LISP
functions can be based.

Definition: The following rather uncomfortable phrase: "Let seq be the sequence of
characters obtained by reading from file (filling until p) until q", where seq denotes
a meta-variable, means "Let seg be the sequence of successive characters
obtained by reading characters from file repeatedly until condition g is satisfied
(with all fill operations to be done being governed by statement Il)."

The following definition specifies when a read macro character's syntactic context
permits invocation of the body of the read macro.

Definition: If char is the first character of a character sequence we say that
"char is a read macro in its context" if the following three statements are true:
char has a read macro 5-tuple, -<type, context, wakeup mode, escape flag, body>,
in its syntax class field, the read macros enabled field of the Read Table in use
contains T, and either (1) context is ALWAYS or FIRST, or (2) context is ALONE,
and the following character of the sequence is a break or separator character.

Note (by inspection of the definition of "fill the buffer until p") that if a read macro
character has wakeup mode WAKEUP the line buffer is considered full (and may be
processed by the read routines defined below) as soon as the character has been
depOSited into the buffer. Usually, this would mean the macro would be expanded
as soon as the READ routine sees it in the line buffer. But if its context is ALONE
it is not possible to determine whether the read macro is in its context until the
next fill operation has been completed (making the following character available).
Thus, its expansion would be delayed.

It is convenient if programs can discover whether they are executing "under" a call
to a read macro. Therefore. whenever a read macro is evaluated, the frame
extension associated with that activation is marked (in the temporaries field).
There are two kinds of marks: one denoting an "armed" call to a read macro, and
one denoting an "unarmed" call to a read macro. The difference is that certain
situations cause errors when they occur under armed calls, and do not cause
errors under unarmed calls. The user can change the mark associated with a read
macro activation by using the function SETREADMACROFLG (defined below). Both
the functions READ and INREADMACROP inspect these marks.

Convention: We assume the notion of balanced parentheses is well-defined. We
extend it to the characters in the syntax classes LEFTPAREN and RIGHTPAREN by
merely considering (for the purposes of matching or balanCing characters) every
character in the first to be a left parenthesis and every character in the second to
be a right parenthesis.

We will define the functions of the ESCAPE, LEFTBRACKET, and RIGHTBRACKET
syntax classes below. Essentially, ESCAPE allows the next character to be treated
as though it had syntax class OTHER. The LEFTBRACKET and RIGHTBRACKET
classes contain "super-parentheses".

108

Definition: By "observe the ESCAPE guidelines" we mean:

"In the following, if an ESCAPE character is ever
fetched into the line buffer, the character should be ignored, the next
character, char, should be fetched and used in its place, and
that occurrence of char should be treated as though it had syntax
class OTHER."

Definition: By "observe the LEFTBRACKET and RIGHTBRACKET guidelines" we
mean:

"In the following, if a LEFTBRACKET character, char,
is fetched into the line buffer:

We say that it is an "unmatched LEFTBRACKET" (until a matching
RIGHTBRACKET character is fetched).
Treat this occurrence of char as though it were a LEFTPAREN.

In the following. if a RIGHTBRACKET character, char, is fetched:
If a still unmatched LEFTBRACKET has been fetched:

(Below we consider char to denote the occurrence of the RIGHTBRACKET.)
Let char' be the last unmatched occurrence of a LEFTBRACKET.
(We say that char' is now matched.)
Let n be the number of unmatched LEFTPAREN characters fetched
between char' and char.
Treat char as though it were a RIGHTPAREN character, followed by
n additional RIGHTPAREN characters;

else:
Let n be the number of still unmatched LEFTPAREN characters fetched.
If n is 0, treat char as though it were a RIGHTPAREN character;
else, treat char as though it were a RIGHTPAREN character
followed by n-1 RIGHTPAREN characters."

The function below, READ, is recursive. As for PRIN1 we assume the notion of the
top-level call is understood to be an invocation of READ not contained within the
specification of READ. Note that the state of the file being read at the time of the
top-level call to the function determines certain behavior exhibited by all of the
recursive calls.

READ[file;rdtbl;flg]
Check File Name file for input and use file implicitly below;
Check Read Table rdtbl and use rdtbl implicitly below.

In the following, any read macro character with
context ALWAYS is to be treated as though it
were a break character.

In the following, every fill operation is to
keep track of the balanced LEFTPAREN, LEFTBRACKET,
RIGHTPAREN, and RIGHTBRACKET characters from
the top-level call of READ, and all filling operations
are to be done as though the control field of the
primary Terminal Table were T and until a matching or
unmatched RIGHTPAREN or RIGHTBRACKET is fetched into the
line buffer .. At the time that character is fetched.
if file is T and flg is non-NIL, the carriage return
character is to be written to T.

Observe the ESCAPE, LEFTBRACKET, and RIGHTBRACKET guidelines.

109

let char be the next character to be read.
If char is a separator character, read characters until
the next character, char, is not a separator character.

If char is a STRINGOELIM:
Read character char and ignore it.
Let seq be the sequence of characters obtained by reading
until the next character to be read is a STRINGDELIM
(and treat LEFTPAREN, LEFTBRACKET, RIGHTPAREN,
and RIGHTBRACKET characters as though they had
syntax class OTHER -- i.e., do not consider them for
the purposes of balancing).
Read the final STRINGOELIM and ignore it.
Create and return a new String with pname seg.

e1seif ill.!: is an (unmatched) RIGHTPAREN:
Return NIL;

elseif char is a LEFTPAREN:
Read the LEFTPAREN and ignore it.
Assemble a new List Structure in the following way:

(We say a List Structure is being assembled.)
Let anscell be CONS[NIL;NIL].
(ansce1l will be used as what the INTERLISP
Reference Manual calls a TCONC-list: its CAR
will generally contain a proper list
and its CDR will contain the last list cell in the
CDR-chain of that proper list.)

Until the next character, char, to be read
(by any recursive call to READ below)
is the RIGHTPAREN matching the LEFTPAREN
just read, do the following:

If char is a SPLICE type read macro
in its context:

Read char.
Let macva1 be the result of evaluating
body[file;rdtb1], where body is the
value of the body attribute of read macro char,
in a frame extension marked as armed
(see Note below).
If macval is a List Cell:

Let lastce11 be the last List Cell in the CDR
chain of macval.
Let lastcdr be CDR[lastce1l].
If lastcdr is non-NIL:

(Then macval is a not a proper list.)
Make mac val a proper list by replacing
the CDR of lastcell with a new proper list
of length 2 with the Literal Atom. as
its first element and lastcdr as its second;

elseif macval is non-NIL:
(Then macval is not a proper list.)
Make macval a proper list by letting
macva1 be a new proper list of length 2 with
the Literal Atom. as its first element
and macval as its second.

(Now macval denotes a proper 1 ist.)
If macval is non-NIL:

Let lastcel1 be the last List Cell in the
CDR chain of macval.
If CDR[anscell] is NIL:

RPLACA[anscell;lastce11].
RPLACD[anscell;1astcel1];

110

else:
RPLACD[CDR[anscell];lastcell].
RPLACD[anscell;lastcell];

elseif char is an INFIX type read macro in its
context:

Read char.
Let macval be the result of evaluating
body[file;rdtbl;anscell]. where body
is the value of the body attribute of read
macro char. in a frame extension marked as armed
(see Note below).
Assume macval is a List Cell whose CAR
contains a proper list and whose CDR contains the
last List Cell in the CDR chain of that proper list.
Let anscell be macval.

else:
(We will not make a special case
above for reading MACRO type read macros
while assembling List Structures.
These are handled outside the context of
assembling List Structures (below) and are
handled inside List Structures without further
special consideration by the READ call in
this "else" clause.)
Let macval be CONS[READ[file;rdtbl];NIL]
(note recursion).
If CDR[anscell] is NIL:

RPLACA[anscell;macval]
RPLACD[anscell;macva1];

else:
RPLACD[CDR[anscell];macva1].
RPLACD[anscell;macval].

Read the matching RIGHTPAREN and ignore it.
Let ans be CAR[anscell].
(ans should be a proper list.)
If ans has more than 2 elements:

Let lastce11s be the second from the last List Cell
in the CDR chain of ans.
If CAR[lastcells] is the Literal Atom. and was
either (1) produced by a recursive call to READ
(in the else-clause of the Until above)
which read the character'.' not preceded
by an ESCAPE or (2) was one of the two occurrences
of . introduced in order to make macva1 a proper list
(in the SPLICE read macro clause above).
perform RPLACD[lastcells;CAR[CDR[lastce11s]]].

(We have now completed assembling the List Structure.)
Return ans;

elseif char is a read macro in its context:
Read char.
If the type of char is MACRO:

Let macval be the result of evaluating
body[file;rdtblJ, where body is the
value of the body attribute of read macro char,
in a frame extension marked as armed (see Note below).
Return macval;

elseif the. type of char is SPLICE:
(Note that occurrences of SPLICE read macros within
List Structures is handled above.)
Compute and ignore the result of evaluating
body[fi1e;~dtbl]. where body is the
value of the body attribute of read macro char.

111

in a frame extension marked as armed (see. Note below).
Return REAO[file;rdtbl];

el se (the type of char is INFIX):
(Note that occurrences of INFIX read macros within
List Structures is handled above.)
Let macval be the result of evaluating
body[file;rdtbl;NIL], where body is the
value of the body attribute of read macro char,
in a frame extension marked as armed (see Note below).
If not LISTP[macval] or if CDR[macval] = NIL:

Return READ[file;rdtbl);
elseif CAR[macval) = CDR[macval],

return CAR[CAR[macval]];
else, return CAR[macval].

else:
Let charlst be the proper list of Characters corresponding
to the sequence of characters obtained by reading at
least character and until the next character to be read
is a break or separator character.
Return PACK[charlst].

Note: If the body of an armed read macro attempts to read a RIGHTPAREN or
RIGHTBRACKET (with a call to READ in or under the read macro body) while that
call is not assembling a List Structure (at some level), the character should not be
removed from the file (or line buffer) and error 37 with culprit NIL should be
caused. If the call is assembling a List Structure and the character to be read is a
RIGHTBRACKET, it should be read (i.e., used as the result of the read procedure)
but not removed from the file (or line buffer) unless it was matched by a
LEFTBRACKET read by the internal call. This allows the RIGHTBRACKET to close
LEFTPAREN characters read both by calls to READ inside and outside the body.

Below are three examples. If the top-level call to READ is presented with the
character sequence '(A B $ C), where '$' is a read macro, then a call to READ
within the body of '$' may read the 'C'. However, if a second call to READ in or
under the body of '$' attempts to read the ')' an error is generated. If the top­
level call to HEAD is presented with '(A B $ (C»), the body of '$' is permitted to
read the '(C)' with an inner READ, but an error would occur if an attempt to read
the second ')' was made, since no List Structure was being assembled in the inner
READ. Finally, if '(A B $ (C]' is presented, the call to READ in '$' can read the T
since it is assembling a List Structure, but the T should not be removed from the
line buffer so that the top-level call to READ will still see it.

SETREADMACROFLG[flg]
If there is a frame extension in the clink chain
of *actframe* which is marked as either an armed or
unarmed call to a read macro:

Let frame be the first such frame.
If frame is marked as armed, let oldflg be T;
else, let oldflg be NIL.
If flg, mark frame as armed;
else, mark frame as unarmed.
Return oldflg;

else, return NIL.

INREADMACROP[] If there is a frame extension in the clink
chain of *actframe* which is marked as an armed
call to a read macro:

Represent and return as an Integer

112

the number of list Structures
being assembled by the various recursive
calls to READ under the top-level call to
READ under which the read macro is being evaluated.

else, return NIL.

SKREAD[fi1e;rereadstr]
Check File Name file for input.
Let ptr be the file pointer of file.
If rereadstr~NIL, let rereadstr be the empty String.
Let n be the number of characters in. the pname of rereadstr. ,

Let newptr be the value that would be found in the file
pOinter field of file if the following hypothetical
situation were the case and READ[fi1e;ORIG] had just
been performed:
The ~ characters in file preceding the one addressed by
21r were those of the pname of rereadstr and the file
pointer of file were positioned at the first character in
this hypothetical occurrence of rereadstr.

If newptr > ptr, set the file pointer of file to newptr.

If the hypothetical READ would have immediately encountered
a ')' character,

return the Character ')';
elseif this hypothetical READ would have encountered
any unmatched right pare theses (or brackets),

return the Character ']';
else, return NIL.

READC[fi1e] Check File Name file for input.
Read and return the next Character from file
(filling until T).

PEEKC[file;flg] Check File Name file for input.
If flg, then in the following read operation
proceed as though the control field of the
Terminal Table in use contained T.
Let char be the next Character to be
read from file (filling until T) but do
not remove the character from the file (or line buffer).
Return char.

RSTRING[file;rdtbl]
Check File Name file for input.
Check Read Table rdtbl and use rdtbl implicitly below.
Observe the ESCAPE guideline.
Let seq be the sequence of characters obtained by reading
from file (filling until a break or separator
character is fetched) until the next character to be
read is a break or separator character.
(Note that ~ may be the empty sequence.)
Create and return a new String with ~
as its pname.

RATOM[file;rdtbl]
Check File Name file for input and use file implicitly below.
Check Read Table rdtbl and use rdlbl implicitly below.
Observe the ESCAPE guideline.
In the following. all filling operations are to be

113

LASTC[file)

RATEST[flg)

done until either the first break character is
fetched. or until the first separator character
following a non-separator character is fetched.

If the next character to be read is a separator
character. read characters until the next character
to be read is a non-separator character.

Let charlst be the proper list of Characters
corresponding to the sequence of characters obtained
by reading one character and then continuing
reading until the next character to be read
is a break or separator character.
Return PACK[charlst).

Check File Name file for input.
If no character has been read from file,

return ome (unspecified) Character;
else, return the last Character read from file.

Let seq be the sequence of characters parsed
by the last call to RATOM or READ (whichever
was most recently executed).
If seq was not parsed into an Atom (i.e., READ
was the last called and it did not return
an Atom):

Except for the r~quirement that no error
be caused, RATEST is unspecified in this
situation;

elseH flg = T:
If seq was preceded by a separator character,

return T:
else return NIL;

elseif flB = NIL:
If ~ consisted of a single break character,

return T;
else return NIL;

elseH flB = 1:
If ~ contained an ESCAPE,

return T;
else return NIL.

The following three functions allow the user to manipulate the contents of the line
buffer and the system input buffer. We assume the existence of two additional
. buffers, used by CLEARBUF to hold characters removed from the two standard
buffers.

Definition: The "LlNBUF-buffer" is a buffer of the same length as the line buffer.
The "SYSBUF-buffer" is a buffer of the same length as the system input buffer.
These four buffers and the two interrupt buffers are all distinct.

BUFP[] If the line buffer is empty, return NIL:
else, represent and return as an Integer
the number of characters currently in the
line buffer (the cqntents of its deposit pointer).

READP[file;flg] Check File Name file for input.
If file=T:

If BUFP[]:
If flB. return T:

114

elseif PEEKC[T;T] is the EOL Charater in
the primary Terminal Table, return NIL;
else, return T;

else, return NIL;
elseif the file pointer of file is less than
the end of file painter for file:

If flg. return T;
elseif PEEKC[file] is the EOL Character in the
primary Terminal Table, return NIL;
else. return T;

else, return NIL.

CLEARBUF[flg] If flg:
If the line buffer and the system input buffer
are both empty, return NIL;
else:

Copy the line buffer into the LINBUF-buffer.
Copy the system buffer into the SYSBUF-buffer.
Return NIL;

else:
Clear the line buffer.
Clear the system input buffer.
Return NIL.

LINBUF[flg] If flg:
If the LINBUF-buffer is empty, return NIL;
else. create and return a ~ew String
representing the character sequence corresponding
to the LINBUF-buffer;

else:
Clear the LINBUF-buffer.
Return NIL.

SYSBUF[flg] (Same specification as LINBUF except that
"SYSBUF-buffer" is used instead of "LINBUF-buffer".)

BKLINBUF[str] If STRINGP[str):
Clear the line buffer.
For every successive character. char. in str
(or until the line buffer is replete). deposit char in
the line buffer.
Return str.

BKSYSBUF[str] (Same specification as BKLINBUF except that
"system input buffer"is used instead of
"line buffer".)

FILEPOS[pat;file;start;end;skip;tail]
Check File Name file for input.
If start=NIL. let start be GETFILEPTR[file].
if end=NIL. let end be GETEOFPTR[file].

If not FIXP[start]. let start be FIX[start].
If not FIXP[end]. let end be FIX[end].
If either start or end is less than 0 or greater
than GETEOFPTR[file]. cause error 17 with
culprit CONS["Attempt to read past end of file"].

If there is an integer. i. start =< i < end.
such that the pname of ~ and the patlen long
character sequence containing the characters in file

115

starting with the jth are equal with respect to the
wild card skip (cf. Section 12):

Let i be the smallest value denoted by such an i.
If tail, let newptr be the representation as an Integer
of the integer j+patlen;
else, let newptr be the representation as an Integer
of the integer j.
SETFILEPTR[file;newptr].
Return newptr;

else, return NIL.

COPYBYTES[infile;outfile;start;end]
Check File Name infile for input.
Check File Name outfile for output.
If not FIXP[start], let start be FIX[!!!!!].
If not FIXP[end], let end be FIX(~].

SETFIlEPTR[infile; start]..
let bytecount be end-start.
If bytecount(O, cause error 17 with culprit
CONS["Negative number of bytes to copy";bytecount].

For i from 1 to bytecount do the following:
Read the next character, chat, from file infile.
Write character char t~ file outfile.

Return T.

28. STORAGE ALLOCATION

As noted in· Section 2. INTER LISP programs can dynamically create "new" objects
using "creation functions" supplied in the VM. An object is considered "new" if it
is EO to no object the user could obtain before invoking the creation function. It
is desirable to allow the creation of an arbitrarily large number of objects. But of
course, since it takes a certain non-zero amount of storage to represent an object,
and since there is (presumably) only a finite amount of storage available, One can
only represent a finite number of objects at anyone time. However, most of the
time the user cannot obtain all of the objects he has created, simply because he
has discarded all of the references to some of them. Thus, the implementor is
free to collect these "unreachable" objects and reuse the storage associated with
them. This process is called "garbage collection". If at any given time the user
happens to be able to reference no more objects than can be represented at once,
garbage collection provides an illusion of infinite storage.

The VM does not require the existence of a garbage collector. (However, the
utility of an implementation without a garbage collector will suffer greatly unless
enormous amounts of storage are available.) Whether or not a garbage collector is
present it is still possible to exhaust. the amount of physical space available for the
representation of objects. This document does not specify the action taken by the
VM when it cannot fullfill a request for the creation of a new object due to lack of
space. However, that action must make it clear to the user that this 'situation has
arisen (rather than, say, merely begin reusing valid objects).

116

If a garbage collector is present, the VM puts very few constraints on its behavior.

The garbage collector may be invoked automatically at any time. We make the
convention that every garbage collection is initiated in order to reclaim space for
the representation of a particular data type. This is called the "type" of that
activation of the garbage collector. Garbage collection may alter the state of the
actual machine in any way the implementor desires, so long as the following
condition holds:

If the garbage collection message is NIL and the garbage collection trap
field contains -1 (see below), it must not be possible for any
INTERLISP program, using VM functions other than GCGAG, GCTRP,
RECLAIM, STORAGE, CLOCK and DATE to detect whether or not a
garbage collection has occurred, with the single exception that the
program may abort or give warning messages due to lack of storage if
garbage collections are avoided.

The VM requires the existence of two fields, used to provide a limited amount of
user access to the garbage collector:

(1) The "garbage collection message" field, which contains some
object.

(2) The "garbage collection trap" field, which contains an integer.

The use of these fields is as follows:

If the garbage collection message field contains T, the implementor should print (to
the terminal) some informative message on entry to and on exit from the garbage
collector 14. If the garbage collection print flag is NIL, no message is printed on
entry or exit. If the garbage collection message field contains a String, str, then
PRINl [str:T] is executed on entry to the garbage collector. and no message is
printed on exit. If the garbage collection message is some List Cell (ml ;m2)' then
PRIN1[ml;T] is executed on entry to the garbage collector, and PRIN1[m2;T] is
executed on exit from the garbage collector. The action taken when the garbage
collection message field is other than NIL. T, a String or a Li.st Cell is left to the
implementor.

If the contents of the garbage collection trap field is some integer, n, and at any
time the total number of new List Cells which could be represented equals n, then
at the next safe function call (cf. Section 25) (of some function fn with argument
list args), INTERRUPT[fn;args;3] should be executed.

Initially, the garbage collection message field shall contain T and the garbage
collection trap field shall contain -1.

GCGAG[mess] Let oldmess be the contents of the
garbage collection message field.

14 In INTERLlSP-10. the entry message is simply "GC: " followed by the type of the garbage
collection. The exit message says how many words of that type of storage were actually
reclaimed. and how many words remain.

117

GCTRP[n]

RECLAIM[type]

Set the garbage collection message field to ~.
Return oldmess.

Let oldgctrpn be the contents of the
garbage collection trap field.
Let n be FIX[~].
Set the garbage collection trap field to
the integer represented by ~.

Represent and return the Integer representing oldgctrpn.

Initiate a garbage collection of type ~.
The implementor may define (and document)
the result returned by RECLAIM15 .

Note: If no garbage collector is present, this function would be a no-op.

STORAGE[] Print any information deemed by the implementor
to be useful to the user who wishes to ascertain
the kinds and amounts of storage currently
in use (or allocated) to the VM.
Return NIL.

29. MISCELLANEOUS VM FUNCTIONS

Definition: The "VM ordering" is a partial order on the universe of VM objects,
such that Numbers (both Integers and Floating Point Numbers) are less than Literal
Atoms and Strings, Literal Atoms and Strings are less than List Cells, and List Cells
are less than all other objects. Within these constraints, Numbers (both Integers
and Floating Point Numbers) are ordered according to signed magnitude and Literal
Atoms and Strings are ordered alphabetically according to pname (the ordering of
the characters of the alphabet being that of the character codes).

ALPHORDER[x;y] If ~ is less than ~ in the VM ordering,return T;
e1 se, return NIL.

COPYALL[x] If LISTP[~]:

15

return CONS[COPYALL[CAR[~]];COPYALL[CDR[~]]];
if LITATOM[~], return ~;
e1seif FIXP[~], represent and return as an Integer the
integer represented by ~;

e1seif FLOATP[t], represent and return as a Floating
Point Number the real represented by ~;

elseH STRINGP[~], return CONCAT[~];
elseif ARRAYP[~]:

Let size be ARRAYSIZE[~].
Let typ be ARRAYTYP[~].
If ill = FIXP:

Create and return a new Array of size size

In INTERLlSP-10. the result is the total number of words available for storage of data of
type typ~. after the garbage collection.

118

and type ~. containing in its successive
fields the same succession of unboxed Integers
as in!;

else (~=POINTER):
Create and return a new Array of size size and type
POINTER. such that the 1th field, 1=<1=<size,
contains COPYALL[ELT[!;l]]:

elseif HARRAYP[!]::
Create and return a new Hash Array. newx. of the same
size as !. such that for every hash-link in !.
with hash-item item and hash-value val.
newx contains a new hash-link with
hash-item COPYALL[item] and hash-value COPYALL[val]
and no other hash-links;

elseif ! is a User Data Type:
Create and return a new object. newx. of the same type
as !. such that for every field in ! which contains
some object. obj. the corresponding field in newx
contains COPYALL[obj]. and for every field in
! which contains some meta-object. the corresponding
field in newx contains the same meta-object;

elseif STACKP[!]. create and return a new Stack Pointer
containing the frame extension in !;

elseif READTABLEP[!], return COPYREADTABLE[!];
elseif TERMTABLEP[!]. return COPYTERMTABLE[!];
else. return !;

The following two functions assume the existence of a clock, which can be used
to measure both elapsed real time and elapsed time spent in computing (rather
than i/o waits).

CLOCK[n] If EQP[n;O]:
Represent and return as an Integer the number of
milliseconds which have elapsed since the clock
was initialized;

elseif EQP[n;1]:
Represent and return as an Integer the number of
milliseconds which elapsed between the time the
clock was initialized and the time the VM was entered;

elseif EQP[n:2]:
Represent and return as an Integer the number of
milliseconds of compute time spent in the VM;

elseif EQP[n;3]:
Represent and return as an Integer the number of
milliseconds the VM has spent in garbage collection
(if a garbage collector is present).

Note: If some of these quanities cannot be computed the implementor is
responsible for documenting this.

DISMISS[n] If not FIXP[n]. let n be FIX[n].
Wait!! milliseconds and return NIL.

Definition: The "VM format for a date and time" is a character sequence giVing a
day of the month (as an integer) dy, the name of a month (or an abbreviation), rna,
a year (or the last two decimal digits), yr, and an elapsed time since midnight,
measured in hours, hr, minutes, mi, and seconds, SC, in the format: .cty-mo-yr
hr:mi:sc.

119

DATE[]

IDATE[x]

USERNAME[)

SYSOUT[f i1 e]

SYSIN[file]

LOGOUT[]

REFERENCES

Create and return a new String whose pname denotes
the current date and time in the VM format.

If the pname of ~ represents a date and time in
the VM format:

Represent and return as an Integer some integer
i, such that for all objects, y. whose pnames
represent a date and time in the VM format.
i = IDATE[l) if and only if ~ and 1 represent the
same date and time, and i < IDATE[l] if and only if
the date and time represented by ~ occurs chronologically
before that represented by 1.

Create and return a new String whose pname is
the name of the user.

Let file be OPENFILE[file;OUTPUT;NEW;bytesize], where
bytesize is an implementation defined Integer.
Write sufficient information to file so as to
allow the function SYSIN (below) to completely
reconstruct the state of the Virtual Machine
as of the completion of this statement
(with the exception of certain externally
controlled features such as the real-time
clock or open files, all of which should be
documented) .
CLOSEF[file] .
Return file.

Let file be OPENFILE[file;INPUT;OLD;bytesize].
where bytesize is an implementation defined Integer.
Assuming file is a file constructed by SYSOUT.
reconstruct the state of the Virtual Machine at the
time the SYSOUT occurred.
CLOSEF[file] .
Return LIST[file] (this will return from what (at the
time of the SYSOUT) was the call to SYSOUT).

Exit the Virtual Machine and reenter the host
operating system.

[1] Bobrow, D. G., and Wegbreit, B. "A Model and Stack Implementation for
Multitple Environments", Communications of the ACM, Vol. 10. 10, October,
1973.

[2] Teitelman, W. !N..JERLISP Reference ~j1nual, Xerox Palo Alto Research Center,
1974.

120

JNDEX

tequivalent ••••••••.••.•..•••.•.••.•.••••.••••.•.••••••..•.•.

-actframe* ..•••...••..••..•.•........•••.......••...•....•.•.
-ARGVAL * ...•..•.•.•••••••••••....•••..•••............•..••.•.
-FN- •.•.••.•...........••••••......•.••••.•....•.............
-fn- •••..•.•.........••••..••...•......••......•.•.......•...
-FORM- •.............••.•.•••........••.••..................•.
form
-TAIL*
-tail-

... (in the parameter list of a function specification) ..•••.

1STCHDEL (deletion control message name)•......

<floating point number> •..••.........•....•..............•.•.
<integer>••...••..........•••....................

access environment ...•.....•....•..•..................••.•...
access mode ..•.......•.......................•........•.••...
accessing•.•.••...•......••.•..............•...
activation••................................
active frame (or process or module)•....•...
active frame extension field•.•..•.•....•.........•. ,.
al ink.· chain from frame .•.•.......................•.......•...
a1 ink. field••.............•.......•.............•......
ALONE (read macro attribute value)
ALPHORDER[x;y]•.............•.........................
ALWAYS (read macro attribute value) •.........................
AND[xl;x2;···xk.]•...•..•.......•...............•......
ANTILOG[x]•...•..•..................•......
APPEND (access mode)•..................
APPLY-[fn;arg1; arg 2;" .argn]•............................
APPLY[fn;arg1ist]
ARCCOS[x;radianflg]•....................
ARCSIN[x; radiansflg] .. .
ARCTAN[x;radianflg]
ARGLIST[fnobj]•.............................
argname
ARGTYPE[fnobj1 .. .
argval ~ .. .
ARG[var; n] .. .
arithmetic overflow flag field
armed (call to read macro) .-................................ ..
armed (interrupt)•.................................
Array
ARRAYP[x] ;•.........................
ARRAYSIZE[array]•.........•......................

121

Page

3

46
52
52
53
52
53
52
53

39

87

22
16

43
71
3
44
45
45
46
45
78
118
78
9
2.5
71
59
59
26
25
26
42
44
41
44
60
18
108
93
31
31
32

ARRAYTYP[array)•.....................•..........•..
ARRAY[n;typ;initval]••.........••...•..
Atom•.......•.......•....................•....
ATOM[xJ•...................•...••..........••.......•..

BACKTRACE[frame1;frame2:flagS)•..•.....•...•...•.....•..
base-r representation of an Integer •.•••.....................
basic frame of size n•......•......•..•........•.
basic interrupt class ,•.••...•......
basic syntax class•....•.•...•....•......................
be low•.........................•.....................
binding••......•... ,•... '"
bit.table •....•...........•....•..•...•.•....•....•...........
SKlINBUF[str]•.•..•......•..•.................•..
BKSYSBUF[str]
bl ink field•.•.•..•..•....................
bl ip field•.........•.......•..............
blip field sequence in chain ..•....•...•.....................
blip field sequence of frame
blip-using functions•.........................
BLIPSCAN[bl iptype;frame]••...................•.
BLIPVAl[bliptype;frame;n] •...................•...............
body (of a'function object)•..................... ,
body (of a read macro)
BOTH (acces s mode)•..............
b'ound in bframe•••...... _•.
bound on the access chain from frame
box•........•............•..................•...
BOXCOUNT[type; n] .. .
boxe'd .•....................•.................................
BREAK (basic interrupt class)•................... ,.
break character of rdtbl
break syntax classes•...........
BREAKCHAR (basic syntax class)
BREAKCHAR character of rdtbl•.
buffer .. .
BUFP[) ... ; .. .

calling fnname on arglist
CAllSCCODE[fnobj;f1g]
car print level field•..............••...........
carriage return
CAR[x] .. .
cause error n with culprit x•..............
CCODEP[fnobj] ..•.
CDR chain from x .. .
cdr print level field
COR[x] ,•.
ceil ing of x .. .
CEXPR '
CHANGECCODE[newref;refmap;fnobj]
character•.....................
Character •...
character code .. .
Character corresponding to x '" .•............................
character sequence .. .
CH.ARACTER[n] .. .
charcount field (of a String)
CHARDElETE (terminal syntax class) ...•.......................
CHAROEUTE character of ttbl

122

32
31
9
13

63
100
44
93
78
47
44
30
115
115
45
52
66
66
52
66
66
39, 40
78
71
45
47

I
17
19,
17
96
79
78
78
79
84
114

55
68
100
4
11
8
42
12
100
11
18
40, 67
69
3
3
4
8
4
16
27
86
88

CHCON1[x] .•..•••...•.......•.........•...................•.
CHCON[x;f1g;rdtbl]•.•..•••.•.•.................••
check File Name file for output .•...••....................•..
check Read Table rdtbl ..••.•........••.•......•........•••..•
class •..•.•..•.•....•.•.••........•........•.•...............
CLEARBUF[fl g]•...•.•.•....•...•......••.•......•.••..••
CLEARSTK[fl g] ••....••.••..........•.•..•.••....•.....•.••••.•
cl ink chain from frame ..••.•.•....•......•..........•...•..••
cl ink field ..••..•.......•......•....................•.•.....
CLOCK[n] •.....•.....•.•..•......•.•..•....•..........••.••...
CLOSEALL[] .•.......••.•.........•....•...............•......•
CLOSEF[file] •••....••...•.......•.•..............•...•.••....
closing a file ...•.•.................................•.••....
CLRHASH[harray]
compiler•......•..........................•......
CONCAT[x1 ;x2;" . xn] ...•..............•.•.....................
COND[clause1;clause2;···clausen]•....•................
CONS count field•......................................
CONSCOUNT[n]••.•....•...........•...............••....
construct a new basic frame from fnname, fnobj. and arglist ..
CONS[x ;y] ...•..
contain blip fields•.................••....
context (read macro attribute)
continuation point•......................................
control character•....................•.•
control character echo mode
controlled from .. .
CONTROL[mode; termtb 1] .. .
Convention:
copy buff1 to buff2
copy of a basic frame
copy of the alink chain of startframe to endframe••..•
copy of the temporaries field of a frame extension
COPYALL[x] .. .
COPYBYTES[infile;outfile;start;end]
COPYREADTABLE[rdtbl] .. .
COPYSTK[startframe; endframe]
COPYHRMTABLE[termtbl]
COS[x; radiansflg]•....
CTRLV (terminal syntax class)
CTRLV character of ttbl ;

data type
DATE[] .. .
DCHCON[x:scratchlst;flg;rttbl]
DECLAREDATATYPE[type; specl st]
DEFEVAL[type;fnobj]
Definition:
DELETECONTROL[msgname;msg;termtbl]
deletion control message name
DELFILE[file]
deposit (in a buffer)
deposit (to a file)
deposit pointer (of a buffer)
DIFFERENCE[x;y]
directly executable .. .
disarmed (interrupt) .. .
DISMISS[n] .. .
display terminal .. .
DISPLAYTERMP[]•.......
DOBE[] .. .

123

16
15
98
99
10
115
51
47
45
119
76
75
72
34
39, 67
28
60
11, 63
11
53
11
66
78
44
3
87
64
91
6
94
45
51
46
118
116
81
51
90
25
86
88

10
120
15
36
58
8
91
87
77
84
70
84
24
39
93
119
84
85
85

dribble file•.•.••........••...•........•....•....••••
DRIBBlEFIlE[]•.••.....•..•.............•......••.•.••••
DRIBBLE[file]•.•.•...........•..•........•....•..•..
DUNPACK[x;scratchlst;flg;rdtbl] ..•..•.•...........••••.•.•••.

ECHOCONTROl[char;mode;termtbl] .•.•..•...••...•....••.......•.
ECHOMODE[flg;termtbl] .•.•.••...•....•.•.••........•.••.••••.•
element of a proper list
elipsis (in the parameter list of a function specification) •.
ELT[array;n]•.••...•..•.....••.•.............•..•...••
empty buffer ..•......••...••.....•..•••......•..•.•••..•.....
empty String ..••••...••.•.•......•....•......•..•.•.••...•...
EMPTYCHDEL (deletion control message name) .•......•.•••......
end of file pointer field
ENVAPPLY[fn;arg1ist;alink;clink;aflg;cflg]•.••...•...
ENVEVAL[form;alink;clink;aflg;cflg] .•.•.••........••••••.•••.
EQP[x;y] ..•..•..••.•...•..•.••......•.•...•.......•..•.•.•...
EQUAl[x ;y] ..•..•...•.••••.••••...•..•.•......•••..•••••••••••
EQ[x ;y]
ERROR (basic interrupt class)•..•..................•...••
ERRORX (basic interrupt class) ...•..•...........•............
ESCAPE (basic syntax class)
ESCAPE character of rdtb1•.•..................•...
escape flag (read macro attribute)••..
ESCQUOTE (read macro attribute value) ...•.................••.
EVAL table•.•....•.........•.•.......•.......• " •......•...
eval type•.••.•.•....•....•.........•......•.•..........
EVALA[form; a1 ist]•...•.•..•....•........................
evaluating fnname on arglist
EVALV[var; frame]•.........•..........•.......•......•...
EVAL[form]•..•....•.•.•....•.•••..•.........•...•....•...
EXPR•..•.........•....•.•..•........•....•.•..•
EXPRP[fnobj]•.............••........................
EXPT[x;y]••...............•..........•.......•..........

FDIFFERENCE[x;y]••...•.•...........•..........
fetch (from a buffer) •.........•.........................•...
fetch (from a file)
FETCHFIELD[descr;obj]
FGREATERP[x; y]•.......................................
field•.....................•.•..........
field descriptor .. .
field satisfies field specification spec ; ..
field specification
fields satisfying spec1_ spec2' ... spec n
f i 1e•..............•..........•.
File Assumption 1•....•........................
File Assumption 2•...................
File Assumption 3
File Assumption 4•............
File Assumption 5
File Assumption 6
File Assumption 7•..................•..........
F i 1 e Name .. .
file pointer field .. .
FILEPOS[pat;file;start;end;skip;tai1]
fill the buffer unt i1 p
FIRST (read macro attribute value) •..........................
F IXP[x]
FIX[n]•..

1.24

74
75
75
15

90
91
12
39
32
84
28
87
71
59
58
9
9
9
96
97
78
79
78
78
56
38, 41
57
55
57
56
40
42
25

23
84
70
36
23
3
35
35
35
35
4. 70
70
70
7Z
72
7Z
7Z
73
73
71
115
106
78
18
19

FlESSP[x;y] •.••..••.••.•••••.•••••••.•..•....•••.•.••••.•.•
Floating Point Number ...••....••••...•.••.•.•.••.•.•......•..
Floating Point Number box count field ..•..•....••.••••••...••.
FlOATP[x] .••••.••••.••••.•.•..••••••...••.•.•.••...•.••••••.•
FlOAT[n] •.•••••••.•.••...•.•.••..•...•.••••.••••••.••.•••...•
floor of x •••••••.•••••.•••.•.••••••.•.•.••••••..•.••.•.•.•••
FMINUS[n] .••.•••...•••..•.•...••••••••.••••.••••.•.••.•.•..••
FNTYP[fnobj] .••••.•••••..•.•••••••••.•....•.••.•.••••••.•.••.
fO'rm•..••••.....••.••••...••.•••.••.•••.•.•..•..•.•......
FPLUS[nl;n~; •... nk]•••••.••••••.••••.•.•••.......•.•..••
FQUOTIENT[l;J] •...•...••.•••.••.••.•.•......•••.••.•....•....
frame•..•••..••••.••.•...••••••.•••..•....•.•••..•.•.•..
frame extension ••••.••.•.••..••••••...........•.••.•.••.•...•
frame name .•••.•....••..••••••••••..••.•.••••••..•.•..•.•.••.
FRAMESCAN[var;frame] •.••.••..•••••••.•.•..•.•..••..•......•.•
free variable •••...••.•..•..•••.•••................•.......•.
FREMAINDER[x;y] ••.••••••.••..••.••....•••••••.•••••••.•......
FTIMES[nl;n2;···nk] .••••.•....••...•.•...••.•..••..•••.......
full (buffer) ..••....•.•.•.••.•..••....•...•••••.•.•.•..•...•
full (Hash Array)••••...•.•..•.•.•..•••.••.•.••.•...••.
full file name ..•.•.•....•.• ; .•.•••...........•..••••......••
FULLNAME[1 i tatom; recog]•....•.•.......•....•.•...•..
FUNARG•.... "•....•••......•..•.•..•....•••...•..
FUNARG EXPR ..•.•.........••...•.••............•.•..•••.......
funct ion ..•.......•.••.•.............•.•....•...•..••.•...•.•
function definition field•....•....•....•......•......
funct ion object .. .
function specification .•.. : ...•........•....•....•.•.•.......
FUNCTION[form;env] •.•...•••...•..•••...•..•..•..••........•.•
f[xl;···xk]•...•....••....••.••.•......••.•...•..•.....•.

garbage collection message field •....•..•••..................
garbage collection trap field .•••.••.••.....•................
garbage collector•....•.....•...•....•........
GCD[i ;j] .. .
GCGAG[mess]••.•..•••.••...•••••.. ~••.. "•
GCTRP[n] ...•............•.•..•.......•.••.•......•...........
get frame extension x •.•.....••••..•........•.•..•.•.........
get Hash Array harray•....•.•.•.......•...••........
GETBRK[rdtbl]•......•.•............••.. : ..•.
GETOESCR I PTORS[type] ...•........•......•.......•.•..•.•......
GETD[litatom]•..•.•....•..•......•..•...
GETEOFPTR[fi le]•.•.•.•....•.•......•................
GETFIELDSPECS[descr] •....•.....•.....•.•....•................
GETFlLEPTR[file]•..........•......•.•....................
GETHASH[item; harray] ••....••................•••....•.........
GETINTERRUPT[char]•....•••.......................
GETPROPLIST[l Hatom]••....•......•.......................
GETREADTABLE[rdtbl]
GETSEPR[rdtbl]•.......... :
GETSYNTAX[char;tbl]•...................................
GETTERMTABLE[termtbl]
GETTOPVAL[l itatom] .•...
GLC[str] .. .
global variable•......••.............................
GNC[str]•......• ;
GO[1 abel]•.••..........•.......................
GREATERP[x ;y] •....•......••.•....•.•.••.....•...•.............

125

23
21
22, 63
23
23
18
23
42
2
23
23
44
45
45
51
55
24
23
106
33
73
74
39, 40
41
5, 37
13
37
5
58
6, 8

117
117
116
21
117
118
48
33
83
37
14
76
37
76
34
98
14
81
83
81
90
14
29
68
29
61
24

HARRAYP[x] •..•.•..•......•.•...........•......•••..•....•..
HARRAYSIZE[harray] •.•........•.........•.............••.•...•
HARRAY[size] ...•...
Hash Array .•••........••...•.........•.••....•••.•......•....
hash 1 inking .•.••.•....•.....•..•....•.•.•.........•..•.•.•..
hash-item .••••.••..•••.•.•••....•...••....•.•..••.......•.••.
hash-l ink .•.••.•..•
hash-value •.........•.••..••.........•.•.....•••........••••.
HELP (ba~ic interrupt class) .••......•.•..•......•...•....•..

IDATE[x]•.•.•..•........•.•........•.•.........
IDIFFERENCE[i;j]•.......•.••.............•.•.••.
IEQP[i;j]•.•..•••..•..•.........••........•..•..•...•....
IGNORE (control character echo mode)•....•...........••
IGREATERP[i; j] .•........•...•.........•.•................•....
ILESSP[i ;j]
IMINUS[n] ..•.•.•..•....•.•.•.........•..................•....
immediately below .•.•.••.•.......•.....•......••.•.•....•••..
INFILEP[fi 1e]•...•..................•....•.•....
INFILE[fi le] ...•......••.............•..................••...
INFIX (read macro attribute value)•....
INPUT (access mode)•.........................
INPUT[file]•...•.
INREADMACROP[] .•.......•...........•....................•..•.
integer •...•......•.•.•....................................••
Integer•.•.....•.•..................•.....•.......•.••.
integer part of x ...•......•.........•.............•....••...
INTERRUPT (basic interrupt class) ..•.........•..........•..•.
interrupt character .•...................................•....
interrupt cl ass of char•......•
interrupt 1 ine buffer ..•.•..............................•.•..
interrupt system buffer•.......
interrupt table•....................•....
INTERRUPTABLE[fl9 1 ;·· .fl9k]
interrupts armed field•..•.
IOFILE[fi 1 e] ..•..................•..................•...•.••.
IPLUS[nl;ni;···nk]•..........•......................•.•.
IQUOTIENT[i ;j]•................•.••...•....
IREMAINOER[i;j]
ITIMES[nl;n2;···nk]•........................•...

LAMBDA•...•.
Large
Large Integer box count field
LASTC[file] ..•.
LEFTBRACKET (basic syntax class)
LEFTBRACKET character of rdtbl
LEFTPAREN (basic syntax class)•................•....•....
LEFTPAREN character of rdtbl•....
legal value (of a read macro attribute) :
length of a proper 11St
LESSP[x;y] .. .
let var be expr
LINBUF-buffer .. .
LINBUF[flg] ,
11 ne buffer
line length field•.....................
LINEDELETE (deletion control message name)
LINEDELETE (terminal syntax class)
LINEDELETE character of t tbl

126

33
33
33
32
33
32
32
32
95

120
20
19
87
19
20
20
47
75
75
78
71
75
112
7
16
18
97
84
93
94
94
93
97
92
75
20
20
20
20

41
17
17, 63
114
78
79
78
79
78
12
24
6, 65
114
115
105
100 .
87
86
88

lINElENGTH[n] ••....••••.•.••••.•.••.••••••.•....•..•....•.•
linked function call ..•...•.••.••....................•.......
list Cell•..•.•..•..•••.••••.•.•..•••......•....•.•.....
list Structure ••••••.••.••••••.••••••.•••••.....••••••.•.••..
lISTP[x] ..•.•.•....•..•.•....•.•...•..•.•.....•.•..•...•..••.
lIST[x1;xZ;···xk] •••.••.•.•.•••••.....•.••...•.•••••.••••••••
lITATOM[xJ •.•.•.......•..•.............•••....•.••.....••.•..
literal Atom •.•......•....•..•.•.......•.•......•......•.....
Literal Atom x •.••••.•••••...•...••.•.•.••...•••••.•...•..••.
llSH[n ;factor]•...•........•...•........••.•...•....•
local variable ••.•.•.•..•.•.••••....••••...•....•.••••....•..
LOGAND[n1; n2; •.. nt] ••••.•.••.•.•.••.••••.••..•....•••..••••.•
lOGOR[n1;n2;···nkJ .•..•.•.••.•.•..•.•.••.•.•..•..•..•...•••.•
lOGOUT[] .•...••....••••.•...••.••.•••.••••....•.••••.•••.•..•
lOGXOR[n1;n2;" .nk] ...•......•.•.............................
lOG[x] .•••.....•.•.•..•.•.••••..•.•.•.••.•.•..•.•.•••••••.•..
lRSH[n ;factor] ••••.•••..•.•••••••.•.•.••••.••.•••••••••••••.•
lSH[n; factor]•.•.......•......•...........•.•

MACRO (read macro attribute value) ..•..•.•......•..•...•..•.•
MAKEBITTABlE[lst;complimentflg;oldbittable]•.•
MAPAtOMS[fn]•••........•.....•..•.•
MAPHASH[fn; harray]•...............•..•..
meta-object•...............••..
meta-variable•..•.•....•......•.........••..•....•..•.•
MINUSP[x]•..•.•..•....•..•...•.•..•.. ; ...•.••.....••....
MINUS[x]•....•.•....•.••.........•.•....•........•..•..
MKATOM[x]•.••...............•.....
MKFRAME[frame;a1ink;clink;f1g;stkptr]•..•.................
MKSTRING[x;f1g;rdtbl]•.........•.•......•......•..•..

N-bit binary expansion of n
name field (of a literal Atom)
NARGS[fnobj] .. .
NCHARS[x;flg;rdtbl] •.•............•.•.••........•.........•..
NCREATE[type;oldobj] ..•...............•...........•......••..
new
NEW (recogn i t ion mode)
new proper 1 ist•.........•.................•...
new String representing x ..•..........••.........•...•....•..
NlAMBDA•......•..•..•........•......••........•..
NOESCQUOTE (read macro attribute value)
NOEVAl .•...........•......•...................•...........•..
noev a 1 type•.............................
non-FUNARG EXPR
non-local variable•.....................
NONE (basic interrupt class)
NONE (terminal syntax class)
nospread funct ion object ;
nospread type function object
NOT[x] .. .
NOWAKEUP (read macro attribute value)
NTHCHAR[x:n;f1g;rdtbl]
NTHCHDEl (deletion control message name)•..
NUll[x] '•..
Number .. .
NUMBERP[x]•........••..

127

104
68
11
11
11
11
13
12
8
21
55
20
20
120
21
25
21
21

78
30
16
34
2
6
24
24
13
49
28

20
12
43
14
37
116
73
12
28
41
18
38
38, 41
41
55
97
86
39, 41
39
10
78
15
87
10
9
24

object ...•..................................•...••.........
observe the ESCAPE guidelines•...
observe the LEFTBRACKET and RIGHTBRACKET guidelines
obtain the 5-tuple corresponding to 1st•.•......
OLD (recognition mode)•.........•....•........
OLDEST (recogn i t i on mode)•.........•....•••.•...........
OPENFILE[file;access;recog;bytesize] .•...••..•......•........
o p'e n i n g a f i 1 e•.•..•.•.•...........
OPENP[file;access;recog]•....•.•.......•...•......•.
original Read Table•......•....•.•......
OR[xt;X2;···xk]•.......
OTHER (basic syntax class)•......•....•....•...•....
OUTFILEP[fi 1e]•..............•...•............•...
OUTfILE[fi 1e]•......•...•.•..•...........•..•••........
OUTPUT (access mode)•................•....•.•....•.
OUTPUTBUFFER (basic interrupt class)•.•.......•.••..••...
OUTPUT[fi1e]•..•..•..•..........••..••....•....••••••.•.
OVERFLOW[f1 g]

PACKC[x]•.......•...................••....•..•....•
PACK[x]•..............••........ ~ .•.••.....
parameter n-tuple•.•........
par ame te r names•.............•...................•..•
PEEKe[f; 1 e; f1g]•....•.....................•...
PlUS{xl;x2;" .x,,]•.•...... : ...•.•......
PLVLFIlEFlG•................................•......
pname of x•....•....•......•.
position field (of a file)•......•.
position field (of a String)
POSITION[file;val]•.................•...............•..•.
POSTCHDEL (deletion control message name)
p rima r yin put f 11 e .. .
primary output file
primary Read Table .. .
PRIN1[x;file]•........•.
PRIN2-pname of x with respect to y
PRIN2[x;file;rdtbl]
PRIN3[x;file;]•..............................•........
PRIN4[x;file;rdtbl] ,
PRINTLEVEL (basic interrupt class)
PRINTLEVEl[carval;cdrval]
PHINT[x;file;rdtbl]
PROG1[f orml; form2; ... form n]
PROGN[forml; form2; ... form n]
PROG[localvars;form1;form2;" .formn]
proper list
proper list corresponding to a read macro specification
property list field
PUTD[1 itatom; defn]•....•.
PUTHASH[item;val;harray]

QUOTIENT[x; y]

128

2
109
109
79
73
73
74
70
74
80
9
78
75
75
71
96
15
18

14·
13
39, 40
39
113
24
101, 103
8
71
27
76
87
74
74
80
101
8
103
104
1M
95
104
104
62
62
61
12
80
12
14
34

24

radix field•.....................................• 100
RADIX[n]•.•.•......•............................. 105
RAISE[flg;termtbl]•.......................... 92
RAND state -..... ;-. .. . 26
RAND State•.............•...................•.. 26
RANDACCESSP[file]••........•.. :....................... 76
random access - _..... • 72
RANDSET[state]•.•.. _ " 26
RANOSTATE•.............. 26
RANO[lower;upper]•............................... 26
RATEST[f1g]•............•....................... 114
RATOM[file: rdtb1] .. 113
react ivate ... 46
read a (or the next) character from file (filling until p) ... 107
read macro attribute ... 78
read macro in its context 108
read macro specification 78
read macros enabled field 79
Read Table... 79
READC[fi1e] .. 113
reading from file (filling until p) until q 108
READMACROS[flg:rdtb1] .. 83
READP[file:flg]•.......................... 114
READTABLEP[x] .. 80
REAO[file;rdtb1;flg] 109
REAL (control character echo mode) 87
RECLAIM[type] .. 118
recognition mode -.................................. 73
recognized in mode x ... 73
reference map for (CEXPR) fnobj - 69
REHASH[ol dharray: newharray] 34
released mark.. 47
RELSTKP[stkptr] .. 50
RELSTK[stkptr] ... 51
REMAINOER[x;y] ... 24
RENAMEFILE[file;newname] 77
REPLACEFIELD[descr ;obj; val] 36
replacing.. 3
repl ete buffer ... 84
representation of x as a Floating Point Number............... 22
representation of x as an Integer :... 18
represents to maximum precision 22
RESET (basic interrupt class) 96
RESETREADTABLE[rdtbl; source] 81
RESETTERMTABLE[termtbl ;source] 90
RETFROM[frame;val :flg] 59
RETTO[frame;val ;f1g] ... 59
return a Stack Pointer containing frame (using stkptr) 48
RETURN[val] 62
RETYPE (terminal syntax class) 86
RETYPE character of ttb1 -. 88
RIGHTBRACKET (basic syntax class) 78
RIGHTBRACKET character of rdtb1 79
RIGHTPAREN (basic syntax class) 78
RIGHTPAREN character of rdtbl 79
RPLACA[cell; val] ... 11
RPLACD[cell ;val] ,................................. 11
RPLSTRING[str;n;newchars] 28
RSH[n;factor] 21
RSTRING[file;rdtbl] .. 113
RUBOUT (basic interrupt class) 96

129

safe function call of fn on args ..•..•.•......•....•....•.•
saved interrupt character field .•.•..•.............•.•..•....
separator character of rdtbl .•....•......•.............•.....
SEPRCHAR (basic syntax class)•..•.................•....•
SEPRCHAR character of rdtbl •.•....•.•.........•....•....•.•..
seq1 and seq2 are equal with respect to the wild card skip •.•
SETARG[var;n;val] ...•.•....•...........•......•....•••..•....
SETA[array; n; val] •.•..•...••....•.•.••.•.•.•..•....•.•.•....•
SETBLIPVAL[bliptype;frame;n;val] ..•...........•.•..•.•.••....
SETBRK[lst;flg;rdtbl] ..••..•.•....•.........•.••.......•..•..
SETFILEPTR[file;val]•.........•...............•.......
SETlNTERRUPT(char; cl ass] ••........•...........•......•....•..
SETN[nvar;valform] •.•.•.•.........•.•..........•.....•.•....•
SETPROPLIST[1 Hatom; prop 1 ist] •..•.•..•••.•....•.••••....•.•..
SETQ[var: val]•.••••..•.••...•.•....•.•....•.....•••......
SETREADMACROFLG[fl g] ..•.•..... , ...•.•....•....••.....•.•.....
SETREADTABLE[rdtbl;flg] •.•.•......•....•....•.•.•..•.•..•...•
SETSEPR[lst;f1g;rdtbl] ;
SETSTKARGNAME[n;frame;name]••••......•.••.•.....•..••...•
SETSTKARG[n;frame;val] •...•.....•.•...•..•..•.•.•..•.•.•..•.•
SETSYNTAX[char;class;tbl]•.•....•......••.•..
SETTERMTABLE[termtbl] ...•.........•................•.........
SETTOPVAL[l itatom;val]•........•.•.•........•.....•...•
SET[var;val]•......•....•..•....
SIMULATE (control character echo mode)
SIN[x;radiansflg]•...........•...•
SKREAD[file;rereadstr] ..•.....................•........•....•
SMALLP[x]•..•.........•.....•....•...........•....•••..
source field (of a String)
SPACES[n;file]•......••......... _ .•......•
special terminal character•...............•
SPLICE (read macro attribute value)•..................•
spread function object
spread type function object•...................
SQRT[x]•...................
Stack Poi ntar•...................
STACKP[x]•................•...................
standard VM bytes i ze•...........•.......
standard VM character set••...........••.....
STKARGNAME[n;frame] , .. .
STKARG[n; frame]•.............•.....
STKNAME[frame]•................•....•...........•.......
STKNARGS[frame] ..•.....
STKNTHNAME[n; frame]•.............•.....
STKNTH[n; frame; stkptr]
STKPOS[name; n; frame; stkptr]
STKSCAN[var; frame ;oldptr] ..•..................•..............
STORAGE[]
STREQUAL[x; y]••..................
string•............•..............
String -... .
STRINGDELIM (basic syntax class) :
STRINGDELlM character of rdtbl
STRINGP[x] .. .
STRPOSL[bittable;str:start;complimentflg]
STRPOS[pat;str:start;skip;anchor;tail]•....... '"
SUBR ,
SUBRP[fnobj] .. .
SUBSTRING[str; n ;m]•..............
suspended ..•.....
syntax class field•.......•..
syntax class specification•.......•.. ,

130

93
92, 97
79
78
79
30
60
32
67
83
76
9B
19
14
57
112
81
83
50
50
82
90
14
57
87
25
113
19
27

. 104
87
78
39. 41
39
25
47
49
4. 71
3
50
50
50
49
52
49
49
51
118
28
27
27
78
79
28
31
30
40. 63
42
29
46
79
79

SYSBUF -buffer•.....................•................. 114
SYSBUF [f1 g]•........................ 115
SYSHASHARRAY .. 33
SYSIN[fi1e] .. 120
SYSOUT[fi1e] ... 120
system input buffer .. 85
system output buffer ". 85
system Read Table .. 80

TAN[x;radiansflg] 25
temporaries .. 45

. temporary car print level field 100
temporary cdr print level field 100
Terminal Assumption 1 .. 84
Terminal Assumption 2 .. 85
Terminal Assumption 3 .. 85
Terminal Assumption 4 .. 85
terminal characteristics..................................... 86
terminal syntax class.. 86
terminal syntax class of char 99
Terminal Table... 88
TERMTABLEP[x] :....................................... 89
TERPRI[fi1e] ... 104
TIMES[xl; x2; ... xk.] ... 24
to clear a buffer .. 84
top-level frame extension :.................. 45
top-level process.. 45
top-level value field.. 12
truncat i n9 an Integer ... 37
type (read macro attribute) ::........................ 78
TYPENAME[x] .. 10

unarmed (call to read macro) 108
unboxed val ue .. 16
unbox;ng ... 17
underl ine .. 6
uniform access module.. 43
UNPACK[x;f1g;rdtbl] ". ... 15
UPARROW (control character echo mode) 87
use File Name file implicitly below.......................... 99
use Read Table x implicitly below.............. 99
USERNAME[] ... "... 120

val id interrupt character 92
Value of a form.. 2
value of var on the access chain from frame 47
VM format for a date and time 119
VM ordering .. " ".............................. 118

WAKEUP (read macro attribute value) 78
wak.eup mode (read macro attribute) 78
WAKEUPCHAR (terminal syntax ~lass) 86
WAKEUPCHAR character of ttbl 88
write' char to file... 99
wr-itli<&.eq to file .. 100

131

