
A Display Oriented
progra·mmer's Assistant

By Warren Teitelman

A Display Oriented Programmer's Assistant

by Warren Teitelman

CSL·77·3 March 1977; Reprinted January 1981

Abstract: This paRer continues and extends previous work by the author in developing

systems which provide the user with various forms of explicit and implicit assistance, and in

general cooperate with the user in the development of his programs. The system described

in this paper makes extensive use of a bit map display and pointing device (a mouse) to

significantly enrich the user's interactions with the system, and to provide capabilities not

possible with terminals that essentially emulate hard copy devices. For example, any text that

is displayed on the screen can be pointed at and treated as input, exactly as though it were

typed, ,i.e" the user can say use this expression or that value, and then simply point, The

user views his programming environment through a collection of display windows, each of

which corresponds to a different task or context. The user can manipulate the windows, or

the contents of a particular window, by a combination of keyboard inputs or pointing

operations. The technique of using different windows for different tasks makes it easy for the

user to manage several simultaneous tasks and contexts, e.g., defining programs, testing

programs, editing, ~sking the system for assistance, sending and receiving messages, etc.

and to switch back and forth between these tasks at his convenience.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

A Display Oriented Programmer's Assistant 1

Introduction

Lisp systems have been used for highly interactive programming for more than a decade. t During
that period, much effort has been devoted to developing tools and techniques for providing powerful
interactive support to the programmer. The Interlisp programming system [Tei4] represents one of
the more successful projects aimed at developing a system which could be used by researchers in
computer science for perfonning· their day to day work, and could also serve as a testbed for
introducing and evaluating new· ideas and techniques for providing sophisticated fonns of
programmer assistance. Interlisp on the PDP-IO is currently used by programmers at over a dozen
AREA network sites for doing research and development on advanced artificial intelligence projects
such as speech and language understanding, medical diagnosis, computer-aided instruction, automatic
programming, etc. Implementations of Interlisp on several other machines are currently planned or
in progress.

This paper describes a system written in Interlisp which extends the Interlisp user facilities to take
advantage of a display. t t The paper is not an "idea" paper in the sense that Artificial Intelligence
papers usually are. Instead, this paper describes a working system which implements and integrates
a number of ideas and techniques previously reported in the literature by several different
individuals, including the author. The idea of a display composed of multiple, overlapping regions
called "windows" is attributable to and an essential part of the Smalltalk programming system
designed and implemented by the Learning Research Group at Xerox Research Center [LRG). In
particular, much of the way that windows are used -in the system described here was influenced by
the work of Dan Ingalls on the Smalltalk user ;.L:terface. The idea of using the display as a means
for allowing the user to retain comprehension uf complex program environments, and to monitor
several simultaneous tasks, can be found in the work of Dan Swinehart [Swi]. The use of the
"mouse" as a pointing device for selecting portions of a display goes back to Jhe early work on NLS
[Eng]. Finally, the techniques used for automatic error correction and /the-ldea of having the user
interact with the system through an active intermediary which maintains a history of his session, both
of which appear in this paper, are parts of the standard Interlisp system [Teil][Tei2]. The work
reported in this paper is of interest primarily in how the realization of these various ideas in a single,
in tegrated, working system dramatically confinns their value. t t t

t An excellent survey of the state of the art may be found in [San].

t tThe author would like to acknowledge and thank R. F. Sproull and J Strother Moore, who designed and implemented
critical support facilities without which this system would not have been possible, and whose ideas and intuitions provided
extremely valuable guidance and inspiration during the development of the system. The form and capabilities of some of
the display primitives in the current system were suggested by an earlier version of a display text facility for Interlisp
designed by Terry Winograd. Finally, all of the work described herein depends heavily on the leverage provided by the
Interlisp system itself, which is the result of the efforts of many individuals over a period of almost a decade, made
possible . by continuing ARPA support over that period.

t t tWhen I first began work in 1969 on what was to become DWI~f, the automatic error correction facility of Interlisp,
by implementing a primitive spelling corrector which would automatically correct a certain class of user spelling errors, I
discussed this project at length with a colleague over a peIiod of months. One day soon after this facility was finally
completed and installed in our Lisp system, this same colleague rushed to my office and in great excitement exclaimed
that the system had corrected an error. I was surprised at his enthusiasm. since we had been discussing this system for
months. He replied. "Yes, but it really did it!" The system described herein implements ideas that many of us have long
been saying would be a good thing to have. And they really are!

2 A Display Oriented Programmer's Assistant

Oveniew of the System

The system described in this paper is implemented on a version of Interlisp [Tei4] running on
MAXC, a computer at the Xerox Research Center in Palo Alto. This computer emulates a PDp· 10,
and runs the Tenex operating system, so that from the standpoint of the user, the system he is using
is Interlisp-10. The raster-scan display used by the system described in this paper is maintained by a
separate 65K 16 bit word mini-computer. The minicomputer is linked to, MAXC through an
internal network, and implements a graphics protocol similar to the Net',vork Graphics Protocol
[Spr], but specialized for text and raster-scan images. All of the work described in this paper deals
with the "high end" of the system, i.e., the user interface, and is written entirely in Interlisp.

The user communicates with the system using a standard typewriter-like keyboard. In addition, he
has available a pointing device commonly called a "mouse" [Eng] used for pointing at particular
locations on the screen. For those unfamiliar with this device, the mouse is a small object (about 3"
by 2" by I") with three buttons on its top. The system gives the user continuous feedback as to
where it thinks the mouse is pointing by displaying a cursor on the screen. The user slides the
mouse around on his working surface (causing bearings or wheels on the bottom of the mouse to
rotate), and the system moves the cursor on the display. The user indicates that the mouse has
arrived at some desired location by pressing one of the three buttons on the top of the mouse. The
interpretation of the buttons depends on the particular program listening to the mouse. For
example, when the mouse is positioned over a piece of text, and one of its buttons pressed, the
corresponding text is "selected." Such selections are indicated by' inverting the text, i.e., displaying it
as white characters on a black background.

The user interacts with the system either by typing on the keyboard, or by pointing at commands or
expressions on the screen, or an asynchronous mixture of the two. In particular, any material that is
displayed on the screen can be selected and then treated as thought it were input, i.e., typed.

The ability to be able to select, i.e., point at, material cu"ently displayed and cause it to be treated as
input is extremely useful, and situations where such a facility can be used occur very often during the
course of an interactive session

Why is such a facility useful? Because most interactions with a programming system are not
independent, i.e., each "event" bears some relationship to what transpired before, usually to a fairly
recent event. Being able to point at (portions 00 these events effectively gives the user the power of
pronoun reference, i.e., the user can say use this. expression or that value, and then simply point.
This drastically reduces the amount of typing the user has to do in many situations, and results ill a
considerable increase in the effective "bandwidth" of the user's communication with his
programming environment.

The user views }.lis environment through a display consisting of several rectangular display
"windows". Windows can be, and frequently are, overlapped on the screen. In this case, windows
that are "underneath" can be brought up on top and vice versa. The resulting configuration
considerably increases the user's effective working space, and also contributes to the illusion that the
user is viewing a desk top containing a number of sheets of paper which the user can manipulate in
various ways.

One facility provided by these windows that is not available with sheets of paper is the ability to
scroll the window forward or backward to view material previously, but not currently, visible in the
window. Thus a single window can be used to view and manipulate a body of text that would
require many sheets of paper.

A Display Oriented Programmer's Assistant 3

Each window corresponds to a different task· or aspect of the user's environment For example,
there is a TYPESCRIPT window, which contains the transcript of the user's interactions with the Lisp
interpreter through the programmer's assistant, a WORK AREA window which is used for editing and
prettyprinting, a HISTORY window, a BACKTRACE window, a MESSAGE window, etc. Using different
windows for different tasks

... makes it easy for the user to manage several simultaneous tasks and contexts, switching back and
forth between them at his convenience.

Being able to switch back and forth between tasks results in a relaxed and easy style of operating
more similar to the way people tend to work in the absence of restrictions. To use a programming
metaphor, people operate somewhat like a collection of coroutihes corresponding to tasks in various
states of completion. These coroutines are continually being activated by internally and externally
generated interrupts, and then suspended when higher priority interrupts arrive, e.g., a phone call
that interrupts a meeting, a quick question by a colleague that interrupts a phone call, etc. Our
previous experience with Interlisp supports the contention that it is of great value to the user to be
able to switch back and forth quickly between related tasks. The system described in this paper
makes this especially convenient, as is illustrated in the sample session presented in the body of the
paper.

One technique heavily employed throughout the system is the use of menus. A menu is a type of
window that causes a specified operation to be performed when a selection made in that window.
Menus f:~rve a number of important functions. They make it easy for the user to specify an
operation without having to type. They act as a prompt for the user by providing him with a
repertoire of commands from which to choose. For example, often a user will not remember the
name of a command, or may not even be aware of the existence of a com..rnand.

However, most importantly, menus greatly facilitate context switching. As with most systems, the
interpretation of the user's keystrokes (with the exception of interrupt characters which usually have
a globally defined effect) depends on the state of the system. For example, when addressing the
Lisp interpreter, the characters that the user types are used to constnlct Lisp expressions which are
. then evaluated. When using the editor, the characters are inserted in the indicated expression, etc.
The important point is that once the user starts typing. he nonnally has to complete the operation or
abort it However, by selecting a menu command using the mouse, even in the midst of typing, the
user can temporarily suspend the operation he is perfonning, go off and do something else, and then
return and continue with his current context. This is also illustrated in the sample session below.

A Sample Session with the System

Since so much of the utility of the system. described in this paper rest on visual effects, it is difficult
to transmit the feel and smoothness of the system through words. Therefore, the fonn chosen for
presenting the system in this paper. is to take the reader through a sample session with the system,
using frequent "snapshots" of the display as a substitute for the actual display itself. This session is
divided into two parts. The first part is a "toy" session, in that the user is not perfonning any
serious work. It is included only to introduce the salient features of the system. The second part of
the session shows some more. sophisticated use of these features in the context of an actual working
session involving finding and fixing bugs, testing programs, sending and receiving messages, etc.

For readers not familiar with Lisp, please ignore Lisp related details (which we have tried to
minimize)~ The important point is the way the system allows the user to switch back and forth

. between several tasks and contexts. Such a facility would be useful in any programming
environment.

4 A Display Oriented Programmer's Assistant

Sample Session-Part 1

1. Figure 1 shows the initial configuration of
the screen. Three windows are displayed:
the TYPESCRIPT window, which records the
user's interactions with the programmer's
assistant and the Lisp interpreter; the PROMPT
window, which is the black region without a
caption at the top of the screen used for
prompting the user; and a menu, which is the
smaller window with caption MENUS to the
right of the TYPESCRIPT window. A menu is
just like any other window, except that
whenever a selection is made in a menu, a
specified operation is also performed. This
particular menu is a menu of menus, hence its
caption. If the user selects one of its
commands, each of which is the name of a
menu, the corresponding menu will be
displayed at the location he indicates. He can
then select, and thereby perform, commands
on that menu. The ·crosshairs shape in the
lower :--ight hand portion of the TYPESCRIPT
windo~" is the cursor, and indicates the
current position of the mouse.

Figure 1

In Figure 1, I have just typed in a Lisp definition for the function FACf (factorial). Lisp has given
me the error message "incorrect defining fonn" (displayed in bold face to set it om. The system
displays a blinking carett to indicate where the next character that I type, or the system prints, will
be displayed. In Figure 1, the caret now appears immediately following the "2 +-", where 2 is the
event number for my next interaction with the programmer's assistant, and +- is the "ready"
character.

tIn these figures, the caret is always shown in its "on" position.

A Display Oriented Programmer's Assistant

2. I don't understand what caused this error,
so I type ? to the p.a. (programmer's
assistant), requesting it to supply additional
explanatory information. The p.a. looks at
the previous event to determine the nature of
the error. In this case, using built-in
information about the arguments to DEFINEQ,
the p.a. tells me that the problem is that
DEFINEQ encountered an atom where it
expected a list, i.e., a left parentheses is
missing from in front of the word "fact". t
Since the programmer's assistant is
maintaining a history of. my interactions with
the system, I don't have to retype the
DEFINEQ expression. Instead, I can edit what
I have already typed, and simply insert the
missing left parenthesis. The EDIT menu will
allow me to perform various editing
operations using the mouse for pointing and
the keyboard, where necessary, for supplying
text. In Figure 2, I have already moved the
mouse so that the cursor is positioned over
the EDIT command on the MENUS menu, in
preparation for "bringing up" the EDIT menu.

2";
bQC!UQ ('IEFIN~Q rlilQuirQ5 that Qach at its 4rgumQnts bQ a
li't tut i, DEFI'l.Ev(FA"::T (N) (IF N IS GREA TERR THAN 0
THErJ N' (F"CCT N- 1))). this i. not tho C4' •.
3

Figure 2

5

tIf the p.a. did not know anything about this particular. error, it would refer to the index of the on-line Interlisp
Reference Manual and present the con:esponding text associated with the error message by way of explanation. The user
can also augment the built'in information that the p.a. has about system functions by informing the p.a. about the
requirements of his own functions. He can then use the ? command to explain errors in his own programs.

6 A Display Oriented Programmer's Assistant

3. I press a button on the mouse to select
the EDIT command in the MENUS menu. The
system indicates the selection by displaying
EDIT as white on black. The PROMPT window
tells me to use the left button on the mouse
to indicate where I want the center of the
(EDIT) menu to appear. The cursor is
changed to an icon of a menu with a cross in
its center to suggest the operation that is
pending. At this point, I don't have to
complete this operation. I can type in other
expressions to the programmer's assistant,
perform other menu operations, etc. The
process which is waiting for me to supply the
indicated information is simply a co-routine
which has been suspended. t However, since
I want t.o fix up the DEFINEQ expression
before going on to anything else, I move the
cursor to the position at which I want the
EDIT menu to appear, which is below the
MENUS menu and to the right of the
lYPESCRIPT window, ·as shown in Figure 3.

4. I press the left button on the mouse,
causing the EDIT menu to appear at the
location of the cursor. In this position, the
EDIT menu slightly overlaps. both the
TYPESCRIPT window and the MENUS menu, so
the system automatically adjusts the EDIT
menu by sliding it off these windows to its
location as shown in Figure 4. t t

tsee description of the "Spaghetti Stack" facility in
[Bob] and [Tei4].

ttl could force the EDIT menu to overlap the
TYPESCRIPT window by positioning it exactly using
one of the commands on the. WI~DOW menu.
However, since in this case I only positioned the menu·
approximately, the system tries to "Do What I Mean".
a philosophy of system design we have tried to follow
throughout the Intertisp system [feil] ..

Figure 3

'.'

~:,~ ~~~·in~~~~~tF~~~' (~~a(iF o~cl~ ~Rii~ ~~A~m~~::J'~ a
T~ErJ ~J' ('.C·:T N-1»). thi, i, not tho ca,o .
.3-

Figure 4

A Display Oriented Programmer's Assistant

5. Now I am ready to edit. I select the left
parenthesis in the first line of the TYPESCRIPT
window, and then select the INSERT command
on the EDIT menu. The line of text in the
TIPESCRIPT window is broken just before the
selection (the left parenthesis), and the caret
is moved to that location. The PROMPT
window instructs me to input Material.
Anything I type will appear at the iocation
indicated by the caret

6. I type in. a single· left parenthesis, and
tenninate the iNSERT operation. The line of
text I have· been editing is rejoined, and the
caret returned to the appropriate location at
the end of the TYPESCRIPT window. I now
want to cause the corrected text to be re-input
in order to perfonn my original operation,
Le., define my function. Therefore, I select
the text by first selecting the "d" in "defineq"
and then extending this selection through the
final "]". Then, using the same method as
previously shown for bringing up the EDIT
menu, I bring up the WINDOW menu in
order to obtain the command for inputting
selected material.

2"?

~:;~~~·i.,o~~~~~(F~~~,(~~~a(~Fo~cl~ ~~i~~~~~m~~~Nb~"
THEN N+ (FACCT N- 1»), 'hi, i, no •• ho ca'o.
3~

Figure 5

24-7
becaUSE! OEFINEQ naquirQs that each at its arglJmQnts be a
list bu. in DEFI~JEQ(FACT (N) (IF N IS GREA TERR THAN 0
THEN N+ (FACCT N- 1))), 'hi, i, no' tho caso.
3~"

Figure 6

Appond
D~IQte

RpplacQ
Move/a
Move/b
Move/r
-)
(-

Done

Insert
Append
Dehi~tQ

Replac9
Move/a
Move/b
Move/r
-)
(-

Dona

7

8 A Display Oriented Programmer's Assistant

7. The WINDOW menu contains the
command "READ SELECnONS" which is the
command that I think does what I want I
therefore select this command, but instead of
clicking the mouse button, I hold the' moust.
button down. This instructs the system to tell
me what it would do if this operation were
actually perfonned. Here, the PROMPT
window infonns me that the "READ
SELECTIONS" command causes the selected
material to be treated as input Figure 7
shows the display as of this point. The cursor
has been changed to an arrow to indicate that
a selection is about to be made. The material
that would be selected, namely the "READ
SELECTIONS" command, is underscored. If I
want to perfonn this selection, I' simply
release the mouse button. Otherwise, I can
move the mouse to another location and
release it there in order to perfonn a selection
at the new location, or move it off of the
menu entirely to abort the selection.

8. I release the mouse button, and the
selected material is treated exactly as though I
had typed it, Le., becomes event number 3
and causes the function FACT to be defined.
As mentioned before, this ability of being
able to select, i.e., point at, material currently
displayed and cause it to be treated as input
is extremely useful, and the situations where
such a facility can be used occur very often
during the course of an interactive session.

;;:a.,. O~r'N!Q r.~ulr., that taCh 01 Its .rgumonts bo I
list ~ut In o!rIN!Q(rACT (N) (IF N IS (lfl~AT.fRR THAN 0
TH!N N' (FACeT N-1))), this Is not tho el".
3· ...

Figure 7

2~ .

~:{~~~Oi"o~~~~~(f~~~' (;~~a(~fo~el~ ~A'i~ ~~~~m~~7rJb~ a
THEN N' (fACCT N-1))). this is not tho ca,o.
3.dotinoq«'act (n) (il n is groatorr than 0
thon n'(tacet n-1)
(fACT)
4

Figure 8

A Display Oriented Programmer's Assistant

9. I now try out my function by typing
FACf(3). At this point, CLISP [Tei3] is invoked
to" translate the if-then expression in' the
definition of FACf into an equivalent Lisp
construct CLISP runs into'"a problem

_ regarding the word GREATERR, and OWIM
offers a spelling correction. I type Y (the
spelling corrector supplies the "es"), and the
correction is made. I had also misspelled the
recursive call to FACf in the body of the
definition of FACf. Since the programmer's
assistant "noticed" this new function, i.e.,
FACT, when I first defined it, DWI~ is able to
suggest the correction of FACCf to FACf,
which I also confirm. Figure 9 shows the
display after these two corrections have been
made. At this point, the definition of FACf
has been translated to Lisp successfully, at
least from a syntactic standpoint, and an error
is encountered' which DWIM cannot handle.
The error message NON-NUMERIC ARG NIL is"
printed, and Interlisp goes into a break. A
menu {'\f break commands automatically
appears ~ust below the 1YPESCRIPT window.

~;c7'~,-!~ [IEF'ltJU:t r~quir~s that Qach of its arQumQnts bQ "­
lilt tut i, C'EFIMQ"FACT (N) (IF N IS GREATERR THAN 0
THEtJ .tJt- (F'QCCT r'J-1»)., this is not th; cas;.
3"'d,,1In.qCf'''C't {n, (it n IS l~ni"'tQrr than 0
thQn n·(fa:ct n· 1]
(Fi.,I:;TI
~ ... tHt(3)
,:;REATERR (io F~':T} -) ,:;REATER ~ Vo,
Fl.:'::T {in FA::T} -l FA,:;T -: Y".s

Figure 9

9

At this point the iIser is once again addressing the Lisp interpreter through the programmer's
assistant. However, the context of his computation has been preserved and is available so that the
user can, for example, examine the values of locally bound variables, see the control structure that
lead to this point in the computation, etc., and if he wishes, fix or bypass the problem and continue
the computation. This capability is most important for interactive debugging [feil]. In this
particular case, the arithmetic operation ;VIULTIPLY (as implemented by the Lisp function ITI:\fES) is
waiting for a number, i.e., the value of the break will be used as a multiplicand. In effect, the
system has called the user as a subroutine to supply this number.

10 A Display Oriented Programmer's Assistant

10. I select the BTV command, requesting a
backtrace of function names along with the
names and values of the bound variables for
each corresponding function call. The
backtrace is printed in a separate BACKTRACE
window, which is automatically displayed
when the backtrace command is invoked.
The BACKTRACE window is shov'll at the
right of the screen in Figure 10. Note that it
overlaps the three menus. However, I can
still perform operations using those menus by
pointing at the part of the menu that is
visible. I can select elements in the
BACKTRACE window to focus the attention of
the break package on a particular frame, e.g.,
to evaluate an expression in a different
context, to cause the computation to revert
back to that point, etc. The backtrace shows
me that I am under my function FACf, and
that it made three recursive calls before the
error, with N being decremented by 1 each
call, so it looks like FACT is recursing
properly.

11. I still don't understand whv the error
occurred, so I try typing the ? command
again. In this case, the programmer's
assistant tells me that the problem is that one
of the operands to * (the ~ILLTIPL Y operator)
was (FACT N-1) and that the value of (FACT N-
1) is NIL when N = 1. In other words, when
FACT is caned with N = 0, it returns N'IL. The
p.a. is able to generate this explanation
because (1) it knows that all of the arguments
to * must be numbers, and (2) it can examine
the state of the computation on the stack. In
this case, it found that the second operand to
ITIMES was NIL, which is not a number, and
that the expression that produced this
particular value was (FACT N-l) in the
expression (N*(F ACT N-l)) which is contained
in the function FACf, and that at the time this
call occurred, the value of N was 1.

~~;

~:~c ~~~~i~E'~~~~~~:f~~~' (iJ~a(~/~cl~ ~~~~ ~~~~m~~;':Nb~ a
THEr! N' (F'CCT N-1))). t~i, i, not t~. can,
J-d.li"~q«·.:t (n, (il n i, g, •• t.rr t~an 0
,:,...,rl 1"I·(t~cct n"1]
iF':",:T,
J-t"t(3)

~~~2~E~~ ~~~:~}C_T}f;;':~RiA~!~? vo, 

NON-NUMERIC ARG 
NIL 
in - flE5 

(b'o~ on) 
5:BTV 
6:7 

Figure 10 

b:Cnauu~~,,; ~~~lJij~QtN~h(F~~~TC~~~)i)\i~rf~~~n}t,s bQ 
tho v.luo of (FACT ~J-l) i, NIL wt,on N. I 
7;pp lact 
fACT 
8: ...... 

(fACT 
[LAMBOA (N) 

( tf N 1~ IJrl!'.!!It~r th!n €I 
tilt" N'(fACT N-ll) 

Figure 11 



A Display Oriented Programmer's Assistant 11 

I now realize that the problem is simply that I neglected to specify the value of FACf for N=O.t 
Therefore, I prettyprint the definition of FACf in preparation for editing it. Figure 11 shows the 
definition of FACT prettyprinted in my WORK AREA window, which automatically appeared when 
prettyprint was called. Note that the definition of FACf now shows the two misspelled words, 
GREATERR and FACCf, spelled correctly. 

12. I select the right square bracket in the 
definition of FACf in the WORK AREA 
window~ and then select the INSERT comand 
on the EDIT menu. The EDIT menu 
automatically moves so as to be close to the 
window that I am editing. I make the 
necessary correction by typing ") ELSE 1", 
i.e., if N is not greater than 0, FACT should 
return 1. Figure 12 shows the display just 
before I complete the INSERT. Note that the 
caret appears in the WORK AREA window 
where I am typing. The cursor is in the 
upper right hand portion of the screen at the 
location of the INSERT command before the 
EDIT menu moved to be close to the WORK 
AREA. 

tIn Interlisp, if none of the predicates of an if-then 
expression evaluate true, the value of the expression 
defaults to NIL. 

NON-NUMERIC ARG 
NIL 
,n -HES 

I'tr,:~,.;n I 
S E-T\. 
6 ~ 

t:'~C"'-!'Q • rQlJuirQs that Qach of its argumQnts be 
, n'JOltor but in (N' (fACT N-l)) {in fACT}, 

-::-1'" \(.~Iu~ 0" (F,l..'::T N-1) is NIL whQn N-1. 
~.P foe: 
~w,:-

(FACT 
[LAMBDA (N) 

( tf N t'S. tJreater than 0 
'Mil N*(fACT N-l) else 1" 

Figure 12 



12 A Display Oriented Programmer's Assistant 

13. I complete the INSERT, and then select 
the DONE command on the EDIT menu to 
indicate that lam finished editing this 
expression. The PROMPT window reports that 
the definition of FACf has been changed.. 
Note that I did not have to finish editing 
FACf at this point: I could have typed in 
expressions to be evaluated, perfonned other 
menu operations, etc., even edited other 
expressions, before selecting the DONE 
command for this expression. This is another 
example of being able to suspend different 
tasks in varying states of completion and go 
back to them at some later point 

14. I now test out my change by typing 
fact(2), which works correctly. Now I want to 
continue with the computation. Note that I 
am still in the original break that followed 
the error. . The arithmetic operation, * (Le., 
the Lisp function ITIMES) is still waiting for a 
number to be used as a multiplicand. I 
therefore select the RETl.JRN command on the 
BREAK menu. The PROMPT window tells me 
to INPUT EXPRESSION and the caret moves to 
the PROMPT window. I type 1 as the value to 
be returned from this error break. Figure 14 
shows the display <>.t this point just after I 
type 1, which is echoed (displayed) in the 
PROMPT window. 

Note: in actual practice, for a computation as 
trivial as FACT(3), I would probably simply 
reset (abort back to the top) and reexecute 
FACT(3) rather than bothering to continue the 
computation, since so little has been invested 
in getting to this point However, 

being able to continue a computation following 
an error is especially useful when an error 
occurs follol\-'ing a significant amount of 
computation, or when the computation has left 
things in an "unclean state" as a result of 
global side effects. Such a facility is also 
essential for good interactive debugging. 

(FACT 
[LAMBDA (tI) 

( 1f N to:: IJrl!',!It~,.. th.!ln 0 
rile" N'(FACT N-IlJImII]ll 

Figure 13 

THEn N V.ceT N-.I))) •. t i, not thO ca,o 
3""j.,;tin~q(~3ct (n) (If n 15 gr';!3terr th.!n 0 
U'lQn n+(facct n-1] 
(F.t..o:T) 
4-1'0:(3) 
(iRE" TERR {in FACT} -) GREA TER? Ye, 
F.~:CT {in FACT} -,' FACT? YOl 

NON-NUMERIC ARG 
NIL 
in - f' .. lE5 

( t' r,: ~ e' I 
5 BTl,' 

boil': ~I_!" • r .. ,::;uirQs th3.t Q·~ch of its argumgnts bQ 
, oun',tor loct in (rJ' (FACT N-l)) {in FACT}. 

thQ \'~hJ" of (FACT N- 1) IS NIL y...h;n I'J~ 1 
'7 ~ P f,3.I: ': 
F.':":-

'~ fHt:21 

, 

(FACT 
[LAMBDA (N) 

(rf N J;~ gre.3ter than 0 
rile" N*(FACT N-llJ1m11])) 

Figure 14 



A Display Oriented Programmer's Assistant 

15. I complete typing the expression for the 
REf URN command, thereby causing 1 to be 
returned as the value of the break, which 
causes (1 * 1) to be computed and returned 
as the value of F ACT(l), which then causes (2 
* 1) to be computed, etc., and finally the 
original computation of FACT(3) finishes and 
returns 6 as its value as shown in Fieure 15, 
in the next to the bottom line of the 
TYPESCRIPT window. The BREAK menu has 
disappeared since we are no longer in a 
break. 

I now want to try FACT on some other values, 
so I bring up the HISTORY menu, and select 
the USE command, which is a command to 
the programmer's assistant to reexecute a 
previous event, or events, with new values. 
The PROMPT window instructs me to select 
the targets and to input the objects to be 
substituted. I select the "3" in FACT(3) (near 
the top of the TYPESCRIPT window) and input 
"4 5 10" (echoed in the PROMPT window), 
i.e., I am requesting that FACf(4), FACT(5) and 
FACT(lO) be computed. 

16. The resulting history operation is 
equivalent to typing USE 4 5 10 FOR 3 IN 4, t 
which the p.a. prints in the TYPESCRIPT 
window to show me what is happening. This 
USE command now causes three computations 
to be performed, corresponding to the result 
of substituting 4 for 3 in FACT(3), the result of 
substituting 5 for 3 in FACT(3), and the result 
of. substituting 10 for 3 in FACT(3). The 
values produced by these three computations, 
24, 120, and 3628800, are printed in the 
TYPESCRIPT window, as shown in Figure 16. 
Finally, I ask for a replay of the history of 
my session, .by selecting the ?? command in 
the HISTORY menu. The HISTORY window is 
brought up, and the history of my session, in 
reverse chronological order, is printed in this 
window, as shown in Figure 16.t 

t 4 is the event number of the event corresponding to 
FACT(3). 

{In fACT} -) aREA TER 1 Vas 
<In "ACT} -) fACT 1 ... yes 

NOfH'«JMIllIC AM 
r.a. 
In ITIMES 

(FACT 
[LAMBDA (N) 

( If N I. greater than e 
thM N·(fACT N-1 ... 11 

Figure 15 

(brokon) 
5:BTV 
6:1 

b:Cnau~~o; ~~~ull~0c'N~h(ft,..~"i~~~;)'{I~r~~~";}: bo 
tho valuo 01 (fACT N-1) I. NIL whon N-1 

~t8iact 
8:tact(2) 
2 
9:RETURN 1 
'BREAK' - 1 
6 
10~U5E 4 5 10 fOR 3 IN 4 
24 
120 
3628800 
11~?? 

11""", 

+fACT(4) 
24 
+FACT(S) 
120 
+fACT(10) 
3628800 

g, :RETURN 1 
'BREAK' - 1 

8, :fACT(2) 
2 

7. :PP FACT 
fACT 

6. ? 
D 
:BTV 

-> GREATER 

Figure 16 

13 



14 A Display Oriented Programmer's Assistant 

This completes the "toy" session designed to illustrate some of the basic features of the system. 
Note that at this point the display contains nine different windows. Five of these windows are 
control windows (menus). The other four windows describe various processes. Note that the 
windows have not been a burden on the user: he does not "manage" the windows, although he 
could perform explicit operations on them such as changing their position, or size, or shape, or 
editing their contents as we have seen. The· feeling to the user is that the windows more or less 
manage themselves, and this contributes greatly to the smoothness of the system. 

Example Session-Part 2 

However, to really appreciate the power of the system, one must see how the various facilities, and 
the user, interact in a real working situation. The following session, which is a continuation of the 
above session, illustrates this. In addition to the prettyprinting, editing, break, and history facilities 
illustrated earlier, several other important Interlisp facilities are introduced during the course of the 
session below, such as Helpsys, which interfaces with the on-line Interlisp Reference Manual to allow 
the user to ask questions and see exphmatory material from the manual, and Masterscope, a 
sophisticated interactive program for analyzing and cross referencing user programs. Masterscope 
then allows the user to interrogate the resulting data base both with respect to the control structure 
of his programs, i.e., who calls/is called by whom, and. to their data structure, i.e., where variables 
are bound, set, or referenced, or which functions use particular record declarations. These facilities 
are necessarily used in a fairly simple and straightforward fashion in the session below. However, the 
important point to observe is how the display together with multiple windows enables the user to 
call up the various packages quickly and easily and then to dismiss them when he i;; finished, all 
with minimal interference with his context, i.e., the user's context, not that of his program. 

Receiving and sending messages from other users play an important part in this session, as they do 
in real life applications. The system described in this paper makes it especially easy to process 
messages because the reading and sending of messages is implemented within the I nterlisp system, 
instead of in a separate subsystem. Thus, the user does not have to give up his context in order to 
process his mail. Furthennore, since the message facilities are now part of the Lisp environment and 
vice versa, the user can obtain material from messages that he receives and insert it directly into his 
own programs or evaluate the corresponding expressions by using the READ SELECfIONS command 
described earlier. Conversely, the user can insert material from his own environment, or from 
messages that he has received since they are also a part of his environment, into messages that are to 
be sent. Both of these facilities are extremely useful. 

Note: the session presented below is "canned" in that the events described did not actually occur so 
fortuitously in a single session, nor in such a nice sequence for the purposes of demonstrating the 
system. However, the session is genuine in that the figures that accompany the text are in fact actual 
snapshots of the display taken in sequence through a session in which the indicated operations were 
perfonned. And, in fact, the events described were culled from actual sessions over the· course of 
several months, i.e., I really did find the bugs, make the changes, and receive and send the messages 
depicted below. 

tIn addition to seeing a replay of his history. the user can also scroll the (contents of the) TYPESCRIPT window 
backwards in time to see the transcript of earlier interactions with the system. The difference between the. history and the 
TIPESCRIPT is that the TYPESCRIPT contains a record of all characters input or output, e.g .• includes messages printed 
by the system and by the user's programs. The history contains a subset of these characters. organized according to 
events. For example. 6. the value returned by FACT(3). actually appears 18 lines below FACT(3) in the TYPESCRIPT 
window. but in the HISTORY window. it would be shown as the value of event number 4. regardless of the fact that 
events 5 thru 9 occurred between the time that event 4 was· begun and the time it completed. 



A Display Oriented Programmer's Assistant 

17. I observe an. anomaly in my history 
window as shown in Figure 16: a sequence 
of bells (displayed as little boxes) in the 
middle of my history. When the history was 
actually printed, the system paused at this 
point and seemed to be waiting for me to 
type something. I decide to ask a colleague 
about this. I therefore bring up the 
OPERATIONS menu and select the SNDMSG 
command. SNDMSG brings up its own 
window, and asks me who the message is to. 
I respond "Masintr" (misspelled-his name is 
actually Masinter). SND~SG then asks whether 
I want any "carbon copies" sent to other 
recipients, and I simply type a carriage return, 
since I don't. S~DMSG then asks what the 
subject of the message is, and I type "bells". 
Figure 17 shows the display at this point. The 
caret is in the SND~SG window, immediately 
following the word "bells". t 

18. I complete typing the message, and 
terminate with a control-Z to indicate that I 
want the message sent. t t SND~1SG does not 
recognize the recipient, "~1asintr" ,. and calls 
the spelling corrector, which returns the 
correct spelling, "Masinter". t t t The 
message header is fixed accordingly, and the 
system informs me in the PROMPT window 
that the message has been sent 

t Although this SNDMSG looks like the SNDMSG 
facility proVided by Tenex. it is entirely a part of and 
written in the Interlisp system. 

t tThe Interlisp version of S~DMSG adheres to the 
Tenex convention for sending messages. 

t t t Both S?\DMSG and READ:\iAIL are "watching" 
what I am doing, and build a list of those users that I 
exchange messages with. When I misspelled Masintr. 
the spelling corrector was called with this list, and was 
able to perform the correction. Had it failed, I would 
have been informed and allowed to intervene. as shown 
later in the session. 

(bro~ .• n) 
5.BTV 
6;7 

b:Cn~U~~Q; ~~~'J/~Qc'~J~t'(F~~~TC~~~~)j)s{i~r~~~~}t,s bi 
tho valuo 01 (FACT rJ-') j, Nil whon N.' 

rlNact 
8:lact(2) 
2 
.. RETURN' 
'BREAK' • , 

\ brc ~ ~n I 
5 ST" 
<3 • 

Figure 17 

b,:':n~.J~~ e; ~~~uli~·trJ~h~F~~~TC~~~ )i)ts{i~r~~~\-n}t,s bQ 
t" __ ,··~tu'"' 0" (FACT rJ-l) is N!L whQn N-l 
- ~p ~·,c: 
F.:-
c: t!l~q21 
2 
'~FETUFi\J 1 
:::FE'::"I-'·l 
6 
• J"'U3E .. 5 10 FI~)R 3 IN 4 
<-I 

~;~~,~: ~C 0 

• 1- .... 

To) (? for ~Iliilpr Ma5jnt~r 

: 0: (~ to r ~'€i Ip): 

Moi!5.5aglil (~ for h~tp): 

nvl 

... V~,~ii I prirlt out my I"dst,ory, thQ syst~rn prints a :SQquencQ of 
~'Ii:'lts aftl6!r a nurnb~r of IinlOls havQ b"~n printed, and th"n 
staps pr:nting, Do you ~.now what is goinl~ on~ 

'YVarf~n 

Figure 18 

15 



16 A Display Oriented Programmer's Assistant 

19. At this point, I arn informed in the 
TYPESCRIPT window by the programmer's 
assistant that there is [Mail from System], Le. 
some mail has arrived for me. I had 
previously instructed the p.a. to periodically 
check whether any new mail had arrived, and 
to so inform me. Since I am not doing 
anything at this point except w?iting for 
Masinter to respond to my message, I elect to 
see my mail, type Yes to the question "Want 
to see it now?", and the message is displayed 
in the MESSAGES window. The message is 
from a user ,.:~~ Interlisp at the Information 
Sciences Institute in Los Angeles with a 
question about Interlisp. t 

20. I decide' to respond to the message from 
Goldman right now, and select the SNDMSG 
command in the OPERA TIO~S menu. The 
S~D:\1SG window comes back on top, and I 
type my response. I finish the message 
without noticing that I had inadvertently 
typed· the subject of the message in the cc 
(farbon fopies) field, and the begining of the 
message in the subject field. SNDMSG was 
unable to interpret the word "Subst" as a 
message recipient, and informs me in the 
PROMPT window that the message wasn't sent. 

t Both Xerox P ARC and the Infonnation Sciences 
Institute are hosts on the ARPA network. The mail 
facilities suppotted by the various hosts of the network 
enable users at any site to exchange messages with 
users at any other site. Such .. electronic" mail has 
become the preferred fonn of communication for 
questions, bug reports, suggestions, etc. 

(brokon) 
5:BTV 
6:7 
becalJs~ ... requires that Q~ch of its argumli!nts boil! 
a number but in (tJ' (FACT tJ-I» {in FACT}. 

tho value of (FACT N-I) i, NIL when N·I 
7:pp fact 
FACT 
8:fact(2) 
2 
9:AETUAN I 
'SAEAK' • I 
6 
1D-USE 4 5 10 FOA 3 IN 4 
24 
120 
3628800 
11"'?'? 
II-[Mail from System. 3:07PM] 
W.,.nt to SQQ it now? Yes 

0000 
Mail from US(::-ISIB rcvd at JUN 1977 1SD7-PDT 
Da.tQ: 23 JIJN 1977 1459-PDT 
From: GOLDM.'.~I at USC-ISIS 
Subj02Ct: SUB5T ~nrJ fnQnds 
To: TEITELMAt-J ," P"'R'~ 
cc: GOLOMArJ 

Is t.~qr9 a function ~nywhlO!ni! in Ii~p yvr-dch I.lJtIHitIJtes. ~ for :' i~ :. 
~ctu"lly modifying: (Iif...e DSUBST) ~nd .!lct'J·~lIl !-ubHlt IJtll"'9 1 InH~·~·j 
of copi., of x (Ii~ e SUBPAIA) 77 
1\1I2il 

(brokon) 
5:BTV 
6:1 

Figure 19 

bQcausliI • requires that 9dCh of its arrJ1JmlO!nts be 
a numbor but in (tJ' (FACT t'J-I» {in FACT}, 

tho valu. of (FACT N.-I) i, NIL when N. 1 
7:pp fact 
FACT 
6:fact(2) 
2 
9:RETURN I 
'BREAI<' • I 
6 
10~USE 4 5 10 FOA '3 IN 4 
24 
120 
3628800 
11~?? 

11'[Mail from System. 3:07PM] 
Want to see it now? Yi?5 

To (? for help): Gcldman~13lB 

CC (? for help): mmll 

MeSS~ge (? for h.;!lp): 
There 15 no funr:tion wtdch sUbHitutes < its~lf, 
since this COtJld be used to produce circul~r list HnJctures. 

Warren 

Figure 20 



A Display Oriented Programmer's Assistant 

21. Using the EDIT menu, I edit the message, 
and move "subst" to the subject field, and 
"Neil," into the body of the message. Then I 
select the DONE command. The PROMPT 
window infonns me the message has been 
sent t Note that I can send a message, 
change a part of it, and resend it, e.g., to 
different recipients, again and again. 

22. The p.a. now tells me that I have more 
mail, which I read. It is the response from 
Masinter. He explains that the bells in my 
history window are a Tenex feature, and 
offers to write a Lisp function for me which 
will turn this Tenex feature off for my 
specialized application. 

tThe operation to be perfonned when the DONE 
command is selected is specified by the program that 
originally prints the corresponding material. In the case 
of SNDMSG. the operation is to send the message. In 
the case of prettyprint (as illustrated in Figure 13). the 
operation is to redefine the corresponding function. 

I~rc> in) 
~ BTV 
~ : 
b:Cn1u~~.; ~~~Uli~Qtr4~h(FtA~aTe~~~W{I~rn~w.' ba 
tn. v1lu. o· (FACT N-ll il NIL whon N·l 
• ~p 'IC: 
r.:.:-
: ,. :t(~! 

~ REn.'~'J 1 
'E/:jE.AI-'.'-1 

" ':-~~E 4 ~ '0 r,'A :3 IN 4 

: ~~,: 
;:~3:9Ca 
1'-7''' 
! '·C·I'~d tr:HI' S>,'.5tQm, 3:01PM] 

!' r. ~ t C ! wi It '-10 VI -:> 't', s 

MtiI,SBgi (? for hilp): 
tJill. 

TIHtri is nCl function which subHitutliis x itsilt, 
!:;ncQ tt,is could bQ USQd to producQ circular list ,tructurQ5. 

(t'r'JI .... nl 
~,Br.; 

6<' 

Figure 21 

b .... ,;.;.IJ;1i! • leq'Ji, .... :; H,!lt ~,:tn, (,f iu .:or9'JN',~no b .... 
<!I nIJmt.~r but in (f'.Jt (F;:"'~:T r'.J-1J:' {i:"1 F"::"CT}. 
th~ ·"'.!lliJe ,)f (F . .:!..'::T (.1- 1) IS "lIl ··vt,en r.l= 1 
7 pp f·Ht 
F,~':T 

~,f'!I(.t(2) 

9.RETUf;[···1 1 
'E:F;E,".f"·l 
6 
10-U:::.E -1 -5 10 FI)F; :3 H\/ -1 
24 
120 

:362,:,;300 
"-77 

'''~l ~~,[t ... ! ~,iI5~~~'~ :~i~,~\: ~;(j.{ :~2 7Pf,·1 ] 

[f ... "1.!'il frorll ::';oI5terll, 3: 16pr, .. 1] 
""""'~nt '(I 51i!~ it nCIV" ~ .' .... s 

Readmail 
Sndmsg 
Helpsys 
Masterscope 
Prettyprint : 
AefTesh screen 

Insen 
Append 
Delete 
Replace 
Move/a 
Move/b 
Move/r 
-) 

I:. trll;.r", ':. fune r.i(Ir"1 ::.r,:.n.\.t,.;.r", in li:.p '"vt,io:t, :.ub5ti'ur.",~ .. fe,r :-' Ir :. 

~~ ~~~,lil:5 rl~;,~oj~f:~'I'i~'t ~:.,~i~~::;. f~::;U~.~. T) .~ n,j .!I C tu,:.lIy sub!tir.IJtln9 in! r. ..... ~ ,j 
r·.JlO!iI 

23-JUr·.1-77 1-5: lr::,:~6-P['T,4;::2;:IOOOOOOCIOOOO 
['atlO!: 2:3 -'UN 1977 1-51:3-P[·T 
Fro.:,m: fvl . .b.:::.INTER 
To: T .... itelmeon 

The pro.:,t.J .... m is trl.~t TEr:JE'" tt,j~lr,5 ~ 5crtl"n full 
of rr.·'t~n.;" 1',';'$ bli!>i:r"1 pnrotoOtd \vlthout th~ IJs~r typing ,nythin'3' 

~\. ~~~~;'~~:~~':tJ~~:~n ~~, :~~~ r~~~,~"~"~'~',~ ~~ ~~,~i:5 h~o.:,~,; ~~_Q~s:rt~~ $0.: rQ Qn 

:~.'~'ter~J /~') ~ ~~:.: x rr~~,r;.~ ~~ni~~;'·fC~:~.t~'-1 o.:,~,,~ ~ ~~ ~~~ i~~I. 5 i c"2 ~I f :~~i'~ ~I y 5 t •. :, IJI oj 

.V,)IJ .:. functi,)n to (jo ttd::. if : .. '(IIJ lif Q 

Figure 22 

17 

, 



18 A Display Oriented Programmer's Assistant 

23. Since this function basically sets the page 
height, and I already have a function for 
setting the page width, I ask Masinter whether 
he can simply combine the two operations in 
a single function. I want to include the 
definition of the function that sets the page 
width in the message I send to him. So I 
type the first part of the message as shown, 
and then I select the PREITYPRINT command 
of the OPERATIONS menu. The PROMPT 
window asks me to supply the name of the 
function(s) I want prettyprinted. Figure 23 
shows the display as of this point. Note that 
the caret is in the PROMPT window. 

24. I type in the name of my function, 
SETPAGEWIDTH. The WORK AREA window, 
which had become covered by the HISTORY, 
SNDMSG, and MESSAGES window, reappears 
on top, and the definition of SEfPAGEWIDTH 
is prettyprinted. t I will include th~s 
definition in the message which I am 
composing by using the READ SELECfIONS 
command in the WIl'~DOW menu. I select the 
definition, and move the· mouse to the .READ 
SELECTIONS command, as shown in Figure 
24. 

tIn this case, the function SETPAGEWIDTH was 
compiled, and its symbolic definition not loaded into 
my system. PRETTYPRINT therefore asked the 
Interlisp file package where the symbolic definition for 
that function was located. and then loaded it in. All of 
this happens automati~ly without any need for user 
intervention. 

;.;,:!o .!~ • f"O::'::TJ,tr-i!':: :tl:' ~ ... ·!!C t. I)f i:5 ::t.r9IJrnoO!rlU lit? 
~ ·".r'):;oi!l" t".t In ~I·.J· :F,,;;;.,::T :".1- I'.;. {m FA.::T}. 

:-.i! !"''':~ (,.: ,F"::'.,:T ~J-l) ~ r'JlL "" .. t,-O!'n N=1 

;-;:5-:'~':-: 

~ =£-:" )~. \; , 
::;:(.1'. : 

-:: -. =: ..J f ":1 F :.F :: r·.J .:l 

. '--' , ~ ,: 1',':,r,'1 ':'.' !.T:~rr.. ::;,:Cl7F'f./] 
: - -: ~: ! ~~ 11; •• (_.,' " I iI!-

:';:: ~.·~:r~~:",~t~~;I. ':,: l:.~~l~ 

! ~Oo ,;.... ~ f Jr,.: - - - - - - - ____ - - - - - __ - - - - ___ _ 

.. : .. w!o , 0, .. :::.. T,:, (" 1':,r tI1jj'P;: t .... I.!osilitti!r 
:-:';'';!:. : 

:: .' ",' r tl';"~':1 

~ ;~~Oo ~.:-.~. ~-:: :.IOo~I.I>i<o:r !.~':-:lr9 P';9~ r,~i9tlt 

~"::" ~'';--::';;:'~;I ··.1~!·!-!o9~ I:' t,;.· t,~'~.~ 

_Oo; ~ .. ::: !;r,' ;' ~',.~r~:~.':~::~t·:?'~ ... ,:~'~'~,~v.~.~.~~t~ :";~'/C ~~~~:~"i'~'~ T;Jt"~~: ~i:~;~.t~I~/:~;'in9 ft",e 
:-., !--:';",~ - !o!1 ~"I>i< f'J-.(tp:orl ."')'. q.~~/'" m~ ttl~r,: 
-: -: .... ' ... ~: ~ -c :: '''I . 

-."'::-·"--,1 
:-:;':', :-"O:!" 
- ""w:" -;.-;. 

Figure 23 

6:? 
b'i!c·~u3~ .. requires ttl~t e.:-ct, 01' its 03rg'Jrnent~ boil 
" nUn)ber blJt in (f·.l+ (fF,I::T t-J-l.,) {iii fAGTh 

~h'il vd!luQ of (fACT rJ- 1) i::. NIL ....... ·t,oi!l'l f'J'"' I 
7:pp I .• c, 
FACT 
8:10«(2) 
2 
9:RETURN 1 
'8RE".~:' • 1 
6 
10"USE 4 5 10 FOR 3 Jr..l 4 
24 
120 
3628:300 
I'''?: 
~~"~"n[tMt·~il~~Z~t ~,:~:~;~~)·"(~27P~ ... 1] 

[M,~il from 5ystoi!m, 3: 16Pt· .. 1] 
W,:.nt to !-ee it no· ....... · ? ' .... ~s 

(FACT 
[LA"1.0A (") 

( rl" N t! 9re.!lttr ttlan €1 
",." "'(FACT N-I) ELSE IJ:' 

(SETPAGEWIDTH 
[LAMBDA (WIDTH) 

Read 
Move 
Move next to 
Grow/shrink 
Put on top 
Put on bottom 
Kill 
Make In'tlisible 

(JSVS ~~~G~~ (LLSH WIDTH 18) 
(LOGAND -33292289 

JSVS 71 64 NIL NIL 2 

Figure 24 



A Display Oriented Programmer's Assistant 

25. I select the READ SELECl'IONS command, 
and the effect is the same as though I had 
typed in the selected material: my SNDMSG 
window comes back on top, and the 
definition for SETPAGEWIDTH is inserted into 
the message, as shown in Figure 25. I 
complete the message by asking Masinter 
about a totally different matter, which is why 
the mail check routine tells me I have mail 
from SYSTEM, rather than the name of the 

. sender. 

,1:,,.,: ~ ~n. 
5 ET'y' 
". 
~.:"r~J'-n::i; ~~~Uii~i/tJ~hrF'A~'TC~~~)I:S{i~r~~"C~}t,' be 
~r,,, ,'.10" o' (FA,;T rJ-I) " NIL whin N.I 
""':: 1!C': r.;-
~ t~n!::"1 

~ =ETUR'J 1 
~~E ~~ , • 1 

~ :l-'.I:·E J: ·0 r,:,F: J IN J 

;L,co 
~ ~ -.... 

~" :., ! :,r(, t;r': 1"1 r " 
:':-':",,:"J!lr,.. 

~,~r,~: ~'~~,::'i~t ~1'~~./l~~~ww~O:~~~~d a C~i~'~li~~ 1~;'~C ~i~no.t~~r~: ~~in9 thi 
t:~'1iI "J·.C ticln .'f"OU goa Vii! mQ thQn: 

. ::·ETP'!:'.':;EV~.'I(ITH 
[LA\IE,('A (WI('TH) 

(J5'IS IJ364 
(L')':;';'R (LLSH WIDTH 18) 

I LljGAND -33292289 
(JSYS 71 64 NIL NIL 2]) 

.~ ;,:"~'; J~:;:~:' :~;"iri.~,FKi~i{f~~~~~:,~:~;;::~: ~Z~~y~~t~~ ~f~. ~~~:h:rb~ h' vo 
- , .... :. t: -liit !. ;, r.<~ '" r ? 

Figure 25 

19 

This casual exchanging of messages back and forth is an important part of the way that many of us 
use computers today. Twenty or so of my colleagues are using the SaIne time sharing system as I am, 
not to mention the much greater number of users on other machines on the ARPA network, and.we 
exchange messages frequently. Thus it is of great value to me to be able to switch contexts from 
debugging a program to sending or receiving mail with a minimum amount of overhead. In this 
case, it was particularly important to be able to point at a piece of my prograinming environment, 
i.e. the definition of a function, and insert it directly into a message. The same facility would 'be 
useful for example in reporting a bug, where I might want to include a sequence of interactions with 
the system in my message. The inverse operation, of pointing ~t a piece of a message I receive and 
installing it in my programming environment, is also very useful, as we will see in the next 
interaction. 



20 A Display Oriented Programmer's Assistant 

26. The p.a. now tells me I have more mail. 
It is the reply from Masinter containing the 
definition for the function SETPAGE. I select 
the definition, move the mouse to the READ 
SELECTIONS command' in the WINDOW menu, 
and 

27. select the READ SELECfIONS command 
thereby defining Sl!1PAGE, as shown in the 
lYPESCRIPT window in Figu re 27. I now use 
SETPAGE to set my page height, and then 
select the ?? command in the HISTORY menu 
to see if the bells are printed. They aren't: 
this time the entire history is printed without 
any pause. (In Figure 27, the HISTORY 
window shows the end of th~ history, i.e., the 

., beginning of the session where I defined 
FACT.) 

6:? 
because'" requires that each of IU argum~nts bQ 

t~.n~~I~~r :nF~C(tN~F1)~;r N~C ~h~~n r::-,cT}, 
7:pp fact • 
FACT 
8:fact(:2) 
2 
9:RETURN 1 
'BREAK' • 1 
6 
10~USE 4 5 10 FOR 3 IN 4 
24 
120 
3628800 
114-77 
11~[M.il from System, 3:07PM] 
Want to seQ it now? Yes 
[Mail from Systom, 3: 16PM] 
Want to seQ it now? Yes 
[Mail from System, 3:34PM] 
Want to see it now? Yes 

Figure 26 

23-_ur',J-77 15:34:06-PDT J 1533;000000000000 
CI,:.N: 23 JUr'J 1977 1530-PDT 
From: ~,,1..:l.,5Ir'JTEF; 

Tel, Tli!it~lrr.:n 

GREATERR {1n FACT} -) GREATER 
FACeT {1n FACT} -) FACT 

NOI·HWIoIEP.IC ARG 
NIL 

Readmail 
Sndmsg , 
H.lpsys 
Mastencope 
Pn!ttyprint 
Refresh screen 

Read 
Move 
Move nC!xt to 
Gr-ow/shrink 
Put on top 
Put on bottom 
Kill 
Make Invisibhi! 

3. ~OEFINEQ«FACT (I~) (COND «(lGREATERP fI 0) (lTIMES 
fI (FACT (SUB1 1'1»»») 
2. ~FACT) 

1. ~OEF lNEQ (F ACT (fl) (I F fI IS GREATERR THAfI 0 THEN 
II' (F"CCT fI-1))) 
lncorrect def1nln9 form 
FACT 

Figure 27 



A Display Oriented Programmer's Assistant 21 

Let us pause now and review the sequence of operations commencing with noticing the problem and 
culminating in its solution: 

1. I noticed a problem, 
2. sent a message, 
3. received an explanation, 
4. sent back a reply containing a piece of one of my programs, 
5. received a message containing a program which I could use to fix the problem, 
6. installed the program in my environment by pointing at it, and 
7. fixed my problem. 

This particular problem admittedly was a trivial one, and could easily have been ignored or tolerated 
by the user. The important point here is that the configuration of the system makes it so easy for the 
user to attack and solve such problerrzs that he is willing to do so. The leverage that the system 
provides the user is even more valuable when the user is attacking conceptually difficult problems. 

28. I use the PUT ON TOP command of the 
WINDOW menu to bring the message window 
back on mp to read the rest of the message 
from Masinter. Since the message is too long 
to fit in the window at one time, I scroll the 
contents of the window to see the rest of the 
message by placing the mouse in an 
in1aginary bar to the left of the window and 
pressing the left button (for scrolling up- the 
right button is used for scrolling down). The 
line opposite the mouse is then scrolled to the 
top of the window. Masinter explains that 
the mail checker I am using simply checks 
the last user to write on my message file. If 
my message file is busy, or the mail is coming 
from over the ARPA network, as was the case 
with the message from Goldman, then the 
"user" that actually writes on my message file 
is, in fact, the system. He suggests that if I 
want to bother, I can lind out the real name 
of the sender by actually looking in ·the 
message file at the message its~lf. Masinter 
says he has a function called GETMAILPOS 
which will return the position of the last 
message in the file. 

I decide to make this change, so I type 
It LOAD(It to the programmer's assistant (as 
shown in the TYPESCRIPT window), and then 
select the name of the file ~n the message (in 
order to use the READ SELECTIONS 
command). 

: ~~ .. ,~ 
11 ... ~~.'.~il fnm S .... Hi!n1, ,3:07PM] 
.n ~r~ to, !~Iit It "'lOW"? r'Q! 

:.\~,;~,~ ~r:~~\~~'~I~t~~v~ ~~ 1~:~] 
~\''';~~ ~r~~~~~·~i~t~~v~·~3i:~] 
CE= rJ~o (::ETPAGE (L~MBDA (WIDTH HEIGHT) (PAOG 
,r I: C'E : JSI'S 7 1 6~ tJIL NIL 2») (. Got curront 

.1~::~';'~:RO ~ Lt~:~dv,:~ T ~ Ti~) (tL~~~~g T_H3&~~~~8~O~~DE»» 
• ~"'~!I In nrill'" \ ..... 'Idt~ bit! 11-17) (AND HEIGHT 
:E"': r··'X'E (L':"~CR (LLSH HEIGHT 25) (LOGAND 

~~~~~'_-l';J~~~~ ,~~':I~~Ej)~};'1S1~~~ ~~ ~~~:~ii~:; 
... ~: r': j.a v. :,r:1));),1
:::-;:.~ :iE)

.':~:" " 72 I OC)

,L':· 3t.r·,JD 7776007777
(. Mask i nQw width bits 11-17)

r"nu HEISHT !SETQ MODE (LOGOR (LLSH HEIGHT 31Q)
'L:-::.'.u 740 177777777Q MODE)

(>to Mask in nliitw h~ight, bits
.!-1oj,

1.1:' ',':. 217.:! 1 JOO Mf)OE) (''' STPAA sets n"w mod" word)

-::': ... 1: ,:rE! 'f··H,1I h)m ::"(:3TEt'll";

.... ~,.:; ~';'~r~/~I':I~'~r ~~~:lii'i\~,~~g Y~O~J~~'~~~liI!i,l~t S~~~I{ rt;:r~~Q is open
::. ... :~,_!w -,OJ .::.r. rlit~rjln9 your m~ll. tnti mail is qUrilUQd, so that wh;n

!~~. /~.~~~I~~~~~~II;~ ~'~I::(~~t~:'~ri~~J;, ~~~lil!i~f;Ji~fi~~~. ~a~~ i~hf~om
~-,:t"'ir r,_t',vory S·tli!l tis .app;n,jQd to your mall til; by thQ
:,.l~.'" I'1'I~JI ,SfII:"I.r Thlil.onl)" gu!.ranUlild way to tind out thQ rQal nam;
:.~ ~P'", !.;,rIlJoOir .s tl) IOO~ .• n yOIJr mail til; itHllt.

':l~ :"~,,:, ~~~:'.~r(~~N(.t;1w'I;;fitt,,;},;a~,;) t~~li~~O~i~:~I~~; byt; position
.. ~ ·r.;, '!orr: rr,fllBo!I9" In y'OI.Jr rnlilsBg; fll;, From ttuilrQ you can
:: : ... :: 'P'" rl-!lrrl' ct r.1i; ~"nd"r, triQ subjQct, anytt.lng you wantQd,

.. ~'

Figure 28

22 A Display Oriented Programmer's Assistant

29. I select the READ SELECTIONS command,
and the file is loaded, thereby defining the
function GEfMAILPOS. Now I need to find
out where to make the change to inform me
of the real identity of the sender. I therefore
use the Masterscope command on the
OPERATIONS menu to call Masterscope. My
interactions with Masterscope are c;hown in
the MASTERSCOPE window at the bottom of
the screen in Figure 29. I ask Masterscope
the names of all of the functions called by
CHECKMAIL. Masterscope obtains and
"analyzes" the source definition for
CHECKMAIL. I notice the function
INFOR...\fAIL among the names of the functions
called by CHECK.\1AIL. INFORMAIL looks like
it might be the function I want. I select
INFORMAIL and

30. prettyprint it, and see that INFORMAIL is
indeed the function that prints the [Mail
from --] message, and so is the place to make
my modification. I. usc the I;\SERT command
on the EDIT menu and begin making the
change. Figure 30 shows the definition of
INFORMAIL with the text "(FILESEARCH"
inserted.

[Mail from Systom, 3: 16PM]
Want to see it now? YQS
[[Mail from Systom, 3:34PM]
Want to see it now? Yes
(DEFINEQ (SETPAGE (LAMBDA (WIDTH HEIGHT) (PROG
«MODE (JSYS 71 64 NIL NIL 2))) (0 Got curront
JFN mod. word for TTY) (AND WIDTH (SETQ MODE

~~O~~~k \~L~~:~J~h ~?{s (~~~~j~D(;~g2~lt~~~ MODE))))
(SETQ MODE (LOGOR (LLSH HEIGHT 25) (LOGAND
-4261412B65 MODE)))) (0 Ma>k in now hoight,
bits 4-10) (JSYS 143 64 MODE) (. STPAR sots
now mode word)))))
(SETPAGE)
12~
(sotpag. 72 100)
NIL
13+-17
13~load«MASINTER)GETMAILPOS]
FILE CREATED 23-JUN-77 15:29:08
(GETMAILPOS)
(MASINTER)GETMAILPOS.; 1
14"""

",:.nt to !QQ i :"low? Y2S
[[r.1.3il from S:"tem, 3:34PM]
\.\'o!'no: to !QQ it nO"i ? Y2S

Figure 29

'N~:rJo') (~ETFAGE (L.AMBDA (WIDTH HEIGHT) (PROG
(Ir,.~:Q:: ;)51'5 f 1 64 rJIL NIL 2») (. Get current
1Ft' ",de wcra for TTY) (AND WIDTH (SETQ MODE
(L(;'~':'R 'LLS~ W,DTH 18) (LOGArJD -33292289 MODE))))
(' M.,,~ 1n no,,, width bits 11-17) (ArJD HEIGHT
(SET:) ,·,'ODE (LOGOR (LLSH HEIGHT 25) (LC!GAND
-~2614 ~28e5 MODE»))) (. Mask In new height,
tliO 4-10) ~_5YS 143 64 MODE) (. STPAA H!ts
n.,\' n"je w>rj»)))
':,~~_TP,A. ::'E)

(; .. tP~ 3-- 72 !OO)
i r;.~L_

J ~;I·~.~:~(~ ~1::5 iJ;_EJ~~~:?_E7T;~ ~~~~:~J8
(?,E~~;I).j':'~~F~;:~~TM.~ILPOS.; 1
14-

(SETPACEV 10TH
[LAMBDA (W I DTH)

(J,Y$ 143 64
(LOGOR (LLSH WIDTH 18)

(LOGAND - 33292289

Window
Document
Edit
Look
History
Break
Operations

Readmail
Sndmsg
Helpsys
Masterscope
Prettyprint e
Refresh screen

tions
Moy@
Move next to
Grow/shrink
Put on top
Put on bottom
Kill
Make Invisible

(J~Y8 71 64 NIL NIL Z])

loading from (TElTELMAN)PACKAGES.; 482

(INfOR.AIL
[LAI~BDA (FL)

(PRIN1 "[Mail from" FL)
(filesearch A

[lPRIN1 (SETQ SENDER (L-CASE SENDER T))
FL)

(PRIN1 ", " FL)
(PRltU (GDATE ~~~~~~~~~MAIL -34309144576

FL)
(PRIN1 "j

.. FLj)

Figure 30

A Display Oriented Programmer's Assistant

31. At this point, I realize that I don't
remember how to use the function
ALESEARCH, so, while in the middle of editing,
I use the OPERATIONS menu to call HELPSYS,
to interrogate the on-line Interlisp Reference
Manual. The interactions with HELPSYS are
shown in the HELPSYS window at the bottom
of the screen in Figure 31. I first ask
HELPSYS about FILESEARCH, and it tells me
that there is no such subject in the Inanual, so
I try the phrase "searching files." This causes
HELPSYS to give me an explanation of the
function ALEPOS, which is the name of the
function I want. t

32. I exit HELPSYS and the WORK AREA
window comes back on top, and I am right
back in the middle of my edit. I type a
sufficient number of backspaces to erase the
"SEARCH" in FILESEARCH, and then type POS
and continue with my INSERT. The text from
the manual about FILEPOS told me that its
first argument is the target of the search, in
my case the string "From: " in the message.
To guarantee that I have the right string, I
scroll the MESSAGES window backwards until
the beginning of a message is visible, then
select this string from an actual message, and
then use the READ SELECfIONS command to
insert it into my edit

tIf that had failed, I would have asked HELPSYS
about FILES. which would have given me a list of all
words or topics beginning with the letters FILE. just as
though I had looked in the index of the manual itself.

I ystom.3: J
o IU It now ? Vo,

[[Mal Irom SYltom. 3:34PMJ
Wa.nt to 'iii It now 1 Yas
(DWNEQ (SETPAGE (~AM6DA (WIDTH HEIGHT) (PROQ

W~°.,oo~~J~~~d 7'~r 5iT~I~ t;:~'~)~II~~~~~{~~O~~DE
(LOGOR \~~SH WIDTH lJ) (~OGAND -33292269 MODE»»
(. Mask n now width bits 11-17) (AND HEIGHT
(SETQ MODE (~OGOR (~~SH HEIGHT 25) (~OGAND

~~~64~41b~e(~~~~om)~4(;A~tg ~~ ~~~:~i~~:; 
now modo word»») 
(SHPAGE) 
12" 
(!Otpago 72 100) 
M~ 
13~1? 

;1~;'~~~~~tDSI~J;_EJ~)r~_E7Tr~~,7~~~1 
(GETMAI~POS) 
<MASINTER>GETMAILP'~S,; 1 
14" 

(SEARCHING FI~ES. FIlEPOS. from section 14) 

fl1epO$[Xjfilejst~rtjend~:~:~~~:i:~'e for x .s 

,nepos was written by J. W. Goodwin. 

105 strpas 

11 

(Zect 'on 10), 

Search begins.!It start (or if start-NIL, the 
current posltl0n of r'1e pOlnter), a"d QOt's to 
end (or 1r end-NIL, to the enct of "leo). 

Figure 31 

fron1 Syst;m, 3: 
. ~n: to ~r2Q it now? YQS 

[U,,'~.il from System, 0:34PM] 

;'C:;:rJ~~l'(;E~P':..°J~ ~~~~;BDA (WIDTH HEIGHT) (PROG 
«I\1:D:: (JS'r'S 71 64 NI~ NI~ 2») (. Got current 
IFrJ ",cd. word for TTV) (AND WIDTH (SETQ MODE 

l~C~~;.Rk \~~~~:~~~h ~T{s (;~~~~D(;~g2~~~~~ MODE»» 
(',HO" r.WDE (~OGOR (~~SH HEIGHT 25) (~OGAND 
-42614 128€5 MODE»» (. M.sk in now hoight. 
t,it> 4-10) IJSYS 143 64 MODE) (. STPAR sots 
r,.,,· n,do w·ord»)))) 
(::ETP",:;E) 

(~!:~p~ 3w 72 100) 
Ill:" 

: ~:,~:'~ ~I. '.,MAS'tJTEA)GETMA1LPOS] 
F'lo :F,E"TE:> 23-JUN-77 15:29,06 
1'~ETr.1.t...:LF':'3) 
1·.''- ;IIHEn.';Ht"IAllF'OS,; I 
'4-

:'7'-:,r 

(SETPASEWIDTH 
[~AMBDA (~I DTH) 

(JSYS Z~~G~~ (~~SH WIDTH 18) 

(~OGANO (3m2~~\4 NI~ NI~ 2J) 

loading from (TElTE~MAN)PACKAGES, ;462 

(I~r~::~!L(F~) 
(PRINl "[Mail from " F~) 

(CFR 1 ~i" ~ ~~~Q ~~~gE~ (L-CASE SENDER T» 

PP,INl ~~)" F~) 
~PRINl (GDATE ~ASTKNOWNMAI~ -34309144576 

-2 :29AM") 
F~ ) 

(PRINl "J 
" F~ J) 

Figure 32 

23 



24 A Display Oriented Programmer's Assistant 

33. I complete my INSERT and select the 
DONE command. The PROMPT window says 
that the function INFORMAIL has been 
changed. Basically, the change I made to 
INFORMAIL says to begin searching the 
mailfile as of the location specified by 
Masinter's function GEfMAILPOS, looking for 
the string "From: ", t and then to read a 
single word from the file and set SENDER to 
this word. -I test out my change by typing 
INFORMAIL(T). The last time I got mail 
INFORMAIL said [Mail from System]. This 
time it tells I me Mail from Masinter, so the 
change worked. 

. _;,~~il~~~;ii~;;Wi;;g~1~1:i~~;~"»» 
, :.~ 1;1 ~- 'CI) ,.:3,'::, 14:. r:-.:! f· .. K'C'E) (if' STP,J.,F •. NO 

-.~ , •. :,j': ... ;:,r:J!):)) 

Let us again review the' sequence of operations: 

. :ETP. ~E', 
, '2-

·i·t:~:o, 11 •. ':· 1.1 TE F; ·':,EHil.".rLP';'SJ 
::'_: :o:::: .. i£: 2':,-.I)r-'J-77 15290:3 
~;E-·.l.:..U::':':,) • 
r 1_::rJTEF, ·:~En··1.;l.ILP:::'.; 1 
!.!- . 
':.- • ,.:I .. ·· .. ~il; f) 
::~:. ~··:Irl' r,l.:!int;~r. ::i ::;O~'t,:l] 

:- :. FL) 

Figure 33 

1. I observed some undesirable behaviour in a program I was using; 
2. sent a message inquiring about the behaviour; 
3. got a reply back suggesting the nature of the problem, how it might be changed, and a 

program which would help in making the change; 
4. used Masterscope to find out what to change 
5. began making the change and then in the middle, 
6. used Helpsys to tell me how to make the change, 
7. completed the change, and tested it successfully. 

tThe extra arguments to FILEPOS specify that the search is to stop afierthe string, not at its beginning as is the default case. 



A Display Oriented Programmer's Assistant 

34. The p.a. (via INFORMAIL) now tells me 
that I have mail from Burton, which I agree 
to see. However, I realize that I would like 
INFORMAIL to say I had mail from Burton at 
BBN-TENEXD, just as it does in the message 
file, rather than just Burton. 

35. The problem is that the Interlisp function 
READ, which I used in the change to 
INFO~\1AIL, just returns the next 
expression/word in the file, which in this case 
was simply Burton. I should have used the 
function RSTRING, which will read everything 
up to the next carriage return. Therefore, I 
simply bring my WORK AREA window back 
on top, and edit the definition of INFORMAIL, 
replacing the call to READ by an appropriate 
call to RSTRING. I then select the DONE 
command. The PROMPT window tells me me 
that INFORMAIL has been changed (again). I 
test out the change by typing INFORMAIL(l). 
This time IN"FORMAIL tells me I have mail 
from Burton at bbn-tenexd, exactly as I 
planned. 

~1~ ~~~:~;(J7 iB~;~i~ ;·7t; ~:c~~ ~~ ~ ,;fogg~~~JO~',~~I~O 1 ~,? 5 _PC' T e 
('.!It .. : 23 Jut.J 1977 1650-E('T 
Fr(or(I: eURT(IN .!J~ B8r.,j-TEtJE:-:(1 
::"Jbi~ct: Rfi:.(JVI;:,E n(ln r"',!ltIJrlir 
To:· TEITELM . .:..rJ ,~~ P~.F,O:: 
cc: HAF.TlEY, lE'o,oVI5 

~!.~Iir/':;~I~lirv~:~~~ i~d~ r: ~,I~~ :"t:i~ i.~'f::'I~ tC~~~Y'i~~~~7\1~ ;'E'JI~ir~\, ~"I':~ i ~i~~ ~:J~: !.rF'r:J 
te.,. thlir til .. h-!'l'S b~oO!rl rri!I .. ~!.",j. 
die ~ 

Figure 34 

.:-:" 11-.:.I.rTEF;··:,ETr.·1.~ILP·)::.J 
=_:: :::E--E: :::.3-.IJIJ-:-:' '5~908 
:,::-ol_II..F':':.·, 
"-: • .• .,.E •• :;EHI"ILP:S.,1 

• :: - -" : .••• " ~ tI, T; ., 

:: ° ~ ..:,.: r-. r 1 ~ .::;r,1:",r. "3 :::0='1 ·1] 

( INFOR.AIL 
[L"Mt.DA (FL) 

,PF:lIl1 "[M.,,' from" FL) 
,FILEP08 "Fr{jm: .. MAILFILE (GETMAILPO:::) 

SENDEF. .;'.i1L .I-II~ ;'~ILFILE OI~PLA"iPOn.L) 
,PF: INl ,~l'i1! l'mDEF: (L-C.~E SENDER T)) 

FL'I 
1 f'~· I Nl M,·" FL) 
1 f'F:JrH j GDATE Ut.:::n.NI)I .... NMAIL -H j0o.H4457f. 

":. :9.1,''') 
FL) 

Figure 35 

2S 



26 A Display Oriented Programmer's Assistant 

36. As long as I am at it, I decide I would 
also like INFORMAIL to tell me the subject of 
the message, so I edit INFORMAIL to search 
the mailfile for the string "Subject:", which I 

. again obtain from a message itself via the 
READ SELECTIONS command. Figure 36 shows 
the edit as of this point 

37. I complete the edit, which basically says 
that if the string "Subject" is found in the 
message, INFORMAIL should print it and the 
rest of the line that follows it I select the 
DONE command, and the PROMPT window 
reports that INFORMAIL has been changed. I 
test out my change, this time by selecting the 
previous event in the TYPESCRIPT window 
and then using the REDO command 011 the 
HISTORY menu. As shown in Figure 37, 
INFOR.t\1AIL tells me the full name of the 
sender, plus the subject. 

i 4- 10j (J:::,','::. 14:i 

~~~'~~:~,'~~ )V1,:,r':1») ,I) 

12--
(SfttP"9~ 72 1(0)
tJIL
13"'7':'

F"~;':~:~~';~~~~"fJOT .. ~t~~~'!7Tr1:~~~'~':~l
(l~lETM,~.ILP';'5)
< r ... 1.~~,U.JTEFi)'~lETrv1A,JLP':-'S.j 1
14-
13-inf':'tT(,,:-il(t)

::~'.I1.!lil (,.,.:om r·,1:. .!'irltiWt', ?:.80pr· ... 1]

Aedldmail
Sndm)g
Helpsys
Mast@rscop@
Pr-@ttyprint
Aefre~h 5Creen' . ..J,I:~~,[//!~,il !~~,ri'~ E~,'~,r~,.:/:.~' .):.:~~~.pr .. 1]

inf,:wrn.:.il, t',
L-____ .~ __

~;,"".;. il tr 1:lrr,' 61Jt tN, .:0 t l,brl-t~n,"" ,j, ::;;:~,-:,Pkl]

20 ..

NFOR.AIl
[LAMe,[I:.:. ,.FL,

, P~'I ,.J 1 ,,- '":.,, "r :,r,l " F";..

,F I LEF'O::::' ·'ft'.:·r" . "1.:.:.1 LF ILE ,'_.E i',!.:..: .. ~ ':': '
'Hl t-I:l T,

:,:ErmEF -: "'.TF IrJl; ,.," ILF LE [I'~',"; F:'-~c
.F'F:It-Il ,::::TQ ::·EN:.EF. 'L-~"'~.E :E'J:'E~ -'I

Fli
I PRINl ", " Fl.
(PF:INl (I;:IATE L;.:,:;H.'·;(I'"IW,I,:.;IL .. :.J:.:.:.l :.-~.

11

l7!ol

NIL
134-77
13~load«MA5IrJTEA)GETMAILPOSl
FilE CREATED 23-JUN-77 15:29.08
(GETMAILPOS)
(MA5INTER)GETMAllPOS.; 1
14~

184-informail(t)
[Mail from Masinter, 3:30PM] :1
194-[M,~il from Burton, 3:55PM]
Want to SQQ it now"! Yes

1l!'1':'1'~::~) BurtCln at bbn-tQnQ(rj. 3:55PM]

::1
20~AEDO 19

~r~~ji!:~~~E~~~i~Ea ~o~b~;;~,~':e(]j, 3:55PM

:1

(INFOR.AIl

"::: ; :::'~:':'M ,. :'

[l.MWA (FL) .

Readmail
5ndm~g
Helpsys
Masterscope
Prettyprint
Refresh screen

(F'F:lfll "[M,,1 fr·: ... " FL) _
(FILEPOS "Fr(rl'll: " MAILFILE (';ETMAILF'I)S:,

11

17!Ok

rill NIL T)

;:~~~i'~~ (1~~~F[~~O~~ I ~~ :~~o~ I i~~~i:['; ~~)

: ~:::~~ ;~;'~T~L ~~~~~~~':'r)IM.IL -,B(I~lm76

~l::;:i:i~;::;l
I ., -'IN')

(PRINl "J
.. Fll)

IDl

Figure 37

I,

A Display Oriented Programmer's Assistant

38. I now read the message from Burton,
which describes a short file that he says will
not load correctly. In order to check this out,
I need to make such a file and load it and see
why it fails. I bring up the DOCUMENT menu
and select the WRITE· command. The PROMPT
window tells me that I should select the
material I want written onto the file, and asks
me to supply the name of the file. I select the
corresponding portion of my message. Figure
38 shows the display at this point.

39. I give the name of the file to be created,
BURTON.BUG, and the PRO~PT window tells
me that the file has been written. At this
point, the programmer's assistant tells me I
have a message from Card. Since I am in the
middle of something, I decide not to read the
message now, and type No to the question
"Want to see it now 7". I load the file
BURTON.BUG I just created, and it loads
successfully.

13"~'7>

~,~i'~~'~(~ ~t~'~;_EJ'Yr?_E7Tr~~~~~~1
«3ETMAILPC'5)
'MASlrnER '('ETM~ILPOS" 1
14-
1e-inform.iI(t)
:]',. il from M.,ir,t.r. 3:30PM]

19"[Mail 1rNI'l Burton, 3:55PM]
Want tl) !Q" it rlOW ;0 'lQoS
~It)
~Jv1~11 rrNn B'Jrtcln !.t t,bn-tli!nCil ... d J :3:5SPM]

20"'F,EC11 j 1;1
~ry1J111 fmrn BurtIY''l at bbn'"'tQnliiilxd, 3:55PM
::JutIJ ... Ct: FiEAD\/15E riCin (Q!Jtura]

~~;'f:~::i"I;'~~~T',~~t+~. 4; 10P~·/1
'y'v'a nt to S~~ it no " :. f.Jo
lo.! d(bul'ton.t1ug)
FILE CREATED 2-5-Apr-77 16: 12:42
F00C('M:3
'·p.f.,J\'THlf.JCi"
'TEITELM;'I'J 'BURT('fJ,BU':;, 1
:2:2;,-",

Figure 38

Figure 39

AQ4dmaii
Sndmsg
HQlpsys
Mo.sterscopa
Prettyprlnc
Rafresh screRn

27

•
I l

· 28 A.. p~$pl~y Oriented Programmer's Assistant

40. Since the process of loading this file
made some changes to' my environment,
namely advising the function CLOCK, I undo
this operation by selecting the corresponding
event in the TYPESCRIPT window, and then
selecting the UNDO command on the HISTORY
menu. I then send Burton a message asking
for more details, and suggest that the problem
may be due to some files having gotten
smashed at BBN.

41. I now go back and select the READMAIL
commgp.d on the OPERATIONS menu to read
Card's message, which is a comment about
the Interlisp manual, which I will respond to.
However, I realize that I could easily have
forgotten, about Card's message and gone on
to ~c:>mething else, so I decide I would like
the mail checker to remind me, by changing
the caption of my message window, that I
have. mail waiting when I decline to read it
immediately. I will perform this change by
simply advising the Interlisp function
ASKUSER, t which is responsible for the
"Want to see it now? - Yes/No" interaction.
1 advise ASKUSER AFfER, i.e., the advice will
be executed on the way out of the function, if
its value is 'N, then to change the caption as
indicated. Then I realize that this change will
affect all calls in the system to ASKUSER,
whereas I only want this to happen on calls
to ASKUSER from CHECKMAIL. SO I select
ASK-USER in event 23, i.e., the ADVISE
operation, then select the UNDO command on
the HISTORY menu to undo this event. Then
select the USE command to reexecute the
APVISE operation using (ASKUSER IN
CHECKMAIL) instead of ASKUSER. Figure 41
shows the display after the ADVISE operation
has been reexecuted.
t Advising is an Interlisp facility which lets the user
treat a function, or a particular call to a function, as a
black box, and make changes that affect it on entry or
exit, without having to be aware of the details of what
is inside the box. It is described in [feil]. Advising i is
often used for reconfiguring system programs, and also
for trying out changes to the user's programs, with
minimal investment in order to see how they work.
before going back and making the changes in some
more permanent fashion.

.;:, :' ... =,[: (. 1?
-r ~=II irNt"I E:IJ"~O'i ·!It t.t.n-1:~n02..::d, 3 .. S5pr·v1
:_J::,.o::t Fi E."" C' ·/I::,E -..,r; ti!.!ltIJr~]

i ~;.:,~:'~III'!.'I~~:~:·~'I~;I~[]· 4 10pr,1
.. :- ~ -: to, !"' ... It -,., '. t·.lo:'
:w:ro1!W!1i!il!1

~,~"~r t~~~~:~ :;~:j t~i;': :~r 8~;~.t~~~~A~\;~~~~i::. i~;'~:~~!-~~~t ;t~Ef~:~~:!F:;m is

; S~~~:.H~F':~XJ~:~~~~~:;:~~,t:i;d;: <~~~~;I~ot:~::~,~'o.":~e d·:.
~,::··:i:E! bnoj !"oi!'~ if ttl~t t"lli!lps. Tt,.30t Vv·.30'l ::.r 'j:..FiT,:i.Fi·::~lI::.T v.,.on't
-•. :o .. :~ 1:0 0::011 HElP::'V:: •. It tt,is do,",:!"- t,Qlp, y":'lJr HElP::.'(::' til€!:5 -!of€!
::., :,t'.:otd:.I clot.t.~r€!d ,~noj ;.o·C'1J stlc"Jloj ';lli!t n<;t\,\,' .:.noit.;"· from P.l:..FiG,

21-[r.·1.:oil fr-:.m Cl:..RO. 4· 10PM

,~.~~~:~:t~ I;~I~'~~I;,~:~~]~ r.,le.
I':~d(tlurtc,n.t'uqi
FIL~ :RE~.TE: -25-.~pr-77 16: 12:42
F·:': ·::r,1~
, ... r··J~· THIj\~·3"
ToITELr,,1~r,J'811RT.:'rJ.E.u'J. 1

2.2-ut·JD') .2'
L,:'':::'C'un.jor·Q.
23~.:od",·i.;".ti!(aI!!lEi :of::i!f (if !valuQ ,. 'N

: '~It']!oi!'t (' !~~-:~~.~-~~:~,~;,!f~~C~)~;~;~~:i'~,~~:'",nd~r)
·~1.~~)~.~~i ~.=-o:-.,~rOIJn':J · li!rt5trip~sJ

I ..2..l-Ur·.IQ') 23
.:.C :.E IJr.,jl)rQ,

Figure 40

25-U5E (A::'~ ...r::·Efi Ir·J CHEC~ M.~.IL) FOR AS~,USER IN 23
-.:~ U:,EFj-IfI-·:HEO r·.~.'::'.:l

2::·-,..

I ,344;000000000000
['.:.t.w: 2J JUr,1 ·19":"7 1602-PC.T
Fl"'orn:,::":::'.FiC'
SJt.j~:t: 1:'U·:·TlEr·IT
To:' TEITE_r·,/I.~.rJ

~ ~:!i;T~;:~(i:~i:i;~~~:i;5~~;~i~~i;~;~·,:;:::1.~,;,:.~~.,

Ij
: 111

: I

Figure 41

A Display Oriented Programmer's Assistant

42. I test out my change by sending myself a
test message, and answering No when asked
if I want to see it now. The caption on my
MESSAGES window is changed so that the
name of the sender of the message, in this
case me, appears in the right hand comer of
the caption, and the background of the
caption is changed to vertical stripes.

(;oIl.,FiC'. ~ 10~f'..1

. 1.:dJ':~TIErJTl
to !oioil It n.)w ~ tJI,

I bIJrt"rl.t:IIJI~ I
':'RE~.TEC! :2!'"':'~II-''' 1~,: 1:2:~:2

I j:':'M~
"AN'/THII\;')"
• TEITELMAtJ ·E;LlfoT.:·IHILi·). I
~~"IJtJ(JIJ 21
L'-:'.a[) ur,fjont
~3 .. o!ttJy'l~tiI(~.,.tf,liIr(i'!y'.)IlJ •• "J
t/",,,,,, ($.,t' ,I"l\J'~wZpIilO 'm .. u,'9oi1S

~:~$; ~(;:,~,~ '~: flt,~';,~,~;,~': ~~';~t!/;,~~~:~ ::~'J~ r)
A::'~ U:'ER
2~"ljr.jCtI:1 ,2:3
~C'VI::,E Yn,:Mr,tiI
~'-!."U::,E (.tr..::.1 U::.EA If·, ,::Hf:O:,1 ~ .. H~t~, F·:·F "'::,. U::,EI:j 11,1 ~~
"f,I Li::.ER-IN-·:HE'::1 '~~.L

;~'~F:~1:: i'/~~I~~ ~~'~ ~I{~' i ;",: "'~; ;;:''''
\I 'nt t" d,w it r,~VI ~ tJCI

~~~~~;i'e 
Hulpsys 
Mastlrscopa 
Ptottyprlnt 

Rutrus~"!...~_"... •• 

, ,t; 
: Read selections 

~--~mmmm~--~~~~~~ ~to . In)Qn "k 
. Appund ) 

! i~hr~~~ ~'IJt~~~~r:: :'I,.t;J,Ii,.:f,: Tr,i5 i3 ~ tit·': 

witli t~lI! flJnc \.liH.!og .. (:- fCI'- tl"'~): 

Figure 42 

Conclusions 

Delutu Itom 
I RoplacQ 

Move/a 5iblliit 
Movu/b 

29 

The system decribed in this paper has been in use by actual users other than the author only a few 
months. However, our conjectures about the usefulness of this kind of facility were if anything 
conservative. The ability to suspend an operation, perform other operations, and then return without 
loss of context is widely appreciated. The technique of using different windows for different tasks 
does make this switching of contexts easy and painless. Even when the user is not switching 
contexts, the use of multiple windows is extremely helpful. For example, a standard complaint with 
conventional display terminals is that material that the user wants to refer to repeatedly, e.g., a 
printout of some function, or a record of some complicated interaction, is displaced by subsequent, 
incidental interactions with the system. In this situation when using a hard copy terminal, the user 
simply tears off the portion he is interested in and saves it beside his keyboard. Being able to freeze 
a portion of the user's interactions in a separate window, such as the V{ORK AREA, while allowing 
subsequent interactions to scroll off the screen seems to combine SOlne of the best aspects of 
hardcopy and display terminals. 

Finally, users just seem to enjoy aesthetically the style of interacting with the system, such as using 
menus, the feedback via the prompt window and changing cursors, being able to scroll the windows 
back and forth, etc. We think this is an area that will see an increasing amount of activity in the 
future as the cost of bit map displays and the necessary computing power to maintain them 
continues to drop. 



30 A Display Oriented Programmer's Assistant 

REFERENCES 

[Bob] Bobrow, D. G., and Wegbreit B., "A Model and Stack Implementation for Multiple 
Environments," Communications of the ACM, Vol. 16, 10 October 1973. 

[Eng] English, W. K., Engelbart, D. C., and Bennan, M. L., "Display Selection Techniques for 
Text Manipulation," IEEE Transactions on Human Factors in Electronics, Vol. HFE-8, No. 
1, March 1967. 

[LRG] Learning Research Group, Personal Dynamic Media, Xerox Palo Alto Research Center, 
1976. Excerpts published in IEEE Computer Magazine, March 1977. 

[San] Sandewall, E, "Programming in an Interactive Environment: The Lisp Experience," 
Matematiska Institutionen, University of Linkoping, Sweden. (to be published in CACM). 

[Spr] Sproull, R. F., and Thomas, E. L., "A Network Graphics Protocol," Computer Graphics, 
SIGGRAPH Quarterly, Fall 1974. 

[Swi] Swinehart, D. C., "Copilot: A Multiple Process Approach to Interactive Programming 
Systems," Stanford Artificial Intelligence Laboratory Memo AIM-230, Stanford University, 
July 1974. 

[feil] Teitelman, W. "Toward a Programming Laboratorj," in Walker, D. (ed.) International Joint 
Conference on Artificial Intelligence, May 1969. 

[fei2] Teitelman, W. "Automated Programmering - The Programmer's Assistant," Proceedings of 
the Fall Joint Computer Conference, December 1972. 

[fei3] Teitelman, W. "CLISP - Conversational Lisp," Third International Joint Conference on 
Artificial Intelligence, August 1973. 

[fei4] Teitelman, W. et aI., Interlisp Reference 111anual, Dec. 1975, Xerox Palo Alto Research 
Center. 




