Palo Alto Research Center

- A Display Oriented
Programmer’s Assistant

By Warren Teitelman

XEROX




A Display Oriented Programmer’s Assistant

by Warren Teitelman

CSL-77-3 March 1977; Reprinted January 1981

/

Abstract: This paper continues and extends previous work by the author in developing
systems which provide the user with various forms of explicit and implicit assistance, and in
general cooperate with the user in the development of his programs. The system described
in this paper makes extensive use of a bit map display and pointing device (a mouse) to
significantly enrich the user's interactions with the system, and to provide capabilities not
possible with terminals that essentially emulate hard copy devices. For example, any text that
is displayed on the screen can be pointed at and treated as input, exactly as though it were
typed, i.e,, the user can say use this expression or that value, and then simply point. The
user views his programming environment through a collection of display windows, each of
which corresponds to a different task or context. The user can manipulate the Windows, or
the contents of a particular window, by a combination of keyboard inputs or pointing
operations. The technique of using different windows for different tasks makes it easy for the
user to manage several simultaneous tasks and contexts, e.g., defining programs, testing
pregrams, editing, asking the system for assistance, sending and receiving messages, etc.
and to switch back and forth between these tasks at his convenience.

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304






A Display Oriented Programmer’s Assistant 1

Introduction

Lisp systems have been used for highly interactive programming for more than a decade.¥ During
that period, much effort has been devoted to developing tools and techniques for providing powerful
interactive support to the programmer. The Interlisp programming system [Tei4] represents one of
the more successful projects aimed at developing a system which could be used by researchers in
computer science for performing: their day to day work, and could also serve as a testbed for
introducing and evaluating new idzas and techniques for providing sophisticated forms of
programmer assistance. Interlisp on the PDP-10 is currently used by programmers at over a dozen
ARPA network sites for doing research and development on advanced artificial intelligence projects
such as speech and language understanding, medical diagnosis, computer-aided instruction, automatic
programming, etc. Implementations of Interlisp on several other machines are currently planned or
in progress.

This paper describes a system written in Interlisp which extends the Interlisp user facilities to take
advantage of a display.f1 The paper is not an "idea" paper in the sense that Artificial Intelligence
papers usually are. Instead, this paper describes a working system which implements and integrates
a number of ideas and techniques previously reported in the Iliterature by several different
individuals, including the author. The idea of a display composed of multiple, overlapping regions
called "windows" is attributable to and an essential part of the Smalltalk programming system
designed and implemented by the Learning Research Group at Xerox Research Center [LRG]. In
particular, much of the way that windows are used -in the system described here was influenced by
the work of Dan Ingalls on the Smalltalk user icterface. The idea of using the display as a means
for allowing the user to retain comprehension of complex program environments, and to monitor
several simultaneous tasks, can be found in the work of Dan Swinchart [Swi]. The use of the
"mouse"” as a pointing device for selecting portions of a display goes back tc the early work on NLS
[Eng]. Finally, the techniques used for automatic error correction and the idea of having the user
interact with the system through an active intermediary which maintains a history of his session, both
of which appear in this paper, are parts of the standard Interlisp system [Teil][Tei2]. The work
reported in this paper is of interest primarily in how the realization of these various ideas in a single,
integrated, working system dramatically confinns their value.f {7

TAn excellent survey of the state of the art may be found in [San].

+ 1 The author would like to acknowledge and thank R. F. Sproull and J Strother Moore, who designed and implemented
critical support facilities without which this system would not have been possible, and whose ideas and intuitions provided
extremely valuable guidance and inspiration during the development of the system. The form and capabilities of some of
the display primitives in the current system were suggested by an earlier version of a display text facility for Interlisp
designed by Terry Winograd. Finally, all of the work described herein depends heavily on the leverage provided by the
Interlisp system itself, which is the result of the efforts of many individuals over a period of almost a decade, made
possible by continuing ARPA support over that period.

T TWhen I first began work in 1969 on what was to become DWIM, the automatic error correction facility of Interlisp,
by implementing a primitive spelling corrector which would automatically correct a certain class of user spelling errors, I
discussed this project at length with a colleague over a period of months. One day soon after this facility was finally
completed and installed in our Lisp system, this same colleague rushed to my office and in great excitement exclaimed
that the system had corrected an error. I was surprised at his énthusiasm, since we had been discussing this system for
months. He replied, “Yes, but it really did it!" The system described herein implements ideas that many of us have long
been saying would be a good thing to have. And they really are!



2 A Display Oriented Programmer’s Assistant

Qverview of the System

The system described in this paper is implemented on a version of Interlisp [Tei4] running on
MAXC, a computer at the Xerox Research Center in Palo Alto. This computer emulates a PDP-10,
and runs the Tenex operating system, so that from the standpoint of the user, the system he is using
is Interlisp-10. The raster-scan display used by the system described in this paper is maintained by a
separate 65K 16 bit word mini-computer. The minicomputer is linked to MAXC through an
internal network, and implements a graphics protocol similar to the Network Graphics Protocol
[Spr], but specialized for text and raster-scan images. All of the work described in this paper deals
with the "high end" of the system, ie., the user interface, and is written entirely in Interlisp.

The user communicates with the system using a standard typewriter-like keyboard. In addition, he
has available a pointing device commonly called a "mouse” [Eng] used for pointing at particular
locations on the screen. For those unfamiliar with this device, the mouse is a small object (about 3"
by 2" by 1") with three buttons on its top. The system gives the user continuous feedback as to
where it thinks the mouse is pointing by displaying a cursor on the screen. The user slides the
mouse around on his working surface (causing bearings or wheels on the bottom of the mouse to
rotate), and the system moves the cursor on the display. The user indicates that the mouse has
arrived at some desired location by pressing one of the three buttons on the top of the mouse. The
interpretation of the buttons depends on the particular program listening to the mouse. For
example, when the mouse is positioned over a piece of text, and one of its buttons pressed, the
corresponding text is "selected.” Such selections are indicated by inverting the text, i.e., displaying it
as white characters on a black background.

The user interacts with the system either by typing on the keyboard, or by pointing at commands or
expressions on the screen, or an asynchronous mixture of the two. In particular, any material that is
displayed on the screen can be selected and then treated as thought it were input, i.e., typed.

The ability to be able to select, ie., point at, material currently displayed and cause it to be treated as
input is extremely useful, and situations where such a facility can be used occur very often during the
course of an interactive session.

Why is such a facility useful? Because most interactions with a programming system are not
independent, i.e., each "event" bears some relationship to what transpired before, usually to a fairly
recent event. Being able to point at (portions of) these events effectively gives the user the power of
pronoun reference, i.e., the user can.say use this expression or that value, and then simply point.
This drastically reduces the amount of typing the user has to do in many situations, and results in a
considerable increase in the effective "bandwidth" of the user’s communication with his
programming environment.

The user views his environment through a display consisting of several rectangular display
"windows". Windows can be, and frequently are, overlapped on the screen. In this case, windows
that are "underneath” can be brought up on top and vice versa. The resulting configuration
considerably increases the user’s effective working space, and also contributes to the illusion that the
user is viewing a desk top containing a number of sheets of paper which the user can manipulate in
various ways.

One facility provided by these windows that is not available with sheets of paper is the ability to
scroll the window forward or backward to view material previously, but not currently, visible in the
window. Thus a single window can be used to view and manipulate a body of text that would
require many sheets of paper. '



A Display Oriented Programmer’s Assistant 3

Each window corresponds to a different task or aspect of the user’s environment. For example,
there is a TYPESCRIPT window, which contains the transcript of the user’s interactions with the Lisp
interpreter through the programmer’s assistant, a WORK AREA window which is used for editing and
prettyprinting, a HISTORY window, a BACKTRACE window, a MESSAGE window, etc. Using different
windows for different tasks

..makes it easy for the user 1o manage several simultaneous tasks and contexts, switching back and
Jorth between them at his convenience.

Being able to switch back and forth between tasks results in a relaxed and easy style of operating
more similar to the way people tend to work in the absence of restrictions. To use a programming
metaphor, people operate somewhat like a collection of coroutines corresponding to tasks in various
states of completion. These coroutines are continually being activated by internally and externally
generated interrupts, and then suspended when higher priority interrupts arrive, e.g., a phone call
that interrupts a meeting, a quick question by a colleague that interrupts a phone call, etc. Our
previous experience with Interlisp supports the contention that it is of great value to the user to be
able to switch back and forth quickly between related tasks. The system described in this paper
makes this especially convenient, as is illustrated in the sample session presented in the body of the

paper.

One technique heavily employed throughout the system is the use of menus. A menu is a type of
window that causes a specified operation to be performed when a selection made in that window.
Menus scrve a number of important functions. They make it easy for the user to specify an
operation without having to type. They act as a prompt for the user by providing him with a
repertoire of commands from which to choose. For example, often a user will not remember the
name of a command, or may not even be aware of the existence of a command.

However, most importantly, menus greatly facilitate context switching. As with most systems, the
interpretation of the user’s keystrokes (with the exception of interrupt characters which usually have
a globally defined effect) depends on the state of the system. For example, when addressing the
Lisp interpreter, the characters that the user types are used to construct Lisp expressions which are
then evaluated. When using the editor, the characters are inserted in the indicated expression, etc.
The important point is that once the user starts typing, he normally has to complete the operation or
abort it. However, by selecting a menu command using the mouse, even in the midst of typing, the
user can temporarily suspend the operation he is performing, go off and do something else, and then
return and continue with his current context. This is also illustrated in the sample session below.

A Sample Session with the System

Since so much of the utility of the system described in this paper rest on visual effects, it is difficult
to transmit the feel and smoothness of the system through words. Therefore, the form chosen for
presenting the system in this paper is to take the reader through a sample session with the system,
using frequent “snapshots” of the display as a substitute for the actual display itself. This session is
divided into two parts. The first part is a "toy” session, in that the user is not performing any
serious work. It is included only to introduce the salient features of the system. The second part of
the session shows some more sophisticated use of these features in the context of an actual working
session involving finding and fixing bugs, testing programs, sending and receiving messages, etc.

For readers not familiar with Lisp, please ignore Lisp related details (which we have tried to
minimize). The important point is the way the system allows the user to switch back and forth
.between secveral tasks and contexts. Such a facility would be useful in any programming
environment.



4 A Display Oriented Programmer’s Assistant

Sample Session—Part 1

g edafineg{fact (n) (It nIs greaterr than O
1. Figure 1 shows the initial configuration of g

the screen. Three windows are displayed: o
the TYPESCRIPT window, which records the
user’s interactions with the programmer’s
assistant and the Lisp interpreter; the PROMPT
window, which is the black region without a
caption at the top of the screen used for
prompting the user; and a menu, which is the
smaller window with caption MENUS to the
right of the TYPESCRIPT window. A menu is
just like any other window, except that
whenever a selection is made in a menu, a
specified operation is also performed. This
particular menu is a menu of menus, hence its
caption. If the user selects one of its
commands, each of which is the name of a
menu, the corresponding menu will be
displayed at the location he indicates. He can
then select, and thereby perform, commands
on that menu. The -crosshairs shape in the
lower -ight hand portion of the TYPESCRIPT
window is the cursor, and indicates the
current position of the mouse.

2,

Figure 1

In Figure 1, I have just typed in a Lisp definition for the function FACT (factorial). Lisp has given
me the error message "incorrect defining form" (displayed in bold face to set it off). The system
displays a blinking caret} to indicate where the next character that I type, or the system prints, will
be displayed. In Figure 1, the caret now appears immediately following the "2¢", where 2 is the
event number for my next interaction with the programmer’s assistant, and « is the "ready"
character.

'f‘In these figures, the caret is always shown in its "on" position.



A Display Oriented Programmer’s Assistant 5

2. I don’t understand what caused this error,
so I type ? to the p.a. (programmer’s
assistant), requesting it to supply additional
explanatory information. The p.a. looks at
the previous event to determine the nature of
the error. In this case, using built-in
information about the arguments to DEFINEQ,
the p.a. tells me that the problem is that
DEFINEQ encountered an atom where it
expected a list, ie., a left parentheses is
missing from in front of the word "fact".}
Since the programmer’s assistant is
maintaining a history of my interactions with
the system, I don’t have to retype the
DEFINEQ expression. Instead, I can edit what
I have already typed, and simply insert the
missing left parenthesis. The EDIT menu will
allow me to perform various editing
operations using the mouse for pointing and
the keyboard, where necessary, for supplying
text. In Figure 2, I have already moved the
mouse so that the cursor is positioned over
the EDIT command on the MENUS menu, in
preparation for "bringing up"” the EDIT menu.

TYPESCRIPT 2 NN, 2:43P

1-detinaq(fact (n) (if n is greaterr than 0

than n*(facct n ;n
incorrect defining form
ACT

2-7 Break ;
becacte DEFINEQ raguiras that ach of its arguments be a Operations
ist_Eut in DEFINEQ(FAST (N) (IF N IS GREATERR THAN O

THEN N* (FACCT N-1))), this is not the case.
3va

Figure 2

TIf the p.a. did not know anything about this particular error, it would refer to the index of the on-line Interlisp
Reference Manual and present the corresponding text associated with the error message by way of explanation. The user
can also augment the built-in information that the p.a. has about system functions by informing the p.a. about the
requirements of his own functions. He can then use the ? command to explain errors in his own programs.



3. I press a button on the mouse to select
the EDIT command in the MENUS menu. The
system indicates the selection by displaying
EDIT as white on black. The PROMPT window
tells me to use the left button on the mouse
to indicate where I want the center of the
(EDIT) menu to appear. The cursor is
changed to an icon of a menu with a cross in
its center to suggest the operation that is
pending. At this point, I don’t have to
complete this operation. I can type in other
expressions to the programmer’s assistant,
perform other menu operations, etc. The
process which is waiting for me to supply the
indicated information is simply a co-routine
which has been suspended.f However, since
I want to fix up the DEFINEQ expression
before going on to anything else, I move the
cursor to the position at which I want the
EDIT menu to appear, which is below the
MENUS menu and to the right of the
TYPESCRIPT window, .as shown in Figure 3.

4, 1 press the left button on the mouse,
causing the EDIT menu to appear at the
location of the cursor. In this position, the
EDIT menu slightly overlaps . both the
TYPESCRIPT window and the MENUS menu, so
the system automatically adjusts the EDIT
menu by sliding it off these windows to its
location as shown in Figure 4.f7

FSee description of the "Spaghetti Stack” facility in
[Bob] and [Teid].

T11 could force the EDIT menu to overlap the
TYPESCRIPT window by positioning it exactly using
one of the commands on the WINDOW menu.

However, since in this case I only positioned the menu’

approximately, the system tries to "Do What I Mean",
a philosophy of system design we have tried to follow
throughout the Interlisp system [Teil]..

B0 VVPLOCRIPT 777700 .. 2

A Display Oriented Programmer’s Assistant

Use the left button on the mouse to indicate where you want the center ot tw menu 1o be.

R TI

+detinag(tact (n) (I n Is greatarr than
hen n*(facct n-1

correct dafining form

ACT

Window
.+ .| Document

acausa DEFINEQ requiras that aach of its arguments be &
ist but in DEFINEQ(FACT (N{ (IF NS GREATERR THAN O
| THEN N* (FACCT N=-1))), this is not the case.

LN

Figure 3

TYPESCRIPT 2NN %, 2:46PM &
1woutinagfyact (r) (if n is greaterr than O
than n*(f3zet A= 1
incorrect defining form
FACT

2«7

;acsu..'a DEFINEQ raquiras that each of its arguments be a
lgt but in DEFINEQ(FACT (N) (IF N IS GREATERR THAN O
THEN N* (FACCT N=1))), this is not tha case.
3-a

Figure 4



A Display Oriented Programmer’s Assistant

5. Now I am ready to edit. I select the left
parenthesis in the first line of the TYPESCRIPT
window, and then select the INSERT command
on the EDIT menu. The line of text in the
TYPESCRIPT window is broken just before the
selection (the left parenthesis), and the caret
is moved to that location. The PROMPT
window instructs me to input material.
Anything I type will appear at the iocation
indicated by the caret.

6. 1 type in a single left parenthesis, and
terminate the INSERT operation. The line of
text I have.been editing is rejoined, and the
caret returned to the appropriate location at
the end of the TYPESCRIPT window. I now
want to cause the corrected text to be re-input
in order to perform my original operation,
i.e., define my function. Therefore, I select
the text by first selecting the "d" in "defineq"
and then extending this selection through the
final "]". Then, using the same method as
previously shown for bringing up the EDIT
menu, I bring up the WINDOW menu in
order to obtain the command for inputting
selected material.

Input materiak

TYPES\-HIF'T PN 2:ATPM S

1¢dafin

ftact (n) (Ir n s grestarr tnan 0
then n*(facct n

incorrect daﬁnlng orm

FACT

2¢?

because DEFINEQ raquires that each of its arguments be a

Ils( hu( ln DEFINEQ(FACT (N) (IF N IS GREATERR THAN O
* (FACCT N-1))), this is not the case.

36

Window
:-{ Document

Fig1_1re 5

B
Use the left button on the mouse to indicate where you want the center of the menu to
. T s

d TYPESCRIPT

22
ecause DEFINEQ requires that each of its arguments be a
st but in DEFINEQ(FACT (N) (IF N IS GREATERR THAN O

] THEN N* (FACCT N-1))), this is not the case.

3en

I 2:
{iKice fineq((fact (n) Gr A ¥s greaterr than 0 .
gflthen n*(racct n- 1]
incorrect defining form ;
| FACT

MENUS

Window
Document
Edit
Look
History

Break
Operations

Figure 6




7. The WINDOW menu contains the
command "READ SELECTIONS" which is the
command that I rhink does what I want. I
therefore select this command, but instead of
clicking the mouse button, I hold the mouse
button down. This instructs the system to tell
me what it would do if this operation were
actually performed. Here, the PROMPT
window informs me that the "READ
SELECTIONS" command causes the selected
material to be treated as input. Figure 7
shows the display as of this point. The cursor
has been changed to an arrow to indicate that
a selection is about to be made. The material
that would be selected, namely the "READ
SELECTIONS" command, is underscored. If I
want to perform this selection, I simply
release the mouse button. Otherwise, I can
move the mouse to another location and
release it there in order to perform a selection
at the new location, or move it off of the
menu entirely to abort the selection.

8. I release the mouse button, and the
selected material is treated exactly as though I
had typed it, i.e., becomes event number 3
and causes the function FACT to be defined.
As mentioned before, this ability of being
able to select, i.e., point at, material currently
displayed and cause it to be treated as input
is extremely useful, and the situations where
such a facility can be used occur very often
during the course of an interactive session.

. -
2

A Display Oriented Programmer’s Assistant

Causes selected material 10 be trpated as input.

acaLse OEFNEQ raquiras that each of its argumants be a
ﬁ!; b:n in DEFINEQ(F‘AOT (N) (IF N IS GREATERA THAN O
THEN N* (FACCT N-=1))), this is not the case.

3

*a

ove
Mova next to

Grow/shrink
Put on top
Put on bottom

xin
Maka invisible

Figixre 7

TYPESCRIPT 2%, 2:A9P
[RS3efineq((fact (n) (if nis greaterr than 0

then n*(facct n-1

ncorrect defining form

FACT

2?7 .
because DEFINEQ requires that each of its arguments be a
list but in DEFINEQ(FQACT (N) (F N IS GREATERA THAN O
THEN N* (FACCT N-1))), this is not tha case.
3edefineq({fact (n) (it n is greaterr than 0

then n*(tacct n-1)

(FACT)

a¢,

Mova next to
Grow/shrink
Put on top
Fut on bottom

Kin
Make Invisible

Figure 8



A Display Oriénted Programmer’s Assistant 9

9. I now try out my function by typing

FACT(3). At this point, CLISP [Te13] is 19vaed T T

to translate the if-then expression in the R A M| widow
- definition of FACT into an equivalent Lisp Frggeet ety fom s

construct.  CLISP runs into a problem 5o cernea s ot ancnor s e s || B
. regarding the word GREATERR, and DWIM ggiin:{‘f"tfﬁf‘“Hn;“’t“"é"‘:*‘ RTAne b ;

offers a spelling correction. I type Y (the e e ne ]

spelling corrector supplies the "es"), and the ST ey o amearen v

correction is made. I had also misspelled the | NON-NUMERIC ARG

recursive call to FACT in the body of the Rt e

definition of FACT. Since the programmer’s e

assistant "noticed" this new function, ‘ie., T AEAX, COMMANDS ——— | Move naxt 10
FACT, when I first defined it, DWIM is able to e ok e P S x: LR
suggest the correction of FACCT to FACT, T Kok tnvisibla

which I also confirm. Figure 9 shows the
display after these two corrections have been
made. At this point, the definition of FACT
has been translated to Lisp successfully, at
least from a syntactic standpoint, and an error
is encountered’ which DWIM cannot handle.
The error message NON-NUMERIC ARG NIL is
printed, and Interlisp goes into a break. A
menu ~f break commands automatically
appears just below the TYPESCRIPT window.

Figure 9

At this point the user is once again addressing the Lisp interpreter through the programmer’s
assisiant. However, the context of his computation has been preserved and is available so that the
user can, for example, examine the values of locally bound variables, see the control structure that
lead to this point in the computation, etc., and if he wishes, fix or bypass the problem and continue
the computation. This capability is most important for interactive debugging [Teil]. In this
particular case, the arithmetic operation MULTIPLY (as implemented by the Lisp function ITIMES) is
waiting for a number, ie., the value of the break will be used as a multiplicand. In effect, the
system has called the user as a subroutine to supply this number.



10 A Display Oriented Programmer’s Assistant

10. I select the BTV command, requesting a
backtrace of function names along with the
names and values of the bound variables for
each corresponding function call. The
backtrace is printed in a separate BACKTRACE
window, which is automatically displayed
when the backtrace command is invoked.
The BACKTRACE window is shown at the
right of the screen in Figure 10. Note that it
overlaps the three menus. However, I can
still perform operations using those menus by
pointing at the part of the menu that is
visible. I can select elements in the
BACKTRACE window to focus the attention of
the break package on a particular frame, e.g.,
to evaluate an expression in a different
context, to cause the computation to revert
back to that point, etc. The backtrace shows
me that I am under my function FACT, and
that it made three recursive calls before the
error, with N being decremented by 1 each
call, so it looks like FACT is recursing
properly.

11. T still don’t understand why the error
occurred, so I try typing the ? command
again. In this case, the programmer’s
assistant tells me that the problem is that one
of the operands to * (the MULTIPLY operator)
was (FACT N-1) and that the value of (FACT N-
1) is NIL when N=1. In other words, when
FACT is called with N=0, it returns NIL. The
p.a. is able to generate this explanation
because (1) it knows that all of the arguments
to * must be numbers, and (2) it can examine
the state of the computation on the stack. In
this case, it found that the second operand to
ITIMES was NIL, which is not a number, and
that the expression that produced this
particular value was (FACT N-1) in the
expression (N*(FACT N-1)) which is contained
in the function FACT, and that at the time this
call occurred, the value of N was 1.

[Eierineq((ract (M (Tais
then n*(facct n-1
incorrect defining form
FACT

=2

Than n'\recct n=-1

.(ﬁ
Bl
Fa
NON-NUMERIC ARG
NI

in TMES

rhrchet

F2Ty

S A

BREAK COMMANDS

TYPESCRIPT 2,

becaLre DETNEQ raguiras that aach of Its arguments ba &
list tut in CEFINEQ(FACT (N) (IF N 1S GREATERR THAN O
THEM N* (FACCT N- 1)), this is not the case.
3-ditinage(“act (n; (it nis greatarr than 0

£h g FACT) -> GREATER ? Yas
IST {in PACT} =5 FACT 2 Yas

?- args evat vajue ok go retum
bt €2 ub * revert in? edit ppw

*{ Read seld
“{ Move

1 Move ne:
Grow/shr|
Put on (d
Put on bg

TYPESCRIPT

then n*(facct n-1]
(FACT)
Jetact(3)

NON-NUMERIC ARG
2] in ITIMES
| (brokan)
| 58TV

il 62

7:pp tact
FACT

BREAK COMMANDS

because DEFINEQ requires that 2ach of its arguments be 3 gy _Backtrace
list but in DEFINEQ(FACT (N) (IF N 15 GREATEAR THAN 0
THEN N* (FACCT N-1))), this is not the case

Jedefineq((fact (ny (if n is greaterr than O Look TIMES

GREATERR {in FACT} -> "HEATEH ?.Yes
FACCT {in FACT} -> FACT ? Ve

7| because * requires that aach of its argumanxs be ? CrTLE
a number but in (N* (FACT N-1)) {in
tha value of (FACT N-1) is NIL when Ns= 1

.| 7= args eval value ok go return
bt B ub ¢ revert in? edit ppw

Figure 10

2:51PM

1ino

KR
Tatt
ono

uu
Eu ¢

K]
TalT

ACTY,

Read selq
Move
Move ne:
Grow/shr}

Make Inv

ACT

[LAMBOA (N}

(1 N 12 grester than @
tihen R*(FACT N-1])

Figure 11



A Display Oriented Programmer’s Assistant 11

I now realize that. the problem is simply that I neglected to specify the value of FACT for N=0.F
Therefore, I prettyprint the definition of FACT in preparation for editing it. Figure 11 shows the
definition of FACT prettyprinted in my WORK AREA window, which automatically appeared when
prettyprint was called. Note that the definition of FACT now shows the two misspelled words,
GREATERR and FACCT, spelled correctly.

12. T select the right square bracket in the R

definition of FACT in the WORK AREA T

window, and then select the INSERT comand BB BT Ea LT (I RS S TERA TN ©

on the EDIT menu. The EDIT menu it ot o G e o 6

aqtomatlcally moves so as to be close to the SR erens e L
window that I am editing. I make the FRZ3T {in FACTY -3 FAGT 7 Va3 on
necessary correction by typing ") ELSE 1", NON-NUMERIC ARG act
ie, if N is not greater than 0, FACT should "o
return 1. Figure 12 shows the display just Y ‘ L
before I complete the INSERT. Note that the R S A e :
caret appears in the WORK AREA window HEEa ’

where I am typing. The cursor is in the R BAEAK COMMANDS

upper right hand portion of the screen at the T et Sl e
location of the INSERT command before the R

EDIT menu moved to be close to the WORK
AREA.

(FaCT
[LAMBDA (H)
(if N Is greater than 8
cthen N*(FACT N-1) else 1,
{m

FIn Interlisp, if none of the predicates of an if-then
expression evaluate true, the value of the expression
defaults to NIL.

Figure 12



12

13. I complete the INSERT, and then select
the DONE command on the EDIT menu to
indicate that I am finished editing this
expression. The PROMPT window reports that
the definition of FACT has been changed.
Note that I did not have to finish editing
FACT at this point: I could have typed in
expressions to be evaluated, performed other
menu operations, etc., even edited other
expressions, before selecting the DONE
command for this expression. This is another
example of being able to suspend different
tasks in varying states of completion and go
back to them at some later point.

14. I now test out my change by typing
fact(2), which works correctly. Now I want to
continue with the computation. Note that I
am still in the original break  that followed
the error. The arithmetic operation * (i.e.,
the Lisp function ITIMES) is still waiting for a
number to be used as a multiplicand. * I
therefore select the RETURN command on the
BREAK menu. The PROMPT window tells me
to INPUT EXPRESSION and the caret moves to
the PROMPT window. I type 1 as the value to
be returned from this error break. Figure 14
shows the display 2t this point just after I
type 1, which is echoed (displayed) in the
PROMPT window.

Note: in actual practice, for a computation as
trivial as FACT(3), I would probably simply
reset (abort back to the top) and reexecute
FACT(3) rather than bothering to continue the
computation, since so little has been invested
in getting to this point. However,

being able to continue a computation following
an error is especially useful when an error
occurs following a significant amount of
computation, or when the computation has left
things in an "unclean state” as a result of
global side effects.  Such a facility is also
essential for good interactive debugging.

A Display Oriented Programmer’s Assistant

VPLHCTIN
because DEFINEQ requiras that each of Its arguments ba &
llst but [n DEFINEQ(FACT (N) (If N IS GREATERR THAN O
THEN N* (FACCT N=1))), this is not the case.
Qedefinag((tact (n) (it'n Is greatsrr than O
then n*(facct n=1
S‘FACT)

~ucz§s)
GREATERR {In FACT} -> GREATER ? Yes
FACCT {In FACT} ) FACT 7 vas

NON-NUMERIC ARG
i
In ITIMES
gbrchan)
BTV
6:?
bacausa * requlras that @ach of its arguments be

a number but In (N* (FACT N=1)) {in FACT},
the valua of (FAGT N-1) is NIL when Ne 1

7:pp fact
el
Bin

BREAK COMMANDS
7= args eval valua ok go retum
bt btv ub * revert in? edit ppw

FACT
[LAMBOA (N)
(71F N ts greater than

:{ Raad seld

13
Insert f“
Appand  [¢d
Delete !,
Replace |

Move/a py|
Move/b |

Move/r |
=>

i
P
Done@ I

]
then Ne(FACT N-1fECETETENY))

Figure 13

FAGT changed
Input expression: 1,

TYPESCRIPT .

THEN N* (F8CCT N=1))). this is not the case.
3edefinag((fact (n) (if nis greaterr than 0
then n*(fasct n=1]

(FACT)

Jefacs(d)

GREATERR {in FACT} -> GREATER ? Yes
FAZCT {in FACT} => FACT 7 Yes

2:57PM

NON-NUMERIC ARG
NIt
in T MES

ibrebe
56TV
B
becaLre * reguiras that @ach of its arguments ba |
3 numter but in (1% (FACT N-1)) {in FAGT},

the value of (FACT N-1) is tiL when N=1

TEp tacs
Fi

| ?= args eval value ok go [[X{Ts(]
| bt bty ub * revert in? edit ppw

| (Fact
A [LaMBOA (N)
(1F N ig greater than

2
thea N (FACT N-1)ERSEE))

MEN 1=

ITIMES
COND

N1
FACT
cono

N2
FACT
COND
*ENVY

N3
Fact
werope*

Figure 14




A Display Oriented Programmer’s Assistant 13

15. I complete typing the expression for the
RETURN command, thereby causing 1 to be
returned as the value of the break, which
causes (1 * 1) to be computed and returned
as the value of FACT(1), which then causes (2
* 1) to be computed, etc.,, and finally the
original computation of FACT(3) finishes and
returns 6 as its value as shown in Figure 15,
in the next to the bottom line of the
TYPESCRIPT window. The BREAK menu has
disappeared since we are no longer in a
break.

I now want to try FACT on some other values,
so I bring up the HISTORY menu, and select
the USE command, which is a command to
the programmer’s assistant to reexecute a
previous event, or events, with new values.
The PROMPT window instructs me to select
the targets and to input the objects to be
substituted. I select the "3" in FACT(3) (near
the top of the TYPESCRIPT window) and input
"4 5 10" (echoed in the PROMPT window),
i.e., I am requesting that FACT(4), FACT(5) and
FACT(10) be computed.

16. The resulting history operation is
equivalent to typing USE 4 5 10 FOR 3 IN 4,
which the p.a. prints in the TYPESCRIPT
window to show me what is happening. This
USE command now causes three computations
to be performed, corresponding to the result
of substituting 4 for 3 in FACT(3), the result of
substituting 5 for 3 in FACT(3), and the result
of _substituting 10 for 3 in FACT(3). The
values produced by these three computations,
24, 120, and 3628800, are printed in the
TYPESCRIPT window, as shown in Figure 16.
Finally, I ask for a replay of the history of
my session, by selecting the ?? command in
the HISTORY menu. The HISTORY window is
brought up, and the history of my session, in
reverse chronological order, is printed in this
window, as shown in Figure 16.F

T4 is the event number of the event corresponding to
FACT(3).

tthe targets, input the shiects 1o be substituted

m:r)
&fl

GREATERA {In FACT) > GREATER ? Yas
FRGeT (In ACT)} =3 FACT 7 ..

NON-NUMERIC ARG

NIL

in ITIMES

gbrnknn)

bnuun * raquiras that each of its ar umen)u ba

a numbar but in (N* (FACT N-1)) {in
the valua ot (FACT N=1) is NiL. whan N=1

FA T
g:rac((z)

S:RETURN 1
‘:ﬁEAK’ -1

HISTORY COMMANDS

Redo (TAJFIx Undo 77

[LﬂlbDA (N)
(1f N 2 greater than

then N*(FACT N-i] )

Figure 15

because * requires that aach of its ari umanu ba
a number but in (N* (FACT N-1)) {in FACT},

tha value of (FAGT N=1) Is NIiL when N=1

7p ract

8 laet 2

3 (2)

S:RETURN 1

BHEAK =1

1D*USE 45 10 FOR3IN 4 FETOPE*
24

120

3628800

11227

HISTORY COMMANL
Rado Use Fix Undo §

USE 4 6 18 FOR 3 IN 4
«FACT(4)

«FACT(5)
120

«FACT(18)
3628800
RETURN 1
‘BREAK' = 1
FACT(2)

iPP FACT
FACT

]
:BYV

CT(3)
&ﬁﬁmJERR {in FACT} -> GREATER

Figure 16



14 A Display Oriented Programmer’s Assistant

This completes the "toy" session designed to illustrate some of the basic features of the system.
Note that at this point the display contains nine different windows. Five of these windows are
control windows (menus). The other four windows describe various processes. Note that the
windows have not been a burden on the user: he does not "manage" the windows, although he
could perform explicit operations on them such as changing their position, or size, or shape, or
editing their contents as we have seen. The feeling to the user is that the windows more or less
manage themselves, and this contributes greatly to the smoothness of the system.

Example Session—Part 2

However, to really appreciate the power of the system, one must see how the various facilities, and
the user, interact in a real working situation. The following session, which is a continuation of the:
above session, illustrates this. In addition to the prettyprinting, editing, break, and history facilities
illustrated earlier, several other important Interlisp facilities are introduced during the course of the
session below, such as Helpsys, which interfaces with the on-line Interlisp Reference Manual to allow
the user to ask questions and see explanatory material from the manual, and Masterscope, a
sophisticated interactive program for analyzing and cross referencing user programs. Masterscope
then allows the user to interrogate the resulting data base both with respect to the control structure
of his programs, i.e., who calls/is called by whom, and to their data structure, i.e., where variables
are bound, set, or referenced, or which functions use particular record declarations. These facilities
are necessarily used in a fairly simple and straightforward fashion in the session below. However, the
important point to observe is how the display together with multiple windows enables the user to
call up the various packages quickly and easily and then to dismiss them when he is finished, all
with minimal interference with his context, i.e., the user’s context, not that of his program.

Receiving and sending messages from other users play an important part in this session, as they do
in real life applications. The system described in this paper makes it especially easy to process
messages because the reading and sending of messages is implemented within the Interlisp system,
instead of in a separate subsystem. Thus, the user does not have to give up his context in order to
process his mail. Furthermore, since the message facilities are now part of the Lisp environment and
vice versa, the user can obtain material from messages that he receives and insert it directly into his
own programs or evaluate the corresponding expressions by using the READ SELECTIONS command
described earlier. Conversely, the user can insert material from his own environment, or from
messages that he has received since they are also a part of his environment, into messages that are to
be sent. Both of these facilities are extremely useful.

Note: the session presented below is "canned"” in that the events described did not actually occur so
fortuitously in a single session, nor in such a nice sequence for the purposes of demonstrating the
system. However, the session is genuine in that the figures that accompany the text are in fact actual
snapshots of the display taken in sequence through a session in which the indicated operations were
performed. And, in fact, the events described were culled from actual sessions over the course of
several months, i.e., I really did find the bugs, make the changes, and receive and send the messages
depicted below."

FIn addition to sceing a replay of his history, the user can also scroll the (contents of the) TYPESCRIPT window
backwards in time to see the transcript of earlier interactions with the system. The difference between the history and the
TYPESCRIPT is that the TYPESCRIPT contains a record of all characters input or output, e.g., includes messages printed
by the system and by the user's programs. The history contains a subset of these characters, organized according to
events. For example, 6, the value returned by FACT(3), actually appears 18 lines below FACT(3) in the TYPESCRIPT
window, but in the HISTORY window, it would be shown as the value of event number 4, regardless of the fact that
events 5 thru 9 occurred between the time that event 4 was. begun and the time it completed.



A Display Oriented Programmer’s Assistant 15

17. T observe an anomaly in my history - S SEEEEEETEIN.
window as shown in Figure 16: a sequence :
of bells (displayed as little boxes) in the i MUMERIG AR4

middle of my history. When the history was
actually printed, the system paused at this
point and seemed to be waiting for me to
type something. I decide to ask a colleague
about this. I therefore bring up the
OPERATIONS menu and select the SNDMSG
command.  SNDMSG brings up its own

window |
Document *
Edit

Look
History

in ITIMES

(broken)
58TV
6:?
becauss * requires that each of its argumenu be
a number but in (N* (FACT N=-1)) {in FACT},
the valye of (FACT N=1)is NIL whan N=1

wil| 7:pp_tact

oo FACT

3:fact(2)

‘3:RETURN 1
‘EREAK' = 1

Break
Operations

Refresh screen

)
10+«USE 4 5 10 FOR 3 IN 4
24

120 H
window, and asks me who the message is to. e R
I respond "Masintr” (misspelled—his name is HSToRY CommANDS [T
actually Masinter). SNDMSG then asks whether B e
I want any "carbon copies" sent to other Movers ™,
recipients, and I simply type a carriage return, 5
since 1 don’t. SNDMSG then asks what the L —
subject of the message is, and I type "bells". : f I

Figure 17 shows the display at this point. The , e o
caret is in the SNDMSG window, immediately . seen e,
following the word "bells".§

Figure 17

18. I complete typing the message, and
terminate with a control-Z to indicate that I

. Masinter — ok -

TYPESCRIPT 3:06PM R
want the message sent.Tf SNDMSG does not | BON-NOMERIC ARG :
recognize the recipient, "Masintr”, and calls e
the spelling corrector, which returns the fer y b

H ” H " bezalse * raguiras that each of its arguments be
correct spelling, “"Masinter".{ 1} The T BT R R S,
message header is fixed accordingly, and the Loppne [ neaaman
system informs me in the PROMPT window X | Wtliscope

CEELR | Prettyprint
that the message has been sent Fecen o Rene sersen|

TIIE A S 10 FOR 3 -

HISTORY COMMANDS S5 ppesesy

“tAlthough this SNDMSG looks like the SNDMSG e [ Redo Use Fix Undo 77 | | Appena

facility provided by Tenex, it is entirely a part of and , S D &Z”JZE
written in the Interlisp system, e ove

Move/r
->

7)), snowsa )
T 7The Interlisp version of SNDMSG adheres to the | | semoeersecsceccene

To (7 for halp): Masinter

Tenex convention for sending messages. 1t (2 for neipy
' Subject: balls
\§ " - " Messags (7 for help)
17 TBoth SNDMSG and READMAIL are “watching" il
“‘hat I am dOing’ and build a liS[ Of Lhose users Lhat I When | print out my history, the system prints a sequ:nce of
ewchange messages with. When 1 misspelled Masintr, A AR L

the spelling corrector was called with this list, and was warren
able to perform the correction. Had it failed, I would
have been informed and allowed to intervene, as shown
later in the scssion.

Figure 18



16

19. At this point, 1 am informed in the
TYPESCRIPT window by the programmer’s
assistant that there is [Mail from System), i.e.
some mail has arrived for me. I had
previously instructed the p.a. to periodically
check whether any new mail had arrived, and
to so inform me. Since I am not doing
anything at this point except weiting for
Masinter to respond to my message, [ elect to
see my mail, type Yes to the question “"Want
to see it now 7", and the message is displayed
in the MESSAGES window. The message is
from a user - Interlisp at the Information
Sciences Institute in Los Angeles with a
question about Interlisp.§

20. I decide to respond to the message from
Goldman right now, and select the SNDMSG
ccmmand in the OPERATIONS menu. The
SNDMSG window comes back on top, and I
type my response. 1 finish the message
without noticing that I had inadvertently
typed the subject of the message in the cc
(carbon copies) field, and the begining of the
message in the subject ficld. SNDMSG was
unable to interpret the word "Subst" as a
message recipient, and informs me in the
PROMPT window that the message wasn’t sent.

TBoth Xerox PARC and the Information Sciences
Institute are hosts on the ARPA network. The mail
facilities supported by the various hosts of the network
enable users at any site to exchange messages with
users at any other site. Such “electronic” mail has
become the preferred form of communication for
questions, bug reports, suggestions, etc.

Masinter -+ ok

TYPESCRIPT
in ITIMES

(broken)
58TV
6:7

7:pp fact
FACT
S:fact(2)
2

:RETURN 1
REAK" = 1

e
10¢USE 4 5 10 FOR 3 IN 4
23

120
3628800
11622
11¢[Mail from System, 3:07PM]
Want to see it now ? Yes
~

because * requires that each of its arguments te
a number but in (N* (FACT N-1)) {in FACT},
the value of (FACT N-1) is NIL when Na1

A Display Oriented Programmer’s Assistant

3:08FM SEE

Readmait
Sndmsg
Helpsys
Masterscope
Prettyprint
Refresh screen

Read sel

Meail

HISTORY COMMANDS

Redo Use Fix Undo ??

2 %22
FDT,3€5,000000000000
d at 23 JUN 1977 1507-FOT

15 there a function anywhere in lisp which substitutes x for v i 2,
actally modifying 2 (like DSUBST) and actually substituting » instes3

of copies of x {like SUBPAIR) ?'

Masinter - ok

You may edit the message

-

ecause *

7:pp fact
FACT
B:fact(2)

5] 9:RETURN 1
'BREAK' = 1

8
10«USE 4 5 10 FOR 3 IN 4
24

A 120
628800
1122
114[Mail from System, 3:07FPM]
Wwant to see it now ? Yes
~

requires that each of its arquments be
] a number but in (N* (FACT MN-1)) {in FACT},
the value of (FACT N~1) is NIL when N=1

Figure 19

The selected recipients are not recognized - message not sent

Readmail
Sndmsg

| Helpsys
Masterscope
Prettyprint
Refresh screen

23-JUN-77 15—?
Mail from USC

A Tor TEITECMS
| e GoLDMAR

Varren

Redo Use Fix Undo 22 | %

To (7 far help): Geldman@ISIB

co (2 for help): HIEER

Subject: Nail,

HISTORY COMMANDS £

Message (7 for help) .
Thare i3 no function which substitutes « itself,
since this could be used to produce circulsr list structures.

Figure 20




A Display Oriented Programmer’s Assistant

21. Using the EDIT menu, I edit the message,
and move "subst" to the subject field, and
"Neil," into the body of the message. Then I
select the DONE command. The PROMPT
window informs me the message has been
sent.f Note that I can send a message,
change a part of it, and resend it, e.g., to
different recipients, again and again.

22. The p.a. now tells me that I have more
mail, which I read. It is the response from
Masinter. He explains that the bells in my
history window are a Tenex feature, and
offers to write a Lisp function for me which
will turn this Tenex feature off for my
specialized application.

fThe operation to be performed when the DONE
command is selected is specified by the program that
originally prints the corresponding material. In the case
of SNDMSG, the operation is to send the message. In
the case of prettyprint (as illustrated in Figure 13), the
operation is to redefine the corresponding function.

7 Gutgm uw;li‘;lll TS

in TrEs

(oreran)
BTV
8

bacause * raguiras that eaach of ity ar umaTn)u ba

s numsar but [n (N* (FACT N-1)) {In FAC
e valua 0 (FACT N=-1) is NiL when Ne1

i1 Window
Documant
1 Edit
Look
History

Braak’
{ Oparatlons

{tA2i from Systam, 3:07FM)
T TC fas 1T N0V 7 Yes

HISTORY COMMANI)!

Aa
SUESY To (? for help) Foldman@iSiB
e (2 for halp):
¢ Subject: supst

4 mmga (2 for help):
tueil,

There is no function which substitutes x itself,

warren

Tpp fect
LEalT
i AR CH #{ Readmall
#1 8ndmsg

agromy |
| ¢ p Mu;tars:opu
1 5- i1 Prattyprint
‘2|: JIE 4 £ UFJHQING i1 Rafrash screan .

1 T

2£233C0

1

zince this could be used to produca circular iist structuras.

17

Figure 21

- Gomunelsm — ok’

. TYFESCHIPT 3:17PM

sch of its arguments b
ST - 4y: {in FACTY,
T td= 1) is MIL when H=1

5
10-UZE 4 £ 10 FOR 210 4

Tor  TEITELMAN at FaRS
cer EOLOMAR

T7 A5 15 36-FO T, 52, 200000005000

Fram: MAZINTER
T Teitalman

: cblem is that TENE« thinks a screen full

| of material has besn p ithout the user typing 3nything.
|1t therefore print: tha 4 waits for the user to

“ type something to ach that he has read the screen
Since ¥ou are mana roown windows, vou probablv shaid
inseruct Tenax nat r this service. [ Could writa

vou & funetion to do this if vou like

Window
Document
Edit

Look

History
Break
Operations

Readmail |
Sndmsg

Helpsys
Masterscope *
Prettyprint

Refresh screen

JUN 1977 15813-PDT @

Figure 22



18 A Display Oriented Programmer’s Assistant

23. Since this function basically sets the page
height, and I already have a function for
setting the page width, I ask Masinter whether
he can simply combine the two operations in
a single function. I want to include the
definition of the function that sets the page
width in the message I send to him. So I
type the first part of the message as shown,
and then I select the PRETTYPRINT command
of the OPERATIONS menu. The PROMPT
window asks me to supply the name of the
function(s) 1 want prettyprinted. Figure 23
shows the display as of this point. Note that
the caret is' in the PROMPT window.

24, 1 type in the name of my function,
SETPAGEWIDTH. The WORK AREA window,
which had become covered by the HISTORY,
SNDMSG, and MESSAGES window, reappears
on top, and the definition of SETPAGEWIDTH
is prettyprinted.} I will include this
definition in the message which I am
composing by using the READ SELECTIONS
command in the WINDOW menu. I select the
definition, and move the mouse to the READ
SELECTIONS command, as shown in Figure
24,

TIn this case, the function SETPAGEWIDTH was
compiled, and its symbolic definition not loaded into
my system. PRETTYPRINT therefore asked the
Interlisp file package where the symbolic definition for
that function was located, and then loaded it in. All of
this happens automatically without any need for user
intervention.

Goldman@iSB ~ ok
\nput name of function(s) : .

Window
Document
Edit

togachoof itx arguments be 1 Look
FaoT mi= 1y {in FASTY, P History
‘ 5 MIL whan M= 27| Break

Operations

OPERATIONS
71 readmail
% Sndmsg
Helpsys
Masterscope

Prettyprint
.

ar func tion for setting the
ing the two. Here iz

Figure 23

Goldman@ISIB -~ ok .
Input name of function(s) : setpagewidth

88 TYPESCRIPT 3:24PM

(broken)
BTV

2
because * requires that each of its arguments be
3 number but in (N* (FAST M- 1)) {in FACT},
tha value of (FACT H=1) iz MIL when N=1

Z:pp fact

F&CT

g:fact(2)
2

Operations
TG
OPERATIONS

9RETURN 1 Readmail
Sndm s

'BREAK' = 1

Helpsys
Masterscope
Prettyprint
Refresh screen

Read selectionsg
Move

Move next to
Grow/shrink
Put on top
Put on bottom

6
10+USE 4 5 10 FOR G 1M 4
23

120
a

| from System, 3:07FM)
wWant to see it now 7 es

[Mail from System,
Want 1o see it no

HISTORY COMMANDS
Fix Un

messages

R —— —————
1 e FOLDMAR
: O

Is there a funcl ---=--] VN0, WORK AREA 77,
| actustly modity To (2

of copies of « |
it el

Kill )
Make Invisible

-- (FacT

23-JUN=-77 15{ Subjec (LAMRDA (N)

+{ Date: 23 JUN (1f N s greater than @

From: MASINTE| Messa chen N*(FACT N-1) ELEE L))

To: Teitelmar

Larry, . i
Warren, Toading from (TEITELMANY SURFORT .. 227

: someti

The protlem is } page \;]

of matarial has| the ful

#1 It tharafora pri (JSYS 143 64 .

:f type somathing) o (LOGOR (LLSH WIDTH 18)

Since you are (LOGAND -33292289

instruct Tenax JSYS.71 64 NIL NIL 2

you 3 function

(SETPAGEYIDTH
[LAMBOA (WIOTH)

Figure 24



A Display Oriented Programmer’s Assistant 19

mput name of function(s) : setpagewidth

25. 1 select the READ SELECTIONS command,
and the effect is the same as though I had
typed in the selected material: my SNDMSG

window comes back on top, and the Ao SR e
definition for SETPAGEWIDTH is inserted into pep RTTIT e e LA
the message, as shown in Figure 25. I g T AL
complete the message by asking Masinter
about a totally different matter, which is why
the mail check routine tells me I have mail
from SYSTEM, rather than the name of the S :
~sender. R i Niaad selections

Mova next to
Grow/shrink
] Put on top
Pul on bottom

Ltresany
5= 5

Window
Document
Edit

ueisLTe * raguiras that asch of its ar

gumonzs be

=1 Readmall
1 Sndmsg
i1 Halpsys
Masterscopa
| Prettyprint
| Pefresh screen N

Mak. Invisible

Iubject: setting paga height
| Massage (7 tor napy:

Ay,
&

im@ ayo you wrote me a similar function for wwng the
th™ Mayvbe we could combing tha two. Here is
ion you gave me then:

SETRAGEWIDTH

. [LAMEDA (WIDTH)

Th& protlure is {J5¢35 143 64

24 matens Fag (LoGe 3R (LL"H WIDTH 18)
X AND -38292233

(JSYS 71 64 NIL NIL 2])

“x the way, how come tha mail chieck routing tells me that | havae
-rml fram SYSTEM when once it was from you and once from
aalgman BIZIB. 1:n't it supposed to tell ma the nama of

r-\a saneer?

Warren

Figure 25

This casual exchanging of messages back and forth is an important part of the way that many of us
use computers today. Twenty or so of my colleagues are using the same time sharing system as I am,
not to mention the much greater number of users on other machines on the ARPA network, and we
exchange messages frequently. Thus it is of great value to me to be able to switch contexts from
debugging a program to sending or receiving mail with a minimum amount of overhead. In this
case, it was particularly important to be able to point at a piece of my programming environment,
i.e. the definition of a function, and insert it directly into a message. The same facility would be
useful for example in reporting a bug, where I might want to include a sequence of interactions with
the system in my message. The inverse operation, of pointing ct a piece of a message I receive and
installing it in my programming environment, is also very useful, as we will see in the next
interaction.



20 A Display Oriented Programmer’s Assistant

26. The p.a. now tells me I have more mail.
It is the reply from Masinter containing the
definition for the function SETPAGE. I select
the definition, move the mouse to the READ
SELECTIONS command in the WINDOW menu,
and ' fo :

27. select the READ SELECTIONS command
thereby defining SETPAGE, as shown in the
TYPESCRIPT window in Figure 27. I now use
SETPAGE to set my page. heigﬁt, and then
select the 7? command in the HISTORY menu
to see if the bells are printed. They aren’t:
this time the entire history is printed without
-any pause. (In Figure 27, the HISTORY
window shows the end of the history, i.e., the
-beginning of the session where I defined
FACT.)

TYPESCRIPT
6:2

because * requires that each of its arguments be Window

a number but in (N* (FACT N- |)L {in FACT}, H ‘E):i‘t:umn‘
the value of (FACT N-1) is NI when Na1
pp fac .

Operations

TG
BREAK' = 1 _OPERATIONS ..
10«USE 4 5 1D FOR 3 IN 4 Reamnail'
24

Sndmsg
120 Helpsys
3628800 Masterscope
11672 Prettyprint
- 11¢[Mail trom system, 3:07PM] Refresh screen|

want to see it now ? Yas

[Mail from System, 3:16PM]

Want to see it now ? Yes

| [Mail from System, 3:3aPM)
Want to see it now ? Yes

~

Read selections
ove

"HISTORY. COMMANDS | Move next to
Redo Use Fix Undo 27 Grow/shrink
‘ Put on top

Put on bottom

Kill
Make Invisible

23-JUN-77 15:34:06-FDT, 1533;000000000000
Date: 23 JUN 1977 1530-FDT

From: MASINTER

To:  Teitelman

"TLAMBDA {WIDTH HEIGHT: W
(PROG:((MODE (JSYS 100G NILNIL 2)))
o T - (*'Gat current JFN mode word for:

TTY) - S +
: BAND WIDTH (SETQ MODE (LOGOR®
OGAND 777600777777Q MODE] :
L - g Mask in new-width bits.11-17) "
[AND HEIGHT. (SETQ MODE (LOGOI HEIGHT 31Q). .
. {LOGAND.740177777777Q MODE] F - .
y N S (r.Mask in new hty bits

T.PAF!' ets naw mode word) -,

About the “Mail from SYSTEM":
The program for checking your mail file simply prints

Figure 26

TYPESCRIPT
o

Window
Document
Edit
;: 2 1 Look
from System, . | nistory
T see it now Yes E reak
from System, 3:33PM] - Operations
to see it now ? Yas .
NEG (SETPAGE (LAMBDA (WIDTH HEIGHT) (PROG & S D
((MSDE (JSYS 71 54 NIL NIL 2))) (* Get current 82 OPERATIONS
JFN mede word for TTY) (AND WIDTH (SETQ MODE : "
{LOSOR (LLSH WIDTH 18) (LOGAND -33292289 MODE)))) ‘] Readmail
L% Mask in new th birs 11-17) (AND HEIGHT Sndmsg
R (LLSH HEIGHT 25) (LOGAND Helpsys
iDEY) (* Mask in new height, Masterscope
143 64 MODE) (* STPAR sets i] Prettyprint
Refresh screen

Read selections
Move

Move next to
Grow/shrink
Put on top
Put on bottom

Kilt
Make Invisible

77 15:33.06-PDT,1635;000000000000
Jun 1277 1530-P0OT
SINTEFR

SETPAGE . GREATERR. (1n
[LAMBDA (WIDTHIEF¥IS A
(ProG (oo (MR

Y BRI "1OH-HUMERIC ARG
: I
.. tano wio [

5 N 5
[Co il 3. <CEFINED((FACT (W) (COND ((ISREATERP M @) (ITIMES
rano seic iR SR
{

- (LOGAND 740 1)
2 :
a-

1. QOEFINEN(FACT (M) (IF N 13 GREATERR THAN @ THEN
Y (FRCCT N-13))

ncorrect defining form

FALT

0

10). itwi s
2{JSY8 217

Apout tre "Mail fro
The program for ch

Figure 27



A Display Oriented Programmer’s Assistant 21

Let us pause now and review the sequence of operations commencing with noticing the problem and

culminating in its solution:

1. Inoticed a problem,
sent a message,
received an explanation,

NownhwN

fixed my problem,

sent back a reply containing a piece of one of my programs,
received a message containing a program which I could use to fix the problem,
installed the program in my environment by pointing at it, and

This particular problem admittedly was a trivial one, and could easily have been ignored or tolerated
by the user. The important point here is that the configuration of the system makes it so easy for the
user lo attack and solve such problems that he is willing to do so. The leverage that the system
provides the user is even more valuable when the user is attacking conceptually difficult problems.

28. I use the PUT ON TOP command of the
WINDOW menu to bring the message window
back on tp to read the rest of the message
from Masinter. Since the message is too long
to fit in the window at one time, I scroll the
contents of the window to see the rest of the
message by placing the mouse in an
imaginary bar to the left of the window and
pressing the left button (for scrolling up— the
right button is used for scrolling down). The
line opposite the mouse is then scrolled to the
top of the window. Masinter explains that
the mail checker I am using simply checks
the last user to write on my message file. If
my message file is busy, or the mail is coming
from over the ARPA network, as was the case
with the message from Goldman, then the
"user” that actually writes on my message file
is, in fact, the system. He suggests that if I
want to bother, I can iind out the real name
of the sender by actually looking in -the
message file at the message itself. Masinter
says he has a function called GETMAILPOS
which will return the position of the last
message in the file.

I decide to make this change, so I type
"LOAD(" to the programmer’s assistant (as
shown in the TYPESCRIPT window), and then
select the name of the file in the message (in
order to use the READ SELECTIONS
command).

co

39 72 10C)

2il fram S ystem, 3:07PM]
ow ? Yes
stem, 2:16PM]

t now

TPAGE (LAMSDA (WIDTH HEIGHT) (PROG
37184 NIL NIL 2))) (* Get current
3 werd for TT¥) (AND WIDTH (SETG M
A LLSH WOTH 18) (LOGAND -3 292259 MODE))))
n pits 11=17) (AND HE
R (LLSH HEIGHT 25) (LOC.‘AND
EN)) (* Mask in naw haight,
*0) (.3v3 143 64 MODE) (* STPAR sats
Sa woard)iny)
5E)

Window
Document

[
r.. [ HEIGHT (SETQ MODE (LOGOR (LLEH HEIGHT 31Q)
LaaenD 740|777777T7QHO

R 2170 1200 MODE)

tre Msil from SYSTEM™

cr chetxnyg your faail fila simpty prints

sorething on the file, If your mail fila is open

reading your mail, the mail is queued, so that when
~ritten inta your mail file, it is in fact the

2ing the writing. Snmlarly it the mail is from s
tork $t¢, tis appended to your mail filg by the

* m3il servar The only guarantead way to find out tha real name
nidar is to look in your mail file itsalf.

r 2ppication; 'va ertractad a function calle

v messs 4% it your message file. From thera you can
@ namg £f tna sender, the subject, anything you wanted.

[} HISTORY COMMANDS

"' Redo Use Fix Undo 27

Move next to
Grow/shrink

Mask in new width bits 11-17)

Mask in new height, bits

(* STPAR sets new mode word)

) which gives (ha byte position

Figure 28



22 A Display Oriented Programmer’s Assistant

29. I select the READ SELECTIONS command,
and the file is loaded, thereby defining the
function GETMAILPOS. Now I need to find
out where to make the change to inform me
of the real identity of the sender. I therefore
use the Masterscope command on the
OPERATIONS menu to call Masterscope. My
interactions with Masterscope are shown in
the MASTERSCOPE window at the bottom of
the screen in Figure 29. I ask Masterscope
the names of all of the functions called by

SHECKM.QIL. Masterscope  obtains  and
analyzes” the source definition for
CHECKMAIL. I notice the function

INFORMAIL among the names of the functions
galleq by CHECKMAIL. INFORMAIL looks like
it might be the function I want. I select
INFORMAIL and

30. prettyprint it, and see that INFORMAIL is
indeed the function that prints the [Mail
from --] message, and so is the place to make
my modification. I use the INSERT command
on the EDIT menu and begin making the
change. Figure 30 shows the definition of
INFORMAIL with the text  "(FILESEARCH"
inserted.

TYPESCRIPT 3:45PM H

[Mail from System, 3:16PM]
Want to see it now ? Yes
{[Mail from System, 3:34PM)]

ant to see it now ? Yes
(DEFINEQ (SETPAGE (LAMBDA (WIDTH HEIGHT) (PROG
((MODE (JSYS 71 64 NIL NIL 2))) (* Get current
JFN mode word for TTY) (AND WIDTH (SETQ MODE
(LOGOR (LLSH WIDTH 18) (LOGAND -33292289 MODE))))
(* Mask in new width bits 11-17) (AND HEIGHT
(SETQ MODE (LOGOR (LLSH HEIGHT 25) (LOGAND

)) (* Mask in new height,

bits 4-10) (J5YS 143 64 MODE) (* STPAR Sets
i new mode word)))))

(SETPAGE)
A 12«

(satpaga 72 100)
NIL

13¢77
13«10ad(<MASINTER>GE TMAILPOS]
FILE CREATED 23~JUN-77 15:29:08
{GETMAILPOS)
(MASINTER>GETMAILPOS.;1

Window

Operations

Readmail
Sndmsg
Helpsys
Masterscope
Prettyprint ©
Refresh screen R

| 1a¢

(LOGAND 777600777777Q MOUE]
-

Mask in new width bits 11-17)
AND HEIGHT (SETQ MODE (LOGOR {LLSH HEIGHT 212;

(
(LOGAND 740177777777Q MODE]
(* Mask in new height, tits

2-10)
(J5Y5 217G 100Q MODE)

Masterscopa 25-MAR=-77... Type HELP(Cr) for command summnary
16+, WHO IS CALLED BY CHECKMAIL
reading from (TEITELMAN>PACKAGES.;482

DO
Read selections
ove

i
i
Move next to |
Grow/shrink |
Put on top

Put on bottom

Kitl
Make Invisible

(* STPAR s2ts naw mode warei

(NOT IGREATERP IDATE RETURN SMASHNUMBERBOX IPLUS GET'AIND< W HULL
CHECKMAIL1 OPENP DISFCLOSEF ZEROP USERNAME STRECQUAL SHOULD™ CHECK Wil
CHATPRINT RESETLST GETMAILPOSO INFORMAILY POSITICT READH&1.
ASKUSER SETHOURGLASS WAITING SETWINDOWSPECS LIST IQUOTIENT)

15+, ok

Figure 29

Input name of function(s) : INFORMAIL
Input materiat

SE (L.
S 71464 NIL NIL 2))) (* Get current
de werd for TTY) (AND WIDTH (SETQ MODE
LS+ WiDTH 18) (LOGAND -33292289 MODE))))
* in naw width bits 11-17) (AND HEIGHT
ETQ MODE (LOGOR (LLSH HEIGHT 25) (LOGAND
423 8€5 MODE)Y))) (* Mask in new height,
= {-9YS 143 64 MODE) (* STPAR sets
nade woard)))))
PaE)

33% 72 '00)

233(<MAS MITERYSETMAILPOS]
EATED 23~JUN-77 15:29:08
ALFODS

massages
777600777777Q MODE]

(* Mask in new width bits 11] Done
SOB (115 2

Inle) H HE1GH
/////’///'/////% WORK AREA
(SETPAGEVIDTH
[LAMBOR (WIDTH)
p (J5YS 143 64
2 25-MAR-T77...

LED BY O
1 A TEITELMANP,

ZHECYMEIL1 GPENP DISPCL
SHeTRRNT FESETLST GET

ZSPUZER SETHD SETH (1nFoRmAIL

ESVUZER SETHOURGLASS W 1 awgoe (FL)

== s (PRINL *[M2i1 from * FL)

FL)
(PRINL *]
TR

71 Sndmsg
1 Helpsys

(LOUGOR (LLSH WIDTH 18}
(LOBAND -33292289
(JZY¥S 71 64 NIL NIL 2])

.07 IGREATERP IDATE RET 10a04ng from C<TEITELMAN>PACKAGES. ;482

filesearch .
[PRINL (SETQ SENDER (L-CASE SENDER T))
FL

RINL *, " FL)
(PRINL (GDATE LASTKNOWNMAIL -30309144576
~2:2984" )

Window
Document
Edit

Look
History

Readmail

Masterscope
Prettyprint
Refresh screen

Figure 30



A Display Oriented Programmer’s Assistant

31. At this point, I realize that I don’t
remember how to use the function
FILESEARCH, so, while in the middle of editing
I use the OPERATIONS menu to call HELPSYS,
to interrogate the on-line Interlisp Reference
Manual. The interactions with HELPSYS are
shown in the HELPSYS window at the bottom
of the screen in Figure 31. I first ask
HELPSYS about FILESEARCH, and it tells me
that there is no such subject in the manual, so
I try the phrase "searching files." This causes
HELPSYS to give me an explanation of the
function FILEPOS, which is the name of the
function I want.§

32. 1 exit HELPSYS and the WORK AREA
window comes back on top, and I am right
back in the middle of my edit. I type a
sufficient number of backspaces to erase the
"SEARCH" in FILESEARCH, and then type POS
and continue with my INSERT. The text from
the manual about FILEPOS told me that its
first argument is the target of the search, in
my case the string "From: " in the message.
To guarantee that I have the right string, I
scroll the MESSAGES window backwards until
the beginning of a message is visible, then
select this string from an actual message, and
then use the READ SELECTIONS command to
insert it into my edit.

TIf that had failed, I would have asked HELPSYS
about FILES, which would have given me a list of all
words or topics beginning with the letters FILE, just as
though I had looked in the index of the manual . itself,

71 151te1) me about filesearch

2| filepos[x;file;start;end;skip;tail

Iupul Nama of tunction(s) : INFORMAIL

H llmut materialk
PESCRIPT 3.51P E

Mall from Sysum 371E.PM] Window
ant to ses It now ? Yas
: [NMAlI from systam, 3:34PM] Documant
| Want to sea it now ? Vi
(DEFINEQ (SETPAGE (LAMBDA (WIDTH HEIGHT) (PROG
¢ MODE (JSYS 71 64 NL NI 2)) ( * Gat currant

N mode word for TTY g MOD!
1 (LOGOH SLLSH WIDTH 16) (LOGAND 33292259 MODE))))
* Mask In naw width bits 11=17) (AND
(SETQ MODE (LOGOR (LLSH HEIGHT 285) (LOGANO
-4261412865 MODE)))) (* Mask in naw haight,
bits 4-10) (JSYS 143 64 MOCE) (* STPAR sats
naw moda word)))))
(SETP GE)

(satpAga 72 100)

OPERATIONS
Raadmlll

13'??
13¢10ad(C(MASINTER>GETMAILPOS
B F%éTCHEATED 23-JUN-77 15:23:01
s

(MASINTEﬁ)GETMAILF’\.ﬁ 1

14

i HISTORY COMMANDS

| Rado Usa Fix Undo ??

. messages
(LOGAND 7726007777774 MODE]
M&S‘ m naw Wldth h\(!
JAND HEISHT (o 5
(LOGANG 7401777222%

4-10) (SETPAGEVIDTH
(Jsys 2170 1q [LaMBDA (WIDTHY

Type 727 <CR)> for assistance
FILESEARCH--unavajlable subject.
16!te11 me about searching files
(SEARCHING FILES, FILEPOS, from section 14)
11

Sear:nes l'le for x & la strpos (Section 1@).

11
filepos was written by J. ¥. Goodwin.
Search begins at  start (or if start=NIL, the

current position of file pointer), and Qgoes to
end (or 1f endsNIL, to the end of f1le).

23

Figure 31

2. Input name of function(s) : INFORMAIL
¢ ‘iput materiat

TYPESCRIRT " -
Window
Document

o S :3
22 it now 7 Yes
b s(E ETPAGE (LAMBDA (WIDTH HEIGHT) (PROG
JSYS 71 64 NIL NIL 2))) (YSQ(lSE:unen(
word for TTY) (AND WID
LLSH WIDTH 18))((LOGAND -33292289 MODE))))
n new width bits 11-17) (AND HEIGHT
TQ MODE (LOGOR (LLSH HEIGHT 25) (LOGAND
514 128€5 MODE)))) (* Mask in new haight, Fraadmail
-|D) (JSYS 143 €4 MODE) (* STPAR sats g Sndmsg
) <1 Helpsys
| Masterscope
1 Prettyprint

5 <MASNTER>GE TMAILPOS]
FEATE? 23-JUN-=77 15:29.08

Read selections
Move

Mova next to
Grow/shrink
Put on top

Nt on battom

HISTORY COMMANDS
| Redo Use Fix Undo 27

Makn Invisibla

Refresh screen| |

' El;uvelr v

20
UN 1377 1530 FDT
ASINTER
Teitalman

~WORK AREA
(DEFNED
(SETPAGEVIDTH
[L&MBDA (WIDTH)
(Jsvs 143 €4

(LOBOR (LLSH W1DTH 18)

(LOGAND -33292283

(J8YS 71 64 NIL NIL 2])

(SETPAGE

about fileses
-unavailable
sbout rearchy

Jeading from <TEITELMAN>PACKAGES.;482

(SEERCHING FILES, FILEP 9 g

(INFORMAIL
[LAMBDA (FL

“Alerocl2;f11e;start;end )
k nnu [Maﬂ from * FL)

f11e
ﬂFle (“ETQ SENDER (L -CASE SENDER T))
L

f-lenss was wratten (PRIN FL)
(PR]NI (GOM’E LASTKNOYNMAIL -34309144576
“2:29AK")

FL)
(PRIN® *])
FL))

Figure 32




24 A Display Oriented Programmer’s Assistant

33. I complete my INSERT and select the
DONE command. The PROMPT window says
that the function INFORMAIL has been
changed. Basically, the change I made to
INFORMAIL says to begin searching the
mailfile as of the location specified by

Masinter’s function GETMAILPOS, looking for | gy
the string "From: ", and then to read a nisgs 15550 Masiireope
single word from the file and set SENDER to : ' T
this word. 1 test out my change by typing
INFORMAIL(T). The last time I got mail
INFORMAIL said [Mail from System]. This
time it tells, me Mail from Masinter, so the
change worked.

| Readmail

CLOBIR (LLZH 4
(LOGAHD
i

Bout f11esead
#3113

259
ble 184 NIL BIL 2])

Toading from - TEITELMRM>PACRAGES. (482

(INFORMAIL
[LAMBDS (FL)
iFRINL “[M31) from " FL)

2 2

[SENDER 3
TREINY (b1 SENQER (L-DnZE SENDER T))
FL

|
i cpEINL M, U F
4
1

QLT EY IR EE L T EEL R
*ZiZAANT)

. L
PREINL P GORTE

FL)

Figure 33

Let us again review the sequence of operations:

I observed some undesirable behaviour in a program I was using;

sent a message inquiring about the behaviour;

got a reply back suggesting the nature of the problem, how it might be changed, and a
program which would help in making the change;

used Masterscope to find out what to change

began making the change and then in the middle,

used Helpsys to tell me how to make the change,

completed the change, and tested it successfully.

Novwk WP

.

TThe extra arguments to FILEPOS specify that the search is to stop afzer the string, not at its beginning asis the default case.



A Display Oriented Programmer’s Assistant

34, The p.a. (via INFORMAIL) now tells me
that I have mail from Burton, which I agree
to see, However, | realize that I would like
INFORMAIL to say I had mail from Burton at
BBN-TENEXD, just as it does in the message
file, rather than just Burton.

35. The problem is that the Interlisp function
READ, which I wused in the change to
INFORMAIL, just returns the = next
expression/word in the file, which in this case
was simply Burton. I should have used the
function RSTRING, which will read everything
up to the next carriage return. Therefore, 1
simply bring my WORK AREA window back
on top, and edit the definition of INFORMAIL,
replacing the call to READ by an appropriate
call to RSTRING. I then select the DONE
command. The PROMPT window tells me me
that INFORMAIL has been changed (again). I
test out the change by typing INFORMAIL(T).
This time INFORMAIL tells me [ have mail
from Burton at bbn-tenexd, exactly as I
planned.

©INLOIMAIL chamjed

GH WIDTH 18) (Lo3AND =

Mw width bits 11=17) (A

CE (LCAOA (LLSH HEIGHT 28) (¥
ﬁoulzeu MODE)))) (¢ Mash In new helgnt,
bits 4=10) (JBYS 143 &4 Me o:) (* STPAM Jauts
new made word)))))
('!TFA

7 (!upa,n 72 100)

|3.n
i 13=198d(e MA‘INYEFU.-ETMAILF'CS]e
| FILE CREATED 29-JUN=77 15.29:0
| (GETMAILPGS)
MAS!NTER";ETMAILP 5.1

! !B'urwmmsw‘
[”'"’ trom Masintar, 3:30PM]

15~[MMI from Burton, 3:55FM]
Want to sew it now T oves

HISTORY COMMANDS

_Hedo Use Fix Undo 7?

23-JUN-77 15:£5:45-F0T,743;000000000000
KMail trom BEN-TENEXC revd 38 23 JUN 1277 1555-FOT
Cate: 23 JUN 1877 1860-EDT

From: BURTON a1 BEN-TENEXD

Gubject: READVIZE non 'v!!}fi

To: TEITELM PLF

cer HARTLEY, LEWIS

IL] 1oad. 1t ends in an 12 wait sfter the READYVISE
! for the file has besn relessed,
dick

i VFILECREATED "25-4pr=77 1€:12:42" 5

changes tor FICDME)

{ACVISE CLACH)
FINT "ANYTHING"}1)

!| the tonowing file (created in the ctvious way using mabafile) desre
12 avaled and the JFH

CPHIECFOG 1 311

25

window
Dacummt

Opoullam

Readmall

Bndmsg
Hulpsys ’
Mastarscope
Prattyprint
Raefresh screen

.

Read selections

Dalete 'Y
Replace ‘F om
Move/a |ip)
Move/b Ml

S TN I L)

Figure 34

~teng d, 3 SEPK)

HISTORY COMMANDS £
| Redo Use Fix Unds

messages
SNDMSG

(SETPAGEIlDYH
L ..m"m PWIDTHY
IYE 143 £4

| (INFORMAIL
st rrends {LANEDA (FL)
(PETNL ~[fa1) from -
FILEPOS “From:
""""" MIL HIL
E manter

F3
FEINL %, "

ZaAM")

FL)

w1 Snomsg

5 Prettyprint

PLOGOR (LLEH WIDTH 18)
{LOGAND -33292289
(JZ¥S 71 &4 WIL NIL 2])

o 1ssding from ¢ TEITELMANYPACKAGES. ;332

" HAILFILE (GETMAILROI)
Ty

SENCEFR --p]ﬂnﬂ MAILFILE GISPLAVEOTEL)
\‘Flrli VSETI) SENDER (L-CAZE SENDER T))

VPRI rP.ME L.. TruuwnulL -33399144576

Window
-} Document

Readmail

Helpsys
Masterscope

Refresh screen

Figure 35



2% A Display Oriented Programmer’s Assistant

INFORMAIL changed
Input materiat:

36. As long as I am at it, I decide I would
also like INFORMAIL to tell me the subject of

the message, so I edit INFORMAIL to search 3 oy B4 HGEE)  STEAR sats Windone |
the mailfile for the string "Subject:", which I | ' Lo
-again obtain from a message itself via the N Broak”

MAZINTEFSETMAILFGS ) Operations
TED ~MN=77 150903
Q%

READ SELECTIONS command. Figure 36 shows

: 3 H GETMAILPCS ;1
the edit as of this point. Hen Reamai
S 13-infarmaine . Sndmsg
[RARI from fAs zinter, Z:30PE] Helpsys ’
| Masterscope
Prettyprint

Refresh screen’

Read selections

1
l
|

{
"

z
3
2
s

Move next to
Grow/shrink
Put on top
Put on bottom
Kill
Make Invisible

(INFORNAIL
[LAPEDE (FL,
VEEINL "y

VFILE

1 b
G MAILFI_E 1P,
TEMIER JL-TalE T

SENDEF. w ZTF
iFREINL

haut Tearchy

FLa
1FRINL *, » FL.
(FRINL iG0ATE L&

(SEXRCHING FILEZ, FILEP

Falepos[-if1Tesrtsry, end

Falepor wat wratren |

1710k

37. T complete the edit, which basically says
that if the string "Subject:" is found in the
message, INFORMAIL should print it and the

INFORMAIL changed

rest of the line that follows it. I select the i
DONE Command, and the PROMPT window CHASINTER GETMAILPOS.i 1

2} 1B8+informail(t)
1 [Mail from Masinter, 3:30PM]
1

reports that INFORMAIL has been changed. I
test out my change, this time by selecting the
previous event in the TYPESCRIPT window
and then using the REDO command on the
HISTORY menu. As shown in Figure 37,
INFORMAIL tells me the full name of the

sender, plus the subject.

Readmail
Sndmsg
Helpsys
Masterscope
Prettyprint
Refresh screen V.

19¢[Mail from Burton, 3:56PM)
Want to see it now ? Yes

Fmﬂft)
IMail from Burton at bbn-tenexd, 3:55PM)

20¢REDO 19

Mail from Eurton at bbn-tenexd, 3:55PM
ubject: READVISE non feature]

]

suvjec 222
(INFORMAIL

[L&MRDA (FL) A .

(FEINL "[M311 from * FU) o

(FILEPOZ “From: " MRILFILE (GETMEILFOS) |
N MIL T

151tell me ahout f1lesear CENDER - (boT M~

FILESEARCH--unavailsble (PRINL ZEMDER (L-C:

16!te11 me about searchi

)
(PEINL ", * FL
(PRINL (GOATE

NOWNMATL -3330%144576
(SEARCHING FILES, FILEP AN- )

[
filepos[x;file;start;end 1F (FILEPOS "Subject: * MAILFILE
§ THEN (TERPRI 1)
PRIN1 (RSTRING MAILFILE]|
D1SPLAYRDIBL)
1 .

filepos was written (PRINL *)
" FL])

17tok

Figure 37



A Display Oriented Programmer’s Assistant 27

38. 1 now read the message from Burton,
which describes a short file that he says will

The selected nalerhl w-ll be wnuun on a new venum or if nolhmg is selected, ll-e entirar .,
doGumunt. will be written. ipat flame of file:

TYPESCRIPT -

not load correctly. In order to check this out, . widow

; 13+10ad(«MASINTEA)GETMAILPOS'
I need to make such a file and load it and see | | nie SR T s TR 4Ess
why it fails. I bring up the DOCUMENT menu ‘.'*;g*f'““” Reranros.s
and select the WRITE command. The PROMPT : We.?ﬁ;“;m‘:’m 5:50Pm) . _
window tells me that I should select the |zt e suron, /ai:sm] Rasamai
material I want written onto the file, and asks BT o somarars, 252w I n

1 : Prettyprint

me to supply the name of the file. I select the D o is Rervern vereen |
corresponding portion of my message. Figure £l e Burton ot con-tanase, 355010

./ubJu t: READWVISE rion {ntura]
3

38 shows the display at this point.

21+

2 DOCUMENT; ¢ "HISTORY COMMANDS

:{ Redo Use Fix Undo ??

Append
Delete
feplace

Kill
Refresh

Create
Bold/Unbold
Italic/Unitalic
Change Font
Wnite fie-- .

" v

the following fila (creatad in the obvious way using malenls) dearn't -
1034, 1t @nudsin an 10 wait after the REACWVISE 5 @valed and the JF1) %
for the file s been released. | ]

|

|

i

dick

PUTPROPS CLOCK' R

8
@5“’"}55“3'-“‘24

+ DONTCOF‘VV
 (FILEMAP (NILY)-

Figure 38

39. 1 give the name of the file to be created, Il ot T L
BURTON.BUG, and the PROMPT window tells Mg — — ‘
me that the file has been written. At this ) [#='" yinsow |

point, the programmer’s assistant tells me I
have a message from Card. Since I am in the
middle of something, I decide nof to read the
message now, and type No to the question
"Want to see it now ?7". I load the file
BURTON.BUG I just created, and it loads
successfully.

19e(Mail fram Burton, 5:556N]
Wiant to see it now ? (es

i rorma it

[H:ll from Burton at bbn-tenesd, 3.55FM]

20¢REDC 19
frofi Burton at bba-tene«d, 2:55PM
r READVIZE non feature]

Readmail
Sndmsg
Helpsys !
Masterscope |
Prettyprint |
Refresh screen

tail from CARD, 4:10PM
GURTIENT]

- HISTORY COMMANDS Insert

Delete tom
% : Replace
'] Bold/Unbold . 5 H ane/a
1 halie/Unitalic o0 Dot Move/|
Change Font e
VY wrire fie

ibla

tha roqurg file {created in the cbvious way using makafile) deetn't n
A1t erds’in an I wait after the READYISE ¢ @v31ed 2nd tha JFH)
ar the file has been released. [}
dick }
......................... o
D OP 00
0o
0 00CO
QQ FOOCO D o
0 0 D o o)
D 0
11
D 0O 0
OP
17tok [

Figure 39



"28 A Display Oriented Programmer’s Assistant

40. Since the process of loading this file
made some changes to my environment,
namely advising the function CLOCK, I undo
this operauon by selecting the corresponding
event in the TYPESCRIPT window, and then
selecting the UNDO command on the HISTORY
menu. I then send Burton a message asking
for more details, and suggest that the problem
may be due to some files having gotten
smashed at BBN.

41, 1 now go back and select the READMAIL
command on the OPERATIONS menu to read
Card’s message, which is a comment about
the Interlisp manual, which I will respond to.
However, I realize that I could easily have
forgotten about Card’s message and gone on
to something else, so I decide I would like
the mail checker to remind me, by changing
the caption of my message window, that I
have mail waiting when I decline to read it
immediately. [ will perform this change by
simply advising the Interlisp function
ASKUSER,T which is responsible for the
"Want to see it now ? - Yes/No" interaction.
I advise ASKUSER AFTER, i.e., the advice will
be executed on the way out of the function, if
its value is 'N, then to change the caption as
indicated. Then I realize that this change will
affect all calls in the system to ASKUSER,
whereas I only want this to happen on calls
t0 ASKUSER from CHECKMAIL. So I select
ASKUSER in event 23, i.e., the ADVISE
operation, then select the UNDO command on
the HISTORY menu to undo this event. Then
select the USE command to reexecute the
ADVISE operation using (ASKUSER IN
CHECKMAIL) instead of ASKUSER. Figure 41
shows the display after the ADVISE operation
has been reexecuted.

TAdvising is an Interlisp facility which lets the user
treat a function, or a particular call to a function, as a
black box, and make changes that affect it on entry or
exit, without having to be aware of the details of what
is inside the box. It is described in [Teil]. Advisingis
often used for reconfiguring system programs, and also
for trying out changes to the user's programs, with
minimal investment in order to see how they work,
before going back and making the changes in some
more permanent fashion.

mMAN)H.IHTON.BUG 1 written
Burton@BBND ~—

TYPESCRIPT 4:22PM

Burtan, B:EEFM]

OPEHATIONS

Readmail

Sndmsg

Helpsys

Masterscope

Prettyprint

Refresh screen N
»

ll HISTORY COMMANDS
' | Redo Use Fix Undo 27

reate
Bold/Unbotd
Italic/Unitalic
Change Font
write file

$T far halpo:

Iubject: vour proble

APAQQ FOOCC
[

PUTPROPS CL(

Bl R ADVISE CLC]

PRINT "ANYTH

DECLARE: DON
$FH£MAP (NIL]

op

<TETELMAN>DBURTON.BUG; 1 written
Burton@BBND — ok
ets, input the objects to be substituted: (askuser i in checkmaif)

on fa3ture] Window

Document

| From L.-\HD 4-10PM
.

T7 1501242

-apr-

LRTON.EUG: )

Insert
Append |
| Delete

] Replace
Move/a |
Move/b

Bold/Unbold
Italic/Unitalic

P= 2 and OQUOTIENT 126.31.02) = 126

d be (according to psge 15.9) 2 and 6315. This
recred overflaw/underflow iike the other problems
he algorithm iz just wrong,

Figure 41



A Display Oriented Programmer’s Assistant ' 29

42. I teSt Ollt ]le change by Sending myself a g&?ggzlzg?ﬂ:tgilw( the objects to be substituted: (askuser in checkmall)
test message, and answering No when asked A T

if I want to see it now. The caption on my | Bk ity
MESSAGES window is changed so that the leadipirienbiny
name of the sender of the message, in this
case me, appears in the right hand corner of
the caption, and the background of the
caption is changed to vertical stripes.

——

i Operations

; Readmail
{ Sndmsg

HISTOHY COMMANDS
Redo Use Fix Undo 77

| Move/a jible

' Move/b

z 77 18 AT "
Date: 23 JUN SNOMSG 77/

OTUNTIENT 4

ot sar nalp)

These numbers| Subjact: This i3 8 tase
4811 is nat » case of
FILL with this funct] Messege (7 for hag):

sy 3 My Chanye to chechmsil

171k

Figure 42

Conclusions

The system decribed in this paper has been in use by actual users other than the author only a few
months. However, our conjectures about the usefulness of this kind of facility were if anything
conservative. The ability to suspend an operation, perform other operations, and then return without
loss of context is widely appreciated. The techniquc of using different windows for different tasks
does make this switching of contexts easy and painless. Even when the user is not switching
contexts, the use of multiple windows is extremely helpful. For example, a standard complaint with
conventional display terminals is that material that the user wants to refer to repeatedly, e.g., a
printout of some function, or a record of some complicated interaction, is displaced by subsequent,
incidental interactions with the system. In this situation when using a hard copy terminal, the user
simply tears off the portion he is interested in and saves it beside his keyboard. Being able to freeze
a portion of the user’s interactions in a separate window, such as the WORK AREA, while allowing
subsequent interactions to scroll off the screen seems to combine some of the best aspects of
hardcopy and display terminals.

Finally, users just seem to enjoy aesthetically the style of interacting with the system, such as using
menus, the feedback via the prompt window and changing cursors, being able to scroll the windows
back and forth, etc. We think this is an area that will see an increasing amount of activity in the
future as the cost of bit map displays and the necessary computing power to maintain them
continues to drop.



30

[Bob]

[Eng]

[LRG]
[San]
[Spr]

[Swi]

[Teil]
[Tei2]
[Tei3]

[Teid]

A Display Oriented Programmer’s Assistant

REFERENCES

Bobrow, D. G., and Wegbreit B, "A Model and Stack Implementation for Multiple
Environments," Communications of the ACM, Vol. 16, 10 October 1973.

English, W. K., Engelbart, D. C., and Berman, M L., "Display Selection Techniques for
Text Manipulation,” IEEE Transactions on Human -Factors in Electronics, Vol. HFE-8, No.
1, March 1967.

Learning Research Group, Personal Dynamic Media, Xerox Palo Alto Research Center,
1976. Excerpts published in IEEE Computer Magazine, March 1977.

Sandewall, E, "Programming in an Interactive Environment: The Lisp Experience,”
Matematiska Institutionen, University of Linkoping, Sweden. (to be published in CACM).

Sproull, R. F., and Thomas, E. L. "A Network Graphics Protocol,” Computer Graphics,
SIGGRAPH Quarterly, Fall 1974.

Swinehart, D. C., "Copilot: A Multiple Process Approach to Interactive Programming
Systems,” Stanford Artificial Intelligence Laboratory Memo AIM-230, Stanford University,
July 1974.

Teitelman, W. "Toward a Programming Laboratory,” in Walker, D. (ed.) International Joint
Conference on Artificial Intelligence, May 1969.

Teitelman, W. "Automated Programmering - The Programmer’s Assistant,” Proceedings of
the Fall Joint Computer Conference, December 1972.

Teitelman, W. "CLISP - Conversational Lisp,” Third International Joint Conference on
Artificial Intelligence, August 1973.

Teitelman, W. et al,, Interlisp Reference Manual, Dec. 1975, Xerox Palo Alto Research
Center. -



T

A Display Oriented Programmer’s Assistant By Warren Teitelman




