
Weighted Voting for Replicated Data

By David K. Gifford

Weighted Voting for Replicated Data

* by David K. Gifford

CSL-79-14 September, 1979

In a new algorithm for maintaining replicated data, every copy of a replicated file is assigned
some number of votes. Every transaction collects a read quorum of r votes to read a file,
and a write quorum of w votes to write a file, such that r + w is greater than the total number
of votes assigned to the file. This ensures that there is a non-null intersection between every
read quorum and every write quorum. Version numbers make it possible to determine which
copies are current. The reliability and performance characteristics of a replicated file can be
controlled by appropriately choosing r, w, and the file's voting configuration. The algorithm
guarantees serial consistency, admits temporary copies in a natural way by the introduction
of copies with no votes, and has been implemented in the context of an application system
called Violet.

CR Categories: 4.3, 4.35, 4.33, 3.81

Key Words and Phrases: weighted voting, replicated data, quorum, file system, file suite,
representative, weak representative, transaction, locking, computer network

• David Gifford is a graduate student at Stanford University, and this work was supported in part by the Xerox
Corporation and by the Fannie and John Hertz Foundation. This paper was presented at the Seventh
Symposium on Operating System Principles on December 12, 1979 in Pacific Grove, California.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

1. Introduction

The requirements of distributed computer systems are stimulating interest in keeping copies of

the same information at different nodes in a computer network. Replication of data al10ws

information to be located close to its point of use, either by statically locating copies in high use

areas, or by dynamically creating temporary copies as dictated by demand. Replication of data also

increases the availability of data, by allowing many nodes to service requests for the same

information in parallel, and by masking partial system failures. Thus, in some cases, the cost of

maintaining copies is off~et by the performance, communication cost, and reliability benefits that

replicated data affords.

We present a new algorithm for the nlaintenance of replicated files. The algorithm can be

briefly characterized by the following description:

- Every copy of a replicated file is assigned some nUfilber of votes.

- Every transaction collects a read quorum of r votes to read a file, and a write quorum of w

votes to write a file, such that r+ w is greater than the total number of votes assigned to the

file.

- This ensures that there is a non-null intersection between every read quorum and every write

quonlm. There is always a subset of the representatives of a file whose votes total to w that

are current.

- Thus, any read quorum that is gathered is guaranteed to have a current copy.

- Version numbers make it possible to detennine which copies are current.

The algorithm has a number of desirable properties:

It continues to operate correctly with inaccessible copies.

- It consists of a small amount of extra machinery that nlllS on top of a transactional file

system. Although "voting" occurs as will become evident later in the paper, no complicated

11lessage based coordination mechanisms are needed.

- It provides' serial consistency. In other words, it appears to each transaction that it alone is

running. The most current version of data is always provided to a user.

- By manipulating r, w, and the voting stnlcture of a replicated file, a system administrator can

alter the file's performance and reliability characteristics.

- All of the extra copies of a file that are created, including temporary copies on users' local

disks, can be incorporated into our framework.

The remainder of the paper is organized as five sections. Section 2 describes related work, and

how the algorithm differs from previous solutions. The algorithm's environment, ~nterface, and basic

structure are introduced in Section 3. Refinements are offered in Section 4, including the

introduction of temporary copies and a new locking technique. The Violet System, which contains

an implementation of this proposal, and some perfonnance considerations are discussed in Section 5.

The final section is a brief conclusion. The appendix demonstrates that our algorithln Inaintains

serial consistency [1].

The ideas in this paper arc illustrated in ~1esa, a programming language developed at the Xerox

2 DA VID K. GIFFORD

Palo Alto Research Center [8]. Mesa is well suited for this task because it contains integrated
support for processes, monitors, and condition variables [6]. To simplify this presentation some

nonessential details have been omitted from the Mesa examples.

2. Uclatcd Work

Previous algorithms for maintaining replicated data fall into two classes. Some insist that every
object has a primary site which assumes responsibility for update arbitration. Distributed INGRES
[10] is such a system. This technique is simple, but relatively inflexible. Others do not employ
distinguished sites for objects, and are more complex than primary site algorithms. SDD-l [9] keeps
all copies of an object up to date by sending updates via a communication system that will buffer
messages over machine crashes. Thomas' proposal [11] only requires that a majority of an object's
copies be updated, and includes voting.

Although we share the notion of voting, it is difficult to directly compare our algorithm with
Thomas' because the two provide different services. Notably:

- We guarantee selial consistency for queries (read-only transactions), while Thomas' algorithm

does not.

- We do not insist that a majority of an object's copies be updated.

- 1bomas' algorithm does not employ weighted voters, which limits its flexibility.

- Thomas' algorithm is more complex because it addresses consistency issues as well as
replication issues. We have separated the two, resulting in an algorithm that is easier to

reason about and to implement.

- Our structure allows for the inclusion of temporary copies.

3. 'The Basic Algorithm

3.1 Environment

The concepts necessary for the implementation of our algorithm are modeled below as a stable

file system. In Section 3.3 we build our algorithm for replicated data assuming the existence of such

a system.
Our exposition uses two kinds of objects, files and containers. Files are arrays of bytes,

addressed by read and write operations as described below. Containers are storage repositories for
files; they are intended to represent storage devices such as disk drives. These objects, and others
introduced later in the paper, have unique names. No two objects will ever be assigned the SaIne

name, even if they are on different machines. We will not concern ourselves further with how

programs acquire names, but will assume that the names of containers and files of interest are at

hand.
A file is logically an array of bytes that can be created, deleted, read, and written.

WEIGHTED VOTING FOR REPLICATED DATA

File.Create: PROCEDURE [container: Container.ID1
RETURNS [file: File.I])];

Hle.Delete: PROCEDURE [file: :File.ID];

File.Read: PROCEDURE [file: File.ID, startByte, count: INfEGER,
buffer: POINTER];

File.Write: PROCEDURE [file: File.ID, startByte, count: INTEGER,
buffer: POINTER];

3

To keep the discussion simple, we assume that file system primitives operate on remote and local

files alike. This can be accomplished by encoding a file's location or contamer in its unique

identifier, or by maintaining location hints for remote files. These details will not be considered

further.
Transactions are used to define the scope of concurrency control and failure recovery. A

transaction is a group of related file operations bracketed by a begin transaction call and a commit

transaction call.

Transaction.Begin: PROCEDURE;

Transaction.Commit: PROCEDURE;

A transaction hides concurrency by making it appear to its file operations that there is no other

activity in the system, a property known as serial consistency [1]. A transaction hides undesirable

events that can be recovered from, such as a detected disk read error, or a server crash. A

transaction also guarantees that either all of its write operations arc performed, or none of them are.

Furthermore, once a transaction has committed, its effects must be resilient to hardware failures,

such as a server crash. Every process has a single current transaction. Thus, for an application

program to use two transactions it must create at least two processes. A forked process can join its

parent's transaction by calling:

Transaction.JoinParentsTransaction: PROCEDURE;

A file may be unavailable if the server it resides on is clown, or if there is a communication

failure. If a read operation is directed to a file that is unavailable, the corresponding File.Read call

will never return. Multiple processes are used by our algorithm to allow it to proceed in this case.

Outstanding uncompleted reads, because they never occurred, do not affect the ability of a

transaction to commit. The transaction system only guarantees serial consistency for reads that have

actually completed when the transaction is committed. Likewise, if a write operation is directed to a

file that is unavailable, the corresponding File.vVrite call will never return. However, a transaction

that attempts to commit with unfinished writes will remain uncommitted until all of its writes

complete.

It is possible that a user will want to abort a transaction in progress. A transaction abort, which

can be initiated by a user as shown below, will discard all of a transaction's writes, and terminate the

transaction.

Transaction.Abort: PROCEDURE;

4 DA VID K. GIFFORD

It is also possible that the file system will spontaneously abort a transaction because of a server

crash, communication failure, or lock conflict.

This concludes our model set of primitive objects and operations. The model abstracts a

confederation of cooperating computers into a structure that has uniform naming and a distributed

transactional file system. As we shall see in following sections, the abstractions introduced here

make the replication algorithm straightforward to explain. Of course we believe that the model that

we have described is realizable and practical; in fact, the ideas necessary for an implementation have

received a great deal of attention. Gray [4] provides a nice discussion of two phase commit

protocols, locking, and synchronization primitives. Lampson and Sturgis [5, 7] describe an

implemented system that has all of the properties our model requires.

3.2 Interface

Our algorithm uses the facilities described in Section 3.1 to provide an abstraction called a file

suite. This is a file that is realized by a collection of copies, which we call representatives because of

the democratic way in which update decisions are reached. When a file suite is created, a

description of its configuration must be supplied, which includes r, W, the number of representatives,

the containers where they should be stored, and the number of votes each should be accorded.

Configuration: TYPE = RECORD [
r: INTEGER,
w: INTEGER,
v: ARRAY OF RECORD [container: Container.ID, votes: INTEGER]];

File.CreateSuite: PROCEDURE [configuration: Configuration]
RETURNS [suite: File.ID];

File.CreateSuite stores a suite's configuration in stable storage. The structures stored would

depend on the algorithm's implementation, but Figure 1 shows one possible alternative. A suite is

cataloged by directory entries, preferably more than one in case one of them is unavailable. Each

representative has a prefix that identifies all the other representatives in the suite and their voting

strength.

Once created, a file suite can be treated like an ordinary file. The File.Read, File.Write, and

File.Delete operations specified in Section 3.1 can be used to manipulate the abstract array of bytes

represented by a file suite. Like file operations, all file suite operations are part of some transaction.

A file suite appears to be an ordinary file in almost every respect.

Differences arise because a file suite can have performance and reliability characteristics that are

impossible for a file. It is possible to tailor the reliability and performance of a file suite by

Inanipulating its voting configuration. A high performance suite results by heavily weighting high

performance representatives, and a very reliable suite results by heavily weighting reliable

representatives. A file suite can also be made very reliable by having many equally weighted

representatives. A comp1etely decentralized structure results from equally weighting representatives,

and a completely centralized scheme results from assigning of all of the votes to one representative.

Thus the algorithm falls into both of the <;lasses described in Section 2.

7395

56739

37462

32840

98345

Directory Entry

7395

56739

37462

32840

98345

Directory Entry

"" ,
"" ,.
"" ,
'It. ,

Prefix

Client
Data

Rep resentative
of File Suite

7395
File

37462

Container: 234

Votes: 2

Rep resentative)~
Version Number

r

w

Suite Size

File1

File2

VoteS:2

VoteS:3

o

o
o

File Suite Prefix

Rep resentative
Prefix Prefix

Client
Data

Rep resentative
of File Suite

7395
File

98345

Container: 124

Votes: 1

Example of a File Suite Configu ration

Figure 1

Prefix

Client
Data

Rep resentative
of File Suite

7395
File

56739

Containe r: 583

Votes: 1

Prefix

Client
Data

Rep resentative
of File Suite

7395
File

32840

Container: 328

Votes: 1

6 DA VID K. GIFFORD

Once the general reliability and performance of a suite is established by its voting configuration,

the relative reliability and perfOlmance of Read and Write can be controlled by adjusting rand w.
As w decreases, the reliability and performance of writes increases. As r decreases, the reliability and

performance of reads increases. The choice of rand w will depend on an application's read to write
ratio, the cost of reading and writing, and the desired reliability and performance.

The following examples suggest the diverse mix of properties that can be created by
appropriately setting rand w. In the table below we assume that the probability that a
representative is unavailable is .Ol.

Example 1 is configured for a file with a high read to write ratio in a single server, multiple user

environment. Replication is used to enhance the performance of the system, not the reliability.
There is one server on a local network that can be accessed in 75 milliseconds. Two users -have
chosen to make copies on their personal disks by creating weak representatives, or representatives
with no votes (see Section 4.1 for a complete discussion of weak representatives). This allows them
to access the copy on their local disk, resulting in lower latency and less traffic to the shared server.

Example 2 is configured for a file with a moderate read to write ratio that is primarily accessed
from one local network. The server on the local network is assigned two votes, with the two servers
on remote networks assigned one vote apiece. Reads can be satisfied from the local server, and
writes must access the local server and one remote server. The system will continue to operate in
read-only mode if the local server fails. Users could create additional weak representatives for lower
read latency.

Example 3 is configured for a file with a very high read to write ratio, such as a system
directory, in a three server environment. Users can read from any server, and the probability that
the file will be unavailable is very small. Updates must be applied to all copies. Once again, users
could create additional weak representatives on their local machines for lower read latency.

Exam.Qle 1 Exam.Qle 2 Example 3
Latency (msec)

Representative 1 75 75 75
Representative 2 65 100 750
Representative 3 65 750 750

Voting Configuration (1,0,0) (2,1,1) (1,1,1)
r 1 2 1
w 1 3 3

Read
Latency (msec) 65 75 75
Blocking Probability 1.0 X 10-2 2.0 X 10-4 l.0 X 10-6

Write

Latency (msec) 75 100 750
Blocking Probability 1.0 X 10-2 1.0 X 10-2 3.0 X 10-2

WEIGHTED VOTING FOR REPLICATED DATA 7

3.3 The Algorithm

We present the basic algorithm in prose and fragments of Mesa code. The prose is meant be a

complete explanation, with the Mesa code provided so the reader can check his understanding of the

ideas. All the Mesa procedures shown below are part of a single monitor called FileSuite. There is

a separate instance of FileSuite for each transaction accessing a given suite. ENTRY procedures

manipulate shared data, and thus lock the monitor. Careful use of public non-entry procedures has

been made so the monitor is never locked while input or output is in progress, allowing FileSuitc to

process simultaneous requests.

:FileSuite: MONITOR [suitcNcune: File.ID] = BEGIN

VersionNumber: TYPE = {unknown, 1,2,3,4, ... }

Set: TYPE = ARRAY ('F BOOLEAN;

SuiteEntry: TYPE = RECORD [
name: File.ID,
version: VersionNumber,
votes: INTEGER];

suite: ARRAY OF SuitcEntry;

currentVersionN umber: VersionNumber;

firstResponded: BOOLEAN; -- lroe whenfirSI representative has responded .

r: INTEGER;

w: INTEGER;

-- number o/votes required/or a read quorum

-- number a/votes required/or a write quorum

.Whc,tl FilcSuite is instantiated, the number of representatives, their names, . their version

numbers, their voting strengths, r, and w must be copied from some representative's prefix into the

data structure shown above. This information ITmst be obtained with the same transaction that is

later used to access the file suite, in order to guarantee that it accurately reflects the suite's

configuration. Additional information, such as the speed of a representative, has been omitted from

a $uiteEntry to make the basic algorithm easier to understand.

To read from a file suite, a read quorum must be gathered to ensure that a current

representative is included. After a file suite is first accessed, collecting a file suite never encounters.

any delays. The operation of the collector which gathers a quorum is described in detail below.

From the quorum, any current representative can actually be read. Ideally, one would like to read

from the representative that will respond fastest.

Read: PROCEDURE [file: Filc.ID, firstByte, count: INTEGER, buffer: POINTER] =
BEGIN
-- selecl best representative

quorum: Set ~ CollectRcadQuorum[];
best: INTEGER ~ SclcctFastcstCurrcntReprescntative[quorum];

-- send request and wait for response
File.Rcad[suitc[bcst].name, firstByte, count, buffer];

END;

DA VID K. GIFFORD

To write to a file suite, a write quorum is assembled: all of the representatives, in the quorum

must .be current so updates are rot applied to obsolete repr€sentatives~ All of the writes to the

quorum are done in parallel. The flrfst write of a transaction increments the version numbers of its

write quorum Thus, all subsequent writes will be directed to the same quorum because it will be

the only one that is current. Determining which write is the first one must done under the

protection of the monitor, and is not shown in the· Mesa code. With the procedure below, the result

of. isSHlla:g two ooncurrent writes that update the same portion of a file is undeftned.

Write: PROCEDURE [file: File.ID, firstByte, count: Il';'TEGER, buffer: POINTER] =
BEGIN

-- select write quorum
quorum: Set +- CollectWriteQuorumO;
i, count: INTEGER +- 0;
process: ARRAY OF PROCESS;

-- send requests to all members of quorum, and wait for responses
FO R i IN [1..LENGTH[suite]]

DO
IF quorum[i) THEN

BEGIN
count +- count + 1;
process[count] +- FORK

RepresentativeWrite{i,firstByte, count, buffer];
END;

ENDLOOP;
FOR i IN [l..count]

DO

END;

JOIN process[i];
ENo.LOQP;

~~(JrescntativeWrite: PROCEDURE [i, firstByte, count: INTEGER, buffer: POINTER] ==
nEG IN
-- W8<lre ([!Cling an behalf afaur parent: join its transaction

'1 'ransaction.J oinParen tsTransac.tion[];
Update Ver.sionNumber£i];

-- wrzte data on representallve and inform parent process
File.WriteIstl1tefi];name, firstByte, count, buffer];

"EN&t .

It is possible that a representative will becofJl~ l,lnavailable while a file ,suite is in ijse:,perhaps

due to a server crash. A simple solution to this problem, not shown in the procedures above, is to

abort the current transacliom·'if::R~ad,~{)r,Wri:tetake more than a specified length of time. This will

restart the suite, as described below.

Quorum sizes are the minimum number of votes that must be collected for read and write

operations to proceed. It is possibJe to .increase. the performanceofa file suite., by aJtificially

expanding a quorum with additional representatives. Once agaio t to reduce comple.xity;- the

procedures shown above do not use this approach.'

When a file suite is first accessed, version number inquiries are sent to representatives~ The

WEIGHTED VOTING FOR REPLICATED DATA 9

information that results is used as the basis for future collector decisions. To determine the correct
value of a file suite's current version number a read quorum must be established before the file suite
can entertain requests. All representatives might not contain the current voting rules, but the
algorithm will stabilize with the correct rules before a read quorum is established, as shown in
Section 4.6. If a representative is unreachable its version number read will never return. This does
not prohibit a user's transaction from committing, as described in Section 3.1.

InitiateInquiries: PROCEDURE =
BEGIN
i: INTEGER;
-- find out the state afrepresentatives

FOR i IN [1..LENGTH[suite]]
DO
Detach[FORK lnquiry[i]];
ENDLOOP;

-- set currentVersionNumber and voting rules
[] +- CollectReadD;

END;

Inquiry: PROCEDURE [i: INTEGER] =
BEGIN
-- we are acling on behalfofour parent

Transaction.JoinParentsTransaction[];
-- find autlhe state of a representative

New Rep resentati ve[ReadPre fixInformation[i]];
END;

ReadPrcfixInformation: PROCEDURE [i: INTEGER] RETURNS [i, version, rP, wP: INTEGER, v: ARRAY OF
INTEGER] =

BEGIN
< read version number, r, w, and array o/voting strenghts/rom the prefix o/representative i>

END;

New Representative: ENTRY PROCEDURE [I, version, rP, wP: INTEGER, v: ARRAY OF INTEGER] =
BEGIN
j: INTEGER;
-- update shared data and notify

suite[i].versionNumber +- version;
-- if this is new information, update suite

IF version)currentVersionNUJnber THEN
BEGIN
currentVersionNumber +- version;
r +- rP; w +- wP;
FOR j IN [l..LENGTH[suite]]

DO
suiteUJ·votes +- vU1;
ENDLOOP;

END;
firstRcsponded +- TRUE;
BROADCAST CrowdLarger;

END;

10 DA VID K. GIFFORD

The collector is used by every file suite operation to gather a quorum of representatives.
Normally the collector selects what it considers to be the quorum that will respond the fastest, and
returns immediately to its caller. Occasionally one of two problems will arise. First, it is possible
that a read quorum of the suite's representatives have not reported their version numbers. In this
case the collector can only wait for one of them to report in. The second potential problem is that a
read quorum have reported their version numbers, but there is not a current write quorum. This
can only occur if some representatives have not reported their version numbers. In this case if r < w
the collector will initiate a background process to copy the contents of the suite into one of the
obsolete representatives that has reported in. It is always legal to copy the current contents of the
file suite to an obsolete representative. Note that the copy process will be reading from the suite, in
effect a recursive call, but there will be enough votes for this read-only operation to proceed. To
minimize lock conflicts the background process should be run in a separate transaction. The
background process signifies its completion by breaking the transaction of its parent.

CrowdLarger: CONDITION; -- notifed when a new representative is available

CollectReadQuorum: ENTRY PROCEDURE RETURNS [quorum: Set] =
BEGIN
i, j, votes: INTEGER;
index: ARRAY OF INTEGER;
-- until the first representative responds we don't have a seedfor the voting rules

UNTIL firstResponded DO WAIT CrowdLarger ENDLOOP;
-- an endless loop that only returns when a quonlm has been established

DO
-- ifwe have a read quorum here, then the voting rules are current

in~x ~ SortRepresentativesBySpeedO;
quorum ~ ALL[FALSE]; votes ~ 0;

-- see ifwe can find a read quorum
FOR i IN [l..LENGTH[suite]]

DO
j ~ index[i];
IF suitefj]. versionN umber:;eunknowll THEN

BEGIN
quorumU] ~ TRUE;
votes +- votes + suitcU]. votes;
IF votes) = r THEN RETURN[quorum];
END;

ENDLOOP;
-- we can't find a quorum

WAIT CrowdLarger;
ENDLOOP;

END;

CollectWriteQuorum: ENTRY PROCEDURE RETURNS [quorum: Set] =
BEGIN
i, j, votes, readVotes: INTEGER;
index: ARRAY OF INTEGER;
-- an endless loop that only returns when a quorum has been established

DO

WEIGHTED VOTING FOR REPLICATED DATA

index SortRepresentativesBySpeedD;
quorum ALL[FALSE]; votes ~ readVotes 0;

-- see if we can find a write quorum
FOR i IN [l..LENGTH[suite]]

DO
j index[i];
IF suitefj].versionNumbencunknown THEN

BEGIN
readVotes readVotes + suiteO].votes;
IF suitefj]. versionN umber = current THEN

BEGIN
quorumfj] TRUE;
votes votes + suite[j]. votes;
IF votes)=w THEN RETURN[quorum];
END;

END;
ENDLOOP;

-- we can'tfind a write quorum; ifwe have a read quorum update obsolete representatives
IF readY Oles) = r THEH

BEGIN
FOR i IN [l..LENGTH[suite]]

DO

IF suite[i].versionNumber:¢unknown AND
suite[i]. versionNumber:¢current VersionN umber THEN
BEGIN
suite[i].versionNumber unknown;
Copy.StartBackground[from: suiteName, to: suite[i].name];
END;

ENDLOOP;
END;

WAIT CrowdLarger;
ENDLOOP;

END;

11

If a user decides to abort his transaction, or if the system spontaneously aborts a user's
transaction the suite is no longer in a well defined state. The version number information it is
holding is no longer guaranteed to be serially consistent with ensuing operations, and must be
discarded and replaced by new inquiries. Asynchronous representative writes or version number
reads still in progress must be aborted.

Initialize: PROCEDURE =
-- called at transaction abort and suite start-up
BEGIN
-- reset the suite

ResetD;
-- stop outstanding requests

AbortFileSuiteProcessesO;
Transaction. BeginO ;
InitiateInquiriesO;

END;

12 DA VID K. GIFFORD

Reset: ENTRY PROCEDURE =
BEGIN
-- invalidate state information

FOR i IN [l..LENGTH[suite]]
DO
suite[i].versionNumber f- unknown;
suite[i].votes f- 0;
ENDLOOP;

firstRespondcd f- FALSE;
currentVersionNumber f- unknown;

END;

At transaction commit the module instance is .deleted.

4. Refinements

4.1 Weak Representatives

We can incorporate temporary copies into the algolithm by introducing representatives with no

votes, called weak representatives. Such a representative will not change the quorums of a file suite,

and thus can be introduced at any time. However, it can be included in any quorum and, when

placed on a high speed storage device, can improve the performance of a file suite.

Because a weak representative has no votes, it bears no responsibility for the long term

safekeeping of data. There will always be a write quorum of other representatives that contain

current data. Thus, if an error is detected while accessing a weak representative an acceptable means

of recovery is to invalidate it by setting its version number to be unknown. This property allows

weak representatives to be stored outside of the stable file system. We have made the further

simplification of insisting that weak representatives be unshared. To insure that users do not share

weak representatives exclusive locks are used.

The simplified recovery and concurrency requirements of weak representatives allow us to store

them in a less general file system than the one outlined in Section 3.1. In particular, they can be

stored on a user's personal com1?uter using a very simple mechanism. After a crash on a user's

personal machine it is sufficient to invalidate all weak representatives that are locked.

4.2 Lock Compatibility

A disadvantage that our algorithm has in comparison with Thomas' is that locks are set by the

stable file system to guarantee serial consistency, which reduces the amount of concurrency in the

system. For example, a typical locking structure that is. used to guarantee serial consistency has two

types of locks, read and write. These locks are set on data items implicitly in response to file

operations. The cOlnpatibility of locks is specified by the matrix:

WEIGHTED VOTING FOR REPLICATED DATA

No Lock 'Read

No Lock Yes

Read Yes

Write Yes

Yes

Yes

No

Write

- Yes

No

No

A .transaction is suspended if it attempts to set a lock that is. incompatible. This matrix corresponds

to the, familiar .rule that either n readers or one writer arepcrmittcd to access a file simultaneously .

. This locking rule potcntially can introduce long pcriods of time when information js unavailable.

For example, if a user controls the length of a transaction, he can hold.awrite lock for a long perio.d

of time. This may naturally occur as a user thinks at the keyboard. To insure that no user

monopolizcs a file, a transaction will bc timed out if other users are waiting for a file it has locked.

A transaction that times out leaves files unchanged, because it is abortcd. The same mechanism

insures that cyclic lock dependencies (deadlocks) will be resolved by aborting. some transaetion.

Time-outs did no.t ,provide an adequate solution in our environment, as wc describc in Section 5.l.
A property of serial cO,nsistency is that all of a transaction's writes appear to occur at transaction

commit time. We can take advantage of this property to, increase the concurrency in our system.

Writes appear to occur when they are issued, but in fact are buffered until commit time by the

stable file system. A read following a write will receiv.e the write's data. When a user writes a

datum, an I-Write lock is set, for intention to write. At commit time I-Write locks are convertcd to

Commit locks, and the writing actually takes place. The new lock compatibility matrix is:

No Lock Read

No Lock Yes

Read Yes

I-Write Yes

Conunit Yes

Yes

Yes

Yes

No

I-Write

Yes

Yes

No

No

Commit

Yes

No

No

No

With this revised locking matrix, data is oniy unavailable for predictably shott periods of time,

during commh processing. This reslt1ts in increased concurrency, as we discuss inS~ction 5:l.
However, it may cause the later abortion of a transaction.

\Ve chose to make m:uttiple I-Write locks incompatible, because eventual1y one of the two

transactions would prdbably commit, and become ~ncompatible. lbus we chose not to postpone the

inevitable.

4.3.. Lower Degrees qfConsiSlenc)l

We have' assumed that the algoritl1m imust ;oe cap.able of pravdding serial consistency. Lower,
degrees of cons:i~ten(w are poSsible., and aIIbw lib~J1ics: to tiet-akcll, :forexutrlple. setting r to be OJ
l'hisf1orro$~tpnds to the n0ti!on "give 'lne~ the latcst velfsio:m yo~u <zanfind~ but I tlon!t cate if it isn~l
fresh". Certain applications that have self-correcting characteristics, such as name lookup, can use

lower degrecs of consistency. However, the unexplicable behavior of lower degrees precludes their

widespread use. Gray et al [3] have explored the properties of various degrees of consistency in

14 DA VID K. GIFFORD

detail. Their Degree 3 consistency corresponds to serial consistency. If our algorithm is run on top

of a file system that ensures Degree 0 or Degree 1 consistency, the algorithm will guarantee the same

consistency it sees, a fact we will not prove here.

4.4 Size of Replicated Objects

The size of an obj~ct that is replicated shQuld .be ch0sen to match· the heeds of an intended

application. For example, a data base manager might choose torepUcate relations, tuples, or

indexes. Each replicated object requires a version number. Because our algorithm depends on a
file's version number remaining unchanged throughout a transaction, the smallest unit that can be

individually locked is a file.

4.5 Broken Read Locks

If the stable file system Gqobr€4lk: re~d locks; to resol-ve conflicts' instead of abortirigan entire
transaction, two positive effects result. First, fewer transactions are aborted. Second, it is not

necessary for .~ version nu~l?cr to rerp.ain unchanged· during a' tranSactiOl'l; If it does change, the
broken read lock Il,1~ch~nism, informs me algorithm., The smallest lockable tlriit'is riO Iotiger a file,

but instead is tge. srn(llle~klockable unjt s\lpported'by the' 'stable fUe system.

4.6 Reassignin'gf/otes

As the focus of r~ferences.to a file suite changes, it is: 'possible to" ulxlatethe file' Suite's voting
configuration for optimum perio~mance.. Un~e$sthe; ~ refinement proposed :iri Section 4.5 is adopted,

updating a suite's voting configu,ration conflicJswith a;ny" other use of thesuitc. Section 3J;sinquiry

process protects itselfagainslsuch changes. by rcading a 'Suite's voting structure under the prbtection

of a transaction.
. ,-'

To change ·r, w~ or the voti~g.structure of:4, fUe §uit.~ jtisnec\essaVy~~ enSHre:th~t that' there is a
writequohmi under the new' rules that is current. The change can then be effected by updating the

prefixes of a set of representatives that is the union of a current write quorum and a future (under

the new voting rules) write quonlm. We claim that regardless of the order representatives are

examined, the most recent voting rules will be discovered before a read quonlm is established.

Imagine that a transaction incorrectly assumes that an obsolete generation of voting rules, G, is

current. Then there is a set voting rules, G + 1, that is one generation more recent. But when G + 1

was established its rules were written into a write quorum (under G). Therefore, the transaction

, would have examined a representative that contained or once contained G + 1. If this representative

did not contain G + 1, then it contained a later generation of the voting rules. The version number

mechanism in NewRepresentative would have replaced G with one of these later generations. But

we assumed that the transaction did not find a later generation. We have our contradiction.

WEIGHTED VOTING FOR REPLICATED DATA 15

4.7 Replicating Containers

Using the procedure outlined in Section 3.2, a user specifics a collection of containers to create a

file suite. This flexibility can complicate the operation of the system. Imagine that User A creates a

file suite on containers C and D, and User B creates a tile suite on containers D and E. If container

D fails it is possible that one or both of the users could continue to access their suites, and it is also
possible that both of the users could not proceed, depending on the voting configuration. In short, a

system operator does not know what a failure of container D implies. Replicated containers provide

a solution to this problem.

Containcr.CrcatcRcplicatcd: PROCEDURE [configuration:
Configuration] RETURNS [rcplicatcdContaincr: Container.ID];

A replicated container appears to the user exactly like an unreplicated one. However, when
passed a replicated container, File.Create creates a file suite instead of a single file. Thus, the user is

unaware that replication is taking place. We call the containers that compose a replicated container

base containers.

lbis approach has several benefits:

It is easy to determine the implications of removing a base container from service. This

allows the system to be operated effectively.

- Voting stnlctures can be tailored to the characteristics of the system's configuration by

knowledgeable system administrators.

- Backup and archiving of replicated containers makes sense.

- Replicated containers can be mounted and dismounted as a unit. This is because all of a
replicated container's corresponding base containers are easily identified.

4.8 Releasing Read Locks

Every lock that a transaction holds necessitates communication at commit time to ensure that the

lock is still in force. Section 5's InitiateInquires procedure sends inquires ~o all representatives in the

suite, to determine their status. A read lock is thus obtained on every representative that is

available. An enhancement to the algorithm would be to release the read locks on representatives

that are not used as part of a quorum before committing. This would reduce the amount of

communication at commit time significantly.

4.9 Updating Representatives in Background

In conjunction with replicated containers, it is possible to operate servers that update obsolete

representatives by examining a replicated container and initiating appropriate transfers. This can be

done when there is surplus communication capacity in the internetwork.

16 DA VID K. GIFFORD

5. Implementation

5.1 The Violet System

We have implemented the algorithm in the context of a simple decentralized data management
system called Violet [2]. Violet is a distributed calendar system which provides simple relational
views of personal and public calendars. Figure 4 is a picture of Violet's display-based user interface.
A user interacts with Violet by selecting iteras from the command menu at the bottom of the screen.

Violet is designed to operate in the environment shown in Figure 2. Each user has a personal
computer, with a bit-map display, a pointing device, and a local network interface. Local network
segments operate at 2.84 megabits per second," and are connected together by gateways to form an
internetwork.

Violet's implementation of file suites closely parallels the code fragments of Section 3.3; it
creates and manipulates uniformly weighted representatives. Each file suite is managed by a
monitored module, consisting of seven pages of Mesa source code. Instead of employing the
directory suggested by Figure 1, a file suite mune in Violet is a list of the representatives that
compose the suite.

Section 3.1's stable file system is implernented by DFS [5, 7]. DFS is a system composed of
cooperating servers that provide a decentralized transactional file system. The interface to DFS
closely parallels the model we presented in Section 3.1. At the File interface, we found that the read
latency of a 512 byte page on a local DFS (on the same local network as the user) was 75
milliseconds. When "the server was located on a remote network, accessed through a 9.6 KB data
connection, the read latency of a 512 byte page was 650 nlilliseconds. By comparison, the read.
latency of the user's local disk was 65 milliseconds.

Replication is accomplished below Violet's sitnulated virtual memory, as shown in Figure 3.
Pages from local and remote file suites are buffered in Level 2.

Before we implemented the proposal of Section 4.2, Violet exhibited the following undesirable
behavior. Imagine that Users A and B are viewing the same calendar for a considerable length of
time, longer than any minimmn amount of time which the file system guarantees for viewing data.
User A decides to update his view. As soon as User A writes into the view, User B's transaction will
break. User B is now denied access to the data, and User B's machine constantly requests access to
fresh information to repaint its screen. Meanwhile, User A holds a write lock while he thinks at the
keyboard. User B eventually times out User A's lock, breaking A's transaction. Both screens repaint
with the old information, and no net progress is made. This problem was solved by implementing
Section 4.2'8 proposal.

5.2 Perfonnance

We present two sets of cost figures for our algorithm. The first set of costs, the number of reads
and writes, are inherent in the algorithm. The second set, the number of messages and round-trip
delay times, are the result of an implementation that uses DFS.

Consideration should be given to the source of the message and delay statistics. DFS was
optimized for a local network, and thus some of the figures below are misleading. DFS requires

o
1~::~:~8

1- I
Personal

Computer

To Other Local Networks

o
1t:~:::::1

I ST:~~~I F""I'~,...~_·· ... lsYS~~~ I

1- 1

Gateway

Leased Line

o
1················1
. -.,.-:::::::::::::: .

1- I
Personal

Computer

o
I-::.:::~::~I

1- I
Personal

Computer

Local Network

1- I
Personal

Computer

1- I
Gateway

I
I ST :~~~I F""II~_~_· -.. lsYS~~~ I

o
I~:::::::::::::~::g:::::: I

1- I
Personal

Computer

o
I-:;:::::::::::::::::::::~:~~: I

1- I
Personal

Computer

Typical Internetwork Environment

Figure 2

Local Network

Level

4 User Interface

3

Calendar Names

2
Buffers

File Suites

1

Transactions Containers

"
o

Process Table Stable Files Volatile Files

The Internal Structure of Violet

Figure 3

Violet Calendar gystelT!

,January 1979

14
Sunday

15
r\~onday

16 17 18 19
Friday Tuesday ~;Vednesday Thursday

10:30 - 12:00 1 :~:15 - 16:00 16:45 - 17:00 16:00 - '16:00

Prof, Ste'oIen Dave Gifford, Don Scifres, Prof, '(utake

't,tVard of MIT CSL GSL . Tc'yc,za'.".'.3,

CSL Commons CSL Common~ PARC GSL

The MuNet: A Dealer: The Cafeteria Conference

Scalable At'ehite,:::tIJre

Multiprocessor of Violet

Are h it e 0 t u t'e

14:30 - 15:30

Dr, Robert

E:,)'.",'er, UCLA

& TR~N

CSL Commons

Very Large

Sr.:ale

Integra ted

Circuits:

Evr.dution.ary

or

Rev 0 lu ti 'HI a r:y'

fot' the 1980's

Figure 4

Forum: Roc,m #1077

Exploring the Bistability and

Light Ar":'n ... alies in

F ar,tastic F;esorlant

---------- Sea. tterir,g of

Intense Light

20
,"4 t d '::;,a ur. ay

20 DA VID K. GIFFORD

three nlessages for a single request due to the protocol it uses for duplicate suppression. In addition,

DFS uses a three phase commit protocol, while only a two phase protocol is logically necessary.

All of the figures shown are for worst case behavior. We have assumed that each representative

is stored on a separate server, r= w, and there are at least two representatives. The Add Server

figures refer to the cost of causing other servers to participate in an existing transaction. The

Inquiries line represents the cost of the version number reads. Coordinator and Workers refer to the

participants in commit processing.

d· a round trip delay time in the network

m: the number of representatives in a quorum

Command Reads Writes Messages Dela~

Begin Transaction 3 d
First Read m+l 0 8m-2 4d

Add Server 0 0 5(m-l) 2d
Inquiries m 0 3m d
Read 1 0 3 d

Subsequent Read 1 0 3 d
Subsequent Write 0 m 3m d
End Transaction 6m+3 3d

Coordinator 3 d
Workers 6m 2d

6. Conclusion

We have demonstrated a new algorithm for the maintenance of replicated data that offers many

benefits not provided by previous solutions. The introduction of weighted voting allows file suites to

be synthesized with desired properties, including the presence of temporary copies. The separation

of consistency considerations from replication has resulted in a conceptually simple approach which

guarantees serial consistency in a straightforward way and is relatively easy to implement.

The facilities of Mesa have allowed us to express and implement a complex concurrent control

structure. We invite language designers attempting to provide facilities for concurrent programrning

to gauge the difficulty of implementing the algorithm in their language.

The idea of weighting votes will undoubtedly have applications outside of replication algorithms.

For example, when a decision has to be made by cooperating nodes with different probabilities of

being correct, weighting the nodes' responses will improve the probability that a correct decision is

reached.

Acknowledgments. I would like to thank my advisors, Butler Lampson and Susan Owicki, for

their hard questions and encouragement during the course of this research. James Gray, Hector

Garcia-Molina, Lawrence Stewart, Howard Sturgis, and the referees provided helpful comments and

discussions.

WEIGHTED VOTING FOR REPLICA TED DATA 21

References

1. Eswaran, K.P. et al The Notions of Consistency and Predicate Locks in a Database System,
Comm. ACM 19, 11 (November 1976), pp. 624-633.

2. Gifford, D.K. Violet, An Experimental Decentralized System, Integrated Office System
Workshop, IRIA, Rocquencourt, France, November, 1979. Available as CSL Report 79-12,
Xerox Palo Alto Research Center, 1979.

3. Gray, IN. et al Granularity of Locks and Degrees of Consistency in a Shared Data Base, in
Modeling in Data Base lvlanagement Systems, North Holland Publishing, 1976, pp. 365-394.

4. Gray, J.N. Notes on Data Base Operating Sy~tems, in Operating Systems, An Advanced Course,
Lecture Notes in Computer Science 60, Springer-Verlag, 1978, pp. 393-481.

5. Israel, J.E., Mitchell, J.G., and Sturgis, H.E. Separating Data From Function in a Distributed
File System, Second International Symposium on Exploratory Systems, IRIA, Rocquencourt,
France, October, 1978.

6. Lampson, B.W., and Redell, D.D. Experience with Processes and Monitors in Mesa, to appear
in Proceedings of the Seventh Symposium on Operating System Principles, ACId Operating
Systems Review.

7. Lampson, B.W., and Sturgis, H.E. Crash Recovery in a Distributed Data Storage Syste~
Comm. ACM, to appear.

8. Mitchell, J.G. et aI, Mesa Language !vlanual, CSL Report 79-3, Xerox Palo Alto Research
Center, February, 1979

9. Rothnie, J.ll, Goodman, N., and Bernstein, P.A., The Redundant Update Methodology of SDD-
1: A System for Distributed Databases (The Fully Redundant Case), Rep. No. CCA-77-02,
Computer Corporation of America, 1977.

10. Stonebraker, M. Concurrency Control and Consistency of Multiple Copies of Data in
Distributed INGRES, IEEE Trans. on Soft. Eng. 5, 3 (May 1979), pp. 188-194

11. Thomas, R.H. A Majority Consensus Approach to Concurrency Control for Multiple Copy
Databases, ACM Trans. on Database Systems 4, 2 (June 1979), pp. 180-209.

22 DA VID K. GIFFORD

Appendix: Consistency Considerations

Given the serial consistency [1] of stable files, which we allowed ourselves in Section 3.1, it is
relatively straightforward to demonstrate that file suites also provide, serial consistency. To do so, we
need to formalize sufficient conditions for serial consistency, and show that file suites satisfy these
conditions.

We formalize serial consistency as follows. A processing of an act is said to be uninterrupted if
no other activities take place while it is in progress; a cOncurrent processing implies that other acts
may be processed in parallel. An act is said to appear to occur atomically if the concurrent
processing of the act has the same result that an uninterrupted processing would have produced. It
follows that for a transaction mechanism to guarantee serial consistency a transaction must appear to
occur atomically. A fresh read is one that, if issued now, would have the same result that it
originally had. We propose the following axioms as sufficient conditions to guarantee serial
consistency:

TCI (Atomicity of writes) All of the writes of a transaction appear to occur atomically at
transaction commit.

TC2 (Atomicity of reads) For a transaction to commit, at the instant the writes occur all of
the transaction's reads must be fresh.

THEOREM. If a transaction obeys TCI and TC2 then the transaction appears to occur atomically.
PROOF. By contradiction. We assume that the operations comprising transaction t did not
occur atomically. TCI guarantees the atomicity of writes. Thus there is some read r that
did not appear to occur at commit time. This implies that r would have produced different
results at commit time. TC2 does not permit this. 0

\Ve demonstrate that our algorithm, coupled with the consistency of stable flIes, guarantees the
consistency of file suites, by showing that a file suite obeys TCI and TC2, and thus is consistent.

THEOREM. Our replication algorithm guarantees TCI and TC2.
PROOF. (TCI) We have assumed that all writes to stable files in a transaction appear to
occur atomically. File suites writes are transfOlmed to stable file writes. The desired result
follows.
(TC2) Imagine that our algorithm does not guarantee TC2. This implies that one of the file
suite reads must not be fresh at commit time. This implies that some file suite read, if
repeated now, would not yield the same results as it originally did. However, a key property
of our algorithm is the guarantee that an updated datmn will appear in a write quorum. But
every read quorum and every write quorum have a non-null intersection. Hence at least one
of our version number reads would not be fresh. But TC2 for the stable file system
guarantees that all of the representative reads are fresh. We have our contradiction. 0

