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1. Introduction 

The requirements of distributed computer systems are stimulating interest in keeping copies of 

the same information at different nodes in a computer network. Replication of data al10ws 

information to be located close to its point of use, either by statically locating copies in high use 

areas, or by dynamically creating temporary copies as dictated by demand. Replication of data also 

increases the availability of data, by allowing many nodes to service requests for the same 

information in parallel, and by masking partial system failures. Thus, in some cases, the cost of 

maintaining copies is off~et by the performance, communication cost, and reliability benefits that 

replicated data affords. 

We present a new algorithm for the nlaintenance of replicated files. The algorithm can be 

briefly characterized by the following description: 

- Every copy of a replicated file is assigned some nUfilber of votes. 

- Every transaction collects a read quorum of r votes to read a file, and a write quorum of w 

votes to write a file, such that r+ w is greater than the total number of votes assigned to the 

file. 

- This ensures that there is a non-null intersection between every read quorum and every write 

quonlm. There is always a subset of the representatives of a file whose votes total to w that 

are current. 

- Thus, any read quorum that is gathered is guaranteed to have a current copy. 

- Version numbers make it possible to detennine which copies are current. 

The algorithm has a number of desirable properties: 

It continues to operate correctly with inaccessible copies. 

- It consists of a small amount of extra machinery that nlllS on top of a transactional file 

system. Although "voting" occurs as will become evident later in the paper, no complicated 

11lessage based coordination mechanisms are needed. 

- It provides' serial consistency. In other words, it appears to each transaction that it alone is 

running. The most current version of data is always provided to a user. 

- By manipulating r, w, and the voting stnlcture of a replicated file, a system administrator can 

alter the file's performance and reliability characteristics. 

- All of the extra copies of a file that are created, including temporary copies on users' local 

disks, can be incorporated into our framework. 

The remainder of the paper is organized as five sections. Section 2 describes related work, and 

how the algorithm differs from previous solutions. The algorithm's environment, ~nterface, and basic 

structure are introduced in Section 3. Refinements are offered in Section 4, including the 

introduction of temporary copies and a new locking technique. The Violet System, which contains 

an implementation of this proposal, and some perfonnance considerations are discussed in Section 5. 

The final section is a brief conclusion. The appendix demonstrates that our algorithln Inaintains 

serial consistency [1]. 

The ideas in this paper arc illustrated in ~1esa, a programming language developed at the Xerox 
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Palo Alto Research Center [8]. Mesa is well suited for this task because it contains integrated 
support for processes, monitors, and condition variables [6]. To simplify this presentation some 

nonessential details have been omitted from the Mesa examples. 

2. Uclatcd Work 

Previous algorithms for maintaining replicated data fall into two classes. Some insist that every 
object has a primary site which assumes responsibility for update arbitration. Distributed INGRES 
[10] is such a system. This technique is simple, but relatively inflexible. Others do not employ 
distinguished sites for objects, and are more complex than primary site algorithms. SDD-l [9] keeps 
all copies of an object up to date by sending updates via a communication system that will buffer 
messages over machine crashes. Thomas' proposal [11] only requires that a majority of an object's 
copies be updated, and includes voting. 

Although we share the notion of voting, it is difficult to directly compare our algorithm with 
Thomas' because the two provide different services. Notably: 

- We guarantee selial consistency for queries (read-only transactions), while Thomas' algorithm 

does not. 

- We do not insist that a majority of an object's copies be updated. 

- 1bomas' algorithm does not employ weighted voters, which limits its flexibility. 

- Thomas' algorithm is more complex because it addresses consistency issues as well as 
replication issues. We have separated the two, resulting in an algorithm that is easier to 

reason about and to implement. 

- Our structure allows for the inclusion of temporary copies. 

3. 'The Basic Algorithm 

3.1 Environment 

The concepts necessary for the implementation of our algorithm are modeled below as a stable 

file system. In Section 3.3 we build our algorithm for replicated data assuming the existence of such 

a system. 
Our exposition uses two kinds of objects, files and containers. Files are arrays of bytes, 

addressed by read and write operations as described below. Containers are storage repositories for 
files; they are intended to represent storage devices such as disk drives. These objects, and others 
introduced later in the paper, have unique names. No two objects will ever be assigned the SaIne 

name, even if they are on different machines. We will not concern ourselves further with how 

programs acquire names, but will assume that the names of containers and files of interest are at 

hand. 
A file is logically an array of bytes that can be created, deleted, read, and written. 
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File.Create: PROCEDURE [container: Container.ID1 
RETURNS [file: File.I])]; 

Hle.Delete: PROCEDURE [file: :File.ID]; 

File.Read: PROCEDURE [file: File.ID, startByte, count: INfEGER, 
buffer: POINTER]; 

File.Write: PROCEDURE [file: File.ID, startByte, count: INTEGER, 
buffer: POINTER]; 
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To keep the discussion simple, we assume that file system primitives operate on remote and local 

files alike. This can be accomplished by encoding a file's location or contamer in its unique 

identifier, or by maintaining location hints for remote files. These details will not be considered 

further. 
Transactions are used to define the scope of concurrency control and failure recovery. A 

transaction is a group of related file operations bracketed by a begin transaction call and a commit 

transaction call. 

Transaction.Begin: PROCEDURE; 

Transaction.Commit: PROCEDURE; 

A transaction hides concurrency by making it appear to its file operations that there is no other 

activity in the system, a property known as serial consistency [1]. A transaction hides undesirable 

events that can be recovered from, such as a detected disk read error, or a server crash. A 

transaction also guarantees that either all of its write operations arc performed, or none of them are. 

Furthermore, once a transaction has committed, its effects must be resilient to hardware failures, 

such as a server crash. Every process has a single current transaction. Thus, for an application 

program to use two transactions it must create at least two processes. A forked process can join its 

parent's transaction by calling: 

Transaction.JoinParentsTransaction: PROCEDURE; 

A file may be unavailable if the server it resides on is clown, or if there is a communication 

failure. If a read operation is directed to a file that is unavailable, the corresponding File.Read call 

will never return. Multiple processes are used by our algorithm to allow it to proceed in this case. 

Outstanding uncompleted reads, because they never occurred, do not affect the ability of a 

transaction to commit. The transaction system only guarantees serial consistency for reads that have 

actually completed when the transaction is committed. Likewise, if a write operation is directed to a 

file that is unavailable, the corresponding File.vVrite call will never return. However, a transaction 

that attempts to commit with unfinished writes will remain uncommitted until all of its writes 

complete. 

It is possible that a user will want to abort a transaction in progress. A transaction abort, which 

can be initiated by a user as shown below, will discard all of a transaction's writes, and terminate the 

transaction. 

Transaction.Abort: PROCEDURE; 
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It is also possible that the file system will spontaneously abort a transaction because of a server 

crash, communication failure, or lock conflict. 

This concludes our model set of primitive objects and operations. The model abstracts a 

confederation of cooperating computers into a structure that has uniform naming and a distributed 

transactional file system. As we shall see in following sections, the abstractions introduced here 

make the replication algorithm straightforward to explain. Of course we believe that the model that 

we have described is realizable and practical; in fact, the ideas necessary for an implementation have 

received a great deal of attention. Gray [4] provides a nice discussion of two phase commit 

protocols, locking, and synchronization primitives. Lampson and Sturgis [5, 7] describe an 

implemented system that has all of the properties our model requires. 

3.2 Interface 

Our algorithm uses the facilities described in Section 3.1 to provide an abstraction called a file 

suite. This is a file that is realized by a collection of copies, which we call representatives because of 

the democratic way in which update decisions are reached. When a file suite is created, a 

description of its configuration must be supplied, which includes r, W, the number of representatives, 

the containers where they should be stored, and the number of votes each should be accorded. 

Configuration: TYPE = RECORD [ 
r: INTEGER, 
w: INTEGER, 
v: ARRAY OF RECORD [container: Container.ID, votes: INTEGER]]; 

File.CreateSuite: PROCEDURE [configuration: Configuration] 
RETURNS [suite: File.ID]; 

File.CreateSuite stores a suite's configuration in stable storage. The structures stored would 

depend on the algorithm's implementation, but Figure 1 shows one possible alternative. A suite is 

cataloged by directory entries, preferably more than one in case one of them is unavailable. Each 

representative has a prefix that identifies all the other representatives in the suite and their voting 

strength. 

Once created, a file suite can be treated like an ordinary file. The File.Read, File.Write, and 

File.Delete operations specified in Section 3.1 can be used to manipulate the abstract array of bytes 

represented by a file suite. Like file operations, all file suite operations are part of some transaction. 

A file suite appears to be an ordinary file in almost every respect. 

Differences arise because a file suite can have performance and reliability characteristics that are 

impossible for a file. It is possible to tailor the reliability and performance of a file suite by 

Inanipulating its voting configuration. A high performance suite results by heavily weighting high 

performance representatives, and a very reliable suite results by heavily weighting reliable 

representatives. A file suite can also be made very reliable by having many equally weighted 

representatives. A comp1etely decentralized structure results from equally weighting representatives, 

and a completely centralized scheme results from assigning of all of the votes to one representative. 

Thus the algorithm falls into both of the <;lasses described in Section 2. 
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Once the general reliability and performance of a suite is established by its voting configuration, 

the relative reliability and perfOlmance of Read and Write can be controlled by adjusting rand w. 
As w decreases, the reliability and performance of writes increases. As r decreases, the reliability and 

performance of reads increases. The choice of rand w will depend on an application's read to write 
ratio, the cost of reading and writing, and the desired reliability and performance. 

The following examples suggest the diverse mix of properties that can be created by 
appropriately setting rand w. In the table below we assume that the probability that a 
representative is unavailable is .Ol. 

Example 1 is configured for a file with a high read to write ratio in a single server, multiple user 

environment. Replication is used to enhance the performance of the system, not the reliability. 
There is one server on a local network that can be accessed in 75 milliseconds. Two users -have 
chosen to make copies on their personal disks by creating weak representatives, or representatives 
with no votes (see Section 4.1 for a complete discussion of weak representatives). This allows them 
to access the copy on their local disk, resulting in lower latency and less traffic to the shared server. 

Example 2 is configured for a file with a moderate read to write ratio that is primarily accessed 
from one local network. The server on the local network is assigned two votes, with the two servers 
on remote networks assigned one vote apiece. Reads can be satisfied from the local server, and 
writes must access the local server and one remote server. The system will continue to operate in 
read-only mode if the local server fails. Users could create additional weak representatives for lower 
read latency. 

Example 3 is configured for a file with a very high read to write ratio, such as a system 
directory, in a three server environment. Users can read from any server, and the probability that 
the file will be unavailable is very small. Updates must be applied to all copies. Once again, users 
could create additional weak representatives on their local machines for lower read latency. 

Exam.Qle 1 Exam.Qle 2 Example 3 
Latency (msec) 

Representative 1 75 75 75 
Representative 2 65 100 750 
Representative 3 65 750 750 

Voting Configuration (1,0,0) (2,1,1) (1,1,1) 
r 1 2 1 
w 1 3 3 

Read 
Latency (msec) 65 75 75 
Blocking Probability 1.0 X 10-2 2.0 X 10-4 l.0 X 10-6 

Write 

Latency (msec) 75 100 750 
Blocking Probability 1.0 X 10-2 1.0 X 10-2 3.0 X 10-2 
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3.3 The Algorithm 

We present the basic algorithm in prose and fragments of Mesa code. The prose is meant be a 

complete explanation, with the Mesa code provided so the reader can check his understanding of the 

ideas. All the Mesa procedures shown below are part of a single monitor called FileSuite. There is 

a separate instance of FileSuite for each transaction accessing a given suite. ENTRY procedures 

manipulate shared data, and thus lock the monitor. Careful use of public non-entry procedures has 

been made so the monitor is never locked while input or output is in progress, allowing FileSuitc to 

process simultaneous requests. 

:FileSuite: MONITOR [suitcNcune: File.ID] = BEGIN 

VersionNumber: TYPE = {unknown, 1,2,3,4, ... } 

Set: TYPE = ARRAY ('F BOOLEAN; 

SuiteEntry: TYPE = RECORD [ 
name: File.ID, 
version: VersionNumber, 
votes: INTEGER]; 

suite: ARRAY OF SuitcEntry; 

currentVersionN umber: VersionNumber; 

firstResponded: BOOLEAN; -- lroe whenfirSI representative has responded . 

r: INTEGER; 

w: INTEGER; 

-- number o/votes required/or a read quorum 

-- number a/votes required/or a write quorum 

.Whc,tl FilcSuite is instantiated, the number of representatives, their names, . their version 

numbers, their voting strengths, r, and w must be copied from some representative's prefix into the 

data structure shown above. This information ITmst be obtained with the same transaction that is 

later used to access the file suite, in order to guarantee that it accurately reflects the suite's 

configuration. Additional information, such as the speed of a representative, has been omitted from 

a $uiteEntry to make the basic algorithm easier to understand. 

To read from a file suite, a read quorum must be gathered to ensure that a current 

representative is included. After a file suite is first accessed, collecting a file suite never encounters. 

any delays. The operation of the collector which gathers a quorum is described in detail below. 

From the quorum, any current representative can actually be read. Ideally, one would like to read 

from the representative that will respond fastest. 

Read: PROCEDURE [file: Filc.ID, firstByte, count: INTEGER, buffer: POINTER] = 
BEGIN 
-- selecl best representative 

quorum: Set ~ CollectRcadQuorum[]; 
best: INTEGER ~ SclcctFastcstCurrcntReprescntative[quorum]; 

-- send request and wait for response 
File.Rcad[suitc[bcst].name, firstByte, count, buffer]; 

END; 
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To write to a file suite, a write quorum is assembled: all of the representatives, in the quorum 

must .be current so updates are rot applied to obsolete repr€sentatives~ All of the writes to the 

quorum are done in parallel. The flrfst write of a transaction increments the version numbers of its 

write quorum Thus, all subsequent writes will be directed to the same quorum because it will be 

the only one that is current. Determining which write is the first one must done under the 

protection of the monitor, and is not shown in the· Mesa code. With the procedure below, the result 

of. isSHlla:g two ooncurrent writes that update the same portion of a file is undeftned. 

Write: PROCEDURE [file: File.ID, firstByte, count: Il';'TEGER, buffer: POINTER] = 
BEGIN 

-- select write quorum 
quorum: Set +- CollectWriteQuorumO; 
i, count: INTEGER +- 0; 
process: ARRAY OF PROCESS; 

-- send requests to all members of quorum, and wait for responses 
FO R i IN [1..LENGTH[ suite]] 

DO 
IF quorum[i) THEN 

BEGIN 
count +- count + 1; 
process[count] +- FORK 

RepresentativeWrite{i,firstByte, count, buffer]; 
END; 

ENDLOOP; 
FOR i IN [l..count] 

DO 

END; 

JOIN process[i]; 
ENo.LOQP; 

~~(JrescntativeWrite: PROCEDURE [i, firstByte, count: INTEGER, buffer: POINTER] == 
nEG IN 
-- W8<lre ([!Cling an behalf afaur parent: join its transaction 

'1 'ransaction.J oinParen tsTransac.tion[]; 
Update Ver.sionNumber£i]; 

-- wrzte data on representallve and inform parent process 
File.WriteIstl1tefi];name, firstByte, count, buffer]; 

"EN&t . 

It is possible that a representative will becofJl~ l,lnavailable while a file ,suite is in ijse:,perhaps 

due to a server crash. A simple solution to this problem, not shown in the procedures above, is to 

abort the current transacliom·'if::R~ad,~{)r,Wri:tetake more than a specified length of time. This will 

restart the suite, as described below. 

Quorum sizes are the minimum number of votes that must be collected for read and write 

operations to proceed. It is possibJe to .increase. the performanceofa file suite., by aJtificially 

expanding a quorum with additional representatives. Once agaio t to reduce comple.xity;- the 

procedures shown above do not use this approach.' 

When a file suite is first accessed, version number inquiries are sent to representatives~ The 
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information that results is used as the basis for future collector decisions. To determine the correct 
value of a file suite's current version number a read quorum must be established before the file suite 
can entertain requests. All representatives might not contain the current voting rules, but the 
algorithm will stabilize with the correct rules before a read quorum is established, as shown in 
Section 4.6. If a representative is unreachable its version number read will never return. This does 
not prohibit a user's transaction from committing, as described in Section 3.1. 

InitiateInquiries: PROCEDURE = 
BEGIN 
i: INTEGER; 
-- find out the state afrepresentatives 

FOR i IN [1..LENGTH[suite]] 
DO 
Detach[FORK lnquiry[i]]; 
ENDLOOP; 

-- set currentVersionNumber and voting rules 
[] +- CollectReadD; 

END; 

Inquiry: PROCEDURE [i: INTEGER] = 
BEGIN 
-- we are acling on behalfofour parent 

Transaction.JoinParentsTransaction[]; 
-- find autlhe state of a representative 

New Rep resentati ve[ReadPre fixInformation[i]]; 
END; 

ReadPrcfixInformation: PROCEDURE [i: INTEGER] RETURNS [i, version, rP, wP: INTEGER, v: ARRAY OF 
INTEGER] = 

BEGIN 
< read version number, r, w, and array o/voting strenghts/rom the prefix o/representative i> 

END; 

New Representative: ENTRY PROCEDURE [I, version, rP, wP: INTEGER, v: ARRAY OF INTEGER] = 
BEGIN 
j: INTEGER; 
-- update shared data and notify 

suite[i].versionNumber +- version; 
-- if this is new information, update suite 

IF version)currentVersionNUJnber THEN 
BEGIN 
currentVersionNumber +- version; 
r +- rP; w +- wP; 
FOR j IN [l..LENGTH[suite]] 

DO 
suiteUJ·votes +- vU1; 
ENDLOOP; 

END; 
firstRcsponded +- TRUE; 
BROADCAST CrowdLarger; 

END; 
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The collector is used by every file suite operation to gather a quorum of representatives. 
Normally the collector selects what it considers to be the quorum that will respond the fastest, and 
returns immediately to its caller. Occasionally one of two problems will arise. First, it is possible 
that a read quorum of the suite's representatives have not reported their version numbers. In this 
case the collector can only wait for one of them to report in. The second potential problem is that a 
read quorum have reported their version numbers, but there is not a current write quorum. This 
can only occur if some representatives have not reported their version numbers. In this case if r < w 
the collector will initiate a background process to copy the contents of the suite into one of the 
obsolete representatives that has reported in. It is always legal to copy the current contents of the 
file suite to an obsolete representative. Note that the copy process will be reading from the suite, in 
effect a recursive call, but there will be enough votes for this read-only operation to proceed. To 
minimize lock conflicts the background process should be run in a separate transaction. The 
background process signifies its completion by breaking the transaction of its parent. 

CrowdLarger: CONDITION; -- notifed when a new representative is available 

CollectReadQuorum: ENTRY PROCEDURE RETURNS [quorum: Set] = 
BEGIN 
i, j, votes: INTEGER; 
index: ARRAY OF INTEGER; 
-- until the first representative responds we don't have a seedfor the voting rules 

UNTIL firstResponded DO WAIT CrowdLarger ENDLOOP; 
-- an endless loop that only returns when a quonlm has been established 

DO 
-- ifwe have a read quorum here, then the voting rules are current 

in~x ~ SortRepresentativesBySpeedO; 
quorum ~ ALL[FALSE]; votes ~ 0; 

-- see ifwe can find a read quorum 
FOR i IN [l..LENGTH[suite]] 

DO 
j ~ index[i]; 
IF suitefj]. versionN umber:;eunknowll THEN 

BEGIN 
quorumU] ~ TRUE; 
votes +- votes + suitcU]. votes; 
IF votes) = r THEN RETURN[quorum]; 
END; 

ENDLOOP; 
-- we can't find a quorum 

WAIT CrowdLarger; 
ENDLOOP; 

END; 

CollectWriteQuorum: ENTRY PROCEDURE RETURNS [quorum: Set] = 
BEGIN 
i, j, votes, readVotes: INTEGER; 
index: ARRAY OF INTEGER; 
-- an endless loop that only returns when a quorum has been established 

DO 
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index .... SortRepresentativesBySpeedD; 
quorum .... ALL[FALSE]; votes ~ readVotes .... 0; 

-- see if we can find a write quorum 
FOR i IN [l..LENGTH[suite]] 

DO 
j .... index[i]; 
IF suitefj].versionNumbencunknown THEN 

BEGIN 
readVotes .... readVotes + suiteO].votes; 
IF suitefj]. versionN umber = current THEN 

BEGIN 
quorumfj] .... TRUE; 
votes .... votes + suite[j]. votes; 
IF votes)=w THEN RETURN[quorum]; 
END; 

END; 
ENDLOOP; 

-- we can'tfind a write quorum; ifwe have a read quorum update obsolete representatives 
IF readY Oles) = r THEH 

BEGIN 
FOR i IN [l..LENGTH[suite]] 

DO 

IF suite[i].versionNumber:¢unknown AND 
suite[i]. versionNumber:¢current VersionN umber THEN 
BEGIN 
suite[i].versionNumber .... unknown; 
Copy.StartBackground[from: suiteName, to: suite[i].name]; 
END; 

ENDLOOP; 
END; 

WAIT CrowdLarger; 
ENDLOOP; 

END; 

11 

If a user decides to abort his transaction, or if the system spontaneously aborts a user's 
transaction the suite is no longer in a well defined state. The version number information it is 
holding is no longer guaranteed to be serially consistent with ensuing operations, and must be 
discarded and replaced by new inquiries. Asynchronous representative writes or version number 
reads still in progress must be aborted. 

Initialize: PROCEDURE = 
-- called at transaction abort and suite start-up 
BEGIN 
-- reset the suite 

ResetD; 
-- stop outstanding requests 

AbortFileSuiteProcessesO; 
Transaction. BeginO ; 
InitiateInquiriesO; 

END; 
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Reset: ENTRY PROCEDURE = 
BEGIN 
-- invalidate state information 

FOR i IN [l..LENGTH[suite]] 
DO 
suite[i].versionNumber f- unknown; 
suite[i].votes f- 0; 
ENDLOOP; 

firstRespondcd f- FALSE; 
currentVersionNumber f- unknown; 

END; 

At transaction commit the module instance is .deleted. 

4. Refinements 

4.1 Weak Representatives 

We can incorporate temporary copies into the algolithm by introducing representatives with no 

votes, called weak representatives. Such a representative will not change the quorums of a file suite, 

and thus can be introduced at any time. However, it can be included in any quorum and, when 

placed on a high speed storage device, can improve the performance of a file suite. 

Because a weak representative has no votes, it bears no responsibility for the long term 

safekeeping of data. There will always be a write quorum of other representatives that contain 

current data. Thus, if an error is detected while accessing a weak representative an acceptable means 

of recovery is to invalidate it by setting its version number to be unknown. This property allows 

weak representatives to be stored outside of the stable file system. We have made the further 

simplification of insisting that weak representatives be unshared. To insure that users do not share 

weak representatives exclusive locks are used. 

The simplified recovery and concurrency requirements of weak representatives allow us to store 

them in a less general file system than the one outlined in Section 3.1. In particular, they can be 

stored on a user's personal com1?uter using a very simple mechanism. After a crash on a user's 

personal machine it is sufficient to invalidate all weak representatives that are locked. 

4.2 Lock Compatibility 

A disadvantage that our algorithm has in comparison with Thomas' is that locks are set by the 

stable file system to guarantee serial consistency, which reduces the amount of concurrency in the 

system. For example, a typical locking structure that is. used to guarantee serial consistency has two 

types of locks, read and write. These locks are set on data items implicitly in response to file 

operations. The cOlnpatibility of locks is specified by the matrix: 
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No Lock 'Read 

No Lock Yes 

Read Yes 

Write Yes 

Yes 

Yes 

No 

Write 

- Yes 

No 

No 

A .transaction is suspended if it attempts to set a lock that is. incompatible. This matrix corresponds 

to the, familiar .rule that either n readers or one writer arepcrmittcd to access a file simultaneously . 

. This locking rule potcntially can introduce long pcriods of time when information js unavailable. 

For example, if a user controls the length of a transaction, he can hold.awrite lock for a long perio.d 

of time. This may naturally occur as a user thinks at the keyboard. To insure that no user 

monopolizcs a file, a transaction will bc timed out if other users are waiting for a file it has locked. 

A transaction that times out leaves files unchanged, because it is abortcd. The same mechanism 

insures that cyclic lock dependencies (deadlocks) will be resolved by aborting. some transaetion. 

Time-outs did no.t ,provide an adequate solution in our environment, as wc describc in Section 5.l. 
A property of serial cO,nsistency is that all of a transaction's writes appear to occur at transaction 

commit time. We can take advantage of this property to, increase the concurrency in our system. 

Writes appear to occur when they are issued, but in fact are buffered until commit time by the 

stable file system. A read following a write will receiv.e the write's data. When a user writes a 

datum, an I-Write lock is set, for intention to write. At commit time I-Write locks are convertcd to 

Commit locks, and the writing actually takes place. The new lock compatibility matrix is: 

No Lock Read 

No Lock Yes 

Read Yes 

I-Write Yes 

Conunit Yes 

Yes 

Yes 

Yes 

No 

I-Write 

Yes 

Yes 

No 

No 

Commit 

Yes 

No 

No 

No 

With this revised locking matrix, data is oniy unavailable for predictably shott periods of time, 

during commh processing. This reslt1ts in increased concurrency, as we discuss inS~ction 5:l. 
However, it may cause the later abortion of a transaction. 

\Ve chose to make m:uttiple I-Write locks incompatible, because eventual1y one of the two 

transactions would prdbably commit, and become ~ncompatible. lbus we chose not to postpone the 

inevitable. 

4.3.. Lower Degrees qfConsiSlenc)l 

We have' assumed that the algoritl1m imust ;oe cap.able of pravdding serial consistency. Lower, 
degrees of cons:i~ten(w are poSsible., and aIIbw lib~J1ics: to tiet-akcll, :forexutrlple. setting r to be OJ 
l'hisf1orro$~tpnds to the n0ti!on "give 'lne~ the latcst velfsio:m yo~u <zanfind~ but I tlon!t cate if it isn~l 
fresh". Certain applications that have self-correcting characteristics, such as name lookup, can use 

lower degrecs of consistency. However, the unexplicable behavior of lower degrees precludes their 

widespread use. Gray et al [3] have explored the properties of various degrees of consistency in 
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detail. Their Degree 3 consistency corresponds to serial consistency. If our algorithm is run on top 

of a file system that ensures Degree 0 or Degree 1 consistency, the algorithm will guarantee the same 

consistency it sees, a fact we will not prove here. 

4.4 Size of Replicated Objects 

The size of an obj~ct that is replicated shQuld .be ch0sen to match· the heeds of an intended 

application. For example, a data base manager might choose torepUcate relations, tuples, or 

indexes. Each replicated object requires a version number. Because our algorithm depends on a 
file's version number remaining unchanged throughout a transaction, the smallest unit that can be 

individually locked is a file. 

4.5 Broken Read Locks 

If the stable file system Gqobr€4lk: re~d locks; to resol-ve conflicts' instead of abortirigan entire 
transaction, two positive effects result. First, fewer transactions are aborted. Second, it is not 

necessary for .~ version nu~l?cr to rerp.ain unchanged· during a' tranSactiOl'l; If it does change, the 
broken read lock Il,1~ch~nism, informs me algorithm., The smallest lockable tlriit'is riO Iotiger a file, 

but instead is tge. srn(llle~klockable unjt s\lpported'by the' 'stable fUe system. 

4.6 Reassignin'gf/otes 

As the focus of r~ferences.to a file suite changes, it is: 'possible to" ulxlatethe file' Suite's voting 
configuration for optimum perio~mance.. Un~e$sthe; ~ refinement proposed :iri Section 4.5 is adopted, 

updating a suite's voting configu,ration conflicJswith a;ny" other use of thesuitc. Section 3J;sinquiry 

process protects itselfagainslsuch changes. by rcading a 'Suite's voting structure under the prbtection 

of a transaction. 
. ,-' 

To change ·r, w~ or the voti~g.structure of:4, fUe §uit.~ jtisnec\essaVy~~ enSHre:th~t that' there is a 
writequohmi under the new' rules that is current. The change can then be effected by updating the 

prefixes of a set of representatives that is the union of a current write quorum and a future (under 

the new voting rules) write quonlm. We claim that regardless of the order representatives are 

examined, the most recent voting rules will be discovered before a read quonlm is established. 

Imagine that a transaction incorrectly assumes that an obsolete generation of voting rules, G, is 

current. Then there is a set voting rules, G + 1, that is one generation more recent. But when G + 1 

was established its rules were written into a write quorum (under G). Therefore, the transaction 

, would have examined a representative that contained or once contained G + 1. If this representative 

did not contain G + 1, then it contained a later generation of the voting rules. The version number 

mechanism in NewRepresentative would have replaced G with one of these later generations. But 

we assumed that the transaction did not find a later generation. We have our contradiction. 



WEIGHTED VOTING FOR REPLICATED DATA 15 

4.7 Replicating Containers 

Using the procedure outlined in Section 3.2, a user specifics a collection of containers to create a 

file suite. This flexibility can complicate the operation of the system. Imagine that User A creates a 

file suite on containers C and D, and User B creates a tile suite on containers D and E. If container 

D fails it is possible that one or both of the users could continue to access their suites, and it is also 
possible that both of the users could not proceed, depending on the voting configuration. In short, a 

system operator does not know what a failure of container D implies. Replicated containers provide 

a solution to this problem. 

Containcr.CrcatcRcplicatcd: PROCEDURE [configuration: 
Configuration] RETURNS [rcplicatcdContaincr: Container.ID]; 

A replicated container appears to the user exactly like an unreplicated one. However, when 
passed a replicated container, File.Create creates a file suite instead of a single file. Thus, the user is 

unaware that replication is taking place. We call the containers that compose a replicated container 

base containers. 

lbis approach has several benefits: 

It is easy to determine the implications of removing a base container from service. This 

allows the system to be operated effectively. 

- Voting stnlctures can be tailored to the characteristics of the system's configuration by 

knowledgeable system administrators. 

- Backup and archiving of replicated containers makes sense. 

- Replicated containers can be mounted and dismounted as a unit. This is because all of a 
replicated container's corresponding base containers are easily identified. 

4.8 Releasing Read Locks 

Every lock that a transaction holds necessitates communication at commit time to ensure that the 

lock is still in force. Section 5's InitiateInquires procedure sends inquires ~o all representatives in the 

suite, to determine their status. A read lock is thus obtained on every representative that is 

available. An enhancement to the algorithm would be to release the read locks on representatives 

that are not used as part of a quorum before committing. This would reduce the amount of 

communication at commit time significantly. 

4.9 Updating Representatives in Background 

In conjunction with replicated containers, it is possible to operate servers that update obsolete 

representatives by examining a replicated container and initiating appropriate transfers. This can be 

done when there is surplus communication capacity in the internetwork. 
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5. Implementation 

5.1 The Violet System 

We have implemented the algorithm in the context of a simple decentralized data management 
system called Violet [2]. Violet is a distributed calendar system which provides simple relational 
views of personal and public calendars. Figure 4 is a picture of Violet's display-based user interface. 
A user interacts with Violet by selecting iteras from the command menu at the bottom of the screen. 

Violet is designed to operate in the environment shown in Figure 2. Each user has a personal 
computer, with a bit-map display, a pointing device, and a local network interface. Local network 
segments operate at 2.84 megabits per second," and are connected together by gateways to form an 
internetwork. 

Violet's implementation of file suites closely parallels the code fragments of Section 3.3; it 
creates and manipulates uniformly weighted representatives. Each file suite is managed by a 
monitored module, consisting of seven pages of Mesa source code. Instead of employing the 
directory suggested by Figure 1, a file suite mune in Violet is a list of the representatives that 
compose the suite. 

Section 3.1's stable file system is implernented by DFS [5, 7]. DFS is a system composed of 
cooperating servers that provide a decentralized transactional file system. The interface to DFS 
closely parallels the model we presented in Section 3.1. At the File interface, we found that the read 
latency of a 512 byte page on a local DFS (on the same local network as the user) was 75 
milliseconds. When "the server was located on a remote network, accessed through a 9.6 KB data 
connection, the read latency of a 512 byte page was 650 nlilliseconds. By comparison, the read. 
latency of the user's local disk was 65 milliseconds. 

Replication is accomplished below Violet's sitnulated virtual memory, as shown in Figure 3. 
Pages from local and remote file suites are buffered in Level 2. 

Before we implemented the proposal of Section 4.2, Violet exhibited the following undesirable 
behavior. Imagine that Users A and B are viewing the same calendar for a considerable length of 
time, longer than any minimmn amount of time which the file system guarantees for viewing data. 
User A decides to update his view. As soon as User A writes into the view, User B's transaction will 
break. User B is now denied access to the data, and User B's machine constantly requests access to 
fresh information to repaint its screen. Meanwhile, User A holds a write lock while he thinks at the 
keyboard. User B eventually times out User A's lock, breaking A's transaction. Both screens repaint 
with the old information, and no net progress is made. This problem was solved by implementing 
Section 4.2'8 proposal. 

5.2 Perfonnance 

We present two sets of cost figures for our algorithm. The first set of costs, the number of reads 
and writes, are inherent in the algorithm. The second set, the number of messages and round-trip 
delay times, are the result of an implementation that uses DFS. 

Consideration should be given to the source of the message and delay statistics. DFS was 
optimized for a local network, and thus some of the figures below are misleading. DFS requires 
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three nlessages for a single request due to the protocol it uses for duplicate suppression. In addition, 

DFS uses a three phase commit protocol, while only a two phase protocol is logically necessary. 

All of the figures shown are for worst case behavior. We have assumed that each representative 

is stored on a separate server, r= w, and there are at least two representatives. The Add Server 

figures refer to the cost of causing other servers to participate in an existing transaction. The 

Inquiries line represents the cost of the version number reads. Coordinator and Workers refer to the 

participants in commit processing. 

d· a round trip delay time in the network 

m: the number of representatives in a quorum 

Command Reads Writes Messages Dela~ 

Begin Transaction 3 d 
First Read m+l 0 8m-2 4d 

Add Server 0 0 5(m-l) 2d 
Inquiries m 0 3m d 
Read 1 0 3 d 

Subsequent Read 1 0 3 d 
Subsequent Write 0 m 3m d 
End Transaction 6m+3 3d 

Coordinator 3 d 
Workers 6m 2d 

6. Conclusion 

We have demonstrated a new algorithm for the maintenance of replicated data that offers many 

benefits not provided by previous solutions. The introduction of weighted voting allows file suites to 

be synthesized with desired properties, including the presence of temporary copies. The separation 

of consistency considerations from replication has resulted in a conceptually simple approach which 

guarantees serial consistency in a straightforward way and is relatively easy to implement. 

The facilities of Mesa have allowed us to express and implement a complex concurrent control 

structure. We invite language designers attempting to provide facilities for concurrent programrning 

to gauge the difficulty of implementing the algorithm in their language. 

The idea of weighting votes will undoubtedly have applications outside of replication algorithms. 

For example, when a decision has to be made by cooperating nodes with different probabilities of 

being correct, weighting the nodes' responses will improve the probability that a correct decision is 

reached. 

Acknowledgments. I would like to thank my advisors, Butler Lampson and Susan Owicki, for 

their hard questions and encouragement during the course of this research. James Gray, Hector 

Garcia-Molina, Lawrence Stewart, Howard Sturgis, and the referees provided helpful comments and 

discussions. 



WEIGHTED VOTING FOR REPLICA TED DATA 21 

References 

1. Eswaran, K.P. et al The Notions of Consistency and Predicate Locks in a Database System, 
Comm. ACM 19, 11 (November 1976), pp. 624-633. 

2. Gifford, D.K. Violet, An Experimental Decentralized System, Integrated Office System 
Workshop, IRIA, Rocquencourt, France, November, 1979. Available as CSL Report 79-12, 
Xerox Palo Alto Research Center, 1979. 

3. Gray, IN. et al Granularity of Locks and Degrees of Consistency in a Shared Data Base, in 
Modeling in Data Base lvlanagement Systems, North Holland Publishing, 1976, pp. 365-394. 

4. Gray, J.N. Notes on Data Base Operating Sy~tems, in Operating Systems, An Advanced Course, 
Lecture Notes in Computer Science 60, Springer-Verlag, 1978, pp. 393-481. 

5. Israel, J.E., Mitchell, J.G., and Sturgis, H.E. Separating Data From Function in a Distributed 
File System, Second International Symposium on Exploratory Systems, IRIA, Rocquencourt, 
France, October, 1978. 

6. Lampson, B.W., and Redell, D.D. Experience with Processes and Monitors in Mesa, to appear 
in Proceedings of the Seventh Symposium on Operating System Principles, ACId Operating 
Systems Review. 

7. Lampson, B.W., and Sturgis, H.E. Crash Recovery in a Distributed Data Storage Syste~ 
Comm. ACM, to appear. 

8. Mitchell, J.G. et aI, Mesa Language !vlanual, CSL Report 79-3, Xerox Palo Alto Research 
Center, February, 1979 

9. Rothnie, J.ll, Goodman, N., and Bernstein, P.A., The Redundant Update Methodology of SDD-
1: A System for Distributed Databases (The Fully Redundant Case), Rep. No. CCA-77-02, 
Computer Corporation of America, 1977. 

10. Stonebraker, M. Concurrency Control and Consistency of Multiple Copies of Data in 
Distributed INGRES, IEEE Trans. on Soft. Eng. 5, 3 (May 1979), pp. 188-194 

11. Thomas, R.H. A Majority Consensus Approach to Concurrency Control for Multiple Copy 
Databases, ACM Trans. on Database Systems 4, 2 (June 1979), pp. 180-209. 



22 DA VID K. GIFFORD 

Appendix: Consistency Considerations 

Given the serial consistency [1] of stable files, which we allowed ourselves in Section 3.1, it is 
relatively straightforward to demonstrate that file suites also provide, serial consistency. To do so, we 
need to formalize sufficient conditions for serial consistency, and show that file suites satisfy these 
conditions. 

We formalize serial consistency as follows. A processing of an act is said to be uninterrupted if 
no other activities take place while it is in progress; a cOncurrent processing implies that other acts 
may be processed in parallel. An act is said to appear to occur atomically if the concurrent 
processing of the act has the same result that an uninterrupted processing would have produced. It 
follows that for a transaction mechanism to guarantee serial consistency a transaction must appear to 
occur atomically. A fresh read is one that, if issued now, would have the same result that it 
originally had. We propose the following axioms as sufficient conditions to guarantee serial 
consistency: 

TCI (Atomicity of writes) All of the writes of a transaction appear to occur atomically at 
transaction commit. 

TC2 (Atomicity of reads) For a transaction to commit, at the instant the writes occur all of 
the transaction's reads must be fresh. 

THEOREM. If a transaction obeys TCI and TC2 then the transaction appears to occur atomically. 
PROOF. By contradiction. We assume that the operations comprising transaction t did not 
occur atomically. TCI guarantees the atomicity of writes. Thus there is some read r that 
did not appear to occur at commit time. This implies that r would have produced different 
results at commit time. TC2 does not permit this. 0 

\Ve demonstrate that our algorithm, coupled with the consistency of stable flIes, guarantees the 
consistency of file suites, by showing that a file suite obeys TCI and TC2, and thus is consistent. 

THEOREM. Our replication algorithm guarantees TCI and TC2. 
PROOF. (TCI) We have assumed that all writes to stable files in a transaction appear to 
occur atomically. File suites writes are transfOlmed to stable file writes. The desired result 
follows. 
(TC2) Imagine that our algorithm does not guarantee TC2. This implies that one of the file 
suite reads must not be fresh at commit time. This implies that some file suite read, if 
repeated now, would not yield the same results as it originally did. However, a key property 
of our algorithm is the guarantee that an updated datmn will appear in a write quorum. But 
every read quorum and every write quorum have a non-null intersection. Hence at least one 
of our version number reads would not be fresh. But TC2 for the stable file system 
guarantees that all of the representative reads are fresh. We have our contradiction. 0 




