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Automatic Derivation of Code Generators 

from Machine Descriptions 

R.G.G.CaUell 
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1 

Work with compiler-compilers has dealt principally with automatic generation of parsers and 
lexical analyzers. Until recently, little work has been done on formalizing and generating the 
back end of a compiler, particularly an optimizing compiler. This paper describes 
formalizations of machines and code generators, and a scheme for the automatic derivation 
of code generators from machine descriptions. It was possible to separate all machine 
dependence from the code generation algorithms for a wide range of typical architectures 
(IBM-360, PDP-11, PDP-10, Intel 8080) while retaining good code quality. Heuristic search 
methods from work in Artificial Intelligence were found to be both fast and general enough 
for use in generation of code generators with the machine representation proposed. A 
scheme is proposed to perform as much analysis as possible at code generator generation 
time, resulting in a fast pattern-matching code generator. The algorithms and 
representations were implemented to test their practicality in use. 

1. Introduction 

In the past decade, there has been increasing interest in reducing the effort to construct 
compilers. The problem has become more important as good-quality compilers are required 
for the increasingly numerous machine architectures made possible through 
microprogramming and LSI technology. Progress has been made in automatic generation of 
the parsers that translate source language into internal notation. However, it has proven 

1The author's present address is Xerox Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304. This 
research was supported in part by the Advanced Research Projects Agency of the Office of the Secretary of 
Defense under contract number F44620-74-C-00"74 and is monitored by the Air Force Office of Scientific 
Research. 



2 Automatic Derivation of Code Generators from Machine Descriptions 

much more difficult to do the same for the second part of the compilation process: the 

translation of internal notation into machine code. The work presented here suggests that 

more general formalizations of machines and code generators are needed to allow the 

automatic derivation of code generators. 

This work necessarily involves relatively disparate areas of computer science: computer 

architecture, compilers, automatic programming. It is only one of many possible applications 

of machine descriptions, that include emulation of machines, automatic generation of 

assemblers (Wick[1975]) and diagnostics (Oakley[1976]), automated hardware design 

(Barbacci & Siewiorek[1975]), as well as this work, which is part of the Production-Quality 

Compiler-Compiler (PQCC) project at Carnegie-Mellon University (Leverett et al[1979]). 

The PQCC group is interested in simplifying and/or automating the construction of a high

quality compiler generating optimized code. The work is concentrating on the machine

dependent aspects of optimizing CQmpilers, a difficult problem that has received little 

attention. PQCC is using the multiple-phase structure of the Bliss-11 compiler (Wulf et 

al[1975]) as a starting point for the research. 

Some work has been done in the area of code generation in general (Wilcox[1971], 

Weingart[1973], Simoneaux[1975]). There have been two classes of approach to simplifying 

production of code generators. The first is the development of specialized languages for 

building code generators, with built-in machinery for dealing with the common details; this 

might be called the procedural language approach. Early work in this area was done in 

compiler writing systems (Feldman[1966], Feldman & Gries[1968], McKeeman et al[1970], 

White[1973]). Also, Elson & Rake[1970] and Young[1974] have concentrated specifically on 

code generator specification languages and have been relatively successful. The other 

extreme is the descriptive language approach: automatically building a code generator from 

a purely structural and behavioral machine description. Miller[1971], Donegan[1973j, 

Weingart[1973], Snyder[1975], and Newcomer[1975] fit the descriptive language category, to 

varying degrees. A survey of the above work, particularly as it relates to the goal of 

automating the production of code generators, can be found in Cattell[1977]' 

More recently, Fraser[1977], Glanville[1977], Ripken[1977], and Johnson[1978] have done 

related work. All of these are concerned with formalizing the code generation process in the 

sense of separating the code generation algorithms from machine dependent tables with 

which they operate, but they differ in the generality of the machine representation and the 

assistance provided in constructing the tables. Hipken and Johnson propose code 

generation schemes based on templates mapping program trees onto instructions. Glanville 

also uses these templates as a machine description, but automatically derives a transition 

table from them; the resulting table-driven code generator is thereby faster. In this work and 

in Fraser's, the machine description is more complex and an analysis of the machine is 

needed to derive the templates. There are therefore two parts to this work, the template-
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driven code generator and the template-deriving code generator generator. Fraser takes a 

human-knowledge-based approach to the problem, as opposed to the formal approach taken 

in this work; these approaches are complementary, with different strengths, providing an 

interesting contrast of the use of methods from Artificial Intelligence. 

A common objection to general work in the code generation area has been that it has not 

been practically applicable. In order to demonstrate the feasibility of the ideas, a prototype 

system of the algorithms and representation proposed here has been implemented. 

Figure 1 gives an overview of the problem viewed by this work. Three algorithms and 

representations are involved: 

1. The formal representation of the machine, labelled MD (Machine Description) in the 

figure, and its extraction from a procedural machine description language such as 

ISP (8ell & Newell [1971 n. 

2. The tabular representation of the pqrse-tree to machine-code translation, labelled MT 

(Machine Tables) in the figure, and the code generation algorithms that use these 

tables. 

3. The algorithms which derive (2) from (1) by heuristic search for optimal code 

sequences. 

These three problems are discussed in Sections 2 through 4 of this paper, respectively. 

2. Formalization of Instruction Set Processors 

Before we can deal with code generators or their automatic generation, we must define the 

class of machines with which we are dealing. This is a crucial step. We want a .machine 

formalization that is sufficiently restrictive to make it possible to generate code with a simple 

fast algorithm, but general enough to include a wide range of typical computer architectures. 

We will assume such a machine consists of an instruction set processor that iteratively 

retrieves instructions from a primary memory, and (conditionally) changes the contents of a 

set of locations termed the processor state, as specified by the instruction. 

Five main kinds of information are given by the formal machine description: 

Storage Bases: The basic storage array(s) of the processor state. Each has a length 

(the number of words in the array, possibly one), a width (number of bits per word), 

and a type. The type essentially specifies how the storage base can be used; it may 

be: General-purpose (locations that may be used to hold values), Temporary 
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Figure 1: Relationship of the progra.ms and representations proposed.tn fhe horizontal direction, 
the construction of a code generator from the machine description is shown. The MD is the formal 
representation of the machine, which could be extracted from a machine description such as ISP. 
The MT is the formal representation of the code generation process; the code generator is table-driven 
by this Machine Table. The code generator derivation process constructs the MT from the MD. In the 
vertical direction, the use of the code generator itself is shown, translating program trees into code 
for the target machine. The program tree is produced by language-dependent compiler front end 
that translates source code into the TCOl (Tree-based Common language) notation. Further pro
cessing such as peephole optimization may be performed on the machine code output. Note: in 
Cattell[1978], the terms MOP and lOP are used for MD and MT, respectively, for historical reasons. 
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(condition codes), or Reserved (locations such as a stack pointer that may not be 

used to hold values). In addition, two storage bases are distinguished as special in 

the machine description: the Program Counter (which is type Reserved), and the 

Primary Memory (General-purpose). 

Operand addressing: The instructions have particular properties with respect to the 

kinds of storage base accesses they may make; they differ not only in which may be 

accessed, but in how, i.e., the address computation. We define an Access Mode for 

each distinct type of addressing on the machine; for example, indexed off a register, 

indirect through a memory location, or an immediate constant from an instruction 

field. The access mode is described by an expression that represents the access in 

terms of arithmetic operators and accesses to storage bases, for example; 

M[C2 + R[C1]] designates accessing storage base M by indexing off register C1 by 

the constant C2. An operand of an instruction can generally belong to any of a set 

of access modes depending on opcode, mode bits, etc.; for each such set there is an 

Operand Class. For example, an ADD instruction might require a general-purpose 

register as the operand receiving the result, and allow either an immediate constant 

or a memory location as the other operand. Formally, an Operand Class is a set of 

tuples consisting of an access mode, its time/space cost (in this context), and a 

specification of the corresponding instruction field values (e.g., mode bits or address 

field). The separation of the operand addressing function from the instructions 

themselves greatly reduces the number of instruction descriptions necessary for 

machines with a number of addressing modes, as well as simplifying the generation 

of good code using address mode computations. 

Machine Operations: These represent the actual instructions available. For each we 

need to know cost (space and time), binary formatting information, and a set of 

input/output assertions. The latter describe the effects of the instruction. Each 

assertion specifies a destination operand class (the location to be modified), an 

expression over constants and operand classes (the new value of the location in 

terms of the previous processor state), and a boolean function (again over the 

processor state) specifying when the location takes on the new value. For example, 

an increment-and-skip-on-zero (ISZ) instruction might have two assertions 

(1)R+-R+1 (2) if (R + 1) = 0 then PC+-PC + 1 

represented in Algol-like form for readability. (The actual assertions are represented 

as trees for ease in matching to program trees; throughout this paper the details of 

the representations are suppressed for the sake of a clearer exposition.) The first 

assertion always holds; the second contains a boolean function specifying when the 

location (the program counter) takes on a new value. R is an operand class, that 

might for example represent anyone of the machine's general purpose registers. 
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Note that references to such locations refer to their values before instruction 

execution, i.e., there is no ordering on the assertions. 

Data Types: Machines are normally built around a set of data types. For each one, 

we need to know the abstract domain (e.g., reals, integers, characters) that it 

represents and the encoding/decoding function to/from binary bit strings (e.g., 16-bit 

twos complement). Each arithmetic or logical operator in the instruction assertions 

specifies the data type(s) on which it operates. 

Instruction Fields and Formats: Finally, the machine description must specify the 

correspondence of the abstract operations and operands to the actual binary 

encoding. For example, an ADD instruction might have an instruction format with 

three fields: an opcode, address mode bits, and a displacement field used in the 

computation of the operand address. The values of these fields are determined by 

the instruction (e.g., opcode = 17) and its operands (e.g., mode = 1, 

displacement = 2473) as specified by the binary formatting information associated with 

machine operations and operand classes. The binary representation description will 

not be necessary for the purposes of this paper; note that we can ignore this 

description precisely because it has been separated from the rest of the abstract 

machine. 

Note that the machine representation used differs from a procedural machine description 

language such as ISP due to the structure it requires of the machine and the non-sequential 

instruction descriptions. It is possible, however, to derive our representation from ISP with 

symbolic simulation and a little help from a human (Oakley[1979]). 

Note also that the machine representation does not say how to generate code for the 

machine in any way; it essentially specifies a mapping from machine operations to operations 

of a common semantic notation (TeOl, described in the next section), and the code 

generation problem is to invert that mapping. 

Space limitations do not allow a complete definition of the components of the machine 

model here. The interested reader is referred to Cattell[1978] and the second paper in this 

collection. 

3. Formalization of Code Generation 

In order to automate the generation of code generators from a machine description, it is first 

necessary to define what a code generator is in a machine-independent manner, and to 

separate good code generation algorithms from the machine-dependent tables they use. 

The code generation scheme is based on a form of templates we will refer to as tree 
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productions, which are collected in the Machine Tables (MT). A given source program is 

translated into an intermediate parse-tree-like notation (TCOl) by ·the front end of the 

compiler. The code generator traverses the program tree, matching each node against 

patterns on the left-hand-sides (lHSs) of the productions in the Machine Tables. When a 

pattern matches, the right-hand-side (RHS) of the production specifies code to be 'generated, 

special compiler actions such as allocation, or further matches to be recursively performed. 

For example, a simple production might be 

R+-R + E => ADD R,E 

where Rand E are operand classes, and the RHS consists of a single instruction (an add) to 

be emitted (the actual syntax for productions is more complex; see the examples in Section 

4.3). This production might be used in generating code for the TCOl tree X+- X + 2*Y: the 

code generator recognizes that X (allocated to a register, say) can be accessed directly by 

operand class R, and generates a subgoal to make 2*Y accessible via operand class E. The 

subgoal is of the form l+-2*Y, where l is an allocated location compatible with E. Had the 

expression 2*Y been of a form which happens to conform to E, say the M[C2 + R[C1]] 

example given in the previous section (a computation of a contiguous vector element), then 

just the single ADD instruction would be generated for the entire assignment statement 

X+-X + A[I]. 

A simple example of a production dealing with a control construct is 

IF R=Q THEN S => BNE R,l1; S; l1: .... 

This illustrates a recursive call of the code generator (on the statement S) and a compiler· 

generated label (l1), as well as emitting an instruction (Branch if Not Equal). More complex 

productions are needed to deal with constructs such as loops, for example to take 

advantage of the ISZ instruction given in the previous section. 

Thus we have a simple, machine-independent code generation algorithm, and Machine 

Tables that specify productions, addressing, and formatting information for the target 

machine. The strategy used by the basic code generation algorithm (tree traversal and 

subgoals) is essentially identical to the heuristic search for code sequences used in the code 

generator generator we will discuss in Section 4.2. The difference is that the code generator 

need only deal with one kind of mismatch between the source tree and pattern tree: the 

operands must be assigned or moved to locations compatible with the pattern requirements. 

This register allocation (and associated operand moves) is as essential to every code 

generator as the actual selection of instructions. 

Register allocation is actually done before the code generation in the PQCC compiler by 

performing a pseudo-code-generation pass to determine where storage bases of various type 

are desirable. Peephole optimization and code output is performed after code generation 
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because certain operations are more conveniently done on a symbolic representation of the 

object code (e.g., resolving absolute versus short relative addressing, dealing with base 

registers, and eliminating redundant instructions). 

A prototype of the code generator has been built. It appears that code comparable to a 

good hand-crafted compiler (e.g., 8Iiss-11) can be generated with proper care; experimental 

results are discussed in a later section of the paper. 

Further details of the code generator, register allocation, and code optimizations have been 

deferred to the third paper in this collection (Cattell, Newcomer, & leverett[1979]), so that 

we may proceed to the central topic of this paper, the automatic derivation of the code 

generators. 

4. Automatic Derivation of Code Generators 

In this section, we consider the problem of deriving the Machine Tables, that control the 

code generation process, from the Machine Description (see Figure 1). 

One of the central algorithms used in the derivation of code generators is itself a code 

generator, specifically one which takes as input a machine description and [heuristically 

generated] TCOl tree. This machine-independent code generator could be used directly as 

the code generation phase of the compiler (i.e., use MD directly instead of MT in Figure 1). 

In practice, however, it is preferable to separate compile-time from compiler-compile-time, to 

make the code generator as compact and efficient as possible, allowing a thorough analysis 

of the alternatives at (mu'ch less expensive) compiler-compile-time. Thus we introduce this 

extra level of table for efficiency. 

As a result, the code generator derivation process must be broken into two parts: selection 

of the special cases to be put into the Machine Table for the derived code generator (the 

lHSs of the productions), and for each of these, finding the best code sequence for the 

target machine (the RHSs of the productions). The former is performed by a heuristic 

algorithm we will refer to as Select, the latter by the machine-independent code generator 

we will refer to as Search. We first discuss the design of Search. 

4.1 Tree Equivalence Axioms 

The central formalism on which Search is based is a set of axiom schemas that specify 

semantic equivalences over computations; some examples of these are shown in Figure 2. 

The axioms express the classical arithmetic and boolean laws, as well as rules about 

programs and the model of instruction set processors. They will be used to specify the legal 

tree transformations (programs, instructions, and axioms are represented as trees) in the 
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Boolean axioms 
not not E < = > E 
El and E2 < = > note (not El ) or (not E2) ) 

E1 and E2 < = > E2 and El 
Eand E <=> E 

A rithmetic axioms 
E+O <=> E 
-(-E) < = > E 
-E < = > O-E 
El *E2 (= > E2*E1 
E shift 1 (= > E *2 

Relational axioms 
not (El > E2) < = > (El ( E2) 
(El ( E2) or (El = E2) (= > El < E2 

Fetch/Store decomposition rules 
E1 (E2) (= > Sf- E2; E1 (S) 
Sl foE (= > S2f-E; Sl f-S2 

Side-effect compensation axioms 
S; Of-E (= > S if 0 is temporary state 
S; Of-E (=> Alloc(O); S if 0 is general purpose 

Sequencing Semantics axioms 
Sl (= > Sl; pef-pC + n; S2(space n> 
if E then PCf-pC + n; S(space n> < = > if not E then S 
PCf-E = > goto E (unconditional jump) 
goto L1 < = > goto L1-L2 + PC; L2: (relative jump) 

Implementation rules 
while E do S = > Ll : if not E then goto L2; S; goto L l ; L2: 

if E then Sl else S2 = > if E then goto L l ; S2; goto L2; Ll : Sl; L2: 
if E then S = > if (not E) then goto L; S; L: 

Notation: 
L: location in instruction store; 
0: location in data store; 
E: combinatorial tree; 
S: statement (assignment or conditional) tree; 

Figu re 2 : Tree Equivalence Rules (Examples) 

9 
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heuristic search for optimal code sequences. 

The advantage to the use of the axioms and the formal search methods we are about to 

discuss is, that these are almost entirely machine-independent, and thus only the machine 

description itself need be changed to generate different target code. (However, there are 

exceptions to this statement: the axioms for the machine's particular binary representation of 

integers must be used, and it may be necessary to add axioms to reflect new data 

types/ operations provided by the machine.) 

The arithmetic and boolean axioms are relatively straightforward: they include laws such as 

commutativity of AND and +, DeMorgan's law, the double-complement rule, and the 

idem potence of adding zero. 

The remaining axioms (see figure) were developed specifically for this work, and require 

some explanation. Note, for example, the axiom labelled Fetch Decomposition: 

This states that an expression E1 with a sUb-expression E2 can be computed by first 

computing E2 and storing the result in a location S, then replacing E2 with S in the 

computation of E1. This essential/ysays that storage may be used for temporary results. 

The companion axiom Store Decompositioh is simply a special case in which E1 is an 

assignment statement; this case is treated separately because of the way the search works. 

Other axioms deal with side effects. If an instruction has more than one assertion, it may be . 

possible to use it for a subset of its effects, and ignore or compensate for any undesired side 

effects on the processor state, depending on the type of storage base involved (see Section 

2): temporaries such as condition codes may be ignored, general-purpose locations such as 

registers and primary memory may be used if allocated, and reserved locations such as the 

stack pointer and program counter must not be destroyed. 

The remaining axioms are concerned with flow of control. Some define higher-level 

constructs in terms of low-level ones. For example, 

if E then S < = > if not E then goto L; S; L: 

describes how to implement an IF with a conditional jump. The other flow axioms define the 

semantics of the program counter and low-level control: 

goto E < = > PC+-E 

PC+-PC + n; S<space n> < = > <nil> 

PC+-L1 <=> PC+-PC+L1-L2; L2: 

The first of these simply defines the program counter (PC); the second rule says that 
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incrementing the PC by n causes the next n units of code to have no effect; and the last 

allows the use of relative and absolute jumps interchangeably. 

4.2 Search 

Now consider the machine-independent code generation problem. We are given a machine 

M with instructions m1, m2,... mn, and a goal tree G (from the Select algorithm) for which 

we would like to generate code (in the machine language of M). That is, we would like to 

find a sequence of instruction tree instantiations that is semantically equivalent to the goal 

tree G. The axioms presented in the previous section define "equivalent": if a subtree 

matches one side of an axiom schema, the subtree may be replaced by the instantiation of 

the other side. In this way, the goal G can be successively transformed into other trees, until 

eventually we may arrive at a tree that is a sequence of instruction trees: 

G => G' => G" => => mi ; mi ; ... mj. 
12k 

Because more than one axiom may be applicable to a tree at any point, and we can test for 

the termination condition of a sequence of instructions, we have a classical search problem. 

That is, starting with G, we may use all applicable axioms to obtain a set of equivalent trees, 

recursively apply all applicable axioms to those trees, and so on, until we have one or more 

instruction sequences for the goal tree. 

Applying this search algorithm literally is undesirable, as the search space is combinatorially 

large. Note that axioms may be applicable at more than one point in a goal tree, and more 

than one axiom may be applicable at each one of these points. 

To reduce the size of the search space, we use some established methodology from the field 

of Artificial Intelligence. In fact, we use not one method, but several, allowing the strongest 

applicable method to be used for each kind of information. For this purpose, the axioms 

have been divided into three classes: 

1. Transformations. These are the axioms concerned with arithmetic and boolean 

equivalence. Transformations will be used in conjunction with means-ends analysis 

in the search. 

2. Decompositions. These axioms are normally those concerned with control 

constructs; they decompose constructs into sequences of other constructs, allowing 

the search to recursively proceed on subgoals. Decompositions will be used in 

conjunction with a heuristic search. 

3. Compensations. These are the axioms concerned with side effects. No search at all 

will be associated with these axioms; it will be possible to use them in a pre-pass on 

the Machine Description. 
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Briefly, the basic Search algorithm, which is' applied to each pattern (goal) tree determined 

by Select, is as follows: 

S1. If the goal tree matches. an instruction directly (or matches a pseudo-instruction with 

side effects, as described in the next section), we return that instruction as the code 

sequence for the goal tree. 

S2. If there are any Decomposition axioms applicable to the goal tree, this search 

algorithm is applied recursively to try each new goal tree resulting from their 

application. If any of these recursive instantiations succeed in finding code 

sequences, the alternatives will be returned. Decomposition is used in the example 

presented subsequently .. 

83. Means-ends analysis is applied to the goal tree as follows. A set of instructions are 

selected whose assertion trees are semantically close to the goal tree (see below). 

For each of these selected instructions, an attempt is made to recursively transform it 

so that it may be used for the goal tree, by applying the Transformation axiom(s) that 

reduces the difference between the two. The first example in the next section 

illustrates the use of this strategy. 

All possible code sequences found for a given goal tree are returned by the Search routines, 

and the best of these is chosen by Select to be entered into the Machine Table. The "best" 

cost is determined by a user-supplied function of time and space; the time and space cost 

for instructions are known from the machine description. 

A relatively simple heuristic measure of the semantic closeness used in S3 was found to 

work quite well. The measure is based on comparing the primary operator of the goal tree 

and a potential instruction. The primary operator of a tree T, poeT), is defined in terms of 
( 

the top operator of T, op(T), as follows: 

If op(T) is: poeT) is: 

a conditional op(lhs(T» [i.e., the conditional expression] 

an assignment op(rhs(T» [i.e., the expression to compute] 

anything else op(T) 

We now define a tree S to be semantically close to a tree T iff po(S) = poeT) or there exists 

an axiom P 1 = )P 2 such that po(P 1) = poeT) and po(P 2 ) = po(S). The net effect of this 

heuristic measure is to select an instruction tree S if it performs an operation that is identical 

or arithmetically related to the goal tree. Some further performance improvements can be 

obtained by some minor refinements of this closeness measure; the reader is referred to 

Cattell[1978] for further details. Note that instructions/axioms can be indexed by their 

primary operator/operators. As a result the selection of semantically close instructions in 

S2, the selection of potentially applicable axioms in S3, and the selection of axioms that 
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reduce differences (defined as the difference in po's) in S2 can be performed in essentially 

constant time. 

It is important to the Search procedure that the three classes of axioms deal with orthogonal 

types of TeOl constructs. Note in particular steps 82 and S3. The decomposition axioms 

used in S2 deal primarily with control constructs, while the transformation axioms used in S3 

deal with arithmetic and boolean computations. The means-ends analysis used in S3 

efficiently handles the large search spaced defined by the arithmetic/boolean axioms by 

selecting potential instructions to determine the choice of axioms to apply, while the much 

smaller search space defined by axioms on control constructs can be handled by the 

[almost] brute force search used in S2. The particular order here of S2 and S3 was not 

essential to success. The reverse order in fact has some advantages, as the set of axioms 

used in the brute force step can be expanded to include transformation axioms in the event 

that the means·ends analysis fails (though empirically this did not occur). 

The Search procedure could potentially run forever: it is necessary to restrict the search 

both in the depth of recursion and in the breadth (the number of semantically close 

instructions tried in S3). The Select procedure described in Section 4.4 was designed to 

increase the depth and breadth if a searched failed, although a fixed search actually worked 

adequately. 

4.3 Example 

As an example of the use of transformations, consider the problem of loading the 

accumulator on a simple PDP-8-like machine (there is no load instruction to do this directly). 

The process can most easily be understood by following the steps of the actual search 

algorithms; a trace output from the implementation is shown in Figure 3. 
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Note: in the examples which follow, the comments in italics"have been inserted to annotate 
the output; also, parts have been truncated with " ... " for readability. A parenthesized L1SP
like form is used for the TCOL trees. For example, (~ %ACC (+ %ACC %MP» means add a 
memory location (%MP) to the accumulator (%ACC). Parameters, e.g., "$1", are associated 
with nodes for later reference. Global parameters, e.g., "$$1", are parameters whose scope 
is over an entire search, as opposed to a single axiom or M-op; they are used to refer to 
temporaries needed in the code sequence. Access modes are preceded with "%" by 
convention; operand classes (e.g., Z in the example) are not. For complete and more 
extensive examples, see Cattell [1978]. 

Search: (too %ACC %MP) 
Attempting M-op-match 
Attempting Decompositions 

* Search is passed goal tree 
* no instructions match goa/ 

Attempting Transformations * ... attempt transforming Twos Compo Add 
Feasible[1]: (too %ACC (+ %ACC $1 :2» * (TAD) instruction to use for the goal 
Transform: (too %ACC 'roMP) = > (too %ACC (+ %ACC $1 :2» 
Transform: %ACC = > %ACC * LHS of the "~" matches 
Transform: %MP = > (+ %ACC $1 :2) *but RHS mismatches 
Applying $1 :: (+ 0 $1) to: %MP *try this axiom to reduce difference 
Transform: (+ 0 %MP) = > (+ %ACC $1 :Z) * now" + " node matches 
Transform: 0 = > %ACC *but 0 still mismatches %ACC 

Applying Fetch Decomposition to: 0 *Acc~O will fix this mismatch 
Search: (too %ACC 0) *and there is a CLRA Machine-op 
Attempting M-op-match * (M-op match explained later) 
M-op Match: (; (ALLOC $$2:Z) (EMIT[DCA 1 1 1] 3 $$2:Z» * See text: <--
M-op Match: (EMIT[CLRA 3 1 1] 7020) *there are 2 ways to clear Ace 

Transform: %MP = > $1 :Z * Z is an operand class, and matches % Mp 
Feasible[2]: (too %ACC (+ %ACC 1» *tty other feasible M-ops ... 
Transform: (too %ACC %MP) => (too %ACC (+ %ACC 1» 

Best Sequence is: 
[Alloc $$1 :%ACC] 
CLRA 
TAD %MP 

*but no other solutions found 

Figu re 3. The Machine Description has been input, and the top-level search routine is 
given the goal tree "(too %ACC %MP)", the TCOl representation of the problem of interest. 

The first feasible instruction found is the two's complement add (TAD) instruction, whose 

tree representation is "(too %ACC (+ %ACC $1 :2»"; no other instruction matches the primary 

operator and also has the appropriate destination (%ACC). The system therefore attempts to 

transform 

(too %ACC %MP) => (too %ACC (+ %ACC $1 :2». 

The %ACC part matches, but the RHSs mismatch. The program finds the transformation, $1 

=> (+ 0 $1), whose root operators match the mismatching subtrees, and it is applied to 

create the subproblem of transforming 

(+ 0 %MP) => (+ %ACC $1 :Z). 
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The "+ "s now match, but the a and %ACC mismatch. Fetch decomposition is applied to 

make these match, by storing 0 into %ACC. Two instructions are found to do this (see next 

paragraph), the better one being CLRA (clear accumulator). The %MP matches the operand 

class Z, because Z is defined to allow either a direct or indirect memory reference. We have 

then completed the match. The search proceeds to try other feasible instructions, but no 

further code sequences are found. The best code sequence to load %ACC is therefore to 

clear %ACC and add %MP. 

As an example of the use of compensations, note the line in the figure marked with "<--" on 

the right. The compensation rules tell the search that the accumulator can be cleared by 

using the deposit and clear instruction, if a memory location is allocated into which the 

accumulator may be stored, resulting in the sequence 

[Alloc $$2:%MP] 
DCA $$2:%MP 
TAD %MP 

to load the accumulator. This is of higher cost than the best sequence, however, so it is 

rejected (the reader may be curious as to the case where we already know Acc = 0; this 

optimization is handled in a separate compiler phase (FINAL». 

As an example illustrating the use of decompositions, Figure 4 shows the generation of code 

for" If Acc = a then Acc+-1". Both the definition of IF and skip-decomposition get applied in 

this derivation, and two alternative code sequences are found depending on which is tried. 

The better sequence is to do a SKPNE (skip if accumulator non-zero) followed by SET1 A (set 

accumulator to 1). 

Search: (IF (EQL %ACC 0) (+- %ACC 1» 
Attempting M-op-match 
Attempting Decompositions *first Search tries applying defn of IF 
Applying (IF $1 $2) :: (; (-) (NOT $1) $3:%MP) $2 (LABEL $3:%MP» 
* note: (-> A B) means "if A then goto B", LABEL means emit a label, and ";" means perform 
"'its arguments in sequence (these three arguments shortly become three subgoals .. .) 

Simplifying (NOT (EQL %ACC 0)) to (NEQ %ACC 0) * note logical simplifications must be 
done 

Search: (; (-) (NEQ %ACC 0) $$1:%MP) (+- %ACC 1) (LABEL $$1 :%MP» 
Attempting M-op-match 
Attempting Decompositions 
Applying Sequence- Decomposition 

Search: (-) (NEQ %ACC 0) $$1 :%MP) 
Attempting M-op-match 
Attempting Decompositions 
Applying Skip-Decomposition 

Search: (GOTO $$1 :%MP) 
Attempting M-op-match 
Attempting Decompositions 
Applying (GOTO $1) :: (+- %PC $1) 

Search: (+- %PC $$1 :%MP) 
Attempting M-op-match 

*Search decomposes ";" node from IF 
*and treats each subnode as a subgoal 
* 1 st subgoal (trom IF-defn) 

*decompose into skip and goto 

*the goto is recognized as a store into PC 

M-op Match: (EMIT(JMP 2 1 1] 5 $$1 :,%MP) ~~and a JMP is used to satisfy it 
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Attempting Transformations 
Simplifying (NOT (NEQ %ACC 0» to (EQL %ACC 0) 
Search: (-> (EQL %ACC 0) (+ %PC 1» *the skip is recognized as SKPE 
Attempting M-op-match 
M-op Match: (EMIT[SKPE 3 1 1] 7 1 5) 

Breadth Limit Reached(6) 
Search: (+- %ACC 1) 
Attempting M-op-match 
M-op Match: (EMIT[SET1 A 3 1 1] 7 030) 

*now do 2nd subgoal (THEN part of IF) 

Search: (LABEL $$1 :%MP) *3rd (and lastJ subgoal: generate label 
*now we have one possible code sequence: "SKPE; JMP $$1; SET1A; $$1:". 
*Search then tries applying Skip-decomposition to original goal instead of IF defn, i.e., 
* IF X THEN Y = > IF NOT X THEN PC+- PC + 1; Y (since Y is Acc+- Acc + 1, takes 1 word) 
Applying Skip-Decomposition 

Search: (+- %ACC 1) 
Attempting M-op-rnatch 

*first try THEN-part 

M-op Match: (EMIT[SET1 A 31 1] 7 030) *OK, it takes 1 word 
Simplifying (NOT (EQL %ACC 0) to (NEQ %ACC 0) 
Search: (-> (NEQ %ACC 0) (+ %PC 1» *so try conditional skip of 1 
Attempting M-op-match 
M-op Match: (EMIT[SKPNE 3 1 1] 7 1 2) 

Attempting Transformations 

Nodes Examined: 15 
Est. Seconds: .062 
Result Sequence(s): 
«««««««««««« 

SKPE 
JMP $$1:%MP 
SET1A 

$$1: 
---- --- ----or- --- --- ----

SKPNE 
SET1A 

»»»»»»»»»»»» 
Best Sequence is: 

SKPNE 
SET1A 

*success. now have 2 seqs. 
* keeps trying, but no more solutions .. 

Figure 4. Generation of code for "If Acc = a then Acc+-1." 

4.4 Select 

As explained earlier, the machine-independent code generator (Search) is not used directly 

in the compiler for performance reasons. Rather, a level of indirection is introduced by 

running Search only on a preselected set of tree patterns to be inserted into the machine 

table used by the actual code generator. The preselection is done by the Select algorithm, 

basically as foil ows: 

81. Include all instructions in the Machine Table as is. Thus, if a program tree segment 

matches directly, the instruction will be selected. 
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S2. For each instruction with multiple assertions (i.e., for which two or more locations 

could be modified), for each of its actions for which the instruction may be used 

according to the Compensation Axioms, add a new Pseudo-instruction for that action 

alone. The right hand side of this new Pseudo-instruction production may include 

not only the instruction itself, but some compensation for the other side effects. For 

example, an increment-a~d-skip-if-zero instruction could be used for the increment 

action alone by appending a noop; or an instruction that stores into both memory 

and a register can be used for the latter action alone by preceding it with an 

allocation of a dummy memory location. 

S3. Insure there is a production for A+-B, for every pair of distinct access modes A and 8 

such that A and B are "simple" references· to locations of the same size. A "simple" 

reference is one in which the index into the storage base is a cardinal (as opposed 

to, say, indirect or relative addressing). If there is already such an entry from steps 

(1) and (2), no action is taken. Otherwise, Search is called to find the best code 

sequence for A+-B, and a tree production is added whose pattern (lHS) is the A+-8 

tree and whose RHS is the code sequence. 

S4. Insure there is at least one production in the Machine Table for every TCOl operator. 

This is done similarly to the previous step, calling Search for every tree of the form 

"A+-8 op C", "A+-op B", and "if A op B then goto C". It is unimportant what 

locations are represented by A, B, and C, since the code generator will make any 

moves needed to put the data in the required locations. For example, if logical 

"AND" did not exist as the primary operator of an instruction directly on the 

machine, a code sequence for it would be derived and the resulting production (LHS 

is the AND tree, RHS is the derived code sequence) added to the Machine Table. All 

derived productions are also indexed as if they were machine instructions, for use in 

further searches. 

S5. Finally, add to the Machine Table the productions for control operators. These 

correspond to the axioms in Figure 3 which define WHILE-DO, IF-THEN-ELSE, etc., in 

terms of conditional and unconditional jumps. 

This algorithm insures that the minimal code generator using the Machine Table will be able 

to generate code for all TCOl operators, and that if there exists a one-instruction code 

sequence for a subtree, it will find it (by S1). It does not guarantee that if the Search 

algorithm discussed in the previous section generates optimal code that the code generator 

using the Machine Table generated therefrom will do so, because the necessary special case 

combination of TeOl operators may not have been included in the Machine Table. Of 

course, special cases could be suggested by· a human, but interestingly, such help was not 

found to be necessary: special cases more complex than single Teal operators (in all 

contexts) were not needed for the machines tested, except for cases in which instructions 
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match directly (SELECT handles these in step S1) and cases which are already handled by 

the peephole optimization phase. (The second example in the previous section is one of the 

few in the latter case; peephole optimization is not even needed here if the skip 

decomposition axiom is instead used at compile time, to recognize the one-instruction 

"THEN"-parts of conditionals.) Nevertheless, an algorithm to guarantee an optimal set of 

special cases would be desirable (say, by some exhaustive analysis of possible pattern 

trees). This is an area for future research. 

Note also that the search algorithm presented in the previous section does not guarantee 

optimal code, or any code at all for that matter, because the search may not be deep 

enough to discover the equivalence. Furthermore, even if we searched to an arbitrary depth, 

a code sequence might still not be found, because a necessary axiom to determine the 

sequence's equivalence to the goal tree may not be in Search's repertoire. The search 

failure implies that the axiom set is not complete; however, no set of axioms could form a 

basis for all equivalences true over all programs (Luckham et al [1970]). This indicates that 

the goal of this work, i.e., to take an arbitrary machine description and generate code, is 

unachievable! Fortunately, this result does not have great practical impact: the set of about 

50 axioms was adequate for the machines tested. 

5. Summary 

This work has dealt with: (1) a model of instruction set processors, (2) a code generation 

algorithm in which machine-dependent information is separated into tabular form, and (3) a 

scheme for heuristic search for optimal code sequences, based on an axiomatization of tree 

equivalence. 

5.1 Results 

The results have been encouraging. The machine representation was general enough to 

deal with a variety of actual machine architectures (the IBM 360, PDP 10, PDP 11, Intel 8080, 

Motorola 6800, and PDP-8 are discussed in Cattell[1978]). The code generation algorithm 

satisfies the goals of tabularizing machine dependence and at the same time remaining 

flexible and fast enough for use in a production compiler. The last and perhaps most 

interesting result is that the formal approach of heuristic search for code sequences did not 

fail to find the optimal code sequences (for the machines tested, within the scope of the data 

types and operations covered by the axioms). 

One might expect the code generator in the compiler to be relatively slow, since it involves a 

table-driven pattern-matching scheme. However, the prototype implementation on a PDP· 

1 O/Kl 10 is basically I/O bound, generating about 2000 instructions per second from the 

intermediate TCOl representation. It is written in Bliss (Wulf et al[1975]). The code 
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generator (and the entire PQCC compiler) cross-compiles rather than compiles. With some 

care in making the compiler code portable, of course, the compiler could be used to compile 

itself by the usual bootstrapping procedure to obtain a compiler running on an arbitrary 

machine. The code itself is quite compact, requiring only 1 K 36·bit words, because all the 

machine-dependent information is in the tables. The tables require considerably more space 

(the amount being target-machine dependent, but order of 10K words). The prototype 

system described here is under redesign and integration into the PQCC compiler; the 

complete compiler will be necessary for an objective evaluation of the code quality, although 

small examples (see Cattell[1978]) led to code comparable to a hand-coded optimizing 

compiler. 

The code generator generator is ,also surprisingly fast in comparison to previous results 

using formal methods (e.g., Newcomer [1975]). The derivations of code sequences for 

templates typically took about 0.1 seconds (Kl1 0). The generation of the Machine Table 

itself took about 10 seconds for a typical machine (the PDP-11). The code generator 

generator uses 40K words plus 10 to 20K data; it is implemented in SAil (Reiser et al 

[1976]). 

The speed of the code generator generator is not greatly affected by either the number of 

axioms or th.e number of instructions on the target machine, because the indexing scheme 

allows the search routines to go almost directly to the applicable axiom (for a mismatch) or 

instruction (for a goal tree). Note that the axioms are machine-independent, so that it should 

only be necessary to add new axioms when a new domain is added, e.g., when TCaL is 

extended to include a new data type such as character strings. 

The machine descriptions used in this work (MD in Figure 1) are in a relatively compact 

parenthesized text form. The PDP-11 120 description (a fairly basic machine, with no floating 

point or unusual operations), for example, is about 200 lines. An understanding of the 

components of the machine model (Section 2) is of course necessary to construct such a 

description, and a man-week or so is required to write and debug a typical one (the PDP-11). 

The machine model and description format are under further development in PQCC. 

The success with formal methods is probably due to the choice of representation. In 

general, efficient algorithms were straightforward when the problems were expressed in the 

right way. This principle can be seen to apply in several areas of the work, including the 

machine representation, code generator representation, and the use of axioms anq trees in 

the search for code sequences. In particular, some important representational issues were: 

1. The use of a common notation, TCal, to represent procedural semantics. Also 

important is the extensibility of TCal with respect to new data types and operators 

(these then require additional axioms). 
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2. The restricted form of the instruction interpreter, reducing the selection of primitives 

to sequences of actions represented by input/output assertions. 

3. Abstraction of orthogonal properties such as addressing and binary representation 

from the representation of the abstract operations themselves (the instructions). 

Some of the techniques used in this work may be useful to other applications of machine 

descriptions. For example, automated hardware generation is conceptually analogous to 

code generation, as it involves decomposing a given algorithm into a set of given primitives 

(leive [1977]). 

The techniques used here may also be useful in the generation of microcode, although the 

latter calls for somewhat different algorithms. For example, it is typical rather than 

exceptional for micro-instructions to have more than one action (see S2 of Section 4.4),so 

the code generation algorithm might routinely perform a look-ahead in an attempt to use an 

instruction for several of its actions. 

5.2 Limitations and Futu re Research 

The model of machines used in this work· is more general but more complex than that used 

in previous work, in an attempt to allow a wide range of architectures but enable good code 

generation. Considerably more work in machine formalization is needed, however; success 

with the current model suggests this research would be profitable. The model summarized 

in Section 2 did not deal adequately with description of machine data types (e.g., character 

strings), input/output, and special architectural features such as instruction lookahead, 

pipelines, and caches (which must be considered for good code). Extensions to the tree 

notation (TCOl) are needed in conjunction with additional axioms and the specification of 

data types in order to deal with more complex machine instructions and optimizations, 

specifically bit field extraction/modification, byte string manipulation, and machine 

operations tailored to high-level language operations. 

A better template selection scheme than the one outlined in Section 4.4 almost surely exists. 

Alternatively, the performance obtained in the code generator generator suggests that at 

least some of the axioms could instead be applied at compile-time without unreasonable 

speed degradation. 

A final but important area for future research, particularly for optimizing compilers, is the 

integration and generation of the other compiler phases: register . allocation, the compiler a 

writer's virtual machine (translation of high-level operations like parameter passing and 

compound data structure access into primitive TeOl operations), and peephole optimization. 

Continued research building on the work described here is still in progress in the PQCe 
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project; a summary of the PQCC work can be found in Leverett et al[1979]. The interaction 

of the phases of the optimizing compiler are complex compared to anyone phase, and 

centrally important to the generation of good code. 
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Machine Descriptions for Automatic Derivation of Code Generators 

R.G.G.CaUell 

Carnegie-Mellon University 1 

Abstract 

The requirements of machine descriptions for applications involving automatic generation of 

software are discussed. The formalization of instruction set processors used in the author's 

work on automatic derivation of code generators is presented as an example of a machine 

model from the point of view of this class of application. 

1. Automatic Generation of Machine-Dependent Software 

Automatic generation of machine-dependent software is a relatively new and exotic 

application of machine description languages. Examples of applications in this class include· 

automatic generation of assemblers, code generators, peephole optimizers, diagnostics, and 

run-time support routines. Until quite recently, there had been little success with this class 

of applications. There are probably two main reasons for more recent success: first, more 

appropriate representations of instruction set processors have been formalized for these 

applications; and second, new methodologies, particularly from artificial intelligence, have 

been applied to the area. 

In particular, two groups have been active in this field. At Yale, John Wick[1975] developed 

a methodology to derive from an ISP description (Bell & Newell[1971]), with relatively little 

human interaction, an assembly language and an assembler to generate object code from 

1The author's present address is Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto. CA 94304. 
This research was supported in part by the Advanced Research Projects Agency of the Office of the Secretary of 
Defense under contract number F44620·74·C-0074 and is monitored by the Air Force Office of Scientific 
Research. 
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that language. His central algorithm was a symbolic execution of the instruction cycle of the 

machine, to detect which locations and which instruction fields are used in what ways. In 

the last year, even more ambitious applications have been built. Fraser[1977], also at Yale, 

designed a code generator driven off of an ISP description. Fraser's scheme is "human 

knowledge" based; his central algorithm consists of pattern matching common cases which 

the system "understands". The observation making this approach possible is that most 

current computer architectures are quite similar in design, and consequently it is possible to 

base the system on a manageable number of cases (Fraser presents evidence that the 

amount of new programming knowledge that must be added decreases as new machines of 

similar architecture are added). In contrast, this paper will discuss work testing the 

antithesis of this approach, using more formal methods. This approach runs the risk of 

combinatorial explosion in a search for code sequences; however, it has the potential for 

more generality and completeness. 

Others at Carnegie-Mellon have also been active in this field (Barbacci[1974]). OakleY[1976] 

has a methodology for automatic generation of diagnostics. The first part of his algorithm 

consists of a symbolic execution of the instruction cycle, to derive assertions giving the 

instruction outputs and the control paths to be tested. The second half of the work is 

concerned with the synthesis of instruction sequences in the target machine language for 

automatically selected test cases. Hobbs[1976] is concerned with automatic generation of 

peephole optimizers. Hobb's work and the work described here are part of a project, PQCe 

(Production-Quality Compiler-Compiler), under the supervision of Prof. W. A. Wulf, to derive 

optimizing compilers. 

2. Instruction Set Processors 

It is a thesis of this paper that the various applications concerned with automatic generation 

of machine-dependent software have similar re/quirements with respect to the form of the 

machine description. Furthermore, these requirements are not necessarily similar to those of 

other applications. For example, for the purpose of driving a machine emulator, a machine 

description could essentially be any programming language, though normally with specialized 

features for the purpose of emulation. In contrast, to automatically generate software, we 

must make assumptions about the structure of the machine. In particular, we will assume 

such a machine consists of an instruction set processor, which iteratively retrieves 

commands from a primary memory, and (conditionally) changes the set of locations termed 

the processor state as specified by the command. 
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In this section we will describe the components of the machine model used in the author's 

work. This model is very similar to the view taken by the other work mentioned, so it 

probably can be taken as representative of this class of applications. 

Five main kinds of information must be given by the machine description: 

1. Sto rage Bases: The processor state. A storage base is an array of one or more 

words, each word consisting of a fixed number of bits. Each storage base is defined 

by a word length, an array length, and a type. The type is used to identify particular 

classes of locations. Specifically, we distinguish between: the program counter, the 

primary memory, reserved locations, temporary locations, and general-purpose 

locations. There must be exactly one storage base of each of the first two types. 

Temporary locations are those which it is permissable to destroy in generating code 

(e.g., condition codes). General·purpose locations (e.g., registers or primary 

memory) may be used for storing data, while reserved locations (e.g., a stack pointer) 

may not. 

2. Ope rand Add ressing: The instructions have particular properties with respect to 

the classes of storage base accesses they may make; they differ not only in the 

actual storage bases that may be accessed, but in how they are accessed, e.g., the 

computation of the address. We define an Access Mode for each distinct type of 

addressing on the machine; for example, indexed off a register, indirect through a 

memory location, or an immediate constant from an instruction field. The access 

mode is described by an expression (tree) which represents the access in terms of 

arithmetic operators and accesses to storage bases. As we will see shortly, an 

operand of an instruction (a location) is permitted to be any of a set of access modes 

depending on opcode, mode bits, etc. These sets of access modes are defined as 

. Operand Classes (OCs), which specify a cost and values for the binary instruction 

fields for each access mode in the set. The separation of the operand addressing 

functions from the description of the instructions themselves in this way greatly 

reduces the number of instruction descriptions necessary for machines with a 

number of addressing modes, and also simplifies the recognition of addressable 

expressions in the code generator. 

3. Machine Operations (M-ops): The M-ops represent the actual machine 

instructions. For each M-op we need to know cost (speed and time), formatting 

information (specifically, a field-value Jist and an instruction format, described 

shortly), and a set of input/output assertions. The input/output assertions specify 

the new values of processor state locations that are modified by the instruction, in 

terms of location values prior to instruction execution. Each assertion consists of: 
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a) an operand class (specifies a location) 

b) an arithmetic function over constants and operand classes (locations) 

c) a boolean function over operand classes 

The location specified by (a) has the new value specified by (b) if the condition 

specified by (c) is satisfied (if no assertion condition for the location is satisfied, it is 

unchanged). In programming language terms, we may think of the assertions as 

"conditional assignment statements" whose variables are locations of the processor 

state. In fact, for the purpose of the code generation application, the assertions are 

represented as canonical parse trees whose nodes are operators such as II IF" , "+-", 

" + ", "AND", etc. This representation of the assertion will be referred to as the M-op 

tree. The usefulness of this representation is that the M-op tree pattern will match 

intermediate-notation parse trees used by the code generator when the M-op 

performs the specified action. 

4. Data Types: A machine data type consists of: 

a) A length in bits 

b) An abstract domain which the data type represents: for example integers, 

reals, or characters. 

c) An encoding function which, given an object in the abstract domain, gives a 

bit string that is the representation of the object; and a decoding function 

which is the functional inverse of the encoding function. 

Each arithmetic operator in an M-op tree specifies one of these data types as the 

type it operates upon. It is essential to notice that the operators have meaning only 

through their correspondence to data types. Also note that the "data" type is 

associated with the operator, not the data or locations as in most programming 

languages. 

5. Instruction Fields and Formats: These specify the correspondence between the 

abstract machine operators/operands and the actual binary or assembly-level 

instructions. An instruction field consists of: 

a) A bit position, a non-negative integer giving the bit position relative to the first 

bit of the instruction word. 

b) A length in bits, a positive integer specifying the number of bits in this field, 

c) A word specifier, the word position of this field in the instruction (used for 
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variable-length instructions). 

d) A type, which specifies the use of this field: 

type 0 indicates this field is part of the Opcode (determines M-op) 

type C indicates this field is used to control the operand selection 

(e.g., address mode bits) 

type D indicates this field is used· only as data (e.g., an immediate 

constant) 

An instruction format is an ordered list of instruction fields and operand classes. The 

instruction format is used in conjunction with the field-value list of a M-op and 

operand class to determine the binary instruction representation. Recall that the M· 

op input/output assertions specify the effect of an instruction when it is executed by 

the instruction interpreter. The field-value list, together with the instruction format, 

specify the conditions under which the instruction is executed, and the 

correspondence between instruction operands and binary fields. Specifically, 

a) The instruction fields in the instruction format are asserted to have the values 

specified by the corresponding elements of the field-value list. For example, 

the constant "7" might be associated with the field "OpCode". 

b) The operand classes in the instruction format indirectly assert values for the 

instruction fields. This process is somewhat complex. A M-op represents a 

family of actions, because the operand classes permit different access 

modes, and even for one particular access mode (e.g., indexed by a register), 

different actual addresses may be involved (e.g., the register number or 

memory location). To allow this field specification to be separated from the 

M-op descriptions, a parameter is associated with each operand class in the 

M-op input/output assertion. That is, the parameter and operand class occur 

in corresponding positions of the field-value list and instruction format. The 

field-value list and format for the operand class specify the actual field values: 

if a field is fixed for that access mode (e.g., addressing mode bit(s», a 

constant is specified in the field-value list; if the field has a value dependent 

on the program tree (e.g., an address field), a parameter associated with a 

constant in the access mode tree is given. 

As mentioned earlier, the machine representation presented here is somewhat different from 

a "procedural" machine description, which is the flavor of nearly all current machine 

description languages. However, it is possible to derive such a description from a 

procedural description. Certain human input is required to identify structures such as the 
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instruction interpretation process and the' program counter. Then, by recognizing the 

relationships between the structures, other information can automatically be discovered, 

such as the instruction formats and primary memory. Finally, each instruction must be 

symbolically simulated, by calculating and simplifying the new location values computed by 

the M-op, to form the input/output assertions (see Oakley[1979]). The reason for the 

symbolic execution is to put the instruction descriptions in a canonical form, eliminating 

temporary results, etc.; if the form of these in the machine description is restricted, the 

simulation is not necessary. 

An example of the syntactic representation of the components of an instruction set 

processor is given in the appendix to this paper, for a somewhat simplified version of the 

PDP-B. The correspondence to the abstract components is explained in the appendix. 

3. Summary 

This paper has described a model of instruction set processors from the point of view of 

automatic generation of software. A comparatively simple model was found that spans 

nearly all common machine architectures, and is demonstrably useful in the generation of 

code generators, described in the other papers in this collection. The model of machines 

proposed also suggests requirements on a machine description language to be used for 

automatic generation of software and other applications (Parker et al[1979]). 

4. Appendix: Example Machine Description 

The representation of the instruction set processors used as input to the code generator 

generator. This particular description is of a computer that is similar to the DEC PDP-B. The 

six parts of this description (Instruction Fields, Instruction Formats, Storage Bases (S8s), 

Access Modes (AMs), Operand Classes (OCs), and Machine-operations) are described in the 

text. For the former three, the items in the parenthesized lists correspond directly to the 

corresponding components in the text. For the latter three (AMs, OCs, M-ops), some 

explanation is required. Trees are represented in the form 

(operator son1 son2 ... sonn)' 

Access modes consist of a mnemonic and a location description tree; the "<>" pseudo

operator describes a location in the form 

«> storage-base word-index bit·index bit· length). 

The" # 8" refers to a constant of length 8 bits. The OCs and M·ops are represented in the 
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form: 

pattern tree :: (EMIT[mnemonicformat # timecost spacecost] field-value-list) 

where the pattern tree describes the input/output assertions for the instructions, or gives the 

access mode name for OCs. 

{I-flds} [ 
(OP 0300) 
(I.BIT 31 0 C) 
(ADR 480 D) 
(10. BITS 480 D) 
(UBITS 5 7 0 0) 
(UCLASS 4 1 0 0) ] 

{SBs} [ 
(Mp 4096 12 M) 
(PC 1 12 P) 
(ACC 1 12 G) 
(IO.REG 1 8 R) 
(L 1 12 R) ] 

{AMs} [ 

The mnemonic is optional. 

{Instruction fields; e.g.,} 
{"0PI starts at word/bit O,} 
{is 3 bits, and type "a"} 

{Storage Bases; for example,} 
{"Mp" is 409612-bit words,} 
{and is type "M"} 

%8: $1: # 8 {8-bit constant} 
%Mp: «> Mp $1: #8 012) {access to memory} 
%@Mp: «> MP «> Mp $1: #8 012) 012) {indirect access to memory} 
%PC: «> PC 1 0 12) {access to program counter} 
%ACC: «> ACC 1 0 12) { .. to accumulator} 
%L: «> L 1 012) { .. to link register} 
%IO.REG:«> 10.REG 1 08) ] { .. to input/output register} 

{OCs} [ 

Y: ( 
%8 :: (EMIT[5 0 0] $1 0) 
%Mp:: (EMIT[5 1 0] $1 1» 

Z: ( 
%Mp :: (EMIT[5 1 0] $1 0) 
%@Mp:: (EMIT[5 2 0] $1" 1» 

10: ( 
%8 :: (EMIT[6 0 0] $1»] 

[ 
{I-fmts} 
{FMT 1} (OP Z) 
{FMT 2} (OP Y) 
{FMT 3} (OP UCLASS UBITS) 
{FMT 4} (OP 10) 

{OC-fmts} 
{FMT 5} (ADR I.BIT) 
{FMT 6} (IO.BITS)] 

{M-ops}[ 

{l-opnd format} 
{jump format} 
{micro format} 
{lOT format} 

{Yand Z} 
{IO} 
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(t- %ACC (AND %ACC $1 :Z» :: (EMIT[AND 1 1 1] 0 $1) 
(t- %ACC (+ %ACC $1 :Z» :: (EMIT[T AD 1 1 1] 1 $1) 
(; (t- $1:Z (+ $1:Z 1» 

(= > (EQL $1:Z -1) (t- %PC (+ %PC 1»» :: (EMIT[ISZ 1 11] 2 $1) 
(; (t- $1:Z %ACC) (t- %ACC 0»:: (EMIT[DCA 111] 3$1) 
(; (t- %L %PC) (t- %PC $1 :Y» :: (EMIT[JMS 2 1 1] 4 $1) 
(t- %PC $1 :Y) :: (EMIT[JMP 2 1 1] 5 $1) 
(t- %IO.REG 10) :: (EMIT[IOT 41 1] 6 $1) 
(t- %ACC (NOT %ACC» :: (EMIT[COMA 3 1 1] 7040) 
(t- %ACC 0) :: (EMIT[CLRA 3 1 1] 7020) 
(t- %ACC (+ %ACC 1» :: (EMIT[INCA 3 1 1] 70 10) 
(~ %ACC (- %ACC 1» :: (EMIT[DECA 3 1 1] 704) 
(t- %ACC (t %ACC 1» :: (EMIT[SLA 31 1]' 70 1) 
(NO.OP) :: (EMIT[NOP 3 1 1] 700) 
(t- %ACC 1) :: (EMIT[SET1 A 3 1 1] 7030) 
(t- %PC %L) :: (EMIT[RTS 3 1 1] 7 1 40) 
(t- %PC %ACC) :: (EMIT[JMPA 3 1 1] 7 1 20) 
(= > (EOL %ACC 0) (t- %PC (+ %PC 1»):: (EMIT[SKPE 31 1] 71 5) 
( = > (NEQ %ACC 0) (t- %PC (+ %PC 1»):: (EMIT[SKPNE 3 1 1] 7 1 2) 
( = > (LSS %ACC 0) (t- %PC (+ %PC 1»):: (EMIT[SKPL 3 1 1] 7 1 4) 
(= > (GTR %ACC 0) (t- %PC (+ %PC 1»):: (EMIT[SKPG 311] 711) 
(= > (LEO %ACC 0) (t- %PC (+ %PC 1»):: (EMIT[SKPLE 31 1] 71 6) . 
( = > (GEO %ACC 0) (t- %PC (+ o~pr. 1»):: (EMIT[SKPGE 3 1 1] 7 1 3) ] 
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This paper presents some code generation issues in the context of the PQCC Production

Quality Compiler-Compiler project (Leverett et al[1979D. The approach taken is unusual in 

several ways. The machine-dependent information for selection of code sequences, register 

assignments, etc., has been separated throughout, in tabular form, from the machine

independent algorithms. This not only greatly simplifies the development of code generators 

for new machines or languages, but paves the way for automatic generation of these tables 

from formal machine descriptions such as ISP (8ell & Newell[1971 D. A parse-tree-like 

internal program representation is used, facilitating the use of context and data dependency 

information about expressions. The code generation process has been broken into several 

phases. This leads to simplification and better understanding of the code generation 

process, and also allows important improvements in the quality of generated code. The 

algorithms for preliminary determination of addressing modes, allocation of registers and 

other locations, and the instruction selection case analysis are discussed. The algorithms 

described in the paper are being implemented and used in the PQCC compiler. 

1ThiS research was supported in part by the Advanced Research Projects Agency of the Office of the Secretary 
of Defense under contract number F44620-74-C-0074 and is monitored by the Air Force Office of Scientific 
Research. 
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1. Introduction 

There has been some interest in recent years in building machine· independent compilers: 

compilers in which information dependent on the target machine (the machine on which 

compiled programs are to run) has been separated in tabular form from the machine· 

independent algorithms. There has been progress toward language-independent compilers, 

particularly with respect to automatic parser generation. However, much less progress has 

been made on the more difficult problem of formalizing the back end of the compiler, that 

part which generates machine code from the compiler's intermediate representation of the 

program. It would be desirable to generate good quality code for a wide range of machines 

in this way. That is the topic of this paper. 

Code generation will be discussed in the framework of the Production-Quality Compiler

Compiler (PQCC) project at Carnegie-Mellon University. Although one of our goals is code 

comparable to the best hand-written compilers, the PQCC work is not primarily concerned 

with optimization techniques themselves: to a large extent, the compiler technology has been 

taken from the Bliss-11 optimizing compiler Wulf et al[1975]. The research to date has 

concentrated upon: 

1. formulating the compilation in such a way that the machine-dependent information is 

separated in tabular form, while retaining the excellent code quality exhibited by the 

original Bliss-11 compiler structure. 

2. automating or simplifying the generation of the tables from a machine description. 

The work described in this paper deals primarily with (1). A more complete discussion of 

formalization of machines and the automatic generation of code generators can be found in 

the first two papers in this collection. 

Before we can construct a full PQCC system, we first must understand the model of the 

compilation process used by the target compiler, or PQC. A simplified picture of the 

compiler structure is shown in Figure 1; in this paper we will be dealing with the phases 

labelled DELAY, TNBIND, and CODE. A source language program is parsed by the LEXSYN 

phase into an intermediate parse-tree-like notation which we refer to as TCOL. The FLOW 

phase then does global data flow analysis to determine possible code transformations to 

reduce program size or time costs. The DELAY phase then performs a collection of 

optimizations and analyses, basically arriving at a guess at the "shape" of the eventual code 

to be generated. TNBIND then uses this guess (at where temporaries will be required) to 

perform allocation of registers and other locations on the target machine. The FINAL phase 

can then perform the case analysis to actually generate the machine code in a symbolic 

form. Finally, FINAL performs peephole optimizations and code motion optimizations 

resulting in the actual target machine code. These phase names are taken from the BLISS-

11 compiler (Wulf et al. [1975]); we use them as convenient groupings of the optimizations. 

However, we have identified about three dozen distinct "phases", usually defined as single 
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Source Code 

lEXSYN 
lexical and syntactic analysis 

(TCOl) 

FLOW Flow analysis 

(TCOl) 

DELAY Optimizations on tree 

(TCOl) 

TNBIND Allocation of temporaries to machine registers 

(TeOL) 

CODE Code generation . 

(Symbolic code) 

FINAL Peephole and branch optimizations 

Machine Code 

Figu re 1. Structu re of the Bliss-11 compiler, being used as basis for PQCC. 
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tree or graph walks which will constitute' the actual compiler. 

In the next section of this paper, enough of the machine formalization is given to understand 

the code generation problem. In Sections 3.1 - 3.5, the part of the DELAY phase concerned 

with guessing the best instructions and address modes for program tree segments is 

discussed. In Section 3.6, the register allocation algorithm is presented. In Sections 5.2 and 

5.3, we discuss the basic code generation algorithm and its extensions to generate code 

using control flow optimizations, common sub-expressions, and other information. Finally, in 

Section 6 we summarize the results and discuss the current state of the prototype 

implementation of the machine-independent compiler. 

2. Instruction Set Processor Formalization 

We begin with an overview of our model of machines, or instruction set processors. We 

define an instruction set processor in terms of seven components: machine operations and 

data types, which specify the operations available on the machine; storage bases, access 

modes (AMs), and operand classes, which specify the locations available on the machine 

and how they may accessed as operands; and instruction fields and formats, which specify 

the binary representation of instructions. 

Associated with each instruction are a set of input/output assertions, which express the 

action of the instruction. An output assertion specifies the processor state after instruction 

execution as a function of the processor state prior to instruction execution. Note that 

since most processor state remains the same, we actually need to express only the state 

which has changed. Paired with each output assertion is an input assertion which specifies 

a conditional function of the processor state. The output assertion holds, i.e., the state has 

a new value, only if this input assertion is satisfied (the state is unchanged if the input 

assertion is not satisfied). The assertions are represented as program tree patterns which 

correspond to the action the instruction performs. For example, an ADD instruction might be 

represented as 

where A is an accumulator and E an operand in memory. The utility of representing the 

assertions as program trees is that we will be able to "match" these as pattern trees against 

program trees which an instruction could implement. 

The actual locations of the processor state are the Storage Bases (S8s). The SBs may be 

simple locations of various sizes, such as an accumulator or condition code, or arrays of 

locations, such as general register sets or the primary memory. 

There are typically several choices for operands of an instruction, corresponding to different 

modes of addressing on the machine: "indexed by a register", "indirect through a memory 
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location", "an accumulator", and so on. These will be referred to as Access Modes (AMs)~ 

The correspondence of these access modes to the instruction operands is specified by 

Operand Classes. Specifically, an operand class defines an operand position of an 

instruction: it specifies a set of access modes that are valid in that context. Any of the 

specified set of access modes may be used in fetching/storing the corresponding operand of 

the instruction. For example, an ADD instruction might require a general-purpose register as 

the operand receiving the result, and allow either an immediate constant or a memory 

location as the other operand (in the earlier example, A and E were operand classes). 

As we proceed through the next sections, the utility of the three-level description (Storage 

Base, Access Mode, Operand Class) of a machine's addressing in reducing the size of the 

machine description and aiding in good code generation should become more apparent. 

For some special purposes we find it useful to classify access modes into three categories: 

atomic, molecular, and compound. An atomic access mode is an immediate-constant type of 

argument of an instruction, i.e., a constant with some constraints on its possible range of 

values. A molecular access mode is a direct access to a storage base (the word/bit 

position(s) by which the storage base is indexed are atomic). In contrast, compound access 

modes (all other cases) include indirect and indexed accesses to the storage bases. Only 

molecular access modes are of interest for the purpose of this paper; we will call such an 

access mode a storage class because it represents a particular set of locations within a 

storage base. 

Also associated with an operand class is information specifying, for each applicable access 

mode, the time and space costs and instruction bits format. Such additional information is 

also associated with each instruction description. However, the reader can ignore these 

details here, except to note that they allow us to evaluate costs of code sequences and to 

generate the actual binary representation of the abstract operations when required. 

A detailed discussion of the machine formalization can be found in Cattell[1978] or the 

second paper in this collection. The preceding should be adequate to continue here. The 

central components of the formalization for the purposes of Sections 3 and 5 are the access 

modes and instruction assertions. Both of these are represented as pattern trees, and the 

main code generation process simply consists of traversing the source program tree, 

matching these patterns to determine the code sequences and locations to use for the 

current tree node. 

3. Operations Preceding Code Generation 

The phases between flow analysis and the code generator perform a number of machine

related optimizations, which will be sketched only briefly here. More complete explanations 

may be found in Wulf et al[1975], which explains the optimizations as done in the Bliss-11 
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compiler, and in Leverett et al[1979], which discusses the extensions done for the PQC. The 

discussions here must be brief, and we include only enough explanation to set the context in 

which the code generator actually operates. 

One major difference between the PQC and a conventional compiler is that the "code 

generator" does not have to make any decisions about local or global register allocation, 

allocation of temporaries for results, determination of evaluation order, or any of the tasks 

conventionally thought of as "code generation". All of these functions are performed, of 

course, but not by the CODE phase that actually determines what code to emit. 

3.1 Context Determination 

Context determination determines the way in which the result of an operation is used. For 

example, a "+ " node may be used to compute a result to store in a variable or to compute 

an address to be used for accessing data. If the target machine has an address size which 

is smaller than a full machine word (e.g., DEC PDP-10 or IBM S/370) it may also have 

instructions which operate only on addresses; in addition, it may be possible to take 

advantage of the implicit address calculation hardware of the machine, e.g., indexing, to 

perform the addition (e.g., using the "load address" instruction on a S/370 to add the values 

in two registers plus a small constant to produce a 24-bit result). We distinguish these cases 

as "real" and "address" contexts. 

Another context is that used to determine program control flow. Consider a boolean 

expression" A < 8". If this had appeared as the right hand side of an assignment statement, 

the bit pattern representing "true" or "false" would have to be developed and stored. But if 

it appears as the boolean part of a conditional, it may be necessary only to cause a 

conditional change in the flow of control. In this case, we designate the node as being in a 

"flow" context. 

Finally, expressions may produce no result at all; this is important in an expression language 

such as 81iss where there is no syntactic distinction between, for example, a "conditional 

statement" and a "conditional expression". 

The four classes of result we currently recognize are "void", "real", "address" and "flow". 

Note that the presence of common subexpression detection makes it possible for a given 

expression to exist in more than one (perhaps all) contexts. 

3.2. Unary Complement/Target Path Determination 

Unary complement .operations are those which propagate the unary complement operators to 

higher tree nodes until they are subsumed in other operations or can move no further. A 

traditional example is to change "(-A * -8)" to "(A * 8)It by propagating the minus signs 



36 Code Generation in a Machine-independent Compiler 

upward and cancelling them at the II *" node. However, in the PQe a unary complement 

operator may also change the operator (e.g., "+ II to II - ") of the parent node. When two 

temporary locations are involved this also can affect which one is optimal for developing the 

result (the II target path"). 

The machine-dependent information required by this phase is quite simple. For example, in 

the case of optimizing unary negation, it must know the cost of 

- Moving a value from memory to a register 

- Moving the negation of a value from memory to a register 

- Negating a value in a register or memory 

- Storing a value from a register to memory 

- Storing the negation of a value from a register to memory 

Given this cost information and some information on the ability to do memory-to-memory or 

register-to-memory arithmetic, a guess at the optimal target path will be made and the choice· 

recorded in the program tree representation. Upon completion .of this phase, the unary 

complement optimizations have been done and the desired target path has been determined. 

3.3. Evaluation Order 

This phase determines the evaluation order for arithmetic expressions in the tree. In the 

absence of common subexpressions there are known optimal algorithms for this 

determination; in the presence of common subexpressions or side effects of evaluating an 

operand, the problem becomes NP-complete and a simple heuristic is applied; details are 

given in Wulf et al[1975]. 

3.4. Flow Analysis 

Preceding a" of the phases described here is a global data-flow analysis phase. It does 

most of the classical optimizations which are basically source-to-source transformations, e.g., 

moving constant computations outside loops, moving common computations to the head or 

tail of forked control constructs, etc. These are discussed in more detail in Leverett et 

al[1979]. However, the flow analyzer does not actually make any program transformations; it 

only indicates which ones, are feasible. After evaluation order. has been decided, another 

phase will choose which of the feasible optimizations are in fact desirable. When this phase 

has completed its work, an execution order flow graph has been created for the tree. 

Although this is not used in the current implementation of the code generator, it will become 

important in future work, as described in Section 5.2. 
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3.5. Access Mode Determination 

The Access Mode Determination phase searches the machine tables and determines which 

access modes may be used to evaluate a given node. For example, instructions which 

perform only address arithmetic (where the address has fewer bits than a full machine word) 

would not be selected, if a full result would have to be developed (e.g., 24 bit address 

arithmetic on a 8/370). However, elaborate addressing modes such as pre-indexed 

indirection, post-indexed indirection, double-indexing with or without a constant offset (such 

as most IBM 8/370 instructions with base + index + displacement), auto-increment or auto

decrement addressing, and indexing with a scaled index register (LLL 8-1 (Hailpern and 

Hitson[1979]) or DEC VAX-11 /780 [DEC 1977]) would all be taken into account. In addition, 

knowledge about the length of the operands and results can be taken into account; this is 

useful when the target architecture has the ability to encode small values in a few bits (e.g., 

the VAX) or perform operations on smaller fields (e.g., address arithmetic on a PDP-10 or 

8/370). All of this information is derived from the machine description tables. For complex 

architectures, this determination can be arbitrarily complex, particularly when the presence 

of common subexpressions is taken into account; examples are given in Leverett et al[1979]. 

Upon completion of this phase, a good guess at the optimum use of all access modes in the 

machine has been made. Note that resource restrictions (such as the availability of 

registers) may not make it possible to actually realize the goals set by this phase. 

3.6. Temporary Name Assignment 

The usual task of "register allocation" is partitioned in the PQC into several phases. The 

important concept here is that al/ allocation is handled in a uniform manner: variables and 

compiler-generated temporary locations are all subjected to the same processing. 

The unit of allocation assigned to all of these is the Temporary Name or TN. It is first 

necessary to determine which nodes in the tree require TN's for their evaluation. This 

apparently requires knowledge of the code to be generated: to know what TN's are 

required, if any, for an addition, we must know not only what instructions are available for 

adding pairs of numbers, but also which one will be selected. Our method of addressing this 

problem of circularity is to have a fake code generation phase: the same traversal of the 

program tree that is done for code generation, described in later sections, is done in this 

earlier phase, but instead of generating instructions, this phase simply notes the 

requirements of the instructions for accumulators or other special types of storage. These 

requirements are embodied in TN's. If an arithmetic operator may be computed in either of 

two ways, depending on what kind of storage is chosen for its result, the TN which 

represents its result is marked so that it may be (later) assigned to either of those kinds of 

storage. The assumption of "infinite registers" is made: in the absence of knowledge made 

available by later phases, it is assumed that any type of storage necessary for a particular 
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operation will be available. 

TN's are not only assigned to represent the results of expressions. Sometimes computation 

of an expression may require a completely temporary location, which is no longer needed 

when it is finished. For example, comparison of two quantities on some machines requires 

that one of them be moved to an accumulator, regardless of where the result of the 

comparison will be stored (if it will be stored anywhere). Also, for a procedure call, each 

parameter requires a TN; this TN is likely to be restricted, so that it may only be allocated to 

a particular location on the run-time stack. 

Normally, each user-defined variable might also be assigned a single TN. However, the 

well-known strategy of keeping the value of a variable in a fast register during a loop is 

sometimes desirable; the recognition that this might be useful is noted by creating another 

TN to represent the variable within the loop. (Later processing determines whether this 

optimization is possible; if it is not, the loop TN is simply allocated to the same storage as 

the variable itself.) Also, since flow analysis information is available, it is possible to 

determine if the uses of a user-declared variable actually have separate lifetimes; for 

example: 

begin 

end 

integer A; 

A+- ... ; 
... +- A; /* last use of 

A ... */ 

(other code); 
A+- ... ; 

... +- A; 

/* ... until 
this 
assignment * / 

In this case, two TN's might be assigned to the variable A with the result that A may actually 

be assigned to different locations during each of these disjoint uses! 

This allocation of TN's requires a low-level knowledge of the. machine; the storage bases 

and the set of interesting storage classes must be defined for the architecture. A storage 

class is a particular set of locations within a storage base: for example, the set of all even 

registers or the set of odd-even register pairs are storage classes which may be of particular 

interest. 

The AMD and TN-assignment phases produce cost information which indicates which 

storage classes may be used to hold a TN, and the additional cost incurred if a less

desirable storage class must be used. This information is used by the TN packing phase, 

which is completely machine-independent, to determine the "most profitable" allocation of 

TN's to storage classes. Although in general this is an example of an NP-complete problem, 
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a number of approximate algorithms have been suggested in the literature; those which have 

been used in this style of compiler are discussed in Wulf et al[1975] and Johnsson[1975]. 

We intend to investigate still more. 

At the completion of this phase, the tree contains nearly all of the information classically 

associated with the problem of "code generation"; it is only necessary now to generate the 

instructions to perform the computation. We describe this case analysis, which produces as 

output a symbolic representation of the object code sequence, in Section 5. Before 

proceeding to this, however, we briefly describe the FINAL phase which follows the case 

analysis. 

4. Operations Following Code Generation 

The output of the code generator goes to a final optimization pass which operates on the 

object code. All of the classical "peephole" optimizations (McKeeman[1965]) are performed 

here, as well as other optimizations that we touch on briefly in this section. Object code 

optimizations are desirable even in a compiler with a good-quality code generator, because it 

is easier to perform these operations after the actual code placement is known. This is 

because certain code adjacencies occur which are the result of evaluating widely separated 

tree nodes. 

We include this brief discussion of FINAL here because peephole optimizations are 

frequently thought of as "code generation" activities. In the PQe, code generation, the main 

topic of this paper, is a separate activity, and does not attempt to perform any local or 

peephole optimizations. 

FINAL performs some optimizations which are also done, generally on a more global scale, 

by earlier phases of the compiler. Examples are redundant store/load elimination, constant 

folding (e.g., two instructions which add immediate constants to the same location may be 

collapsed into one), and dead code elimination. Other optimizations are done which are only 

relevant to FINAL. An example of one of these, which could be done in the code generator 

but is much more simple if left to the separate phase, is jump chaining: a jump instruction 

whose destination is another jump instruction is changed, so that its destination is the 

ultimate destination. 

One feature of FINAL which is important on machines which have both relative and absolute 

transfer instructions deals with resolving which form of instruction to use. Typical machines 

are the PDP-10, which has both skip and jump instructions, the PDP-11, which has relative 

branch (possibly conditional) and absolute jump (unconditional only) instructions, and the 

360, which may require loading a base register before doing a control transfer. For the PDP· 

10 and PDp·11, FINAL will reverse the sense of a test and provide the appropriate 

conditional when better code may be produced, e.g., 
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label: 

CAME r,m 

JRST label 

ADD x,y 

CAMN r,m 

ADD x,y 

It is important that FINAL be able to perform these optimizations in a machine-independent 

manner; although the algorithms are fixed, the particular characteristics of the machine must 

be described in a table. In FINAL, the table is organized as a set of production rules. For 

the PDP-10, only thirty such rules are required to obtain optimizations of the quality of 

BLlSS-11. 

FINAL performs other optimizations, which are not relevant to this paper; for a summary of 

them, see Leverett et al[1979). 

5. Code Generation 

The code generation discussion has three sections: the abstract idea of code generation in 

our compiler model (Section 5.1); the code generation algorithm itself (Section 5.2); and the 

extension of this algorithm to use information from the register allocation and flow analysis 

phases of our compiler (Section 5.3). 

5.1 Abstract Code Generation 

It is easier to understand our view of code generation if we first present a model of how we 

think of it. This model is unrealistic in that no "real" compiler would actually do means-ends 

analysis and goal-directed search during the compilation process. In our implementation, we 

perform as much of this search as possible during the generation of the code generator. 

Given a machine description, what the ,code generator attempts to do is locate, for each 

operator in the parse tree, a set of instructions which could feasibly evaluate the operator. 

This involves heuristic search techniques; there may be an instruction that could evaluate 

the operator if only both of its operands met some criterion (e.g., they were in registers); if 

they do not, goal-directed search is used to attempt to transform the actual situation into the 

desired situation. 

The goal-directed search involves the use of a set of rules for transforming trees into 

equivalent trees. These include simple boolean and arithmetic axioms such as 
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In addition, there are rules which deal with abstract machine behavior. The fetch decomposition 

rule is expressed as: 

This rule essentially says that storage locations on the machine can be used to hold 

intermediate results: an expression E1 with a subexpression E2 can be computed by first 

computing E2 in a location S, and then replacing E2 with S in the computation of E1" 

Sequencing rules describe the flow of control in a machine with a program counter; in 

particular, the conventional automatic incrementation of a program counter (PC) is assumed 

in our model of machines. Some examples of such rules are the following: 

goto E == PC +- E 

PC+- PC + n; S(space n) == (nil) 

The first rule states that a goto is the same as an assignment to the PC. In the machine 

description, the output assertion for an absolute jump instruction is expressed as an 

assignment to the PC, so this rule relates a goto to a jump. The next rule describes skip 

instructions, i.e., that a block of code of length n, expressed as "S(space n)", will be 

skipped if n is added to the PC. The final rule indicates that absolute and relative control 

transfers may be used interchangeably. 

The complete set of rules and their use is described in Cattell[1978]. 

In practice, it is not reasonable to perform the heuristic search using these rules during the 

actual compilation process. Therefore, we use a program which performs a great deal of 

this search to produce a set of tables which involve little or no search strategy to locate the 

desired instruction sequence. This program is the code-generator generator, or CGG. It is 

described in detail in Cattell[1978] and the first paper in this collection. 

CGG contains heuristics for selecting "interesting" code generation cases (pattern trees) the 

code generator is likely to encounter. If no instruction in the target machine instruction set 

exists to solve that case, the search techniques are applied to generate one or more 

sequences of instructions that will accomplish the task. If more than one alternative is 

found, the lowest-cost alternative is retained. As a result of these searches by CGG, the only 

rule which is applied at compile-time at present is fetch decomposition, which is essential to 

register allocation and composition of the patterns (this is discussed further in the next 

section). 

It is worth observing here that the CGG strategy does not guarantee that an optimal solution, 
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or indeed any solution, can be found. For example, the depth of the search may hit its nmit 

just before an instruction or instruction sequence is found. It may also be the case that an 

axiom necessary to determine the code sequence's equivalence to the goal tree may not be 

in the axiom repertoire. The general case of program equivalence is unsolvable because no 

set of axioms can express the equivalences that are true over all program trees. However, 

this theoretical result has little practical impact; for "real" machines and "real" programs, a 

small set of axioms and limited search depth seems to suffice. 

5.2. The Code Generator 

5.2.1. Overview 

The code generator uses the output of CGG as its database of patterns and corresponding 

code sequences. Its basic operation is to retrieve the set of all patterns which it 

hypothesizes will apply to the parse tree, and find among these the lowest-cost instruction 

sequence which actually does apply. In the case where the leaves of the goal tree do not 

match the leaves of the pattern (e.g., contain an expression where the pattern expects a 

simple storage unit), fetch/store decomposition rules are applied to obtain a simple storage 

unit by generating code for the subtree. 

Because of the structure of the PQC, many conventional "code generation" tasks simply do 

not exist. For example, all "register" allocation, which is actually TN allocation, has already 

been done. The code generator therefore cares little about the actual storage locations 

used. Since the TN assignment and allocation phase has already examined the machine 

description for feasible storage classes, it is certain that at least one pattern will match. As 

a result, the code generation algorithm need not deal with obtaining storage locations in 

feasible storage classes when none of the patterns match. If it is necessary to move data 

from one location to another (because the 1"Ns have been assigned to different storage 

classes or different locations within the same storage class) then this wili be done; the cost 

of this transfer has already been taken into account as part of the cost of the particular TN 

assignments. 

5.2.2. Pattern Matching 

Pattern retrieval in the current code generator is very simple. Patterns are indexed within 

each context (real, flow, void, address) by the primary (root) operator of the pattern tree. 

The primary operator may be any arithmetic, relational, or boolean operator. The patterns 

are ordered within each retrieval set by a cost metric (currently code size) in order of 

decreasing "profit". We treat "profit" as different from "cost", since profit indicates the 
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value of choosi'ng one pattern over another. Details of cost and profit determination will be 

given in Section 5.3. 

Rather than simply indexing the patterns produced by eGG, one could derive a more 

efficient representation for a table-driven code generator from them (Glanville[1978]). This 

essentially avoids re-matching similar parts of a new pattern when a pattern fails to match. 

We have not as yet found it necessary to use such a scheme to achieve reasonable 

performance in the prototype code generator. 

As a result of the pattern indexing scheme, the code generator will attempt to use the 

highest-profit pattern first when presented a target tree. If the match is successful, the 

associated code sequence will be attached to the portion of the tree which matched the 

pattern. Otherwise, lower-profit patterns are attempted until one matches. There will 

eventually be a pattern which matches, since eGG generates at least one pattern for every 

operator. If the repertoire of axioms or depth of search were insufficient to find a code 

sequence for some operator, the user of eGG would have been requested to extend its 

knowledge. This might involve extensions to the axiom system, extensions to its case

generator, extensions to the machine description (adding new instructions, for example), or 

adding new "virtual instructions" (treated as axioms), e.g., defining the floating point 

arithmetic operations as generating subroutine calls. 

5.2.3. Reverse Code Generation 

A novel feature of the code generator is that it generates code in reverse execution order. 

A conventional code generator would typically do a left-right, depth-first, recursive tree walk 

to the leaf nodes, generate code for each leaf if necessary, back up to the operator node 

and generate code for the operation, and repeat until code had been generated for the 

entire tree. Because our code generator attempts to exploit the addressing modes of the 

machine and as much of the instruction set as possible, it starts at the root of the tree and 

finds the highest-profit pattern for that operator. This pattern will usually be the pattern that 

spans the largest set of nodes in the tree. By repeating this process for each of the tree 

nodes which do not match the leaves of the pattern (applying fetch/store decomposition), 

the minimum number of patterns will normally be used to match the tree. It is not possible, 

without exhaustive enumeration, to guarantee the actual lowest cost code sequence 

Ripken[1977]. However, this heuristic technique will produce a close approximation to it, 

and frequently the actual lowest cost sequence, without the computation required for 

exhaustive search. 

In our compiler this matching task is complicated by the presence of common 

subexpressions (cse's); a pattern cannot cross a cse boundary. The special cases of cse

creation and cse-Iast-use must also be handled. However, the fact that the destination of 

the result of a cse is determined by TN assignment, it is simple to generate code to use a 
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cse result even though the code to compute that result has not yet been generated. 

The output of the code generator is a doubly-linked list of instruction sequences; the tree 

structure along with its decorations (cse links, flow graph, etc.) is discarded. 

5.3. Use of Flow Analysis and Temporary Allocation Information 

We now discuss our design to deal with program flow optimizations and allocation of 

temporaries in the algorithm discussed in the previous section. The implementation of these 

interactions between phases has not been completed at the time of this writing. 

In the model shown in Figure 1, the phase TNBIND does the assignment of TNs to storage 

locations. The component of TNBIND which does this is a phase called PACK, which is 

attempting to solve a 2-1/2 dimensional bin-packing problem, a problem known to be NP

complete. Because PACK has more global knowledge of the utilization of storage locations, 

it may choose assignments which violate the "infinite registers" assumption used by DELAY 

for its estimation of code shape {because, of course, this assumption is false in any real 

machine). In addition, because it implements a heuristic solution with limited backtracking, it 

may not be able to satisfy particular desires for TN assignment (note that a "desire" is a 

weaker constraint than a "requirement"). The result of this global allocation is that the code 

generator may find that no existing template will match the existing tree, and will have to 

bring the operands into conformance with a given· template. 

This does not pose any particular problems in the conceptualization of the model or its 

implementation. The search required to bring operands into conformance is trivial; it is fetch 

decomposition. The cost of doing this fetch decomposition can be known to PACK, and 

thus taken into account in the global cost analysis which was used to select the actual 

assignments of storage locations. If, in addition, it is necessary to save an intermediate 

result (the case known as "register spill" in most compilers), this cost would also have been 

accounted for. Because of this accountability, the assignment that has been made of TNs to 

locations is still as good as the heuristic solution will permit. 

A particularly valuable aspect of this strategy is that it now is nearly always possible to 

generate code for a specific target tree, independent of the actual locations assigned to the 

operands. Backup to a higher level of search (with the associated overhead this entails) is 

no longer necessary. 

The specific design of the cost/profit determination for alternate code sequences is still 

under design. The actual cost of a pattern is the base cost of the instruction{s) associated 

with it, plus the additional cost of using particular access modes (e.g., needing a full 16-bit 

address operand on a PDP-11), plus the cost of fetch decomposition if the operands do not 

satisfy the pattern, plus the cost of register spill and restore if required. However, the profit 

is a function of how many nodes of the target tree are instantiated by the pattern. 
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The code generator we've described does a: reverse-execution treewalk. However, because 

of the presence of the flow graph structure, the tree itself must to be distorted to make the 

treewalk equivalent to the execution order. This can be avoided simply by following the flow 

graph itself (a linked list of program tree nodes) in reverse order rather than using the tree 

structure. 

In this scheme, we use both the parse tree and the flow graph representations. The flow 

graph is used to select, in turn, each candidate node from the target tree. If code must be 

generated for it, we use the tree shape in the pattern match. However, unlike the current 

implementation which then descends to the nodes in the tree which have matched leaves of 

the pattern and proceeds to generate code for these, the graph-directed code generator 

returns control to the graph-walk algorithm after a match, and a new node is selected. 

We also plan to experiment with a modification to the code generation algorithm we refer to 

as "look-ahead" code generation. Many machines include instructions which perform 

multiple actions; for example, to subtract one from a register and branch if the result is zero. 

Such instructions are indexed by eGG in the code generation tables for each of the potential 

SUb-actions (e.g., subtraction, and branching). When the code generator discovers that a 

multiple-action instruction is applicable to the current program tree node (e.g., a 

subtraction), it can "look ahead" in the program flow graph to see if the next operation can 

also be subsumed by one of the instruction's actions (e.g., is it followed by a branch on the 

result?). This involves negligible increase in the compilation time, but only works if the 

subactions are adjacent in the program. 

6. Summary 

This paper has presented machine-independent code generation algorithms for code 

generation in a production-quality compiler. A formal model of machines has been designed 

to allow definition of the target machine separate from the machine-independent code 

generation algorithms themselves. Several phases precede the actual code generation case 

analysis, "decorating" the program tree with information about context, program flow, use of 

addressing modes, and allocation of temporaries. The program tree is then matched against 

code generation templates taking this information into account to produce the target 

machine code. The algorithms are being tested in the current prototype compiler. At the 

time of this writing, we unfortunately do not have statistics comparing target code size and 

speed to good hand-coded compilers on non-trivial programs. The PQCC group plans to do 

this for several conventional machines (PDP-10, IBM-360, PDP-11, Intel 8080, ... ) and 

languages (Bliss, Pascal, ... ), experimenting with the algorithms presented here as well as 

other optimization techniques. 
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