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Introduction 

The established properties of functional languages-easily defined selnantics and mathematical 

elegance-are appealing to meta-programmers who study programming and programs at one 

remove. [Backus, Burge~ Landin. McCarthy, Scott&Strachey] Real programmers, who write 

programs that are judged on their behavior rather than their appearance, believe that functional 

languages are not useful because they are inefficient and unnatural. 

Functional languages as implemented make less efficient use of conventional machine resources 

than other languages. A programmer using a functional language has less control over the 

resources of the machine and therefore cannot squeeze out the best performance. This is also true 

of some non- functional languages; There are theoretical arguments based upon clever evaluation 

strategies, compilers, and multi-processor Inachine architectures that suggest that functional 

programs needn't be inefficient, indeed, can be more efficient; but nothing of a concrete nature has 

been shown. [Henderson&Morris, Friedman&Wise, Darlington&Burstall, Dennis] The major 

problem to be overcome is the cost of garbage collection. A conventional programmer has the 

advantage that he can overwrite storage rather than re-cycle it through a garbage collector. Unless 

the cost of collection can be made negligible, or eliminated by compile-time analysis, functional 

programming will always be relatively inefficient. Given all the theoretical work, much less than 

one would expect has been done in the area of clever implementations for any language. The 

challenge here is to produce an implementation of a functional language that makes better use of 

digital hardware than an average programmer using conventional methods can. It is the same sort 

of challenge FORTRAN met successfully many years ago. 

Functional languages are unnatural to use; but so are knives and forks, diplomatic protocols, 

double-entry bookkeeping, and a host of other things modern civilization has found useful. Any 

discipline is unnatural, in that it takes a while to master and can break down in extreme situations. 

That is no reason to reject a particular discipline. The important question is whether functional 

programming is unnatural the way Haiku is unnatural or the way Karate is unnatural. Haiku is a 

rigid form of poetry in which each poem must have precisely three lines and seventeen syllables. 

As with poetry, writing a purely functional program often gives one a feeling of great esthetic 

pleasure. It is often very enlightening to read or write such a program. These are undoubted 

benefits, but real programmers are more results-oriented and are not interested in laboring over a 

program that already works. They will not accept a language discipline unless it can be used to 

write programs to solve problems the first time--just as Karate is occasionally used to deal with 

real problems as they present themselves. A person who has learned the discipline of Karate finds 

it directly applicable even in bar-room brawls where no one else know Karate. Can the same be 

said of the functional programmer in today's computing environments? No. 
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How could functional languages be made more convenient to use? If one takes a sufficiently 

elevated view, the semantics of functional programming languages are pretty much the same: 

virtually everything is a function that maps values in a heterogeneous dat~ space into each other. 

The real differences among languages, and the part which should occupy more of each designer's 

attention is in their syntax. Far from being "mere" syntactic sugar, the way one writes and reads a 

language will tend to influence usage more than the underlying semantics. For example, consider 

the Strachey/Landin let statement. It is an inspired stroke of syntax design which showed us how 

to get the convenience of the assignment statement in a functional context. TIlere are other 

features of conventional programlning languages that have stood the test of time, but haven't been 

fully incorporated into functional languages: statement sequences, for-loops, and record structures. 

We shall consider two languages, Poplar [Morris. et al.] and Euclid [Lampson, et al.], that have a 

claim to being functional languages and to being used on real problems--string processing and 

system programming, respectively. Poplar contains a purely functional sublanguage that is adequate 

for performing a large variety of string and list-processing applications. Its implementation is 

woefully inefficient, so its range of applications is limited. Euclid. on the other hand, is nearly a 

subset of Pascal and has been used to write compilers and operationing systems. The claim that it 

is a functional language, however, comes as a surprise to its designers and raises the question of 

what it means to be a functional language. These two languages represent quite diverse approaches 

to the question of syntax design for functional languages. Poplar introduced several new syntactic 

forms to make an obviously functional language somewhat easier to use. Euclid retains the basic 

Pascal syntax and leaves out features that prevent the language from being functional. 

Poplar 

Poplar is an experimental language for text and list manipulation. It has been used for testing 

some ideas about extending the powers of interactive text editors. We designed Poplar to 

encourage functional programming and tried to use it in that spirit. A recipe for it might read: 

start with pure LISP, replace atoms with decomposable strings, add SNOBOL4 pattern matching, 

build in implicit iteration over lists, sprinkle with untried ideas, add powerful primitives like 

sorting, fold into an APLish, post-fix syntax, and bake until half done. 

Poplar was designed and implemented in 1978/9. It has received moderate use: there have been 

a few hundred pages of progralTI written by about twenty professional programmers and computer 

scientists. They had a good display-oriented text editor, but no text-oriented language like 

SNOBOL4 [Griswold] or any UNIX facility like A WK [Aho] or LEX [Lesk]. It has received most 

of its ·use from people with a clerical task that is regular enough to be tedious, but not recurrent 

enough to justify a big programming effort in a more conventional language. A typical comment 

has been: "In a couple of hours I was able to learn Poplar and use it to solve a problem that would 
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have taken much longer otherwise." A few people wrote more serious programs: a report 

generation system for software projects, a family budget maintainer, a correspondence management 

system for academic journal editors, a purchase order management system. Large portions of some 

of these projects have been written functionally. 

Simple Values 

Poplar's value space is quite simple when described as a Scott domain: 

v = Characters* + {fail} + V* + V -. V 

Strings (= Characters*) are written in quotes; e.g. "A string" and "". Concatenation of strings is 

denoted by juxtaposition: 

"aaa" "bbb" = "aaabbb" 

As in SNOBOlA, a number is simply a string of digits. The quotes can be omitted: "123" = 

123. Addition and subtraction can be written as infix operations. In retrospect we made two 
mistakes here: The symmetrical double quotes and lack of an explicit concatenation operation 

made things hard to read. 

The special primitive value fail plays the role normally played by Boolean values in Algol. 

Instead of providing if-then-else expressions we used three operations ')', 'I', and '-', with the 

following definitions: 

x ) y = if x = fail then fail else y 

x I y = if x = fail then y else x 

.... x = if x = fail then "" else fail 

This allows one to write things like (BigExpression I u) rather than the more cumbersome 

t 4- BigExpression; if t= fail then u else t 

The conventional if p then x else y could almost be achieved by (p ) x I y), except when p was not 

foil but x was. In retrospect, this syntax was not a big improvement and caused some confusion. 

Non-primitive values are either lists or functions. Lists are written like ["A", "list"] and []. 

Lists may be subscripted using the operator 'I': ["A", "B"]/2 = "B". A negative subscript, -i, 

yields the list with its first i elements removed. ["A", "b", "c", "d"]/-2 = ["c", "d"]. Lists can be 

concatenated with the infix operator ',,'. 

["A", "b"] " ["c"; "d"] = ["A", "b", "c", "d"] 
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The familiar Cons(x, y) operation of LISP can be accomplished with the idiom '[x] ., y' which 

places x in a list of length one and concatenates it with y. We found this syntax for list 

construction and selection to be quite congenial and didn't miss the primitive functions cons, head 

and tail. 

The distinction between strings and lists broke Poplar into two pieces like SNOBOLA:the 

pattern sub-language and the general list· processing language. The shortcomings of this became 

clear when someone wanted to precede a parsing operation by a lexical analysis that produced a list 

of strings. The pattern language could not be used on the list! We might have preferred a design 

like LISP70 [Tesler] in which the base data type is character, and a string is just a list all of whose 

elements are characters. 

Functions and Iteration 

People reading or writing a program tend to think of it doing something in a sequential fashion 

and find it most natural if the order in which they read a program fragment follows that sequence. 

In a conventional language the programmer usually thinks of the state of the machine as the object 

being worked upon by sequential statementc;. In a functional language, the machine state is not an 

appropriate concept, but that is no reason to discard the sequence as a syntactic construct. We 

chose to make function application a post-fix operation and found it very natural to write long 

sequences of monadic function applications just as if they were statementS. This turned out to be 

especially true for conversational programming. 

Functions are denoted by lambda expressions except that instead of 'Xx.' one writes 'x:'. List­

structured formal parameters require structured actual ones, so 

([x, [y, z]]: x+y+z) = (w: w/1 + w/2/1 + w/2/2) 

The application of functions to parameters is written in post-fix notation again using the 

operator 'I'. 

3+9 I (t: t t t) = 121212 

The apparent double use of' I' as both function application and subscripting is explained by 

regarding integers as denoting functions applicable only to lists. The precedence of ':' is such that 

one can conveniently use function application as a sort of post-fix assignment statement 

L I x: x+x I t: t t t = L/(x: x+x/(t: t t t» 
The let expression is a Dluch better substitute for assignment and was sorely missed. 
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We wish we had had a kind of conditional function application based on fail: 

x\f = if x = fail then fail else x/f 

because we often found ourselves writing 

BigExpression/x: x ) x/f 

One of Poplar's Inore successful syntactic features was the use of several infix operators as a 

substitute for for-loops. Without them the functional style requires the use of many recursive 

function definitions, one for every loop. String concatenation and the arithmetic operations extend 

to lists of strings so that 

["a", "b", "CU
] "x" = ["ax", "bx", "cx"] 

[1, 2, 3] + [5, 6, 7] = [6, 8, 10] 

There are infix operators for LISP's Maplist. APL's reduction operator, APL's t operator, and a 

general iterative operator. Like function application these three operators are written with the 

function second rather than first 

[a, b, c]1 If = [alf, bIt: clf] 

[a, b, c]1 I /f = [[a,b]/f, c]/f 

4 -- 7 = [4, 5, 6, 7] 

x%f = if x/f then (x/f)%f else x 

(Map list) 

(Reduce) 

(Generate) 

(Iterate) 

It should come as no surprise that the maplist operator was very handy and that the reduce 

operator was good for adding lists of numbers and like tasks. Somewhat more surprisingly: the 

reduce operator was used extensively in situations where one wanted to traverse a list and carry 

information along. Consider the general for-loop scheme 

S +- InitState; 

for x +- List, x.tail until x = NIL 

do S +- F(S, x.head) 

This could be written as 

[InitState] " List! / IF 

A list offuncti~ns applied to a value generates alist of results. 

x/[f,g,h] = [x/f,x/g, x/h) 

This feature paid off most when the 'functions' were numbers as in 
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[a, b, c, d, c]/(2--4) = [b, c, d) 

There arc many built in fiJnctions. For example, a list of equal length lists may be transposed. 

[[a, b, cl, [d, e, t]]ffranspose = [[a, d], [b, e], [c, t]] 

Transpose is important because it allows one to generalize a non-unary function, f, to work on lists 

via the idiom 

[Listl, List2]/Transpose/ /f 

The combination of built~in iterators and post~fix notation was very successful; succinct 

functional programs to do complicated things could be written easily without using recursion. 

Furthermore, writing such programs became a simple, even natural process, rather than a challenge 

to the intellect. 

Pattern Matching 

Patterns are a subset of the function space, String -. V, and have a special syntax. In essence, 

the pattern sub-language is the language of regular expressions. A primitive pattern is either a 

string or the ellipsis ' ... ' which matches anything. Larger patterns may be constructed from 

smaller oncs by using four combination rules: if P and 0 are patterns, then so are the following 

PQ 

PIO 
P! = PIP PIP P P etc. 
P? = ( PI"" ) 

concatenation 

alternation (Le. or) 

one or more repetitions 

optional 

The Kleene star pattern p* can be written as PI?~ Every pattern is enclosed in braces '{}'. 

A pattern is a function which can be applied to a string; the result can be fail or something 

derived from the string by a set of pattern composition rules. As the default, the matchcr simply 

re~concatenates the pieces matched so that 

"aazbbcz"/{... "z" ... "z"} = "aazbbcz" 

By decorating the pattern appropriately one can arrange for different things to happen: Suffixing a 

component with * causes whatever it matches to be discarded. 

"aazbbcz"/{ ... ("z"*) ... ("z"*)} = "aabbc" 

One can replace pieces by suffixing the phrase ') newpiece' 

"aazbbcz"/{ ... ("z" ) "X") ... "z"} = "aaXbbcz" 
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One can make lists out of the pieces by inserting brackets and commas in the pattern 

"aazbbcz" /{ [... "z" , ... ttz"] } = [ttaaz", "bbcz"] 

Conceptually, it is best to think of a two-phase process: first the string is parsed, then one computes 

the result from the parse tree using the various signals attached to the pattern. Although it can be 

syntactically confusing to intertwine these two processes, it overcomes the fact that any division of 

the two phases can lead to them becoming inconsistent. 

The operator "!' parses things just like '!' but produces a list of the items matched rather than 
fe-concatenating them. For example to apply the function F to each substring of s found before a 

'z' one says 

s/{( ... "z"*),!}/ IF 

A very general method for processing the outcome of a pattern match is to attach a function to 
a pattern element and apply it to the result of matching that element. One says 

{(P I F)!} 

and the result of a successful match is computed by applying F to each of the sub-strings which 
matches P and concatenating the results. This method is applicable in more general cases typified 

by the recursive patterns. Without functional attachment, such patterns are not useful if one wants 

to process the recursive structure. For example, to parse an expression and compute its value one 

can write 

E +- {digit! I [ "(ft* E , "+ "* E ")"* ] I Plus} 

which is succinct if nothing else. Functional attachment was used extensively to build powerful 
patterns that simultaneously matched and transformed their input. 

Non-functional Features 

Poplar has a conventional assignment statement 'x +- e' that changes the values of simple 

variables. The extent of its use depended upon the programmer and the degree to which he was 

trying to write functionally. Input-Output was imperative, but it was not possible to use it to 

simulate assignment because a file could not be read after it was written during a Single session. In 

other words, files were accessed via pure input or pure output streams. 

Equality Assertions 

Reading a program is a little like listening to one end of a telephone conversation. When 

listening to someone talking on the phone one can figure out what is going on only if he has a 
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good model for what the unheard person Inight be saying. When reading a program one needs a 

model for the data that is being manipulated. Data declarations in conventional programming 

languages serve this function to a degree,but often they don't say nearly as much about thc content 

of the data as one might 1ikc. To make Poplar, which has no declaration facility, more readable 

there is a checked comment facility. Any function definition can be decorated with a set of 

assertions that constitute a test evaluation of the function. 

For example, given the function (x: [x,x]/Conc/Reverse) one can add equality assertions to 

produce 

x: 
[x,x]/Conc 

/Reverse 

= "foo"; 
= "foofoo" 

= "oofoof" 

which says: If the input is "foo" the value of [x,x]/Conc will be "foofoo" and the final value will 

be "oofoof' . 

This idea has worked out well: it is much easier to grasp what a program is doing if a well­

chosen example is interleaved with it. Poplar is very difficult to read without them. The fact that 

the example is machine-checked makes it more credible than a nonnal comment. In practice, one 

needs mechanical aids to generate examples because of all the details (e.g., how many spaces are in 

" It?) which escape the reader, but not the checker. 

An Example 

Consider the key-word-in-context problem discussed by [parnas]: given the list of book titles 

Green Sleeves 

Time Was Lost 

generate the following alphabetized list, useful for looking up specific key words: 

<Green> Sleeves 

Time Was <Lost> 

Green <Sleeves> 

<Time> Was Lost 

Time <Was> Lost 
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The procedure is as follows: 

Break the text up into lines. 

Break each line up into words. 

For each line: 

Generate a list of pairs, one for each word, consisting of the word, and a 

reconstruction of the line with . brackets around the word. 

Merge all these lists into one big one. 

Sort the list by the words. 

Discard the words. 

Concatenate all the lines to fonn the final text. 

9 

Figure 1 shows the Poplar program to do this, and Figure 2 shows the same program decorated 

with equality assertions. The major steps correspond to the infonnal steps above. The character' t 
stands for carriage-return. The function Lines is a pattern that breaks up the string a each carriage 

return. Words is a pattern that produces a list of words from its input discarding all punctuation. 

Append concatenates pairs of lists; Conc concatenates pairs of strings. The phrase '112' applies 2 to 
eaeh pair on the list. 

KWIC ... (s:s/Lines 
II Words 

IIGenerate 

IllAppend 

ISort 

112 

IIICone); 

Lines ... {( ... " J "*),!}; 

Words ... {( ... * Letter!),! *}. ... , 

Generate ... (w:l--(w/lengtb) 

Ilk: l--(w/lengtb) 
110: j/{k} > "(" (w/j) n)" I w/j) 

It: " ." tI IIConcat "J" 
lu: [w/k, u]); 

Figure 1. A Poplar Program for Key-Word-in-Context 
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KWIC" (5: 

slLines 

IIWords 

IIGenerate 

IllAppend 

ISort 

1/2 

II/Cone 

Generate .. (w: 
l--(w/length) 

I/(t: 

l--(w/length) 

= "Green SleevesJTime Was LostJ"; 

= ["Green Sleeves", "Time Was Lost"] 

= [["Green", "Sleeves"], ["Time'" "Was", "Lost"]] 

= [[["Green", .. <Green> SleevesJ"], 
["Sleeves", " Green <Sleeves> J "]], 
[["Time", " <Time> Was LostJ"], 
["Was", "Time <Was> LostJ"], 
["Lost", .. Time Was <Lost> J Of]]] 

=[["Green". "<Green> SleevesJ"], 
["Sleeves", " Green <Sleeves> J"], 
["Time", " <Time> Was Lost.) "], 
["Was", "Time <Was> LostJ"], 
["Lost", "Time Was <Lost> J"]] 

=[["Green", "<Green> SleevesJ"], 
["Lost", .. Time Was <Lost> J "], 
["Sleevcs", "Green <Sleeves>J"], 
["Timc", "<Time> Was LostJ"], 
["Was", " Time <Was> LostJ "]] 

=[" <Grecn> SleevesJ", 
" Time Was <Lost> J ' .. 
" Green <Sleeves> J", 
"<Time> Was LostJ", 
"Time <Was> LostJ"] 

= " <Green> Sleeves 
Time Was <Lost> 
Green <Sleeves> 
<Time> Was Lost 
Time <Was> Lost 

"); 

= ["Time", "Was", "Lqst"]; 

= [1,2,3] 

=2; 

11(j: j/{k} > "<" (w/j) ">" I w/j) 

It:"" VIIConcat "J" 
= ["Time", "<Was>", "Lost"] 

= "Time<Was> LostJ" 

lu: [wIt, u] 

) 

= ["Was", " Time <Was> LostJ"] 

= [["Time", "<Time> Was LostJ"], 
["Was", "Time <Was> LostJ"], 
["Lost", "Time Was<Lost> J"]]); 

Figure 2. The KWIC Program Annotated with Equality Assertions 
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The function Generate could be described infonnally as follows: 

For each element, k. of the list w 

Generate a new list, t, identical to w except that the· kth element of w 

has had brackets placed around it. 

Put a space in front of each element of t, and 

concatenate all the elements following with a "J", producing u. 

Return the pair consisting of the kth element of wand u. 

11 

Notice that the informal description of procedures KWIC and Generate consist of quite 

imperative statements while the program itself is entirely functional! This is the advantage of post­

fix syntax. Many programs have been written in this style, often interactively. This program is 

rather inscrutable, but we believe that translating it to a more conventional notation makes it worse. 

In Figure 3 the program appears written in an Algol/LISP style of syntax, i.e., changed to a prefix 

notation with all the maplist and reduce operations explicit. To make the nesting tolerable, we 

introduced many assignment statements; imagine how the program would look if we eliminated 

them by back-substituting! Of course the assignment statements give one the opportunity to 

introduce a mnemonic identifier to describe the intermediate result. Thus the opaqueness of the 

program is as much due to the style of expression as the syntax of the language. We found than 

Poplar's syntax allows one to write extremely succinct programs. They are also quite unreadable. 

There seems to be a limit to how compact a notation should be and Poplar exceeded it. 

Records 

Poplar, and any other functional language to be used for real programming, should have record 

data types. Consider the following common sort of program: 

w +- 0; L +- NIL; 

for x +- List, x. tail until x = NIL 
do begin 

w ... w +x.head; 
if L= NIL or not (x.head = L.head) then L +- Cons(x, L) 
end 

A Poplar equivalent, employing the reduce operator is 

[[0, []]] " List 
/ / /[[w, L), xhead): 

[w+xhead, 
(L/isnull I -(L/l/{xhead}» > [xhead] " L I L ] 
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procedure KWIC(s); 

begin 
ListofLines +- Lines(s); 

ChoppedLines +- maplist(ListofLines, Words); 

ListofListsofPairs +- Gencratc(ChoppedLines); 

ListofPairs +- reduce(ListotListsofPairs, Append); 

OrderedList +- Sort(ListofPairs); 

ListofStrings +- maplist(OrderedList, Ax.x/2); 

return rcduce(ListofStrings, Cone) 

end 

procedure Generate(w) 

begin 
return( 
maplist( G List(l,Length( w», 

Ak. t +- maplist(GList(l, Length(w», 

end 

Aj. ifj =k then "(" (wllj) ")"else w/j); 

u +- Concat(" ", t) "J"; 
return Cons(w/k, u») 

Figure 3. The KWIC Program Written in Algol/LISP 

This kind of thing was hard to read and write. One problem was figuring out the correspondence 

. between the various structures and the identifiers w, Land xhead. It was easy to get these 

structures wrong. Pascal's record construct would help this problem. For example, suppose we 

invent the record notation 

(x +- E, y +- F> 

to denote the record with fields x and y initialized to E and F. The above could have been written 

[(w +- 0, L +- D>] " List 

II I [r, Hx]: 

<w +- r.w+Hx, 

L +- (L/isnull I L/l/{Hx}) > [Hx]"L I L > 

This notation would have helped? great deal in making patterns more readable. For example, 

one might write 
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Exp ... {< "(" leftOperand'" Exp " + " rightOperand ... Exp ")" > } 

This would achieve some of the mnemonic value of the SNOBOU conditional assignment 

operation without introducing side effects. 

Better iterative operators 

13 

Although the built-in iterators were successful in general, we now have a better idea of what 

they should be. The maplist operator had the feature that if a value in the output list was fail it 
WqS omitted. This was handy. but occasionally it tended to bury errors one would like to discover. 

There should be separate operators to accomplish this, perhaps 
[1, p ]/Filter = sheep 
[1, p]/Split = [sheep, goats] 

where sheep is the list of items on list 1 for which p is true (Le., not fail) and goats is a list of all 
the others. The absence of a Split operator like this caused people to use assignment statements. 

They would write 

goats ... D; 

sheep ... lll(x: if x/p then x else (goats ... [x]" goats; fail» 

A problem with the reduce operator was that it was clumsy to produce lists as answers. In those 

situations a reduce functional that worked in the opposite direction might have been much more 

congenial. For example 

[x,y,z]\ \ \F = [x, [y, [z, []]/F]/F]/F 

It processes the list from right to left and applies F to the last element and the empty list. For 

example, this would allow us easily to solve the otherwise bothersome problem of eliminating 

adjacent repetitions from a list 

[1,1,3,4,1,2,2] 

\ \ \([x,y]: -y/isnull > y/1/{x} > y I [x]"y) 

= [1,3,4,1,2] 

Notice that when x is a non-null list 

x \\\ Cons = x 

x \ \ \ ([h,t]: [h/f]" t) = xl If 
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This form of the reduce operator is very close to Strachey and Barron's lit (list iterate) functional: 

lit a g x = if x = NIL then a else g (x.head) (lit a g(x.tail» 

If one has the possibility of multi-processing then there should be a reduce operator suitable for 

use with associative functions that is free to do things in any order it likes. 

The general iteration operator '%t was not very useful and suffered from the lack of a record 

notatation as discussed above. The need was felt for ways other than the sequence operator to 

generate lists from whole cloth.' For example, the following function might be useful: 

[a, t]/GenList = -a > [] I [a] u ([a/f, t]/GenList) 

Clever Implementation is essential 

We have experimented with an implementation that uses the lazy evaluation strategy described 

in [Henderson&Morris), but most programs were written for a standard evaluator. In any case, we 

found that assuming a lazy evaluator can have a very liberating effect on how one programs. For 
example, the KWIC program is very inefficient by contemporary standards. Every line seems to 

create a large new structure which the following line consumes. Improvements in this algorithm's 

performance can be made by a little cleverness in the evaluation strategy so these multi-pass 

operations are merged. The essence of the technique is that nothing is evaluated until it absolutely 

must be. Under this regime lists often behave like ~treams because their tails remain unevaluated 

until they are needed. In the case of KWIC the first operator that forces any sort of evaluation is 

Sort which demands that it receive a list of lists, each of whose first components is a fully evaluated 

string. This causes the Append reduction to be completed, but the second component of each pair 

remains unevaluated until the final reduction using Conc. Thus, in principle, this program requires 

only enough space to create a list of all the individual words and does not require space 

proportional to its output, which approximates the square of the input. Of course, a run-time lazy 

evaluation strategy does not reduce the amount of garbage this program will generate, it only 

reduces the maximum amount of storage it requires at anyone time. A deeper, compile-time 

analysis a la Darlington and Burstall would be necessary to eliminate the creation of temporary 

storage. 

Notice that the revised definition of the reduce operator works much better under lazy evaluation. 

For example, the beginning of the value of L \ \ \Append can emerge before L has been completely 

traversed. 

Since lists are never fully evaluated one can even deal with infinite lists. The Fibonacci 
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numbers may be described by the recursively defined list Fib. 

Fib +- [l,l] " (Fib + (Fib/-I» 

Suppose one want to find the first Fibonacci number that is divisible by 3. He can say 

[Fib,div3]/Filter/1. This will not involve computing any more elements than a more conventional 

recursive program would. In general, any while loop could be written in this way: 

s +- a; while P(s) do s +- F(s) 

can be simulated by 

[[a, F]/GenList, P]/Filter/l 

There were many situations in which lack of lazy evaluation encouraged programmers to use 

assignments. For example, one wrote a function GetParagraph that transforms a string into a pair 

consisting of the first paragraph in the string and the remainder of the string. He then wrote an 
expression 

(l--N)II(x: File/GetParagraph/(p, f]: File +- f; p) 

that produces the first N paragraphs of the string and leaves File holding what is left over. There 

are a variety of ways to do this without assignment. The most straightforward is to parse the entire 

file into a list of paragraphs once and for all and then grab N items. One would write 

Filel {GetParagraph,!} 

lParsedFile: [ParsedFile/(l--N), Parsedfilel -N] 

to produce the two pieces. However, the file in question was very large and this program could not 

have worked if the parsed file were fully materialized by the non-lazy evaluator. 

One of the things that has always been hard for functional programs is achieving the efficiencies 

associated with loop exits. If we are going to change loop constructs into maplist-like, operators 

how do we deal with premature exits from for-loops? E.g., 

for i in 1 .. N do 

if Q(i) then begin k +- exit end 

This translates easily into 

k +- I--N II (i: i/Q > i) I I 
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which seems to say: map over the list 1--N producing all the values for which Q is true. then select 

the first. Under lazy evaluation, however, Q will not be applied any more times than in the for­

loop program. 

Euclid 

Euclid was designed as a restriction of Pascal, leaving out all those things that made proofs 

difficult-most notably gotos and hidden side effects. These restrictions make Euclid easily 

translatable into a functional language-so casily that we argue that it is a functional language 

disguised in Pascal syntax. It omits the Pascal features of gotos, concealable side effects, and 

procedures as parameters. What remains is a highly constrained language, but one which, to the 

surprise of many, has been used to write large programs. A group of programmers have 

enthusiastically adopted Euclid and written a real compiler ,and a toy operating system' in it 

[Wortman, Holt] 

Euclid's Restrictions 

The arbitrary goto has been eliminated. This guarantees that every procedure returns to its 

caller. 

Pointers are treated as indices of special kinds of arrays called collections. Collections are 

actually a resurrection of the class concept of an early version of Pascal. A collection C may be 

thought of as an array except that it has a special type of indices called pointers which admit to no 

arithmetic operations. These pointers can be obtained only by calling the procedure C.New; the 

array has no explicit bounds. The dereferencing operation 'p1" should be thought of as an array 

subscription operation, C(p). The advantage of this for program verification is that each pointer 

assignment has its scope of influence explicitly limited. If one makes the declarations 

type CT = collection of integer 

type CU = collection of integer 

type T = 1'CT 

type U = 1'CU 

t:T 

u:U 

then the theorem 
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{ut = 5}tt:= 6{ut = 5} 

is treated exactly like 

{CU(u)=5} CT(t) : = 6 {CU(u)=5} 

which is obviously true, given that CT and CU are disjoint. 

In Euclid procedures and functions cannot be passed as parameters. The most important proof 

rule for Euclid, or any other language, is the procedure call rule. The idea behind a procedure 

call rule is that one proves a general fact about a procedure in tenns of its formal parameters and 

then uses the procedure call rule to particularize the general theorem. We shall not describe such a 

rule in detail but merely point out that to have such a rule one must be able to describe the effect 

of a call on any procedure at the position of the call. Sometimes this is hard to do in Pascal. 

Consider the program 

begin procedure P; 

PO 
end; 

begin x: integer; 

procedure Q(var z: integer); 

begin x : = z + x; z : = x end; 

x:= 0; R(Q); 

end; 

procedure R (s: proccdure(var integer»; 

begin t: integer; 

t: = 1; {?} s(t); {?} s(t); {?} Print (t); 

end; 

In this program, P calls R, passing its internal procedure Q which references a variable x that is 

inaccessable to R. The question then arises, how can we describe the effect of calling s within R? 

Clearly we cannot mak~ any assertions about x inside R since x is at best inaccessible and at worst 

non-existent. Euclid's solution to this problem is to ban procedures as parameters. Then it is easy 

to see that any variables accessible to a procedure are also accessible at the point of its call. 

Each procedure is required to list, in an imports list, all of the free identifiers it mentions and 

attach the var attribute to any it assigns to. Note that if a procedure ·dereferences a pointer, it must 

import its collection. The programmer is required only to list all the free identifiers of each 

procedure; the compiler uses these lists to produce expanded imports lists by adding thus clauses 

(which it prints in the output listing) that include all the identifiers implicitly imported. In other 
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type PuzzleSolver = module imports (writeln) thus (var output) 

pervasive const size = 343 
pervasive const classMax = 4 
pervasive const typeMax = 13 
pervasive type pieceClass = 1 .. classMax 
pervasive type pieceType = 1..typeMax 
pervasive type position = l .. size 

pervasive const class: array pieceType of pieceClass = [1,1,1,1,1,1,2,2,2,3,3,3,4] 
pervasivc·const pieceMax: array pieceType of position 

= [11,149,71,23,53,155,3,15,99,9,51,57,58] 
function Index(i,j,k: integer) returns integer = 

begin return(i+ 7*0 + 7*k}+ l)end 

function InitP (x : integer) returns 
p: array pieceType, position of boolean = 

begin 
procedure SetPiece(t: pieceType, I, J, K: position) = 

imports (var p) 
begin for i in ° .. I loop for j in 0 .. J loop for k in 0 .. K loop 

pet, Index(ij,k» : = true end loop end loop end loop 
end 

for i in 1 .. typeMax loop for m in 1 .. size loop p(i, m) : = false end loop end loop 
SetPiece(l, 3, 1, 0); SetPiece(2, 1, 0, 3); SetPiece(3, 0, 3, 1) 
SetPiece(4, 1,3,0); SetPiece(5, 3, 0, 1); SetPiece(6,0, 1,3) 
SetPiece(7, 2, 0, 0); SetPiece(8, 0, 2, 0); SetPiccc(9, 0,0, 2) 
SetPiece(lO, 1, 1, 0); SetPiece(11, 1, 0, 1); SetPiece(l2, 0, 1, 1) 
SetPiece(13, 1, 1, 1) 
end 

pervasive const p: array pieceType, position of boolean = InitP(O) 
pervasive type PC = array pieceClass of 0 .. 13 
var pieceCount: PC 
pervasive type PZ = array position of boolean 
var puzzle: PZ 

function fit (i : picceType, j : position) returns boolean = 
imports (puzzle) 
begin 
for k in 1 .. pieceMax(i) loop 

if p(i,k) then if puzzleO + k-I) then return(false) end loop 
retum(true) 
end 

procedure remove (i : pieceType, j : position) = 
imports (var puzzle, var pieceCount) 
begin 
for k in 1 .. pieceMax(i) loop 

if p(i,k) then puzzleG + k-l) : = false endIoop 
pieceCount(class(i» : = pieceCount(c1ass(i» + 1 
end 

Figure 4. A Euclid Program 
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procedure place (i : pieceType, var j : position) = 
imports(var puzzle, var pieccCount, writeln) thus (var output) 
begin 
for k in 1 .. pieceMax(i) loop 

if p(i.k) then puzzle(j + k-l) : = true end loop 
pieccCount(c1ass(i» : = pieceCount(c1ass(i»· 1 
for k in j .. size loop 

. if not puzzle(k) then beginj: =k; return end end loop 
writeln('puzzle filled') 
j:= 1 
end 

procedure trial 0: position, var ans: boolean) = 
imports( var kount. trial, pieceCount, fit, place, remove, writeln) 
thus (var puzzle, var pieceCount, var output) 
begin 
var k: position 
for i in 1 .. typeMax loop 

if pieceCount( c1ass(i» <> 0 then 
if fit (i, j) then 

begin 
k:= j 
place (i, k) 
trial(k, ans) 
if ans or (k = 1) then 

begin 
writeln ('piece', i, ' af, k) 
ans: = true 
kount : = kount + 1 
return 
end 

else remove (i, j) 
end end loop 

ans ': = false 
kount : = kount + 1 
end 

var m: position 
var a: . boolean 
for m in 1 .. size loop puzzle(m) : = true end loop 
for i in 1 .. 5 loop for j in 1 .. 5 loop for k in 1 .. 5 loop 

puzzle(Index(ij,k» : = false end loop end loop end loop 
pieceCount(l): = 13 
pieceCount(2) : = 3 
pieccCount(3)': = 1 
pieceCount(4) : = 1 
m : = Index(lJJ) 
kount:= 0 
if fit(l, m) then place(l, m) else writeln('error 1') 
trial(m, a) , 
if a then writeln('success in', kount, , trials') 
else writcln('failure') 

end. 
Figure 4. (continued) A Euclid Program 

19 
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words, the compiler computes a transitive closure of identifiers referenced and changed starting 

from those referenced and changed directly. The existence of these imports lists, however arrived 

at, is important for checking the following vital rule. 

Any two identifiers known in a scope are guaranteed to be represented by disjoint storage. This 

rule is required to support Hoare's basic assignment axiom, {P(e)} x: = e {P(x)}, which says that 

to prove that P(x) holds after "x: = e" has been executed on must show that P( e) holds before 
where P(e) is derived from P(x) by unifonn substitution of e for x. This rule fails to hold in the 
following Pascal program: 

begin z: integer; 

procedure P (var x: integer); 

begin {z+ l>z} x: = z+ 1 {x>z} end; 

z: =5; P(z): 

end; 

Euclid's solution to this is to disallow the overlapping of variables. This restriction is enforced by 

the following sort of rule: Consider the actual parameters of a procedure call together with its 

imports list, which· would include z, as art extended actual parameter list. Consider each actual 
corresponding to a var parameter. If it is a simple identifier, field extractor, array, or collection,· it 

cannot appear as any other actual. If it is an array or pointer dereference, the array or collection in 
question. cannot be passed as one of the other parameters. Where the overlap is only potential, as 

in a call like P(a(i), aG», the language definition requires that a legality assertion to the effect that 

i* j precede the call and that this assertion be verified at compile time or checked at run time. 

There are also a number of ways in which Euclid extends Pascal, but we shall not deal with 

them here. None of these extensions seems to compromise the arguments we shall make, but they 

add complications. 

Translating an example 

To illustrate how close Euclid is to being a functional language we shall translate a typical 

program to a functional form. We have chosen the program PuzzleSolver written by Forest Baskett 

[Baskett] to be used as a benchmark for various systems. The original program is shown in Figure 

4. We have included all the thus clauses in the imports lists. Note that pervasive constants such as 

the arrays class, pieceM ax, and p need not be mentioned in imports lists since they cannot be 
assigned to after initialization. 

First we shorten the imports clauses: by promoting all the imported variables to be explicit 
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parameters. This requires that each call pass those parameters explicitly. Figure 5 shows the 

changes to two of the procedures, place and trial. It should be noted that this transformation 

would not always work in Pascal because, as we showed earlier, it is possible to pass procedures 

around in such a way that variables implicitly imported by a procedure cannot be accessed by the 

procedure's caller. 

procedure place (i : pieceType, var position,var puzzle: Pl, 
var pieceCount: PC, var output: Stream) ::::: 

imports( writeln) 
begin 
for k in 1 .. pieccMax(i) loop 

if p(i,k) then puzzleG + k-1) : = true end loop 
pieceCount(class(i» : = pieceCount(class(i» - 1 
for k in j .. size loop 

if . not puzzle(k) then. begin j: = k; return end end loop 
writeln(output, 'puzzle fiPed') 
j : = 1 
end 

procedure trial G: position, var ans: boolean, var kount: integer, 
var puzzle: PZ, var pieceCount: PC, var output: Stream) = 

imports( trial, fit, place, remove, writeln) 
begin 
var k: position 
for i in .1 .. typeMax loop 

if pieceCount( class(i» <> 0 then 
if fit (i, j, puzzle) then 

begin 
k := j 
place (i, k, puzzle, pieceCount, output) 
trial(k, ans, kount, puzzle, pieceCount, output) 
if ans or (k = 1) then 

begin 
writeln (output, 'piece', i, ' at', k) 
ans : = true 
kount : = kount + 1 
return 
end 

else remove (i, j, puzzle, pieceCount) 
end end loop 

ans : = false 
kount : = kount + 1 
end 

Figure 5. Imports transformed into explict parameters 

Next we eliminate all the var parameters by turning the procedure into a function and returning 

them as values. Each of the formal parameters x that was a var parameter is replaced by the 

parameter· oldx; and upon entry to the procedure oldx is copied into the result identifier x. 

Figure 6 shows the change to place and trial. To make this convenient, we have had to pretend 

that Euclid allows multiple results to be returned. 
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function place (i : pieceType, oldj :·.position, oldpuzzle: PZ, 
oldpicceCount: PC, oldoutput:. Stream) 

returns G : position, puz7Je: PZ, pieceCount: PC, output: Stream) = 
imports( writeln) 
beginj : = oldj; puzzle: = oldpuzzle; pieceCount: =oldpieceCount; 

output: = oldoutput; 
for k in 1 .. pieceMax(i) loop 

end 

if p(i,k) then puzzlefj + k-l) : = true end loop 
pieceCount(class(i» : = pieceCount(class(i» - 1 
for k in j .. size loop 

if not puzzle(k) then begin j: = k; return end end loop 
output: = writcln( output, 'puzzle filled') 
j:= 1 

function trial fj: position, oldans: boolean. oldkount: integer, oldpuzzle: PZ, 
oldpieceCount: PC, oldoutput: Stream) 

returns (ans: boolean. kount: integer, puzzle: PZ, 
pieceCount: PC, output: Stream) = 

imports( trial, fit, place; remove, write In) 
begin var k: position 

ans: = oldans; kount: = oldkount; puzzle: = oldpuzzle; 
pieceCount: = oldpieceCount; output: = oldoutput; 
for i in 1 .. typeMax loop 

ifpieceCount(class(i» <> 0 then 
if fit(i, j, puzzle) then 

begin 
k :=j 
(k, puzzle, pieceCount, output) : = 

place (i, k, puzzle, pieceCount, output) 
(ans, kaunt, puzzle, pieceCount,output): = 

trial(k, ans, kount, puzzle, pieceCount, output) 
if ans or (k = 1) then 

begin 
output: = writeln (output, 'piece\ i, ' at', k) . 
ans: = true 
kount : = kount + 1 
return 
end 

else (puzzle, pieceCount) 
: = remove (i, j, puzzle, pieceCount) 

end end loop 
ans : = false . 

kount : = kount + 1 
end 

Figure 6. Procedures transformed into functions 

Is this transformation always valid? It is clear that assignment statement above will have the 

saine effect as the original procedure call (alb~it at possibiy greater expense) if the returned values 

are equal to what the values of the original var parameters were when the original procedure 
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returned. However, the computation inside place is different. Instead of updating the original 

variables we copy them and use only the copics inside the function. The non-overlap rule now 

come into play: since all the parameters of place were disjoint to begin with, copying them has no 

qualitative effect on the behavior of place. The only possibility left is that place calls another 

procedure or function that somehow· accesses the original variables. For example •. suppose place 
contained a call' to a procedure PeekAtPuzzle(i) which imported puzzle and returned the ith 

element. But PeekAtPuzzle has also been subjected to this rewriting so that its access to ,variables 

has been made entirely explicit in its parameter list; Le .• its call would read PeekAtPuzzle(i, puzzle) 
so it must be working on the copy too. By induction on the depth of function calls, this call on 

PeekAtPuzzle has the same result as it did before. Finally, note the impossibility of a non-local 

goto that could terminate the execution of place and by-pass the assignment of the new results. 

Once we have carried out the procedure to function transformation on the program it remains 

only to make each function by itself more obviously functiona1. This is basically a mopping up 

operation familiar to any student of functional languages. Figure 7 illustrates how one eliminates 

for loops and array assignments, assuming that arrays are represented as functions. The lit 
functional and Poplar list generator described earlier are employed. 

function place (i : pieceType, oldj : position, oldpuzzle: PZ, 
oldpieceCount: PC, oldoutput: Stream) 

returns G : position, puzzle: PZ, pieceCount: PC, output: Stream) = 
imports( writeln) 
begin 

puzzle: = (An. p(i, n-oldj + 1) or oldpuzzle(n» 
pieceCount : = (An. if n = c1ass(i) then oldpieceCount( c1ass(i» - 1 

else oldPieceCount(n» 
j : = lit 1 (X(k,r). if not puzzle(k) thenk else r) (oldj -- size) 
output: = if j = 1 then writeln( oldoutput, 'puzzle filled') else output; 

end 

Figure 7~ For loops and array assignments eliminated 

The important thing about this demonstration is that it shows that one of the major aspects of 

functional programming, the absence of hideable side effects, is also a property of Euclid. The 

Euclid programmer is not required to make all side effects explicit at the· point of the procedure 

call, but· they are explicit in the declaration in the imports clauses. 
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Euclid vs. Pascal 

Why don't we argue that· Pascal, too, is a functional language? After all, any language can be 

given functional semantics if one is willing to work hard enough. 1be difference between Euclid 

and Pascal can be captured in the types of data spaces one must deal with in order to provide 

functional semantics. To simplify the comparison let us ignore records and functions. To provide 

Scott/Strachey semantics for Euclid one would need the following sort of· data spaces: 

Basic = Boolean + Integer + Pointer 

Array = Integer -+ Value 

Collection = Pointer -+ Value 

Value = Basic + Array + Collection 

Environment = Identifier -+ Value 

Procedure = Environment -+ Value* -+ Value* 

A procedure like remove with the heading 

procedure remove (i:integer, j: integer) == 

imports (var puzzle, var pieceCount) 

could then map into a function with ilie type 

Environment -+ (Integer X Integer X Array X Array) 

-+ (Array X Array) 

where the four input types correspond to i, j, puzzle, and pieceCount, and the two output types 

correspond to puzzle and pieceCount. This mapping follows the same path that the translation in 

the previous section did. The environment is used to look up the values of constants like p. 

To provide Scott/Strachey semantics for Pascal one would need the following sort of data 

spaces: 
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Basic = Boolean + Integer + Pointer 

Array = Integer -+ Pointer 

Value = Basic + Array + Continuation + Procedure 

Environment = Identifier -+ Pointer 

State = Pointer -+ Value 

Continuation = State -+ State 

Procedure = Environment -+ Continuation -+ State -+ Value* -+ State 

Now, the procedure remove would map into a function with the type 

Environment -+ Continuation -+ State -+ (Integer X Integer) -+ State 

2S 

Here the environment must be used to look up the values of puzzle and pieceCount because, for the 

reason discussed earlier, they cannot be treated like explicit parameters. 'The continuation, which is 

the ScotVStrachey analogue of the machine language return address, is necessary because remove 
may, in general, exit with a non-local goto by applying a continuation other than the one it was 

passed. The state, which represents the entire data memory of the machine, must be passed around 

because remove may, in general, have a side effect on any location it pleases. 

There is an enormous difference between Euclid and Pascal when viewed in this way. All the 

data spaces needed to support Euclid, except the Environment, are equivalent to data types the 

Euclid programmer declares explicitly; that is why we were able to translate PuzzleSolver into 

functional form without leaving the Euclid language in any serious way. The data spaces needed to 

support Pascal involve the extra-linguistic concepts of State and Continuation, not to mention 

recursive, higher order function types. It is impossible for the Pascal programmer to describe these 

objects in Pascal, partly because they are polymorphic. The average Pascal programmer thinks of 

the, state only in a vague way and never thinks about continuations. Thus the functional semantics 

of Pascal do not reflect the way programmers think in the language nearly as well as Euclid's 

semantics do. Figuring out how to provide functional semantics for Pascal or Algol-60 was hard 

and occupied some brilliant minds for several years. The functional semantics of Euclid are trivial 

by comparison; even a programmer can understand them! We claim that the semantics of Euclid 

are much closer to Poplar's than Pascal's; neither Euclid nor Poplar involve global states or 

continuations. Indeed, it can be argued flat Euclid's data space is simpler than Poplar's since it 

does not allow functions as values. 

We' have now completed our argument that Euclid is a disguised functional language. Why 
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would one not consider Euclid a functional language? What virtues of functional languages does 

Euclid fail to possess? It would appear that the pragmatic possibilities for verification or 

optimization are as good tor Euclid as for any functional language. The only non-syntactic 

difference we see between Euclid and languages commonly accepted as functional is that it is a 

rather low-level language that discourages its programmers from writing programs that manipulate 

list structures or other large data aggregates. As a final example, Figure 8 shows a version of Trial 

written in Poplar, suitable only for lazy evaluation. We assume that puzzle and pieceCount are 

functions and that place returns an index and new versions of the functions. An informal 

description of Trial is: If j is 1 the puzzle is filled (because place returned a 1); return the string 

saying so. Otherwise, for each type of piece, i, if there is one left, and. it fits, place it, and invoke 

Trial on the resulting position, puzzle, and pieceCount. If Trial does not return fail. concatenate the 
appropriate string to its value and return it; otherwise return fail. The map list over the types will 

produce a list of solutions. If the list is empty return fail, otherwise return the first element. If this 

program is submitted to a lazy evaluator, no work will be expended discovering alternate solutions. 

Notice that, were a multi-processor available, we could suggest that it pursue the map list operation 

in parallel by an operation that said select any member of the list of solutions rather than the first 

Trial +- (0, puzzle, PieceCount): 
j/ {I} > "puzzle fiUedJ" 
11 -- typeMax 

Experience with Euclid 

/ /(i: .... (i/cIass/pieceCount/{O}) > 
[i, j, puzzle)/fit> 

[i, j, puzzle, pieceCount) 
/place 
!Trial 
/output: output> 

output "piece" i " at" k "J"} 
/Solutions: -(Solutions/isnull) > Solutions/I); 

Figure 8. Trial written in Poplar 

How people use Euclid should be of great interest to functional language advocates and other 

foes of hidden side effects. The preliminary evidence from people programming in Euclid 

[Wortman, Horning] indicates that it is not difficult to program real systems in it, that the ability to 

hide side effects is not essential, and that significant pragmatic benefits are associated with the 

language's restrictions. On the other hand, there is some evidence that the programmers are not 

programming in a functional spirit The original Euclid design required the. programmer to list all 
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of the imported identifiers, including the implicitly referenced ones. The implementors of the 

Euclid cOlnpiler, who were also the first people to program in Euclid, invented the thus clause and 

provided its automatic generation because they got tired of creating the imports lists by hand. 

Presumably they would really object if they were asked to make all the imports into explicit 

parameters. One might say that Euclid requires one to make the side-effects of a procedure easily 

discernable, while a strict functional form requires one to make them painfully obvious. 

Another complaint was that Euclid requires one to declare functions with "benevolent" side 

effects to be procedures. Consider the case of a memo function that uses a cache to remember 
some of the previously computed values. 

begin 
Arg, Ans: array 1..10 of integer; 
p: 1 .. 10; 
function Fibbonaci(n: integer); 

begin 
for i ... 1, i + 1 until i = 10 do 

if n = Arg[i] then return Ans[i); 
p ... (p+ 1) mod 10; 
Arg[p] ... n; 

ifn=l or n=2 then Ans[p) ... 1 
else Ans[p] ... Fib(n-l)+.Fib(n-2) 

return Ans[p) 

end; 
for p ... 1, p+ 1 until 10 do begin Arg[p] ... 1; Ans[p) ... 1 end; 

p "'1; 

end 

They argue that it only muddies the waters to require Fibbonaci to be a procedure which 

imports the cache. On the other hand one can argue, somewhat rudely, that the "functionalness" 

of this function depends upon the programmer not having made any mistakes, so the prudent 

course is to require that the cache be made explicit Besides benevolent side effects there are also 

irrelevant side effects such as a random number generator's storage of its state. In this case the 

procedure is representing a stream or list, and the fact that it uses intermediate state to produce 

values is not relevant 



28 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 

Conclusions 

Our experience with Poplar leads us to believe that functional programming needn't be difficult 

or unnatural if one is willing to ignore efficiency considerations and program in the APL style. As 

the KWIC program illustrates Poplar makes it quite simple to write a long series of statements. 

each one of which transforms all the data in a small way. In a conventional language, the syntactic 

overhead of a for loop or a recursion is large and makes one try to merge as much processing into 

each loop as possible. Of course, this impulse is one of survival, given today's implementations. 

The large number of maplist-like operations in Poplar programs have made them excellent 

benchmarks for garbage collectors. We look forward to the day when they can be used as 

benchmarks for program transforming compilers that merge loops and eliminate unneeded list 

creation. 

Preliminary experience with Euclid indicates that side effects can be tamed, and that the 

difficulty with making the programs look functional is, again, a matter of machine efficiency. The 

arrays and collections that a Euclid program manipulates are likely to be rather large and to be 

represented by blocks of storage. Passing them by value might not be possible, altough it was 

actually done for the relatively small arrays in the PuzzleSolver program without serious 

degradation of performnace. 

However, there are a lot of questions that need to be answered before one can see a clear path 

to the use of functional languages for real programming: 

How should interaction with a user be carried out? In our environment it is the norm to write 

programs that interact with a person through a keyboard, screen, and pointing device. To describe 

such things functionally one can describe each program as a function that maps each "input" into 

its output response, or better, an input stream into an output stream as [Friedman&Wise77J have 

done. This model doesn't fit very well with making random changes to a two-dimensional display. 

however. 

How does one debug a program with a surprising evaluation order? Our attempts to debug 

programs submitted to the lazy implementation have been quite entertaining. The only thing in 

our experience to resemble it was debugging a multi-programming system, but in this case virtually 

every parameter to a procedure represents a new process. It was difficult to predict when 

something was going to happen; the best strategy seems to be to print out well-defined intermediate 

results, clearly labelled. 

How does one predict performance? N ever mind that lazy evaluation, or any other clever 

strategy, will make the program perform better than it would have otherwise--ultimately one 

depends upon his understanding of the machine to design things so that they run reasonably. If 
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the machine is clever it is probably harder to understand, especially if it employs various ad hoc 
heuristics, based upon expectations of what sort of programs people write. 

How does one a"ange meaningful checkpoints? Even if one's computation has no bugs and is 

non-interactive, the order in which things are done can be relevant. When one's computation 

takes a long time he would like to save intermediate states that have meaning to the programmer. 

For example, in a correspondence management system we found it desirable to produce a letter and 
record the fact that it had been sent as an atomic action. Typically one might request the system to 

send many letters and expect that one or two requests would cause trouble for reasons ranging 
from hardware errors, to software errors, to improper requests. Also, one occasionally wanted to 

interrupt the process to do something else with the machine. Since there is no interdependence 
between these requests and the operation takes a non-trivial amount of time, one would like all but 

the troublesome requests to be completed. We attempted to solve this problem through the use of 

explicit writes on files-a highly non-functional operation. If one attempted to describe the 
operation as a whole, surrendering control of what happens to the system, any mishap forces one to 

start over entirely. 

To summarize, the potential practical benefit ofa functional language is that its implementation 
has much more running room in which to be clever since the order in which operations are 

performed is constrained only by the data flow. Examples of such cleverness are lazy evaluation, 
compile-time loop integration, and parallel processing. On the other hand, computing is an activity 

that goes on in time and space. . In situations where one cares about the time and space aspects of 

an operation as much as the qualitative result, functional programming is less applicable. 
Furthermore, the personal, interactive mode of computing tends to increase the frequency of these 

situations. The view that computing is functional was much more plausible in the days when one 
interacted with a single computer at a leisurely pace. Theri the computer itself-when it was 
working-seemed to represent a function from program and data to answers. Now many 

computers are parts of networks, and a large part of their activity is devoted to receiving and 

transmitting infonnation on the networks. . It is possible that God can look at the whole thing as a 
function, but any individual program or machine is dealing with a highly non-deterministic, non­

functional world. 

One way to compromise between functional and imperative programming is to recognize that 
every language. has a functional subset, usually associated with the set of expressions in the 

language. However, it is rarely useful to take advantage of the functional subset via clever 

evaluation or compilation strategies because expressions· in that subset usually represent very small 

intervals of computation or leave the functional subset via calls on functions with side effects. 
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Farther out reflections 

Functional languages as a minority doctrine in the field of programming languages bear a 

certain resemblance to socialism in its relation to conventional, capitalist economic doctrine. Their 

proponents are oftcnbriIliant intellectuals perceived to be radical and rather unrealistic by the 
mainstream, but little-by-Iittle changes are made in conventional languages and economies to 

incorporate features of the radical proposals. Of course this never satisfies the radicals, but it 
represents . progress of a sort. 

A little appreciated role of functional programming, goto-Iess programming, and other stylish 

forms of programming is as an indicator of a programmer's morale. When one comes across a 
program with a rat's nest of gotos, or large amounts of pointer arithmetic one says to himself, "This 
programmer was barely able to solve the problem he was working on. If he had the intellectual 

problem well under control, then he could have devoted some of his brainpower to making it look 
pretty according to generally accepted standards, e.g., eliminating gotos." 

Even if they never become useful for real programmers functional languages are useful objects 

of study. Functional languages are entirely mathematical, so the places where they don't work 

show where computing is not mathematics and help to illuminate both fields. 
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