
Real Programming in Functional Languages
by James H. Morris

Real Programming in Functional Languages

James H. Morris

CSL·81·11 July 1,1981

Abstract: The established properties of functional languages-easy to define semantics and

mathematical elegance---are appealing to meta-programmers who study programming and programs

at one remove. Most people believe that functional programming is inappropriate for real

programmers who write programs that are judged on their behavior rather than their appearance.

We shall explore this question by considering experience with two languages, Poplar and Euclid, that

have a claim to being functional languages and to being used on real problems-string processing

and system programming, respectively.

CR Categories: 4.2

Key words and ph rases: Functional, Applicative, Languages

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

Introduction

The established properties of functional languages-easily defined selnantics and mathematical

elegance-are appealing to meta-programmers who study programming and programs at one

remove. [Backus, Burge~ Landin. McCarthy, Scott&Strachey] Real programmers, who write

programs that are judged on their behavior rather than their appearance, believe that functional

languages are not useful because they are inefficient and unnatural.

Functional languages as implemented make less efficient use of conventional machine resources

than other languages. A programmer using a functional language has less control over the

resources of the machine and therefore cannot squeeze out the best performance. This is also true

of some non- functional languages; There are theoretical arguments based upon clever evaluation

strategies, compilers, and multi-processor Inachine architectures that suggest that functional

programs needn't be inefficient, indeed, can be more efficient; but nothing of a concrete nature has

been shown. [Henderson&Morris, Friedman&Wise, Darlington&Burstall, Dennis] The major

problem to be overcome is the cost of garbage collection. A conventional programmer has the

advantage that he can overwrite storage rather than re-cycle it through a garbage collector. Unless

the cost of collection can be made negligible, or eliminated by compile-time analysis, functional

programming will always be relatively inefficient. Given all the theoretical work, much less than

one would expect has been done in the area of clever implementations for any language. The

challenge here is to produce an implementation of a functional language that makes better use of

digital hardware than an average programmer using conventional methods can. It is the same sort

of challenge FORTRAN met successfully many years ago.

Functional languages are unnatural to use; but so are knives and forks, diplomatic protocols,

double-entry bookkeeping, and a host of other things modern civilization has found useful. Any

discipline is unnatural, in that it takes a while to master and can break down in extreme situations.

That is no reason to reject a particular discipline. The important question is whether functional

programming is unnatural the way Haiku is unnatural or the way Karate is unnatural. Haiku is a

rigid form of poetry in which each poem must have precisely three lines and seventeen syllables.

As with poetry, writing a purely functional program often gives one a feeling of great esthetic

pleasure. It is often very enlightening to read or write such a program. These are undoubted

benefits, but real programmers are more results-oriented and are not interested in laboring over a

program that already works. They will not accept a language discipline unless it can be used to

write programs to solve problems the first time--just as Karate is occasionally used to deal with

real problems as they present themselves. A person who has learned the discipline of Karate finds

it directly applicable even in bar-room brawls where no one else know Karate. Can the same be

said of the functional programmer in today's computing environments? No.

2 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

How could functional languages be made more convenient to use? If one takes a sufficiently

elevated view, the semantics of functional programming languages are pretty much the same:

virtually everything is a function that maps values in a heterogeneous dat~ space into each other.

The real differences among languages, and the part which should occupy more of each designer's

attention is in their syntax. Far from being "mere" syntactic sugar, the way one writes and reads a

language will tend to influence usage more than the underlying semantics. For example, consider

the Strachey/Landin let statement. It is an inspired stroke of syntax design which showed us how

to get the convenience of the assignment statement in a functional context. TIlere are other

features of conventional programlning languages that have stood the test of time, but haven't been

fully incorporated into functional languages: statement sequences, for-loops, and record structures.

We shall consider two languages, Poplar [Morris. et al.] and Euclid [Lampson, et al.], that have a

claim to being functional languages and to being used on real problems--string processing and

system programming, respectively. Poplar contains a purely functional sublanguage that is adequate

for performing a large variety of string and list-processing applications. Its implementation is

woefully inefficient, so its range of applications is limited. Euclid. on the other hand, is nearly a

subset of Pascal and has been used to write compilers and operationing systems. The claim that it

is a functional language, however, comes as a surprise to its designers and raises the question of

what it means to be a functional language. These two languages represent quite diverse approaches

to the question of syntax design for functional languages. Poplar introduced several new syntactic

forms to make an obviously functional language somewhat easier to use. Euclid retains the basic

Pascal syntax and leaves out features that prevent the language from being functional.

Poplar

Poplar is an experimental language for text and list manipulation. It has been used for testing

some ideas about extending the powers of interactive text editors. We designed Poplar to

encourage functional programming and tried to use it in that spirit. A recipe for it might read:

start with pure LISP, replace atoms with decomposable strings, add SNOBOL4 pattern matching,

build in implicit iteration over lists, sprinkle with untried ideas, add powerful primitives like

sorting, fold into an APLish, post-fix syntax, and bake until half done.

Poplar was designed and implemented in 1978/9. It has received moderate use: there have been

a few hundred pages of progralTI written by about twenty professional programmers and computer

scientists. They had a good display-oriented text editor, but no text-oriented language like

SNOBOL4 [Griswold] or any UNIX facility like A WK [Aho] or LEX [Lesk]. It has received most

of its ·use from people with a clerical task that is regular enough to be tedious, but not recurrent

enough to justify a big programming effort in a more conventional language. A typical comment

has been: "In a couple of hours I was able to learn Poplar and use it to solve a problem that would

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 3

have taken much longer otherwise." A few people wrote more serious programs: a report

generation system for software projects, a family budget maintainer, a correspondence management

system for academic journal editors, a purchase order management system. Large portions of some

of these projects have been written functionally.

Simple Values

Poplar's value space is quite simple when described as a Scott domain:

v = Characters* + {fail} + V* + V -. V

Strings (= Characters*) are written in quotes; e.g. "A string" and "". Concatenation of strings is

denoted by juxtaposition:

"aaa" "bbb" = "aaabbb"

As in SNOBOlA, a number is simply a string of digits. The quotes can be omitted: "123" =

123. Addition and subtraction can be written as infix operations. In retrospect we made two
mistakes here: The symmetrical double quotes and lack of an explicit concatenation operation

made things hard to read.

The special primitive value fail plays the role normally played by Boolean values in Algol.

Instead of providing if-then-else expressions we used three operations ')', 'I', and '-', with the

following definitions:

x) y = if x = fail then fail else y

x I y = if x = fail then y else x

.... x = if x = fail then "" else fail

This allows one to write things like (BigExpression I u) rather than the more cumbersome

t 4- BigExpression; if t= fail then u else t

The conventional if p then x else y could almost be achieved by (p) x I y), except when p was not

foil but x was. In retrospect, this syntax was not a big improvement and caused some confusion.

Non-primitive values are either lists or functions. Lists are written like ["A", "list"] and [].

Lists may be subscripted using the operator 'I': ["A", "B"]/2 = "B". A negative subscript, -i,

yields the list with its first i elements removed. ["A", "b", "c", "d"]/-2 = ["c", "d"]. Lists can be

concatenated with the infix operator ',,'.

["A", "b"] " ["c"; "d"] = ["A", "b", "c", "d"]

4 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

The familiar Cons(x, y) operation of LISP can be accomplished with the idiom '[x] ., y' which

places x in a list of length one and concatenates it with y. We found this syntax for list

construction and selection to be quite congenial and didn't miss the primitive functions cons, head

and tail.

The distinction between strings and lists broke Poplar into two pieces like SNOBOLA:the

pattern sub-language and the general list· processing language. The shortcomings of this became

clear when someone wanted to precede a parsing operation by a lexical analysis that produced a list

of strings. The pattern language could not be used on the list! We might have preferred a design

like LISP70 [Tesler] in which the base data type is character, and a string is just a list all of whose

elements are characters.

Functions and Iteration

People reading or writing a program tend to think of it doing something in a sequential fashion

and find it most natural if the order in which they read a program fragment follows that sequence.

In a conventional language the programmer usually thinks of the state of the machine as the object

being worked upon by sequential statementc;. In a functional language, the machine state is not an

appropriate concept, but that is no reason to discard the sequence as a syntactic construct. We

chose to make function application a post-fix operation and found it very natural to write long

sequences of monadic function applications just as if they were statementS. This turned out to be

especially true for conversational programming.

Functions are denoted by lambda expressions except that instead of 'Xx.' one writes 'x:'. List­

structured formal parameters require structured actual ones, so

([x, [y, z]]: x+y+z) = (w: w/1 + w/2/1 + w/2/2)

The application of functions to parameters is written in post-fix notation again using the

operator 'I'.

3+9 I (t: t t t) = 121212

The apparent double use of' I' as both function application and subscripting is explained by

regarding integers as denoting functions applicable only to lists. The precedence of ':' is such that

one can conveniently use function application as a sort of post-fix assignment statement

L I x: x+x I t: t t t = L/(x: x+x/(t: t t t»
The let expression is a Dluch better substitute for assignment and was sorely missed.

REAL PROGRAMMING IN FUNCfIONAL LANGUAGES 5

We wish we had had a kind of conditional function application based on fail:

x\f = if x = fail then fail else x/f

because we often found ourselves writing

BigExpression/x: x) x/f

One of Poplar's Inore successful syntactic features was the use of several infix operators as a

substitute for for-loops. Without them the functional style requires the use of many recursive

function definitions, one for every loop. String concatenation and the arithmetic operations extend

to lists of strings so that

["a", "b", "CU
] "x" = ["ax", "bx", "cx"]

[1, 2, 3] + [5, 6, 7] = [6, 8, 10]

There are infix operators for LISP's Maplist. APL's reduction operator, APL's t operator, and a

general iterative operator. Like function application these three operators are written with the

function second rather than first

[a, b, c]1 If = [alf, bIt: clf]

[a, b, c]1 I /f = [[a,b]/f, c]/f

4 -- 7 = [4, 5, 6, 7]

x%f = if x/f then (x/f)%f else x

(Map list)

(Reduce)

(Generate)

(Iterate)

It should come as no surprise that the maplist operator was very handy and that the reduce

operator was good for adding lists of numbers and like tasks. Somewhat more surprisingly: the

reduce operator was used extensively in situations where one wanted to traverse a list and carry

information along. Consider the general for-loop scheme

S +- InitState;

for x +- List, x.tail until x = NIL

do S +- F(S, x.head)

This could be written as

[InitState] " List! / IF

A list offuncti~ns applied to a value generates alist of results.

x/[f,g,h] = [x/f,x/g, x/h)

This feature paid off most when the 'functions' were numbers as in

6 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

[a, b, c, d, c]/(2--4) = [b, c, d)

There arc many built in fiJnctions. For example, a list of equal length lists may be transposed.

[[a, b, cl, [d, e, t]]ffranspose = [[a, d], [b, e], [c, t]]

Transpose is important because it allows one to generalize a non-unary function, f, to work on lists

via the idiom

[Listl, List2]/Transpose/ /f

The combination of built~in iterators and post~fix notation was very successful; succinct

functional programs to do complicated things could be written easily without using recursion.

Furthermore, writing such programs became a simple, even natural process, rather than a challenge

to the intellect.

Pattern Matching

Patterns are a subset of the function space, String -. V, and have a special syntax. In essence,

the pattern sub-language is the language of regular expressions. A primitive pattern is either a

string or the ellipsis ' ... ' which matches anything. Larger patterns may be constructed from

smaller oncs by using four combination rules: if P and 0 are patterns, then so are the following

PQ

PIO
P! = PIP PIP P P etc.
P? = (PI"")

concatenation

alternation (Le. or)

one or more repetitions

optional

The Kleene star pattern p* can be written as PI?~ Every pattern is enclosed in braces '{}'.

A pattern is a function which can be applied to a string; the result can be fail or something

derived from the string by a set of pattern composition rules. As the default, the matchcr simply

re~concatenates the pieces matched so that

"aazbbcz"/{... "z" ... "z"} = "aazbbcz"

By decorating the pattern appropriately one can arrange for different things to happen: Suffixing a

component with * causes whatever it matches to be discarded.

"aazbbcz"/{ ... ("z"*) ... ("z"*)} = "aabbc"

One can replace pieces by suffixing the phrase ') newpiece'

"aazbbcz"/{ ... ("z") "X") ... "z"} = "aaXbbcz"

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 7

One can make lists out of the pieces by inserting brackets and commas in the pattern

"aazbbcz" /{ [... "z" , ... ttz"] } = [ttaaz", "bbcz"]

Conceptually, it is best to think of a two-phase process: first the string is parsed, then one computes

the result from the parse tree using the various signals attached to the pattern. Although it can be

syntactically confusing to intertwine these two processes, it overcomes the fact that any division of

the two phases can lead to them becoming inconsistent.

The operator "!' parses things just like '!' but produces a list of the items matched rather than
fe-concatenating them. For example to apply the function F to each substring of s found before a

'z' one says

s/{(... "z"*),!}/ IF

A very general method for processing the outcome of a pattern match is to attach a function to
a pattern element and apply it to the result of matching that element. One says

{(P I F)!}

and the result of a successful match is computed by applying F to each of the sub-strings which
matches P and concatenating the results. This method is applicable in more general cases typified

by the recursive patterns. Without functional attachment, such patterns are not useful if one wants

to process the recursive structure. For example, to parse an expression and compute its value one

can write

E +- {digit! I ["(ft* E , "+ "* E ")"*] I Plus}

which is succinct if nothing else. Functional attachment was used extensively to build powerful
patterns that simultaneously matched and transformed their input.

Non-functional Features

Poplar has a conventional assignment statement 'x +- e' that changes the values of simple

variables. The extent of its use depended upon the programmer and the degree to which he was

trying to write functionally. Input-Output was imperative, but it was not possible to use it to

simulate assignment because a file could not be read after it was written during a Single session. In

other words, files were accessed via pure input or pure output streams.

Equality Assertions

Reading a program is a little like listening to one end of a telephone conversation. When

listening to someone talking on the phone one can figure out what is going on only if he has a

8 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

good model for what the unheard person Inight be saying. When reading a program one needs a

model for the data that is being manipulated. Data declarations in conventional programming

languages serve this function to a degree,but often they don't say nearly as much about thc content

of the data as one might 1ikc. To make Poplar, which has no declaration facility, more readable

there is a checked comment facility. Any function definition can be decorated with a set of

assertions that constitute a test evaluation of the function.

For example, given the function (x: [x,x]/Conc/Reverse) one can add equality assertions to

produce

x:
[x,x]/Conc

/Reverse

= "foo";
= "foofoo"

= "oofoof"

which says: If the input is "foo" the value of [x,x]/Conc will be "foofoo" and the final value will

be "oofoof' .

This idea has worked out well: it is much easier to grasp what a program is doing if a well­

chosen example is interleaved with it. Poplar is very difficult to read without them. The fact that

the example is machine-checked makes it more credible than a nonnal comment. In practice, one

needs mechanical aids to generate examples because of all the details (e.g., how many spaces are in

" It?) which escape the reader, but not the checker.

An Example

Consider the key-word-in-context problem discussed by [parnas]: given the list of book titles

Green Sleeves

Time Was Lost

generate the following alphabetized list, useful for looking up specific key words:

<Green> Sleeves

Time Was <Lost>

Green <Sleeves>

<Time> Was Lost

Time <Was> Lost

REAL PROGRAMMING IN FUNCfIONAL LANGUAGES

The procedure is as follows:

Break the text up into lines.

Break each line up into words.

For each line:

Generate a list of pairs, one for each word, consisting of the word, and a

reconstruction of the line with . brackets around the word.

Merge all these lists into one big one.

Sort the list by the words.

Discard the words.

Concatenate all the lines to fonn the final text.

9

Figure 1 shows the Poplar program to do this, and Figure 2 shows the same program decorated

with equality assertions. The major steps correspond to the infonnal steps above. The character' t
stands for carriage-return. The function Lines is a pattern that breaks up the string a each carriage

return. Words is a pattern that produces a list of words from its input discarding all punctuation.

Append concatenates pairs of lists; Conc concatenates pairs of strings. The phrase '112' applies 2 to
eaeh pair on the list.

KWIC ... (s:s/Lines
II Words

IIGenerate

IllAppend

ISort

112

IIICone);

Lines ... {(... " J "*),!};

Words ... {(... * Letter!),! *}. ... ,

Generate ... (w:l--(w/lengtb)

Ilk: l--(w/lengtb)
110: j/{k} > "(" (w/j) n)" I w/j)

It: " ." tI IIConcat "J"
lu: [w/k, u]);

Figure 1. A Poplar Program for Key-Word-in-Context

10 REAL PROORAMMINO IN FUNCTIONAL LANGUAGES

KWIC" (5:

slLines

IIWords

IIGenerate

IllAppend

ISort

1/2

II/Cone

Generate .. (w:
l--(w/length)

I/(t:

l--(w/length)

= "Green SleevesJTime Was LostJ";

= ["Green Sleeves", "Time Was Lost"]

= [["Green", "Sleeves"], ["Time'" "Was", "Lost"]]

= [[["Green", .. <Green> SleevesJ"],
["Sleeves", " Green <Sleeves> J "]],
[["Time", " <Time> Was LostJ"],
["Was", "Time <Was> LostJ"],
["Lost", .. Time Was <Lost> J Of]]]

=[["Green". "<Green> SleevesJ"],
["Sleeves", " Green <Sleeves> J"],
["Time", " <Time> Was Lost.) "],
["Was", "Time <Was> LostJ"],
["Lost", "Time Was <Lost> J"]]

=[["Green", "<Green> SleevesJ"],
["Lost", .. Time Was <Lost> J "],
["Sleevcs", "Green <Sleeves>J"],
["Timc", "<Time> Was LostJ"],
["Was", " Time <Was> LostJ "]]

=[" <Grecn> SleevesJ",
" Time Was <Lost> J ' ..
" Green <Sleeves> J",
"<Time> Was LostJ",
"Time <Was> LostJ"]

= " <Green> Sleeves
Time Was <Lost>
Green <Sleeves>
<Time> Was Lost
Time <Was> Lost

");

= ["Time", "Was", "Lqst"];

= [1,2,3]

=2;

11(j: j/{k} > "<" (w/j) ">" I w/j)

It:"" VIIConcat "J"
= ["Time", "<Was>", "Lost"]

= "Time<Was> LostJ"

lu: [wIt, u]

)

= ["Was", " Time <Was> LostJ"]

= [["Time", "<Time> Was LostJ"],
["Was", "Time <Was> LostJ"],
["Lost", "Time Was<Lost> J"]]);

Figure 2. The KWIC Program Annotated with Equality Assertions

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

The function Generate could be described infonnally as follows:

For each element, k. of the list w

Generate a new list, t, identical to w except that the· kth element of w

has had brackets placed around it.

Put a space in front of each element of t, and

concatenate all the elements following with a "J", producing u.

Return the pair consisting of the kth element of wand u.

11

Notice that the informal description of procedures KWIC and Generate consist of quite

imperative statements while the program itself is entirely functional! This is the advantage of post­

fix syntax. Many programs have been written in this style, often interactively. This program is

rather inscrutable, but we believe that translating it to a more conventional notation makes it worse.

In Figure 3 the program appears written in an Algol/LISP style of syntax, i.e., changed to a prefix

notation with all the maplist and reduce operations explicit. To make the nesting tolerable, we

introduced many assignment statements; imagine how the program would look if we eliminated

them by back-substituting! Of course the assignment statements give one the opportunity to

introduce a mnemonic identifier to describe the intermediate result. Thus the opaqueness of the

program is as much due to the style of expression as the syntax of the language. We found than

Poplar's syntax allows one to write extremely succinct programs. They are also quite unreadable.

There seems to be a limit to how compact a notation should be and Poplar exceeded it.

Records

Poplar, and any other functional language to be used for real programming, should have record

data types. Consider the following common sort of program:

w +- 0; L +- NIL;

for x +- List, x. tail until x = NIL
do begin

w ... w +x.head;
if L= NIL or not (x.head = L.head) then L +- Cons(x, L)
end

A Poplar equivalent, employing the reduce operator is

[[0, []]] " List
/ / /[[w, L), xhead):

[w+xhead,
(L/isnull I -(L/l/{xhead}» > [xhead] " L I L]

12 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

procedure KWIC(s);

begin
ListofLines +- Lines(s);

ChoppedLines +- maplist(ListofLines, Words);

ListofListsofPairs +- Gencratc(ChoppedLines);

ListofPairs +- reduce(ListotListsofPairs, Append);

OrderedList +- Sort(ListofPairs);

ListofStrings +- maplist(OrderedList, Ax.x/2);

return rcduce(ListofStrings, Cone)

end

procedure Generate(w)

begin
return(
maplist(G List(l,Length(w»,

Ak. t +- maplist(GList(l, Length(w»,

end

Aj. ifj =k then "(" (wllj) ")"else w/j);

u +- Concat(" ", t) "J";
return Cons(w/k, u»)

Figure 3. The KWIC Program Written in Algol/LISP

This kind of thing was hard to read and write. One problem was figuring out the correspondence

. between the various structures and the identifiers w, Land xhead. It was easy to get these

structures wrong. Pascal's record construct would help this problem. For example, suppose we

invent the record notation

(x +- E, y +- F>

to denote the record with fields x and y initialized to E and F. The above could have been written

[(w +- 0, L +- D>] " List

II I [r, Hx]:

<w +- r.w+Hx,

L +- (L/isnull I L/l/{Hx}) > [Hx]"L I L >

This notation would have helped? great deal in making patterns more readable. For example,

one might write

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

Exp ... {< "(" leftOperand'" Exp " + " rightOperand ... Exp ")" > }

This would achieve some of the mnemonic value of the SNOBOU conditional assignment

operation without introducing side effects.

Better iterative operators

13

Although the built-in iterators were successful in general, we now have a better idea of what

they should be. The maplist operator had the feature that if a value in the output list was fail it
WqS omitted. This was handy. but occasionally it tended to bury errors one would like to discover.

There should be separate operators to accomplish this, perhaps
[1, p]/Filter = sheep
[1, p]/Split = [sheep, goats]

where sheep is the list of items on list 1 for which p is true (Le., not fail) and goats is a list of all
the others. The absence of a Split operator like this caused people to use assignment statements.

They would write

goats ... D;

sheep ... lll(x: if x/p then x else (goats ... [x]" goats; fail»

A problem with the reduce operator was that it was clumsy to produce lists as answers. In those

situations a reduce functional that worked in the opposite direction might have been much more

congenial. For example

[x,y,z]\ \ \F = [x, [y, [z, []]/F]/F]/F

It processes the list from right to left and applies F to the last element and the empty list. For

example, this would allow us easily to solve the otherwise bothersome problem of eliminating

adjacent repetitions from a list

[1,1,3,4,1,2,2]

\ \ \([x,y]: -y/isnull > y/1/{x} > y I [x]"y)

= [1,3,4,1,2]

Notice that when x is a non-null list

x \\\ Cons = x

x \ \ \ ([h,t]: [h/f]" t) = xl If

14 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

This form of the reduce operator is very close to Strachey and Barron's lit (list iterate) functional:

lit a g x = if x = NIL then a else g (x.head) (lit a g(x.tail»

If one has the possibility of multi-processing then there should be a reduce operator suitable for

use with associative functions that is free to do things in any order it likes.

The general iteration operator '%t was not very useful and suffered from the lack of a record

notatation as discussed above. The need was felt for ways other than the sequence operator to

generate lists from whole cloth.' For example, the following function might be useful:

[a, t]/GenList = -a > [] I [a] u ([a/f, t]/GenList)

Clever Implementation is essential

We have experimented with an implementation that uses the lazy evaluation strategy described

in [Henderson&Morris), but most programs were written for a standard evaluator. In any case, we

found that assuming a lazy evaluator can have a very liberating effect on how one programs. For
example, the KWIC program is very inefficient by contemporary standards. Every line seems to

create a large new structure which the following line consumes. Improvements in this algorithm's

performance can be made by a little cleverness in the evaluation strategy so these multi-pass

operations are merged. The essence of the technique is that nothing is evaluated until it absolutely

must be. Under this regime lists often behave like ~treams because their tails remain unevaluated

until they are needed. In the case of KWIC the first operator that forces any sort of evaluation is

Sort which demands that it receive a list of lists, each of whose first components is a fully evaluated

string. This causes the Append reduction to be completed, but the second component of each pair

remains unevaluated until the final reduction using Conc. Thus, in principle, this program requires

only enough space to create a list of all the individual words and does not require space

proportional to its output, which approximates the square of the input. Of course, a run-time lazy

evaluation strategy does not reduce the amount of garbage this program will generate, it only

reduces the maximum amount of storage it requires at anyone time. A deeper, compile-time

analysis a la Darlington and Burstall would be necessary to eliminate the creation of temporary

storage.

Notice that the revised definition of the reduce operator works much better under lazy evaluation.

For example, the beginning of the value of L \ \ \Append can emerge before L has been completely

traversed.

Since lists are never fully evaluated one can even deal with infinite lists. The Fibonacci

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 15

numbers may be described by the recursively defined list Fib.

Fib +- [l,l] " (Fib + (Fib/-I»

Suppose one want to find the first Fibonacci number that is divisible by 3. He can say

[Fib,div3]/Filter/1. This will not involve computing any more elements than a more conventional

recursive program would. In general, any while loop could be written in this way:

s +- a; while P(s) do s +- F(s)

can be simulated by

[[a, F]/GenList, P]/Filter/l

There were many situations in which lack of lazy evaluation encouraged programmers to use

assignments. For example, one wrote a function GetParagraph that transforms a string into a pair

consisting of the first paragraph in the string and the remainder of the string. He then wrote an
expression

(l--N)II(x: File/GetParagraph/(p, f]: File +- f; p)

that produces the first N paragraphs of the string and leaves File holding what is left over. There

are a variety of ways to do this without assignment. The most straightforward is to parse the entire

file into a list of paragraphs once and for all and then grab N items. One would write

Filel {GetParagraph,!}

lParsedFile: [ParsedFile/(l--N), Parsedfilel -N]

to produce the two pieces. However, the file in question was very large and this program could not

have worked if the parsed file were fully materialized by the non-lazy evaluator.

One of the things that has always been hard for functional programs is achieving the efficiencies

associated with loop exits. If we are going to change loop constructs into maplist-like, operators

how do we deal with premature exits from for-loops? E.g.,

for i in 1 .. N do

if Q(i) then begin k +- exit end

This translates easily into

k +- I--N II (i: i/Q > i) I I

16 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

which seems to say: map over the list 1--N producing all the values for which Q is true. then select

the first. Under lazy evaluation, however, Q will not be applied any more times than in the for­

loop program.

Euclid

Euclid was designed as a restriction of Pascal, leaving out all those things that made proofs

difficult-most notably gotos and hidden side effects. These restrictions make Euclid easily

translatable into a functional language-so casily that we argue that it is a functional language

disguised in Pascal syntax. It omits the Pascal features of gotos, concealable side effects, and

procedures as parameters. What remains is a highly constrained language, but one which, to the

surprise of many, has been used to write large programs. A group of programmers have

enthusiastically adopted Euclid and written a real compiler ,and a toy operating system' in it

[Wortman, Holt]

Euclid's Restrictions

The arbitrary goto has been eliminated. This guarantees that every procedure returns to its

caller.

Pointers are treated as indices of special kinds of arrays called collections. Collections are

actually a resurrection of the class concept of an early version of Pascal. A collection C may be

thought of as an array except that it has a special type of indices called pointers which admit to no

arithmetic operations. These pointers can be obtained only by calling the procedure C.New; the

array has no explicit bounds. The dereferencing operation 'p1" should be thought of as an array

subscription operation, C(p). The advantage of this for program verification is that each pointer

assignment has its scope of influence explicitly limited. If one makes the declarations

type CT = collection of integer

type CU = collection of integer

type T = 1'CT

type U = 1'CU

t:T

u:U

then the theorem

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 17

{ut = 5}tt:= 6{ut = 5}

is treated exactly like

{CU(u)=5} CT(t) : = 6 {CU(u)=5}

which is obviously true, given that CT and CU are disjoint.

In Euclid procedures and functions cannot be passed as parameters. The most important proof

rule for Euclid, or any other language, is the procedure call rule. The idea behind a procedure

call rule is that one proves a general fact about a procedure in tenns of its formal parameters and

then uses the procedure call rule to particularize the general theorem. We shall not describe such a

rule in detail but merely point out that to have such a rule one must be able to describe the effect

of a call on any procedure at the position of the call. Sometimes this is hard to do in Pascal.

Consider the program

begin procedure P;

PO
end;

begin x: integer;

procedure Q(var z: integer);

begin x : = z + x; z : = x end;

x:= 0; R(Q);

end;

procedure R (s: proccdure(var integer»;

begin t: integer;

t: = 1; {?} s(t); {?} s(t); {?} Print (t);

end;

In this program, P calls R, passing its internal procedure Q which references a variable x that is

inaccessable to R. The question then arises, how can we describe the effect of calling s within R?

Clearly we cannot mak~ any assertions about x inside R since x is at best inaccessible and at worst

non-existent. Euclid's solution to this problem is to ban procedures as parameters. Then it is easy

to see that any variables accessible to a procedure are also accessible at the point of its call.

Each procedure is required to list, in an imports list, all of the free identifiers it mentions and

attach the var attribute to any it assigns to. Note that if a procedure ·dereferences a pointer, it must

import its collection. The programmer is required only to list all the free identifiers of each

procedure; the compiler uses these lists to produce expanded imports lists by adding thus clauses

(which it prints in the output listing) that include all the identifiers implicitly imported. In other

18 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

type PuzzleSolver = module imports (writeln) thus (var output)

pervasive const size = 343
pervasive const classMax = 4
pervasive const typeMax = 13
pervasive type pieceClass = 1 .. classMax
pervasive type pieceType = 1..typeMax
pervasive type position = l .. size

pervasive const class: array pieceType of pieceClass = [1,1,1,1,1,1,2,2,2,3,3,3,4]
pervasivc·const pieceMax: array pieceType of position

= [11,149,71,23,53,155,3,15,99,9,51,57,58]
function Index(i,j,k: integer) returns integer =

begin return(i+ 7*0 + 7*k}+ l)end

function InitP (x : integer) returns
p: array pieceType, position of boolean =

begin
procedure SetPiece(t: pieceType, I, J, K: position) =

imports (var p)
begin for i in ° .. I loop for j in 0 .. J loop for k in 0 .. K loop

pet, Index(ij,k» : = true end loop end loop end loop
end

for i in 1 .. typeMax loop for m in 1 .. size loop p(i, m) : = false end loop end loop
SetPiece(l, 3, 1, 0); SetPiece(2, 1, 0, 3); SetPiece(3, 0, 3, 1)
SetPiece(4, 1,3,0); SetPiece(5, 3, 0, 1); SetPiece(6,0, 1,3)
SetPiece(7, 2, 0, 0); SetPiece(8, 0, 2, 0); SetPiccc(9, 0,0, 2)
SetPiece(lO, 1, 1, 0); SetPiece(11, 1, 0, 1); SetPiece(l2, 0, 1, 1)
SetPiece(13, 1, 1, 1)
end

pervasive const p: array pieceType, position of boolean = InitP(O)
pervasive type PC = array pieceClass of 0 .. 13
var pieceCount: PC
pervasive type PZ = array position of boolean
var puzzle: PZ

function fit (i : picceType, j : position) returns boolean =
imports (puzzle)
begin
for k in 1 .. pieceMax(i) loop

if p(i,k) then if puzzleO + k-I) then return(false) end loop
retum(true)
end

procedure remove (i : pieceType, j : position) =
imports (var puzzle, var pieceCount)
begin
for k in 1 .. pieceMax(i) loop

if p(i,k) then puzzleG + k-l) : = false endIoop
pieceCount(class(i» : = pieceCount(c1ass(i» + 1
end

Figure 4. A Euclid Program

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

procedure place (i : pieceType, var j : position) =
imports(var puzzle, var pieccCount, writeln) thus (var output)
begin
for k in 1 .. pieceMax(i) loop

if p(i.k) then puzzle(j + k-l) : = true end loop
pieccCount(c1ass(i» : = pieceCount(c1ass(i»· 1
for k in j .. size loop

. if not puzzle(k) then beginj: =k; return end end loop
writeln('puzzle filled')
j:= 1
end

procedure trial 0: position, var ans: boolean) =
imports(var kount. trial, pieceCount, fit, place, remove, writeln)
thus (var puzzle, var pieceCount, var output)
begin
var k: position
for i in 1 .. typeMax loop

if pieceCount(c1ass(i» <> 0 then
if fit (i, j) then

begin
k:= j
place (i, k)
trial(k, ans)
if ans or (k = 1) then

begin
writeln ('piece', i, ' af, k)
ans: = true
kount : = kount + 1
return
end

else remove (i, j)
end end loop

ans ': = false
kount : = kount + 1
end

var m: position
var a: . boolean
for m in 1 .. size loop puzzle(m) : = true end loop
for i in 1 .. 5 loop for j in 1 .. 5 loop for k in 1 .. 5 loop

puzzle(Index(ij,k» : = false end loop end loop end loop
pieceCount(l): = 13
pieceCount(2) : = 3
pieccCount(3)': = 1
pieceCount(4) : = 1
m : = Index(lJJ)
kount:= 0
if fit(l, m) then place(l, m) else writeln('error 1')
trial(m, a) ,
if a then writeln('success in', kount, , trials')
else writcln('failure')

end.
Figure 4. (continued) A Euclid Program

19

20 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

words, the compiler computes a transitive closure of identifiers referenced and changed starting

from those referenced and changed directly. The existence of these imports lists, however arrived

at, is important for checking the following vital rule.

Any two identifiers known in a scope are guaranteed to be represented by disjoint storage. This

rule is required to support Hoare's basic assignment axiom, {P(e)} x: = e {P(x)}, which says that

to prove that P(x) holds after "x: = e" has been executed on must show that P(e) holds before
where P(e) is derived from P(x) by unifonn substitution of e for x. This rule fails to hold in the
following Pascal program:

begin z: integer;

procedure P (var x: integer);

begin {z+ l>z} x: = z+ 1 {x>z} end;

z: =5; P(z):

end;

Euclid's solution to this is to disallow the overlapping of variables. This restriction is enforced by

the following sort of rule: Consider the actual parameters of a procedure call together with its

imports list, which· would include z, as art extended actual parameter list. Consider each actual
corresponding to a var parameter. If it is a simple identifier, field extractor, array, or collection,· it

cannot appear as any other actual. If it is an array or pointer dereference, the array or collection in
question. cannot be passed as one of the other parameters. Where the overlap is only potential, as

in a call like P(a(i), aG», the language definition requires that a legality assertion to the effect that

i* j precede the call and that this assertion be verified at compile time or checked at run time.

There are also a number of ways in which Euclid extends Pascal, but we shall not deal with

them here. None of these extensions seems to compromise the arguments we shall make, but they

add complications.

Translating an example

To illustrate how close Euclid is to being a functional language we shall translate a typical

program to a functional form. We have chosen the program PuzzleSolver written by Forest Baskett

[Baskett] to be used as a benchmark for various systems. The original program is shown in Figure

4. We have included all the thus clauses in the imports lists. Note that pervasive constants such as

the arrays class, pieceM ax, and p need not be mentioned in imports lists since they cannot be
assigned to after initialization.

First we shorten the imports clauses: by promoting all the imported variables to be explicit

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 21

parameters. This requires that each call pass those parameters explicitly. Figure 5 shows the

changes to two of the procedures, place and trial. It should be noted that this transformation

would not always work in Pascal because, as we showed earlier, it is possible to pass procedures

around in such a way that variables implicitly imported by a procedure cannot be accessed by the

procedure's caller.

procedure place (i : pieceType, var position,var puzzle: Pl,
var pieceCount: PC, var output: Stream) :::::

imports(writeln)
begin
for k in 1 .. pieccMax(i) loop

if p(i,k) then puzzleG + k-1) : = true end loop
pieceCount(class(i» : = pieceCount(class(i» - 1
for k in j .. size loop

if . not puzzle(k) then. begin j: = k; return end end loop
writeln(output, 'puzzle fiPed')
j : = 1
end

procedure trial G: position, var ans: boolean, var kount: integer,
var puzzle: PZ, var pieceCount: PC, var output: Stream) =

imports(trial, fit, place, remove, writeln)
begin
var k: position
for i in .1 .. typeMax loop

if pieceCount(class(i» <> 0 then
if fit (i, j, puzzle) then

begin
k := j
place (i, k, puzzle, pieceCount, output)
trial(k, ans, kount, puzzle, pieceCount, output)
if ans or (k = 1) then

begin
writeln (output, 'piece', i, ' at', k)
ans : = true
kount : = kount + 1
return
end

else remove (i, j, puzzle, pieceCount)
end end loop

ans : = false
kount : = kount + 1
end

Figure 5. Imports transformed into explict parameters

Next we eliminate all the var parameters by turning the procedure into a function and returning

them as values. Each of the formal parameters x that was a var parameter is replaced by the

parameter· oldx; and upon entry to the procedure oldx is copied into the result identifier x.

Figure 6 shows the change to place and trial. To make this convenient, we have had to pretend

that Euclid allows multiple results to be returned.

22 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

function place (i : pieceType, oldj :·.position, oldpuzzle: PZ,
oldpicceCount: PC, oldoutput:. Stream)

returns G : position, puz7Je: PZ, pieceCount: PC, output: Stream) =
imports(writeln)
beginj : = oldj; puzzle: = oldpuzzle; pieceCount: =oldpieceCount;

output: = oldoutput;
for k in 1 .. pieceMax(i) loop

end

if p(i,k) then puzzlefj + k-l) : = true end loop
pieceCount(class(i» : = pieceCount(class(i» - 1
for k in j .. size loop

if not puzzle(k) then begin j: = k; return end end loop
output: = writcln(output, 'puzzle filled')
j:= 1

function trial fj: position, oldans: boolean. oldkount: integer, oldpuzzle: PZ,
oldpieceCount: PC, oldoutput: Stream)

returns (ans: boolean. kount: integer, puzzle: PZ,
pieceCount: PC, output: Stream) =

imports(trial, fit, place; remove, write In)
begin var k: position

ans: = oldans; kount: = oldkount; puzzle: = oldpuzzle;
pieceCount: = oldpieceCount; output: = oldoutput;
for i in 1 .. typeMax loop

ifpieceCount(class(i» <> 0 then
if fit(i, j, puzzle) then

begin
k :=j
(k, puzzle, pieceCount, output) : =

place (i, k, puzzle, pieceCount, output)
(ans, kaunt, puzzle, pieceCount,output): =

trial(k, ans, kount, puzzle, pieceCount, output)
if ans or (k = 1) then

begin
output: = writeln (output, 'piece\ i, ' at', k) .
ans: = true
kount : = kount + 1
return
end

else (puzzle, pieceCount)
: = remove (i, j, puzzle, pieceCount)

end end loop
ans : = false .

kount : = kount + 1
end

Figure 6. Procedures transformed into functions

Is this transformation always valid? It is clear that assignment statement above will have the

saine effect as the original procedure call (alb~it at possibiy greater expense) if the returned values

are equal to what the values of the original var parameters were when the original procedure

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 23

returned. However, the computation inside place is different. Instead of updating the original

variables we copy them and use only the copics inside the function. The non-overlap rule now

come into play: since all the parameters of place were disjoint to begin with, copying them has no

qualitative effect on the behavior of place. The only possibility left is that place calls another

procedure or function that somehow· accesses the original variables. For example •. suppose place
contained a call' to a procedure PeekAtPuzzle(i) which imported puzzle and returned the ith

element. But PeekAtPuzzle has also been subjected to this rewriting so that its access to ,variables

has been made entirely explicit in its parameter list; Le .• its call would read PeekAtPuzzle(i, puzzle)
so it must be working on the copy too. By induction on the depth of function calls, this call on

PeekAtPuzzle has the same result as it did before. Finally, note the impossibility of a non-local

goto that could terminate the execution of place and by-pass the assignment of the new results.

Once we have carried out the procedure to function transformation on the program it remains

only to make each function by itself more obviously functiona1. This is basically a mopping up

operation familiar to any student of functional languages. Figure 7 illustrates how one eliminates

for loops and array assignments, assuming that arrays are represented as functions. The lit
functional and Poplar list generator described earlier are employed.

function place (i : pieceType, oldj : position, oldpuzzle: PZ,
oldpieceCount: PC, oldoutput: Stream)

returns G : position, puzzle: PZ, pieceCount: PC, output: Stream) =
imports(writeln)
begin

puzzle: = (An. p(i, n-oldj + 1) or oldpuzzle(n»
pieceCount : = (An. if n = c1ass(i) then oldpieceCount(c1ass(i» - 1

else oldPieceCount(n»
j : = lit 1 (X(k,r). if not puzzle(k) thenk else r) (oldj -- size)
output: = if j = 1 then writeln(oldoutput, 'puzzle filled') else output;

end

Figure 7~ For loops and array assignments eliminated

The important thing about this demonstration is that it shows that one of the major aspects of

functional programming, the absence of hideable side effects, is also a property of Euclid. The

Euclid programmer is not required to make all side effects explicit at the· point of the procedure

call, but· they are explicit in the declaration in the imports clauses.

24 REAL PROGRAMMING IN FUNCnONAL LANGUAGES

Euclid vs. Pascal

Why don't we argue that· Pascal, too, is a functional language? After all, any language can be

given functional semantics if one is willing to work hard enough. 1be difference between Euclid

and Pascal can be captured in the types of data spaces one must deal with in order to provide

functional semantics. To simplify the comparison let us ignore records and functions. To provide

Scott/Strachey semantics for Euclid one would need the following sort of· data spaces:

Basic = Boolean + Integer + Pointer

Array = Integer -+ Value

Collection = Pointer -+ Value

Value = Basic + Array + Collection

Environment = Identifier -+ Value

Procedure = Environment -+ Value* -+ Value*

A procedure like remove with the heading

procedure remove (i:integer, j: integer) ==

imports (var puzzle, var pieceCount)

could then map into a function with ilie type

Environment -+ (Integer X Integer X Array X Array)

-+ (Array X Array)

where the four input types correspond to i, j, puzzle, and pieceCount, and the two output types

correspond to puzzle and pieceCount. This mapping follows the same path that the translation in

the previous section did. The environment is used to look up the values of constants like p.

To provide Scott/Strachey semantics for Pascal one would need the following sort of data

spaces:

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

Basic = Boolean + Integer + Pointer

Array = Integer -+ Pointer

Value = Basic + Array + Continuation + Procedure

Environment = Identifier -+ Pointer

State = Pointer -+ Value

Continuation = State -+ State

Procedure = Environment -+ Continuation -+ State -+ Value* -+ State

Now, the procedure remove would map into a function with the type

Environment -+ Continuation -+ State -+ (Integer X Integer) -+ State

2S

Here the environment must be used to look up the values of puzzle and pieceCount because, for the

reason discussed earlier, they cannot be treated like explicit parameters. 'The continuation, which is

the ScotVStrachey analogue of the machine language return address, is necessary because remove
may, in general, exit with a non-local goto by applying a continuation other than the one it was

passed. The state, which represents the entire data memory of the machine, must be passed around

because remove may, in general, have a side effect on any location it pleases.

There is an enormous difference between Euclid and Pascal when viewed in this way. All the

data spaces needed to support Euclid, except the Environment, are equivalent to data types the

Euclid programmer declares explicitly; that is why we were able to translate PuzzleSolver into

functional form without leaving the Euclid language in any serious way. The data spaces needed to

support Pascal involve the extra-linguistic concepts of State and Continuation, not to mention

recursive, higher order function types. It is impossible for the Pascal programmer to describe these

objects in Pascal, partly because they are polymorphic. The average Pascal programmer thinks of

the, state only in a vague way and never thinks about continuations. Thus the functional semantics

of Pascal do not reflect the way programmers think in the language nearly as well as Euclid's

semantics do. Figuring out how to provide functional semantics for Pascal or Algol-60 was hard

and occupied some brilliant minds for several years. The functional semantics of Euclid are trivial

by comparison; even a programmer can understand them! We claim that the semantics of Euclid

are much closer to Poplar's than Pascal's; neither Euclid nor Poplar involve global states or

continuations. Indeed, it can be argued flat Euclid's data space is simpler than Poplar's since it

does not allow functions as values.

We' have now completed our argument that Euclid is a disguised functional language. Why

26 REAL PROGRAMMING IN FUNCfIONAL LANGUAGES

would one not consider Euclid a functional language? What virtues of functional languages does

Euclid fail to possess? It would appear that the pragmatic possibilities for verification or

optimization are as good tor Euclid as for any functional language. The only non-syntactic

difference we see between Euclid and languages commonly accepted as functional is that it is a

rather low-level language that discourages its programmers from writing programs that manipulate

list structures or other large data aggregates. As a final example, Figure 8 shows a version of Trial

written in Poplar, suitable only for lazy evaluation. We assume that puzzle and pieceCount are

functions and that place returns an index and new versions of the functions. An informal

description of Trial is: If j is 1 the puzzle is filled (because place returned a 1); return the string

saying so. Otherwise, for each type of piece, i, if there is one left, and. it fits, place it, and invoke

Trial on the resulting position, puzzle, and pieceCount. If Trial does not return fail. concatenate the
appropriate string to its value and return it; otherwise return fail. The map list over the types will

produce a list of solutions. If the list is empty return fail, otherwise return the first element. If this

program is submitted to a lazy evaluator, no work will be expended discovering alternate solutions.

Notice that, were a multi-processor available, we could suggest that it pursue the map list operation

in parallel by an operation that said select any member of the list of solutions rather than the first

Trial +- (0, puzzle, PieceCount):
j/ {I} > "puzzle fiUedJ"
11 -- typeMax

Experience with Euclid

/ /(i: (i/cIass/pieceCount/{O}) >
[i, j, puzzle)/fit>

[i, j, puzzle, pieceCount)
/place
!Trial
/output: output>

output "piece" i " at" k "J"}
/Solutions: -(Solutions/isnull) > Solutions/I);

Figure 8. Trial written in Poplar

How people use Euclid should be of great interest to functional language advocates and other

foes of hidden side effects. The preliminary evidence from people programming in Euclid

[Wortman, Horning] indicates that it is not difficult to program real systems in it, that the ability to

hide side effects is not essential, and that significant pragmatic benefits are associated with the

language's restrictions. On the other hand, there is some evidence that the programmers are not

programming in a functional spirit The original Euclid design required the. programmer to list all

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 27

of the imported identifiers, including the implicitly referenced ones. The implementors of the

Euclid cOlnpiler, who were also the first people to program in Euclid, invented the thus clause and

provided its automatic generation because they got tired of creating the imports lists by hand.

Presumably they would really object if they were asked to make all the imports into explicit

parameters. One might say that Euclid requires one to make the side-effects of a procedure easily

discernable, while a strict functional form requires one to make them painfully obvious.

Another complaint was that Euclid requires one to declare functions with "benevolent" side

effects to be procedures. Consider the case of a memo function that uses a cache to remember
some of the previously computed values.

begin
Arg, Ans: array 1..10 of integer;
p: 1 .. 10;
function Fibbonaci(n: integer);

begin
for i ... 1, i + 1 until i = 10 do

if n = Arg[i] then return Ans[i);
p ... (p+ 1) mod 10;
Arg[p] ... n;

ifn=l or n=2 then Ans[p) ... 1
else Ans[p] ... Fib(n-l)+.Fib(n-2)

return Ans[p)

end;
for p ... 1, p+ 1 until 10 do begin Arg[p] ... 1; Ans[p) ... 1 end;

p "'1;

end

They argue that it only muddies the waters to require Fibbonaci to be a procedure which

imports the cache. On the other hand one can argue, somewhat rudely, that the "functionalness"

of this function depends upon the programmer not having made any mistakes, so the prudent

course is to require that the cache be made explicit Besides benevolent side effects there are also

irrelevant side effects such as a random number generator's storage of its state. In this case the

procedure is representing a stream or list, and the fact that it uses intermediate state to produce

values is not relevant

28 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

Conclusions

Our experience with Poplar leads us to believe that functional programming needn't be difficult

or unnatural if one is willing to ignore efficiency considerations and program in the APL style. As

the KWIC program illustrates Poplar makes it quite simple to write a long series of statements.

each one of which transforms all the data in a small way. In a conventional language, the syntactic

overhead of a for loop or a recursion is large and makes one try to merge as much processing into

each loop as possible. Of course, this impulse is one of survival, given today's implementations.

The large number of maplist-like operations in Poplar programs have made them excellent

benchmarks for garbage collectors. We look forward to the day when they can be used as

benchmarks for program transforming compilers that merge loops and eliminate unneeded list

creation.

Preliminary experience with Euclid indicates that side effects can be tamed, and that the

difficulty with making the programs look functional is, again, a matter of machine efficiency. The

arrays and collections that a Euclid program manipulates are likely to be rather large and to be

represented by blocks of storage. Passing them by value might not be possible, altough it was

actually done for the relatively small arrays in the PuzzleSolver program without serious

degradation of performnace.

However, there are a lot of questions that need to be answered before one can see a clear path

to the use of functional languages for real programming:

How should interaction with a user be carried out? In our environment it is the norm to write

programs that interact with a person through a keyboard, screen, and pointing device. To describe

such things functionally one can describe each program as a function that maps each "input" into

its output response, or better, an input stream into an output stream as [Friedman&Wise77J have

done. This model doesn't fit very well with making random changes to a two-dimensional display.

however.

How does one debug a program with a surprising evaluation order? Our attempts to debug

programs submitted to the lazy implementation have been quite entertaining. The only thing in

our experience to resemble it was debugging a multi-programming system, but in this case virtually

every parameter to a procedure represents a new process. It was difficult to predict when

something was going to happen; the best strategy seems to be to print out well-defined intermediate

results, clearly labelled.

How does one predict performance? N ever mind that lazy evaluation, or any other clever

strategy, will make the program perform better than it would have otherwise--ultimately one

depends upon his understanding of the machine to design things so that they run reasonably. If

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 29

the machine is clever it is probably harder to understand, especially if it employs various ad hoc
heuristics, based upon expectations of what sort of programs people write.

How does one a"ange meaningful checkpoints? Even if one's computation has no bugs and is

non-interactive, the order in which things are done can be relevant. When one's computation

takes a long time he would like to save intermediate states that have meaning to the programmer.

For example, in a correspondence management system we found it desirable to produce a letter and
record the fact that it had been sent as an atomic action. Typically one might request the system to

send many letters and expect that one or two requests would cause trouble for reasons ranging
from hardware errors, to software errors, to improper requests. Also, one occasionally wanted to

interrupt the process to do something else with the machine. Since there is no interdependence
between these requests and the operation takes a non-trivial amount of time, one would like all but

the troublesome requests to be completed. We attempted to solve this problem through the use of

explicit writes on files-a highly non-functional operation. If one attempted to describe the
operation as a whole, surrendering control of what happens to the system, any mishap forces one to

start over entirely.

To summarize, the potential practical benefit ofa functional language is that its implementation
has much more running room in which to be clever since the order in which operations are

performed is constrained only by the data flow. Examples of such cleverness are lazy evaluation,
compile-time loop integration, and parallel processing. On the other hand, computing is an activity

that goes on in time and space. . In situations where one cares about the time and space aspects of

an operation as much as the qualitative result, functional programming is less applicable.
Furthermore, the personal, interactive mode of computing tends to increase the frequency of these

situations. The view that computing is functional was much more plausible in the days when one
interacted with a single computer at a leisurely pace. Theri the computer itself-when it was
working-seemed to represent a function from program and data to answers. Now many

computers are parts of networks, and a large part of their activity is devoted to receiving and

transmitting infonnation on the networks. . It is possible that God can look at the whole thing as a
function, but any individual program or machine is dealing with a highly non-deterministic, non­

functional world.

One way to compromise between functional and imperative programming is to recognize that
every language. has a functional subset, usually associated with the set of expressions in the

language. However, it is rarely useful to take advantage of the functional subset via clever

evaluation or compilation strategies because expressions· in that subset usually represent very small

intervals of computation or leave the functional subset via calls on functions with side effects.

30 REAL PROGRAMMING IN FUNCTIONAL LANGUAGES

Farther out reflections

Functional languages as a minority doctrine in the field of programming languages bear a

certain resemblance to socialism in its relation to conventional, capitalist economic doctrine. Their

proponents are oftcnbriIliant intellectuals perceived to be radical and rather unrealistic by the
mainstream, but little-by-Iittle changes are made in conventional languages and economies to

incorporate features of the radical proposals. Of course this never satisfies the radicals, but it
represents . progress of a sort.

A little appreciated role of functional programming, goto-Iess programming, and other stylish

forms of programming is as an indicator of a programmer's morale. When one comes across a
program with a rat's nest of gotos, or large amounts of pointer arithmetic one says to himself, "This
programmer was barely able to solve the problem he was working on. If he had the intellectual

problem well under control, then he could have devoted some of his brainpower to making it look
pretty according to generally accepted standards, e.g., eliminating gotos."

Even if they never become useful for real programmers functional languages are useful objects

of study. Functional languages are entirely mathematical, so the places where they don't work

show where computing is not mathematics and help to illuminate both fields.

References

[Backus] John Backus. Can programming be liberated from the von Neumann style? A functional

style and its algebra of programs. Comm. ACM 21, 8 (Aug. 1978), 613-641.

[Burge] William. H. Burge, Recursive Programming Techniques, Addison-Wesley, Reading Mass.,

1975.

[Landin] Landin, P.l. The next 700 programming languages. Comm. ACM 9, 3 (March 1966),

157-164.

[McCarthy] John McCarthy, Recursive functions of symbolic expressions and their computation

by machine, Comm. ACM 3, 4 (April 1960) 185-195.

[Scott & Strachey] D.Scott, C. Strachey, Toward a Mathematical Semantics for Computer
Languages, 1971 Symposium on Computers and Automata, Microwave Research Institute

Proceedings, Vol. 21, Polytechnic Institute of Brooklyn, 1972.

[Henderson & Morris] P. Henderson, J. H. Morris, A lazy evaluator. Proc. 3rd annual ACM
SIGACf-SIGPLAN Symposium on Principles of Programming Languages, Atlanta, 1976, 95-103.

REAL PROGRAMMING IN FUNCTIONAL LANGUAGES 31

[Friedman & Wise] D. P. Friedman and D. S. Wise, CONS should not evaluate its arguments. In

Automata, Languages and Programming, Michaelson and Milner, eds., Edinburgh University Press,

1976, 257-284.

[Darlington & Burstall] J. Darlington, R. Burstall, A transfonnation system for developing recursive

programs, JACM 24, 1, (January 1977), pp 44-67.

[Dennis] 1 B. Dennis, D. P. Misunas. A preliminary architecture for a basic data-flow processor,

Proc. Second Annual Symposium on Computer Architecture, Computer Architecture News, Vol. 3,

No.4, Jan. 1975, pp 126-132.

[Morris el al.] J. H. Morris, Eric Schmidt, Philip Wadler. Experience with an applicative string

processing language. in Proc. 7th annual ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, Las Vegas, Nevada, 1980

[Lampson el al.] B. Lampson. 1 J. Horning. R. W. London. J. G. Mitchell, G. 1. Popek. Report on

the Programming Language Euclid. Technical Report, Computer Systems Research Group,

University of Toronto, 198!.

[Griswold] R.E. Griswold, J.F. Poage, and J.P. Polonsky, The Snobol-4 Programming Language,
Prentice-Hall, 1971.

[Aho] A. V. Aho, B. W. Kernighan, and P. J. Weinberger, Awk - A Pattern Scanning and

Processing Language, Bell Laboratories Internal Memorandum, Murray Hill, N. J., 1978.

[Lesk] M. E. Lesk. and E. Schmidt, Lex - A Lexical Analyzer Generator, Bell Laboratories Internal

Memorandum, Murray Hill, N. 1, 1978.

rresler] L. Tesler, H. Enea, D. Smith, The LISP70 pattern matching system, Proceedings of the

International Joint Conference on Artificial Intelligence, Stanford, 1973.

[parnas] D. Parnas, On the criteria to be used in decomposing systems into modules, Comma ACM
15,12, (Dec 1972).

[Wortman] D. B. Wortman, J. R. Cordy, Early Experience with Euclid, The Fifth International

ConfereQce on Software Engineering, San Diego, March, 198!.

[Holt] R. C. Holt el ala TUNIS: A UNIX -like operating system written in Euclid, Technical Note

16, Computer Systems Research Group, University of Toronto, 1980

[Baskett] F. W. Baskett, personal communication, Xerox PARC, 198!.

[Homing] 1. 1. Horning, personal communication, Xerox PARC, 198!.

[Friedman&Wise77] D. P. Friedman and D. S. Wise, Aspects of applicative programming for file

systems, SIGPLAN notices, vol. 12 no. 3 (March 77), p. 41-55.

go
'<
c..
I»
3
CD
(I)

:::t

I:
o
3.
(I)

