
The TXOT Package - Interlisp Text
Editing Primitives

by J Strother Moore

THE TXDT PACKAGE-
INTERLISP TEXT EDITING PRIMITIVES
BY J STROTHER MOORE

January 1981

CSL-81-2

© Copyright Xewx Corporation 1981. All Rights Reserved.

ABSTRACT

The TXOT package is a collection of INTER LISP programs designed for those who wish to
build text eQitors in INTERLISP. TXOT provides a new INTERLISP data type, called a buffer,
and programs for efficiently inserting, deleting, searching and manipulating text in buffers.
Modifications may be made undoable. A unique feature of TXOT is that an address may be
"stuck" to a character occurrence so as to follow that character wherever it is subsequently
moved. TXDT also has provisions for fonts.

KEY WORDS AND PHRASES

string searching, word processing, fonts, text representation, undoing, INTERLlSP, text editing

CR CATEGORIES

3.70,3.73,3.74

XEROX

PALO ALTO RESEARCH CENTERS
3333 Coyote Hill Road I Palo Alto I California 94304

Table of Contents

l. Historical Preface 1

2. Introduction 1

3. Buffers and Boxed-addresses 2

4. Specifying Addresses 3

5. Buffers 4

6. Windows into the Buffer 6

7. Objects That May be Inserted 7

8. Caveats About Files and SYSOtITS 8

9. Line Terminations 8

10. Messages and Fonts 9

11. Interrupts 10

U. Getting Started 10

13. File Handling 11

14. Modification Functions 12

15. Addressing Functions 15

16. Printing Functions 20

17. Message Functions 22

18. Character Functions 23

19. Implementation Functions 24

20. Variables 29

2l. Error Messages 30

22. Datatypes 31

TIlE TXDT PACKAGE-ISTERUSP TEXT EDITISG PRl\UllVES 1

1. Historical Preface

In 1971, at the University of Edinbur~ Robert S. Boyer and I developed a method of
representing text that was economical in use of storage, efficient for many common operations, and
permitted the implementation of "undoable" modification. Using that representation, we
implemented an editor, called the 77-editor (named after the disk sector on which it resided), in the
programming language POP-2. The editor is described in [Ref 1].

In 1973, I moved to Xerox Palo Alto Research Center where I implemented the editor in
INlERLISP-10. That early implementation became the basis of an experimental text editor
patterned after POEr implemented by Warren Teitelman. Warren gradually evolved the idea of a
friendly display-based editor into a full-fledged interface to Interlisp [Ref 2] and I evolved my editor
primitives to suit his needs. The entire system of editing primitives was implemented several times
from the ground up and in 1975 I documented (in an unpublished PARC report) an early version of
the "TXDT package".

In 1976, I left PARC and joined SRI but Warren and I continued informally in our established
roles for several years. Many fea!Ures were added during that time, including multiple buffers and
fonts. Eventually the package stabilized to what is described here.

In 1979, while working as an SRI consultant to Xerox PARC, I instructed Bill Laaser of PARC
in the implementation of TXDT; Bill has repaired the occasional bugs discovered since and has
implemented TXDT on the Dolphin/Dorado series of machines. Richard Bunon, of Xerox PARC,
carefully read a manuscript of this manual and suggested many improvements.

2. Introduction

The TXDT package is a collection of INTERLISP programs designed to suppon those who wish
to build text editors in INTERLISP. Strictly speaking, all TXDT provides is a new INTERLISP
datatype called a "buffer" which, like a file or string, contains a sequence of ascii characters. Unlike
INTERLISP files and strings, buffers are efficiently expanded and contracted as characters are
insened and deleted.

Arbitrary locations in a buffer may be addressed and may be the target for insertions, deletio~
etc. A unique fearure of TXDT is that addresses can be "stuck" to characters so that they follow the
character wherever it is moved. All modifications made to buffers are undoable. Finally, where
possible, all operations are sy'mmetric with regard to dlrection of scan through a buffer. That is, one
can move, search, substitute, etc., backwards as well as forwards.

It should be understood from the outset that there is much to a good text editor beyond what is
provided here. For example, buffers have no structure-TXDT sees them only as character
sequences. not sentences, paragraphs, words or S-expressions. TXDT knows nothing about ito
devices or user interaction. It maintains no screens and monitors no mouse buttons or keys. The
designer/implementor of a TXDT-based text editor is responsible for implementing these higher
level fearures using INTERLISP and the TXDT primitives.

2 1HE TXDT PAClAGE-L''TERUSP TEXT EDln~G PlU.\umTS

This document is organized as follows. The rust few sections informally describe how TXDT
looks to the user and what its most imponant features and limitations are. Then follow a series of
more precisely written sections which specify the functions in the TXDT package. Functions are
grouped according to the kind of operation they perform. A table of contents and index are
provided. After the main TXDT functions are specified, the underlying implementation is described
so the user can have a better idea of where the inefficiencies lie and why cenain things can or
cannot be done. Also specified are several functions which expose a cenain amount of the
implementation-but which are sometimes useful. The document concludes with sections listing the
TXDT error messages, variables of interest to the user, and datatypes used by 1"XDT. It is
sometimes necessary to distinguish the PDP-IO implementation of TXDT from the Dolphin/Dorado
implementation. We therefore sometimes talk about INTERLISP-IO or INTERLISP-D as opposed
to INTERLISP, and TXDT-IO as opposed to TXDT.

3. Buffers and Boxed-addresses

An arbitrary number of buffers may be maintained at once. It is possible to modify or
otherwise operate upon any buffer at any time. To operate upon a buffer, one must have an
"address" into it, indicating where the operation is to take place. The most efficient and primitive
form of address in TXDT is the "boxed address", which is an instance of an INTERLISP user
datatype named TXDT ADDR.

Unlike many editors (e.g. TECO), where an "address" into a buffer is just a character count
from the top to the given point, TXDT boxed addresses are actually attached to the text In fact,
they are attached to the single character to which they point It is convenient to construct the
follOwing model of a buffer in order to provide an intuitive explanation for what a boxed address is
and how it behaves. A buffer is analogous to a row of toy blocks, each block representing some
letter or character. To insert some new text at some location, the new text is assembled as a row of
block~ the old text is parted at the appropriate place, and the new is inserted. To delete some
segment of text, the buffer is parted at each end of the segment, the segment is slipped out. and the
gap is closed by pushing the two halves of the buffer together.

A boxed address is just an identification of a particular block. That is, if we search the buffer
and find some occurrence of the word "FOO", and obtain the boxed address, ADDR, of the first
character, "F", we can imagine ourselves having tied a string to the particular block in the butTer
representing that "F". Now let us consider what happens under various operations on the buffer.

If we insert text anywhere in the buffer we will find that ADDR still references that very same
"F". in the sense that the string is still tied to the same block. It does not matter that the block may
have changed its relative position from some point, or that it may no longer be followed by "00".

If we· delete a segment of the buffer, ADDR will still point to the "F", if it is still in the buffer.
If the "F" has been deleted. an attempt to use ADDR will generate the error TXDT ADDRESS
INTO DELETED AREA.l The way this is done is as follows: when a segment of the buffer is

1 The TXDT error messages are reassuringly verbose. A complete list of the TXDT error messages is included in the
section "Error Messages".

1HE TXDT PACKAGE-l'TERllSP TEXT EDI1r\G PRNITIVES 3

deleted, the characters in that segment are marked as such. Any attempt to use a boxed address
which references a marked character causes the error.2

Finally, TXDT supplies the necessary functions for grabbing a segment of the buffer (deleting it
from the buffer but returning a pointer to it) and later inserting that segment (that is, the very same
row of blocks) elsewhere. In this case, a boxed address referencing the text deleted is considered
invalid until the text has been reinsened; once the segment has been reinserted, all addresses into it
are valid again, and reference the very same characters as before. For example, if the text around
the "F" to which ADDR points is grabbed and later inserted elsewhere, ADDR would reference that
same "P' in its new location.

The section "Implementation Functions" describes the actual representation of buffers and
boxed addresses.

4. Specifying Addresses

Given a boxed address into a buffer, the buffer may be the subject of any TXDT operation.
However. TXDT permits one buffer to be distinguished as the "current"· buffer. A buffer is
designated as the current one using the functions TXDTCURBUFF. The current buffer may be
addressed with boxed addr~ses (as usual) but it may also be addressed with any of the following
forms of "unboxed addresses":

TOP-denotes the address of the first character in the current buffer.

BlM-denotes the address following the last character in the current buffer.

~ where n is an integer-denotes the beginning of the nth line in the current buffer, counted from
the top. Nonpositive values of n are treated as TOP. Excessively large values of n
are treated as BTM.

(n . c), where n and c are integers-denotes the character addressed by moving to the nth line (in
the sense described above) and then moving forward or backward c -1 characters,
depending on the sign of c. Thus (20 . 15) is the 15th character after the beginning
of the 20th line-which mayor may not be the 15th character of the 20th line,
depending on whether the 20th line has at least 15 characters in iL

(NIL . c), where c is an integer-denotes the address of the cth character in the current buffer,
counting from the top. Nonpositive values of c address TOP and excessively large
values of c address BTM.

All TXDT functions which take addresses as arguments accept either boxed addresses or the
objects described above. When an unboxed address is used, the address implicitly refers to the
current buffer. Because characters have to be fetched and inspected before a line or character
address can be use<L boxed addresses-which point directly into the buffer-are considerably more
efficient than line or character addresses. The user should therefore pass boxed addresses whenever
possible. All TXDT functions which return addresses actually return boxed addresses.

1 The delete routine does not have to ,isit every character deleted to achieve the effect of marking them all Also. the
marking is undone if the delete is undone, thereby rendering the address valid a....f!3in.

• mE TXDT P ... t"KAGE-l'7ERLL~P TEXT EDJn~G PRNITJYES

The function txdtbox takes an address of the type described above and produces a boxed
address that points T.O the location indicated. The function txdtunbox maps boxed addresses into line
or character specifications.

Note that BTM is a very special address. Unlike all other addresses it does not reference a
character; it points to immediately behind the last character in the buffer. BTM is supplied because

the insertion functions insen text immediately before the character referenced by the "target
address." The only way to insen text after the last character in the buffer is to use BTM as the
target address.

When the buffer is empty. TOP and BTMreference the same location. Either may therefore be
used as the target address for the first insenion into the current buffer.

5. Buffers

A TXDT buffer is an instance of the datatype TXDTBUFFER. Buffers are constructed by the
function txdtcurbuf. There may exist any number of buffers. However. one buffer is always
designated as the "current" one. The current buffer is the one used when addresses are specified as
line and character numbers ("unboxed" addresses). The current buffer has no other distinguished
role. Any buffer may be modified at any time.

In addition to the text in the buffer, each buffer contains three fields used to help decode line
and character addresses when that buffer is the current buffer. The names of these fields are
TXDT$, TXDTPOETDOT ADDR, and TXDTPOETDOT. TXDT$ must contain the number of line
terminations in the buffer. TXDTPOETDOTADDR must be a boxed address in the buffer. It may
be thought of as the current "cursor position" in many editors. TXDTPOETDOT must be a pair,
(1 . c), giving the unboxed address equivalent to TXDTPOETDOT ADDR. When the buffer is the
current one,the contents of these three fields are stored in the global variables txdt$,
txdtpoetdotaddr. and txdtpoetdot If the global flag txdtpoetflg is nonNIL, these three globals are
used to make the decoding of line and character addresses more efficient. (See txdtbox.) txdtpoetflg
is initially NIL.

It is up to the implementor of the larger editing system to maintain these global variables and
the contents of the three fields TXDT$, TXDTPOETDOT ADDR, and TXDTPOETDOT in each
buffer. 'The fields may be updated v.rith the replace operator of the record package. The values of
the variables are important only when unboxed addresses are used while txdtpoetflg is on. The
values of the fields in a buffer are important only when the buffer is made current At that time,
the contents of the three fields are stored in the three global variables for use by the TXDT unboxed
address decoding function, txdtbox.

Note that TXDT itself never sets the contents of the fields in a buffer (except as noted in
txdtcurbuf). \\l1en the user of TXDT makes a new buffer the current one, the user must update the
contencs of the old buffer's fields, if desired. \Vhen a TXDT function is used to modify a buffer
that is not current. the user must update the buffer's fields, if desired. TXDT does not assume
responsibility for these fields because they may not always be necessary. For example, the
imp1ementor may know that a cenain buffer wil1 never be addressed except with boxed addresses or
when txdtpoctflg is 'NIL When a noncurrent buffer is modified. the implementor may choose to

TIlE TXDT PACKAGE-I~TERUSP TEXT EDln~G PRlWm'ES 5

delay the computation of the correct field 'contents until just before that buffer is made current To
aid the implementor in maintaining these fields and variables, all TXDT functions which modify
buffers can be asked to keep track of how many lines and characters are added' or deleted.

txdtcurbufIbuf;undoably;defaultflg;msg]
If buf is NIL, a new empty buffer is constructed. The message msg is attached to an
"invisible" address just beyond the top of the buffer (see the section "Messages and Fonts").
This has the effect of propagating msg as the message governing any otherwise ungoverned
text insened at the top of the buffer. The TXDT$ field of the new buffer is set to 0; the
TXDTPOEIDOT ADDR is set to the bottom; the TXDlPOEIDOT field is set to line 1,
character 1. Then the new buffer is made current by setting the global variable txdtcurbuf
to the buffer and appropriately setting the txdt$, txdtpoetdotaddr and txdtpoetdot variables.
These settings are made undoable (via INTERLISP's UNDO command) iff undoably is
nonNIL. The new buffer is returned.

If buf is not NIL, it is assumed to be a buffer previously constructed by txdtcurbuf. If
defaultflg is nonNIL, the TXDT$, TXDTPOEIDOT ADDR, and TXDTPOEIDOT fields of
buf are set to default values computed by TXDTCURBUF. TXDTS is set to the number of
line terminations in buf; TXDTPOETDOT ADDR and TXDTPOETDOT are set to the
bottom of the buffer. Note that these fields of buf are smashed and the old values are lost.
Then buf is made current as described above, undoably if so specified. Buf is returned as
the value.

txdtkillbutIbuf;undoably;currentflg]
If buf is a buffer, it is killed in the sense that all the text in it is deleted and all the
structures referenced by the representation of the text are freed for garbage collection. All
fields of buf itself are smashed to the atom KILLED. The operation is undoable iff
undoably is nonNll...

If buf is NIL or a list, every element of buf is killed. If buf is the atom ALL, all buffers
are killed.

If an attempt is made to kill the current buffer an error is caused unless currentflg is on (or
buf is ALL). If currentflg is on, or buf is ALL, the current buffer will be killed-with
unspecified consequences if TXDT is directed to use the current buffer before a new current
buffer is designated.

To detect whether a buffer has been killed, one may ask if (fetch TXDT$ of but) is the atom
KILLED.

txdtbufp[but]
Returns bufifbufis a buffer and NIL otherwise.

txdtemptyp[but]
Returns T or NIL according to whether buf is empty or has been killed. If buf is NIL, it
defaults to the current buffer.

6 1HE TXDT PACIAGE-L\'TER1JSPTEXT ED~G PRI.\flllVFS

txdtwhereis[addr]
If addr is a valid address, txdtwhereis returns the buffer containing addr. Otherwise.
txdtwhereis causes an error.

6. Windows into the Buffer

Some of the TXDT functions operate on the segment of text between two addresses. Such
segments of the buffer are called "windows". For example, txdtdelete takes two addresses and
deletes the text in the window defined by then.

Usually the first address defaults to TOP (of the current buffer) when it is Na, and the second
to BTM. Departures from this will be noted in the descriptions of the functions concerned.

TIle text in a window is defined to be that segment of the buffer starting with the character
referenced by the first address and ending at (but not including) the one referenced by the second
address.

Windows are therefore somewhat like open intervals. The window defined by two addresses
includes the character referenced by the first address, but not that referenced by the second. 1bis is
actually quite natural. as use of the TXDT package will confirm. (Addresses could be thought of as
pointing to the interstices between characters-but then it is a little harder to model how boxed
addresses are stuck to characters.)

For example, if one obtains the address of line 30, and the address of line 31, and gives these
two addresses to txdtdelete (or equivalently, if one just executes txdtdelete[30;31D, then all of line 30
is deleted, and line 31 remains unchanged.

If the two addresses are to define a window, the second must be greater than or equal to the
first, in the sense that the second is encountered in a forward scan of the buffer starting at the first
Otherwise the window is ill-defined. Note that both addresses must be into the same buffer if the
window is to be well-defined.

Most of the TXDT functions which operate over windows do not verify that the window is well­
defined. Instead they stan their operation at one of the addresses and continue until hitting the
other or the top' or bottom of the buffer (depending on the direction of scan). 3 The only functions
which verify that the window is well-defined are those that modify text in the window. An error
will occur if these functions are given addresses which do not well-define a window.

3. This was an implementation decision made for efficiency and rel}ing on the assumption that the TXDT functions will
be embedded in a fairly sophisticated system designed by the user. In this case, the user will often know that a
window is well-defined because of the process used· to fetch the two addresses. For example, the first will be
obtained. and then the second will be obtained with some operation that starts at the first and moves forward
through the buffer. Two addresses obtained in this way must well-define a window.

TIIE TXDT PACK.\G~I'TERLISP TEXT EDIU'\G PROOllVES 7

Occasionally the user will have two addresses and not know which follows which. Two
predicates, txdtegual and txdtgreaterp, are provided for ordering addresses in the sense defined
above.

Finally, those functions which operate on windows decode the two addresses independently.
Thus, txdtdelete[30;31] makes two calls to txdtbox, one to count from the top to line 30, and one to
count from the top to line 31. If some relationship between the two addresses can be exploited to
save time, the user is responsible for exploiting it For example, in the case just cited, it would be
more efficient to first obtain the boxed address of line 30 and then move one line down from there
to obtain the boxed address of line 3l.

The relationship between two addresses given as line numbers is not automatically exploited by
the windowing functions because in general both addresses will not be line numbers.

7. Objects That May be Inserted

Character sequences to be inserted into a buffer (either via the insenion or substitution
functions) may be obtained from a variety of sources. The various INTERLISP objects which may
be inserted and their interpretation are as follows:

grabbed object According to our toy block analogy for buffers, a grabbed object is a row of blocks
previously removed from some buffer. Technically, grabbed objects are records of
type TXDTGRABBEDOBJ and are constructed by the function txdtgrab. A
grabbed object represents the text in the window that was grabbed. See txdtgrab for
more details.

file segment A file segment is a listp object whose car is ~ to the value of the variable
txdtinsenfilekey. Such a list denotes a window into the file named by the second
element of the list. The window starts at the byte position indicated by the third
element and extends to that indicated by the fourth element For example, to insert
the ponion of the file (MOORE>FOO.BAR from byte positions 1000 to byte
position 7000, the appropriate file segment could be constructed by:

list[txdtinsertfilekey;
'(MOORE>FOO.BAR;1000;7000]

If the third element is NIL (or nonexistent) it defaults to the current file pointer for
the named file. If the fourth element is NIL (or nonexistent) it defaults to the end
of file pointer for the file. Note that listItxdtinsertfilekev;file~O] causes the entire file
to be inserted. An ill-formed segment is equivalent to an empty segment.

listp other than a file segment A listp other than one whose car is txdtinsertfilekey denotes the
sequence obtained by calling prin3 on each element in the list (Note that this is
not the same as calling prin3 on the list itself-the outer parentheses and separating
spaces are omitted.)

other. Any other object denotes the sequence obtained by calling prin3 on the object.

I 11iE TXDT PACKAGE-L'IERLlSP TEXT £Dln~G PRl.\UTl\'ES

When the sequence denoted by an object must be obtained with prin3, the printing is done to a
scratch file maintained by TXDT. Then TXDT behaves just as though a file segment were to be
inserted.

8. Caveats About Files and SYSOUTS

Pieces of many different files may be inserted 'at anyone time.4 Any given tile m,ay be inserted
as many times as desired. TXDT contains some fairly sophisticated software to handle the insertion
of files, When a rue is read into the buffer, the characters are not actually copied into core. In fact,
the characters are not inspected at all. Instea~ each page of the file is referenced through an object
not unlike an INTERLISP string pointer, which gives the file name and page number concerned.
Whenever the characters of a particular page must be inspecte~ that page is PMAPped (by a TXDT
paging mechanism) into one of several scratch pages maintained by TXDT for this purpose.S

The effect of this arrangement is that during operations that scan large amounts of a buffer, such
as searches from top to bottom, the pages of insened files will be PMAPped in and out. But when a
particular area has been singled out, it and neighboring pages are actually in core (for all practical
purposes).

Changes made in a tile being edited are not actually visited upon the file itself. The changes are
actually represented by the state of the buffer. Hence, changes can be easily undone by restoring
the state of the buffer. However, it is dangerous to undo operations out of order. (See the section
"Implementation Functions".) Should the system crash during a session in which TXDT functions
were being used to edit a file, all of the changes made since the last write will be lost. Of course, a
buffer may be written to a file at any time, and the file written will contain all of the modifications
made~

Because files which have been insened may be PMAPped in., the normal INTERLISP file
closing primitives will not operate properly. Furthermore. since inserted files are referenced by their
JFNs, closing and reopening a file (which will most likely assign it a new JFN) typically has
disastrous consequences on all buffers using the old lFN. Finally. because of these lFN and PMAP
issues, the ThTIRLISP function lli.Qll.! does not produce a useable core image. TXDT has facilities
for dealing with these issues. The reader should see the section "File handling".

9. Line Terminations

The INTERlISP-IO version of TXDT must contend with a war between TENEX and
INTERlISP-IO over the line termination protocol.

TENEX uses the carriage return character followed by line feed (CR/lF) to terminate lines in
files. INTERlISP-IO uses the end of line (EOl) character in strings and CR/lF in files. When

4. r~TERLISP-IO files must remain open while they are being edited. Since I~ TERLISP-IO restricts the number of
open files to 16. at most 16 different files may be manipulated by the I~TERLISP'IO version of TXDT.

S. A page is not P\1Apped into one of these areas if it already occupies one: steps are taken to prevent a page which
has recently experienced heavy usc from being swapped out

THE TXDT PACKAGE-LYfERLISP TEXT EDln~G PRNITIVES 9

INTERLISP-IO prints an EOL to a file (as with PRIN3), it deposits a CR/LF pair. Unless the user
has insened single CR's or LFs~ all lines in TXDT buffers and in files created by TXDT-I0
terminate with CRILF.

When counting lines, TXDT -10 treats LF as the line terminator.

When searching for a string containing an EOL, TXDT -10 accepts CRILF as a match.

TXDT-D, on the other hand, naturally uses EOL uniformly to define line terminations.

10. Messages and Fonts

To facilitate the handling of special information like fonts~ TXDT permits a "message·' to be
stored at an address. A message is either NIL, a single character atom (other than the one whose
ascii code is 0), or a list of up to 126 such atoms.

Conceptually the messages in a buffer divide the text into regions; each character or address in a
given region is considered "governed" by the message stored at the address at the front of that
region. Typically, messages can be used to specify the font of the region governed.

Unless otherwise specified, text insened into a buffer inherits the message governing the point of
insertion. Each buffer has a message stored "above the top" that governs otherwise ungoverned
insertions at the top. (See txdtcurbuf.) However, text to be inserted may contain special characters,
called "message sequences". which specify the messages and message regions of the inserted text.

A message sequence is a sequence of characters beginning with the character contained in the
variable txdtescapechar (hereafter called the "escape character"). Suppose the escape character
occurs in text to be inserted. Here is how the message is parsed.

If the character following the escape character has ascii code 0, then the character code, n,
following the 0 is taken as the message length and the message is a list containing the next n
characters. If the character following the escape characters has ascii code 127, it is a signal that the
escape character itself is to be insened (and the 127 is deleted). If the character following the escape
character has an ascii code other than 0 or 127, then that character is the message.

For example, suppose that @ is the escape character and that the following symbols have the
associated ascii codes6

symbol

$
2

ascii code

o
U7

2

6. We have here associated the codes 0, U7, and 2 to ascii characters other than their true ones because their true ones .
usually require more than one space to write down.

10 mE TXDT PACKAGE-l\IElUJSP TEXT EDlmG PRL\fITI\"ES

Then insening the following sequence

has the effect of inserting the text

and attaching the message A at the T in mE, the message (A n at the first E in ESCAPE and the
message A at the space before IS.

This interpretation of insened characters is disabled iftxdtescapechar is set to NIL.

To store a message at an address in a buffer the function txdtputmsg may be used.

When text from a buffer is printed to a file (usually the terminal) with txdtprinb the messages in
it are passed to the function txdtprintuserfn· as they are encountered. Initially txdtprintuserfn is a
noop but it may be defined by the user (e.g., to cause subsequent text to be printed in a different
font). See txdtwri~e and txdtprint for details.

11. Interrupts

During certain critical sections of TXDT code, unexpected interrupts could result in mangled
data structures and cause irreparable damage to the current TXDT start up. Thus, certain critical
TXDT operations either temporarily disable interrupts or take steps to recover from them after the
fact The user should arrange for the function txdtresetformfn to be called after any error or CfRL­
D interrupt inside a TXDT function and before any other TXDT function is called. It is safe to call
it anytime. One suggestion is to keep a call of txdresetfonnfnn on the INTERLISP reset list The
function returns NIL.

12. Getting Started

Before any other TXDT function can be called txdtinit must be called.

txdtinit(]
This function initializes the TXOT package. It declares the TXOT user datatypes if
necessary: opens the scratch file as a temporary io file and stores the name in the global
variable txdtscratchfile: initializes the swapping buffers: closes all previously inserted files;
kills all existing buffers; sets up one new empty buffer; makes it the current buffer; and
stores that buffer in the global variable txdtcurbuf.

If TXOT has already been staned. txdtinit has the effect of releasing all the space associated
with the old start up and starting over ..

THE TXDT PACKAGE-l'-.rERLlSP TEXT EDln~G PRl\UTI\'ES

13. File Handlina

txdtread[file;addr;behind;countlc;oldbox]
Reads the file file into a buffer. Equivalent to
txdtinsen[object;addr;behind;countlc;oldbox]
where object is lisYtxdtinsenfilekey;fi1e].

txdtclosef{file]

11

Ooses the file named file (in TXDT-IO, if file is an integer it is treated as a JFN). Returns
the full file name of the file closed. If the file was not open, NIL is returned.

txdtclosea11l]
Ooses all files ever insened into a TXDT buffer.

Because of PMAP consider~tions (see "Caveats About Files"), txdtclosef and txdtcloseall are the
only proper ways to close files that have been inserted into a TXDT buffer.

The rest of this section pertains to TXDT-IO only.

A buffer may not be used while any file inserted in it is closed. An attempt to use such a buffer
may cause arbitrary chaos, including the dreaded TRAP AT LOCATION.

txdtunpmapD
UnPMAPs all files currently mapped in by TXDT. After this operation they may be closed
normally.

txdtsu bstj fns[alist; buflst]
alist must be a list containing elements of the form (oldjfn . newjfn) where oldjfn is the JFN
of a file that was previously inserted into some buffer and then closed and newjfn is the
JFN assigned when that file was reopened. It is assumed that each file is open and was
reopened in exactly the. same mode (eg INPUT, OUTPUT, BOrn).

buflst must be a buffer, a non empty list ofbuifers, or NIL which means all unkilled buffers.

txdtsubstjfns simultaneously substitutes each new JFN for every occurrence of each old JFN
in each buffer in buflst

For example, suppose it is desired to make a SYSOUT of a TXDT job. One should first save
the names. JFNs. and modes of every open file. Then the files should be closed with txdtclosef and
the SYSOUT made. Upon restarting that SYSOUT, one should reopen all the files in exactly the
same mode and then txdtsubstjfns the new JFNs for the old JFNs in all buffers. Such a sysout
facility is not provided explicitly in TXDT because it is expected that the editor implementor will
have additional invariants to maintain.

Caution: buffers are not the only TXDT objects that reference JFNs. Both grabbed objects and
undo information may contain JFNs. Thus, after a SYSOUT of the kind described above, pre,,;ously
grabbed objects must not be used nor should previously executed operations be undone. This
limitation has been found acceptable because txdtsubstifns is usually user.! merely to save an
initialized core image for user convenience. Editing sessions are generally saved as partially edited
files.

12 TIlE TXDT PACK.4GE-I~"ERLlSP TEXT EDJn~G PRl\UTIVES

14. l\lodification Functions

txdtinsert{object;addr;behind;countlc;oldbox]
Inserts the characters of object in front of the character referenced by the address addr. If
behind is NIL, txdtinsen returns the address of the first character insened. If behind is the
atom BOTH txdtinsen returns a dotted pair, consisting of the address of the fIrst character
inserted and the address immediately following the last character insened.. Otherwise, it
returns the address of the character immediately following the last character inserted.

If oldbox is a boxed address, it is reused (i.e., its fields are smashed) to represent (one of)
the answer address(es).

Before object is inserted, the message governing addr is stored at addr (creating two adjacent
regions with identical messages). Then the characters in object are inserted.. Finally. if
txdtescapechar is nonNIL and object is not a grabbed object, any message sequences in it
are processed and deleted as described in the section "Messages and Fonts".

countlc may be used to determine the number of lines or characters inserted. If countlc is
CHARS. the global variable txdtdelta is set to the number of characters in the insertion. If
countlc is LINES, the total number of lines (line terminations) in the insertion is counted
and put in txdtdelta. If countlc is .BOTIl, txdtdelta is set to (l . c) where 1 is the number of
lines inserted and c is the number of characters inserted on the last line. If countlc is NIL,
txdtdelta is left unchanged. Note that characters and lines are counted after any message
sequences have been processed. If object is a grabbed object, it must not currently be
inserted or the error A 1TEMPT TO REINSERT INSERTED GRABBED OBJECT \\ill be
generated.

If addr is a boxed address, the address of the character immediately following the last character
inserted is txdtegual to addr: they reference exactly the same character. However, the two addresses
will not be ~ and the address returned by txdtinsert will be slightly more efficient to use after the
insertion.7

A grabbed object is actually a segment of the buffer which has been removed.. It represents the
text contained in that segment and may be insened with the effect of inserting that text However, a
grabbed object may be insened only once. because it contains pointers which link it to the adjacent
text and each of these can only point to one place. When a segment of text is grabbed, it is deleted
from the buffer. When it is deleted. it is marked as such. When a grabbed object is given to
txdtinsen. a check is made to insure that it is marked as deleted.. If not, an error is generated.. If
the object is marked, txdtinsen unmarks it before inserting it The process of unmarking prevents
the object from being inserted a second time. "Then a window is grabbed, the messages in it remain
attached to their respective addresses. Thus. the message regions in a window are preserv~d when
the window is grabbed and reinserted.

7. This is explained in the section "Implementation Functions". The toy block model of the buffer and boxed
addresses fails to prO\;de an analO£!-y here. Essentially though, after the insertion. addr is slightly out of date.
However, it contains sufficient infonnation to (1) make it easy to detect that it is out of date, and (2) decode it in
the new context

TIIE TXDT PACKAGE--l'TERLlSP TEXT EDIn"G PRl\fITIVES 13

Note that since the message initially governing addr is stored at addr before the insertion., the
last message in obiect does not "spill over" to characters beyond addr. Note also that if object is not
a grabbed object and contains no message sequences, then its characters are all governed by the
message initially governing addr.

txdtsubst[object;str;addr1;addr2;back;count;countlc;01dbox]
Substitutes obiect for str in the window defined by addr1 and addr2• The error llL·
DEFINED WINDOW occurs and no changes are made if the window is not well-defined.
If back is NIL, the scan stans at addr1 and proceeds forward to addr2. If back is nonNIL,
the scan starts at addr 2 and proceeds backward to addr 1" If count is NIL or negative, every
occurence of str in the window is replaced by object Otherwise, count is assumed to be the
maximum number of substitutions allowed. countlc may be used to determine the total
change in the number of lines or characters in the buffer due to the substiOltion. If countlc
is CHARS, the total change in the number of characters is put in the global variable
txdtdelta. If countlc is LINES, the total change in the number of lines is put in txdtdelta.
If countlc is BOTH, txdtdelta is set to (1 . c) where 1 is the total number of lines inserted
and c is unspecified. If countlc is NIL, txdtdleta is not changed.

txdtsubst returns the address of the final substimtion made. If proceeding forward, this will
be at the end of the final insertion of object If proceeding backward, it will be at the
beginning of the final insertion of object. If oldbox is a boxed address, it is reused to
represent the answer address. Finally, the global variable txdtsubstcnt is set to the total
number of substitutions actually made.

Object may be any insertable object; however recall that a grabbed object can only be
inserted once. If str is not a string, it is converted to a string with mkstring. addr1 and
addr 2 default to TOP and BTM respectively.

Note that txdtsubst[object;str;addr1;addr2] replaces all occurrences of str in the window by
object, while txdtsubstfobiect;str~addrl : addr2;NIL; 1] replaces the first occurrence of str by object.

The empty string cannot be substituted for. (It can be found everywhere.) If str is empty, the
results are as if it could not be found in the window. Similarly, str is not searched for within the
newly inserted object.

If object is empty, the effect is that of deleting the appropriate occurrences ofstr.

In order to detect whether any substitutions were performed, inspect txdtsubstcnt. It will be 0 if
str was not found (or if count was 0 to begin with). In the case where no substitution is made, the
resulting address is that of the starting point, either addr 1 or addr 2' depending on the direction of
the scan.

If the countlc option is used, txdtdelta will be set to the total number of lines or characters
gained or lost due to the substitution. If txdtdelta is negative, that many lines or characters were lost
from the buffer. If txdtdelta is positive. that many were gained. Note that if txdtdelta is 0, it means
there was no net change in the number of lines or characters; however, it does not mean that no
substitutions were made.

14 1HE TXDT PACIAGE-l'''I'ERUSP TEXT EDln'\G PRl\fITI\'ES

txdtdelete[addr 1 ;addr 2;countlc;oldbox]
Deletes the text in the window from addr1 to addr2. If countlc is CHARS, the
global variable txdtdelta is set to the negation of the number of characters deleted.
If countlc is LINES. txdtdelta is set to the negation of the number of lines deleted.
If countlc is BOTH, txdtdelta is set to (1 • c) where 1 is the negation of the number
of lines deleted and c is unspecified. If countlc is NIL, txdtdelta is unchanged. The
function returns the address of the, character immediately following the last character
deleted (reusing oldbox if it is a boxed address). If the window is not well-defined,
an ILL-DEFINED WINDOW error is generated and no deletion occurs. addr1
defaults to TOP and addr2 defaults to BTM.

If addr 2 is a boxed address, the result returned by txdtdelete will always be txdtegual to addr2"
However. it will usually be slightly more efficient to use the address returned rather than addr2 after
the deletion. 8

When text is deleted it is marked as such. Any subsequent attempt to use an address
referencing deleted ten will cause an error.

txdtgrab[addr 1 ;addr 2;countlc;0Idbox]
Deletes the text in the window from addr 1 to addr 2 and returns it as a "grabbed object"" If
the window is not well-definecL the error ILL-DEFINED WINDOW is generated, and no
deletion OCCUI'S. countlc functions just as in txdtdelete. The global variable txdtgrabaddr is
set to the address of the character immediately after the last character deleted (reusing
oldbox if it is a boxed address). addr1 defaults to TOP and addr2 defaults to aTM. , '

Grabbed objects can be recognized by the predicate txdtgrabbedp. They are not addresses and
may not be used as such.

A grabbed object represents the text in the window deleted, in the sense that it may be inserted
with txdtinsert with the same effect as inserting a string containing the text in the window. In
addition~ any addresses into the window will be valid once the grabbed object is insertecL and all
messages 'in the window are preserved.

However. a limitation is that a grabbed object may only be inserted once. This is because it
contains pointers that are used to link it to the text on either side of it in the buffer, and these can
only point to one place. txdtinsert will cause an error if an attempt is made to insert a grabbed
object that has already been insened.

If it is necessary to move text from one place to another, txdtgrab is exceedingly well suited.
Since the text is already in the fonn required for insertion into a buffer, the only cost is boxing ~t up
long enough to pass it to the user.

If it is necessary to insert the text several times. txdurrab is not so well suited. Suppose the task
is to copy a given window and insert the copy elsewhere, leaving the original in place. In genera4
this can be done in several ways with TXDT functions. The function txdtprint may be used. to print

8. See the discussion of this under txdtinsert or the sea:ion "Implementation Functions".

mE TXDT PACKAGE-L\TERLISP TEXT EDln~G PmDTI\'ES

the window to a file and the resulting file segment may then be insened as many times as desired
Less efficiently, the function txdtmkstring can be used to generate a string containing the text in the
window, and that string may then be insened as many times as desired. A tl"Jrd way is to txdtgrab
the window, use txdtcopv to copy the ,grabbed object, then insert the original grabbed object in one
place and the copy in the other. (Addresses into the grabbed object will point into the grabbed
object only and not into the copy.)

Which of these methods is most efficient in terms of storage depends on the amount of text
involved and the extent to which it has been modified since it was originally read or insened In
most circumstances, the txdtprint method will be the most efficient The section "Implementation
Functions" should make the details clearer.

It should be recalled that the context of this discussion is that more than one copy of a window
is to be insened. txdtgrab is unexcelled if the text is to be merely moved to a new location since it
requires virtually no overhead.

txdtgI'abbedp[x]
Returns GRABBED if ! is a grabbed object that is not currently insened. Returns
GRABBED&INSERTED if it is a grabbed object that is currently insened. Returns
GRABBED&UNDONE if it is the result of an undone grab. If! is not a grabbed object, it
returns NIL.

15. Addressing Functions

The following functions may be used to obtain and manipulate addresses.

txdtfind[x;addr1;addr2;back;behind;count;anchor;01dbox]
If anchor is NIL, txdtfind searches for the countth occurrence of the string! (or mkstringJx]
if ! is not a string) in the window from addr 1 to addr 2' If back is NIL. the search proceeds
forward from addr 1 to addr 2 (or the bottom if addr 2 is not encountered). If back is
nonNIL, the search proceeds backwards, from addr 2 to addr 1 (or the top if addr 1 is not
encountered).

If anchor is nonNIL, txdtfind determines if x occurs staning at addr, (or, if back is nonN~
ending at addr2). Such an qccurrence must be entirely within the window defined by addr1
and addr 2' count is ignored.

If the appropriate occurrence of x is found. the address of the beginning or end (or both) of
that occurrence is returned. If behind is NIL, the address of the first character is returned.
If behind is BOTH, a dotted pair, consisting of the address of the first character and the
address of the character immediately following the last character, is returned. Otherwise, the
address of the character immediately following the last character is returned. In all cases,
oldbox is used to represent one of the answer addresses if oldbox is a boxed address.

Ifan appropriate occurrence ofx is not found \\ithin the window, NIL is returned.

Whether or not count occurrences of ! are found. txdtfindcnt is set to the number of
occurrences found.

16 TIlE TXDT P.~CKAGE-l'TERLlSP TEXT EDIll"G PRLWTIVES

addrl and addr2 default to TOP and BTM respectively. count defaults to 1

It should be pointed out that only characters strictly in the window are' inspected. Recall that
the character at addr 2 i~ not in the window, and hence, is not inspected. That is, if a forward search
must look at the character at addr 2' then the search has failed; a backward search begins at the
character immediately preceding addr2•

If! is the empty string or count is 0, the search will succeed immediately at its starting point

If count is negative. back is negated. and abs[countl occurrences are found. Thus, the direction
of the search can be specified with either back or the sign of count.

txdtmove[n;c;addr;flg;oldbox]
Roughly speaking, this function returns the address of the character arrived at by starting at
addr and moving past g lines and then past f characters. Precisely: If g is a positive
integer, the "line move" from addr moves past g line temrinations. and stops immediately
after the !!th one. Then, f characters are counted off. backwards or forwards, depending on
the sign of £. If g is a non-positive integer, abs[nJ+ 1 line terminations are counted off in
the backward direction, stopping immediately to the right of the last one. Then the same
type of character move described above is made. In all cases, oldbox is reused to represent
the answer address if oldbox is a boxed address.

If g is NIL, no line move is made; the resulting address is just f characters from addr. If £
is NIL. 0 is used (i.e.. no character move is made). If addr is NIL, it defaults to TOP or
BTM according to g and £: If g is zero or positive, addr defaults to TOP. If g is negative,
addr defaults to BlM. If B is NIL, addr defaults to TOP when £ is zero or positive, and to
BTM when £ is negative. .

Finally, if the move would exceed the bounds of the buffer, the result returned depends on
!'!g. If flg is T, NIL is returned If.f!g is NIL, an address txdtegual to either TOP or BTM
is returned, depending on which was exceeded. If flg is the atom BOUNDARYERR, an
error is caused (via ERROR!).

Note that when !! is 0, the line move is backwards to the first character in the line containing
addr. Thus. txdnnove[O;O;addrl is the address of the beginning of the line containing addr,
txdtmove[--l;O:addrJ is the address of the beginning of the previous line and txdtmove[l;O;addrl is
the address of the following one.

When !! is NIL, txdnnove is just a character mover. txdtmo\,e[NIL; - 5 ;addr] is the address of
the character 5 to the left of the one at addr. and txdtmove[NIL;5;addr] is that 5 to the right Note
that the character move is not bounded by the current line. Thus. txdtmove[NIL;5000] is the
address of the 5001st character in the buffer, and txdnnovefNIL; - 5000] is the address of the 5000th
character from the end (Note how addr defaults to TOP in the first case, and BT~1 in the second)

f!g should be set to nonNIL in situations in which a positive check on the validity of the move
is desired. That is. if the buffer only has 100 lines in it. and the user wishes to move past 200 lines,
then txdtmove[200:NIL:addr] \\ill move to the bottom (immediately behind the last character in the
file), while txdnnove[200;NIL:addr;n "'ill return NIL

1HE TXDT PAC1"GE-L''1ERUSP TEXT EDIn"G PRL\UTIVES 17

Character moves are very efficien~ since the characters may be counted off a page (2560
characters) at a time. To make line moves, the characters must be inspected.

In TXDT-IO, one bizarre aspect of txdunove is that it avoids returning an address that points to
the line feed of a CR/LF pair. If after the character move, the character addressed is such a line
feed, txdmove moves forward (or backwards, depending on the direction it has been moving) one
additional character so as not to leave the address between the CR and its LF.

The function txdtmove is use.d to move over a given number of lines from a given place in any
buffer. The following function, which is just a speciaJ case of txdtrnove. is used to fmd the address
of a particular line in the current buffer.

txdtgoto[n:c:flg;oldbox]
Returns the address of the £th character from the beginning of the !!th line in the current
buffer. The lines are counted from th\:! tup. If g b NIL, no line move is made and the
address returned is that of the fth character, counted from the top. The character move is
backwards or forwards depending on the sign of c. If f is NIL, no character move is made.
fl.g plays the same role as in txdtmove. permitting a check on whether the move exceeds the
limits of the current buffer. \Vhen oldbox is a boxed address, it is used to return the answer
address.

Because of the convention of numbering things starting at 1 rather than 0, the Qth line is arrived
at by moving past !! -1 line terminations. A similar remark can be made about the £th character.
Thus, the 1st character in a line is the one arrived at by not moving from the beginning of the line.
Therefore, it follows that the Oth character of a line is actually the result of moving back one.

txdtcountlcI addr 1; addr 2; charflg]
Counts the number of lines andlor characters between addr1 and addr2. If charflg is the
atom CHARS. the result is an integer, which is the number of characters separating the two
addresses-Le., the character count one must give txdtmove to move from addr} to addr2• If
charflg is the atom LINES, the result is the number of line terminations between the two
addresses. Otherwise, the result is a dotted pair. car of which is the number of lines, and
cdr of which is the number of characters from the beginning of the last line to addr2. The
two addresses default to TOP and BTM respectively.

Thus. txdtcountlc can be used to find out "where" a given address is. Note however that
txdtcountlc counts the number of lines and characters between the two addresses; it does not return
a line number when addr1 happens to be TOP. Thus. if txdtcountlc[fOP;addr] is (45 .4), then addr
points to the 5th character from the beginning of line number 46. Interpreted the other way, it
means there are 45 line tenninations between addr and (in this panicular case) TOP. And there ~e
4 characters separating the last line terminator and addr itself.

txdtbox[addr; flg; oldbox; float]
This function returns a boxed address equivalent to addr, reusing oldbox if oldbox is a
boxed address.

If addr is an unboxed address, it is decoded with respect to the current buffer. f1g is used
during the decoding in precisely the way flg is used by txdtmove to permit a positive check
on whether the bounds of the current buffer have been exceeded

18 1HE TXDT PACKAGE-l'TERLL~P TEXT EDIn'\G PRruITIVES

If addr addresses the bottom of its buffer and float is nonNIL, the boxed address returned is
very special: the address is actually tied to the last character of the buffer but has a mark
on it that causes it to be moved forward by one whenever it is used. The first time such an
address is used and the move forward does not touch the bottom, the address is smashed so
that it is afterwards attached to the character encountered.

Normally a boxed address pointing to the bottom of its buffer will forever point to the bottom..
(Imagine the buffer as a list; boxed addresses point to successive cdrs; a boxed version of the bottom
address is analogous to NIL and denotes the end of the list no matter how many insertions and
deletions are made.) A boxed version of the bottom address with the float flag on "floats" off the
bottom as inserts are made at the bottom..

Calling txdtbox on a boxed address (with the float flag oft) has two uses. First, it is a way to
smash oldbox with the contents of addr. Second, if the region addressed by addr has been heavily
modified since addr was obtained, the result of txdtbox will be equivalent to addr but more efficient
to use. See the section "Implementation Functions".

txdtbox is the function used by all TXDT functions to decode line and character addresses.
When other TXDT functions call txdtbox, they specify flg and float to be NIL. Thus, if the current
buffer contains 100 lines, a line address of 200 is equivalent to BTM.

txdtbox has an optional feature which makes the decoding of lines and character addresses more
efficient in the vicinity of a particular point in the current buffer. If the global variable txdtpoetflg
is nonNIL, the feature is activated. In this case, the global variable txdt$ is assumed to be set to the
number of line terminations in the current buffer. The global variable txdtpoetdotaddr is assumed
to be set to some boxed address in the current buffer and txdtpoetdot is assumed to be set to a pair
(1 . c) giving the line and character location of txdtpoetdotaddr. (That is, txdtpoetdot is an unboxed
address equivalent to txdtpoetdotaddr.)

If txdtpoetflg is set, then whenever a line and character address is used, the necessary number of
lines are counted from the TOP, BTM, or txdtpoetdotaddr, whichever is the fewest number of lines
away. However, this efficiency requires that the implementor properly maintain the globals txdt$,
txdtpoetdot and txdtpoetdotaddr as insenions and deletions are made into the buffer. (The insertion
and deletion functions can be made to count the number of lines and characters added or deleted.)
See txdtcurbuff.

When txdtpoetflg is NIL, line and character addresses are always counted from the top.

txdtunbox[addr;charflg;flg:oldpair]
This function returns the line and character address of the character referenced by addr. If
charflg is T, a pair of the form (NIL. c) is returned, where c is the character number of the
gi\'en character. Otherwise. a pair of the fonn (n . c) is rerurned, where n is the line
number of the line containing the character and c is the character number within that line.
If addr is itself a line and character address. then flg is used to monitor boundary errors
while it is being decoded. If oldpair is a llgp. it is smashed to represent the answer pair. In
TXDT-IO, if the car of oldpair is a big number box, it is smashed to represent the line
count

mE TXDT PACKAGE-l'l'tRL1SP TEXT EDI1'ISG PRIMITIVES 19

If txdtpoetflg is set and addr is in the current buffer, txdtS. txdtpoetdotaddr and txdtpoetdot are
used to reduce the number of lines counted.. Note that if addr is not in the current buffer, then the
line and character address returned is useless until addr's buffer is made current

One reason for calling txdtunbox on an unboxed address is to "normalize" the line count or to
convert a character address to a line address or vice versa. For example (7 . 100) may actually be an
"unnormalized" address equivalent to (8 • 20).

txdtcopy(x]
! may be an address or a grabbed object It is copied and returned.

The user should copy addresses if he wants to call a TXDT function that smashes the address
but wants to keep a copy of the original. It is as efficient to use a copy of an address as to use the
original

Grabbed objects must be copied if they are to be inserted more than once. If txdtcopy is given
a grabbed object that has already been insene<L it will cause an error (because at that time it is
impossible to reconstruct the limits of the window grabbed). Copying a grabbed object is similar to
copying a list at the top level only. Since references to the characters are second level pointers. such
an object can be copied without inspecting the characters it "contains". Note that boxed addresses
into a grabbed object do not point into copies of the object

It is merely notational economy to supply one function for copying both kinds of objects.
Addresses should not be confused with grabbed objects.

txdtaddrp[x]
Returns T if,! is a boxed address and NIL otherwise.

txdtequal[addr1 ;addr2]
The equality predicate for addresses. Returns T if the two addresses reference the same
character, and NIL otherwise.

txdtgreaterp[addr1;addr2]
Returns T if the character referenced by addr 2 strictly follows that referenced by addr I'

Otherwise returns NIL.

txdtvalidp[addr;flg]
This function decodes addr and returns T if i.t is a valid address. If addr is not an address
or references deleted text, the function rerurns NIL. If f!g is the atom BOUNDAR YERR
and addr references a non-existent line or character (e.g., line 200 while the current buffer
has only 100 lines), the function returns NIL. If flg is anything else and addr references a
non-existent line or character, T is returned (since such a use of addr would default to TOP
or BTM).

txdtclosest{ addr;addrlst]
addr is supposed to be an address and addrlst is supposed to be a list of addresses.
txdtclosest searches addrlst and rerums either the address on addrlst which is closest to addr
(in the sense of being in the saIne buffer and separated by t.1e fewest number of characters)

TIlE TXDT PACKAGE-r\TERLlSP TEXT EDITr\G PRl\uTIVES

or returns the atom TOP or BTM if one of those two addresses is closer than any address on .
addrlsL In all cases txdtclosestforwflg is set to T if the answer is forward from addr and
NIL otherwise.

Note that if addr points into a buffer, buf, other than the current one and txdtclosest returns
TOP or BTM, then that result cannot be used to address buf until buf is made current

16. Printing Functions

txdtprinqaddr1;addr2;ptraddrs;ptrchars;file;mask]
Prints the text in the window from addr1 to addr2 to the file file.

ptraddrs and ptrchars may be used to mark cenain characters in the window. ptraddrs is
supposed to be a list of addresses in ascending order (as ordered by txdtgreaterp). ptrchars
should be a list of atoms or strings. Whenever a character indicated by an address on
ptraddrs is about to be printed, the car of ptrchars is printed to file (with prinl) first and
ptrchars is cdred. If ptrchars is NIL, txdtptrchar is printed. If ptrchars and txdtptrchar are
NIL. nothing is printed in response to finding the indicated character.

If ptraddrs is an address rather than a list of addresses, ptraddrs is set to listfptraddrs). If
ptrchars is an atom instead of a list, txdtprint acts as though ptrchars were a list as long as
ptraddrs each element of which was the given ptrchars.

If mask is nonNIL, it is assumed to be an integer and is treated as an n-bit mask (n = 36 in
TXDT-IO and n =32 in TXDT-D). If the ith bit (counting from 0 on the left) is o~ then
when the character about to be printed has i as its ascii code, the character is not printed.
Thus, mask may be used to mask out of the printing all occurrences of any of the first n
ascii characters. This includes the standard control characters. If mask is NIL, 0 is used
(which means no character is masked out).

Finally, whenever the 'character about to be printed is governed by a nonNIL message
(different from the message governing the previous character) and txdtescapechar is nonNIL,
the function txdtprintuserfn is applied to the message and either the JFN of file (in TXDT-
10) or the full filename of file (in TXDT-D). If txdtprintuserfn returns a value other than
NIL and that value is not the message it was given. the value is treated as a message and
overwrites the message previously stored at that address. All messages are compared using
~. txdtprintuserfn is initally defined as a noop but may be defined by the user. If the
variable txdtprintuserfnbox is nonNIL, it is assumed to be a boxed address and is smashed
to contain the address of the character about to be printed. This address may be inspected
by txdtprintuserfn.

txdtprint returns the last character printed

Note that simply txdtprinqaddr1 :addr2] will print the text in the window to the terminal.

If the user wishes to print a mark indicating the location of some address in the \\-indow.ptraddrs
may be used. For example let the text be:

nI£ TXDT PAC'KAG£-~1"ERJJSP TEXT ED~G PRl.\IITIVES 21

Tantallon is on a high clifT above the North Sea. two miles south of the village of North
Berwick. Opposite the castle, two miles out to sea, 100m the white cliffs of the Bass Rock.
On approaching the castle, the visitor is struck by the size of the curtain wall, stretching
nearly 300 feet across the promontory, and nearly SO feet tall.

Let addr point to the "s" in "visitor", and let txdtptrchar be bound to the atom.... Then

txdtprintftxdtmovef - -1 ;O;addr]
txdtmove[2;0;addrJ
addrJ

would print:

Berwick. Opposite the castle, two miles out to sea, 100m the white cliffs of the Bass Rock.
On approaching the castle, the vi ... sitor is struck by the size of the cunain wall, stretching
nearly 300 feet across the promontory, and nearly SO feet tall.

If the user wishes to print a "cursor" in some other way, he must do that with multiple calls to
txdtprint or by using the function txdtmapchars.

txdtwrite[file;addr1;addr2]

Writes the text in t1le window from addr1 to addr2 to a new version of the file named file
and returns the fun file name of the file created. The addresses default to TOP and BTM.

If txdtescapechar is nonNIL, then whenever the character about to be printed is governed by
a different (g£g) nonNIL message from the previous one, an appropriate message sequence
is written out before the character.

If file does not include an extensio~ the default extension is the setting of the global variable
txdtextension. This is initially NIL, which means no extension is supplied.

When txdtwrite is called a new file is created and opened. Pages for this new file are created
by PMAPping them in and depositing bytes from the buffer window. When done, the file size is
computed., and the file is closed. txdtwrite is considerably faster than txdtprint

If it is desired to write to an already open file or to not close the file when done, txdtprint with
the appropriate JFN should be used.,

If txdtwrite is interrupted (by CTRL-E or an error) after it has begun writing and before it has
finished, the file is closed and deleted. The deleted file should not be undeleted by the user since
the size field in its file descriptor block will not have been set

If many changes have been made since the last write, it might be considered wise to use
txdtwrite to save the current version. If this is done, it would also speed subsequent searches, etc., if
the buffer were then emptied and the newly produced file read back in. (This would allow the
search function. for example. to scan whole pages at a time rather than spend a lot of time skipping
over insenion/deletion boundaries. See the section "Implementation Functions".) However, if this
is done, (1) any boxed addresses being kept would be meaningless after the old buffer had been

. deleted and (2) it would not be possible, after the deletion, to undo changes made prior to the
deletion without undoing the deletion first Boxed addresses could, of course, be saved by
convening them to line or character addresses with t)(dtunbox before clearing the butTer.

txdtmkstring[addr 1 ;addr2;rplstring;strptr;mask]
Makes a string out of the characters in the window from addr 1 to addr l' and returns it
TXDT -10 converts CR/LFs wholly contained in the window into EOLs, following the
conventions on INTERLISP-IO strings. The two addresses default to TOP and BTM
respectively.

Messages encountered are written to the string as message sequences under the conditions
described in txdtwrite. mask is used to mask out characters just as in txdtprint

rplstring and gmj! are used in the construction of the answer string. Recall that an
INTERLISP string is represented by a "string pointer" which contains a byte count and
points to an address in pname space where the characters are stored.

If rplstring is NIL, the string returned is composed of entirely new structure (both from
pname space and string pointer space). If rplstring is T, the pname space for the answer is
obtained from an internal TXDT buffer. Thus the characters in the answer string in this
case will be smashed when a subsequent call to txdtmkstring is directed to use that buffer
again. If rplstring is a stringp, the pname space for the answer string is that of rplstring
itself. If the entire window will not fit in the space provided, all new structure is returned
but the characters in a stringp rplstring may have been smashed.

If rplstring is nonNIL, and the window fits in the space provided and gmj! is a stringp,
then gnm: is smashed to represent the final answer; otherwise a new string pointer is
constructed. Note that if gmj! is smashed, then the answer string is a substring of rplstring
(or TXDTs internal buffer) and may be smashed by string operations on that parent string.

txdtmkstring is useful for copying text which must be inserted in several different places.
(Unlike grabbed objects, strings may be inserted as many times as desired.) Note that unlike
txdtgrab, txdtmkstring does not delete the text from the buffer.

17. Message Functions

txdtgetmsg[addr]
If addr is a buffer, txdt2ennsg returns the message above the top of the buffer. Otherwise,
addr must be an address and this function returns the message governing addr.

txdtputmsg[addr;msg]
If addr is a buffer, this function sets the top message of the buffer to msg. Otherwise, addr
must be an address and this function stores the message msg at addr. In both cases, the
message replaced is returned.

txdtgennsglst[addr 1 ;addr 2]
This function returns a list of pairs. Each pair is of the form ((NIL. c) . msg) where (NIL .
c) is a character address and msg is the message stored at that address. There is one such
pair for addr1 and for each subsequent address in the v/indow from addr1 to addr2 at which
a message is stored. The pairs are in ascending order by address.

13

It is sometimes convenient to write out a buffer to a file without clunering the text in the file
with message sequences. txdtseunsglst permits one to save elsewhere sufficient information to
restore the messages after ~e file has been reinserted. txdtsetmsglst uses character addresses in its
answer for two reasons: such addresses can be decoded quite efficiently and (in contrast to the
situation obtained had boxed addresses been used) the answer list can itself be written to a file.

txdtmapmsg[addr 1 ;addr2; fn;ars2]
This function scans the window from addrl to addr2• At addrl and each time it encounters
an address at which a n:tessage is stored, it applies fn to the message and !ri2' Provided the
result is a legal message, it is undoably stored in place of the original one. When the
window is exhausted, NIL is returned.

If fn is NIL, txdtmapmsg is just txdtgetmsg1stladdrl:addr~.

18. Character FUDetiODS

txdtchar[addr:charcodeflg;moveflg]
Returns the character at address·!4S!:. If charcodeflg is NIL, the atom having the
corresponding single character as its pname is returned; if charcodeflg is T, the integer
character code is returned. In TXDT -10, if the character at addr is CR, followed by LF (or
LF preceded by CR), EOL is returned.

Finally. if the address supplied is a boxed address and ifmoveflg is non-NIL. the address is
destructively modified to point to the adjacent character. Ifmovefls is T or 1, the address is
modified to point to the character following the one returned. If moveflg is --I, the address
is modified to point to the one preceding the one returned. In TXDT-I0, if moving forward
and the character at addr was a CR followed by a LF, then the address is incremented by
two (and EOL is returned); if moving backward over a CR/LF, the address is decremented
by two.

txdtchar, when movetlg is set, is analogous to sa£ and g}£. The ability to obtain the character at
an address and simultaneously move the address pointer is useful when one must treat the buffer as
a stream of characters.

Recall that the bottom of a buffer is distinguished by not pointing to any character. If txdtchar
is given an addr pointing to the bottom, NIL is returned. If moveflg specifies a forward move, addr
is not modified. If a backward move is specified (and addr is a boxed address) then addr is lifted
off the bottom and the next txdtchar at addr will return the last character in the buffer.

There is one bizarre feature of txdtchar. If a backward move is specified and addr is a boxed
address pointing to the top (i.e.. txdtaddr returns the first character in the buffer), then addr is
modified to be a special address that points just above the top. A subsequent call of txdtchar on
that addr will produce NIL. If such a call specifies a backwards move from such an addr, addr is
not modified; a forward move from such an addr makes addr point to the top again. Such a special
addr will cause an illegal address error if given to any TXDT function other than txdtchar or
txdtmapchars.

24 1HE TXDT PACKAGE-l"\1ERLISP TEXT EDI~G PRNITIVES

This special treatment of boxed addresses at the top and bottom means that one can detect that
the top or bottom of a buffer has been reached by asking whether the character returned is NIL.

txdtmapchars[addr1;addr2;charcodeflg;moveflg;untilfn]
This function scans the window defined by addr1 and addr2 and successively applies untilfn
to each character (or if charcodeflg is Tt character code) encountered. Ifmoveflg is not -1,
the scan StaItS at addr1 and moves to addr2 (or the bottom if addr2 is not encountered). If
moveflg is -1. the scan starts just before addr 2 and moves backwards to addr 1 (or the top).

When untilfn returns nonNIL, the scan stops and txdtmapchars returns the address of the
character just beyond the one upon which untilfn returned nonNIL. (That is, the answer
address is incremented (or decremented) before untilfn is called.) If untilfn never returns
nonNIL, the scan stops when the window is exhausted and the address returned is just
beyond the last character seen. In all cases, if addr 1 is a boxed address, it is reused to
represent the answer.

Waming: There are limitations on which TXDT functions can be called by the mapping
function untilfn. In particular, txdtfincL txdtsubst, txdtwrite and txdtmapchars should not be called
by untilfn. An error may occur if one of these functions is called inside txdtmapchars. If no error
occurs, txdtmapchars works correctly. The problem arises from the fact that each of these functions
ties down one or more of TXDT's PMAP swapping buffers and when called in combinations they
exhaust the supply.

txdtmapchars will accept and may produce a special address above top (as described above in
connection with txdtchar). txdtmapchars treats that address just as txdtchar does: the "character"
seen there is NIL. Note that txdtmapchars moves forward if moveflg is NIL while txdtchar does not
move at all in that case.

In TXDT -10 txdtmapchars is roughly 20 times faster than the equivalent function written in terms of
txdtchar.

txdteolpD
Returns T or NIL according to whether the last two characters in the current buffer are
CR/LF (IXDT-I0) or EOL (IXDT-D).

txdteolp is somewhat more efficient than the equivalent functions defined in terms of txdtchar.
In fact. if no modifications have been made at the bottom of the buffer since the last time txdteolp
was called, the computation involves only comparisons and three global variables.

19. Implementation Functions

A buffer is actually a two-way list of records. Each record specifies some sequence of characters,
a message, and the two adjacent records. The concatenation of all of the character sequences is what
appears as the text in the buffer.

mE TXDT PACKAGE-I'TERLISP TEXT mrnsG PRL\D'OVES

The character sequence in a record is specified by three fields: The first contains a tile name
and file page number.9 This component therefore points to some source of characters. The other
two components specify what segment of this source is to be considered "in" this record. These
other two components are just integers that give the offsets from the beginning of the page of the
beginning and end of the segment.

For example, let #1 and #2 represent file names and page number pairs that point to the
following character sources.

#1 = ABCDEFGHUKLOMNOP" ..

#2 = abcdefghijk ••.

#3 = 012345 ...

Let the buffer consist of the following four records (named as indicated):

Tl = (**TOP** 0 0 msgl)

T2 = (#1 0 9 msg2)

T 3 = (# 2 2 11 ms13)

T4 = (**BTM** 000)

There are two special records which represent the beginning and end of the buffer. (It is
important to remember that the records are linked with pointers. For example, T 3 points "forward"
to T4 and "backward" to T 2' and they reciprocate.) This buffer would print as: .

ABCDEFGHIcdefghijk

The top message of the buffer is msgl . The characters ABCDEFGH are governed by msg2 and
the remaining characters by msg3"

The boxed address of TOP is a pair containing T2 and O. The boxed address of BTM contains
T 4 and O. The special address above TOP contains T 1 and O.

The boxed address of the character "e" contains T2 and the integer 2.

9. In TXDT·IO, the file name is encoded as a JFN.

26 11IE TXDT PACKAGE-l'7ERLISP TEXT EDITl'\G PR.NITI\ 'ES

In order to insert the suing "OU34S" in the buffer at the address of "C", we would change the
buffer to the following:

Tl = (*~OP** 0 0 msgl)

T2 = (#1 0 2 msg2)

TS = (#3 0 6 msg2)

T6 = (#1 2 9 msg2)

T 3 = (# 2 2 11 msg3)

T4 = (**BTM** 000)

Note that we had to "break"· T 2 into two p~ one to contain characters 0 to 2, and the other to
contain 2 to 9. We created a new record for the second pan, T6• This would not have been
necessary had the insenion occurred at the beginning or end of a record Note also that a record,
T s' was created to hold the string inserted. This buffer would print as:

AB01234SCDEFGHIcdefghijk

It should now be clear that in order to undo this insertion, we merely need to restore the third
component of T 2 to 9, and relink T 2 and T 3.

This example illustrates why it is more efficient to use the boxed address returned by txdtinsert
than to use the old boxed address of .,c" after the insertion. If behind were T in the call to
txdtinsen., the address returned would be a box pointing to the character in position 2 of T 6. Recall
that before the insertion the boxed address of "c" is a box pointing to the character at position 2 of
T 2. But after the insertion, 2 is not a legal position in T 2' because after the insertion, T 2 contains
only the characters at positions 0 and 1. If given this boxed address however, the low-level TXDT
address decoding function can quickly recognize that it is out of date, since the position specified in
the boxed address is not consistent with the offset information stored in the triple pointed to by the
boxed address. To decode the address, the TXDT decoding function looks for a record with the
indentical first component (in this case a first component of # 1) with offset components that include
the position in question. In the current example, this would yield the triple T 6"

Now let us illustrate a deletion. Suppose we wish to delete the segment "EFGHlcde" from the
buffer shown above. This creates the buffer:

Tl = (**TOP** 0 0 msg1)

T 2 = (# 1 0 2 msg2)

Ts = (# 3 0 6 msg2)

T 6 = (# 1 2 4 msg2)

T 3 = (# 2 S 11 msg3)

T4 = (**BTM** 000)

mE TXDT PAC'lAGE-I.\,'ERlJSP TEXT EDm!~G PRL\fITM'S

This buffer prints as:

AB01234SCDfghijk

Note that in this case all we had to do was reset the terminal offset of T 6 and the initial offset of
T 3. In general, we might also have to relink two records so as to delete a segment of records.

It is clear how to undo a delete. However, consider what happens if we undo the insertion
without undoing the deletion. Recall that undoing the insertion consists of restoring the third
component of T 2 to 9, and relinking T 2 and T 3. If we do this we get a buffer which prints as:

ABCDEFGHIfghijk

which shows that in addition to the insertion, part, but not all, of the deletion was undone. (The
"EFGHI" was restored, but the "cde" was not) Undoing out of order is therefore dangerous, since
it can affect text that does not overlap or even adjoin with the text modified by the operation
undone.

From this discussion of the representation, it should be obvious that insertion and deletion are
fairly high level-operations' that are not concerned with the number of characters involved. This is
why reading in large files, for example, is so fast The work must be done by those functions which
must scan this structure and pretend it is a continuous stream of characters.

In order to make this pretense reasonably fast in TXDT -10, these functions are all written in
LAP. These functions include the search function, the character and line counters, the printing
functions, and others. These functions construct byte pointers into the segment of text contained in
the current triple, and use byte manipulation instructions to inspect successive characters. When the
end of the segment is reached, they climb over to the next record and continue.

When these functions start on a new record, they call a special function that returns a. base
address for the source of characters for that record. This base address is used by the processing
function. to create byte pointers. The function that computes this base address asks if the relevant
page of t11e relevant file is currently PMApped in, and if so, returns the base address of the scratch
page it is on. If it is not currently in, it is brought into a free scratch page and the address of that
page is returned to the processing function.

Note that the efficiency of window scanning functions is diminished as the text in a buffer gets
fragmented into records. At most one page of text may be contained in a record (so that the offsets
may be coded as small integers). Thus each page of inserted text requires a new record. Since the
only way to store a message is in a record, every txdtputmsg or message sequence in inserted text
requires a new record. Finally, every insertion and deletion may cause records to fragment The
function ocdtcontigify is provided to overcome this problem.

The details of this representation were worked out and implemented by Robert S. Boyer and
J Strother Moore, in the "77 Editor", at the University of Edinburgh in August, 1972.

The following functions expose a certain amount of the implementation ofTXDT.

1HE TXDT PACKAGE-l'TElUJSP TEXT EDlmG PRI.\fITIVES

txdtpiece[addr;oldbox]
Returns the address of the first character contained on the record containing addr. Reuses
oldbox if oldbox is a boxed address.

txdtnextpiece[addr;oldbox]
Returns the address of the first character contained on the record after the one containing
addr. Reuses oldbox if oldbox is a boxed address. If addr points to the bottom, the answer
is equivalent to addr.

txdtprevpiece[addr;oldbox]
Returns the address of the first character contained on the record before the one containing
addr. Reuses oldbox if oldbox is a boxed address. If addr is in the record containing the
first character of the buffer, then the answer points to the first character of the buffer.

Because of the implementation of messages, txdtpiece is a way of finding the address at which
the message governing a given address is stored. txdtprevpiece and txdtnextpiece permit one to
move to the next possible address at which the message might change.

txdtcountpieces[addr1;addr2]

Counts the number of pieces in the window from addr1 up to and including addr2•

txdtcontigp[addr1;addr2;oldcons]
If all the characters in the window from addr 1 to addr 2 are contained contiguously on some
file, this function returns a pair of the form (file. c) where file is the full file name of the
file containing the window and c is the byte position (a la setfileptr) of the first character in
the window. If the window is not contiguous on one file, NIL is returned. When a pair is
rerumed, oldcons is reused (if it is a ~ to represent the answer and its cdr is smashed
with sem if it is a big number.

txdtcontigify[addr1 ;addr2;file;behind;0Idbox]
Writes the window from addr1 to addr2 to the end of the file file, deletes the window and
inserts the just written text Returns the address of the beginning or end of the new window
(according to whether behind is NIL or T), reusing oldbox if it is a boxed address.

Note that txdtcontigify is a way to minimize the number of pieces in a window or buffer.
However, any boxed address into the window (including addr1) will be invalid after the operation
since that area was deleted. addr2 will be unaffected since it is Gust) outside the window. addr1 can
be saved by setting behind to NIL and using addr 1 for oldbox.

\

In general, boxed addresses into the window can be saved by the user by unboxing them (with
charfig T for maximum efficiency) before the operation and boxing them after. See txdtunbox and
txdtbox.

Note that if the window contains messages and TXDTESCAPECHAR is nonNIL, then the
window "contigified" will not actually be txdtconfigp.

txdtfileposition[addr;oldcons]
Returns a pair (file. c) where file is the full file name of the file containing the character at
addr and is the byte position of that character in file. If oldcons is a listp, it is reused to
represent the answer cons and its cdr is sI1}ashed with setn if it is a big number.

1HE TXDT PACKAGE-I!\TERLlSP TEXT EDIU"G PROOTIVES

20. Variables

The following variables are of interest to the normal user. The reader should see the
descriptions of the relevant functions for more precise specifications of the roles of these variables.

txdtdelta-set by the functions described in the section "Modification Functions" to indicate how
many lines and characters were added or lost due to a given insertion or deletion.

txdtextension-the default file name extension for files created by txdtwrite. Initially NIL, which
means no extension.

txdtptrchar-the default pointer character used by txdtprint Initially t.

txdtsubstcnt-set by txdtsubst to indicate how many substitutions were made.

txdtpoetflg-used to speed up . the decoding of line and character addresses in the vicinity of a
"cursor" in the current buffer. See the section "Buffers".

txdtpoetdot-used to speed up the decoding of line and character addresses in the vicinity of a
"cursor" in the current buffer. See the section "Buffers".

txdtpoetdotaddr-used to speed up the decoding of line and character addresses in the vicinity of a
"cursor" in the current buffer. See the section "Buffers".

txdt$-used to speed up the decoding of line and character addresses in the vicinity of a "cursor" in
the current buffer. See the section "Buffers".

txdtclosestforwflg-indicates the direction from addr of the closest address found by txdtclosest.

txdtfindcnt-set by txdtfind to the number of occurrences of the search string found

txdtscratchfile-always set to the full file name of the temporary file to which TXDT prints strings
prior to insertion. The user may also write text in this file provided the file pointer
is manually set to the bottom of the file before each write. The file must always be
open for both input and output The user may set the file pointer arbitrarily to read
from the file and may leave the file pointer anywhere.

txdtcurbuflst-set to the list of all buffers constructed and not yet killed.

txdtcurbuf-set to the current buffer.

txdtinsertfilekey-the item used to mark lists that are to be interpreted upon insertion as file
segments. See "Objects That May be Inserted". Initially a string
"TXDTINSER TFILEKEY".

txdtescapechar-the single character atom used to mark message sequences in text to be inserted
Initially set to NIL, meaning message sequences are not to be looked for. See
"Messages and Fonts."

30 mE TXDT PACKAGE-l'TERLISP TEXT EDITISG PR.MTIVF.S

txdtprintuserfnbox-used by txdtprint to store the current address at the time txdtprintuserfn is
invoked.

21. Error Messages

Below are listed the TXDT error messages a normal user may expect to see. Since TXDT
functions do not always check that their arguments are of the right type, normal INTERLISP errors
will be generated under some conditions-as in attempting a nonnumeric nonNIL line move. In
addition TXDT has several error messages caused by internal consistency checks. These should not
occur in normal usage and their generation indicates either bugs in TXDT itself or a smashed core
image. Internal errors are always preceded by the phrase INfERNAL TXDT ERROR and are not
listed below. Their occurrence· should be reponed to Moore (currently MOORE@SRI-KL) along·
with enough information to reproduce the error from a clean core image.

Here are the normal TXDT error messages with parenthesized explanations when necessary.

TXDT ADDRESS INTO DELETED AREA

TXDT ADDRESS NOT RECOGNIZED (caused when an object other than a boxed address, TOP,
B1M, a line number, or a line and character address is passed to a TXDT function
in place of an address.)

CANNOT COPY INSERTED GRABBED OBJECf

CANNOT COpy RESULT OF AN UNDONE GRAB

CANNOT COpy INVALID ADDRESS

A ITEMPT TO REINSERT INSERTED GRABBED OBJECf

A ITEMPT TO INSERT THE RESULT OF AN UNDONE GRAB

ATTEMPT TO INSERT MYSTERIOUSLY MUNGED GRABBED OBJECf

ATTEMPT TO INSERT A SEGMENT OF FILE T

ATTEMPT TO INSERT ILLEGAL MESSAGE

ILL-DEFINED WINDOW (generated by txdtdelete. txdtgrab and txdtsubst when the two addresses
supplied do not properly define a window-i.e., when the second address is not
greater than the first)

TXDTWRITE INTERRUPTED-FILE CLOSED AND DELETED (caused in response to an error
or user interrupt while TXDTWRITE is transfering characters to the file.)

CANNOT REINSTATE KILLED BUFFER

TIm TXDT PACKAGE-l'iERLlSP TEXT EDlmG PRMTIVES 31

CANNOT KILL CURRENT BUFFER WITHOUT EXPRESS PERMISSION

UNRECOGNIZED BUFFER LIST (caused by txdtsubstifn when the buffer list supplied is neither
a buffer, a listp, or NIL.)

22. Datatypes

The TXDT package declares four user datatypes.

TXDTRECORD-used to represent the two-way linked lists representing text The user should
never see an object of this type.

TXDTADDR-used to represent boxed addresses. The user may use ~ to recognize boxed
addresses (or txdtaddrp) but should not access or set the components of such a
record

TXDTGRABBEDOBJ-used to represent grabbed objects. The user may use ~ to recognize
grabbed objects but should not access or set the components of such a record.

TXDTBUFFER-used to represent a buffer. The user may use tvre1 to recognize buffers and may
access and set the following three fields TXDT$, TXDTPOETDOT ADD~ and
TXDTPOETDOT as described in the section "Buffers".

References

(1) R. S. Boyer, J S. Moore, D. J. M. Davies, "The 77-Editor," Technical Report 62,
Depanment of Computational Logic, University of Edinburgh, 1973.

(2) W. Teitelman, "A Display Oriented Programmer's Assistant," Proceedings of the 5th
International Joint Conference on Artificial Intelligence, Depanment of Computer Science,
Carnegie-Mellon University, pp. 905-915, 1977.

Index

boxed address, 2
BTM,3
datatypes, 30
errornnessage~29
file segment, 7
grabbed object, 7
message sequence, 9
TOP, 3
txdt$,28
txdtaddrp, 19
txdtbox, 17
txdtbufp,5
txdtchar, 22
txdtcloseall, 10
txdtclose(10
txdtclosest, 19
txdtclosestforwflg, 28
txdtcopy, 18
txdtcountlc, 17
txdtcountpieces, 27
txdtcontigify,27
txdtcontigp, 27
txdtcurbu(4, 29
txdtcurbuflst, 29
txdtdelete, 13
txdtdelta, 28
txdtemptyp, 5
txdteolp,24
txdtequal, 19
txdtescapechar, 29
txdtextension, 28
txdtfileposition, 28
txdtfind, 15
txdtfindcnt, 28
txdtgetmsg, 22

TIIE TXl)T PACKAGE-L'\7ERLlSP TEXT EDI~G PRMm'FS

txdtgetmsglst, 22
txdtgoto, 16
txdtgrab,14
txdtgrabbedp, 14
txdtgreaterp, 19
txdtinit, 10
txdtinsert, 11
txdtinsertfilekey,29
txdtkillbu(5
txdtmapchars, 23
txdtmapmsg, 22
txdtmkstring, 21
txdtmove, 15
txdtnextpiece,27
txdtpiece, 27
txdtpoetdot, 28
txdtpoetdotaddr, 28
txdtpoetflg, 28
txdtprevpiece, 27
txdtprint, 19
txdtprintuserfnbox, 29
txdtptrchar, 28
txdtputmsg, 22
txdtread, 10
txdtresetformfn, 10
tx dtscratch file, 29
txdtsubst, 12
txdtsubstcnt, 28
txdtsubstjfns, 11
txdtunbox, 18
txdtunpmap, 10
txdtvalidp, 19
txdtwhereis,5
txdtwrite, 20
unboxed addresses, 3
variables, 28

-i
::r
co
-i
X
o
-i
"ll .,
n
;r<" .,
'" co
I
:;-

!
(ij '
~

-i
(I)
)(..
m
~
3' ...
~
3
a:
<
~

