
Distributed Name Servers:
Naming and Caching in Large
Distributed Computing Environments

Douglas Brian Terry

Distributed Name Servers:
Naming and Caching in Large
Distributed Computing Environments

Douglas Brian Terry

CSL·85·1 February 1985 [P85·00020]

© Copyright 1985 Douglas Brian Terry. All rights reserved.

CR Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:

Distributed Systems; 0.4.3 [Operating Systems]: File Systems Management - Directory

structures, Distributed file systems; 0.4.8 [Operating Systems]: Performance -

Measurements, Modeling and prediction; H.2.4 [Database Management]: Systems -

Distributed systems; H.2.7 [Database Management]: Database Administration - Data

dictionary/directory.

Additional Keywords and Ph rases: naming, binding, name servers, distributed name

management, structure-free name resolution, caching.

XEROX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

1

Abstract

Name services facilitate sharing in distributed environments by allowing objects to be

named unambiguously and maintaining a set of application-defined attributes for each named

object. Existing distributed name services, which manage names based on their syntactic

structure, may lack the flexibility needed by large, diverse, and evolving computing com­

munities. A new approach, structure-free name management, separates three activities:

choosing names, selecting the storage sites for object attributes, and resolving an object's

name to its attributes. Administrative entities apportion the responsibility for managing

various names, while the name service's information needed to locate an object's attributes

can be independently reconfigured to improve performance or meet changing demands.

An analytical performance model for distributed name services provides assessments of

the effect of various design and configuration choices on the cost of name service operations.

Measurements of Xerox's Grapevine registration service are used as inputs to the model

to demonstrate the benefits of replicating an object's attributes to coincide with sizeable

localities of interest. Additional performance benefits result from clients' acquiring local

caches of name service data treated as hints. A cache management strategy that maintains

a minimum level of cache accuracy is shown to be more effective than the usual technique

of maximizing the hit ratio; cache managers can guarantee reduced overall response times,

even though clients must occasionally recover from outdated cache data.

XEROX PARe. CSL-85-1. FEBRUARY 1985

Contents

1 Introduction
1.1 The Electronic Baobabs
1.2 N aIne Services

1.2.1 Role
1.2.2 Names

1. 2.2.1 Properties
1.2.2.2 Structure
1.2.2.3 Contexts

1.2.3 Object attributes
1. 2.4 Operations

1.3 The Thesis

2 Name Service Designs: A Survey
2.1 Existing Name Services

2.1.1 NIC Name Server
2.1.2 DARPA Domain Name System
2.1.3 BIND Server
2.1.4 PUP Name Lookup Server.
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9

Grapevine
Clearinghouse
CSNET Name Server ..
Cambridge Name Server .
COSIE NaIne Server

2.1.10 R* Catalog Manager
2.2 Structural Comp9nents

2.2.1 Servers
2.2.2 Agents

2.3 Functional Components
2.3.1 Communication.
2.3.2 Database management
2.3.3 Name management.

2.4 Performance Issues . . .
2.4.1 Models
2.4.2 Measurements
2.4.3 Caching

2.5 Evaluation of Previous Work

XEROX PARe. CSL-85-1. FEBRUARY 1985

i

1
1
2
2
3
3
5
5
6
8
8

11
11
11
12
12
13
13
13
14
14
15
15
15
15
16
17
17
20
22
27
27
27
28
28

ii DISTRIBUTED NAME SERVERS

3 Name Distribution
3.1 Foundations

3.1.1 A Layered Architecture .
3.1.2 Communication Support.
3.1.3 Database Support

3.1.3.1 Local database management
3.1.3.2 Replicated data

3.2 Structure-free Name Distribution
3.2.1 Assigning authority .
3.2.2 Authority Attributes ..

3.3 Distributed Operations. . . .
3.3.1 Basic steps
3.3.2 Locating name servers
3.3.3 Name service interface.

3.4 Summary

4 NaIlfe Resolution
4.1 Name Resolution Model

4.1.1 Distributing configuration data
4.1.2 Context objects
4.1.3 Clustering conditions for configuration tuples
4.1.4 Context bindings and name resolution chains
4.1.5 Applying the name resolution model .

4.1.5.1 Syntactic clustering
4.1.5.2 Variable syntactic clustering
4.1.5.3 Non-syntactic clustering ...
4.1.5.4 Mixed clustering for growing systems·

4.1.6 Extensions for other naming styles
4.1.6.1 Naming networks
4.1.6.2 Beyond naming networks

4.1. 7 Advantages of structure-free name resolution
4.2 Name Resolution Mechanism

4.2.1 Configuration database queries
4.2.2 Locating context objects.
4.2.3 Styles of name resolution

4.2.3.1 Recursive.
4.2.3.2 Iterative ...
4.2.3.3 Transitive ..
4.2.3.4 Comparisons

4.3 Dynamics of Name Management
4.3.1 Updates
4.3.2 Name registration
4.3.3 Name service reconfiguration

4.4 SUIIlmary

XEROX PARC. CSL-85-l.FEBRUARY 1985

31
31

. 31
32
33
33
35
37
37
38
39

. 39
40
41
43

45
45
45

. 46
46
48
49
49
51
53
54
56
57
59
60
61
61
62
64
64
65
69
69
71
71
72
73
74

CONTENTS

5 Performance Analysis
5.1 N arne Service Performance.
5.2 A Model for Name Server Interaction ..

5.2.1 Name servers and clients ..
5.2.2 The network
5.2.3 The database
5.2.4 Reference patterns
5.2.5 Operation costs ..
5.2.6 Summary

5.3 Performance of Individual Servers ..
5.4 Name Server Placement
5.5 Assigning Authority ..

5.5.1 Basics
5.5.2 Flat name space
5.5.3 Physically partitioned name space
5.5.4 Organizationally partitioned name space ..

5.6 Benefits of Replication .. .
5.7 Name Server Failures
5.8 Exploiting Client Behavior.

5.8.1 Locality of reference
5.8.2 Lookup/update ratio.

5.9 Summary

6 Measurements of Grapevine
6.1 Basics of the Experiment

6.1.1 Goals
6.1.2 Why Grapevine? .
6.1.3 Grapevine~s logs .
6.1.4 Retrieving, parsing, and analyzing log data

6.2 Locality of Reference .
6.2.1 Methodology .
6.2.2 Results

6.3 Lookup/Update Ratio
6.3.1 Methodology .
6.3.2 Results

6.4 Applying the Name Server Model to Grapevine
6.4.1 Grapevine's configuration
6.4.2 The benefits of Grapevine's locality
6.4.3 The benefits of remote authorities
6.4.4 Comparisons along two dimensions.

6.5 Summary

7 Caching Name Server Data
7.1 Cache Management

7.1.1 Caching for performance enhancements
7.1.2 Hfnts vs. strong consistency

XEROX PARe. CSL-85-1. FEBRUARY 1985

iii

77
77
78
78
79
79
80
80
81
81
82
85
85
85
86
87
88
91
93
93
94
95

97
97
97
97
98
98

· 100
· 100

103
· 106
· 106
· 107

108
108

· . 110
· . 112

· 112
· . 114

117
· 117
· 117
· 118

iv DISTR.IDUTED NAME SERVERS

7.1.3 Cache accuracy
7.1.4 A new approa.ch to cache management

7.2 Basics of Caching Hints . ,
7.2.1 The cache manager
7.2.2 A cache interface
7.2.3 Obtaining cached data .
7.2.4 Using cached data
7.2.5 Policies for managing cached data

7.3 Refresh/Revalidation Techniques
7.3.1 Requery strategies
7.3.2 Timestamps.........
7.3.3 User-supplied revalidation procedures

7.4 Estimates of Cache Accuracy
7.4.1 Probabilistic algorithms
7.4.2 Estimates from imperfect knowledge
7.4.3 Accuracy with revalidation . . .

7.5 Other Issues in Cache Maintenance . . .
7.5.1 Conflicting Cache Requirements
7.5.2 Size constraints

7.6 Name Server Support for Caching.
7.6.1 Metadata
7.6.2 Modified interfaces

7.7 Summary .

8 Final Remarks
8.1 Reflections on the Architecture
8.2 Thesis Contributions
8.3 Areas for Future Work .

Glossary

Bibliography

XEROX PARe. CSL-8S-I. FEBRUARY 1985

. . 119

.. 119
· 122
· 122
· 124

125
. 126

· 126
· 129
· 129
· 130

132
133

· . 133
· . 136

· 138
140
140

· 141
· . 143
· . 143
· . 145

· 147

149
149

· 150
· 153

155

161

List of Figures

2.1 Individual name agents.
2.2 Shared name agents.
2.3 Domain name space with sample zones.
2.4 Hierarchical name space with dispersal cut.

3.1 Functional layers in a name server.
3.2 Database interface
3.3 Replicated data interface.
3.4 Name Service interface.
3.5 Name Agent interface. . .

4.1 Sample hierarchical name space.
4.2 Syntactic clustering of a hierarchical name space ..
4.3 Configuration database for syntactic clustering.
4.4 Clustering varying numbers of labels
4.5 Clustering a name space through hashing
4.6 Configuration database for algorithmic clustering ...
4.7 Clustering large Grapevine registries algorithmically.
4.8 Mutually encapsulated name spaces.
4.9 Styles of name resolution.

5.1 Name service model parameters.
5.2 A sample internet.

6.1 Topology of the Grapevine internet.
6.2 Logging during mail delivery in Grapevine.
6.3 Lookup costs for different reference patterns/authority assignments.

7.1 Cache managers and name agents.
7.2 Cache interface.
7.3 Distribution function F{t).
7.4 Density function !(t). . ..
7.5 Approximating F(t) by interpolation.

XEROX PARe. CSL-85-1. FEBRUARY 1985

v

18
19
25
26

32
34
36
41
43

51
52
52
53
54
55
56
58
70

81
83

99
102
113

123
. 124

134
. 135

. . 137

vi DISTRIBUTED NAME SERVERS

XEROX PARe. CSL-8S-i. FEBRUARY 1985

List of Tables

5.1 Communication costs.
5.2 Effects of replication on lookup costs.
5.3 Effects of failures on lookup costs for R == 5 ..

6.1 Locality of interests in Grapevine (normalized by sender).
6.2 Locality of interests in Grapevine (normalized by recipients).
6.3 Locality of interests in Grapevine (adjusted for registry size).
6.4 Individual updates in Grapevine.
6.5 Group updates in Grapevine
6.6 Associations between clients, registries, and servers in Grapevine. .
6.7 Authoritative servers for Grapevine registries
6.8 Costs of accessing individual Grapevine registries.
6.9 Expected lookup costs for Grapevine clients.
6.10 Expected lookup costs without remote authorities.

7.1 Sample object lifetimes.

XEROX PARe. CSL-85-1. FEBRUARY 1985

vii

84
90
92

104
· 104
· 105
· 107
· 107

109
109
110
111
112

· 135

viii DISTRIBUTED NAME SERVERS

XEROX PARCo CSL·85-1. FEBRUARY 1985

ix

Acknow ledglllents

The journey in pursuit of a doctoral degree is long and perilous: no one can make it

alone. I am grateful to the many people that have aided me along the way.

My two major advisors, Robert Fabry and Domenico Ferrari 1 gave Ine the freedom to

explore on my own, while fixing an eye on my wanderings. I learned a tremendous amount

from my explorations. Bob's insistence on excellence served to reinforce my own. His

suggestions for improvements, right until the end, substantially strengthened the thesis.

Domenico~ in spite of his many responsibilities and unreasonable work load, would always

find time to speak with me whenever I needed guidance. With his red pen in hand, he

thoroughly and punctually marked up every draft. My third reader. Lucien LeCam. provided

a much needed refresher course on probability and statistics.

I appreciate the support of ~everal colleagues that have contributed in various ways.

Bob Hagmann was instrumental in arranging a consulting agreement with Xerox PARC so

that I could study the Grapevine system. Michael Schroeder and Andrew Birrell explained

the internals of Grapevine and how its logs were organized. Hal Murray was a constant

source of information on the day-to-day operation of the system. More importantly, Hal

read the dissertation and discovered several embarrassing bugs in my name server prototype

implementation. Howard Sturgis bravely read an early draft and helped me focus my ideas.

Luis Felipe Cabrera, Juliet Sutherland, and Songnian Zhou furnished comments on several

chapters. Juliet was particularly helpful at keeping me abreast of current standardization

efforts in the area of name services. I have also benefited from many discussions with fellow

researchers at U. C. Berkeley. IBM Research, Xerox PARC~ and other institutions across

the country too numerous to name.

My interest in distributed compnting and the motivation for my thesis germinated while

I was an academic associate for IBM Research. This research was partially sponsored by the

Defense Advance Research Projects Agency (DoD) Arpa Order No. 4031 and nlonitored by

the Naval Electronic SysteIn Conlnland under Contract No. N00039-C-0235. Much of the

XEROX PARCo CSL-85-1. FEBRUARY 1985

x DISTRIBUTED NAME SERVERS

support during the preparation of this dissertation was generously provided by the Xerox

Palo Alto Research Center.

Margaret Butler played many vital roles: technical editor, style critic, counselor, friend.

She patiently suffered through numerous rough drafts. No matter what predicament I got

myself into, she was always just a phone call away. Margaret invariably had a smile and

good word when I was down. I am deeply indebted to her for all of her assistance. I only

hope that I can serve her as well when the roles are reversed.

As usual, my friends and family have kept me going through all these years. I am

eternally grateful for all the joyous moments I have had in Berkeley. Katie deserves special

credit for helping me adjust to the strangeness that is Berkeley and to the demands of

graduate studies.

Finally, I dedicate this dissertation. the culmination of many years of education, to my

parents, George and Georgette Terry. They may not understand its technical merits, but

their contributions have been great.

XEROXPARC. CSL-85-1. FEBRUARY 1985

Chapter 1

Introduction

I knew very well that in addition to the great planets - such as the Earth, Jupiter,
Mars, Venus -- to which we have given names, there are also hundreds of others,
some of which are so small that one has a hard time seeing them through the
telescope. When an astronomer discovers one of these he does not give it a name,
but only a number.

- Antoine de Saint Exupery, The Little Prince.

1.1 The Electronic Baobabs

1

Like the little prince's galaxy, with planets too numerous to be named, contenlporary

distributed computing environnlents have evolved to the point that it is difficult to name

and catalogue the many available resources. To facilitate the sharing of information and

resources, immense interconnections of public and private data networks have been estab­

lished, permitting users access to extraordinary numbers of potentially shareable resources.

The DARPA Internet hosts table, for instance, now contains over 300 networks connecting

most of the major U.S. universities, military organizations, and computer corporations.

Physical connectivity, however, is not sufficient to allow resources to be effectively utilized

by the various melllbers of these vast, interconnected computing communities. Uniform

mechanisms are needed for identifying and locating objects and resources that are made

accessible to the community by their creators or owners. That is. objects should be given

names, names that can be freely passed around the internet and shared amongst its users so

that the objects themselves might be shared. Once users have a way of referring to objects.

services should be provided for locating particular objects and discovering how to access

those objects.

XEROX PARe. CSL-85-1. FEBRUARY 1985

2 DISTRIBUTED NAME SERVERS

This dissertation addresses the issues of providing such a name servs'ce1 for a widely

distributed computing environment. It progresses in three stages: First. general techniques

for managing names in a distributed manner are developed. Second, the performance of

such techniques for large name services is analytically modeled. Third, a client's level of

performance is enhanced by introducing caches of naming data. The next section discusses

the nature of name services~ providing the background for the remainder of the dissertation.

1.2 Name Services

1.2.1 Role

A name service enables its clients to name resources or objects and provides facilities for

accessing information about these objects. The term object will be used hereafter to refer

to anything that deserves a name. Both physical and logical entities may be objects. For

instance, computers, file servers, printers, disk drives and files can all be objects. Processes.

services, distribution lists, and computer messages can also be objects, as may computer

programmers. operators, and technicians. Some objects exist within the bounds of the

distributed computer system, while others have a life of their own. Note also that some

objects are actt've, such as a process executing a program. while others playa passt've role,

and hence must be acted upon and managed by active objects.

The client/server model of distributed computing has become popular in describing

relationships between active objects. Servers offer services to clt'ents that may make use of

those services. Often, an active object is both a provider of some services and a client of

others. Since servers and clients may exist at various locations in a distributed computing

environment, means must be provided for establishing liaisons between them.

The name service is a ~'master~' service, which acts as a rendezvous point for other servers

and clients of the services provided by those servers. Services can be made available to the

general community by registen'ng them with the name service. The information presented

on the ~'registration form'~ includes the name of the service and information needed to make

use of the service. A client of a service may obtain this information by contacting the name

service and presenting the name of the desired service. From that point on, the client and

server may establish a direct connection to conduct their business.

The name service thus enables other services to. be identified and accessed in a uniform

1 Throughout this dissertation, terms appear in italics when they are first introduced~ their definitions are

reproduced in the glossary for later reference.

XEROX PARCo CSL-85-1. FEBRUARY 1985

CHAPTER 1. INTRODUCTION 3

way [Abraham and Dalal 80]. Members of a large distributed cornputing community need

only know how to access the nanle service in order to gain access to a multitude of services

indirectly through the '~well-known" name service. For passive objects, the name service

maintains information that allows theIIl to be rnanipulated and shared by specialized ser­

vices.

A name service, described here as a general name management facility, provides more

than the usual name-to-address bindings. It subsumes services such as directory systems

for electronic mail, file naIne managers~ and database catalog managers. These services can

be viewed as name services specialized for a particular application domain: for example,

the catalog manager for a distributed database management system maintains information

about named database objects~ such as their locations, access controls, and statistics used

for query optimization [Martella and Schreiber 80].

Much of the current confusion and difficulty in interconnecting existing distributed en­

vironments stems from the fact that various incompatible name services are being employed

for widely-used applications, like mail. Much can be gained from adopting uniform name

services. However, the question of whether a single general name service should be used for

all objects or whether specialized name services should continue to exist with a global name

service used to locate the more specific services is difficult to answer. The choice is not a

critical one to the discussions that follow, as the issues remain the same.

1.2.2 Names

1.2.2.1 Properties

Simplistically, a name is a character string that identifies an object. However, there is

a general lack of consensus about what properties distinguish names frolll other types of

identifiers. John Shoch made the following incisive, albeit vague, distinction between three

types of identifiers used in computer networks [Shoch 78]:

"The name of a resource indicates what we seek.

an address indicates where it is, and

a route tells us how to get there."

Jerome Saltzer, on the other hand. suggests a broader use of the word "name" and portrays

the relationship between names and addresses as bindings; that is, he defines an object's

"address" to be a "name of the object it is bound to" [Saltzer 82].

XEROX PARC, CSL-85-1. FEBRUARY 1985

DISTRIBUTED NAME SERVERS

This dissertation draws a simple distinction between names and addresses: names are

chosen by users, whereas addresses are assigned by the system or system administrators.

This distinction complies with Shoch's basic terminology and res~mbles Richard Watson's

distinction between human-oriented names and machine-oriented identifiers [Watson 81].

Historically, the use of names in communication networks emerged as a convenience to hu­

mans, who find it difficult to remember numbers denoting the addresses of network entities.

Names, as characterized herein, may be:

• readable by humans and of mnemonic value,

• independent of network locations.

The first property arises naturally since humans tend to choose names that describe their

referents [Carroll 78]. The second property allows an object to migrate to a new location

in the distributed environment without changing its name, and hence without requiring

changes in others' references to the named object2•

The interpretation of names presents additional properties: A name is unambiguous

if and only if it refers to at most one object. That is, the same name cannot be used

by different clients of the name service to refer to different objects. A name is unique if

it represents the only name for its referent. Several non-unique names may identify the

same object. Often, in such cases, one name is recognized as the preferred name and the

others are called aliases or nicknames. Note that some people use the terms "unique" and

"unambiguous" interchangeably. As defined here, ambiguity corresponds to a one-to-many

relationship between names and objects, whereas non-uniqueness suggests a many-to-one

binding.

A name is said to be global or absolute if it is interpreted in a consistent manner by

all clients and services, regardless of their location in the environment or other factors.

Absolute names may be freely passed around from object to object without -affecting their

interpretation. On the other hand. relative names are interpreted according to some state

information.

The name services of interest in this dissertation manage unambiguous names so that

dialogues for resolving ambiguities are not required. In addition, they can guarantee the-

2 Addresses may be location-independent as well; these are occasionally referred to as logical addresses

(Rosen 81]. Some recent proposals purporting new approaches to name management are really sugges­

tions for managing logical addresses in the conununication transport layer (Cheng and Liu 82] [Cheng 841

[Chesley and Rom 83].

XEROX PARC. CSL-85-1, FEBRUARY 1985

CHAPTER 1. INTRODUCTION 5

uniqueness or absoluteness of names, but the general mechanisms do not assume that these

properties are always desired by applications making use of a name service.

1.2.2.2 Structure

The convention adopted for naming objects dictates the syntactic representation of

names, as well as their semantic interpretation. The set of names complying with a given

naming convention is called the name space.

Names are commonly structured as a series of alphanumeric labels interleaved with var­

ious separation characters. Although many separation characters are in common use in

existing naming conventions, including '@', '%', ':', '.', 'I', and '!', the'" will be used for

simplicity hereinafter, except in cases where a specific naming convention is being discussed.

Thus, the name ·'A.B.C" consists of three labels, "A", "B", and "C".

A component of a name is a substring of that name composed of one or more labels and

the embedded separation characters. The name "A.B.C" contains the following components:

"A", "B", "C", "A.B", "B.C" ,and "A.B.C".

Abbreviations are short forms for names that may be used in certain circumstances as

a substitute for the complete name. An abbreviation differs from an alias in that it is a

component of a name, that is, syntactically derived from the name, and is not treated as

a fully qualified name. As such, abbreviations are not generally recognized by the name

service. Usually, abbreviations are provided by an application as a convenience to human

users, who do not like to type long names, and converted in an application-specific way to a

fully qualified name before being presented to the name service. As an example, consider a

mail system that names mail recipients according to the convention "user .host"; the system

may choose to accept a name of the form "user" as an abbreviation for "user. this-host" .

1.2.2.3 Contexts

Names always exist within some context. A context can be loosely defined as the envi­

ronment in which a name is valid. In many programming languages, the notion of a context

is instantiated as· the scope of a variable. In distributed systems, contexts represent a par­

titioning of the name space, often along natural geographical or organizational boundaries.

A name may naturally occur in more than one context, and contexts may be nested. For

instance, the login name ;'terry" exists within the contexts of both "Berkeley" and "Xerox".

In turn, "'Berkeley" exists within the context of the "University of California" , which exists

within the context of all universities.

XEROX PARe. CSL-85-1. FEBRUARY 1985

6 D 1ST RIB UTED NAME SERVERS

A component of a name may denote a context in which other parts of the name exist.

Such a context is called an explicit context since it is explicitly represented in the structure

of the name. For example, given the name "A.B.C", "B.C" might be viewed as a nanle

existing explicitly in the context of "A" .

On the other hand, a context that is not an explicit part of the name is called an implicit

context. Relative naming conventions involve interpreting a name according to some implicit

context. Only if implicit contexts are universal can absolute naming conventions be attained.

The name service itself maybe one example of a global implicit context.

The "dor' notation used for delineating the labels of a name does not contain enough

information to indicate the contextual interpretation of the name. For one thing, some

naming conventions may choose to nest contexts left-to-right while others use right-to-Ieft

associativity. Moreover~ not all of the labels of a name necessarily represent contexts. In this

dissertation~ a name will be presented in the form "context(subnamef when the contextual

structure of the name is important. For example, the name "A.B.C" could be expressed as

"A(B.C)" , indicating that the subname "B.C" should be interpreted in the context of "A" .

Alternatively, "C" could exist in the context of "A.B", or ~'A.B" could exist in the context

of "C"; these would be written as "A.B(C)" and ;'C(A.B)", respectively. IT the three labels

were nested contexts. the name might be ';A(B(C))".

With explicit contexts, a sufficient condition for achieving unambiguous names can be re­

cursively given as follows: the name ':context(subname} " is globally unambiguous if the sub­

name is unambiguous within the context, and the context has a globally unambiguous name.

1.2.3 Object attributes

The information maintained about a named object by the name service consists of a set

of attributes for the object. Object attributes have both a type and a value. where the type

indicates the fornlat and meaning of the value field. The name service does not attempt to

interpret an attribute value. Thus, applications making use of the narne service nlUst agree

on the structure and semantics associated with object attributes. Agreeing on the format of

attribute values is particularly important in a heterogeneous environment where machines

have different word sizes. number representations, bit orientations, and so on.

Names that have a list of names as an attribute, generically called group names. are used

for such things as mail distribution lists and access control lists. One way of representing

these membership lists is with a single attribute of type "MembersAre" that takes a list

of names, perhaps separated by commas. as a value. Alternatively, each member could

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 1. INTRODUCTION 7

be listed as a separate attribute of type ;;HasMember". The first representation rnakes it

easy to enumerate the membership set. while the second is more convenient for adding and

removing individual members. This illustrates the amount of freedom available in choosing

various attributes and their representations.

Generally, the types of attributes for an object vary with the type of the object. For

instance, information about a user~ including anything from his office phone number to his

address for receiving electronic mail [Feinler 77], differs radically from information about

files [Mogul 84] [Leach et ale 82] or database objects, such as the data's location, structure,

availability, and usage [Allen et ale 82] [Martella and Schreiber 80] [Lindsay 80]. The name

service may choose to restrict the types of attributes or require certain attributes for given

classes of objects [Cooper 821.

In a layered system. such as the Open Systems Interconnection reference model adopted

by ISO [ISO 81], an attribute for an object often represents an identifier to be presented

to the next lower layer. The binding of names to network addresses, which motivated

the conception of name services, represents a good example of this. For communicat­

ing with a object, one might need an attribute for the object of type ~'InternetAddress",

whose value is a communication socket particular to the communication protocol being

employed. Using the DARPA Internet Protocol [Postel et ale 81], the "InternetAddress"

attribute for a host would have a 32-bit value; Xerox Network Systenls. on the other hand.

use 48-bit internet host addresses [Dalal and Printis 81]. In some cases, an object may have

several attributes of type ;'InternetAddress"; for instance, mapping host names to several

addresses is useful for packet radio, multi-horned hosts, and partitioned networks [Cerf 79]

[Sunshine and Postel 80] [Sunshine 821. Additionally, for internetworks that support several

diverse families of communication protocols, an attribute '·SpeaksProtocols~'. whose value

is a list of protocol types understandable by the named object, may be needed.

As an example of attributes at a higher layer, consider electronic mail systenls that

wish to name mail originators and recipients independent of the locations of their mailboxes

[Garcia-Luna and Kuo 81] [Kerr 81] [Schicker 82] [IFIP 83] [Sirbu and Sutherland 84].

These systems might use the name service to bind a user name to the name of the host

computer on which his mailbox resides. In particular, the value associated with a "Mail­

boxResidesAt" attribute would be a host name, which could then be presented to the name

service to obtain the host's "InternetAddress" attribute. By modifying the value of their

"MailboxResidesAt" attributes. U8ers can change where they receive their mail without

having to inform their correspondents.

XEROX PARC. CSL-8S-I. FEBR{;ARY 1985

8 DISTRIBUTED NAME SERVERS

1.2.4 Operations

The basic operation of a nalne service, then, is to map an· object's name to attributes

for that object. A simple operation to do this, Lookup, takes the name of an object and the

desired attribute type and returns any attributes of the given type that are associated with

the named object. Also. mechanisms must be provided to dynamically update the set of

attributes for an object. For example, an Update operation might take a name and attribute

as parameters along with an indication of whether the attribute should be added, removed,

or modified in the name service database.

Additionally, name services may have special routines for manipulating group names,

such as adding or deleting members; enumerating the individual members of a group can

be an expensive operation if relegated to application programs, especially if groups contain

other groups as members. The name service might wish to have operations that distinguish

between aliases and preferred object names. Also. in order to guard against different objects

being inadvertently assigned the same name, the object name should be registered with

the name service independent of the object's attributes. In general, various operations

on different types of objects and attributes may exist to facilitate type checking, access

controls, consistency, and concurrency. The set of operations allowed by a nanle service

can be as rich or baroque as those of any data storage facility. Furthermore. closely related

services, such as authentication facilities [Needham and Schroeder 78], may be included in

name services [Birrell et al. 82]. The clearinghouse client interface, providing dozens of

operations [Oppen and Dalal 83] ~ is a good example of the range of operations that may be

desired.

1.3 The Thesis

Name services to support large distributed environments must themselves be structured

as distributed systems. The advantages of distribution are well known: modular growth so

that the name service can meet the needs of a continually expanding community, availabil­

ity through using multiple processors so that the critical name services remain available

to clients, reUability through redundancy so that valuable name service information is not

corrupted, autonomy so that various organizations may cooperate in the high-level man­

agement of objects without compromising their internal security, and performance enhance­

ments achieved through placing the name service information geographically close to where

the interest in that data lies.

XEROX PARe .CSL-85-I. FEBRFARY 1985

CHAPTER 1. INTRODUCTION 9

This dissertation develops a framework for building distributed name services to aid the

management of objects in environments characterized as being large and diverse. The pro­

jected computing environment contains large numbers of networks of various technologies

interconnecting a sizeable computing community. Vast numbers of diverse objects may be

named and shared by members of the widely-distributed community; these objects come

under the administrative control of a diversity of organizations participating in the envi­

ronment. The facilities for storing and manipulating objects range from large mainframe

computers to small personal workstations. Generally, end-to-end communication costs dom­

inate the cost of interactions between distant sites. Environments of this sort are emerging

with technological advances in computing and communications. The size and diversity of

such computing communities place strenuous demands on name services.

The major thesis advanced and addressed by the research described herein can be sim­

plistically stated as follows:

Physically distributed, but logically centralized, name services can be provided

in a general and cost effective way, even for very large, geographically dispersed

computing communities.

A name service that supports this claim must solve the following principal problems:

• Name resolution: an object and its attributes may be stored at various, possibly

several, locations in the internet; the name service must be able to determine these

locations when presented with the object's name:

• Administrative control: administrative entities should govern the placement and pro­

tection of their objects; autonomous organizations cooperatively participating in the .

distributed community wish to retain control over the selection of trustworthy locations

to store the attributes and names of their objects; particularly sensitive information

should only be accessible by certain name service clients;

• Overhead costs: neither the size of the components of the name service at individual

sites nor the number of interactions between components should be directly propor­

tional to the size of the environment; although a name service may manage large

numbers of objects and their attributes, small workstations with limited resources

must be able to participate in and make use of the service;

• Adaptation: internet computing environments are continually evolving and expanding

in size, either by the participating organizations acquiring new computing equipment

XEROX PARC. CSL-85-1. FEBRUARY 1985

10 DISTRIBUTED NAME SERVERS

or by their interconnecting to otlwr computing environments; the management of the

name space nlUst be flexible enough to gracefully adapt to changing demands;

• Performance: reasonable response times for accessing narne services nlust be achieved;

difficulties in obtaining reasonable response times arise due to the physical distribu­

tion of the environment and the cost of communication between distant sites; good

performance is extremely important for the name service since it plays such a vital

role in the overall system.

The next chapter describes existing name services and reflects on how they fail to solve some

or all of these problems for large and diverse environments.

The remainder of this dissertation cnIbarks on a path to substantiate the major thesis.

Chapter 3 develops a basic architecture for distributed name services, providing a common

framework in which later chapters address the principal problems. It broaches an important

distinction between attribute data, information about nanled objects whose placement is

controlled by administrative organizations. and configuration data~ information managed

entirely by the name service to locate attribute data. Chapter 4's examination of cluster­

ing to reduce the information needed in each name server for resolving names produces a

general and powerful model of name resolution: structure-free narne resolution. Prototype

implementations of mechanisms for supporting this nlOdel are presented. Chapter 5 pro­

poses a performance model of distributed name services that identifies factors contributing

to the cost of name service operations. The model is applied to a sanIple environment to

derive quantitative projections of the effect of name server placements. replicated data. and

various assignments of authority on narne service response times. Chapter 6 reports actual

measurements obtained from the Grapevine registration service and uses them as input pa­

rameters to the performance model. Chapter 7 explores techniques for caching name service

data at client sites to further enhance their performance. Treating caches as hints allevi­

ates the cache consistency problem~ while maintaining minimum accuracy levels guarantees

performance benefits. Lastly. Chapter 8 recapitulates the principal problems outlined above

along with their solutions.

XEROX PARe. CSL-85-1. FEBRCARY 1985

Chapter 2

NalTIe Service Designs: A Survey

Distributed name services have recently emerged in which a set of name
servers collectively nlanage a global name space. The distribution of responsi­
bility for parts of the name space. as well as the mechanisms for locating nanIes,
depends heavily on the name structure.

2.1 Existing Name Services

11

The desire to refer to objects by name and exchange information about these objects

has resulted in the development of network name services for several existing distributed

environments. The major identifiable name services that have been impleInented and doc­

umented are briefly summarized in the following subsections. Later sections of this chapter

present in more detail the various aspects of these systems along with other proposals and

designs for naming mechanisms.

2.1.1 NIC Name Server

The ARPANET [Roberts and Wessler 70], one of the first geographically-dispersed com­

puter networks, has experienced a slow progression of name services. In the early days, the

ARPANET Network Information Center (NIC) was established to maintain information

about the network. including the master database of host names and their respective ad­

dresses. Every host stored a complete copy of this database, and the administrator of each

host was responsible for updating its local copy when the master changed. This host table

allowed members of the ARPANET community to name hosts. rather than refer to them by

address, when transferring files between hosts or logging into a remote host.

With the growth in size of the ARPANET and its expansion into the DARPA Inter­

net [Hinden et al. 83] [Cerf and Cain 83] ~ maintaining up-to-date host name to network

XEROX PARCo CSL-85-1. FEBRUARY 1985

12 DISTRIBUTED NAME SERVERS

address mappings became increasingly difficult on individual hosts. The development of

an experimental NIC Name Server slightly alleviated the situation by allowing the host

table information to be retrieved incrementally via network protocols [Pickens et al. 7gb].

This service eventually became the NIC Internet Hostnames Server [Harrenstien et al. 82].

The ARPANET host table stored by the server has been extended to include addresses for

networks and gateways, as well as additional host information such as what protocols a

particular host speaks, an indication of the services available, and what operating system it

runs [Feinler et al. 82].

The NIC also provides services for obtaining personal information about ARPANET

users. The NICNAME/WHOIS server supplies such information, including anything

from a person's office phone number to his address for receiving electronic mail

[Harrenstien and White 82].

2.1.2 DARPA Domain Name System

To this day, although the inadequacies of central administration are widely recognized

by the DARPA Internet community, the nlaster host table is still centrally nlaintained by

the Network Information Center. Fortunately, plans are underway to switch over in the near

future to a decentralized scheme for managing the host information (Postel 841. The new

Domain Name system will permit information on network entities to be distributed and repli­

cated; the responsibility for its management will reside with the various administrative orga­

nizations comprising the DARPA Internet [Postel 84] [Mockapetris 83a] [Mockapetris 83b).

Included in the transition to decentralized name management is the adoption of the Do­

main Naming Convention [Mills 81J [Su and Postel 82] for naming electronic mail recipients

as well as hosts. The Domain Naming Convention calls for a tree-structured name space

in which each node of the tree has a label. The domain name of an object is simply the

concatenation of the labels starting at the root and following a path through the tree; la­

bels are listed from left to right and separated by dots. The Domain Name System stores

information associated with each node of the tree as a set of ;;resource records" containing

type, class, and data fields. It manages mailboxes, aliases, and group names in addition to

the information currently maintained in the DARPA Internet host table.

2.1.3 BIND Server

The Berkeley Internet Name Domain (BIND) Server [Terry et at. 84] is an implemen­

tation of the DARPA Domain Nanle Systenl for Berkeley UNIX. As such, it adheres to

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY 13

the Domain Naming Convention for identifying objects and to the basic set of operations

designed for retrieving object attributes. However, unlike the Domain Name System which

maintains a read-only database, it allows updates to the name service database to be applied

dynamically using a primary update scheme with secondary snapshots for replicated data.

2.1.4 PUP Name Lookup Server

A decentralized name-lookup service was provided early in the development of the Xerox

Pup Internet [Boggs et al. 80]. Servers on each network manage an identical database.

Updates perfornled at any server are advertised to all other name servers using broadcast

[Boggs 83]. This service still fills the needs of the PUP Internet, while Xerox' Network

Systems [Dalal 82] have moved to a more decentralized clearinghouse service.

2.1.5 Grapevine

The Grapevine system [Birrell et al. 82] developed at the Xerox Palo Alto Research

Center can be viewed as two systems in one, a mail system and a registration service. The

latter provides name services designed primarily to support the mail system, including re­

source location, authentication, and access control. Names in the Grapevine environment

identify mail recipients and are of the form, '"F.R", where "R" is a registry name and

"F" is unique within registry ;;R". Registries are intended to reflect organizational divi­

sions.

A registration database that maps names to information about the names, including

distribution lists and access control lists, is distributed and replicated among the many

Grapevine computers. At this point in time, the Grapevine registration service might be

considered the only regularly-used distributed name service.

2.1.6 Clearinghouse

The clearinghouse [Oppen and Dalal 83] is a decentralized service for locating named

objects in a distributed environment. Like Grapevine, it was developed by Xerox, and the

two systems have many things in common. In fact, clearinghouse's design was modeled after

the Grapevine system except that clearinghouse names have three parts. "L:D:O" where "L,'

represents the local name, ~D" the domain, and "0" the organization. The clearinghouse

designers stress that domains and organizations. like registries in Grapevine. are logical

rather than physical divisions.

XEROX PARCo CSL-85-1. FEBRUARY 1985

14 DISTRIBUTED NAME SERVERS

Xerox's clearinghouse strives to serve as a general purpose binding agent. It maps an

object's equivalence class, consisting of a distinguished name and associated aliases, into

an arbitrary set of properties, where each property is an ordered tuple (Property Name,

PropertyType, PropertyValue). Clearinghouse's "properties" correspond to "attributes" as

defined in Chapter 1. Property names, corresponding to attribute types, are standardized

so that similar services can be easily identified. The only property types distinguished

are "individual", an uninterpreted block of data, and "group". a set of names. The client

interface supports many distinct operations for manipulating entities such as names, aliases,

individuals, groups, and group members. Different operations on different types exist to

facilitate type checking, access controls, consistency, and concurrency.

2.1.7 CSNET Name Server

One component of an effort to connect computer science research institutions with a

long-haul computer network called CSNET was the development of the CSNET Name

Server [Landweber et al. 83J [Solomon et al. 82]. Its primary function is to support mail

applications, that is, aid in locating mail recipients. The CSNET Nanle Server maintains a

centralized database containing keywords supplied by users to describe themselves. A mail

recipient can be unambiguously identified in a location-independent way by supplying a

suitable set of keywords, which are mapped by the server to a mailbox address·'user@site" .

However ~ most mail users bypass the name service and simply use mail addresses directly.

The major utility of the name service is in discovering the proper mail address of a particular

person given descriptive information about him.

2.1.8 Cambridge Name Server

The Cambridge Distributed Computing System (Needham and Herbert 82] relies on a

name server for translating unstructured names of services and machines into ring addresses.

Roger Needham and Andrew Herbert describe the name server as "the most fundamental of

all of the services provided by the distributed system" (Needham and Herbert 82]. In their

environment. for instance~ the name service operation is crucial for bootin.g other services

and for allowing a machine to discover its own address. When responding to service lookups,

the name server indicates the protocol associated with the service. as well as the machine

on which the service runs; however, the name server does not guarantee that the service

is currently available. To achieve high reliability, the nanle server program, along with an

initial name table, is stored in the read-only nlemory of a dedicated machine.

XEROX PARe. CSL-85-I. FEBRUARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY 15

2.1.9 COSIE Name Server

The COSIE Name Server, designed and developed for use in a distributed office 8ystenl

[Terry 82], maintains a database of named attributes for an object. In order to support

many different clients, the name server provides a very simple set of operations and places no

restrictions on the syntax or semantics of the nanles it stores. It manages group names as well

as individual names; group names have been used for lists of teleconferencing participants,

mail distribution lists, generic services, and even to keep track of the users of a shared object

(an alternative to reference counts).

2.1.10 R * Catalog Manager

The catalog manager for R *, a distributed database management system developed at

the IBM San Jose Research Lab, maintains infornlation used in distributed query processing.

In addition to mapping names to the locations of database objects, it provides information

about the objects such as the available access paths, their data schemas~ the authorized

users, and usage statistics. An object's system wide name has four components, ~~user(guser­

site.object-name@object-site~'. The ';user@user-site" cOInponent permits different users to

select object names that do not conflict, while the "object-site" component partitions the

authority over objects. Name completion rules allow parts of the name to be left unspecified

by database applications.

2.2 Structural Components

A general model has evolved for building name services in which a set of active entities

called name servers share the responsibility for providing the service. while clients access

the service through name agents.

2.2.1 Servers

Each name server manages part of the name space and runs on a single computer:

interactions with other servers and clients transpire via the communication network. In

the case of a centralized service, a single name server manages the complete name service

database. Although several existing name services are provided in a centralized fashion

[Harrenstien and White 82] [Harreustien et al. 82] [Solomon et al. 82] [Terry 82], there is

little argument that name services to support large and diverse computing environments

should themselves be organized as distributed systems [Clark 82].

XEROX PARe. CSL-85-I. FEBRUARY 1985

16 DISTRIBUTED NAME SERVERS

Ina distributed name service, several name servers collectively manage the name space

and support the basic set of operations. Generally, the name servers act as peers in that they

all play an identical role in the system. That is, the function of the service is not partitioned

among servers; the control and data are simply decentralized. All name servers present a

common interface and accept operation requests from any client, though the contacted name

server may not contain enough information to process the operation locally. Grapevine, the

clearinghouse, and the Domain Name System are all organized in this manner.

Differing attitudes exist as to whether the name service should use dedicated machines

or run on hosts along with other services and clients. For instance, the CSNET Name

Server is a dedicated host, and the Grapevine system runs on a collection of dedicated

machines. On the other hand, the R* distributed data management system, including

its catalog management component, executes on all hosts. The V -System, developed at

Stanford University, adopted a policy where each server for a class of objects provides

the name service for those objects; thus several object-specific nalne servers might reside

on a workstation [Cheriton and Mann 84]. The Cronus Distributed Operating System also

requires a name server on every machine, but for availability reasons; the designers argue that

"it should be possible to access an object when the site that stores the object is accessible"

(Hoffman et al. 83].

2.2.2 Agents

Clients of the name service prefer to be unaware of its distributed nature, and hence

interact with name agent.1J that assume responsibility for communicating with remote name

servers. Name agents thus act as intermediaries between name servers and their clients~

allowing client programs to be written as if the name service were locally available.

The notion of a name agent has been provided in several systems under various names.

The Grapevine system has similar components called "GrapevineUser" [Birrell 83), the

COSIE Name Server calls them "user interfaces" [Terry 82], the DARPA Internet Domain

Name system has ~'resolvers" [Mockapetris 83a], the CSNET Name Server uses "name server

agent programs" [Solomon et al. 82], one proposal calls for "application interface processes~'

[Su 82], and the clearinghouse requires "stub clearinghouses" to be resident in every client

[Oppen and Dalal 83].

In cases where a name server and its clients reside on the same machine, as would

arise with policies that require a server on every host. the clients' name agents might be

unnecessary. However, besides speaking the proper communication protocols, name agents

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY 17

may perform additional functions such as maintaining a detailed knowledge of the name

space and of existing name servers. One proposal suggests using name agents to negotiate

for resource availability and compatibility once a resource manager is located through the

name service [Su 82]. Chapter 7 addresses the issues of caching the results of recent name

service queries within name agents.

The interface provided by a name agent to its clients may mimic the interface provided

by the name servers, or may be tailored to a particular application. "Value-added" services

provided by the name agent, such as caching or resource negotiation, undoubtedly require

interfaces to new operations.

Each name service client most likely utilizes a single name agent. However, each name

agent may either serve a single client or be shared by different clients in the same locale.

These two organizational choices are depicted in Figures 2.1 and 2.2.

If the Ilame agent is structured as a set of subroutines that are simply linked into the

client program, then each client has a private name agent. On the other hand, a name agent

that is shared among clients may be incorporated into the operating system kernel, with

system calls used to invoke name service operations, or may exist as a separate process and

be accessed via an interprocess communication (IPC) mechanism. For example, the initial

BIND name agent, a domain name resolver, was implemented as a set of C language library

routines [Terry et al. 84]; current efforts are underway to migrate the resolver to a separate

UNIX process so that a shared cache can be maintained by the name agent.

2.3 Functional Components

A name service can be functionally decomposed into three components: communication,

database management, and name management. A name service must be able to store data

reliably and communicate among servers and between servers and agents. Name manage­

ment builds upon database and communication technology to allow the distributed name

service database to be queried and modified.

2.3.1 Communication

Name servers and name agents reside on various machines distributed throughout the

environment and hence must rely on a communication protocol for their interaction. The

usual three styles of communication exist for the server/agent and server/server protocol:

using self-contained datagrams for exchanging data. establishing m'rtual circuits to transmit

XEROX PARe. CSL-85-1. FEBRUARY 1985

18

cLient

name
server

DISTRIBUTED NAME SERVERS·

cLient

name
agent

name
server

cLient

name
agent

cLient

name
agent

name
server

Figure 2.1: Individual name agents.

Lines represent loosely coupled interfaces while common edges represent tightly coupled interfaces.

XEROX PARe. CSL -85-1. FEBRUARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY

client client

name aqent

name
server

name
server

client client

name aqent

name
server

Figure 2.2: Shared name agents.

19

Lines represent loosely coupled interfaces while common edges represent tightly coupled interfaces.

XEROX PARe. CSL-85-1. FEBRUARY 1985

20 DISTRIBUTEDN AME SERVERS

byte-streams, or employing remote procedure calls to invoke remote operations in a similar

nlanner to local ones. Selecting the proper protocol involves weighing the cost of the pro­

tocols against the benefits they provide. For instance, datagrams are generally unreliable,

though less expensive than virtual circuits, which provide reliable data transmission. Re­

mote procedure calls are conceptually simple to use because of their resemblance to local

procedure calls; nevertheless, the request-response paradigm enforced by remote procedure

calls may not always be desirable.

In practice, different protocols may be desired for different modes of communication

taking place between name servers and agents. For example, reliable communication may be

unnecessary for invoking name service operations since they can be easily made idempotent,

allowing the operations to simply be retried in case of communication failure. However,

critical communication, such as the exchange of authoritative data between servers. should

be reliable.

Grapevine [Birrell 83] and R* [Lindsay et al. 84] use byte stream protocols for commu­

nication so that the cost of authenticating communicants can be completely incurred at

connection establishment. The DARPA Internet, on the other hand, has traditionally used

datagrams for .. invoking name service operations [Harrenstien 77J [Postel 791. The Domain

Name System. however. specifies that a virtual circuit should be established if the name ser­

vice response is too large to fit in a single datagram [Mockapetris 83b]. It also uses virtual

circuits for reliably propagating updates to replicated data. To accommodate a diversity of

clients, the CSNET Name Server accepts queries in a variety of forms, including electronic

messages [Solomon et al. 82].

2.3.2 Database management

One of the major responsibilities of a name service deals with managing the name service

database of objects' attributes. A lot of work has been done by the database community

in developing techniques for query processing, concurrency control, and transaction man­

agement [Gray 78]. However. surprisingly enough, the COSIE Name Server [Terry 82] is

the only one of the services discussed in this chapter that uses a general purpose database

management system to store its information (aside from data dictionaries); perhaps because

database management systems have reputations for being big and slow, perhaps because

complex query languages are not needed to support the simple name service operations.

perhaps because naIne services have very simple data schemas.

XEROX PARe. CSt-85-!. FEBRUARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY 21

Although database transactions [Lampson 81] are useful for implementing atomic name

service operations, reliable data storage may not always be necessary. For example, the

COSlE Name Server [Terry 82] makes a distinction between temporary and permanent ob­

jects. Updates to attributes of permanent objects use the underlying database management

system, while temporary object information is placed in the in-core buffer pool, but never

committed to the resident database. Registering temporary objects is thus faster than regis­

tering permanent objects since a database transaction is not required. Registering objects as

temporary is useful for processes that rendezvous through the name server or for distributed

programs that are being debugged. In both cases, the permanence of the information is nei­

ther required, nor desired. For example, programs that are being debugged often fail in

ways that prevent them from unregistering themselves with the name service; if registered

as temporary, the information associated with these programs is automatically purged from

the name service database when its buffer storage is reused.

Several techniques for managing replicated data in a distributed computing environ­

ment have been proposed and thoroughly discussed in the literature. Bruce Lindsay et

al. [Lindsay et al. 79] and Elmar Holler [Holler 81] provide good overviews of these tech­

niques. These general algorithms for maintaining consist~nt copies of replicated data can

be adopted for the distributed management of name service information. However, they as­

sume no knowledge about the semantics of the data being managed. Researchers at Carnegie

Mellon University developed a special algorithm for replicated directories based on Gifford's

weighted voting [Gifford 79] that takes advantage of the properties of name directories to

achieve high availability and performance [Daniels and Spector 83] [Bloch et al. 84]. Basi­

cally, they achieve higher concurrency by dynamically partitioning the set of names stored

in a directory and maintaining a version number for each partition.

Also, general replicated data algorithms, such as weighted voting, almost exclusively

consider strong consistency to be important. The designers of the Grapevine system argue

that name service clients can cope with temporary inconsistencies. Much of the work in the

design of the Grapevine registration service was in designing an algorithm for replicated data

that exploits the semantics of registration data [Birrell et al. 82] [Schroeder et al. 84]. The

Grapevine system has a weak notion of consistency among the various replicated copies of a

registry. Availability is enhanced by allowing updates to a registry to be performed at any

site and then propagated to all other storage sites. The only guarantee is that all of the copies

will eventually converge to a consistent state. Active and deleted sublists of entries, as well

as timestamps, must be maintained in order to merge copies that have been simultaneously

XEROX PARe, CSL-85-1. FEBRUARY 1985

22 DISTRIBUTED NAME SERVERS

updated. However, conflicting sirnultaneous updates are not guaranteed to be resolvable.

Greg Thiel developed similar algorithms for merging replicated database catalogs that have

been independently updated during a network partition (Thiel 83J. Again, the goal was to

improve update availability by reducing the consistency requirements.

Lastly, many algorithms for replicated data assume that all data storage sites are always

able to communicate with each other. However, for dialup networks with very loose topolo­

gies, such as UUCP (Nowitz 78J or CSNET's PhoneNet (Comer 83], servers may only be

able to exchange updates at limited times. For this reason, the BIND Server uses a primary

update scheme in which the responsibility for requesting updates lies with the secondary

servers [Terry et aI. 84J. For simplicity, all updates are directed to a primary server, which

transfers incremental updates to secondary servers upon request. The restriction that up­

dates get directed to a single server eliminates the need for merge algorithms, but reduces

update availability and concurrency.

2.3.3 Name management

Several schemes for naming objects have been proposed, though few of the proposals

have addressed the issues of distributed name management. The major aspects of name

management include name distribution, the assignment of authority for parts of the name

space to various name servers, and name resolution, the mechanism for locating the at­

tributes of a specific object given its name. Generally, the structure of names influences the

way in which they are resolved and distributed.

Many naming mechanisms trivialize name management by utilizing centralized name ser­

vices. Others, such as the Pup name service [Boggs 831 or the Mininet system [Livesey 79J,

fully replicate the name service information in all servers; name resolution is thus unneces­

sary since any name server is able to respond to any lookup request.

Some proposals allow the name service database to be partitioned and distributed, but

rely on broadcast or searches of name servers to find information. Such a protocol for locating

resources in the DARPA Internet has been recently proposed [Accetta 83J. Often, the name

service database is distributed such that each name server manages local objects. References

to local objects can then be resolved by consulting the local name server; resolution of names

for nonlocal objects resorts to using broadcast (Janson ~t at. 83J fLyngbaek and McLeod 82J

fGelernter 84]. Bremer and Drobnik carry this a step further and suggest a scheme in which

the environment is divided into regions where regional directories maintain name-to-address

mappings for all objects residing in their region [Bremer and Drobnik 791. Name resolution

XEROX PARCo CSL-8S-I, FEBRUARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY 23

proceeds in three steps: the local name server, which may contain incomplete information,

is consulted; if the desired name is not found, then a regional server is contacted; if that is

unsuccessful, then a request is broadcast to all other regions.

To avoid broadcast but permit distributed data, many systems incorporate an object's

network location into its name and adopt the policy that a local name server manages lo­

cal objects [Lyngbaek and McLeod 82] [Chou et al. 83] [Cheng 84] [Curtis and Wittie 84b].

These location-dependent names, of the fornl "'local-name@machine", carry with them the in­

formation necessary for name resolution. Mail systems, including those used in the DARPA

Internet and CSNET, have traditionally accepted such names for identifying mail recipients.

RSEXEC, perhaps the first attempt to create a network-wide name space for objects other

than mailboxes, used this approach to refer to files on TENEX machines scattered around

the ARPANET [Thomas 73].

The R'* system requires each catalog manager to maintain information about all locally

stored objects and all objects that were created locally [Lindsay 80]. Names are of the form,

"object-name@object-site" ~ where the "object-site" represents the birthsite of the object, not

its storage site. These might be called authority-dependent names since an object is allowed

to migrate to other sites, but its birthsite remains the authority for the object. The birthsite

must track the object's movements so that its name can be resolved. Debra Deutsch also

proposed using birthplaces as a means for distributing and locating information about mail

recipients [Deutsch 79].

The V-system also uses authority-dependent names, but manages them in a slightly

different manner: each server for a class of objects manages the names for those objects

[Cheriton and Mann 84]. In order to allow a uniform way for interpreting object names, all

names are prefixed by the server identifier. N ames of the form "server .object-name" are

resolved by first contacting a local "context prefix server" that indicates where to forward

the resolution request; different servers can resolve the "object-name" in different ways,

though many use hierarchical name spaces with nested contexts.

Systems, such as Grapevine or the Domain Naming System, use location-independent

names, sometimes called domain names or organizationally-partitioned names. In these

systems, an object's name is only indirectly associated with the server or servers that manage

information about the object.

In the Grapevine system [Birrell et al. 82], registries represent the granularity for parti­

tioning and replication of the registration data; that is. a registry is treated as an indivisible

unit when it comes to storage site selection. Registries can be replicated in several servers,

XEROX PARC ~ CSL-85-1. FEBRUARY 1985

24 DISTRIBUTED NAME SERVERS

and a given server may manage rnore than one registry. A special registry, which is repli­

cated in every registration server. enables any Grapevine server to determine which servers

contain the database entries for a particular registry. Since object names explicitly contain

the registry in which the object resides, all name lookups require two steps: first the author­

ities for the name's registry are discovered, then one of them is contacted. Clearinghouse's

distributed lookup algorithm is basically the same as Grapevine's except that name reso­

lution takes place in three steps since clearinghouse names have three parts instead of two

[Oppen and Dalal 83].

The Domain Naming System [Mockapetris 83aJ [Mockapetris 83bJ partitions the name

space into "zones". A zone can be specified by the domain name of its root and the names

of its endpoints. IT an endpoint of a zone is not a leaf node, then that node serves as the root

of another zone. Zones represent the administrative divisions within the name space. For

example, Figure 2.3 indicates a couple of zones that might exist on the Berkeley campus.

As with Grapevine registries, zones are indivisible units of storage, and a many-to-many

mapping may exist between zones and name servers. Thus, the boundaries between zones

indicate possible delegations of authority. The Domain Naming System resolves names a

label at a time starting at the root and traversing down the branches of the tree. The

resolution of a name migrates from server to server in accordance with the delegations of

authority until all labels of the name have been examined. As an optimization, if a server

receives a name lookup request for a name that is in one of its zones or a zone that it has

delegated authority to, the resolution of the name need not start at the root of the tree, but

rather can start at the root of a zone in which the domain name of the root is a prefix of

the name being resolved.

The Cronus [Hoffman et al. 83} and LOCUS [Popek et al. 81] [Walker et al. 831 dis­

tributed operating systems also support tree-structured symbolic object names. LOCUS has

the notion of "file groups" that correspond to zones: it maintains a network-wide ·'mount"

table for resolving names. The Cronus designers adopted a policy in which a "dispersal cut"

is made through the name space such that the ~'root portion" is fully replicated at all sites,

and entire subtrees below the cut are stored within a single site. In other words, the entire

name space above the cut is a single zone, and subtrees below the cut represent individual

zones, as depicted in Figure 2.4. This enables names to be resolved by contacting at most

two name servers.

XEROX PARC, CSL-85-I. FEBRUARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY

(root)

EGtu. Gov

MIT CMU UC

~R::·:·.:::::··.:::::::::··::.:·::
/1.: : .. :<.&.: ... ::;<w::

,If.:::·.:.;:.: ••• ·: ••• :··:··:·::::;;:i:::::·:rtt~:.:.:::.y

--i;~
...;....;.;..~;,;..-

Com

SD LA

computer center zone

Figure 2.3: Domain name space with sample zones.

XEROX PARe ~ CSL-85-1. FEBRUARY 1985

25

26 DISTRIBUTED NAME SERVERS

Figure 2.4: Hierarchical name space with dispersal cut.

XEROX PARC. CSL-85-1.FEBROARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY 2'

2.4 Performance Issues

The existing work on name services stresses functionality, while performance considera­

tions have remained of secondary importance in most work to date.

2.4.1 Models

Performance models of name services have been noticeably lacking. Typically, the name

service designers or administrators distribute the name space among servers according to

their intuition or experienced observations of the environment rather than modeling various

alternatives. The few recent attempts to analyze distributed name management schemes

have been concerned with very simple strategies.

Yen-Yi Wu studied file directory systems for locating files in networks with either loop or

star configurations [Wu 83]. The directory schemes considered include centralized directory

data. fully replicated directory data, and some hybrid schemes based on localized authority

and searches. Wu's model allowed expected query response times for the various directory

schemes and network configurations to be computed.

The only known paper that discusses the performance of name services in an internet

environment proposes having regional name servers manage a two-part name space in a

hierarchical fashion [Chou et al. 83]. All regional servers store complete inforrnation about

objects in their local network; updates are propagated by broadcasts. Chou et al. introduced

a network communication model, which was used in simulations to analyze the cost of this

proposed distributed update scheme for high transmission error rates.

2.4.2 Measurements

Measurements of distributed computer systems invariably provide needed insights into

their operation and suggest ways of improving their performance. Of the name services

discussed in this chapter, only the Grapevine system manages a partitioned and replicated

name space with a large user community. Other emerging name services, such as the DARPA

Domain Name system, should benefit from experiences with Grapevine. As the Grapevine

designers put it, "There is no alternative to a substantial user community when investigating

how the design performs under heavy load and incremental expansion" [Birrell et al. 82].

Some measurements and experiences with Grapevine have been recounted concerning the

administration and reliability of the system [Birrell et at. 82] [Schroeder et at. 84]: no work

has been identified in which measurements were obtained to aid in configuring name services.

XEROX PARC. CSL-85-1. FEBRUARY 1985

28 DISTRIBUTED NAME SERVERS

2.4.3 Caching

A couple of present-day name services, Grapevine and the R* catalog manager, employ

caches to improve the performance of name service lookups. Grapevine message servers cache

hints about individuals' preferred inbox sites; out-of-date cache entries are easily detected

when servers atterppt to deliver a message to a moved or deleted mailbox [Birrell et al. 82].

R * database sites use locally cached catalog entries in distributed query planning; when the

formulated plan is distributed to the sites involved, version numbers for the catalog entries

on which the plan is based can be compared against the current catalog entries to determine

the validity of the plan [Lindsay 80]. Other systems have suggested the use of caches, but

concrete designs have yet to emerge.

2.5 Evaluation of Previous Work

Significant work has been done in the area of communication protocols for accessing name

8ervices and in the area of database management systems for storing object attributes. The

currently unresolved problenls in designing name services concern how to manage large

distributed name spaces.

Contemporary name services are emerging in which the attribute information is both dis­

tributed and partitioned. These planned or existing systems make substantial contributions

to the general techniques needed to build distributed name services. Nevertheless, all of the

existing designs fail to adequately address some of the problems outlined in Section 1.3 for

very large and diverse computing environments:

• Name resolu.tion: All name services are able to resolve unambiguous object names

in one way or another. In existing name services that do not rely on broadcast, the

process of resolving names is driven by a name's syntactic structure and dependent

on how names are distributed among name servers. Name resolution always proceeds

by successively resolving individual labels of a name. Unfortunately, existing name

services' reliance on syntactic structure in order to locate an object or its attributes

place constraints on the nlanagement of the name space; these constraints prevent

solutions for some of the other principal problems from being realized.

As an extreme example, location-dependent names restrict the mobility of an object

once a name has been assigned. Changing the name of an object is an expensive

operation since all of the references to the named object become invalid; hence. object

names are generally considered permanent. Location-dependent names force objects

XEROX PARC, CSL-85-1. FEBRUARY 1985

CHAPTER 2. NAME SERVICE DESIGNS: A SURVEY 29

to change their names in order to relocate.

• Administrative control: Even authority-dependent and existing location-independent

naming schemes provide less than perfect administrative control over the placement

of an object's attributes. All current name services distribute the authority for names

to various servers based on the structure and contents of the name; syntactically

similar names, for some similarity criteria, have the same authorities. For example,

in the Grapevine system, all of the names belonging to a particular registry have

the same set of authoritative name servers; in the Domain Naming System, a name's

zone determines its authorities. Because of the syntactic distribution of names in

existing systems. the assignment of a name to a new object is partially governed by

an organization's concerns for the name servers that store the object's attributes.

Changing an object's narne servers requires changing its name or assigning new name

servers for all objects in the same syntactic partition of the name space .

• Overhead costs: Name management schemes in which the entire database is main­

tained by a single name server place an unreasonable load on the server, when it is

used in large environments, due to the storage requirements and the frequency of up­

dates. A few existing name services are able to successfully manage large numbers

of objects by partitioning the name space among many servers. A potential difficulty

arises, however, for naming conventions with a fixed number of levels. Grapevine,

for example, with its two-part name space. requires all servers to know about all reg­

istries; truly enormous computing communities would require a significant number of

registries. The clearinghouse and R * catalog manager face similar problems.

A lack of scalability also represents a major failing of systems that rely on broadcasting

name resolution requests to all name servers. Although David Boggs claims that any

network should provide broadcast mechanisnls [Boggs 83], the cost of such mechanisms

for large internetwork environments renders full broadcasts infeasible.

• Adaptation: The inability to adapt to growing communities with changing require­

ments is the main deficiency of traditional name management techniques. Existing

name services, whose basic mechanisms have such a strong reliance on the syntac­

tic structure of the name space, may lack the flexibility to scale up to very large

environments. At best, the system administrators that configure the name service

initially must carefully partition the name space according to the projected growth

of the environment so that no partition becomes unmanageably large. Name services

XEROX PARC. CSL-85-1. FEBRUARY 1985

30 DISTRIBUTED NAME SERVERS

should be able to be reconfigured if the present servers become overworked or overbur­

dened with data. With current services, reconfiguration occasionally requires objects

to change their names because the name space is distributed among servers according

to syntactic partitions. As an example of a lack of flexibility, as a Grapevine registry

grows over time, no provisions can be made for dividing its data between different

name servers. At least one Grapevine registry has already been split, causing some of

its members to be renamed.

• Performance: As indicated earlier, very few studies have attempted to measure or

predict the performance of name service operations. Within the framework of most

name services, decisions must be made concerning how to distribute and replicate

parts of the name space; these decisions drastically affect the response times for name

service lookups or updates. The Grapevine designers have provided some suggestions

based on their experiences, but measurernent and modeling tools are really needed to

aid in configuring large name services. The utility of techniques such as caching and

data replication can only be determined once the operation of a name service is fully

understood, including clients' referencing behavior.

The DARPA Internet's Domain Naming System seems to come the closest to handling very

large and diverse computing environments. though it has yet to become fully operational.

This dissertation adopts many of the architectural properties of such a service, but develops

a.more flexible approach to name management: structure-free name management breaks the

strong ties between the structure of names and their management.

XEROX PARe, eSL-85-!' FEBRUARY 1985

Chapter 3

N aIlle Distribution

A basic architecture for distributed name services provides the framework
in which to explore the problems of managing large name spaces. Facilities
for internetwork communication and for maintaining replicated and distributed
copies of data serve as the foundation for building distributed name management
mechanisms. Structure-free name distribution, achieved by introducing a special
attribute that indicates each object's responsible name servers, permits more
flexible assignments of authority than those based on the name structure.

3.1 Foundations

3.1.1 A Layered Architecture

31

This dissertation develops an architecture for building distributed name services, includ­

ing mechanisms for distributing, resolving, and caching names. As in current name service

designs, several name servers collectively manage the name space and support the basic

set of. operations. The facilities required of each name server can be organized in layers as

depicted in Figure 3.1. Subsequent sections describe each of these layers in more detail as

well as the interactions between layers.

Segments of programs to implement the name management mechanisms are provided in

places in order to make. the architecture concrete and present guidelines for future imple­

mentors of distributed name services. The programs are written to be easily understandable.

not to be efficient or complete implementations. The casual reader concerned with simply

understanding the concepts presented should be able to skip the program segments; though

they often help to clarify the discussion.

All of the program examples are presented in the Mesa programming language

[Mitchell et al. 79). The intent is that the reader need not be familiar with Mesa in

XEROX PARe. CSL-S5-I. FEBRUARY 1985

32 DISTRIBUTED NAME SERVERS

name serutce operations

name resolution

replicateet ctata

communtcatton Gtatabase

Figurp 3.1: Functional layers in a name server.

particular: familiarity with constructs common in block-structured languages should suf­

fice for understanding the examples. Explanations of unconventional or esoteric language

facilities are given in the footnotes.

3.1.2 Communication Support

The examples presented throughout this dissertation utilize a hypothetical remote pro­

cedure call mechanism that allows procedures to be executed reliably on remote machines.

Its use requires adding a new NETADDRESS data type to the programming language. which

is the internet address of the host on which the called procedure is to be executed. and a

new primitive. AT . which binds the call to a particular address. For instance,

address: NETADDRESS;

result i- Module.Procedure[argsJ AT address:

invokes the given procedure of the given module at the specified host address and waits for

the result to be returned. This assumes an internetwork environment with .a global address

space from which values of type NETADDRESS can be drawn.

The use of the AT operator is introduced to explicitly indicate the interactions between

programs running on separate machines. Such a facility does not actually exist in the Mesa

programming language. Nor would a real remote procedure call mechanism be incorporated

XEROX PARe. CSL-85-I. FEBRUARY 1985

CHAPTER 3. NAME DISTRIBUTION 33

into the language in this manner since remote procedure calls are generally intended to

look identical to local procedure calls with the bindings between servers and clients being

performed by the runtime package [Birrell and Nelson 84].

Remote procedure calls were selected so that the semantics of the communication can

be presented in an easily understandable way without being concerned with the details

of a particular communication protocol or package. Furthermore, the details of packing

operations, their parameters. and their results into messages can be ignored.

3.1.3 Database Support

The name service database. containing attributes for the universe of named objects, is

distributed and replicated among the name servers. A given attribute may be managed by

one or more name servers. However. for simplicity, all of the attributes belonging to a given

object should be maintained together. That is, if a name server stores one attribute for

a named object, then it stores all attributes for that object. The name servers that store

information about a particular object, and assume responsibility for reliably managing that

information, are called the naming authorities or authoritative name servers for that object.

3.1.3.1 Local database management

Each name server uses a database management system to store a set of attrz'bute tuples,

each consisting of an object's fully qualified name along with an attribute type and value.

Attribute tuples are maintained by the database management system in special database

objects. Figure 3.2 presents the interface for the Database module that provides facilities

for storing and retrieving attribute tuples!.

The Query operation retrieves the attribute tuple with a given name and type from

the specified database object. An attribute type of ;.. ANY" may be given, indicating that

any attribute for the named object may be returned. AddTuple inserts the given tuple

into the database object. while DeleteTuple removes a tuple from the database object.

ModifyTuple performs an atomic update to a database attribute tuple; that is, it looks for

a tuple whose name and type Inatches the parameter tuple and replaces its value. Finally,

Enumerate allows the contents of a· database object to be retrieved a tuple at a time; a

parameter indicating the next tuple to return may be given as NIL to start the enumeration.

lThis module makes explicit use of type declarations from the name server interface, NS. presented later

in Figure 3.4. The LIST OF construct is actually an extension to Mesa present in the Cedar progranuning

language.

XEROX PARCo CSL-85-1. FEBRUARY 1985

34 DISTRIBUTED NAME SERVERS

Database: DEFINITIONS IMPORTS NS = BEGIN

AttributeTuple: TYPE = RECORD[
name: NS.N arne,
attribute: NS.AttributeType,
value: NS.Attribute Value
j;

DatabaseObject: TYPE = LIST OF AttributeTuple;

Query: PROCEDURE[db: DatabaseObject, name: NS.Name, attribute:
NS.AttributeTypej RETURNS [AttributeTupleJ ;

Add Tuple: PROCEDURE[db: DatabaseObject, tuple: AttributeTupleJ:

DeleteTuple: PROCEDURE[db: DatabaseObject, tuple: AttributeTuple];

ModifyTuple: PROCEDURE[db: DatabaseObject. tuple: AttributeTupleJ;

TupleID: TYPE; -- opaque type

Enumerate: PROCEDURE[db: DatabaseObject, next: TupleID]
RETURNS [tuple: AttributeTuple. next: TupleIDj:

END.

Figure 3.2: Database interface.

XEROX PARC. CSL-8S-1. FEBRUARY 1985

CHAPTER 3. NAME DISTRIBUTION 35

Protection of database objects, that is, the right to change existing attributes or add

new attributes to an object, is enforced by the underlying database management system.

The database interface presented is oversimplified in that it does not show the parameters

needed for protection, error handling, and transaction management. Although these are

important issues being tackled by the database research community, they are not discussed

in this dissertation.

Generally, a database management system resides on the same machine as each name

server. However, the database support could come from separate database machines accessed

via the remote procedure call protocol, as long as they support the Database interface.

3.1.3.2 Replicated data

An object with several authoritative name servers has its attributes replicated among

those servers. Name service· operations thus require the participation of possibly several

machines in order to read or update replicated database tuples. Complete up-to-date copies

of the object's attributes could be stored by all authorities, necessitating a Read-any/Write­

all algorithm for replicated data. Alternatively, a more elaborate scheme, such as weighted

voting [Gifford 79], could be used to maintain consistent replicas.

Rather than attempting to choose a particular algorithm for maintaining consistency

among replicated database objects. this dissertation presumes the existence of a Replicated

module providing the interface given in Figure 3.3. The operations allowed on replicated

database objects are identical to those provided by single-site database managers. The

replicated operations merely take an additional parameter indicating the storage sites of all

copies.

Using a Read-anyjWrite-all schelne. the replicated query routine would simply be

Query: PROCEDURE[sites: StorageSites, db: DatabaseObject,
name: NS.Name, attribute: NS.AttributeTypej
RETURNS [Attribute Tuple] = BEGIN

address: NETADDRESS +- SelectSite(sites];
Database.Query[db, name, attribute] AT address;
END;

The choice of a particular server to direct the operation to, as embodied in SelectSite,

should be based on some criteria such as cost, closeness, or availability. Choosing randomly

from the list of storage sites has the nice property that no knowledge of other servers is

required. Nevertheless, as demonstrated in Chapter 5. substantial performance benefits can

XEROX PARC, CSL-85-1. FEBRUARY 1985

36 DISTRIBUTED NAME SERVERS

Replicated: DEFINITIONS IMPORTS NS~ Database = BEGIN
OPEN Database;

StorageSites: TYPE = LIST OF NETADDRESS;

Query: PROCEDURE(sites: StorageSites, db: DatabaseObject,
name: NS.Name, attribute: NS.AttributeType]
RETURNS[AttributeTuplel~

Add Tuple: PROCEDURE[sites: StorageSites. db: DatabaseObject,
tuple: AttributeTuple];

DeleteTuple: PROCEDURE[sites: StorageSites, db: DatabaseObject,
tuple: AttributeTuple];

ModifyTuple: PROCEDURE[sites: StorageSites. db: DatabaseObject,
tuple: AttributeTupleJ;

Enumerate: PROCEDURE[sites: StorageSites, db: DatabaseObject,
next: TupleID] RETURNS [tuple: AttributeTuple, next: TupleID];

END.

Figure 3.3: Replicated data interface.

XEROX PARC. CSL-85-I. FEBRUARY 1985

CHAPTER 3. NAME DISTRIBUTION 37

be obtained if the server is selected intelligently. Thus, servers may wish to know what

fellow servers are currently operational, how expensive cross communication is, and how

busy other servers are. A name server could acquire such information by exchanging status

information with other servers or by consulting local routing tables to determine how close

servers are to one another.

As another example of an instantiation of the replicated data module, consider a weighted

voting scheme. Using the CollectReadQuorum, CollectWriteQuorum, and Select­

FastestCurrentRepresentative routines from Dave Gifford's prototype implementation

[Gifford 79], the operations to retrieve and modify a database attribute tuple could be im­

plemented as follows:

Quorum: TYPE = StorageSites:

Query: PROCEDURE[sites: StorageSites. db: DatabaseObject,
name: NS.Name~ attribute: NS.AttributeTypej
RETURNS[AttributeTuple] = BEGIN

readq: Quorum +- Collect Read Quorum [sites] ;
best: NETADDRESS +- Select Fastest Current Representative [readq] ;
Database.Query[db. name. attribute] AT best;
END;

ModifyTuple: PROCEDURE[sites: .StorageSites~ db: DatabaseObject,
tuple: AttributeTuple] = BEGIN

writeq: Quorum +- CollectWriteQuorum[sites];
WHILE writeq # NILDO

Database.ModifyTuple[db. tuple] AT writeq.first;
writeq +- writeq.rest;
ENDLOOP;

END;

Notice that the query routine is similar to that of the previous approach. except the selection

of a site from which to retrieve the desired data is confined to those sites belonging to

the read quorum with up-to-date copies: the database management system must maintain

version numbers for the data so that current representatives can be determined.

3.2 Structure-free Name Distribution

3.2.1 Assigning authority

For large computing environments. not all name servers can be authoritative for all

objects; the authority for objects nlust be divided among servers according to administrative

XEROX PARC. CSL-85-1. FEBRCARY 1985

38 DISTRIBUTED NAME SERVERS

concerns. The various organizations sharing a common name space desire flexibility in

configuring the distributed name service, that is, choosing the authorities for an object.

This dissertation proposes structure-free name distribution, which places no restrictions on

the administrative control over parts of the name space. In particular, the owner of an

object may choose its authoritative name servers, subject to administrative constraints,

independent of the object's name.

This differs from existing name services. which distribute names to authoritative servers

based on syntactic characteristics of the names, as described in Chapter 2. Syntactic dis­

tribution of the name space generally fails to satisfy the desires for strong administrative

control and graceful growth. Recall that. with location-dependent and authority-dependent

names, an object's authority is directly represented in its name so that changing the author­

ity requires changing the object's name, a prohibitively expensive operation.

Systems that use location-independent names assign authority based on zones; what zone

an object's name belongs to, based on syntactic characteristics of the name, determines the

object's authorities. Structure-free name distribution can be considered a scheme in which

each object belongs to its own zone. This permits maximum flexibility in the administrative

assignment (and reassignment) of authority. It also simplifies name management since name

servers need not agree on what zones make up the name space.

3.2.2 Authority Attributes

In order to resolve names in a distributed environment. the name service must be able to

determine the authoritative name servers for every named object. This can be accomplished

by maintaining configuration data that contains lists of the authoritative name servers for

every object. Such data is stored in the name server database as attribute tuples of type

"Authorities" :

Server Name: TYPE = Name;

AuthorityList: TYPE = LIST OF ServerNanle;

- - Attribute Type = "A uthorities" -­
AuthoritiesData: TYPE = AuthorityList;

Essentially, an object's naming authorities are attributes of that object, though these at­

tributes are treated specially since they are used solely by the name service; authority at­

tribute tuples are not stored with the rest of an object's attributes. Conceptually, authority

attributes comprise the configuration database used for name resolution,

XEROX PARC .CSL-8S-I. FEBRUARY 1985

CHAPTER 3. NAME DISTRIBUTION 39

configurationDB: Database .DatabaseO bject;

Assuming all name servers store the complete set of configuration data, name resolution

involves a single database query,

Resolve: PROCEDURE [name] RETURNS [AuthorityList] == BEGIN
authorities: A uthoritiesData:
tuple: Database.AttributeTuple;
tuple +- Database.Query[configurationDB, name, "Authorities"];
authorities +- LOOPHOLE[tuple.value, AuthoritiesData]2;
END;

However, for very large and diverse environments, the configuration database is undoubt­

edly too cumbersome to be stored everywhere in its entirety. The next chapter introduces

means to reduce the amount of storage required in each name server for configuration data

and the amount of update activity required to add new name servers or named objects to

the environment.

3.3 Distributed Operations

3.3.1 Basic steps

Performing a name service operation on the attributes of an object involves first deter­

mining and locating authoritative name servers for the named object, and then accessing

the appropriate attribute tuples. Specifically, these distributed operations consist of several

steps:

1. Determine the authoritative name servers for the object;

2. Get the internet addresses of the authoritative servers;

3. Select the authorities necessary to perform the operation;

4. Perform the appropriate database operations at the machines on which the selected
servers run;

5. Return the result, if any, to the calling client.

The first step, name resolution, uses the authority attributes stored in the configuration

database. The second step requires additional configuration data, as described in the next

section. The semantics of a particular name server operation are embodied in the last three

2Mesa'g IDOPHOLEconstruct provides a way of subverting its strong type-checking. The first argument of

the loophole is taken to be of the type given by the second argument.

XEROX PARC. CSL-85-1. FEBRTARY 1985

40 DISTRIBUTED NAME SERVERS

steps. The third and fourth steps make use of the replicated data facilities to query or up­

date the name service database. Note that the selection of authorities in step three depends

strongly on the replication algorithIIl employed. The last step simply returns the result of

the operation as specified in the name service interface.

3.3.2 Locating name servers

Name servers, like all other objects~ may exist anywhere in the network and, hence, must

be located before they can be accessed. The main attribute maintained about a name server

is its internet address.

- - Attribute Type = "InternetAddress" -­
InternetAddressData: TYPE = NETADDRESS;

While name agents only need to discover the location of a single name server in order to

utilize the name service, name servers should be able to locate other servers without resorting

to global broadcast. Assume, for now. the number of servers is small enough that a database

of server addresses can be feasibly stored at all servers:

serverDB: Database.DatabaseObject;

This database is part of the overall configuration database.

With a local database of server addresses~ the procedure to locate servers is a simple

database query:

LocateServers: PROCEDURE[servers: AuthorityListj
RETURNS(Replicated.StorageSitesj = BEGIN

address: NETADDRESS;
sites: Replicated.StorageSites +- NIL;
tuple: Database.AttributeTuple:
WHILE servers # NIL DO

tuple +- Database. Query [serverDB, servers. first , "InternetAddress"];
address +- LOOPHOLE[tuple.value, NETADDRESS];
sites +- CONS[address. sites]3;
servers +- servers.rest:
ENDLOOP:

RETURN[sites] ;
END;

The requirement that the name server address database be stored at all servers in its

entirety will be relaxed in the next chapter .

. 3The CONS constructor, in this procedure, adds an element to the beginning of a list. This facility is part

of Cedar's extensions to Mesa.

XEROX PARC. CSt-85-I. FEBRCARY 1985

CHAPTER 3. NAME DISTRIBUTION

NS: DEFINITIONS = BEGIN

Name: TYPE = STRING;
AttributeType: TYPE = STRING;
AttributeValue: TYPE = STRING;

Lookup: PROCEDURE[naIue: Name! attribute: AttributeType]
RETURNS [Attribute Value];

UpdateOps: TYPE = {add, delete. modify};

Update: PROCEDURE[Op: UpdateOps, name: Name, attribute:
AttributeType. value: AttributeValue1 RETURNS[j;

END.

Figure 3.4: Name Service interface.

3.3.3 N arne service interface

41

Given the architecture for distributed name services developed in this chapter, all name

servers present a common interface and accept lookup requests for any name from any

client. Since the emphasis of this dissertation is not on designing a complete set of name

service operations, two basic interface procedures, Lookup and Update, will suffice as

sample operations in this and later chapters. Keep in mind, however, that a practical name

service would likely desire a more sophisticated interface for reasons of performance and/or

protection as discussed in Section 1.2.4.

Figure 3.4 presents a Mesa definitions module for the name service operations, which

includes the type declarations for naInes and attributes. Assuming each name server has a

single local database object,

10calDB: Database. DatabaseObject;

a prototype implementation module might include:

XEROX PARC. CSL-85-1. FEBRUARY 1985

42 DISTRIBUTED NAME SERVERS

Lookup: PROCEDURE [name: Name, attribute: AttributeType1
RETURNS [AttributeValue] = BEGIN

authorities: AuthorityList;
sites: Replicated.StorageSites;
tuple: Database.AttributeTuple;
authorities -+- Resolve(name];
sites +- LocateServers[authorities];
tuple -+- Replicated.Query[sites, localDB, name, attribute];
RETURN[tuple. value];
END;

Update: PROCEDURE[op: UpdateOps, name: Name, attribute: AttributeType,
value: Attribute Value] RETURNS[] = BEGIN

authorities: AuthorityList;
sites: Replicated.StorageSites:
authorities -+- Resolve [name] ;
sites -+- LocateServers[authorities];
SELECT op FROM

add =>
Replicated. AddTuple [sites , localDB, [name,attribute,valueJ];

delete =>
Replicated.DeleteTuple[sites, localDB, [name,attribute,valueJ];

modify =>
Replicated.ModifyTuple[sites, localDB, [name,attribute,value]];

ENDCASE;
END;

The five steps outlined previously are represented in these Lookup and Update imple­

mentations. Notice that all external communication is encapsulated in the replicated data

facilities.

A client's name agent might present a procedure call interface identical to that of the

naIne service, as in Figure 3.5. A simple name agent of this sort could merely use the

hypothetical remote procedure call mechanism to invoke name service operations:

mainServerAddress: NETADDRESS;

Lookup: PROCEDURE [name: Name. attribute: AttributeType]
RETURNS [Attribute Value] = BEGIN

value: Attribute Value;
value +- NS.Lookup[name~ attribute] AT mainServerAddress;
RETURN[value];
END;

XEROX PARe. CSL-8&.1. FEBRUARY 1985

CHAPTER 3. NAME DISTRIBUTION

N A: DEFINITIONS IMPORTS NS = BEGIN

Name: TYPE = NS.Name;
AttributeType: TYPE = NS.AttributeType;
AttributeValue: TYPE = NS.AttributeValue;

Lookup: PROCEDURE[name: Name, attribute: AttributeType]
RETURNS [Attribute Value];

UpdateOps: TYPE = NS.UpdateOps;

Update: PROCEDURE[Op: UpdateOps, name: Name, attribute:
AttributeType, value: AttributeValue] RETURNS[];

END.

Figure 3.5: Name Agent interface.

Update: PROCEDURE[op: UpdateOps, name: Name, attribute: AttributeType,
value: AttributeValue] RETURNS[] = BEGIN

NS. Update [op, name, attribute, value] AT mainServerAddress;
END;

43

The address of the name server to send requests to must be obtained by means other than

the name service, such as broadcast probes sent over a local network [Boggs 83].

3.4 Summary

A distributed name service is provided by a collection of name servers that rely upon

existing facilities for communication and database management to manage a name space

in a decentralized fashion. This chapter presented an architecture for a distributed name

service that allows the authority for parts of the name space to be freely divided amongst the

various organizations participating in the distributed computing environment. The major

difference between centralized and decentralized name management is the need to resolve

names when the name space is dispersed throughout the environment.

XEROX PARC. CSL-85-1. FEBRUARY 1985

44 DISTRIBUTED NAME SERVERS

XEROX PARe. CSL-8S-I. FEBRUARY 1985

Chapter 4

N aIDe Resolution

Structure-free name resolution, unlike existing naming mechanisIns. locates
the set of authoritative servers for a named object without relying on the struc­
ture of the name space. Names are clustered, not necessarily syntactically, into
contexts according to spac.e and performance considerations. N arne resolution
proceeds by a series of context bindings until it encounters an authorities at­
tribute for the named object. Structure-free name resolution permits easy re­
configuration of the service since an object's name remains independent from
the location of its attributes or the details of its resolution. The amount of
configuration data maintained by a name server can be easily reduced by length­
ening the resolution chain for object names. Different styles of resolution allow
the mechanism to be tailored to the division of computational power between
servers and clients, as well as to the available communication paradigms.

4.1 Name Resolution Model

4.1.1 Distributing configuration data

45

Name resolution denotes the process of determining the authoritative name servers for a

named object. In the name service architecture developed in this dissertation, the authorities

for a named object are stored as the value of an "Authorities" attribute tuple. The previous

chapter presented a simple model of name resolution in which the set of authorities attributes

for every object, constituting the configuration database, was maintained in its entirety at

every name server. Thus, all names could be resolved in a single step by any name server.

For environments with large numbers of objects, the configuration database may likely be

too large to be stored everywhere. The knowledge of authorities for various named objects

must be distributed so that no server needs complete knowledge of the configuration. The

primary difficulty in resolving a name then lies in locating the authority attribute tuple

XEROX PARCo CSL-85-1,FEBRUARY 1985

46 DISTRIBUTED NAME SERVERS

for an object. Several interactions between servers may be required as the name resolution

activity migrates from one name server to a potentially more knowledgeable server until the

set of authoritative servers is determined.

4.1.2 Context objects

For the purpose of name resolution, contexts provide a means of partitioning the configu­

ration database so that it may be distributed among servers. Contexts represent indivisible

units for storage and replication of configuration database tuples. A context is thus mate­

rialized as an object containing configuration data,

ContextObject: TYPE = LIST OF ConfigTuple;

for now. assume that tuples holding configuration data are identical to other database tu­

ples:

ConfigTuple: TYPE = Database.AttributeTuple;

This notion will be slightly modified in the next section.

Contexts have names just like any other object known to the name service,

ContextName: TYPE = Name;

and may be maintained at any collection of name servers, listed in an "Authorities" config­

uration tuple. However, contexts differ from other objects registered with the name service

in that they are actually managed by the name service and central to its functioning. Also.

The choice of particular names for contexts is not important since context names are only

used internally within the name service.

Since the configuration database, stored in context objects, contains no attributes for

clients' objects, its distribution should be of no concern to clients of the name service.

Thus, the decomposition of the configuration database into context objects and the choice

of authorities for those contexts can be done to facilitate name resolution, rather than being

governed by administrative desires. The next section presents criteria for this decomposition.

4.1.3 Clustering conditions for configuration tuples

A clustering condition is an expression that allows the name space to be conveniently

partitioned into contexts. Specifical1y~ a clustering condition applied to a name yields either

a TRUE or FALSE value:

XEROX PARC. CSL-85-1. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 47

ClusteringProc: TYPE = PROCEDURE [name: Name] RETURNS[BOOLEAN];

Any procedure that exhibits this behavior might serve as a clustering condition. The par­

ticular value returned, TRUE or FALSE, indicates whether or not the given name exists in

the particular cluster.

N ames can be clustered algorithmically according to the value that results from applying

a function to them. In this case, the clustering condition is of the form "f[name] = value" .

For instance, a hash function is a well-known technique for clustering names into buckets.

More typically, clustering is done syntactically through pattern matching. Patterns are

templates against which a name is compared. They range from names that may simply

contain wildcards, which are denoted by "*,, and match any sequence of characters, to

regular expressions. Names matching a particular pattern, such as names with a common

prefix ;'prefix. *", are considered part of the same cluster. That is, the clustering condition,

when applied to a name, returns TRUE if the name matches the pattern.

Recent work on attribute-based naming conventions suggests a third type of clustering

condition: attribu.te clu.stering. In this case, names are grouped according to what attributes

they possess. For instance, an attribute-based name might consist of an unordered set of

attribute type/value pairs of the form "'AttributeType = AttributeValue" [IFIP 84]. Each

attribute of this form could serve as a clustering condition; all names containing a particular

attribute type with a particular value, such as "Organization=U.C.Berkeley'\ would belong

to the same cluster.

Clustering conditions are used to assign names to contexts. That is, the authority

attributes for all names belonging to a given cluster are stored in a single context object.

Section 3.2.2 portrayed a situation in which all names exist in a single context that is

stored at all servers. Clustering conditions may be applied to an existing context to further

partition the context into smaller contexts.

Often. configuration attributes apply to a cluster of named objects. For instance, the

nanles belonging to a given context might all have the same authoritative name servers.

Thus, configuration attribute tuples are redefined to contain clustering conditions instead

of fully qualified names:

ConfigTuple: TYPE = REeO RD [
cluster: ClusteringProc~
attribute: NS.AttributeType.
value: NS.Attribute Value
];

XEROX PARC. CSL-85-1. FEBRUARY 1985

48 D ISTRIB UTED NAME SERVERS

Configuration tuples resemble ordinary database tuples, except they can be considered at­

tributes for all names satisfying the clustering condition. Note that a configuration tuple

for a specific named object could contain a degenerate syntactic clustering condition that

matches only the particular narne.

4.1.4 Context bindings and name resolution chains

Once the configuration database is partitioned into various contexts, the process of name

resolution is no longer a simple database query. When presented with a name to be resolved,

a server might first look in local contexts for an authority attribute for the named object; if

the authority can not be readily determined~ additional configuration data must exist locally

that enables the server to direct the resolution to another context, perhaps on a different

server.

Context bindings. bindings between names that exist in a context and information that

allows name resolution to proceed. direct the name resolution activity based on clustering

conditions. The server trying to resolve a name applies a series of clustering conditions to

the name until one of them is satisfied. Associated with each clustering condition is the

name of another context in which to look for authority attributes of names in the cluster.

This information is maintained in configuration tuples of type "ContextBinding":

-- Attribute Type = "ContextBinding" -­
ContextBindingData: TYPE = RECORD[

newContext: ContextN ame
J;

Contexts may contain configuration tuples of types "Authorities" and ';ContextBinding".

Specifically, the algorithrn for resolving names works as follows: Given a name to be

resolved in some context, the particular context is searched for either an authorities attribute

for the named object or a context binding containing a clustering condition that yields TRUE

when applied to the name: in the latter case. the name is then resolved in the new context

specified by the context binding attribute. Thus~ resolving a name is a matter of successively

binding names within contexts until the authoritative name servers for the named object

are discovered. That is, the name resolution nlechanism traverses a resolution chain of

"ContextBinding" attribute tuples until it encounters an ~ Authorities" attribute.

When a name is originally presented for resolution, an initial context must be chosen in

which to start the resolution chain:

XEROX PARC. CSL-85-1, FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 49

initialContext: ContextObject;

The initial context must contain authority attributes or context bindings for all names in

the name space.

Global names result if and only if the initial context is a global one, that is, all name

servers share a common initial context. Relative nalnes arise if the initial context used in

name resolution is not a global one, but is relative to the particular server presented with the

resolution request or to some other implicit context. The UUCP network for sending mail

presents a good example of a relative naming convention arising from interpreting recipient

names relative to the sender's machine [Nowitz 78].

4.1.5 Applying the name resolution model

At this point. examples of how the model of nalne resolution presented above can be

used to describe existing naming conventions should help to clarify matters. The set of

clustering conditions chosen by a given naming system partitions the name space such that

each name exists in exactly one cluster~ each cluster is stored in a separate context object.

Generally, existing naming conventions can be characterized by the types of clustering used.

4.1.5.1 Syntactic clustering

Syntactic clustering allows names to be resolved in a manner similar to their structure, as

is done by virtually all current name management systems; simple pattern matching suffices

as a clustering technique. That is. suppose a routine exists that takes a name and a pattern

as arguments and returns an indication of whether the name matches the pattern:

Pattern: TYPE = STRING:

Matches: PROCEDURE[name: Name: pattern: Pattern] RETURNS[BOOLEAN];

Current approaches to name management rely solely on clustering procedures consisting of

a single pattern match:

PatternCP: ClusteringProc = BEGIN
RETURN(Matches (name, "some-pattern"]];
END;

The particular approaches can he classified according to the name structure's effect on name

resolution:

XEROX PARe. CSL-85-1. FEBRUARY 1985

50 DISTRIBUTED NAME SERVERS

Authority-dependent names: Names with the structure, "subname.server", explicitly

indicate the authorities over parts of the name space. Technically, such a scheme requires no

configuration data. Conceptually, a virtual context exists with an attribute for each server,

[Matches [name, "*.server"J, "Authorities", "server"] .

A name space of this sort is said to be physically partitioned since a name reveals the physical

storage site of information about its referent.

Organizationally partitioned names: A name space that is organizat.·onally parti­

ta'oned, as used by Grapevine [Birrell et al. 82], allows flexible name management since the

organizational authority for assigning names is explicitly recognized, but decoupled from

the authoritative name servers for those names. With such a naming scheme, the database

partitions correspond to organizations rather than name servers. With names of the form,

"subnanle.org", the initial context contains a context binding tuple for each organization,

[Matches [name, ,,* .org" j, "ContextBinding" , "org" j

while each organization maintains a context object containing authority attributes for all

named objects within that organization. An organization's name serves as a convenient

name for its context.

In Grapevine, all named objects within an organization have identical authorities, so

each organization's context contains a single attribute,

[Matches [name, "*.org"j, "Authorities", "servert, ... , serverK"]

A more general name distribution scheme requires an authorities attribute for each named

object. An organization's context object would be of the form:

org:
[M t h [" ., 1 "A th 't' "" "J aces name. namel.org', u on les , serveru, ... , serverlK

[M t h [" "J "A tl 't' , .. , "J aces name, nameN.org, u Ion les",' serverNl, ... , serverNK

assuming the organization contained N named objects that had K authoritative servers

each.

XEROX PARCo CSL-85-1. FEBRtTARY 1985

CHAPTER 4. NAME RESOLUTION 51

~
ABC

1\1/\
lA 2A 1B 1C 2C

~
i2A ii2A iii2A

Figure 4.1: Sample hierarchical name space.

Hierarchical names: Organizations can themselves be partitioned into smaller clusters,

resulting in hierarchical names consisting of more than two parts. The contexts at the

lowest level of the hierarchy contain the authority attribute tuples, while those at higher

levels contain context bindings, which indicate a delegation of authority for managing parts

of the name space. The amount of configuration data that must be stored in context objects

at the various levels of the hierarchy is proportional to the degree of branching of the name

space tree. For this reason, hierarchical naming conventions with several levels are often

well suited for naming large numbers of objects.

Consider the name space depicted structurally in Figure 4.1. The inherent structure in

the name space can be exploited by applying syntactic clustering conditions as indicated in

Figure 4.2. In the example, names are initially clustered according to their last character.

Clusters that are too large to be conveniently stored as a single context, perhaps the set

of names ending in "A" in Figure 4.2, can be further partitioned by applying additional

clustering conditions.

resolve these names.

Figure 4.3 presents a complete configuration database needed to

4.1.5.2 Variable syntactic clustering

Although existing name management nlechanisms for hierarchical name spaces resolve

names a label at a time. as is done in Figure 4.2, syntactic clustering conditions are not

restricted to matching a single additional label in each step. That is, even using syntactic

clustering, the length of the resolution chain for various names need not correspond exactly

to the number of labels in the names. Nalne resolution can be tailored according to the"

desired response time for resolving nalnes and the size of contexts.

XEROX PARCo CSL-85-1. FEBRVARY 1985

52 DISTRIBUTED NAME SERVERS

matches "'B')~.:.:·.'::.<.·.~.Y.: .. tB· .. ;.
<::';"<}\.

matches" 'C') I
Figure 4.2: Syntactic clustering of a hierarchical name space.

Initial:

A:

lA:

2A:

B:

C:

[Matches [name, ,,* A" j, "ContextBinding" , "A" j
[Matches [name, "*B" j, "ContextBinding" , "B" J
[Matches [name, "*C"j, "ContextBinding", "C"j

[Matches [name, "*lA"], "ContextBinding", "lA"]
[Matches [name, "*2A"], "ContextBinding", "2A"]

• [Matches [name, ". lA" j, ., Authorities" , " ... " J

[Matches [name, "'i2A" j, ""Authorities" , " ... " J

[Matches [name, "ii2A"j, "Authorities~', " ... " 1
[Matches [name, "iii2A"], '''Authorities'', " ... " J

[Matches [nalne, "lB"j, "Authorities", " ... "]

[Matches[name:··lC"j, "Authorities", " ... "j
[Matches [name, "2C"], "Authorities" , " ... "]

Figure 4.3: Configuration database for syntactic clustering.

XEROX PARe, CSL-85-1. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION

matches "OlA") •

matches "OB',).

matches" OC'') ~.<:·::.:.·.:: •• ::.:: .•. : ••..••...... : .••..• :.1 .•.. :.: ••.•.... 0: •..•••...•. · .• : •.• : •.••.•..•.• :.

~
Figure 4.4: Clustering varying numbers of labels.

53

Once again, consider the name space in Figure 4.1. Suppose the initial context has

enough storage space to contain four context bindings instead of three. All names, including

those with three labels, can be resolved in a single step by matching multiple labels at time

as demonstrated in Figure 4.4. If the name space grows over time, then the intermediary

context binding present in Figure 4.2 can be easily reintroduced; no names need to change,

only their clustering and distribution.

Syntactic clustering in which a variable number of labels can be matched allows potential

performance advantages to be obtained over traditional resolution schemes. Particularly,

regions of the name space that are abnormally sparse may be clustered together for purposes

of name resolution. Also, the name resolution chain for special names can be reduced by

adding new clustering conditions that match larger components of the names than a single

label. Section 4.1. 7 formalizes these space/time tradeoffs.

4.1.5.3 Non-syntactic clustering

Algorithmic clustering allows names to be resolved independent of their structure.

Clients of the name service can choose names for their objects without requiring agreed-upon

name structures; the only requirement is that names be unambiguous. Hashing represents

a familiar way of clustering names algorithmically.

XEROX PARC, CSL-85-1, FEBRl:ARY 1985

54

as,

DISTRIBUTED NAME SERVERS

hash1 < 0.5)

hash1) = 0.5)

hash2)0.5) I
hash2 < = O.~ I

hash2 < = 0.) I!
hash2 > 0.5) I........

'::::::'20.:::::-::

.:
·.:.>.· .. ::·.:.l·.··-:. A :>:-: ..•... ·.-:.

(/):1.8::;::;:.

Figure 4.5: Clustering a name space through hashing.

Suppose functions exist that map a name into a real number in the range (0 .. 1], such

Hash: PROCEDURE [name: Name] RETURNS[REAL];

The name space of Figure 4.1 could be partitioned as in Figure 4.5. Notice that the

partitions do not correspond to the inherent structure of the name space. In fact, the name

resolution tree is binary while the name space has various branching factors if one looks at

it syntactically.

A complete configuration database for these names is given in Figure 4.6. Pattern

matching is used for authority attributes since each object has its own set of authoritative

name servers. Both the configuration database in Figure 4.3 and the one in Figure 4.6 allow

the set of names to be resolved~ but in drastically different ways. Even the name resolution

chains for a given name vary in length for the different clustering strategies.

4.1.5.4 Mixed clustering for growing systems

A mixture of syntactic and non-syntactic clustering can often prove useful for resolving

names in evolving systems. Current problenls of scale in the Grapevine system serve as a

good example. Grapevine clusters names syntactically based on the registry name ernbedded

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION

Initial:

CI:

C2:

C3:

C4:

C5:

C6:

[Hashl[name]< 0.5, "ContextBinding", "CI"]
[Hashl[name] > = 0.5, "ContextBinding", "C2"]

[Hash2[name]> 0.5, "ContextBinding", "C3"]
[Hash2[namel<= 0.5, "ContextBinding", "C4"]

[Hash2[name]<= 0.5, "ContextBinding", "C5"]
[Hash2[name]> 0.5, "ContextBinding", "C6"]

[Matches [name, "ii2A"], "Authorities" ,". ~ ."]

[Matches [name, "IB"], "Authorities", " ... "]
[Matches [name, "i2A"], "Authorities", " ... "]

[Matches [name, ·'iii2A"], "Authorities", " ... "]
[Matches [name, "'IC"L "Authorities" , " ... "]

[Matches [name, ·'2C"j, "Authorities", " ... "]
[Matches [name, "IA"], "Authorities", " ... "]

Figure 4.6: Configuration database for algorithmic clustering.

XEROX PARe. CSL-85-1, FEBRUARY 1985

55

56 DISTRIBUTED NAME SERVERS

matches "*.ES)

hash> 0.5)

matches "*.DIOS')

L.::I~:9.f.I:~~"~;~:::

Figure 4.7: Clustering large Grapevine registries algorithmically.

in all object names. Some of Grapevine's registries are becoming quite large. Suppose that

a particular registry grows too large to be feasibly managed as a single context; what can

be done?

One course of action might be to add another layer to the. name structure, yielding

three-part names as was done for the clearinghouse system. Unfortunately, this approach

forces all objects to change their names. a costly operation for well-established systems. It

also requires changes to Grapevine:s name resolution mechanism. Within the framework of

the existing Grapevine system, the only solution is to split the registry into two separate

registries. Again, some or all members of the registry must change their names.

A better approach might be to algorithmically partition large registries into smaller

clusters. The resolution chains for some object names would grow from one link to two;

the first context binding being done syntactically, while the second is done perhaps by a

hash function as depicted in Figure 4.7. Thus, changes to the Grapevine servers' resolution

mechanism are required, but no object names need to change.

4.1.6 Extensions for other naming styles

In all of the name management schemes described thus far, the name to be resolved at

any point in the resolution chain did not change; only the context in which to resolve the

name changed. Some naming mechanislns involve changing the name:being resolved as well

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 57

as the context. Often, this new name is a function of the old name to be resolved, perhaps

some partially qualified part of the old name:

PartialN arne: TYPE = Name;
NewNameProc: TYPE = PROCEDURE[pname: PartialName]

RETURNS [PartialN arne];

To support these more elaborate styles of naming, context binding configuration attributes

must be extended to include the new name to be resolved in the new context:

ContextBindingData: TYPE = RECORD[
newContext: ContextName,
newName: NewNameProc
];

In all of the previously described conventions, the NewNameProc was simply the identity

mapping. However, it could also have been a name reduction mapping in which the new

name is a strict tail component of the old name. Such name reductions can either be used

solely to reduce the amount of storage required in context objects or to guarantee termination

of the name resolution chain.

4.1.6.1 Naming networks

Hierarchical naming conventions are special cases of the more general naming networks

in which objects are identified by path names [Saltzer 78]. Naming networks can be easily

built up from the name resolution model presented because of the general relations allowed

between contexts via context bindings. In a naming network, names are resolved syntac­

tically a label at a time as in hierarchical name spaces, but cycles may exist in a name

resolution chain. Because of these cycles. name truncation is necessary to halt the resolu­

tion. That is, the new name to be resolved is derived from the old name by stripping off a

label; the name resolution process terminates when only a single label remains.

Naming mechanisms in which the name left to be resolved at any point in the resolution

process is a tail component of the original name presented for resolution are defined herein as

predestinate naming conventions. Naming networks typify the class of predestinate naming

conventions. Notice that, for naming conventions of this sort, a name strictly decreases in

length as the resolution proceeds, thus ensuring that the resolution activity will eventually

terminate. For example, consider the name ;'A.B.C.D.E" complying with a hierarchical

naming convention or naming network. The resolution chain is as follows:

XEROX PARe. CSL-85-1. FEBR{TARY 1985

58 DISTRIBUTED NAME SERVERS

J.X.
B

C E
D F

Figure 4.8: Mutually encapsulated name spaces.

INITIAL (A.B.C.D.E)
---+ A(B.C.D.E}
---+ A.B(C.D.E)
---+ A.B.C(D.E}
---+ A.B.C.D(E)

The name resolution mechanism simply scans the name from left to right extracting a label

at a time and migrating to an authority for the new context obtained by concatenating the

label just scanned with the previous context name.

Naming networks that are not strictly hierarchical might naturally arise in practice when

two existing hierarchical name spaces wish to reference each other's objects by mutually

encapsulating their name spaces~ as depicted in Figure 4.8. Clients of the first name space

can reference objects in the second by prepending their names with "B.OTHER.", whereas

clients of the second name space can reference objects in the first by prep ending their names

with "other.l'. Notice, however. that the two name spaces retain their original separate

initial contexts, probably for backward compatibility. In this example, the naming network

resulting from the junction of the two original name spaces is not only unrooted. but also

has cycles.

XEROX PARC. CSL-8S-1. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 59

4.1.6.2 Beyond naming networks

Name resolution is not limited to predestinate naming conventions, such as naming

networks, for which the resolution chain is predictable from the syntax of the name. In

particular, within the name resolution configuration data, the newName and newContext

fields of a "ContextBinding" attribute need bear no relationship to the containing context's

name or the current name being resolved, or the relationship may not be as simple as

stripping off a single label of the name.

As a simple example of non-predestinate name resolution, consider the convention for

naming Arpanet mail recipients currently used within the U. C. Berkeley Computer Science

Division. Mail clients are named according to the convention "user@Berkeley", though,

internally, users are partitioned according to what computer they use. The name "frank"

might exist in the context of machine ·'ernie", while "joe" exists on machine "kim"; though

their official rnail addresses are ·'frank@Berkeley" and "joe@Berkeley", respectively. Thus,

the ·'Berkeley" context might contain two context bindings for these users as follows:

Berkeley:
[Matches [name, "frank" I, "ContextBinding" , "Berkeley.ernie{frank)" I
[Matches [name, "joe"], "ContextBinding", "Berkeley.kim(joe)"]

In these cases, the context bindings discard no components of the name to be resolved~ only

the context itself becomes more refined.

Subaliases, aliases for particular components of a name, fit nicely into the context binding

model. For instance, if "Berkeley" is a sub alias for "ucbvax", the two names can be made

interchangeable by a NewNameProc that takes a name of the form "front.Berkeley.back"

and returns "front.ucbvax.back".

In generaL mapping contexts that change a name to be resolved in a wide context to a

new name in some smaller context are useful for converting between standard global names

and naming conventions particular to the internals of an organization. The inevitable evolu­

tion of distributed computing environments often makes name conversions between old and

new formats necessary. The rewriting rules incorporated into the Sendma'il internetwork

mail router [Allman 83] were a response to conversion requirements between various exist­

ing mail facilities. The pattern matching abilities in context objects and the generality in

context bindings allow them to accommodate such conversions within the name resolution

architecture.

XEROX PARCo CSL-85-1. FEBRUARY 1985

60 DISTRIBUTED NAME SERVERS

4.1.7 Advantages oC structure-Cree name resolution

The model of name resolution developed in this dissertation in which the process of re­

solving names need not be strictly tied to the name structure. structure-free name resolution,

permits names to be managed more flexibly than existing naming mechanisms. Specifically,

it allows tradeoffs to be made in how names are managed without affecting the structure of

the names or the resolvability of the names. These space/time tradeoffs are demonstrated

by the following two rules~ which change the content and distribution of the configuration

database while preserving name resolution:

The partition rule: Let DB be a context and c be a clustering condition applied to names

in that context; if all names in DB for which the clustering condition c applied to them

yields true are removed from DB and pJaced in a new context DBc , and one attribute

tuple is added to DB:

[c[name) , ;~ContextBinding". '~DBc" 1

then all names that could be resolved in the old DB context can be resolved in the

new one.

The indirection rule: Let DB be a context whose authorities are AI, A2, ... ,An where

n >= 2; if name server Al replaces its local context DB with a new context DBnew

containing two attribute tuples:

[Matches [name. ;.*"], "ContextBinding", "DB"]
[Matches [name, "DB"], "Authorities"," A2,"" An"]

then all names that could be resolved in the DB context can be resolved in the D Bnew

context.

Theses two rules govern the modifications that can be made to reduce the overall amount

of configuration data without impairing name resolution. In particular. the partition rule

provides a way of splitting up a large context into smaller, more manageable, pieces; the

indirection rule allows a name server to offload the responsibility for maintaining a context

to other servers, thereby reducing its local storage requirements. Note that both rules add

another binding to the resolution chain for certain names, thus increasing the time to resolve

a name. On the other hand, the indirection rule reduces the total amount of storage required

in the name service, assuming contexts are larger than a couple of attribute tuples.

XEROX PARCo CSt-85-1, FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 61

Starting with a single context stored at all name servers that contains the complete set of

"Authorities" attributes for all named objects, these two rules can be repeatedly applied to

partition and distribute the configuration data while ensuring that all names can be resolved.

The rules are not meant to represent operations that can be performed on a running system.

Rather, they suggest the range of options available to administrators when configuring or

reconfiguring a name service.

Importantly, the cost of name resolution varies with the amount of storage dedicated to

configuration data. At one extreme, if all servers have enough storage to hold the complete

set of authority attributes for all named objects, then any name can be resolved in a single

step. On the other hand, if authority attributes are distributed among servers, then context

bindings are needed and name resolution becomes more costly. Chapter 5 quantifies how

the cost of resolution varies with the length of the resolution chain.

Different name servers may observe different costs for name resolution depending on how

much configuration data they store locally. One small name server with very little storage

need not increase the name resolution chains for the complete service; only the particular

server's clients are affected. If certain name servers are upgraded with additional storage,

gains in name resolution can be achieved for some names.

4.2 Name Resolution Mechanism

4.2.1 Configuration database queries

The name service configuration database consists of a collection of contexts that are

stored and replicated on various name servers. Looking up a nanle in a context involves

applying a configuration attribute's clustering condition to the name until one that returns

TRUE is discovered. This is performed by the Query operation of the Cluster module!:

- - recordformat lor storing ConfigTuples in Attribute Tuples
CTuple: TYPE == RECORD [

unused: NS.Name,
attribute: NS.AttributeType,
cluster: ClusteringProc,
value: NS.AttributeValue
];

1 For simplicity, all exceptional condition handling is left out of the prototype implementation. Particularly,

this procedure assumes that. for any name, some clustering conditioning inthe context yields TRJE. This

can be easily ensured by ending every context .with a clustering condition that always returns TRJE.

XEROX PARG. GSL-85-1. FEBRUARY 1985

62 DISTRIBUTED NAME SERVERS

Query: PROCEDURE[cname: Context Name, name: Name]
RETURNS [ConfigTuple] = BEGIN

tuple: Database.AttributeTuple;
next: Database.TupleID +- NIL;
db Context: Database.DatabaseObject;
configData: ConfigTuple;
cb: CTuple;
dbContext +- ContextNameToObject[cname];
DO

[tuple, next] +- Database.Enumerate[dbContext, next];
cb +- LOOPHOLE[tuple, CTuple];
IF cb.cluster[name] = TRUE THEN EXIT;
ENDLOOP;

configData +- [cb.cluster,cb.attribute,cb.value];
RETURN[configData];
END;

This routine uses the ordinary database facilities to store configuration data tuples. Names

of ,locally stored contexts are mapped to the appropriate database object by the Con­

textN ameToObject routine.

The routine for querying configuration attributes makes use of the single-site database

facilities rather than the replicated data facilities. Since configuration data changes infre­

quently and name resolution should proceed as quickly as possible, fancy techniques for

replicated context objects are unwarranted. The name ,resolution algorithm that calls upon

the Cluster module assumes that all copies of a context are up .. to-date and chooses one to

suit its needs. This allows different styles of resolution to be accommodated as demonstrated

in Section 4.2.3.

4.2.2 Locating context objects

Since names are always resolved with some context~ a major problem in resolving names

is determining the authoritative servers for the particular context. Contexts are themselves

objects that may be distributed and replicated in any number of name servers. Thus, as

with other types of objects~ locating a context involves resolving its name,

FindContext: PROCEDURE [cname: ContextName]
RETURNS [AuthoritiesData] = BEGIN

RETURN [Resolve ["initial Context" , cnameJJ;
END;

However, the attempt tolocate the context was triggered by the process of resolving a name

in the first place. Thus, if the FindContext routine calls Resolve, infinite recursion results

XEROX PARC. CSL-8~1. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 63

unless some special cases are utilized for locating certain contexts. That is, some special

way of locating contexts must be provided as the base case of the recursive name resolution.

One approach is to have a special "context" context containing the authoritative name

servers for all other named contexts, also referred to as a metacontext. Locating a context,

then, would simply involve binding that context's name in the special metacontext. The

problem then becomes locating the metacontext. Fortunately, the metacontext is small

compared to the complete name server database since it contains only information about

contexts. Moreover, it changes very infrequently. Thus, in many cases, the metacontext can

be stored at all name server sites, making it readily available for resolving context names:

myself: ServerName; - - name of local server

FindContext: PROCEDURE[cname: ContextName]
RETURNS [AuthoritiesData] = BEGIN

IF cname = '"metaContext" THEN
RETURN [myself]

ELSE
RETURN [Resolve ["metaContext" , cname]];'

END;

For very large name spaces with many contexts, however, even the metacontext may consume

more storage than some name servers can afford. ill this case, such servers need only

store references to the servers that actually store the metacontext and not the context

itself by making use of the indirection rule. A remote metacontext contains' the actual

"Authorities" attributes for all contexts', while the local metacontext needs only two tuples:

metaContext:
[Matches (name, "*"], "ContextBinding" , "remoteMetaContext"]
[Matches [name, "remoteMetaContext"j, '~Authorities","·· ."]

Context names can be easily resolved by calling on an authoritative server for the remote

met ac ont ext . The servers for the metacontext can be viewed as providing a special name

service for context objects.

For widely distributed name spaces, a better approach to requiring the existence of a

metacontext is to distribute the context configuration database just like the configuration

data for other objects is decentralized. ill order to guarantee that a name server can resolve

any context name presented to it without contacting other servers, a context that contains

context bindings to other contexts should also include the authority attributes for those

XEROX PARC. CSL-85-1. FEBRUARY 1985

84 D ISTRIB UTED NAME SERVERS

contexts. With this coupling of context bindings and authority data, a new context name

can always be readily resolved in the current context :

FindContext: PROCEDURE [oldContext: ContextName, newCname:
Context Name] RETURNS[AuthoritiesDataJ == BEGIN

RETURN[Resolve[oldContext,newCnameJ];
END;

Context names appearing in a context binding, rather than being globally unambiguous.

are thus relative to the context in which the context binding occurs. Without a single

metacontext, no context must grow with the size of the complete name space. Each name

server need only maintain know ledge of a localized portion of the name space.

4.2.3 Styles of name resolution

While the policy for resolving names according to a particular naming convention is

embodied in the contents of context objects, the mechanics of name resolution is independent

of the given adopted naming convention. Different name resolution mechanisms result from

different styles of interaction between servers and name agents cooperatively resolving a

name.

4.2.3.1 Recursive

With a recursive style of name resolution. names are recursively resolved in new contexts

until an authoritative name server is determined. The name resolution activity migrates

to servers containing the necessary contexts through remote procedure calls. Thus, the

responsibility for performing the name service operation rests with the initial name server

that received the operation request. This server returns the appropriate response after the

name has been resolved and the operation performed.

Using such a style of name resolution~ the naIPe service appears to a name agent to

be a centralized service~ name agents may be unaware of the existence of multiple servers.

However, because of the recursive nature of the name resolution mechanism, a disparity in

work results: the name agent has little work to do while name servers may be involved in

processing several requests at the same time. This disparity is particularly alarming when

one realizes that an order of magnitude more name agents exist than name servers.

XEROX PARCo CSL-85-l.FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 65

One recursive algorithm that can be used by a name server to resolve a name relative to

a context is as follows:

Resolve: PROCEDURE [context: ContextName, name: Name]
RETURNS [AuthoritiesData] == BEGIN

- - local variables
authorities, contextAuthorities: AuthoritiesData;
context Server: ServerName;
contextAddress: Internet.Address;
binding: ContextBindingData;
tuple: ConfigTuple;
- - lookup name in context
tuple +- Cluster. Query [context, nanlej;
SELECT tuple.attribute FROM

"Authorities" ==>
authorities +- LOOPHOLE[tuple.value, AuthoritiesData];

"ContextBinding" ==> BEGIN
binding +- LOOPHOLE [tuple.value, ContextBindingData];
contextAuthorities +- FindContext[context, binding.newContext];
contextServer +- SelectServer[contextAuthorities];
IF context Server == myself THEN

authorities +- Resolve [binding.newContext,
binding.new Name [name]]

ELSE BEGIN
contextAddress +- LocateServer[contextServer];
authorities +- Resolve [binding.newContext,

binding.new Name [name]]
AT contextAddress;

END;
END;

ENDCASE;
RETURN [authoritiesj :
END;

4.2.3.2 Iterative

An alternative to resolving names recursively is to use iterative name resolution in which

the name agent retains control over the resolution activity. The algorithms are similar,

except that servers do not call each other directly in the iterative case. A name server does

its best to resolve names using only locally available configuration data and returns' to the

calling name agent when it can no longer continue. The name agent then calls on a different

name server to continue resolution of the name.

XEROX PARC, CSL-85-1, FEBRUARY 1985

66 DISTRIBUTED NAME SERVERS

A name service operation can be in one of two stages when a server replies to the calling

name agent:

Unresolved. The name has been only partially resolved.

Resolved. The name has been completely resolved and the operation has been completed.

The state of the resolution process at any point in time can be represented by a context

name and a name to be resolved in that context. Initially, the resolution state consists of

the initial context and a complete name.

When a server can not further resolve a name, it returns the current state along with

the internet address of a server that the name agent should contact next, presumably an

authority for the current context in the resolution chain2 • The iterative version of the

Resolve routine is thus as follows:

ResolveI: PROCEDURE [context: ContextName, name: Name]
RETURNS [ConfigTuple, NETADDRESS] = BEGIN

tuple: ConfigTuple;
address: NETADDRESS;
binding: ContextBindingData;
authorities: AuthoritiesData:
server: Server Name;
tuple f- Cluster.Query[context. nameJ;
IF tuple.attribute = "ContextBinding" THEN

BEGIN
binding f- LOOPHOLE[tuple.value. ContextBindingDataJ;
authorities f- FindContext[context, binding.newContextJ;
server f- Select Server [authorities] ;
IF server = myself THEN

[tuple. address1 f- ResolveI[binding.newContext,
binding.new N ame[name]]

ELSE
address f- LocateServer(server];

END;
RETURN[tuple, address];
END;

'JIn some cases, it would be better for the server to return the list of authorities rather than choosing one

and returning its address. A name agents that has knowledge about the existence and locations of servers

would be able to select a server based on its own criteria rather than the mime server's. For instance, the

closest authority to the server is not necessarily the closest to the agent. Moreover, name agents could

cache the authority information and use it to intelligently direct future operations. Caching is discussed

in more detail in Chapter 7.

XEROX PARC. CSL-8S-I. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 67

The name agent is responsible for presenting the current resolution state to a name server

along with an operation request so that the resolution activity can continue where it left off.

In order to allow iterative name resolution, all name service operations should take the

current resolution state as an additional parameter:

ResolveState: TYPE = RECORD[
context: ContextName,
name: Name
];

These operations must also return an indication of the stage of the operation,

Stage: TYPE = {Unresolved,Resolved};

along with enough information for processing to continue at another name server. If the

name has not been completely resolved, the operation returns the current state of the reso­

lution and the address of the next server to contact,

UnresolvedData: TYPE = RECORD[
state: ResolveState,
next: NETADDRESS
];

IT the operation has been completed, then the name agent receives the desired result of the

operation, as usual.

For instance, the name server lookup routine for iterative name resolution has a similar

interface to that for a recursive style of resolution. except it accepts the resolution state as

a parameter and returns the current operation stage:

LookupI: PROCEDURE [name: Name, attribute: AttributeType, state: ResolveState]
RETURNS[AttributeValue~ Stagej = BEGIN
- - iterative version of the Name Server

tuple: Database.AttributeTuple;
ctuple: ConfigTuple:
address: NETADDRESS;
authorities: AuthoritiesData;
sites: Replicated.StorageSites;
binding: ContextBindingData;
continue: U nresolvedData;
st: Stage;
value: AttributeValue:
[ctuple,address] ~ ResolveI[ResolveState.context. ResolveState.name];

XEROX PARC, CSL-85-1. FEBRUARY 1985

68 DISTRIBUTED NAME SERVERS

SELECT ctuple.attribute FROM
;'ContextBinding" = > BEGIN

binding +- LOOPHOLE[ctuple.value, .ContextBindingDataJ;
continue.state.context +- binding.newContext;
continue.state.name +-:- binding.NewNameProcfnameJ;
continue.next +- address;
value +- LOOPHOLE[continue,AttributeValueJ;
st +- U nresol ved;
END;

~Authorities~' => BEGIN
- - same as for recursive name server
authorities +- LOOPHOLE[ctuple.value, AuthoritiesDataJJ;
sites +- LocateServersfauthorities];
tuple +- Replicated.QuerYfsites~ localDB, name, attribute];
value +- tuple. value:
st +- Resolved;
END;

ENDCASE = > ERROR:
RETURN(value.st] ;
END;

The value returned by this routine depends upon the stage of the operation, as does the

name agent's action:

Lookup: PROCEDURE(name: Name. attribute: AttributeType]
RETURNS(Attribute Value] = BEGIN
--iterative version of the Name Agent

value: Attribute Value;
st: Stage;
continue: U nresolvedData:
state: NS.ResolveState +- [name. "initiaIContext"];
address: NETADDRESS+- nlainServerAddress:
DO

(value. st] +- NS.LookupI[nanle. attribute, state] AT address;
SELECT st FROM

Unresolved => BEGIN
continue +- LOOPHOLElvalue. UnresolvedData];
state +- continue.state:
address +- continue.address;
END:

Resolved => EXIT:
END CASE => ERROR:

ENDLOOP:
RETURN[value]:
END:

XEROX PARC. CSL-85-!' FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 69

Notice that the name agent's interface presented to its clients remains the same regardless

of the style of resolution employed.

4.2.3.3 Transitive

A third style of name resolution, transitive name resolution, falls somewhere between

recursive and iterative resolution. With transitive name resolution, the name server cur­

rently processing an operation simply passes the operation to a server that can continue

its processing. As in the recursive approach, name agents are not involved in the act of

name resolution; and, like the iterative approach, a name server gives up its responsibility

for performing an operation when it can nolonger resolve the name locally.

The implementation of transitive name resolution is similar to the iterative style pre­

sented above. except that the operation, along with its current state, is sent directly to the

selected next server instead of returned to the name agent; the authoritative name server

that eventually performs the desired operation returns the result. The only way that a

name agent may be aware of the distributed nature of the service is that the response to its

request may be received from a different server than the one it was sent to.

4.2.3.4 Comparisons

Figure 4.9 shows the communication patterns induced by the different styles of resolu­

tion. The choice of a particular style of name resolution should be based on the relative

processing powers of name servers and name agents and on the semantics of the communi­

cation protocols employed.

The transitive approach to resolving names results in the fewest number of high-level

messages, though it is more susceptible to failures since servers do not receive feedback once

an operation is passed on. Thus, transitive resolution is best suited for an environment in

which reliable communication connections·between name servers can be cheaply maintained.

Recursive and iterative styles of resolution, on the other hand, adapt nicely to a remote pro­

cedure call communication paradigm. An iterative approach also works well if an unreliable

datagram protocol with timeouts is utilized; the periodic replies from servers makes it easy

for the name agent to monitor and recover from failures. Timeouts are much harder to set

with a recursive or transitive style because of the large variation in the time necessary to

resolve names.

As for computation, the iterative style of name resolution requires the name agent to

do more work. However, it also provides more opportunities for the name agent to play an

XEROX PARC ~ CSL-85-1. FEBRUARY 1985

70 DISTRIBUTED NAME SERVERS

recursive

transitive

iterative

Figure 4.9: Styles of name resolution.

XEROX PARe, CSL-85-1. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 71

intelligent role in name resolution; for instance, a name agent may choose to cache the results

of recent name resolutions and use this to direct future name lookups to the appropriate

server. H an iterative approach is adopted, small computers with dumb name agents could

be accommodated by interjecting a name resolution server between the agent and servers.

Such a server would control the resolution activity so that the simple name agent need not

be involved.

All three styles require approximately the same amount of computation from the name

servers; the only major difference is the lack of communication between servers in the itera­

tive case. Recursive resolution, however, would undoubtedly require the name server to be

multiprogrammed since a server can not afford to wait for a recursive resolution request to re­

turn before processing the next request. Thus. the internal organization of a name server per­

forming recursive name resolution is much more complicated than that for the other styles.

4.3 Dynamics of Name Management

4.3.1 Updates

Large distributed computing environments are constantly changing and· evolving. Name

services gain their utility by insulating users from the immediate effects of changes and

allowing them to discover these changes through late binding. For instance, if an object

moves then the name service should· be informed of its new location; other objects that

reference the moved object by name need not be aware of its migration since they locate it

indirectly through the name service:

When designing a name service, one must allow updates to the name service database

but try to isolate the effect of these updates, not only from name service clients, but 'also

from as many servers as possible within the name service. The many kinds of updates to

the name service include adding, removing, or changing:

• object attributes

• object names

• contexts

• authorities

• name servers

Changing the set of attributes for a given object~ as previously discussed, requires first resolv­

ing the name and then performing a replicated database operation. Only the authoritative

XEROX PARCo CSL-85-1.FEBRUARY 1985

72 DISTRIBUTED NAME SERVERS

name servers for the object are involved. The other classes of updates are more difficult,

and are discussed in detail in the next two sections.

4.3.2 Name registration

With the simple name service interface presented, registering or unregistering an object

with the name service is simply a matter of adding an attribute for the object or removing all

of the attribute tuples for the object, respectively. However, to guarantee that two different

objects do not inadvertently register under the same name, ren'dering the name ambiguous,

it may be desirable to provide additional name service routines:

Register: PROCEDURE[name: Nanle] RETURNS[];

UnRegister: PROCEDURE[name:' Name] RETURNS[];

UnRegister is not strictly neces~ary since it simply deletes all of the attribute tuples

associated with the named object: Register~ on the other hand, has very special semantics.

Name service clients are allowed to choose a name for their objects, but a name must

be determined to be unambiguous upon registration,that is, the name must not be already

in use. The registration activity attempts to resolve the name presented for registration

until either the resolution mechanism can no longer continue or an "Authorities" tuple for

the name is encountered. In the latter case, the registration request is rejected since the

name is already in use. In the former case, the part of the name that was to be resolved,

when the mechanism halted. the remainder, is added to the current context with a list of

authorities. For example, ifone attempts to register the name "A.B.C" and ·'A.B" is an

existing context that' contains no attributes for '~C", then the name's resolution will Jail

when a "ContextBinding" or '''Aut,horities'' attribute for "·C" is searched for in the context

"A.B" and not found. At that point. an authorities tuple for ;'C" will be added tocontext

"A.B".

It may be desirable to put sonle constraints OIl the types of names that are accepted for

registration. The protection OIl context objects enforced by the database system can serve

to restrict the registration of undesirable names in many cases. In addition, constraints may

be placed on the structure of a name's remainder. Typically, the remainder should be a

simple label of the name, and not a structured component. For instance, if the name in

the previous example were '~A.B.C.D" then adding an authority tuple for '·C.D" Inay be

undesirable; perhaps the name should be only accepted if a context for "C" already exists.

XEROX,'PARC. CSL-85-1. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 73

Several options exist for choosing the set of authoritative name servers for newly reg­

istered objects. A parameter could be added to the Register routine to allow clients to

explicitly specify a desired set of authorities. However, clients probably are not interested in

such levels of detail, while system administrators are interested in keeping balanced loads on

the various servers. A set of default servers could be assigned as a simple scheme. A better

method would be to search for an arbitrary "Authorities" tuple in the current context and

assign the same authorities to the new object. In this way~ objects within the same context

would tend to. have identical authorities, often the authorities for the context itself.

After registration, the named object has been assigned authoritative name servers,

though it has no other attributes. Only the authoritative servers for the updated con­

text are affected by the registration. The time required for the new object to be observed

by the complete name space depends on the algorithms employed for updating replicated

database objects and the degree of consistency provided.

Registering a new context requires adding an "Authorities" attribute for it to the name

service configuration database. Also~ in order for the context to be useable, one or more

"Context Binding" attributes must refer to it. Initially, the context will be empty, though,

once it is registered, object names may be inserted into it. Facilities for deleting a context

are straight-forward provided that all names belonging to the context have been previously

deleted.

4.3.3 N arne service reconfiguration

As the distributed computing cornmunity grows over time, it will occasionally be neces­

sary to reconfigure the name service to balance the demands placed upon it or to add new

servers to offload existing servers that have become overloaded. Since the assignment of

object names is independent of the assignment of responsibility for maintaining information

about the objects. the name service can be easily reconfigured. That is, new name servers

can be added to the environment and assume authority over part of the existing name space~

application programs which rely on the name service are unaffected since the object names.

do not reflect the name server configuration.

Changing the authorities for a named object is more than just changing the "Authorities"

attribute for that object. New authorities must acquire the complete set of attribute tuples

for the object by establishing a connection to an authoritative server an4. retrieving the

attributes. Problems may result if the "Authorities" tuple is updated before the transfer

actually takes place unless the servers are prepared to try a different authority if the first

XEROX PARC. CSL-8S-1. FEBRCARY 1985

74 DISTRIBUTED NAME SERVERS

does not have the desired data. To be safe, the set of authorities should be updated first in

the case of a delete; the server that is no longer authoritative can then delete the object's

attributes at its leisure. When adding new authorities, the authorities list should be updated

after the attributes have been transferred.

Lastly, putting a new name server into service requires introducing the new server to all

existing servers in the worst case, a potentially expensive operation. As an optimization,

the new server's internet address need only be known by servers that contain context objects

which reference contexts or objects over which the new server has authority. For a strictly

hierarchical name space, this means that only servers who· have direct authority over the

new server need be informed of its existence. Thus, the update activity can once again be

limited to a small area for well defined name spaces.

4.4 Summary

N arne server configuration data enables the name resolution activity to migrate around

the environment from server to server until a name is completely resolved. The configura­

tion database, consisting of authority data and context bindings, is itself distributed and

replicated so that the size of the overall name space does not place undue requirements on

any single name server. The process of resolving names is inherently independent of the

structure of names, although the name service administrator, when configuring the name

space, may choose to exploit the structure of names to reduce the size of the configuration

database.

Specifically, the following concepts play an important role in structure-free name resolu­

tion:

Authority attributes enable an object's attributes to be located.

Context objects allow the set of authority attributes to be partitioned and distributed.

Clustering conditions serve as criteria for assigning authority attributes to context objects.

Context bindings allow names to be resolved.

The policy for resolving names. as represented in the configuration database, is separated

from the mechanism for resolving names. Three styles of name resolution, recursive, iter­

ative, and transitive, place different computation and communication requirements on the

name servers and name agents.

XEROX PARe. CSL-85-I. FEBRUARY 1985

CHAPTER 4. NAME RESOLUTION 75

The mechanisms supporting this new approach to name management are more compli­

cated, and hence more expensive, than existing schemes for resolving names based solely

on their structure. However, the added flexibility allows name spaces for large computing

environments to evolve over time. Since the configuration data is stored as attributes of

objects, just like any other name server data, the name service can be easily configured

and reconfigured. Space/time tradeoffs exist in which the amount of storage dedicated to

configuration data can be reduced if the resolution chain is lengthened for some names.

On the other hand, the name resolution chains can be reduced compared to existing name

resolution schemes by dedicating more storage to configuration data.

XEROX PARC. CSL-85-1. FEBRUARY 1985

76 DISTRIBUTED NAME SERVERS

XEROX PARe. CSL-85-L FEBRUARY 1985

Chapter 5

PerforInance Analysis

An analytical model for distributed name services allows one to investigate
the effect of various design and configuration choices on the cost of name service
operations. Although a name service plays a vital role in internetwork envi­
ronments. few attempts have been previously made in the computing literature
to quantify the performance of distributed name resolution. New results show
that the cost of name service operations with a decentralized service need not be
appreciably greater than with a centralized service (though more storage space
is required for configuration data). Applying the simple performance model to
a sample environment indicates that substantial cost benefits can be accrued
through replication of name service data; however, the benefits depend heavily
on the topology of the environment. For a moderate degree of replication. the
unavailability of a few name servers does not significantly increase the costs of
name service operations, ignoring increased server congestion.

5.1 Name Service Performance

77

The cost of communication between clients and name servers is the major bottleneck in

locating remote resources in environments consisting of a substantial number of intercon­

nected networks with a large number of hosts. In such an environment, the performance of

name server operations is dominated by the number of name servers that must be accessed

and the cost of accessing those name servers. The name service. that is, the group of narne

servers that collectively manage the name space, should be configured so as to minimize the

cost of name service operations for the average client.

Once a naming convention has been adopted, the many factors affecting the efficiency

with which the name space can be nlanaged and the cost of performing operations on name

server information include:

• the performance of each individual name server,

XEROX PARC~ CSL-85-1. FEBRUARY 1985

·78 D ISTRIB UTED NAME SERVERS

• the placement of name servers throughout the internet,

• ·the amount of replication of name server information,

• the choice of authoritative name servers for parts of the name space,

• the number of name servers that are currently operational,

• the clients' patterns of reference to name server information.

These factors, with the exception of the last one, characterize the current configuration of

the name service. This chapter looks at each of these issues in detail.

The next section presents a simple model of distributed name services that enables the

cost of a name server operation to be quantified for a variety of name server configurations

and name resolution policies. The model does not attempt to give detailed performance pre­

dictions. such as those that might be obtained through simulations, but rather concentrates

on analytical formulations of the high-level interactions required between name servers to

complete an operation. The goal is to be able to compare the cost of operations for different

choices that must be made by administrators when configuring a name service.

In practice, the cost formulas derived for name server operations can be applied to

existing environments to analyze and subsequently improve the performance of the system,

or they can aid in making design decisions when configuring a new system. For instance, a

network administrator may wish to assess the benefits of increased replication or the addition

of a new name server.

5.2 A Model for Name Server Interaction

5.2.1 N arne servers and clients

A name service consists of N servers, NS 1 ... NSN, distributed throughout an internet.

At any point in time, some fraction of these servers will be accessible; the others may have

crashed or become detached from the network. SF represents the current set of name servers

whose data is inaccessible because of some failure; SF C {NS 1 , ••• , NS N} has cardinality

F.

The various name server clients are enumerated 1 ... U. The term "client" may refer

to a specific program, hosL network. or some combination thereof. fu general, clients are

distinguished by their location in the internet relative to the name servers and by the

particular objects they reference.

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 5. PERFORMANCE ANALYSIS 79

A name service client need only know the location of a single name server, presumably

the closest one, to make use of the name service. Name service operations are assumed to

be performed iteratively: if the prinlary name server, N Smain, is unable to resolve a name,

then it returns the location of a more knowledgeable colleague. Several iterations may be

necessary to perform an operation for some naming conventions and management strategies.

5.2.2 The network

The round trip transmission cost between client u and name server i is given by Cui.

Observe that Cui strongly depends on the sites at which the client and server are executing.

It varies according to the number of gateways traversed and the speeds of the intermediate

transmission lines. The number of bytes transferred is assumed to have a negligible influence

on the communication cost since name server queries and responses are generally quite small.

This is a very simple static measure of the cost of communication between clients and

servers. In particular, variations due to network congestion are ignored. While such a

model may be reasonable for widely distributed environments with slow speed lines and

many gateways, it certainly would not suffice for local area networks. The model does not

include the cost of communication between servers since an iterative style of name resolution

is assumed.

5.2.3 The database

The name service database is strictly partitioned into K database objects. In the de­

generate case, each database entry is a separate object. The database objects, db1 ... db K,

correspond to indivisible units of storage. That is, either the complete database object is

stored at a given name server or none of it is.

Each name server has authority over some subset of the database partitions. Typically,

no single name server stores the complete database. The set Sk contains those name servers

that store object dbk; Sk, for k = 1 ... K, is a subset of {N S 1, ... , N S N}. In other words,

Sk is the list of authoritative nalne servers for dbk .

For each name server, ~ denotes the cost of executing a database operation at N S i. For

simplicity, this cost, which could depend on such things as the overall size of the database

maintained by N S i and the kind of database facilities employed, is assumed to be fixed over

time. In particular it does not account for variations in the load at the server. Moreover,

no distinction is made between different types of database operations.

XEROX PARC. CSL-85-L FEBRUARY 1985

80 DISTRIBUTED NAME SERVERS

5.2.4 Reference patterns

Each client has a set of objects (or resources) that it regularly references. Different

clients generally perform different name service operations on sets of objects with varying

frequencies. Client u's reference mix is represented by rul ... ruK. That is, rule is the

percentage of name server accesses performed by client u to the database partition dble.

Note that the ruk's characterize a client's log£cal access patterns.

Physical access patterns, the fraction of accesses to individual name servers by each

client, are dependent on both the frequency of accesses to the name service database entries

(ruk for k = 1 ... K) and the mapping of data to storage sites (Sle for k = 1 ... K). The

local£ty of reference is the degree to which local name servers are accessed more frequently

than distant servers. Locality in the physical access patterns is desirable since local servers

can be accessed Illore cheaply than distant name servers. The amount of locality achievable

in practice depends on the distribution of clients that are interested in a particular name

server entry.

5.2.5 Operation costs

For a given name server, N S i , Cui specifies the cost of accessing that nanle server

remotely from client u. This cost includes both the communication and processing costs.

Hence, Cui is the sum of di and Cui.

For a particular operation 0 E {lookup, update}, Louie represents the total cost of per­

forming operation 0 by client u on information in database object dbk • For a centralized

name service with a single server, NSmain, Louk would be simply Cumain. However, for a

distributed service, Lou.k includes the cost of locating the desired data; this name resolution

cost may involve retrieving configuration data from one or more name servers. Louie is often

denoted as simply Luk in cases where the particular operation is clear from context or where

Llookup ule = Lupdate uk·

The cOIuplete cost of operating on nanle server infornlation, such as performing a name

lookup, varies per client according to the client's location relative to the various name servers

and the client'8 reference mix. The expected value of this cost for client u, denoted by E(L u),

is weighted according to the client's reference mix:

K

E(Lu) = L TukE(Lu.k}. (5.1)
/c--:-l

Deriving an optimal configuration would involve minirnizing the sum of the expected costs

for all clients.

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 5. PERFORMANCE ANALYSIS

def
N S 1 ... N S N = set of name servers

1 U def l' . . . = name server c lents

db l ... db K ~f name server database objects

Sk d~ set of authoritative name servers for dbk

r uk ~ fraction of client u ~ s accesses to dbk

def f ... h NS f l' Cui == cost 0 communIcatIng WIt i rom C lent u

di ~f cost of performing an operation at N 8 i

def
Cui = Cui + di

S F ~f set of failed name servers

Figure 5.1: Name service model parameters.

5.2.6 Summary

81

This section advanced a model for distributed name services. The parameters of the

model, which characterize the name service's configuration, are summarized in Figure 5.1.

When applying this model to study a proposed name service configuration, system adminis­

trators have control over N, dbk, and 8k. The parameters, di , rub and Cui, to a large extent,

should be measured or projected. The communication costs, Cui, however, also depends

upon the placement of servers. which can be controlled.

Clients and system designers are primarily interested in the expected name service op­

eration cost E(Lu), which is a function of these parameters. Studying the effects of various

configuration choices can be accomplished by varying a parameter. while holding the others

constant. and observing changes in the expected cost. Typically. the cost values for the

parameters are specified in units of tirne so that Lu gives an expected level of performance.

Alternative measures of cost. such as dollars. could also be used.

5.3 Performance of Individual Servers

The model is not concerned with being able to predict the performance of a particular

name server since standard performance evaluation and improvement techniques can be

applied to analyze and enhance an individual server' s level of performance. Also, additional

name servers can be employed if existing ones beconle overloaded. Instead, the perfornlance

XEROX PARC. CSL-85-1. FEBRUARY 1985

82 DISTRIBUTED NAME SERVERS

of various servers is used indirectly to gauge the distributed performance of the overall

service. In the model, N Si 's performance is completely embodied in the database operation

cost, di, and the processing component of the communication costs between clients and the

server, Cui,

5.4 Name Server Placement

Generally, the placement of name servers in the distributed environment is dictated

by administrative considerations, rather than by performance. An organization provides

the name servers required to manage the objects created and owned by members of that

organization, or else arranges to lease time and storage from another organization's server.

The location of servers has an indirect influence on performance through the database objects

that are assigned to particular name servers and the cost of communicating with these

servers. This influence may be substantial for very large distributed communities.

As an example of a widely distributed environment, consider the network topology of

the Grapevine system (as of summer 1983 [Schroeder et al. 84]) presented in Figure 5.2.

The circles represent Ethernet local area networks, while the lines are long distance links

with data rates of either 56 kilobits/second or 9.6 kilobits/second. The local networks are

numbered from 1 to 12. The rectangles depict the various name servers, labeled from A to

Q.
In an existing environment of this sort, the values for Ci could be easily obtained from

measurement studies. For the sake of example, suppose that estimates for these quanti­

ties are needed, as would be required if the system were in the planning stages. Table 5.1

enumerates the costs of communicating between a client on each network and each name

server using the following simple algorithm: Communication costs are normalized so that

communicating over a local Ethernet incurs one unit of cost, denoted by T. Assuming that

the communication cost is proportional to the data transmission rate of the communication

medium 1 , transmission over a 56K bps line costs approximately 54T, and similarly~ com­

munication over a 9.6K bps line costs around 312T. The host to host communication costs.

then, are derived by adding the costs of the various communication links traversed; added

costs due to delays in the gateways have been ignored.

1 This assumption is made solely for the sake of example. Studies show that the cost of communication over

high-speed local networks actually bears little relationship to the bandwidth. For long-haul slow-speed

communication lines, however, the assumption used in this example is more realistic.

XEROX PARC. CSL-8S-t. FEBRUARY 1985

CHAPTER 5. PERFORMANCE ANALYSIS

Interconnections:

_ ethernet interface

_ ethernet

56Kline

_ 9.6Kline

Figure 5.2: A sample internet.

83

This is the configuration of Grapevine servers in everyday use at the Xerox Palo Alto Research
Center as of summer 1983.

XEROX PARC. CSL-85-1. FEBRUARY 1985

84 DISTRIBUTED NAME SERVERS

Mom to server
network ABC D E F G H I

1 1 1 1 56 56 111 111 166 166
2 56 56 56 1 1 56 56 111 111
3 111 111 111 56 56 1 1 56 56
4 166 166 166 111 111 56 56 1 1
5 479 479 479 424 424 369 369 314 314
6 682 682 682 627 627 682 682 737 737
7 682 682 682 627 627 682 682 737 737
8 682 682 682 627 627 682 682 737 737

I
9 369 369 369 314 314 369 369 424 424
10 682 682 682 627 627 682 682 737 737

\
. 11 682 682 682 627 627 682 682 737 737

12 424 424 424 369 369 314 314 369 369 1-----0-----++-------------;
~ from . to server
!_n_e_tw_o_r_k~I ___ J ____ K _____ L ____ M ____ N ____ O _____ P ____ Q~ __ ~,
I 1 166' 479 682 682 369 682 682 424

2 111 424 627 627 314 627 627 369
3 56 369 682 682 369 682 682 314
4 1 314 737 737 424 737 737 369
5 314 1 1050 1050 737 1050 1050 682
6 737 1050 1 627 314 627 627 627
7 737 1050 627 1 314 627 627 627
8 737 1050 627 627 314 627 627 627
9
10
11
12

424 737 314 314 1 314 314 314
737 1050 627 627 314 1 627 627
737 1050 627 627 314 627 1 627
369 682 627 627 314 627 627 1

Table 5.1: Communication costs.

Entries are derived for the internet depicted in Figure 5.2 and listed in units of T, where T
represents the'cost of communicating over a local ethernet.

XEROX PARe. CSt-85-I. FEBRUARY 1985

CHAPTER 5. PERFORMANCE ANALYSIS 85

Notice that the costs of communicating between a client and various servers may differ

by several orders of magnitude. Fortunately, the distribution of database objects among

servers can alleviate much of these differences by storing narne server information close to

where it is frequently used.

5.5 Assigning Authority

5.5.1 Basics

The association between an adopted naming convention and the assignment of authority

for managing the name space has been previously explored [Terry 84]. This section uses

the model of a distributed name service to quantify the cost implications of various classes

of existing naming conventions. The analysis assumes that a single copy of each database

object exists; the benefits of replicating database objects are studied in a later section. Since

the cost of lookups and updates are identical under this assumption, the analysis is worded

in terms of name server lookups without loss of generality.

Although a client's reference mix, which the system designer has no control over, con­

tributes significantly to the client's expected name server lookup cost, it plays no part in the

cost of retrieving or updating an individual object's attribute. Thus, the following analysis

concentrates on formulating Lub and ignores the clients' access patterns in E(Lu). The

client subscript u is left out of the formulas to increase their clarity; this can be safely

done since the performance observed by a particular client is independent of the locations

of other clients. It should be kept in mind that Lk, which really varies from client to client,

is a shorthand for Luk , and Ck is a shorthand for Cuk'

5.5.2 Flat name space

To start with a simple case. consider managing a flat name space. The two basic alter­

natives are giving a single name server authority over the complete name server database

or choosing an arbitrary authority for each database object and using broadcast or searches

to resolve names. In Chapter 2. both of these approaches were ruled out for performance

reasons, among others.

In the first case, with Sk = {N Scentral} for all k. the name server can perforrn any

operation since it contains the complete set of information about all named objects in the

XEROX PARC. CSL-85-1, FEBRUARY 1985

88 DISTRIBUTED NAME SERVERS

environment. Thus, the retrieval cost is simply:

(5.2)

This approach appears very attractive in the cost of name server lookups, though, in reality,

the single name server would have to be centrally located in the environment and hence the

cost for accessing it, Ccentral, would generally be much greater than the cost of accessing the

closest server in a distributed name service, Cmain'

For Sic = {N Si} with the authoritative name server for an object chosen at random, if the

name service contains no configuration data, locating the desired attribute may necessitate

querying each name server in succession until the authoritative one is discovered. The

retrieval cost becomes
i

Llc = E Cj, (5.3)
:i=l

assuming that the name servers are queried in numeric,al order. This second approach is

costly in terms of name server interactions since half of the name servers must be accessed

on the average to retrieve the object's information. As noted earlier, neither approach is

very practical for large environments.

If authority attributes are introduced, so that the set Sic is maintained at all name

servers for all database objects while the database itself remains distributed as proposed in

section 3.2.2, then the cost can be reduced to

(5.4)

The first interaction (Cmain) resolves the name while the second (Gi) performs the desired

operation; the extra database access (dmain) is required to retrieve the internet address of

the authority.

At first glance it may appear that the cost in Equation 5.4 has more than doubled that of

Equation 5.2 for a centralized server. Actually, E(Gi) is approximately the same as Ccentral
~

assuming that data is distributed randomly and referenced with equal likelihood. Moreover,

Gmain = min{Gt, ... , GN }, so the difference may be quite small. With locality of reference,

studied in section 5.8.1, E(Ci) could be significantly less than Gcentral, and helice, the lookup

cost for a distributed name service may actually be less than that for a centralized service.

5.5.3 Physically partitioned name space

With a physically partitioned name space, a one-to-one mapping exists between database

objects and name servers. That is, K = N and Sic = {NSIc }. Even though the authority for

XEROX PARe. CSL-85-1, FEBRUARY 1985

CHAPTER 5. PERFORMANCE ANALYSIS 87

an object can be explicitly recognized from its name, two accesses are required to perform

a name server operation: one to locate the naming authority and one to access the data. A

special case arises if the desired naming information is stored at the primary name server;

in this case, only a single access is required since the main name server can recognize that

it is the authority and return the data directly. The cost of a lookup is thus

L = { Cmain + Cic if k f. main,
Ic Cmain if k = main.

(5.5)

However, if the total number of name servers is small, clients can easily cache the network

addresses of the various name servers, thereby reducing the cost to

(5.6)

The access to the local name server has been eliminated since the individual hosts are knowl­

edgeable enough to query the correct storage site directly. The resulting lookup algorithm

is optimal given the assumption that naming data is stored exactly once.

5.5.4 Organizationally partitioned name space

Suppose the name space is partitioned according to administrative organizations and that

each organization's data is managed by a single name server, Sic = {NSd. H each name

server knows which server has responsibility for each organization, name server queries can

be processed in two steps as before. First. a client's local name server maps the organization

name to the authoritative name server for that organization and returns its network address.

Then the remote name server is contacted to retrieve the appropriate naming information.

The lookup cost is basically the same as Equation 5.4 for a flat name space using authority

attributes for name resolution.

(5.7)

The major difference is that the organizational clustering serves to reduce the total amount

of configuration data compared to a flat name space with an authority attribute per name.

Note that, unlike physically partitioned data, two database retrievals are always required

since a name server can not determine whether or not it is the authority for the desired data

without consulting the local database. One round trip transmission cost can be saved,

however, if the primary name server retrieves and returns the name server entry directly

upon discovering that it is the storage site for the desired data. Thus,

(5.8)

XEROX PARCo CSL-85-1. FEBRUARY 1985

88 D ISTRIB UTED NAME H ERVERS

Often, rather than all of an organization's objects having identical authorities, the au­

thority for objects is distributed within an organization. In this case, the authority for each

organization contains inforrnation about which servers are authoritative for objects within

the organization; the initial context need only contain a list of authorities for top-level or­

ganizations. The resolution chain for nanles is thus increased in length, and the cost of an

operation becomes,

(5.9)

The nesting in the formula corresponds to the iterative name resolution calls.

The analysis for longer name resolution chains is a straightforward extension. If the name

resolution activity performs a context binding at the list of servers, N Sil , N Si'l' ... , N Sit'

where i 1 = main. then,
t

Lk = L:(Ci j + di) + Ci. (5.10)
j=l

Therefore, assuming database objects are uniformly distributed throughout the environment,

the expected cost of retrieving an attribute stored in database object dbk is given by,

(5.11)

Of course, each step in the resolution chain does not necessarily require communication

between the client and a name server. For example. if NSij = NSij~l for some 1 ~ j <

t, then the communication cost Ci can be avoided. Thus, the formula given for Lk in
J

Equation 5.10 can be considered an upper bound on the cost of a name server operation.

5.6 Benefits of Replication

Assuming that a read-any /write-all algorithm for replicated data is adopted, replicating

database objects decreases the cost of name server lookups, but increases the cost of update

operations. The main cost of increased replication results from the need to maintain consis­

tency among the various copies of a database object when updates are applied to the object.

Although the update cost depends on the exact algorithm employed for maintaining consis­

tent replicated copies. a simple estimate can be obtained by adding the costs of performing

an update at each individual authoritative naIIle server. For an organizationally clustered

name space, the update cost ran then be estimated by,

L'J.pti.atek = Cmain + dmain + L Ci . (5.12)
NS,ESk

XEROX PARCo CSt-8S-I. FEBRUARY 1985

CHAPTER. 5. PERFORMANCE ANALYSIS 89

Observe that the update cost is an increasing function of the degree of replication.

On the other hand, with replicated data~ any available copy of an organization's name

server data can be used to answer queries. For performance reasons, accessing the closest

authoritative name server for the named object is generally desirable. Assuming that the

closest authoritative name server, N Smink E Sk, can be determined with negligible cost2 ,

the name server lookup cost becomes

(5.13)

This formula looks similar to previous fornmlas, such as Equations 5.4 and 5.7. However,

the cost should be less with replicated data since the name server accessed by various clients,

N Smink' could differ from client to client. whereas before each client was forced to access the

same server. Nevertheless, without some knowledge of how the authoritative name servers

are selected and how many exist for a given database partition, comparing the costs of the

different name space management techniques is very difficult.

One simple approach would be to distribute R copies (R ~ N) of each database object

uniformly. In other words. R authoritative name servers are chosen at random for each

named object. Without loss of generality, assume for the moment that the name servers

are ordered relative to a particular client such that Ci ~ Cj for i < j and N S1 = N Smain'

Under this assumption, the expected lookup cost can be computed as follows~

N

E(L'ookupk) = Cmain + dmain + L Prob(i = mink)Ci (5.14)
i=l

(5.15)

This formula allows one to quantitatively determine the benefit of replication on performance

by increasing the value of R. Of course. the benefits that can be achieved depend greatly

on the physical configuration of the internet and the placement of the name servers.

The random selection of a fixed number of storage sites for database objects is a partic­

ularly naive configuration technique. Generally, if the client reference patterns are known,

2For a large environment with a substantial number of name servers, detennining the closest server may not

always be feasible. In the Grapevine system, each registration server maintains a complete list of the other

servers ordered by distance [Schroeder et al. 841. For other environments, it may be sufficient for a server

to keep lists of neighboring servers; if none of the neighbors are authoritative for the current context or

object, meaning all authorities are distant. then an authority could be arbitrarily chosen without unduly

impacting performance.

XEROX PARCo CSL-85-1, FEBRUARY 1985

90 DISTRIBUTED NAME SERVERS

,

client's replication factor R =
network 1 2 3 4 5 6

1 297.35 145.99 84.83 56.72 41.53 32.15
2 261.76 124.96 74.40 53.69 43.39 36.94
3 271.47 125.76 74.24 53.63 43.38 36.94
4 300.59 142.34 82.65 55.96 41.34 32.12
5 576.76 398.65 323.48 281.71 251.52 226.25
6 645.18 548.70 488.14 435.57 387.66 343.13
7 645.18 548.70 488.14 435.57 387.66 343.13
8 976.59 896.22 849.47 808.41 769.71 732.08
9 369.00 307.04 278.71 256.05 235.77 216.55
10 645.18 548.70 488.14 435.57 387.66 343.13
11 645.18 548.70 488.14 435.57 387.66 343.13
12 439.41 347.85 302.26 271.68 246.62 223.93

avg. 506.14 390.30 335.21 298.34 268.66 242.46
~% - -22.89 -14.11 -11.00 -9.95 -9.75

--

Table 5.2: Effects of replication on lookup costs.

Entries give the expected cost of a name service lookup in units of T.

the cost of lookup operations can be reduced by distributing data intelligently to coincide

with its regions of interest. The cost formula derived above in Equation 5.15 based on

randomly selected storage sites thus provides a good indication of the minimum achievable

performance.

Using the configuration in Figure 5.2 and the associated estimates of communication

costs given in Table 5.1 along with Equation 5.15, Table 5.2 presents the effects of replication

on the expected performance of name server retrievals assuming that copies are uniformly

distributed. In this example, the database access cost, di , is taken to be 6T in accordance

with experience indicating that, for retrieval over a local network, the cost of database

queries generally dominates the communication cost by about a factor of 4 to a factor of 8 .

. The number of copies of each partition has been varied from 1 to 6. The expected cost of

a name server query is computed for a client on each of the 12 networks and then averaged

over all networks. The last line of the table indicates the change in the average expected

cost resulting from an additional copy of each database partition.

On the average, having two copies of the data instead of one reduced the expected lookup

cost by over 22%. For networks 1-4, which ar~ connected by high speed lines. improvements

of over 50% are achieved. Notice that clients on network 8, which has no local name server

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 5. PERFORMANCE ANALYSIS 91

and is separated from the rest of the world by low speed lines, suffer the worst performance.

Furthermore, replication does not help thenl as much as others. Networks 1 and 4, which

have three local name servers apiece, benefit the most from replication. In all cases, adding

an extra copy of the name server data has a substantial impact on performance regardless of

the replication factor. These perfonnance increases are due entirely to reducing the amount

of communication between clients and very remote name servers.

5.7 Name Server Failures

With partially redundant Barne server data, the failure of a name server should poten­

tially degrade perfornlance. hut should not render any information unavailable provided

the nurnber of failures is les8 than the degree of replication. If the number of name server

failures, F, exceeds the degree of f(.lplication, R, then all responsible nanle servers for the

inforrnation may have crashed. The probability that a given piece of data is inaccel:!sible

becomes
R-l F-l

Prob(data inaccessible) = II --
1=0 N-1

which is always zero for F < R.

Basically, failures introduce a variability in the degree of replication of database objects.

Not only do different database objects have different numbers of available copies depending

on which servers are down, but also a given object's degree of replication varies over time.

The effect of name server failures on performance can be gauged by incorporating such

failures into the previous lookup cost formula. For the set of failed name servers selected at

random, SF with F < R, the lookup cost forrnula rernains as in Equation 5.14,

N

E(Llookupk) = Gmain -!- dmain + L Prob(i = mink) Gi,
i=l

(5.16)

But the probability of retrieving the desired resource information from name server "

Prob(i = mink), becomes substantially more complex. The name server operation on dbk

is performed at N Si if and only if name server i stores the data (N Si E S k), is still alive

(N Si f/- SF), and all authoritative servers that are closer to the requesting client are inac­

cessible (NSj E SF Vj such that NSf E Sk n j < i).

The probability of name server i being available is simply,

F
1- jj'

XEROX PARe. CSL-85-1. FEBRUARY 1985

92

client's
network

1
2
3
4

5
6
7
8
9
10

DISTRIBUTED NAME SERVERS

number of failures F =
o 1 234

---------i
41.53 46.00 51.42 58.08 66.36
43.39 46.42 50.22 55.06 61.32
43.38 46.39 50.17 55.01 61.31

65.19
1

293.53

1

41.34
251.52
387.66

45.64
260.40
401.75

387.66 401.75
769.71 781.09
235.77 241. 73
387.66 401.75

50.83 57.21
270.13 281.03
416.19 431.01
416.19 431.01
792.65 804.42
247.87 254.24
416.19 431.01

446.33
446.33
816.53 i

260.92
446.33

11 387.66 401.75 416.19 431.01 446.33
12 246.62 253.99 261.77 270.09 279.14

i avg. ! 268.66 277.39 286.65 296.60 307.47
i ~ %! __ 3.25 3.34 3.47 3.66
' ______ ----- -.:.- ----------------- --------------------'

Table 5.3: Effects of failures on lookup costs for R = 5.

Entries give the expected cost of a name service lookup in units of T.

Conlbinatorics says the probability that q authoritative name servers are closer than N Si is

given by,

(i-l)(N-i)
q R-q-l

---T~ r---
while the chances that all q of therIl are dead given that N Si is alive is,

q 1 F .
-) n N-l-j

J =0

Putting this all together and enumerating over possible values of q,

(i-l)(N-i)
. . R--l q R - q - 1 F q --1 F _ j

Prob(t = mtnk) = L ---- --- [1 - -J II .'
FO (~) N j=O N - 1 - J

(5.17)

Returning to the sarnple distributed computing environment in Figure 5.2. Table 5.3

presents the effect of failures on the cost of retrieving nalne server infornlation. Again,

the results are given for clients OIl each network and averaged over all networks. These

XEROX PARe. CSL-85-1. FEBRtiARY 1985

CHAPTER 5. PERFORMANCE ANALYSIS 93

results indicate that name serv(>r failures actually degrade performance by very little for a

replication factor of 5. Even if ahnost one fourth of the name servers are down, the expected

lookup cost increase8 by only 15% 011 the average, and around 50% for the worst case.

The availability of name server data. not perfonnance. appears to be the primary concern

when considering nanle st'rver fai1nres. However. recall that the simple name server model

used in this chapter assumes that the load on servers does not vary over tinle. With fai1ures~

added congestion at servers would likely increase the cost of nanle service operations more

than the analytical results suggest.

5.8 Exploiting Client Behavior

5.8.1 Locality of reference

A name service client" s behavior is characterized by the frequency of operations it per­

forms and the database objects those operations affect. Recall that a particular client's

reference mix is represf'nted by a list of the probabilities of accessing individual database

objects. Tu1 ... TuK for client 'U. and that the effect of the client's referencing behavior on its

expected operation cost is as given in Equation 5.1:

K

E(Lu) = L TukE(Luk)' (5.18)
k==1

Locality of reference occurs if the most frequently accessed database objects are those that

can be operated on with the lowest expected cost. generally objects that are in the proximity

of the client.

If the client references all database objects with equal likelihood, T uk = T ul for all

1 ~ k, l ~ K. then the overall expected operation co~t does not depend on the particu­

lar assignment of authority, assuming that all nanle servers are assigned the same number

of database objects. Even if database objects are referenced with varying frequencies, the

expected lookup cost remains independent of the client's particular reference mix as long as

the assignnlent of authority for database objects is performed arbitrarily.

As an example. for a simple organizationally partitioned name space. the expected cost

obtained fronl plugging Equation 5.7 into Equation 5.18 is

K

E(Lu) = L TukE(Cu main + du main + Cui).
k 1

K

= L Tuk(Cu main + du main + E(Cud)·
k-=1

XEROX PARCo CSL-85-1. FEBRUARY 1985

(5.19)

94 DISTRIBUTED NAME SERVERS

If the authority for database objects is randomly distributed among name servers, that is, the

storage site for a database object is chosen arbitrarily, then E(Cui) = Cu and Equation 5.19

becomes
K

E(Lu) = (Cu main + du main + Cu) E rule
1e=1

= Cu main + du main + Cu'

Note that this expected cost is independent of the values for rut .. · ruK'

(5.20)

Substantial gains in the expected operation cost can only be achieved by storing data

close to where it is frequently used. In other words, E(Lu) is reduced if for two database

objects dble and db" Lule < Lui when rule> ru,. Fortunately, localities of interest naturally

arise in large distributed systems. For example, clients residing in a local environment, such

as Berkeley, are presumably most often interested in objects created within that environ­

ment, and Inuch less frequently interested in referring to distant objects. The assignment of

authority for storing database objects should be done intelligently to exploit the measured

or expected locality of interests. Replication can be used in cases where two geographically­

distant clients share certain localities of interest. Chapter 6 discusses the results of an

experiment to measure the locality present in the Grapevine system.

5.8.2 Lookup/update ratio

A second aspect of clients' referencing behavior that can· be exploited to reduce the

expected name service costs is the frequency of various operations, such as the ratio of

update to lookup operations. While E(Lu) is the expected cost of performing a given name

service operation, the overall cost incurred by a particular client, E(TOT ALu), is the sum

over all operations, weighted by the probabilities of those operations. For the two operations,

lookup and update, this is given by

E(TOT ALu) = Prob(lookup)E(L'ooleupu) + Prob(update)E(Lupdate u)

where Prob(lookup) + Prob(update) = 1.

(5.21)

Generally, techniques that reduce the expected cost of one operation increase the cost

of another. This is, choices can be made that trade off the costs of different operations. For

example. as demonstrated earlier in this chapter, increasing the replication factor of database

objects improves the cost of lookups. but renders updates more expensive. The proper

choices for configuring the name service thus depend on the expected ratio of operations.

Probe lookup) / Probe update). For Prob(lookup) > > Prob(update), efforts should be made

to reduce E(L'ooleup u), and vice versa for Prob(lookup) < < Probe update).

XEROX PARe. CSt-8S-I. FEBRUARY 1985

CHAPTER 5. PERFORMANCE ANALYSIS 95

Given that name services are primarily used to locate and maintain information about

named objects, and that long-lived objects move infrequently, one would expect name service

lookups to be much more prevalent than updates. Therefore, one's intuition would be to

optimize the cost of name service lookup operations at the expense of updates.

5.9 Summary

Once a naming convention and associated Ilame space management strategy have been

selected, the observed performance of name service operations is dictated primarily by the

placement of the name servers, the distribution of the name service database, and the pat­

terns of reference to name service information. The simple analytical model of a distributed

name service presented in this chapter allows one to quantitatively measure the high-level

impact of a name service's configuration on a given client's level of performance.

Since the costs of communicating with name servers in a large distributed computing

environment may vary from client to client and server to server by several orders of magni­

tude, lllinimizing the number of interactions with servers and localizing those interactions

is the key to low operation costs. The name management policy adopted determines the

amount of communication required to resolve a name and access the appropriate database

object. Reducing the cost of this communication is achieved mainly through replicating

name service data and exploiting inherent localities of client r~ferences.

The random selection of a fixed number of storage sites for database objects was analyzed

as a particularly naive configuration technique. For such a scheme, the degree of replication

of database entries was shown to considerably impact the cost of accessing a given database

entry. In cases where some locality of reference exists, and data is distributed intelligently

so as to coincide with its regions of interesL the cost formulas based on randomly selected

storage sites can serve as a lower bound on performance.

XEROX PARCo CSL-85-1. FEBRUARY 1985

96 DISTRIBUTED NAME SERVERS

XEROX PARC. CSL·8S·I. FEBRGARY 1985

Chapter 6

Measurelllents of Grapevine

Experimental measurements of Xerox's Grapevine registration service indi­
cate properties of clients' reference patterns that can be exploited to enhance
performance, including large localities of interest. The ratio of name service
lookups to updates initiated by electronic mail clients, which is high for indi­
viduals, is surprisingly low for group names in Grapevine. The measurements,
used as inpu ts to the model presented in the previous chapter, derllonstrate the
benefits of intelligent name service configuration and client reference locality on
name service response times.

6.1 Basics of the Experiment

6.1.1 Goals

97

The previous chapter discussed several aspects of clients' behavior that have drastic in­

fluences on the performance of name service operations. It also suggested ways in which,

given knowledge of the clients' behavior, such behavior could be exploited to improve per­

formance. Prompted by these analytical results, an experiment was undertaken to obtain

actual measurements of the amount of reference locality that exists in a large distributed

community; tabulations of the frequency of various operations performed by name service

clients were also desired.

6.1.2 Why Grapevine?

The Grapevine registration service was chosen as the object of the study since it is

perhaps the only widely distributed name service with a sizeable user community. Close to

5000 individuals within the Xerox Corporation use Grapevine daily to exchange electronic

messages. At the time of the study, the Grapevine system consisted of 20 dedicated servers

XEROX PARe. CSL-85-I. FEBRUARY 1985

98 DISTRIBUTED NAME SERVERS

distributed throughout the continental United States, with one server in Canada and one in

England. Its implementors claim that, as of the Summer of 1983, over 8,500 messages were

submitted to the Grapevine nlail service in a typical day [Schroeder et al. 84]. Figure 6.1

shows the interconnection topology of the 17 Grapevine servers that existed at this time.

Large widely distributed systems that are heavily relied upon by users to perform their

daily work are difficult to modify. Adding hooks to such a system to keep statistics and ob­

tain measurements would be painful at best, probably unacceptable. Fortunately, Grapevine

servers maintain logs of their activities. Although these logs were designed as a tool to mon­

itor and debug the system [Schroeder et al. 84], they contain sufficient data to derive most

of the desired numbers. A snapshot of Grapevine's logs thus served as the basis for studying

how Grapevine is used by its clients.

6.1.3 Grapevine's logs

Each Grapevine server keeps a local log, consisting of 120 512-byte Alto pages treated like

a circular buffer [Birrell 83]. The log contains a list of one-line log records pertaining to both

the registration and mail services. Date records start with octal 377 and give the current

date, such as "10-Dec-83". All other log records consist of an indication of the current

(local) time, relative to the last date record, followed by a description of some activity. For

example, if the server "Cabernet" was booted at time 17:12:38, it would write a log record

of the form,

17:12:38 Grapevine: Registration Server Cabernet.gv. Mail Server Cabernet.ms

The contents of individual log records depend on the particular activity being logged. No

explicit relationship exists between adjacent log records other than their chronological or­

dering.

When half of the server~ s log fills up, the server dumps it to a file server while the other

half is being used. Forty files containing full logs are kept on a file server for each Grapevine

server. These files are themselves treated like a large circular buffer. that is. the dumping

of a server's log causes the contents of the oldest log file to be overwritten. Forty log files

(2,457,600 bytes) should be large enough to hold a week's history [Schroeder et al. 841.

6.1.4 Retrieving, parsing, and analyzing log data

The first phase of the study involved retrieving each server's log files from the appropriate

file servers. Using the Cedar programming environment, this was accomplished from a

XEROX PARC. CSL-8S-I. FEBRUARY 1985

CHAPTER 6. MEASUREMENTS OF GRAPEVINE

Interconnections:

_ ethernet interface
_ ethernet

_ 56Kline

- 9.6Kline

Figure 6;1: Topology of the Grapevine internet.

XEROX PARe. CSL-85-1. FEBRUARY 1985

99

100 DISTRIBUTED NAME SERVERS

program using a file transfer protocol; even the servers in Canada and England could be

easily accessed. The logs files were then concatenated into a single file for each server, being,

careful to preserve the records' chronological ordering.

This provided a snapshot of Grapevine's activity for a certain period of time, the period

varying from server to server based on its amount of activity. Some servers had months of

log data while others had barely a week's worth. For consistency, each server's log file was

pruned to span exactly one week. That is, all records outside of the range 00:00:00 PST

December 4, 1983 to 23:59:59 PST December 10, 1983 were discarded 1. This left about 20

megabytes of log data to be analyzed.

The templates for various log records can almost always be identified by the record's

first word. The parser built to read the log data takes advantage of this fortuitous property

in the following way: the first word of a log record, denoting the record's type, is read and

sequentially compared against a list of valid record types. IT a match is found, the semantic

routine associated with the record type is called to parse and analyze the remainder of the

record. This allows new semantic routines that perform different types of analyses to be

introduced without changing the basic parser. Uninteresting types of log records were given

"null" semantic routines that simply skipped to the end of the record.

Initially, a routine that incremented a counter associated with the particular record type

was used as the semantic routine for all log records. The resulting counts were then used

to arrange the list of valid record types. by their frequency of occurrence. The performance

improvements accrued from this reorganization were much appreciated since parsing the

complete 20 megabytes of log data took several hours on a Dorado personal cornputer.

6.2 Locality of Reference

6.2.1 Methodology

A system's locality of reference was defined in Chapter 5 as "the degree to which lo­

cal name servers are accessed more frequently than distant servers.·~ In Grapevine, ~·lo­

car' can be interpreted as belonging to the same registry since registries correspond to

geographical divisions. Localities of interests can be ascertained with a matrix that is

indexed in both dimensions by registry names; rows of the matrix indicate the fraction
-----------------------.------

IOften a certain activity. such as the delivery of a message, generates several log records. Sunday at

Midnight, a time of low network activity. wa:; chosen as the cutoff point to help minimize the chance of

discarding a subset of related log records.

XEROX PARC, CSL-85-1, FEBRUARY 1985

CHAPTER 6. MEASUREMENTS OF GRAPEVINE 101

of name service operations requested by members of the row's registry concerning names

in the columns' registries. A diagonal matrix would suggest strong locality of refer­

ence.

If Grapevine logged all name service operations, then a locality matrix could be easily

constructed from the collected log data. Unfortunately~ to conserve space in the log file,

Grapevine does not record Harne service lookups. Thus, a different strategy was needed:

measures of the locality of reference in Grapevine were obtained indirectly by observing

the electronic mail traffic within and between registries. Although, this does not account

for all clients of Grapevine's registration service, the mail service is by far that largest

client.

Grapevine's log data includes records of many of the events occurring in the delivery

of an electronic message. Figure 6.2 depicts the log records written at various stages in

the delivery process. Each message, upon creation, is assigned a unique identifier called

a postmark [Birrell et al. 82]. The first log record written concerning a particular message

indicates the Ines8age~s postmark and its sender. When the complete message as been

accepted for delivery by a Grapevine server, it is deposited in an input queue~ and the

number of explicit recipients (before distribution list expansion) is logged along with the

message's size. After the mailboxes for all recipients have been located. two log records

are generated: one categorizes the recipients as being local, remote, bad. and so on, while

the second log record enumerates the names of the recipients. The message is then placed

on forwarding queues to be sent to the proper servers for remote recipients. Eventually, a

recipient reads his nlaiL including the forwarded message, and an indication of how many

messages were retrieved by the user is placed in the log.

From the collected Grapevine log data, the "'Created" and "RecipientLog" records were

used to construct the desired locality· matrix. For each of a message's recipients, a name

service lookup must be performed to determine where the recipient's mailboxes reside; these

lookups are directly attributable to the message's sender. Thus, the sender and list of

recipients for every message are sufficient to generate a locality matrix for Grapevine mail

traffic. In this matrix~ the name server lookups resulting from processing mail messages are

accumulated according to the registries of the mail recipients.

Two passes over the log data were required to build the locality matrix. The first pass

parsed the '·Created" log records and built up a stable BTree whose keys were message

postmarks~ the data associated with a key consisted solely of the registry of the Inessage's

creator. Note that the records concerning a given message may be dispersed in the log files

XEROX PARe, CSL-85-1. FEBRUARY 1985

102

U­
S
e

DISTRIBUTED NAME SERVERS

r ___ ..
···································Created <msg>: Sender <RName>

s
e
r
u
e
r

s
e
r
u
e
r

U­
S
e

...... •· ·· .. · · .. ·Client input: <msg>, <n> recipients, <n> words

E:t Oeli~~red <msg>, <n> local, <n> remote, .. .
~ · ·-ReclplentLog <msg>: <RName> <RName> .. .

.... · .. ··· ····· .. ·Forwarded <msg> to <RName>

· ······ .. ······· .. ·· ··· ·Server input from <RName>: <msg>, <n> words

Et Oeli~~red <msg>, <n> local, <n> remote, .. .
~ · · · .. ReclplentLog <msg>: <RName> <RName> ...

...... · ·Mailbox <RName>: emptied, <n> messages

r ____ ..

Figure 6.2: Logging during mail delivery in Grapevine.

XEROX PARe. CSL-85-I. FEBRUARY 1985

CHAPTER 6. MEASUREMENTS OF GRAPEVINE 103

and may even be generated by different servers, but they can be correlated by the message's

postmark. The second pass read all of the "Recipient Log" records and used the BTree,

containing about 25,000 entries, to determine a ruessage's sender.

Only individual recipients, not the names of distribution lists, were counted in construct­

ing the locality matrix; although distribution lists must reside is some registry, they often

do not exhibit the geographical significance that individuals do. Conceptually, a message's

recipients can be viewed as a tree in which internal nodes represent distribution lists that

get expanded into other distribution lists or individuals. The leafs of the recipient tree, the

individuals, were used to judge the observed locality.

This methodology is sound except for a major deficiency in the logs maintained by the

Grapevine system: the complete list of recipients may not be kept in the log file. Grapevine

confines "Recipient Log" records to fit in 150 characters. That is, about ten recipient names

are logged on the average; when the "Recipient Log" record fills up, remaining recipient

names are discarded. Thus, for large distribution lists, only the first several members are

recorded. Statistically, since distribution lists are sorted by user name and not by registry

name, one can argue that the initial subset of recipients characterizes the composition by

registry of the complete list. However, in building the locality matrix, the truncation of

recipients serves to decrease the influence of large distribution lists. Whether messages sent

to large numbers of individuals exhibit different localities than those sent to a few recipients

is difficult to conjecture.

6.2.2 Results

Table 6.1 gives the percentage of lookups directed to various registries as a result of

mail sent from a specific registry, listed down the left-hand side. Only registries with more

than 100 individuals are listed, with the others bf'ing grouped together under "other". Mail

traffic to and from the Arpanet gateway is indicated under the heading " ARPA" .

The diagonal of the table indicates the amount of observed locality. For example, 65 %

of the messages originating in the Palo Alto registry (PA) are directed to recipients in the

same registry. This means that 65 % of the name server lookups needed to locate the mail

recipients can be performed locally if the "P A" registry is maintained close to its members.

The same results normalized by recipient instead of by sender. so that the columns sum to

100% instead of the rows, are presented in Table 6.2.

For the expected high degree of locality in mail traffic, the diagonal of Tables 6.1 and 6.2

would dominate. In reality, the numbers show that the ;';PA" and ··ES·· registries participate

XEROX PARCo CSL-85-1. FEBRUARY 1985

104 DISTRIBUTED NAME SERVERS

Recipients
Sender PA ES Wbst Henr Dlos Pasa Sthq Rx other ARPA

PA 65 16 5 3 2 4 0 2 1 2
ES 24 51 8 7 2 3 0 3 2 0

Wbst 22 32 28 9 3 3 1 1 1 0
Henr 21 29 13 28 2 3 0 1 3 0
Dlos 27 33 8 5 15 7 2 2 1 0
Pas a 22 8 4 2 1 59 0 1 2 1
Sthq 11 9 8 0 1 0 70 0 1 0

l Rx 33 21 2 2 1 1 0 37 3 0
I other 29 15 4 3 2 6 0 1 39 1
I ARPA ,

32 33 14 10 3 5 0 1 2 0
~

I

Table 6.1: Locality of interests in Grapevine (normalized by sender).

Entries are percentages of mail traffic normalized so that rows sum to 100.

Recipients i
!

Sender PA ES Wbst ' Henr Dlos Pasa Sthq Rx other ARPA:
PA 54 17 17 13 22 23 15 32 13 73 I
ES 17 45 22 27 25 13 10 32 25 13 I

Wbst ,5 9 24 11 9 5 8 3 7 5
. Henr 2 4 6 17 4 3 1 2 4 2

Dlos 2 3 2 2 14 3 4 2 3 1
Pas a 2 1 1 1 2 35 0 2 4 4

i Sthq 0 0 1 0 0 0 55 0 1 0
i Rx 1 1 0 0 1 0 0 23 3 0 i
I other !' 1 1 0 0 1 1 1 0 28 2
i ii

I I ARPA il 15 ! 20 27 28 23 17 6 4 13 0

Table 6.2: Locality of interests in Grapevine (normalized by recipients).

Entries are percentages of mail traffic normalized so that columns sum to 100.

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 6. MEASUREMENTS OF GRAPEVINE 105

Recipients
Sender PA ES Wbst Henr Dlos Pas a Sthq Rx

PA 42 8 6 5 4 15 2 17
-

~O I
ES 16 24 10 12 5 11 2

Wbst 13 14 31 14 6 12 4
H'enr 11 11 13 40 4 11 1 8 I
Dlos 14 12 7 7 26 19 6 9
Pasa 5 2 2 1 1 86 0 3 I

-

I Sthq 2 1 3 0 0 0 93 0
Rx 7 3 1 1 1 1 0 86 i

Table 6.3: Locality of interests in Grapevine (adjusted for registry size).

Entries are percentages of mail traffic projected for registries of equal size and normalized by sender
so that rows sum to 100.

heavily in the message traffic of all registries. For instance, of all the messages originating

in "Dlos", only 15% remains in "Dlos" while 27% and 33% is destined for "PA" and "ES",

respectively. The "Wbst" and "Henr" registries are in a similar situation. This implies

that the authoritative name servers for the "PA" and "ES" registries receive a lot of non­

local lookup requests unless these registries are freely replicated. Due to the geographical

significance of registries in the Grapevine system, naming authorities for the other registries

can be easily located close to their main clients, the members of the particular registry.

The measures of locality presented in the preceding two tables clearly confirm the sus­

picion that references to objects in large distributed computing environments do exhibit

localities of interest: Nevertheless, they are specific to the Grapevine configuration and may

not be valid for other distributed systems.

The numbers are particularly sensi ti ve to variations in the sizes of different registries.

Much of the interest in the "PA" and "ES" registries is due to their large size; both are

twice as big as any other registry. The effects of these size differences can be accounted for

by normalizing the amount of mail traffic so that the measurements represent the number
\

of messages per individual instead of the number of messages per registry. Table 6.3 gives

the percentages of message traffic normalized by sender once the registry sizes are factored

out. It indicates the expected observed locality if all of the registries were of equal size.

Notice that in all cases, unlike in Table 6.1. the diagonal percentage exceeds all others,

meaning that local traffic is always more common than remote traffic. If client references

were uniformly distributed, all of the percentages would be around 12.5%. For the first

XEROX PARe. CSL-85-1. FEBRUARY 1985

106 DISTRIBUTED NAME SERVERS

five registries listed, many of the percentages are, in fact, in the 10-15 range. An obvious

difference in basic traffic patterns, however, exists between the first five and last three

registries. The last registries, '·Pasa", "Sthq", and "'Rx", exhibit much higher localities

than expected. Once again, the need for measurements of real systems is reconfirmed.

The Grapevine nleasurements are also dependent on how individuals are assigned to

registries. IT Grapevine registries were based on organizational boundaries that were inde­

pendent of physical locations, that is, organizations were themselves globally distributed.

then different localities would result. Moreover, how to exploit those localities to achieve

gains in name service performance is unclear since clients with similar observed interests

would be geographically dispersed. In general, exploiting the locality of clients' referencing

behavior requires clustering clients with sinlilar interests so that the name service data they

frequently use can be made locally available. and hence, cheaply accessed.

6.3 Lookup/Update Ratio

6.3.1 Methodology

Grapevine's logs also contain enough data to study the conjecture that name service

lookups are much more prevalent than updates. The mail system uses the registration

service to maintain information about different types of objects: users and distribution lists.

Users are identified by individual names while distribution lists have group names. Separate

lookup/update ratios were obtained for these two types of names.

The number of lookups performed by the mail service was obtained by adding up the

nunlber of local and remotemailboxesreportedinallofthe .. Delivered..logrecords.Re­

cipient logs were used to separate the nunlber of distribution list lookups from individual

lookups. However. expanding a distribution list eventually results in lookups of individuals.

Updates to the Grapevine registration service are recorded in log records of type "'RS op".

For example, the log entries

14:38:11 RS op by 166#204. R-Name Newman.es: Create I.ndividual

14:39:14 RS op by 166#204. R-Name Newman.es: Add Mailbox Gamay.ms

14:39:33 RS op by 166#204. R-Name Newman.es: Add Mailbox CheninBlanc.ms

might result from registering a n('w eIllployee with Grapevine, while

8:55:52 RS op by 56#113. R-Name SportsCarsj .es: Remove Member Ferrari.es

9:41:00 RS op by 55#217. R-Name Gourmetsj.wbst: Add Member BCrocker.pa

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 6. MEASUREMENTS OF GRAPEVINE 107

Operation # per week
create individual 31
delete individual 25
add mailbox 116
remove mailbox 74

~---------------------------
total 246

~--------------------------

Table 6.4: Individual updates in Grapevine.

Operation # per week
create group 6
delete group 2
add self 102
remove self 64
add member 395

i remove member 420
total 989

Table 6.5: Group updates in Grapevine.

indicate membership changes to existing distribution lists. The various types of update

operations were tabulated from log records of this type.

6.3.2 Results

In a one week period, 531,039 lookup requests were presented to the Grapevine regis­

tration service by the mail service. Of the 531,039 total lookup requests, 528,338 concerned

user names, leaving 2,701 accesses to distribution lists. Table 6.4 presents the number and

variety of updates to user attributes, while Table 6.5 lists the updates to distribution lists for

the week. For individual mail clients, Prob(lookup)/ Prob(update) == 528338/246 == 2147.72.

The assumption that the cost of name service lookups dominates a client 'soverall cost has

been verified, at least in the case of mail senders and recipients. On the other hand, distribu­

tion list are updated much more frequently, Prob(lookup) / Prob(update) == 2701/989 = 2.73.

The ratio of lookups to updates for individuals and groups differ by three orders of magni­

tude!

This simple study of one name service application client. a mail system. illustrates an

important point: not only does the referencing behavior of clients vary from client to client~

but also the operation mix depends heavily on the types of named objects. Both factors

XEROX PARCo CSL-85-1. FEBRUARY 1985

108 DISTRIBUTED NAME SER.VERS

IDust be taken into consideration when designing and configuring a narne service intended

to serve a wide class of applications and rnaintain infornlation about a diversity of named

objects.

6.4 Applying the Name Server Model to Grapevine

6.4.1 Grapevine's configuration

The benefits of locality, bas~d on the localities observed for Grapevine, can now be

quantified by applying the nanle server model of Chapter 5 to the Grapevine configuration.

Recall from Equation 5.1, the expected operation cost for a particular client is analytically

modeled by
K

E(Lu) = L rukE(Luk)'
Ie: .. = 1

(6.22)

The cost of accessing a specific registry was presented in Equation 5.13 for replicated reg-

istri(>s: if a client's main server is authoritative for the registry in question then the cost is

given by Equation 5.8. That is.

L {
Cmain + dmain if NSmain E 8Jc:,

lookup uk = C't d C h'
-'main + main + min,£k ot erWlse.

(6.23)

To estimate the benefits of locality in Grapevine, the overall expected lookup costs for

various clients are computed for both a uniform reference pattern and the locality of reference

observed in the Grapevine environnlent.

Rather than obtaining actual rneasurenlents of the communication costs for the Xerox

Research Internet, the modeled costs obtained in Table 5.1 for comnlUnicating between a

client and a server are reused. COInparing Figure 5.2 with Figure 6.1 yields the associations

between the labels used for name servers in Table 5.1 and the actual Grapevine server names.

As in previous analyses, clients are identified by the local network on which they reside.

Table 6.6 indicates the registry with which clients on a particular local network are affiliated,

as shown in Figure 6.1. as well as the nlain server for each client N 8main . The authoritative

name servers for each registry were presented in an earlier paper by Michael Schroeder et

al .. and are reproduced in a condensed form in Table 6.7. The authorities are classified as

being either local, that is. in the locale of the registry's members. or remote. This table.

along with Table 5.1, determines values for Cminuk'

To enable comparisons with cornpntations of nanl(> serv(>r operation costs presented in

Chapter 5. the database access cost, di • is once again taken to be 6 tinles the cost of lo­

cal network communication. The chosen cost of database operations has no significance

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 6. MEASUREMENTS OF GRAPEVINE

client registry main server
1 PA C (Cabernet)
2 PA D (Zinfandel)
3 ES F (Mission)
4 ES H (Merlot)
5 Pasa K (PinotN oir)
6 RX L (GreeneKing)
7 XRCC . M (deChaunac)
8 Sthq N (Aurora) I

9 Wbst N (Aurora) I
10 II Henr ° (Muscat) I

I 11 !I Henr P (Catawba) J
I

I 12 II Dlos Q {Ba.~.~er~ ___ 1

Table 6.6: Associations between clients, registries, and main servers.

I registry II
Storage sites

local remote
I

PA

I ES

I
Wbst
Henr

I
I Dlos I
I

Pasa I
i -.

I A,C,D,E
I! F,G,H,I,J
I! N
Ii O,P
II Q Ii
II

i K

L

I,Q
D,O

G,P,Q
G

N.G
J,N

A,N,O
K,N

Table 6.7: Authoritative servers for Grapevine registries.

XEROX PARe. CSL-85-1. FEBRUARY 1985

109

110 DISTRIBUTED NAME SERVERS

Lookup cost for name in registry
client PA ES Wbst Henr Dlos Pas a Sthq Rx

1 13 75 130 130 130 185 20 388
2 13 13 75 75 75' 130 75 333
3 75 13 20 20 20 75 130 388
4 20 13 75 75 75 20 185 333
5 333 333 388 388 388 13 498 13
6 646 646 333 646 333 333 333 13
7 646 646 333 646 333 333 333 333
8 959 959 326 959 326 326 326 326
9 333 333 13 333 13 13 13 13 I
10 646 13 333 13 333 333 13 333
11 646 646 13 13 333 333 333 333
12 13 333 13 333 13 333 333 333

Table 6.8: Costs of accessing individual Grapevine registries.

on the comparisons performed in this section, however, since the number of database ac­

cesses in Grapevine is fixed. Locality reduces the expected lookup cost solely by reducing

communication.

6.4.2 The benefits of Grapevine's locality

The cost of a name service lookup for a name in a given registry, based on the ac­

tual Grapevine configuration, is presented in Table 6.8 for all clients and major registries.

These lookup costs were computed from Equation 6.23, along with the configuration data

in Tables 6.6 and 6.7. They are independent of the clients' particular reference pat­

terns.

Given a client's lookup costs for various registries, Equation 6.22 provides the client's

overall expected lookup cost, an average of the lookup costs for individual registries weighted

by their frequency of reference. Table 6.9 presents the expected lookup costs for all clients us­

ing both a uniform reference behavior and Grapevine's observed reference localities. For uni­

form referencing, 12.5% of the lookups are performed for each registry, that is, the expected

overall cost is simply an average of the lookup costs for all registries. Table 6.1 provided

the percentages of references for Grapevine's observed localities; a specific client's reference

pattern was determined by its registry affiliation given in Table 6.6. An expected lookup

cost was not computed for client #7 since the referencing behavior of registry "XRCC"

which has less than 100 members, is unknown.

XEROX PARC. CSL-85-1. FEBRUARY 1985

CHAPTER 6. MEASUREMENTS OF GRAPEVINE 111

I Reference pattern ratio
client I uniform Grapevine Glu

1 133.88 48.61 .36
2 98.62 29.89 .30
3 92.62 41.92 .45
4 99.50 34.77 .35
5 294.25 134.86 .46
6 410.38 379.89 .93
7 450.38 -- --

8 563.38 449.34 .80
9 133.00 214.47 1.61
10 252.12 206.34 .82

I 11 331.25 348.31 1.05 i

! 12 213.00 169.67 .80 I

Table 6.9: Expected lookup costs for Grapevine clients.

The third column of the Table 6.9 indicates the ratio of Grapevine's costs to uni.;

form reference costs. For the first five clients, locality of reference results in over a 50%

improvement in the overall expected lookup costs. Client #5's cost is particularly sen­

sitive to its locality since the cost of accessing, 6 of the 7 remote registries is about 30

times that of lookups to the local registry. Client #8 observed only a 20% improve­

ment in performance despite its 70% access rate to its own registry; its problem lies in

the lack of a local name server and the large expensive of accessing the ··PA" and "ES"

registries.

Client #9 loses big with its actual referencing behavior even though it exhibits more

locality than client #12, which experiences a moderate improvement over uniform referenc­

ing. Table 6.8 shows that Client #9 can quickly access registries "Dlos", "Pas a" , "Sthq",

and "Rx"; unfortunately, these are referenced only 8% of the time collectively, while "PA"

and "ES" receive 54% of Client #9'8 lookup requests.

The two sets of clients, #10 and #11, both belong to the "Henr" registry, have the same

referencing patterns, and are in identical positions in Grapevine's topology, as indicated

in Figure 5.2. Nevertheless, one gains from its referencing behavior while the other loses.

The major reason is that Client #10's main name server, Muscat, stores a copy of its most

frequently referenced registry. ··ES". Clients on network #11 must send lookup requests for

this registry to Muscat over two slow communication lines.

XEROX PARe. CSL-85-1. FEBRPARY 1985

112 DISTRIBUTED NAME SERVERS

Reference pattern ratio
client uniform Grapevine Glu

1 407.75 112.48 .28
2 359.63 94.88 .26
3 373.38 144.07 .39
4 407.75 166.62 .41
5 642.50 201.09 .31
6 548.38 401.93 .73
7 627.50 - -
8 860.50 460.62 .54
9 312.75 267.16 .85
10 548.38 437.33 .80
11 548.38 437.33 .80
12 424.12 344.19 .81

Table 6.10: Expected lookup costs without remote authorities.

6.4.3 The benefits of remote authorities

The expected cost of perfor.ming a name service lookup is highly dependent on what

queries can be answered locally and which ones must be transmitted over slow communica­

tion lines. The previous section illustrated that simply storing a copy of a remote registry at

a local server can substantially reduce a client's overall expected lookup cost. If Grapevine

servers were only authoritative for a single registry, the registry governing their local area,

then one would expect nluch higher lookup costs.

Table 6.10 is similar to Table 6.9 except that the cost for querying names in various

registries are computed as if only local authorities existed for each registry, the authorities

given in the 4'local" column of Table 6.7; name server "N", Aurora, is taken to be the

authority for the "Sthq" registry. In this case, the overall expected lookup costs for uniform

reference patterns always exceed those for the measured localities in Grapevine. Since

the only cheaply accessed registry is the requestor's own registry, the improvements with

Grapevine's referencing behavior ~tems from a client's higher than average frequency of

references to the local registry.

6.4.4 Comparisons along two dimensions

The lookup costs presented in Tables 6. 9 and 6.10 are reproduced in the form of a bar

graph in Figure 6.3. For each client four overall expected lookup costs have been computed;

the four results derive from two independent factors that affect the cost of name service

XEROX PARC. CSL-85-1. FEBRUARY 1985

2

3

Client # 4

5

6

7

6

9

10

11

12

CHAPTER 6. MEASUREMENTS OF GRAPEVINE 113

100 200 300 400 500 600 700 800 900

Uniform reference/Grapevine's authorities

_ Grapevine's reference/Grapevine's authorities

i~~t((/ Uniform reference/Local authorities only

_ Grapevine's reference/Local authorities only

1 00 200 300 400 500 600 700 800 900

Expected, loo~u.p cost

Figure 6.3: Lookup costs for different reference patterns/authority assignments.

XEROX PARCo CSL-85-L FEBRUARY 1985

~~4 DISTRIBUTED NAME SERVERS

queries: clients' referencing behavior and the assignment of authority over database objects.

The reference patterns for each client are either assumed to be uniform or else set to be

those exhibited by Grapevine's mail traffic. The two choices for configuring the name service

are to assign local servers authority for local registries or else comply with the Grapevine

configuration.

The expected lookup costs for Grapevine clients generally show improvements over those

modeled by uniform references to Grapevine registries. The improvements result from locali­

ties exhibited in the clients' referencing behavior and the prudent assignment of authoritative

name servers for registries. The differences are more drastic for configurations with only

local authorities than for the actual Grapevine configuration.

In a couple of cases, however, one observes that clients experience higher costs with the

measured reference patterns because the registries that they frequently access do not coincide

with those that can be locally queried. These represent examples of poor configuration

choices. These configuration weaknesses identified by the performance model have, in fact,

been independently discovered and remedied in Grapevine since the time of the study.

Surprisingly, for some clients, such as Client #6, the addition of remote authorities for

all registries does not appreciably reduce the overall lookup cost, especially with Grapevine

reference patterns. For other clients the difference is almost a factor of four.

The lookup costs for clients with multiple local name servers, Clients #1 through #4,

are more sensitive to the various choices than other clients. Interestingly enough, the costs

for uniform references with both local and remote authorities are often 'comparable to the

costs with locality of reference but only local servers.

6.5 Summary

Measurements of Xerox's Grapevine system verify the intuition that strong localities of

interest do exist in network environments. However, these results also indicate that observed

localities may be substantially biased by a non-uniform distribution of clients. Studies of

the relative frequency of name service operations performed by electronic mail clients of

Grapevine demonstrate strict dependencies between the ratio of operations and the types

of objects being referenced.

Applying the performance model described in Chapter 5 to the Grapevine system indi­

cates that, for the most part, the Grapevine administrators did a fairly good job in config­

uring the registration servers. Nevertheless, some instances were identified in which poor

XEROX PARC. CSL-85-I. FEBRUARY 1985

CHAPTER 6. MEASUREMENTS OF GRAPEVINE 115

configuration choices re8ult in worse performance with the actual referencing behavior than

with uniform references. These cases ernphasize that widely distributed systems are very

complex and difficult to rllonitor as internet environrIlents grow in unanticipated waYSl re­

sulting in performance irregularities. Tht:. utility of the performance model stems from its

ability to detect :;uch anomalie~.

XEROX PARC. CSL-85-1. FEBRUARY 1985

116 DISTRIBUTED NAME SERVERS

XEROX PARe. CSL-8a-i. FEBRUARY 1985

Chapter 7

Caching N allle Server Data

Performance enhancements result from clients' acquiring local caches of name
service data. Problems with maintaining strong cache consistency can be alle­
viated by treating cached information as hints. A new approach to managing
caches of hints suggests maintaining a minimum level of cache accuracy, rather
than maximizing the cache hit ratio, in order to guarantee performance improve­
ments. The desired accuracy should be based on the ratio of lookup costs to the
costs of detecting and recovering from invalid cache entries. Estimates of the
accuracy of cache entries are computed from various types of metadata, such as
the expected lifetime of an attribute tuple and its time since birth. Cache man­
agers either eruploy revalidation procedures to restore entries whose accuracy
falls below the desired threshold or simply discard the bad data. Replacement
policies for caches with size constraints should consider the estimated accuracy
of cache entries as well as their likelihood of future reference.

7.1 Cache Management

7.1.1 Caching for performance enhancements

117

Performing a name service operation may involve several interactions with name servers

that are dispersed throughout a large internet environment. The high cost of resolving

an object's name, however. can be substantially reduced if clients maintain local caches of

recently acquired name server data that is likely to be reused in the future. A cache is an

unauthoritative repository of object attributes. By consulting the cache before querying the

name service, the initial cost of utilizing the name service can be amortized over several

object references, assuming the cost of accessing cached data is significantly lower than that

of normal query operations.

In Chapter 5, the expected cost of a name server query, E(Lu), is formulated in Equa­

tion 5.1 as a function of the client's access patterns and the cost of retrieving information

XEROX PARe. CSL-85-I. FEBRUARY 1985

118 DISTRIBUTED NAME SERVERS

from a particular database partition. With caching, the cost becomes:

E(C) = Cco.che + PmissE(Lu) (7.24)

wherePm i88 is the probability that the desired information does not currently reside in the

cache andCco.che is the cost of accessing the cache. Observe that E(C) < E(Lu) if the cache

hit ratio, 1 - Pmi8S' is greater than Cco.che/ E(Lu,}. Thus, if the cache access cost is much

less than the expected cost of a Ilame server query, then caching results in significant gains,

even for low cache hit ratios.

Two main factors contribute to a cache's low access time in comparison with a typical

name server query. First, since the cached data is stored physically close to the users of

that data~ the large delays in conversing with distant name servers are avoided. Second, the

expensive name resolution process for locating an authoritative server for the named object

in question is unnecessary.

Caches are unauthoritative in that they are used for performance enhancement only; the

maintainer of a cache may store or discard cached object attributes freely without disrupting

the basic name service. Caches can reside in fast volatile storage since the loss of cached

data, in the event of a processor crash for instance, does not adversely affect the functional

operation of the distributed name service.

7.1.2 Hints vs. strong consistency

If the name service database were immutable so that no existing database entries were

ever modified, then caching data in a distributed environment could accrue all of the per­

formance benefits and add no complexity to the clients. Realistically, the information about

an object may change under normal operating conditions. For instance, an object may mi­

grate to a new machine in order to balance the loads across machines or because its onginal

processor crashed: in this case, the ~InternetAddress" attribute maintained by the name

service for the object should be updated to reflect its new location.

One approach to maintaining cache consistency would be for the name servers to inform

caches whenever data is updated. However, this requires elaborate cooperation between

servers and clients and generates lots of extraneous messages. Expecting a name server

to know about all clients that may have cached data handed out by that server for very

large internet environments does not seem feasible. It would be difficult for the servers to

maintain reliable records of what infornlation was cached by who. Such information needs

to be maintained in stable storage so that it survives server crashes and might consume

XEROX PARe ~ CSL-8S-I. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 119

unreasonable amounts of storage space. Because of this difficulty in maintaining the validity

of cached data, distributed systems designers often avoid caching.

An alternative approach is to treat the cached data as hints, which are not assumed to

be tompletely accurate. Clients of a cache, must be prepared to deal with updates to the

name service database that do not automatically propagate to the cache. The detection

of inaccurate cache entries and subsequent recovery must be done by the applications that

use the data in an application-specific way. Application level recovery is necessary since the

appropriate action to take depends on the semantics of the data and how it is being used

by the name service client.

Caches of hints have been advocated in the past [Clark 82] [Lampson 83]. The R* catalog

manager [Lindsay 80] and the Grapevine mail service [Birrell et al. 82] both make extensive

use of hints. Generally, hints about the location and availability of various services registered

with a name service can be verified when clients attempt to make use of these services.

7.1.3 Cache accuracy

At any given point in time, each cache entry is either invalid or valid depending on

whether or not the corresponding name service database entry has been modified unbe­

knownst to the cache manager. The accuracy level of a cache is defined to be the percentage

of cache entries that are currently valid. This static measure of accuracy can be obtained

by comparing a snapshot of a given cache with the nanle service database.

The percentage of cache lookups that return valid data to a client determines the observed

accuracy level. This is a more dynamic notion of cache accuracy, but is difficult to quantify

since it depends on the access patterns of clients over time. The observed accuracy level

varies from client to client. whereas the static cache accuracy level remains independent of

client behavior.

As with most caches, the hit ratio denotes the percentage of lookup requests that can

be answered by cached data [Smith 821. regardless of the data's accuracy. With caches of

hints, clients are perhaps more interested in the accurate-h,,·t ratio obtained by multiplying

the hit ratio by the accuracy level. Both of these measures are highly dependent on client

reference patterns and the cache management strategy.

7.1.4 A new approach to cache management

This chapter concentrates on techniques for Illanaging cached data that may not be

completely accurate. caches of hints. Because of the distributed nature of the system and

XEROX PARe. CSL-85-1. FEBRrARY 1985

120 DISTRIBUTED NAME SERVERS

the size of the environment, only the na.nle servers that have authority for apiece of data

are automatically notified when that data is modified. The existence of caches, which lie

outside of the realm of the name service, is not known by the authoritative name servers.

The individual applications or hosts that choose to cache name server data must unilaterally

maintain the' validity of that data since they do not participate in the usual nanle service

maintenance operations.

The performance benefits obtained fronl a cache depend on the cost of accessing the

cache, Ccache, the cost of detecting invalid cache entries for various client applications and

types of data, Cdetect, the cost of accessing the name service, CNS = E(Lu) obtained from

Chapter 5. the update activity to the name service database~ clients' referencing behavior,

and the way in which the cache is managed. Suppose that t~e, accuracy of the cache is

expressed by the probability Pcorrect a.nd t.he hit ratio is given by Phit; the expected cost of

a name service query becomes

E(C) = Ccache + (1 - Phit)CNS + (Phit)(1 - Pcorrect) (Cdetect + CNS) (7.25)

where Cdetect depends on the particular application. The cache Illanagenlent algorithm must

determine what information should be maintained in the cache and what should be discarded

so as to maximize the benefit of the cache to its clients.

Current cache memories for modern computer systems attempt to maximize the hit ratio

for a fixed-size cache by utilizing intelligent cache replacement algorithms [Smith 82]. Many

distributed systems that cache hints. such as Grapevine or R *, allow the size of the cache

to grow indefinitely (by storing it on secondary storage); entries are only purged from the

cache when detected invalid. Essentially, these systerns also maximize the cache hit ratio.

However, this simple scheme, which ignores the cache accuracy, may not be optimal, and

may perform quite badly for data that changes frequently.

As a demonstration of why maximizing the hit ratio, or even the accurate-hit ratio, is

suboptimal, suppose one cache experiences a hit ratio of Phit while a second maintains a

slightly higher hit ratio of Phit + L Assume that both caches have the same accuracy level

(though, in reality, the accuracy level is probably a decreasing function of the hit ratio for

a variable-size cache). The client observing the higher hit ratio gets a lower lookup cost if

==> -CNS + (1 - Pcorrect)Cdetect + (1 - Pcorrect)CNS < 0

XEROX PARC. CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 121

~ Cdrtp.ct < r:~~r_rectCl'!.~.
1 - Pcorrect

In other words, incrpasing th£' hit ratio incr('as('s the arnount of invalid data returned to a

client as well as irnproving the accuutte-hit ratio. Thus. whether benefits are obtained froIu

higher hit ratios dppends on t h£' CO:o't of r('covering frolli invalid data relative to the cost of

straight name service lookups.

Optirnal cache IllanagenlPIlt iuvoiv('s maintaining a level of cache accuracy and a hit ratio

that maxilnizes the benefit of tht' cache to its clients. Optimizing Equation 7.25, however.

is difficult since the two variabll':-i. Phit and Pcorrect, are not independent. For a variable-8ize

cache in which only the Inost accurate inforlllation is retained, they are related through the

size of the cache: a higher accuracy results in a smaller cache which results in a smaller hit

ratio; unfortunately, the relation can not be easily quantified.

This chapter proposes a new approach to caching hints that guarantees a performance

benefit from the cache, but does not atteIllpt to derive an optirnal management strategy. The

agent managing the cache silnply Inaintains a IuininltlIn level of cache accuracy. Initially,

the size of the cache is limited ouly by thp desired accuracy level. The mininluIll level of

cache accuracy can be derived by observing that. at the very least, the cost incurred by

using cached data should be less than the cost of retrieving the data directly fronl the name

service. That is, E(C) should be h'88 than CNS.

Assuming the cost of accessing thp cache i~ negligible cOlllpared to the cost of a name service

lookup, Ccache « CNS

CNS
~ Pcorrect > 1- C C

detect + NS

P
Cdetect

~ correct >
Cdetect + CNS

This inequality therefore gives a lower bound for the desired cache accuracy. Generally

speaking, the level of accuracy should 1)(' based on the cost of recovering from invalid cache

data to achieve a successful cache manag(lInent policy. If the detection cost is substantiaL

then the cache manager should make an effort to keep a high level of cache accuracy.

XEROX PARC. CSL-85-t. FEBReARY 1985

122 DISTRIBUTED NAME SERVERS

In practice, the actual static cache accuracy can not be measured since the cache manager

is unaware of the state of the narne service database. Instead, Section 7.4 presents tech­

niques for estimating the accuracy of particular cache entries based on information about

the lifetime of named objects. To maintain the desired accuracy level, cached data that is

suspected of being invalid should be either purged or revalidated l . Section 7.3 examines

general techniques for revalidation of cache entries. The next section discusses mechanisms

for using and caching name service data in nlOre detail.

7.2 Basics of Caching Hints

7.2.1 The cache manager

The agent responsible for maintaining the data stored in a cache is called the, cache

manager. The cache manager decides what data to keep in the cache and what data to throw

away. It also responds to cache lookup requests initiated by users of the cache. Usually,

name agents fill the role of cache manager, or at least call directly on cache managers as in

Figure 7.1. The client base of a name agent, whether each name agent serves a single client

or several clients, affects the caching strategy.

A per-process caching scheme, in which name server clients maintain individual caches,

gives each name server client maximum control over what information it wants to retain

for future use. However, having each process be the cache manager for its private cache

prohibits sharing of information among processes.

To encourage sharing, it nlay be better to utilize a per-processor cache that can be

accessed by all processes running on a particular machine. Due to geographical localities of

interest. name server data of interest to one client may likely be of interest to another client

on the same machine. A per-processor cache could eliminate duplicate name server queries

issued by different clients concerning the same object.

The same arguments apply to a per-site cache, serving clients connected by a local

area network. Communication over high-speed local networks makes such an arrangement

feasible since their bandwidth may be comparable to that of a local disk. Moreover, as

demonstrated in the Chapter 5. the cost of communication over a local network may be a

few orders of magnitude less than the cost of resolving names in a large environment.

1 In some cases, the cache accuracy that naturally results from maximizing the hit ratio may be high enough

that cache entries are detected invalid and purged before they ever become suspicious. Experimental studies

of existing environments are needed to determine how often these cases arise in practice,

XEROX PARC. CSL-8S-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA

client client

name Clgent

cache
Yn9r

name
server

name
server

client

name
aqent

name
server

cache
mgr

Figure 7.1: Cache managers and name agents.

XEROX PARe. CSL-85-1. FEBRUARY 1985

123

124 DISTRIBUTED NAME SERVERS

Cache: DEFINITIONS IMPORTS NS, Database = BEGIN

Read: PROCEDURE [name: NS.Name~ attribute: NS.AttributeType]
RETURNS[Database.AttributeTuplel;

Write: PROCEDURE[tuple: Database.AttributeTupleJ;

Purge: PROCEDURE[Database.AttributeTupleJ;

Enumerate: PROCEDURE [next: Database. TupleIDJ
RETURNS [tllple: Database.AttributeTuple, next: Database. TupleID];

Complain: PROCED URE[Database.Attri buteTupleJ;
END.

Figure 7.2: Cache interface.

One can also imagine schemes in which the name servers themselves cache data returned

by other servers. This cached data would then be available to all name server clients, but

primarily of use to clients in the proximity of the particular server. Note that a name server

assumes no responsibility or authority for data resident in a local cache. Its role as a cache

manager remains distinct from its role as a name server; the first is strictly for perfornlance

reasons, while the second is a critical part of the distributed name service.

7.2.2 A cache interface

A cache can be thought of as a locally stored database object,

cache: Database. DatabaseObject:

except a cache exists outside of the distributed name service. A cache manager can utilize

the database facilities proposed in Chapter :3 for storing cached data. Figure 7.2 gives a

very basic interface for cache clients,

A cache read may be just a local database query. or the cache manager may attempt

to check the accuracy of the cache data before returning it to the client, as discussed in

Section 7.2.5. Cache writes most likely look for the existence of a cache entry with the same

XEROX PARCo CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 125

name and attribute value and change its value rather than naively adding a new entry to

the cache. Thus, cache writes may result in either modifications or additions to the cache

database. The Purge operation removes entries from the cache. As with other databases,

the contents of the cache can also be enumerated. Lastly, clients, upon retrieving data from

a local cache and discovering it invalid, should provide feedback to the cache manager by

issuing complaints. The cache manager might choose to remove data that is known to be

bad from the cache so that other clients do not encounter the same bad data.

7.2.3 Obtaining cached data

Cached data is generally obtained indirectly from name service queries executed on behalf

of clients by name agents. For instance, the query

value +- NS.Lookup[name, attribute];

may result in the tuple (name,attribute,value] being retained in the cache for future use.

Name agents might simply write all data they receive from the name service to their cache,

or some criteria for deciding when to cache name server data might be desirable. Name

agents also receive data that can be cached from clients performing name service updates.

In addition, cache managers may decide to actively query name servers to stock their

caches. This pre/etching would require cache managers to have some idea in advance of what

will be desired by clients. Under certain circumstances this knowledge could come from

observing past requests issued by the client along with some knowledge of the semantics of

those requests. There may be a large correlation between requests for different attributes of

a given object. For instance, if a client asks the name service for the host on which a given

mailbox resides, then that client will likely issue a second request for the address of the

mailbox:S host. Thus, the cache manager may wish to pre/etch the host~s address attribute.

Since name service clients are responsible for detecting invalid cache data, the cache

manager should not store data that its clients are not capable of validating at the application

level. If a client is not prepared to recover from invalid data, then it should not make use of

the cache. In certain cases~ however, the type of the data may make it inherently difficult

to detect whether the data becomes outdated while sitting in the cache. For instance, if a

member is added to a distribution list that has been cached, a person sending mail to that

distribution list might not be able to tell that the cached copy is incomplete. In order to

know what data can be cached and what cannot, the cache manager must know something

about the semantics of the data. This information could be supplied to the name service

XEROX PARC. CSL-85-1. FEBRPARY 1985

126 DISTRIBUTED NAME SERVERS

when the attributes for an object are registered and returned to nanle agents with any

queries concerning the named object. For example, an entry in the name service database

could be flagged with a '"THIS DATA NOT SUITABLE FOR CACHING" warning.

7.2.4 Using cached data

A cache manager provides a subset of the name service database that can be accessed

cheaply by clients indirectly through name agents. Name service clients need not even he

aware of the existence of a cache as long as they treat all name service data as hints; a

client's name agent's interface need not change, though, as described in Section 7.6.2, SOIne

interface changes may be desirable for dealing with the cache.

The basic name agent lookup routine for dealing with caches Inight be implenlented as

follows:

Lookup: PROCEDURE[name: Name~ attribute: AttributeType1
RETURNS[Attribute Value1 = BEGIN

value: Attribute Value:
cachedtuple: Database.AttributeTuple;
cachedtuple ~ Cache. Read [name, attribute];
IF cachedtuple.value = NILTHEN

value ~ NS.Lookup[nanle, attribute] AT mainServerAddress
ELSE

value ~ cachedtuple. value;
RETURN[valueJ;
END;

When presented with a request to lookup a given name, the name agent first consults its

local cache manager and returns the desired data if available; if the data is not found in

the cache, then the query is forwarded to an available name server and the usual name

resolution process takes place.

7.2.5 Policies for managing cached data

The basic function of a cache manager is deciding when data should be purged from the

cache in order to maintain a certain level of cache accuracy. Generally, data that has been

cached should remain in the cache until the cache entry is known to be invalid or suspected

of being invalid. Cached data is considered suspicious when the probability that the data

is valid. as estimated by the cache nlanager. falls below the desired level of accuracy of the

cache. A cache manager must perform some action when databeconles suspect, sueh as

purging or revalidating the suspicious cache data.

XEROX PARe. CSL-85-1, FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 127

A particular cache management policy can be characterized by when data is checked

for suspicion and what action is taken on suspicious data. Three approaches to discovering

suspicious data can be classified as:

Passive. a cache entry becomes suspect when a name service client issues a
complaint concerning the data.

OnDemand. the accuracy of a cache entry is checked when a name service client
expresses an interest in that entry.

Periodic. the accuracy of cache entries is checked regularly.

In addition, three actions could be taken on suspicious data:

Purge. suspicious cache entries are simply deleted from the cache.

Refresh. new values for suspicious cache entries are obtained from an authorita­
tive name server.

Revalidate. suspicious cache entries are checked against an authority for their
validity.

One obtains a policy for cache management by combining an approach to discovering sus­

picious data with an action to be performed on such data. In practice, several policies may

be utilized concurrently.

Passive cache management relies on clients of the cache providing feedback to the cache

manager, via the Cache.Complain routine, when data becomes suspicious. Generally, feed­

back from a client comes after the client has attempted to use the data and discovered it

invalid. For example. the Grapevine and R * systeuls enlploy a Passive-Purge caching policy

in which the detection of invalid cache entries cause thenl to be flushed. A Passive-Refresh

policy might be useful in all cases since a dient is likely to reissue a particular name service

lookup after complaining about the data initially returned; refreshing the data represents a

type of prefetching. Passive-Reval";date would only be used if the cache manager does not

trust clients' complaints.

Active cache management~ in which a cache manager actively monitors the cache accu­

racy, is needed in order to provide the level of accuracy desired by a cache's clients; passive

cache management policies are not sufficient to guarantee a particular level of cache accu­

racy. OnDemand policies check t.he accuracy of a cache entry when the client issues a query

that can be answered with the cached data. IT the cache entry's estimated accuracy is too

low, then the cached data can not be returned unless it is refreshed or revalidated. A policy

based on periodic inspection of cache entries allows entries that are never referenced to be

discovered, unlike Passive or OnDemand policies. A Period";c-Purge policy, for instance,

maintains the desired level of cache accuracy by discarding suspicious entries.

XEROX PARe. CSL -85-1. FEBRUARY 1985

128 DISTRIBUTED NAME SERVERS

Periodic-Refresh or Periodic-Reval£date nlight be especially beneficial when free comput­

ing cycles exist on the cache Inanager's host; the revalidation would essentially be free in

this case, ignoring the added network load induced by the action. For example, personal

workstations are often left idle for short periods of time such as during lunch, coffee breaks,

or phone calls. A machine nlight also have excess conlputing power during off hours. These

times could be used by a cache Inanager to bring cache entries up-to-date.

Suppose a procedure exists to estiIuate the accuracy of a particular cache entry, as

presented in Section 7.4, as well as a general technique for revalidating cache entries, such

as the ones described in Section 7.3:

AccuracyLevel: TYPE = INTEGER[O .. 100];

Accuracy: PROCED URE [tuple: Database.AttributeTuplej RETURNS [Accuracy Level];

Validate: PROCEDURE(tuple: Database.AttributeTuplej RETURNS[BOOLEAN];

A cache manageInent algorithm based on either Periodic-Revalidate or Periodic-Purge might

be embodied as:

ManageCache: PROCEDURE [desiredAccuracy: AccuracyLevel] = BEGIN
interval: Time ~ 10; - - some interval of time
tuple: Database.AttributeTuple~
next: Database. TupleID;
valid: BOOLEAN;
DO - - forever

Sleep[intervalj:
next ~ NIL:
DO

[tuple, next] ~ Cache.Enumerate[nextJ;
IF tuple = NIL THEN EXIT;
IF Accuracy[tuple] < desiredAccuracy THEN BEGIN

IF activeRevalidation THEN BEGIN
valid +- Validate[tupleJ;
IF valid THEN LOOP;
END

Cache.Purge[tupleJ;
END:

ENDLOOP;
ENDLOOP;

END:

The parameter of this routine specifies the desired cache accuracy level.

XEROX PARC. CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 129

The proper cache maintenance policies to adopt depend upon the cost of executing

theln versus the expected benefit. All cache managers should certainly respond to clients'

complaints. In general, the cost of Periodic and OnDemand policies is difficult to quantify

since one must consider the amount of spare computing cycles and other nebulous factors.

Purging cache entries is quite cheap, but the cost-benefit of other approaches depends heavily

on the relative cost of refresh or revalidation compared to the cost of detecting invalid

data at the client level and recovering from such data. The next section discusses general

techniques for refreshing and revalidating cache entries and speculates on the viability of

policies employing these techniques.

7.3 Refresh/Revalidation Techniques

7.3.1 Requery strategies

The simplest way to refresh a cached attribute tuple is to reissue the query that produced

the cached entry. If the requery is as costly as the original query, however, then Refresh

policies are not cost effective in most situations. Fortunately, the cost of a second query to

the name service can be substantially reduced by avoiding the name resolution mechanisms.

Given the architecture developed in previous chapters, a cache manager need only keep,

along with the cached data, an indication of the authoritative name server that handed out

the data; subsequent queries for this data could then be sent directly to the server that

has authority for the data. Name service configuration data is safe to cache since it rarely

changes, and outdated configuration data can be readily detected. The cost of refreshing a

cache entry has thus been reduced to the cost of querying a single name server.

The cost of requerying attributes of named objects can possibly be reduced further by

caching information, such as a low level pointer into the database. that enables the server's

query processor to locate the data faster. The CSNET Name Server, for instance, assigns

unique "registration IDs" to all database entries for mail recipients [Solomon et al. 82].

Even though the database is maintained in a centralized fashion~ looking up entries in the

CSNET database by registration ID should he much faster than the usual keyword-matching

lookups. Nevertheless, local performance enhancements of this sort may have a small net

effect on response times if communication costs dominate.

OnDemand-Refresh schemes typically check the accuracy of the data and refresh suspi­

cious cache entries before returning to the calling client. With such a policy, name service

clients that are not equipped to detect invalid data can request 100% accuracy, in which

XEROX PARC, CSL-85-L FEBRUARY 1985

130 DISTRIBUTED NAME SERVERS

case refreshes are perforIned for all client queries. Even though the cached attribute values

are never used. the cache contains hints that enable name service lookups to he exec:uted

less costly than if the cache did not exist.

As an alternative approach to OnDemand-Refresh,a cache rllanager could return cache

data to clients regardless of its estimated accuracy and immediately atteolpt to refresh

suspicious data while the client attempts to use the cached data. For data that is suspicious

but actually valid, the client obtains faster response times than ifit had to wait for the

data to be refreshed. For invalid data, the valid data may already be retrieved from an

authoritative name server by the time the client complains. Of course, the client wastes

Inore cycles than if it sirnply waited for valid data in the first place.

A cache manager could also actively try to refresh cache entries by requerying name

servers independent of client requests, Periodic-Refresh. In general, such a schenle would

not be as cost effective as OnDemand-Refresh unless the cache manager had scnne knowledge

of future client requests.

7.3.2 Timestamps

Techniques for revalidating cache entries, guaranteeing that the value associated with

the attribute of the named object has not been modified since the data was cached, can be

based on the use of timestamps or version numbers. A timestamp is a strictly increasing

indication of when the last update was made to a part of the database. Every rnodification

to a name service database item should increase the value of the timestanlp associated with

that tuple. Timestamps can be conveniently obtained from the time of a database update.

A timestamp that is a simple counter is often called a version number since it indicates how

many times the data has been modified.

If timestamps are olaintained for name service information and handed out along with

the response to a name service query~ then the timestamp information may be stored by a

cache manager and associated with each cache entry. Revalidating a cache entry is simply

a matter of comparing its timestamp with one returned from an authoritative server. If the

timestamps agree. then the cache entry is guaranteed to be valid; if they differ, the cached

data mayor may not be valid depending on the granularity of the timestamp.

The granular'ity of a timestamp represents how much of the database is covered by the

timestamp. It could range· from one timestamp for the complete database to a timestanlp

per database attribute tuple. Another reasonable alternative would be a timestarnp per

named object.

XEROX PARC. CSL-8S-I. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 131

The finest granularity is achieved by rnaintaining one timestamp per name service

database tuple. In this case, each cache entry has an individual timestamp. For such

fine granularity timestamps, the cost of an active Revalidate policy is almost the same as

that of a requery algorithm since a name service query is necessary to retrieve the current

timestamp.

The R* catalog managers rnaintain a version nurnber per catalog entry, but they do not

actively revalidate cached entries [Lindsay 80]. The version numbers are used for application­

level recovery by query processors. clients of the catalog. The Grapevine registration ser­

vice also keeps a timestamp per database entry [Birrell et al. 82]. Although the Grapevine

mail service does not actively revalidate its <:aches, other clients could easily do so since

Grapevine provides a "CheckStamp'~ routine that takes a name and a timestamp and re­

turns "noChange" if the given timestanlp is valid [Birrell 83].

Benefits might be obtained with a tinlestamp mechanism if larger granularity timestamps

are used. For instance, if a single timestamp is used for all of the attributes associated with

a given object, then all cache entries for an object can be revalidated, or invalidated, with a

single timestamp comparison. Whenever a name service update is performed, all cache data

that is covered by the same timestamp as the modified data is considered invalid regardless

of whether the data has actually been modified. Thus, large granularity timestamps result

in pessimistic revalidation algorithrns.

In the extreme, where a single timestamp exists for the complete name service database,

the timestamp can be returned with all name service queries. The whole cache can then be

revalidated with a single comparison whenever a cache miss causes a name service lookup.

An inexpensive scheme of this sort nlight perform quite well if the name service database

did not change very often. On the other hand. if updates occurred with some regularity,

then the cache would almost always be empty.

The Pup name lookup server. for exanlple. provides a single timestamp for its complete

database [Boggs 83]. The timestanlp is used to maintain consistency among the various

copies of the database. Whenever updates are made, the new timestamp is broadcast, and

out-of-date servers request new versions of the database. Sites in this environment could

manage their caches by listening for broadcast notices advertising new timestamps.

Ideally, the granularity of a timestamp should be adjusted according to the update

frequency of the data. The benefit of revalidating several cache entries simultaneously must

be traded off against the probability of invalidating perfectly good data ..

XEROX PARe. CSL-85-1. FEBRUARY 1985

132 DISTRIBUTED NAME SERVERS

7.3.3 User-supplied revalidation procedures

The use of caches that are not completely accurate relies on applications being able to

detect and recover from invalid cache data. Typically the methods used by name service

clients to check the validity of data vary substantially according to the type of the data and

how it is used by the applications, whereas the techniques discussed thus far for refresh­

ing and revalidating cache entries do not depend on the type or semantics of the data be

validated.

Suppose application level revalidation procedures are formalized to the point that detect­

ing bad data is accomplished by calling a routine which returns an indication of the validity

of its arguments:

ValidateProc: TYPE = PROCEDURE[tuple: Database.AttributeTuple]
RETURNS [BOOLEAN] ;

A revalidation procedure could then be handed to the cache manager along with data to

be cached and used to revalidate cache entries in an application specific way. The cache

manager need not understand the semantics of a revalidation procedure as long as it has a

standard way of invoking the routine and interpreting the return value to decide whether

or not to purge the cache entry in question.

Several problems arise with call-back procedures, however. In heterogeneous network

environments, the name servers may run different operating systems and programming lan­

guages than their clients, so passing executable procedures from clients to servers may be

difficult. Also, the name servers may not be able to establish the proper execution environ­

ment in which to run the procedure or possess the necessary access rights.

More importantly, placing data validation under the control of a cache manager implies

that verifying the validity of data must be an independent procedure. Often, however,

the validation takes place as part of the client's using the name service data, and the two

. functions cannot be feasibly separated due to the semantics of the application. As a real

world example, consider the list of phone numbers that many people keep next to their

phones. These lists are essentially caches of the real information maintained by the phone

company. Revalidation of a phone number occurs when the phone number is dialed and

a question of the form, "Is this so-and-so?" is posed; then the conversation continues.

Theoretically, a person (or his intelligent telecommunications equipment) could periodically

revalidate his cache of phone nunlbers by dialing each one in sequence. asking the "Does

so-and-so still live thereT' question, and then hanging up upon receiving the answer. In

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 133

practice, this would be socially unacceptable; the commonly accepted protocol for human­

to-hUIllan communication would be violated.

Similarly, existing computer communication protocols for invoking services do not gener­

ally make a clean separation of function between end-to-end validation and communication.

As an exception, the Simple Mail Transfer Protocol used for transmitting electronic mes­

sages in the DARPA Internet has a "verify" command to verify the existence of a user name

at a particular host [Postel 82b]. New standard validation procedures should be established

for other classes of objects. For instance, an accepted "who are youT' protocol to which all

network services respond would allow the availability of a service at a particular network

address to be easily verified.

In conclusion, the use of client-supplied revalidation procedures for managing caches of

various user-defined data types presents several formidable problems in the general case.

However, standard revalidation protocols for common data types, such as mailboxes or

servers, could be successfully utilized.

7.4 Estimates of Cache Accuracy

7.4.1 Probabilistic algorithms

In general, since a cache manager is unaware of name service updates, measuring the

cache accuracy is impossible. However, given the expected lifetime of a name service at­

tribute tuple, probabilistic algorithms speculate on the accuracy of the cached data by noting

the time since the data was entered in the name service database.

The lifetime of an entry in the name service database is defined to be the time between

successive modifications to that entry, where addition and deletion are considered to be the

initial and final modifications. respectively. IT name service data is considered immutable,

that is, name service database entries are never modified, but are simply destroyed and new

ones created, then the lifetime of a data item is truly the time between its birth and death.

For any reasonable lifetime distribution, except memoryless distributions, the probability

that a cache entry is valid decreases with its length of time in the cache (and the time since

its creation). In order for a cache manager to provide the level of accuracy desired by its

clients, it must:

1. keep track of the length of time that a piece of data has been in the cache. and

2. estimate the data's accuracy. the probability that the data is still valid.

XEROX PARC. CSL-85-1. FEBRUARY 1985

134 DISTRIBUTED NAME SERVERS

1 .. .

F(t)

o~~==~----------~------------------~
t t o

Figure 7.3: Distribution function F{t).

The first responsibility is simply a matter of storing a cache entry's creation time along with

the data. The second function depends on how much knowledge can be obtained about the

lifetime distribution of name service data.

Suppose, for a moment, that the cache manager has perfect knowledge of objects' lifetime

distributions. Let L be a continuous random variable denoting the lifetime of name service

database entries. Let F(t) be the known distribution function of the random variable L.

Then the probability that L is less than time t is given by

P b(L) {
0, if t ~ 0,

TO < t = F (t), if t > o.

Thus, if tc is the time since an entry was created in the name service database. F(to) is

the probability that the entry is no longer valid. Figure 7.3 depicts a sanlple distribution

function. Observe that F{t) is a nondecreasing function of t and ranges from 0 to 1. F(t)

can be obtained from f(t)~ the density function of L, by taking the area of the curve of f(t)

from 0 to t,as indicated in Figure 7.4. The graph of the density of L gives an intuitive feel

for what values of L are likely. although. mathematically, PTob(L = t) = 0 for any value of

t since L is a continuous randonl variable.

XEROX PARC. CSL-85-1. FEBRUARY 1985

f(t)

CHAPTER 7. CACHING NAME SERVER DATA

t
o

Figure 7.4: Density function f(t).

Object
; hosts
: people
i services
: files
! processes

I Lifetime
years
months -years

: days-months
i days
I minutes

Table 7.1: Sample object lifetimes.

135

t

A cache's accuracy leveL denoted by A~ is the probability that the lifetime of a cache

entry exceeds the time since the entry's creation: Prob{L ~ to) > A. Thus, in order to

maintain an accuracy level A. the cache nlanager might discard cache entries whose time

since creation exceeds time tthreshold such that F{tthreshold) := 1 - A. The cache manager

limits the age of the cache to the threshold time, and cached information is said to decay

over time. The threshold value. tthreshold, represents a simple criterion for deciding how the

cache should be aged, that is, when cache entries should be considered suspicious.

Realistically, onewould expect that not all object attributes exhibit the same lifetime

distributions. In fact a wide range of lifetimes exist. For instance, a host's internet address

changes rarely, if ever~ while processes come and go in a matter of minutes. In between

these two extremes, lie a range of objects such as people. files, or services, and a variety of

information about those objects. Table 7.1 presents a rough conjecture of the time various

objects remain in a computing environment; attributes of these objects may vary more

rapidly.

XEROX PARC, CSL-8S-1. FEBRUARY 1985

136 DISTRIBUTED NAME SERVERS

To obtain reasonable estimates of the accuracy of differing types of cache entries, the

cache manager should maintain a table of lifetime distributions for various classes of informa­

tion. Cache management would then utilize a separate threshold value per class. Identifying

classes of name service attribute tuples that have similar lifetime distributions can be diffi­

cult. One heuristic would be to distinguish classes of attributes by their type and the type

of the object to which they apply. For instance, the internet addresses of all hosts in the

environment might have similar lifetimes. On the other hand, the functional1ifetimes of files

probably varies with the specific type of the file (Satyanarayanan 81J, so a single lifetime

distribution for all files would yield poor estimates. In the worst case, a separate threshold

value must be computed for each cache entry.

7.4.2 Estimates from imperfect knowledge

In computing the threshold for suspicious data, the previous section assumed that cache

managers know a priori the lifetime distributions of the data they choose to cache. How

do cache managers obtain this data? It could be obtained by observing actual behavior

over a period of time, though this is not generally feasible due to the long lifetimes of many

objects and the difficulty of deterrnining a function from a limited number of sample points.

Without some oracle, a cache manager must rely on name servers or clients to provide this

knowledge. This section presents a series of techniques for selecting cache aging thresholds

depending on how much information about an attribute's lifetime distribution is available.

The initial approaches, based on very little feedback from an object's manager, probably

perform unsatisfactorily in most cases.

Left on his own, with no knowledge of an attribute's lifetime, the designer of a cache

management algorithm is forced to use "intuition" to pick a value for tthreshold. For instance,

the Xerox Routing Information Protocol. part of the Xerox Network Systems family of

communication protocols. ages caches of routing information with a seemingly arbitrary.

threshold time of three minutes [Xerox 81]. This time is part of the protocol specification

and is independent of the network topology or other properties of the network.

The creator of an object, and the process that nlost likely registers it with the· name

service, presumably has some knowledge about how that object will be used and its expected

lifetime. The object's creator cannot be expected to know the complete distribution function

for the lifetime of the various attributes of the object, but should at least be able to venture

a guess of the expected nlean (or median) lifetime, [estimate' This information is registered in

the name service database along with the object's attributes and returned to cache managers

XEROX PARC. CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 137

F(t)

0.5

o~--------------____________________________________ -.
estimate t

Figure 7.5: Approximating F{t) by interpolation.

as an aid in cache management. Such data could be used by the cache manager to set a

reasonable value for the threshold time, for instance tthreshold = lestimate. Of course, this

ignores the level of accuracy desired by cache clients, but is better than picking an arbitrary

cache age. Using an estimate of the median object lifetime as the threshold, the accuracy

of the cache would be 50% since F(median) = 1/2. A 50% level of cache accuracy would

be unsuitable for many applications.

An obvious embellishment to the simple strategy of setting tthreshold to an estimate of

the information's mean or median lifetime would be to let the threshold value vary inversely

with the accuracy, given that F(lestimate) ~ 1/2. For example. if an accuracy level of 3/4 is

desired. approximately 50% more accuracy, then tthreshold could be set to 1/2Iestimate. For an

arbitrary accuracy A, let tthreshold = 2{1- A)lestimate. This straight-forward interpolation of

the threshold values, which takes into account the desired accuracy level A, provides better

control over the cache contents without requiring any additional information about object

attribute lifetimes. Statistically, it assumes that the lifetime distribution is a linear function

passing through the points (0,0) and (lestimate, 0.5) bounded by 1; depicted in Figure 7.5.

In other words, the density of attribute lifetimes is uniform over the range {0,21estimate}'

XEROX PARC. CSL-85-1. FEBRUARY 1985

138 DISTRIBUTED NAME SERVERS

Unfortunately, one often observes object lifetimes in practice that have a smaller variance

around the mean than a uniform density.

Simple estimates for the mean object lifetime can be used more intelligently if the cache

manager assumes that object lifetimes match a particular family of distributions: a gamma

distribution, F{t) = r{t; a, ~), would likely be a good choice. (The density depicted in

Figure 7.4 is roughly a gamma density with a = 2.) For an assumed family of density

functions with a given variance, the estimate of the mean~ lestimate~ can be used to estimate

the actual distribution function, F (t), and subsequently derive tthreshold given the desired

accuracy level A.

Considering the gamma distribution in a bit more detail, the mean JL is given by

JL = a/~. Thus, assuming that the lifetimes of name service information are distributed

according to the gamma density for a particular value of a, F{t) can be approximated by

r{t; a, a/lestimate). Note that the exponential family of densities is a special case of the

gamma densities with a = 1. For an exponential distribution, the rate of decay of the cache

is given by ~ = 1/ JL or ~ = ji, -llog 2, where ji, represents the median.

Thus, given an estimate for the lifetime of an object attribute provided by the object's

creator or manager. approximate lifetime distributions can in turn be used to derive thresh­

olds for a given cache accuracy level. Even fairly imprecise estirnates of a cache entry's

accuracy permit more intelligent cache management than current cache management strate­

gies. However, to achieve reasonably precise thresholds, and hence better performance,

studies of the lifetime distributions of various objects should be conducted.

7.4.3 Accuracy with revalidation

Ways of estinlating the accuracy of a cache entry~ given the time since its original creation

and its lifetime distribution, enable caches to be managed intelligently. When an entry is

deemed to be below the desired accuracy level. one option is for the cache manager to

actively revalidate the entry. Upon revalidation, the accuracy of the cache entry should get

reset to 100% and start decaying again; the decay rate should be adjusted to account for

the revalidation.

One approach would be to pretend that the object's creation time is the time of the

revalidation. The accuracy then could be computed according to the algorithms presented

in the preceding section. That is. the threshold time value, tthreshold, would still be set such

that F(tthreshold) = 1- A, though the time would be nleasured from the last validation point

instead of the data's creation time.

XEROX PARe. CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 139

While this first approach seems simple and intuitively appealing, it has a major flaw in

that it assumes that the mere act of revalidating a piece of data installs new life into it.

Actually, revalidation cannot affect the lifetime of the data, but merely gives added confi­

dence in the data's continued existence. With the exception of the exponential distribution,

the accuracy of the data is dependent on the time of revalidation as well as the lifetime

distribution and time of creation.

Specifically, with revalidation, the accuracy of a cache entry is the probability that the

data is still valid t units of time after its birth given that it was valid at the time it was last

revalidated; this is known as a conditional probability. Suppose a particular cache entry's

lifetime is represented by a continuous random variable L, and that this cache data was last

known to be valid at time tvalid after its creation. In order to maintain a desired accuracy

level A, the cache manager should considered this entry suspect tthreshold units of time after

its creation, where Prob{L < tthresholdlL > tvalid) = 1 - A. This conditional probability can

be determined from the lifetime distribution, F(t), according to Bayes' Rule,

P b(L t IL)
Prob(L > tvalid n L < tthreshold)

ro < threshold > tvalid = P b{L t .)
ro > vahd

= F(tthreshold) - F(tvalid)

1 - F(tvalid)

Notice that for cache entries that have never been revalidated, where tvalid = 0, this formula

is simply F(tthreshold) as expected, and the algorithms presented in the previous section

hold.

As discussed earlier, the common techniques for revalidating name service data are based

on interactions or feedback from an authoritative name server. These assume that the

authoritative name servers for an object have completely accurate information about that

object. Thus, even if a cache manager makes no effort to revalidate data stored in its cache,

the time of last validation, tvalid, should be initially set to the time that the data was

retrieved from the name service. Only in cases where the name servers are not considered

completely accurate is the time of last validation identical to the creation time from the

cache manager's point of view. Perhaps, references to cache entries should update the time

of last validation, tvalid, under the assumption that the client validates the data upon use

and will complain to the cache manager if the data is found invalid.

XEROX PARC. CSL-85-1. FEBRUARY 1985

140 DISTRIBUTED NAME SERVERS

7.5 Other Issues in Cache Maintenance

7.5.1 Conflicting Cache Requirements

Thus far, algorithms for maintaining a given level of cache accuracy have been discussed

assuming that clients can specify the desired level of accuracy based upon the cost of recov­

ering from inaccurate data. This section proposes a technique for managing caches that are

shared by several clients with potentially conflicting requirements. For instance, one client

may want very accurate data while another can easily detect and recover from invalid data.

Even within the same application, different accuracies may be needed for different types of

data, or for the same data used in different ways.

Suppose clients of the cache call a routine to specify the level of accuracy of the cache

they wish to have maintained. Different accuracies for different classes of data can be easily

accommodated~ However, if several clients desire different accuracies for the same class of

data, the cache manager must have some way of resolving the conflicting demands. For

example. with a Periodic-Purge maintenance policy, choosing the lowest accuracy would

be disastrous to those clients that require highly accurate data. Thus, the cache manager

has little hope but to choose the highest accuracy. Unfortunately, if the clients~ optimal

accuracy levels differ SUbstantially, then the· client that does not need the high accuracy

would experience unnecessarily low hit ratios.

To avoid these problems, the cache maintenance algorithm should not try to maintain a

particular accuracy level, but should allow the accuracy to vary dynamically; so dynamically

that each client perceives the cache as being at its desired level of accuracy. Suppose the

cache manager never discards cache entries. (In practice, a Periodic-Purge algorithm can

be used to delete cache entries whose accuracy falls below a minimum accuracy level.)

The accuracy of cache entries can be determined by the methods described earlier, but no

threshold values are computed or used to age the cache. Instead, clients specify the desired

accuracy with each lookup operation. Rather than simply returning the data if found in

the cache, the cache manager first checks if the data meets the accuracy requirements. IT

the data falls below the desired accuracy level then the cache manager pretends that the

cache entry does not exist and directs the lookup to an authoritative name server. The new

lookup serves to revalidate the cache entry.

Essentially, cache managers for clients with conflicting cache requirements should use

OnDemand-Refresh with the accuracy level supplied on each lookup. This approach easily

accommodates clients with different, or even changing, accuracy requirements, but ulay

XEROX PARe ~ CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 141

require lots of storage. For caches with real size constraints, the techniques in the next

section may be used.

7.5.2 Size constraints

The size of a cache is strongly correlated to its accuracy, the access patterns of its

clients, and the cache management algorithm employed, though this correlation is difficult

to quantify, just as the cache hit ratio is difficult to quantify. Assuming client accesses are

reasonably regular and a constant accuracy level is maintained, some steady state cache size

exists. To see this, suppose the cache size at time t is St. At time t + A, the cache size St+!:i.

is St minus the number of entries that have decayed plus the number of new entries added.

The number of purged entries per unit time increases with the size of the cache, while the

number of new entries decreases as the cache grows since new entries are only added when

actual name service queries are performed, that is, when a cache miss occurs. Thus, steady

:3tate occurs when the rate of decay equals the rate of new cache acquisitions.

If the cache is maintained on plentiful disk storage, then typically the cache growth is

solely dictated by the desired accuracy level. However, occasionally additional size con­

straints may be imposed that force the cache manager to discard data even if it meets the

desired accuracy. For instance, the cache may reside in a very fast, but limited size, memory;

or on a personal computer with severe disk limitations. In these cases, the cache manager

must apply some criterion for deciding what entries to discard.

The many alternatives for managing fixed-size caches include:

• only add new cache entries when room exists in the cache,

• randomly replace existing cache entries with new ones,

• discard the least accurate cache entries,

• use some other measure of caching desirability.

The first alternative manages the cache as usuaL but simply ignores any attempts to add data

to a full cache. Thus, the accuracy of the cache remains at the desired level; the specified ac­

curacy determines the rate of turnover in the cache. Realistically, recently·acquired data that

is suitable for caching is more likely to be reaccessed than old cache data, so this first alter­

native is probably less beneficial than schemes that choose an existing cache entry to replace.

Random cache replacement is easy to implement~ but ignores the cache accuracy level.

For a fixed number of cache entries. higher performance can be achieved by maintaining

more accurate data.

XEROX PARC. CSL-85-1. FEBRUARY 1985

142 DISTRIBUTED NAME SERVERS

Discarding the least accurate cache entries essentially adjusts the accuracy of the cache

dynamically until the size constraints are met. However, more computation than usual is

required on the part of the cache manager; The cache manager can no longer simply compute

a cache entry's threshold value tthreshold once, store it along with the entry, and check it

periodically; the decision of when to discard a cache entry is based on the current estimate

of its accuracy, which changes over time and hence must be periodically recomputed. A

simple approximation to this algorithm could discard the cache entry nearest death, based

upon the threshold value computed from the desired level of accuracy. That is, pick a

victim such that the difference between its threshold time and the time it has already lived

is minimized.

Maximizing the cache accuracy may not yield the optimal performance. With fixed-size

caches, the decision to keep one cache entry often displaces one or more other entries, thus

affecting the cache hit ratio. Neither of the two algorithms outlined above make an effort

to improve the hit ratio by retaining entries most likely to be needed by clients in the near

future. Unfortunately, it is difficult for the cache manager to predict future client's accesses

to name service data.

Similar problems are faced by fixed-partition memory management algorithms, which

must decide what pages to keep in memory [Belady 66]. Algorithms using LRU replacement

policies or clock algorithms, which have existed for quite some time, attempt to predict future

memory referencing behavior from obs~rvingpast behavior . None of the cache managenlent

algorithms discussed in this chapter have taken into account the likelihood that the cached

data is actually used. Although the situation with caching is slightly different from memory

management because cache entries are neither fixed-size nor completely accurate, lessons

can be learned from the older discipline.

For example, a cache manager could use a Periodic-Purge algorithm to guarantee a level

of cache accuracy, and then discard the least recently used data to meet the size constraints.

This would require the cache manager to note the time of last reference along with each cache

entry. A clock-like algorithm based on "use" bits nright also be used effectively. Elaborate

decision policies could be designed that take into account both accuracy levels and past

references.

Lastly, a cache manager might use feedback from its clients or name servers to determine

the desirability of caching particular database tuples. One extreme example of this, marking

data that is not suitable for caching, has already been discussed. Others include indications

from clients that a given attribute will be ne,eded in the future, or perhaps is no longer

XEROX PARe ~ CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 143

of value2 . Also, name servers might choose to maintain statistics about global referencing

patterns and relay these to cache managers.

Each of these options for managing fixed-size caches have certain advantages over the

others. For some the advantage is simplicity; others attempt to increase the benefit of the

cache in one way or another. Choosing the best approach requires a quantitative assessment

of their effect on the expected name service lookup cost. One can not expect to determine

an optimal policy for fixed-size caches at least until one for unlimited-size caches can be

derived.

7.6 Name Server Support for Caching

7.6.1 Metadata

While the name service may he unaware of the existence of particular caches dispersed

throughout the distributed environment~ it contributes to their maintenance by maintaining

information about objects' attribute tuples. In particular~ certain information obtained

from authoritative name servers can aid cache managers in making intelligent decisions

about what data should be retained in their caches. Such information is often referred to

as metadata since it is data about the name service data and not generally of direct interest

to clients of the !lalne service.

Metadata that may be maintained by name servers falls into four basic classes:

Event. the tinle various events occur in the lifetime of a database tuple,

LzJetime. information about the lifetime distribution of an attribute tuple.

Versz"on. data that enables nlOdifications to the name service database to be easily detected.

Advz"ce. knowledge about the desirability of caching particular data.

As evidenced in the caching algorithlns presented in this chapter. Event and Lzjet'ime­

metadata enables cache managers to maintain a particular level of cache accuracy. The

success of techniques for estimating the accuracy of a cache entry depends on the amount of

information available from the nalne service about the data being cached. Version-metadata

is used by cache managers that wish to actively revalidate cache entries in a cost effective

manner, while Advice-metadata may be useful for caches with size constraints.

2 An analogy to such feedback in the memory management world is the madvise system call available

in Berkeley UNIX (4.2 BSD), which allows processes to give advice to the kernel about their expected

behavior.

XEROX PARC. CSL-85-1. FEBRUARY 1985

144 DISTRIBUTED NAME SERVERS

For the accuracy estimation techniques described in Section 7.4, the most important

Event-metadata is the time an object's attribute tuple is added to the name service database;

this creation time allows cache managers to detect suspicious cache entry. If absolute cre­

ation times are handed out by name servers along with the response to a query, then all

name servers and cache managers must have a uniform notion of time. Due to the impre­

ciseness in the estimated cache accuracy, the servers' clocks need not be finely synchronized;

nevertheless, a reasonably consistent view of time should be presented by the name service.

For example, the name service may choose to present all tinles in Universal Coordinated

Tirne (UTC), and name server docks need only be accurate within a few minutes of each

other.

Alternatively, rather than returning the data's creation time, name servers could return

the t.inle since creation. Cache managers would then compare the accuracy threshold time

to the SHrn of the tirne between the data's creation and lookup, as returned by the name

service. and the tirne that the data has resided in the cache. Handing out time differentials

allows name servers and cache managers to maintain independent notions of time since the

absolute time as viewed by the server is never seen by others.

The DARPA Domain Narning System attempts to aid cache rnanagers by maintaining

a tz'me-to-lz've field, which indicates how much longer the data should exist before being

discarded [Mockapetris 83b]. Unfortunately, the design does not suggest how the values

of these fields should be chosen. Moreover, cache maintenance based on tirne-to-live fields

does not provide cache rnanagers any control over the accuracy of the cache. Since such an

approach does not even allow a cache rnanager to estimate the accuracy of cache entries, it

cannot be responsive to a particular client's needs and recovery costs. Thus, tz'me-sz'nce-bz'rth

information, in conjunction with Lzjetime-Inetadata, is preferable to tz'me-to-live fields.

Other data that fits into the Event-metadata class includes the time a database entry was

last validated. This informat.ion would be used by cache nlanagers that actively revalidate

their cache entries, name servers that wish to cache data from other servers, and active

name servers that play an active role in lIlaintaining accurate authoritative data.

Lz'fetime-metadata, needed by cache managers to gauge a cache entry's accuracy, in­

cludes information about name service database tuples. such as their expected lifetime, their.

lifetime distribution function. or a family of approxinlate lifetime distributions. Whereas

Event-nletadata contains infornlation about actual occurrences in the life of a particu­

lar piece of nanle service data. Lzjetz'me-ulPtadata represents statistical infornlation about

what is expected of the data's lifetime. A~ such~ unlike Event-rnetadata, which Inust be

XEROX PARe. CSL-85-I. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 145

maintained for each individual attribute, the lifetime information often pertains to a generic

class of data, as discussed in Section 7.4.

Thus, assuming the name service provides a way of identifying database tuples whose

lifetimes are identically distributed, Lifetime-metadata need only be stored once for each

group and not for each database entry. One likely way of grouping database attribute tuples

would be by the type of object that the data pertains to and the particular attribute type.

The attribute type is an explicit part of the attribute tuple, while the type of the named

object is not generally known by the name service. However, the name service database

could be easily augmented with this type information; in fact, object type information could

prove useful at the application level in order to allow type-checked bindings through the

name service.

For cache managers that actively revalidate cache entries, name servers may maintain

metadata to facilitate revalidation or the detection of modifications to the name service

database. This Version-metadata need not be understandable by cache managers and could

be based on a particular name server implementation. If the cache manager is unable to

interpret the metadata, then revalidation must be done by presenting the metadata to an

authoritative name server. One example of Version-metadata, timestamps, was presented

as a convenient way of checking the validity of cached data without having to compare

the actual data values. Maintaining timestamps for database entries is simply a matter

of providing the storage in the database and updating the timestamp fields whenever the

database tuples are updated.

Finally, Advice-metadata could range from dynamic statistics about client references,

used for predicting future references, to indications of what data should never be cached.

Much of this metadata desired by cache managers is readily available to the name servers;

the servers should simply be programmed to retain this metadata along with the data to

which it refers. A name service database entry's creation date is a good example of crucial

Event-metadata that is easy to acquire. Indications that an entry has been modified are also

simply a matter of adding a timestamp field to the database entry. Other metadata, such as

an object's expected lifetime or lifetime distribution, must be obtained from knowledgeable

sources such as the object's creator or manager.

7.6.2 Modified interfaces

Caching algorithms require feedback from clients and metadata from name servers in

order to fulfill the needs of the cache's clients. Thus, the interfaces presented in Chapter 3

XEROX PARC, CSL-85-1, FEBRUARY 1985

146 DISTRIBUTED NAME SERVERS

for name servers and name agents must be expanded for additional information exchange.

First, the Update operation for adding object attributes to the name service database

should be modified to include information about the object that could aid in caching the

data,

Metadata: TYPE = STRING;

Update: PROGEDURE[Op: UpdateOps, name: Name, attribute:
AttributeType, value: Attribute Value, info: Metadata];

The information desired from name service clients consists primarily of Lifetime and Advice­

metadata. The name agent and name server update operations continue to look identical.

The Lookup operations, on the hand, differ for name agents and name servers when

name agents make use of caches. The name server lookup routine remains basically the

same as before, except that the metadata associated with a database tuple is returned along

with its value,

Lookup: PROCEDURE[name: Name. attribute: AttributeType]
RETURNS [Attribute Value 1 Metadata];

This metadata not only includes the information presented with the attribute when it was

registered, but also might include Lifetime and Version-metadata maintained by the server.

The name agent's interface for accessing the name service might allow clients to specify

the desired accuracy level with every lookup request,

L~okup: PROCEDURE [name: Name, attribute: AttributeType,
desired: AccuracyLevel] RETURNS[AttributeValue];

Alternatively, the name agent's lookup operation need not change if clients simply specify

an overall desired accuracy level.

SetAccuracy: PROCEDURE[desiredAccuracy: AccuracyLevel];

Also, the name agent must provide clients access to the cache's complain routine,

Complain: PROCEDURE [name: Name. attribute: AttributeType,
value: Attribute Value];

The name agent simply passes complaints and requests for desired accuracy levels directly

to its local cache manager. Clients of the name service need not use the cache interface

routines.

XEROX PARC. CSL-85-1. FEBRUARY 1985

CHAPTER 7. CACHING NAME SERVER DATA 147

7.7 Summary

Caches are un authoritative repositories of name service data that has been obtained as

the result of name service queries. They have fast access times, and hence should improve

the overall performance of queries to the name service database assuming that recently

requested data is likely to be reused in the near future. To alleviate the need to maintain

perfect cache consistency, cached data must be treated as hints; clients using caches should

be prepared to detect and recover from misinformation.

In order to guarantee performance benefits from using a cache, the cache manager main­

tains a minimum level of accuracy of the cache based on clients' recovery costs. The accuracy

level of the cache can be regulated and adjusted dynamically given metadata about the life­

time distribution or expected lifetime of name service database entries. Cache maintenance

algorithms age the cache with a decay rate that is a function of the data '8 lifetime distribu­

tion and a threshold dependent on the desired accuracy level. Cache managers may choose

to either purge or revalidate cache entries that fall below the accuracy level. Even caches

shared by clients with conflicting or dynamically changing requirements can be managed so

that the clients perceive different accuracy levels.

XEROX PARe. CSL-85-1. FEBRUARY 1985

148 DISTRIBUTED NAME SERVERS

XEROXPARC .CSL-85-I. FEBRUARY 1985

Chapter 8

Final ReIllar ks

... if you should come upon this spot, please do not hurry on. Wait for a time,
exactly under the star.

- Antoine de Saint Exupery, The Little Prince.

8.1 Reflections on the Architecture

149

Distributed name services enable their clients to unambiguously name objects and pro­

vide facilities for accessing information about those objects. This dissertation develops a

flexible architecture for building distributed name services to facilitate sharing of objects in

large and diverse computing environments. The key features of this architecture are:

• Its components are viewed in terms of the object model. The facilities are layered with

well defined interfaces so that changes to the algorithms employed by one component

are isolated from the other components.

• Existing database management techniques for partitioned and replicated data, recov­

ery, authorization, and query processing can be easily adopted.

• Existing communication protocols, such as remote procedure calls, can also be adopted.

• The role of name servers, which provide the basic service, is distinguished from that

of name agents, which access the service on behalf of clients. Name agents often hide

the distributed nature of the name service from. their clients.

• The information maintained by the name service consists of two types: attribute data

and configuration data. In fact, the functions of a name server can be separated into

two more specialized servers, if so desired: a database server that stores attribute data

XEROX PARC. CSL-85-I. FEBRUARY 1985

150 DISTRIBUTED NAME SERVER.S

and a name resolution server that stores configuration data and assumes responsibility

for resolving names .

• Authorities attributes represent a simple scheme for lllanaging authority information

and are more flexible than authority assignments based on the name structure.

• Context bindings and name clustering are the key to reducing the configuration

database. Names nlaY be clustered either syntactically or algorithmically. Syntac­

tic clustering exploits the syntactic structure of names and adequately models existing

naming conventions. Non-syntactic clustering, on the other hand. enables the method

for resolving names to change without changing objects' names.

• Different styles of name resolution allow the lllechanism to be tailored to the division

of computational power between name servers and clients, as well as to the available

comnlunication paradigms.

• Caches of name service data that exist outside the boundaries of the naIne service can

be effectively lllanaged given feedback from name servers. The information passed by

name servers to cache managers may include Event, Lzjetz"me, Versz"on, and Advz"ce­

metadata.

Observe that two basic types of bindings are performed by name services:

object name ~ authorities ---+ attributes.

The first binding allows the name service itself to be reconfigured: the authoritative name

servers for an object may change over time. The second allows information about objects to

change freely since the name service permits late binding; information about an object, such

as its internet location, is retrieved as needed rather than being built into client programs.

The mechanisms developed in this dissertation can be used to name a variety of objects in

a general way. However. name management need not be implemented as a single stand-alone

network service. For instance. a distributed file system may have its own directory system

while host names are managed by a traditional name server. Whether a single network

service is utilized for all objects in the distributed computing environment~ or separate

naming authorities are established for different object types remaIns a policy decision.

8.2 Thesis Contributions

Chapter 1 identified five principal problems in providing distributed nallle services for

very large and diverse. cOlllputing environments. Solutions to these problems are now

XEROX PARC. CSL-85-1. FEBRUARY 1985

CHAPTER 8. FINAL REMARKS 151

presented as contributions of the dissertation:

• Name resolution: This dissertation dispels the common belief that the structure of

names directly dictates the resolution process. Nanle structure need not, but can, be

exploited to reduce and distribute the configuration data used to locate an object or its

attributes. Names are resolved by a chain of context bindings determined by applying

a series of clustering conditions to the name space.

• Administrative control: The multiple administrative entities cooperatively participat­

ing in the distributed community retain control over the placement and protection

of their objects and information concerning their objects. Autonomous organizations

may supply their own servers or freely choose other servers to store the attributes

for their objects; authorities attributes, part of the commonly managed configuration

database, indicate the authoritative servers for each object.

The separation of attribute data from configuration data serves as an important con­

tribution since organizations can enforce required access controls on attribute data

maintained on their servers, while configuration data, which is shared by all and crit­

ical to the operation of the name service, contains only information used to resolve

names.

• Overhead costs: Factors that affect the scaling of name services for large numbers

of objects include the amount of storage required in each server and the number of

servers involved in various operations.

First, the number of objects for which an individual name server has authority de­

termines the amount of storage needed for attribute data. Because of the fine grain

assignment of authorities allowed by the architecture, no lower bound exists for the

number of objects managed by a server. A small amount of configuration data is

required in each server to allow them to locate other servers and remote contexts. Au­

thoritative servers for a context must maintain the complete context, though, again,

general clustering conditions permit fine grain control over the size of contexts.,

Second, the amount of interactions between servers required to perform an operation

need not grow with the number of servers since broadcast and other forms of random

inquiry are not utilized. The authorities attribute for each object name can be located

by a single readily determined resolution chain. Thus, small workstations with limited

resources can serve as servers. as well as larger machines, without negatively impacting

name service operations.

XEROX PARCo CSL-85-1. FEBRUARY 1985

152 DISTRIBUTED NAME SERVERS

• Adaptation: As the computing environment evolves, structure-free name management

allows the name service to be readily reconfigured without renaming objects. In partic­

ular, if a name server becomes overloaded, part of its responsibilities can be off loaded

to a different server. New name servers can be added to meet expanding demand for

services.

Merging independently created name spaces with different naming conventions can be

accomplished since the name management mechanisms ignore the structure of names.

Working out name conflicts becomes solely an administrative problem (which can be

alleviated by having client software expand partially qualified names into globally

unambiguous names).

• Performance: Results obtained from an analytical model for distributed name services

show that the cost of name service operations with a decentralized service need not

be appreciably greater than with a centralized service (though more storage space is

required for configuration data). Substantial cost benefits can be accrued through

replication that depend heavily on the topology of the environment and the delegation

of authority over parts of the name space. Measurements of Xerox's Grapevine regis­

tration service indicate properties of clients' reference patterns that can be exploited

to enhance performance, including sizeable localities of interest.

The cost of accessing the name sef'v'ice can be amortized over several object references

if clients maintain local caches of recently· acquired name server data that is likely to

be reused in the future. A new approach to managing caches of hints demonstrates

that maintaining a minimum cache accuracy level, derived from the ratio of lookup

costs to the costs of detecting and recovering from invalid cache entries, guarantees

performance improvements. Estimates of the accuracy of cache entries are computed

from various types of metadata, such as the expected lifetime of an attribute tuple

and its time since birth. Even caches shared by clients with conflicting or dynamically

changing requirements can be Inanaged so that the clients perceive different accuracy

levels.

The thesis postulated in Chapter 1 follows from these research results:

Physically distributed, but logically centralized, name services can be provided

in a general and cost effective way, even for very large, geographically dispersed

computing communities.

XEROX PARCo CSL-85-1, FEBRUARY 1985

CHAPTER 8. FINAL REMARKS 153

8.3 Areas for Future Work

Several interesting areas for future work have surfaced in the context of the research

discussed herein.

Experiments on caching should illuminate the applicability of various caching policies.

Statistics on the lifetime distributions of various classes of objects need to be gathered

from existing environments. Also, more elaborate models of cache behavior may allow

optimal cache management strategies to be derived or determined experimentally.

Managing large attributes of an object present special problems. Certain classes of

attributes, such as large mail distribution lists, are inherently distributed and should

be maintained by the name service in a distributed fashion. Thus, the notion of

authority for such attributes must be modified.

N arne completion mechanisms are needed for converting abbreviations and aliases, which

are nlOre convenient for clients, into fully qualified names, which may be quite long

and awkward for large name spaces. The DARPA Domain Name System, for instance,

defines a protocol for requesting name completion, but does not specify how the com­

pletion into a fully qualified name is to be done. Simple techniques for expanding

abbreviations, such as adding a default prefix, may be sufficient in some cases. In

other cases, clients may want to obtain the currently registered name that is most

similar to an abbreviation.

Discovering unambiguous names for various objects must take place independent of

the name service. That is, clients of the name service must possess knowledge of

the desired object's name before contacting the nanle service. In practice, names

can be obtained through informal communication channels, such as human word­

of-mouth, electronic messages, or system documentation. In some cases, the name

of an object may be '"guessed". Computer systems for discovering names based on

characteristics of the objects, such as keywords or descriptions, are difficult to design

for distributed environments. How to build such "yellow pages" services remains an

interesting research area.

Attribute-based naming conventions, in which the set of attributes for an object, or

some subset thereof, serve to identify the object, represents an alternative to simple

unambiguous character string names [IFIP 84]. Difficulties in resolving naInes arise

since a given set of attributes rnay or rnay not unambiguously identify a particular

XEROX PARCo CSL-85-1. FEBRUARY 1985

154 DISTRIBUTED NAME SERVERS

object; certainly, the set is not unique. Moreover, an attribute set that is presently

unambiguous may become ambiguous in the future as objects with similar attributes

are created. Techniques for effectively managing such "names" remain to be explored.

Resolving attribute-based names likely requires limited searches within a global nam­

ing graph. The name resolution algorithm presented in Chapter 4 is single threaded;

as soon as a clustering condition is met, the resolution proceeds to a single new con­

text. One could imagine allowing several attribute clustering conditions to be satisfied

and "fork" concurrent name resolution chains that attempt to further disambiguate

an attribute-based name. This possibility presents certain problems that were not

addressed in this dissertation.

Practical experience obtained from building real systems is needed to check the viability

of proposals and new ideas. Systems research entails a combination of design and implemen­

tation. This dissertation describes a new. flexible design for distributed name management.

Its utility in practice remains to be explored. The construction of truly large distributed

name services is just over the horizon.

XEROX PARe. CSL-S5-I. FEBRUARY 1985

155

Glossary

This dissertation used and introduced a fair amount of terminology, much of which does

not have a universally accepted meaning. For convenient reference, the definitions of these

tenns as they relate to naming and name services are reproduced below. Be aware that

many of these terms have different meanings in a different context.

abbreviation: a short form for a name that may be used in certain circumstances as a

substitute for the complete name.

active name server: a name server that plays an active role in maintaining accurate au­

thoritative data.

active revalidation: attempts initiated by a cache manager to check the validity of cached

data.

advice-metadata: data maintained about the desirability of caching particular database

tuples.

alias: one of several alternative names for an object, sometimes called a nickname.

attribute: a piece of information maintained about a named object by the name service,

consisting of a type and value.

attribute lifetime: the time between successive modifications to an attribute's value.

attribute tuple: the representation of an attribute stored in the name service database,

consisting of an object's name along with an attribute type and value.

attribute-based naming convention: a naming convention in which the set of attributes

for an object, or some subset thereof, serve to identify the object.

authoritative name server: a name server that stores information about a particular

object and aSSUlues responsibility for reliably Inanaging that information. also known

as a naming authority for the object.

XEROX PARC, CSL-85-I. FEBRUARY 1985

156 DISTRIBUTED NAME SERVERS

authorities attribute: an attribute whose value is the list of authoritative name servers

for an object.

cache: an unauthoritative repository of recently acquired name server data, generally main­

tained by individual applications or hosts to improve their performance.

cache accuracy level: the percentage of cache entries that are valid at a given point in

time; also the probability that a particular cache entry is valid.

cache accurate-hit ratio: a dynamic measure of the percentage of valid cache entries

returned to a client.

cache aging: the process of discarding cache entries whose time since creation exceeds

some threshold.

cache manager: the agent responsible for maintaining the data stored in a cache.

client I server model: a model of distributed computing that classifies active objects into

servers, which offer services, and clients, which make use of those services.

clustering condition: an expression that allows the name space to be conveniently par­

titioned into contexts, either syntactically or algorithmically; specifically, a procedure

that when applied to a name yields a true or false value.

configuration data: information stored in context objects about the authoritative name

servers for every named object as well as context bindings that guide the name reso­

lution process.

context: logically, a collection of named objects under a common geographicaL organiza­

tional, or political affiliation; concretely, a special database object containing configu­

ration data.

context binding: an attribute used for name resolution whose value gives a new name to

be resolved in a new context.

database server: a specialized name server that stores attribute tuples and performs name

service operations, but does not participate in name resolution.

event-metadata: data maintained about the time various events occur in the lifetime of a

database tuple.

explicit context: a component of a name denoting a context in which other parts of the

name exist.

XEROX PARC. CSL-85-!. FEBRUARY 1985

GLOSSARY 157

flat name space: names that are simply character strings exhibiting no structure.

global name: a name that is interpreted in a consistent manner by all clients and services

regardless of their location in the environment or other factors, also called an absolute

name.

group name: a name that has a list of names as an attribute, typically used for such things

as a mail distribution list or access control list.

hierarchical name space: names consisting of two or more parts that are strictly nested,

forming levels; also called a tree-structured name space.

hints: information that may not be completely accurate, but may improve the performance

of applications that are able to detect and recover from invalid data; cache data, for

instance.

implicit context: a naming context that is not explicitly represented in the structure of

the name.

initial context: the global context that starts the name resolution chain for all objects.

internet address: a handle used by a program for communicating with another program

over a computer network via a communication protocol.

iterative name resolution: a style of name resolution in which the name agent retains

control over the resolution process; a name server does its best to resolve names using

only locally available configuration data and returns to the calling name agent when

it can no longer continue.

lifetime-metadata: data maintained about the lifetime distribution of an attribute tuple.

locality of reference: the degree to which local name servers are accessed more frequently

than distant servers.

metacontext: a special "context" context containing the authoritative name servers for all

other named contexts.

name: a character string that identifies an object, generally readable by humans and of

mnemonic value.

name agent: an intermediary between name servers and their clients allowing client pro­

grams to be written as if the Ilame service were locally available.

XEROX PARC. CSL-85-1. FEBRUARY 1985

158 DISTRIBUTED NAME SERVERS

name distribution: the assignment of authority for parts of the name space to various

name servers.

name registration: the act of registering the existence of an object with the name service

and guaranteeing that the object's name is unambiguous.

name resolution: the process of determining the authoritative name servers for a given

object.

name resolution chain: the list of context bindings encountered in the process of resolv­

ing a name, terminated by an authorities attribute.

name resolution server: an intermediary that accepts responsibility for iteratively re­

solving names on behalf of dumb name agents; also name servers containing only

configuration data.

name server: an active entity that provides an instance of the name service, generally in

cooperation with other name servers.

name service: a network service that enables clients to name resources or objects and

share information about these objects.

name service database: the set of attributes, distributed and replicated among the name

servers, for the universe of named objects.

name service metadata: information about an object's attributes that can aid cache

mangers in making intelligent decisions, such as the lifetime distribution of a partic­

ular attribute; see advice-metadata, event-metadata, lifetime-metadata, and version­

metadata.

name service operation: an interface routine provided by the name service, such as

Lookup or Update, that allows clients to access the name service database.

name space: the set of names complying with a given naming convention.

naming convention: the set of rules adopted for naming objects~ including the syntactic

representation of names as well as the their semantic interpretation.

naming network: a structured name space in which objects are named by paths through

a graph; contexts comprise the nodes of the graph and edges represent named relations

between contexts.

object: anything that deserves a nanle. such as a conlputer. file, process, service. distribu­

tion list, computer programmer. etc.

XEROX PARC. CSL-85;.1. FEBRUARY 1985

GLOSSARY 159

organizationally partitioned name space: names structured such that the organiza.;.

tional authority for assigning names is explicitly recognized and decoupled from the

authoritative name servers for those names.

passive revalidation: the invalidation of cached data based on unsolicited feedback, usu­

ally from clients of the cache.

pattern: a template against which a name is compared, ranging from a name that may sim­

ply contain wildcards, which are denoted by "*,, and match any sequence of characters,

to a regular expression.

physically partitioned name space: names structured so that an object's name reflects

the management authority for the name, for instance ~'name.server".

predestinate naming convention: a naming convention, such as a naming network, in

which the name left to be resolved at any point in the resolution chain is a tail com­

ponent of the original name presented for resolution.

probabilistic algorithm: a method for estimating the accuracy of cached data based on

the time since the data was entered in the name service database.

recursive name resolution: a style of name resolution in which name servers recursively

call other servers to continue the resolution of a name that can not be fully resolved

locally; the initial name server that received the operation request returns the appro­

priate response after the name has been resolved and the operation performed.

relative name: a name whose interpretation depends on some local state information, such

as the current machine.

requery operation: active refresh based on repeating name server lookups for cached data.

revalidation procedure: a client level routine used to detect invalid cache data in an

application specific way.

structure-free name management: a flexible approach to name ,distribution and reso­

lution, which breaks the strong ties between the structure of names and their man­

agement.

subalias: an alias for a particular component of a name~

suspicious cache data: a cache entry whose probability of being valid, as estimated by

the cache manager. falls below the desired cache accuracy level.

XEROX PARe, CSL-85-1. FEBRUARY 1985

160 DISTRIBUTED NAME SERVERS

timestamp: a strictly increasing indication of when the last update to a part of a database

was rnade, sometimes called a version number; may be used for revalidating cache

entries.

transitive name resolution: a style of name resolution in which the name server currently

processing an operation simply forwards the operation to a server that can continue

its processing; an authoritative server eventually performs the desired operation and

returns the result.

unambiguous name: a name that refers to at most one object.

unique name: a name that is the only name for its referent.

version-metadata: data maintained about the time of the last update to a database tuple.

XEROX PARe. CSL-8S-I. FEBRUARY 1985

161

Bibliography

[Abraham and Dalal 80]
S. M. Abraham and Y. K. Dalal.
Techniques for decentralized management of distributed systems.
Proceedings 20th IEEE Computer Society International Conference (COMPCONj,
San Francisco, California, February 1980, pages 430-436.

[Accetta 83]
M. Accetta.
Resource location protocol.
Carnegie-Mellon University, RFC 887, December 1983.

[Allen et al. 82]
F. W. Allen, M. E. S. Loomis, and M. V. Mannino.
The integrated dictionary/directory system.
Computing Surveys 14(2):245-275+, June 1982.

[Allman 83]
E. Allman.
SENDMAIL - An internetwork mail router.
University of California. Berkeley, draft of March 14, 1983.

[Bayer et al. 78]
R. Bayer, R. M. Graham, and G. Seegmiiller.
Operating Systems: An Advanced Course.
Springer-Verlag, 1978.

[Belady 66]
L. A. Belady.
A study of replacement algorithms for virtual storage computers.
IBM Systems Journal 5(2):78-101. 1966.

[Birrell 83}
A. D. Birrell.
The grapevine interface.
In Grapevine: Two Papers and a Report, Xerox Palo Alto Research Center,
Technical Report CSL-83-12. December 1983.

[Birrell and Nelson 84]
A. D. Birrell and B. J. Nelson.
Implementing remote procedure calls.
ACM Transactions on Computer Systems 2(1):39-59, February 1984.

XEROX PARC, CSL-85-1. FEBRUARY 1985

162 DISTRIBUTED N AMESERVERS

[Birrell et al. 82]
A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An exercise in distributed computing.
Communications of the ACM 25(4):260-274, April 1982.

[Bloch et al. 84]
J. J. Bloch, D. S. Daniels, and A. Z. Spector.
Weighted voting for directories: A comprehensive study.
Department of Computer Science, Carnegie-Mellon University: Technical Report
CMU-CS-84-114, April 1984.

[Boggs 83]
D. R. Boggs.
Internet Broadcasting.
Ph.D. thesis, Stanford University.
A vailable as Xerox Palo Alto Research Center, Technical Report CSL-83-3,
October 1983.

[Boggs et al. 80]
D. R. Boggs, J. F. Shoch, E. A. Taft. and R. M. Metcalfe.
Pup: An internetwork architecture.
IEEE Transactions on Communications COM-28(4):612-624, April 1980.

[Bremer and Drobnik 79]
I. Bremer and O. Drobnik.
Specification and validation of a protocol for decentralized directory management.
IBM Research Report RC7880. September 1979.

[Carroll 78]
J. M. Carroll.
N ames and naming: An interdisciplinary review.
IBM Research Report RC7370. October 1978.

[Cerf 79]
V. Cerf.
Internet addressing and naming in a tactical environment.
DARPA/IPTO, lEN 110. August 1979.

[Cerf and Cain 83]
V. G. Cerf and E. Cain.
The DoD Internet architecture model.
Computer Networks 7(5) :307 -318, October 1983.

[Cheng 84]
R. F. Cheng.
Naming and Addressing in Interconnected Computer Networks.
Ph.D. thesis~ University of Dlinois, Technical Report UIUCDCS-R-84-1158,
January 1984.

[Cheng and Liu 82]
R. F. Cheng and J. W. S. Lin.

XEROX PARe. CSL-8S-I. FEBRUARY 1985

BIBLIOGRAPHY

A coherent scheme to support . location-independent references in internetwork
environment.
Proceedings AFIPS National Computer Conference, 1982, pages 775-784.

[Cheriton and Mann 84J
D. R. Cheriton and T. P. Mann.
Uniform access to distributed name interpretation in the V-System.

163

Proceedings 4th International Conference on Distributed Computing Systems, San
Francisco, California, May 14-18, 1984.

[Chesley and Rom 83J
H. R. Chesley and R. Ronl.
A new approach to network name management.
Proceedings IEEE INFOCOM 89, San Diego, California, April 1983, pages 31-35 .

[Chou et al. 83]
W. Chou, A. A. Nilsson. and S. C. Chang.
Distributed directories in internetworking environment: Strategy and performance.
Proceedings IEEE INFO COM 89, San Diego, California, April 1983, pages 563-571.

[Clark 82]
D. D. Clark.
Name, addresses, ports, and routes.
MIT Lab for Computer Science, RFC 814, July 1982.

[Comer 83]
D. Comer.
The computer science research network CSNET: A history· and status report.
Communications of the ACM 26(10):747-753, October 1983.

[Cooper 82]
E. C. Cooper.
A network name space facility.
·Computer Science Division. U. C. Berkeley, October 1982.

[Curtis and Wittie 84bj
R. Curtis and L. Wittie.
Global naming in distributed systems.
IEEE Software 1(3}:76-80. July 1984.

[Dalal 82]
Y. K. Dalal.
Use of multiple networks in Xerox' Network System.
Computer 15{10}:82-92, October 1982.

[Dalal and Printis 81]
Y. K. Dalal and R. S. Printis.
48-bit internet and ethernet host numbers.
Proceedings 7th Data Communications 8ympos~·um, Mexico City, Mexico. October
1981, pages 240-245.

XEROX PARCo CSL-85-1. FEBRUARY 1985

164 DISTRIBUTED NAME SERVERS

[Daniels and Spector 83]
D. Daniels and A. Z. Spector.
An algorithm for replicated directories.
Proceedings Second A CM Symposium on Pr,,'nciples of Distributed Computing,
Montreal, Canada, August 1983.

[Deutsch 79J
D. P. Deutsch.
A suggested solution to the naming, addressing, and delivery problem for Arpanet
message systems.
Network Information Center, SRI International, RFC 757, September 1979.

[Feinler 77J
E. J. Feinler.
The identification data base in a networking environment.
1977 National Telecommunications Conference Record, 1977. pages 21:3.1-3.5.

[Feinler et al. 82]
E. Feinler, K. Harrenstien, Z. Su, and V~ White.
DoD Internet host table specification.
Network Information Center, SRI International, RFC 810, March L 1982.

[Garcia-Luna and Kuo 81]
J. J.Garcia-Luna and F. F. Kuo.
Addressing and directory systems for large computer mail systems.
Proceedings IFIP TC6 International Symposium on Computer Message Systems,
North-Holland, Ottawa, Canada, 1981, pages 297-313.

[Gelernter 84]
D. Gelernter.
Dynamic global name spaces on network computers.
Proceedings 1984 International Conference on Parallel Processing, Columbus, Ohio,
August 1984, pages 25-31.

(Gifford 79]
D. K. Gifford.
Weighted voting for replicated data.
Proceedings Seventh Symposium on Operating Systems Principles, December 1979.
pages 150-162.

[Gray 78]
J. N. Gray.
Notes on database operating systems.
In Bayer et al. [Bayer et al. 78], pages 393-481.

[Harrenstien 77J
K. Harrenstien.
NAME/FINGER.
Network Information Center. SRI International, RFC 742, December 1977.

XEROX PARe. CSL-85-1. FEBRUARY 1985

BIBLIOGRAPHY

[Harrenstien and White 82]
K. Harrenstien and V. White.
NICNAME/WHOIS.
Network Information Center, SRI International, RFC 812, March 1982.

[Harrenstien et al. 82]
K. Harrenstien, V. White, and E. Feinler.
Hostnames server.
Network Information Center, SRI International, RFC 811, March 1982.

[Hinden et al. 83]
R. Hinden, J. Haverty, and A. Sheltzer.
The DARPA Internet: Interconnecting heterogeneous computer networks with
gateways.
Computer 16(9):38-48, September 1983.

[Hoffman et al. 83]
M. Hoffman, R. Schantz, R. Thomas, and B. Woznick.
Cronus, a distributed operating system: Preliminary system/ subsystem
specification.
Bolt Beranek and Newman Inc., draft of June 2, 1983.

[Holler 81]
E. Holler.
Multiple copy update.
In Lampson et al. [Lampson et al. 81], pages 284-307.

[IFIP 83]
IFIP WG 6.5.
Naming and directory services for message handling systems.
Working paper, version 4, July 1983.

[IFIP 84]
IFIP WG 6.5.
A user-friendly naming convention for use in communication networks.
Working paper, version 3. March 1984.

[ISO 81]
ISO /TC97/SCI6.
Data processing-Open systems interconnection-Basic reference model.
Computer Networks 5(2):81-118, April 1981.
Approved as ISO International Standard IS 7498.

[Janson et al. 83]
P. A. Janson, W. Bux, and E. Mumprecht.
Addressing and naming in local-area inter-networks.
IBM Zurich Research Laboratory.
Presented at workshop on Ring Technology Local Area Networks, Kent, U.K.,
September 1983.

XEROX PARC, CSL-85-1. FEBRUARY 1985

165

166 DISTRIBUTED NAME SERVERS

[Kerr 81]
I. H. Kerr.
Interconnection of electronic nlail systems - A proposal on naming, addressing and
routing.
Proceedings IFIP TC6 International Symposium on Computer Message Systems,
North-Holland, Ottawa, Canada. 1981, pages 315-326.

[Lampson 81]
B. W. Lampson.
Atomic transactions.
In Lampson et al. [Lampson et al. 81], pages 246-265.

[Lampson 83]
B. W. Lampson.
Hints for computer system design.
Proceedings Ninth Symposium on Operating Systems Principles. Bretton Woods,
New Hampshire, October 1983, pages 33-48.

[Lampson et al. 81]
B. W. Lampson, M. Paul, and H. J. Siegert, editors.
Distributed Systems - Architecture and Implementation.
Springer-Verlag, 1981.

[Landweber et al. 83]
L. Landweber, M. Litzkow~ D. Neuhengen, and M. Solomon.
Architecture of the CSNET Name Server.
Proceedings ACM SIGCOMM '89 Symposium, Austin, Texas, March 1983, pages
146-153.

[Leach et al. 82]
P. J. Leach. B. L. Stumpf, J. A. Hamilton, and P. H. Levine.
UIDS As internal names in a distributed file system.

_ Proceedings ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, Ottawa, Canada. August 1982. pages 34-41.

[Lindsay 80]
B. Lindsay.
Object naming and catalog management for a distributed database manager.
Proceedings Second International Conference on Distributed Computing Systems,
Paris, France, April 1981. pages 31-40.
Also available as IBM Research Report RJ2914, August 1979.

(Lindsay et al. 84]
B. G. Lindsay, L. M. Haas, C. Mohan. P. F. Wilms, and R. A. Yost.
Computation and communication in R*: A distributed database manager.
ACM Transactions on Computer Systems 2{1}:24-38, February 1984.

[Lindsay et al. 79]
B. Lindsay et al..
Notes on distributed databases.
IBM Research Report RJ2571, July 1919.

XEROX PARe. CSL-85-1. FEBRUARY 1985

BIBLIOGRAPHY

[Livesey 79]
J. Livesey.
Inter-process communication and naming in the Mininet system.
Compcon '79, Spring 1979~ pages 222-229.

[Lyngbaek and McLeod 82J
P. Lyngbaek and D. McLeod.
A distributed name server for information objects.
Computer Science Department, University of Southern California, Technical
Report TR-200, December 1982.

[Martella and Schreiber 80]
G. Martella and F. A. Schreiber.
A data dictionary for distributed databases.
Proceedings International Symposium on Distributed Data Bases, Paris, France,
North-Holland, 1980, pages 17-33.

[Mills 81]
D. L. Mills.
Internet name domains.
COMSAT Laboratories, RFC 799, September 1981.

[Mitchell et al. 79J
J. G. Mitchell, W. Maybury, and R. Sweet.
Mesa language manual (version 5.0).
Xerox Palo Alto Research Center, Technical Report CSL-79-3, Apri11979.

[Mockapetris 83a]
P. Mockapetris.
Domain names - Concepts and facilities.
USC fuformation Sciences Institute. RFC 882, November 1983.

[Mockapetris 83b J
. P. Mockapetris.
Domain names - Implementation and specification.
USC fuformation Sciences Institute, RFC 883, November 1983.

[Mogul 84]
J. Mogul.
Representing information about files.

167

Proceedings 4th International Conference on Distributed Computing Systems, San
Francisco, California. May 1984~ pages 432-439.

[Needham and Herbert 82]
R. M. Needham and A. J. Herbert.
The Cambridge Distributed Computing System.
Addison- Wesley, 1982.

[Needham and Schroeder 781
R. M. Needham and M. D. Schroeder.
Using encryption for authentication in large networks of computers.
Communications of the ACM21(12): 993-999, December 1978.

XEROX PARC. CSL-85-1. FEBRUARY 1985

168 DISTRIBUTED NAME SERVERS

[Nowitz 78]
D. A. Nowitz.
Uucp implementation description.
UNIX Programmer's Manual, seventh edition, volume 2, Bell Laboratories,
October 1978

[Oppen and Dalal 83]
D. C. Oppen and Y. K. Dalal.
The Clearinghouse: A decentralized agent for locating named objects in a
distributed environment.
ACM Transactions on Office In/ormation Systems 1(3):230-253, July 1983.
An expanded version of this paper is available as Xerox Report OPD-T8103,
October 1981.

[Pickens et al. 79b]
J. R. Pickens, E. J. Feinler, and J. E. Mathis.
The NIC name server-A datagram based information utility.
Proceedings 4th Berkeley Workshop on Distributed Data Management and
Computer Networks. August 1979, pages 275-283.

[Popek et al. 81]
G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel.
LOCUS: A network transparent, high reliability distributed system.
Proceedings Ez'ghth Symposz'um on Operatz'ng Systems Principles, Pacific Grove.
California, December 1981, pages 169-177.

[Postel 79]
J. Postel.
Internet name server.
Information Sciences Institute, University of Southern California, lEN 116. August
1979.

[Postel 82b]
J. Postel.
Simple mail transfer protocol.
USC Information Sciences Institute, RFC 821, August 1982.

[Postel 84]
J. Postel.
Domain Name Systenl implementation schedule - revised.
USC Information Sciences Institute.RFC 921, October 1984.
Previous schedules were released as RFC 881, November 1983, and RFC 897,
February 1984.

[Postel et al. 811
J. B. Postel, C. A. Sunshine. and D. Cohen.
The ARPA Internet Protocol.
Computer Networks 5(4):261-271. July 1981.

[Roberts and Wessler 70]
L. G. Roberts and B. D. Wessler.

XEROX PARC. CSL-85-1. FEBRUARY 1985

BIBLIOGRAPHY

Computer network development to achieve resource sharing.
Proceedings AFIPS Spring Joint Computer Conference, 1970, pages 543-549.

[Rosen 81]
E. C. Rosen.
Logical addressing.
Bolt Beranek and Newman Inc., lEN 183, May 198!.

[Saltzer 78]
J. H. Saltzer.
Naming and binding of objects.
In Bayer et al. [Bayer et al. 78], pages 99-208.

[Saltzer 82]
J. H. Saltzer.
On the naming and binding of network destinations.
Proceedings IFIP /TC6 International Symposium on Local Computer Networks,
Florence, Italy, April 19-21, 1982, pages 311-317.

[Satyanarayanan 81]
M. Satyanarayanan.
A study of file sizes and functional lifetimes.
Proceedings Eighth Symposl,'um on Operating Systems Principles, Pacific Grove,
California, December 1981, pages 96-108.

[Schicker 82]
P. Schicker.
Naming and addressing in a computer-based mail environment.
IEEE Transactions on Communications COM-30(1}:46-52, January 1982.

[Schroeder et al. 84]
M. D. Schroeder, A. D. Birrell, and R. M. Needham.
Experience with Grapevine: The growth of a distributed system.
ACM Transactions on Computer Systems 2(1}:3-23, February 1984.

[Shoch 781
J. F. Shoch.
Internetwork naming, addressing, and routing.

169

Proceedings 17th IEEE Computer Society International Conference {COMPCONj,
September 1978, pages 72-79.

(Sirbu and Sutherland 84]
M. A. Sirbu, Jr. and J. B. Sutherland.
Naming and directory issues in message transfer systems.
Proceedings IFIP WG-6.5 International Working Conference on Computer Message
S ervl,'ces, Nottingham, England, May 1984.

[Smith 82]
A. J. Smith.
Cache memories.
Computing Surveys 14(3):473-530, September 1982.

XEROX PARCo CSL-85-1. FEBRUARY 1985

170 DISTRIBUTED NAME SERVERS

[Solomon et al. 82)

[Su 82)

M. Solomon, L. H. Landweber, and D. Neuhengen.
The CSNET Name Server.
Computer Networks 6(3):161-172, July 1982.

Z. Suo
A distributed system for internet name service.
Network Information Center, SRI International, RFC 830, October 1982.

[Su and Postel 82J
Z. Su and J. Postel.
The domain naming convention for internet user applications.
Network Information Center, SRI International, RFC 819, August 1982.

[Sunshine 82]
C. A. Sunshine.
Addressing problenls in multi-network systems.
Proceedings INFOCOM 82, Las Vegas, Nevada, March 1982. pages 12-18.

[Sunshine and Postel 80J
C. Sunshine and J. Postel.
Addressing mobile hosts in the ARPA internet environnlent.
USC Information Sciences Institute, lEN 135, March 1980.

[Terry 82J
D. Terry.
The COSIE Name Server.
IBM San Jose Research Lab, Internal Memo, June 1982.
Available as IBM Research Report RJ4161, January 1984.

[Terry 84J
D. B. Terry .

. An analysis of naming conventions for distributed computer systems.
Proceedings AC1\,f SIGCOMM ~84. Montreal, Quebec, June 1984~ pages 218-224.

[Terry et al. 84]
D. B. Terry, M. Painter. D. Riggle~ and S. Zhou.
The Berkeley Internet Name Domain Server.
Proceedings USENIX Summer Conference. Salt Lake City, Utah, June 1984, pages
23-31.
Also available as Computer Science Division, U. C. Berkeley, Report No.
UCB/CSD 84/182, May 1984.

[Thiel 83]
G. I. Thiel.
Partitioned Operation and Distributed Data Base Management Systems Catalogs.
Ph.D. thesis, University of California. Los Angeles, UCLA Report No. CSD-83096.
August 1983.

XEROX PARC. CSL-85-1. FEBRUARY 1985

BIBLIOGRAPHY

[Thomas 73]
R. H. Thomas.
A resource sharing executive for the ARPANET.
Proceedings AFIPS Natz'onal Computer Conference, 1973, pages 155-163.

[Walker et al. 83J
B. Walker, G. Popek. R. English, C. Kline, and G. Thiel.
The LOCUS distributed operating system.

171

Proceedings Ninth Symposium on Operating Systems Principles, Bretton Woods,
New Hampshire, October 1983, pages 49-70.

[Watson 81]
R. W. Watson.
Identifiers (naming) in distributed systems.
In Lampson et al. [Lampson et al. 81]. pages 191-210.

[Wu 83}
Y. Wu.
Perfonnance of file directory systems on a network with redundant data bases.
Proceedings IEEE INFOCOM 89, San Diego, California, April 1983, pages 572-580.

[Xerox 81]
Xerox Corporation. Internet transport protocols.
Xerox System Integration Standard 028112, December 1981.

XEROX PARC, CSL-85-L FEBRUARY 1985

