
Etherphone: Collected Papers 1987-1988

An Overview of the Etherphone System and its Applications
by Polle T. Zellweger, Douglas B. Terry, and Daniel C. Swinehart

Telephone Management in the Etherphone System
by Daniel C. Swinehart

Managing Stored Voice in the Etherphone System
by Douglas B. Terry and Daniel C. Swinehart

System Support Requirements for Multi-media Workstations
by Daniel C. Swinehart

Active Paths th rough Multimedia Documents
by Polle T. Zellweger

Etherphone: Collected Papers 1987-1988

CSL-89-2 May 1989 [P89-00002]

Abstract: The Etherphone™ system integrates live and recorded voice into an office
workstation environment. It supports a wide range of applications, including telephony, voice
mail, voice annotation and editing, audio user interfaces, audio meeting services, and narrated
hypermedia documents. This report brings together a group of previously· published papers
that describe these applications and the distributed voice system architecture on which they
are built. It includes an overview of the Etherphone system; a vision of the role that workstation
based telephones can play in an office environment; a discussion of, the voice manager that
provides facilities for recording, editing, and playing stored voice; an outline of the systems
support required to permit flexible, extensible multimedia applications; and a description of a
hypermedia presentation system built upon the capabilities of the Etherphone system.

An Overview of the Etherphone System and its Applications, by Polle T. Zellweger,
Douglas B. Terry, and Daniel C. Swinehart. This paper appeared in the Proceedings of the
2nd IEEE Conference on Computer Workstations (Santa Clara, CA, March 1988), 160-168.
An earlier version appeared as: D. Swinehart, D. Terry, and P. Zellweger. An experimental
environment for voice system development. IEEE Office Knowledge Engineering
Newsletter, 1 (1), February 1987, 39·48.

Telephone Management in the Etherphone System, by Daniel C. Swinehart. This
paper appeared in the Proceedings of the IEEE/IEICE Global Telecommunications
Conference (Tokyo, November 1987), 1176·1180.

Managing Stored Voice in the Etherphone System, by Douglas B. Terry and Daniel C.
Swinehart. A version of this paper appeared in ACM Transactions on Computer Systems
6(1), February 1988, 3-27.

System Support Requirements for Multi-media Workstations, by Daniel C.
Swinehart. This paper appeared in the Proceedings of the Speech Tech '88 Conference
(New York; April 1988); Media Dimensions, Inc., New York, April 1988, 82·83.

Active Paths through Multimedia Documents, by Polle T. Zellweger. This paper
appeared in Document Manipulation and Typography, J.C. van Vliet (ed.), Cambridge
University Press, 1988. Proceedings of the EP'88 Conference on Electronic Publishing,
Document Manipulation and Typography, (Nice, France; April 1988).

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

An Overview of the Etherphone System
and Its Applications

Polle T. Zellweger, Douglas B. Terry, and Daniel C. Swinehart

© Copyright 1988 IEEE. Reprinted with permission.

A bst ract: The Etherphone ™ system has been developed to explore methods for extending
existing multi-media office environments with the facilities needed to handle the transmission,
storage, and manipulation of voice. Based on a hardware architecture that uses
microprocessor-controlled telephones to transmit voice over an Ethernet that also supports a
voice file server and a voice synthesis server, this system has been used for applications such
as directory-based call placement, call logging, call filtering, and automatic call forwarding.
Voice mail, voice annotation of multi-media documents, voice editing using standard text
editing techniques, and applications of synthetic voice use the Etherphones for voice
transmission. Recent work has focused on the creation of a comprehensive voice system
architecture, both to specify programming interlaces for custom uses of voice, and to specify
the roles of different system components, so that equipment from multiple vendors could be
integrated to provide sophisticated voice services.

This paper appeared in the Proceedings of the 2nd IEEE Conference on Computer Workstations
(Santa Clara, CA, March 1988), 160-168. An earlier version appeared as: D. Swinehart, D.
Terry, and P. Zellweger. An experimental environment for voice system development. IEEE
Office Knowledge Engineering News/etter, 1 (1), February 1987, 39-48.

CR Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems - distributed applications, C.3 [Special-Pu rpose and Application
Based Systems]: Real-time Systems, 0.2.6 [Software Engineering]: Programming
Environments, 0.4.7 [Operating Systems]: Organization and Design - hierarchical deSign;
distributed, real-time, and interactive systems, H.1.2 [Models and Principles]: User/Machine
Systems - human factors, H.4.1 [Information Systems Applications]: Office Automation,
H.4.3 [Information Systems Applications]: Communications Applications, 1.7.2 [Text
Processing]: Document Preparation.

General Terms: Design, experimentation, human factors.

Additional Keywords and Phrases: Etherphones, Cedar, telephones, recorded voice, voice
system architecture, workstation telephone management, multimedia conferencing,
collaborative work, voice editing, voice-annotated documents, multimedia documents, active
documents.

XEROX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS 1

AN OVERVIEW OF THE ETHERPHONE SYSTEM
AND ITS APPLICATIONS·

Polle T. Zellweger, Douglas B. Terry, and Daniel C. Swinehart

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Abstract
The Etherphone ™ system has been developed to

explore methods for extending existing multi-media office
environments with the facilities needed to handle the
transmission, storage, and manipulation of voice. Based on a
hardware architecture that uses microprocessor-controlled
telephones to transmit voice over an Ethernet that also
supports a voice file server and a voice synthesis server, this
system has been used for applications such as directory-based
call placement, call logging, call filtering, and automatic call
forwarding. Voice mail, voice annotation of multi-media
documents, voice editing using standard text editing
techniques, and applications of synthetic voice use the'
Etherphones for voice transmission. Recent work has focused
on the creation of a comprehensive voice system architecture,
both to specify programming interfaces for custom uses of
voice, and to specify the roles of different system
components, so that equipment from multiple vendors could
be integrated to provide sophisticated voice services.

1. Introduction
Suppose Alexander Graham Bell had waited to invent

the telephone until personal workstations and distributed
computing networks had been invented. What approach
would he take in introducing voice communications into the
modern computing environment? It was an attempt to
answer this question that led to the creation of a voice
communications project within the Computer Science
Laboratory at Xerox PARe.

• An earlier version of this paper appeared as: D. Swinehart,
D. Terry, and P. Zellweger. An experimental environment
for voice system development. IEEE Office Knowledge
Engineering Newsletter 1,1, February 1987. 39-48.

Stated more concretely, the project's aim was to extend
our existing multi-media office environment with the facilities
needed to handle the transmission, storage, and manipulation
of voice. We believed that it should be possible to deal with
voice as easily as we can manage text, electronic mail, or
images. The desired result was an integrated workstation that
could satisfy nearly all of a user's communications and
computing needs.

A basic requirement was to provide conventional
telephone facilities (so that casual users would not have to
read a manual to make a phone call), but our goals went well
beyond that. We had observed that most enhanced voice
communications facilities had been developed by designers of
telephone systems. In contrast, we wished to draw on our
experience as developers of personal information systems
running on powerful workstations with graphical interfaces.
We were convinced that the user would prefer to perform
voice management functions using the power and
convenience of workstation facilities such as on-screen
menus, text editors, and comprehensive informational
displays.

These aims led us to explore two related research
domains:

• "Taming the telephone": Despite an immense
investment in research and development over the last
110 years, the user interface and the functionality of
the telephone still leaves much to be desired. We
contend that the personal workstation, combined with
a telephone system whose characteristics we can
control, make it possible to better match the behavior
of the office telephone with the needs of its users.
There are gains to be had in the placement of calls, the
handling of incoming calls, and the capabilities
available to telephone attendants (that is, switchboard
operators, receptionists. and secretaries).

• "Taming the tape recorder": We also believe that
workstation techniques for creating. editing, and

XEROX PARC, CSL-89-2. MAY 1989

2 AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS

storing text or images can be modified to deal with
digitally-recorded voice. Application areas such as
electronic mail, document annotation, and dictation
are candidates for improvement. Speech synthesis and
recognition devices can be added to provide
translation between textual and spoken information.

These two sets of activities are clearly related. A carefully'
designed system can support novel applications of both live
and recorded voice.

In this overview we will describe the Etherphone ™
system that we have developed and used to explore the
integration of voice into a personal information environment.
The following sections sketch the present hardware.
architecture, describe some of the more compelling
applications that have been built to exploit it, and briefly
explore the software and systems issues that have surfaced.

2. Etherphone System Description

In designing our prototype voice system, we surveyed
several possible hardware architectures, including extensions
of our existing Centrex service or of a commercially available
P ABX. Primarily because Centrex and P ABX systems did
not support programmable switching control, we concluded
that the most effective way to satisfy our needs was to
construct our own transmission and switching systeml7.
Ethernet local-area networks, which provide the data
communications backbone supporting personal distributed
computing at Xerox PARC, have proven to be an effective
medium for transmitting voice as well as data.

Figure 1. Etherphone system components.

Our prototype voice system consists of the following
types of components connected by Ethernets, as shown in
Figure 1:

Etherphones: telephone/speakerphone instruments, each
including a microcomputer, encryption hardware, and an

Ethernet controller. Etherphones digitize, packetize, and
encrypt telephone-quality voice (64 kilobits/second, with
silence suppression) and send it to each other directly
over an Ethernet; they support conferencing by digitally
summing' the voice packets from other participants
before converting to analog. Etherphone software is

- written in C. The current environment contains
approximately 50 Etherphones, which are used daily by
members of the Computer Science Laboratory as their
only telephone service. Each Etherphone includes a
connection to a standard direct-dial telephone line for
access to telephones outside the Etherphone system.

We chose to separate the voice-processing functionality
from the workstation for reliability, performance, and
flexibility: voice-processing peripherals allowed us to
provide reliable voice processing without compromising
workstation performance on other tasks and to add voice
to different types of workstations without changing the
voice hardware. Etherphones transmit voice on a
separate 1.5 megabits/second Ethernet because the only
Ethernet chips available to us in 1981 could not operate
at standard speeds. Tests and calculations convinced us
that our existing Ethernets would provide adequate
bandwidth and service to carry voice as well as data.
Additional information on the Etherphone hardware and
the Voice Transmission Protocol can be found in a
previous reportl7.

Voice Control Server: a program that provides control
functions similar to a conventional PABX and manages
the interactions among all the other components. It runs
on a dedicated server that also maintains databases for
public telephone directories, Etherphone-workstation
assignments, and other shared information. The Voice
Control Server is programmed in the Cedar
programming environmentl8.. Centralized server
software limited the necessary size and speed of the
Etherphone processor, and thus its cost, as well as
limiting the amount of C software.

Voice File Server: a service that can hold conversations with
Etherphones in order to record or play back user
utterances. In addition to managing stored voice in a
special-purpose file system, the Voice File Server
provides operations for combining, rearranging, and
replacing parts of existing voice recordings to create new
voice objects. For security reasons, voice remains
encrypted when stored on the file server.

Text-to-speech Server: a service that receives text strings
and returns the equivalent spoken text to the user's
Etherphone. Each text-to-speech server is constructed
by connecting a commercial text-to-speech synthesizer to
a dedicated Etherphone and is available on a first-come
first-served basis. Two speech synthesizers, purchased
from different manufacturers, have been installed.

Workstations: high-performance personal computers with
large bitmapped displays arid mouse pointing devices.
Workstations are the key to providing enhanced user

XEROX PARC, CSL-89-2, MAY 1989

AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS 3

Introduction

An Experimental Environment
for Voice System Development

Daniel C. Swinehart
Dou&las B. Terry

Polle T. Zellwe&er
Xerox Palo Alto Research Center

~~~. 

~rs':=~I~~~::tin~r~:~:o~:\~~db:~t~~:~;t~~~nt~~atte~~~~~:~h u~~~i':te~~nt~i:o{:si~:;~~~ci~: 
voice communications into the modern computinc environment? It was an attempt to answer this 
question that led to the creation of a voice communications project within the Computer Science 
Laboratory at Xerox PARCo : .. :::.:::: ... 
Stated more concretely, the project's aim was to extend our existinc multi-media office environment ~~!!!~!!!~I!=!~!~!~~~ with the facilities needed to handle the transmission, stora&e, and manipUlation of voice. We believed 
that it should be ,.P.g!!!lble 10 deal with voice as easily as we can mana&e text, electronic mail, or 
~a:t:: ~~:. ~;::~~7~~:~~~~~~~~p~:!t n:.~n inte&rated workstation that could satisfy neatly Interpress Samples made with the 

Gargoyle Illustrator 

GUIOJ'leBacker.ip 

RoaanLetUtrB.ip 

Figure 2. A Cedar screen in use. The two windows in the upper left show a document preparation task, including voice annotation of an earlier 
version of this paper for communication among the authors. The bottom window of this pair shows new voice (represented by arrowheads) being 
inserted in the middle of an existing voice annotation. The two windows in the lower left show a programming task that is monitoring part of the 
voice annotation system. The two windows in the upper right show images created with several graphical illustration packages. The command 
interpreter window at the lower right accepts user commands, similar to a Unix shell. The bottom row of icons contains files and tools that are 
active but are not currently being manipulated by the user. 

interfaces and control over the voice capabilities. We 
rely on the extensibility of the local programming 
environment- be it Cedar, Interlisp, Unix, or 
whatever-to facilitate the integration of voice into 
workstation-based applications. Workstation program 
libraries implement the client programmer interface to 
the voice system. 

In addition, the architecture allows for the inclusion of other 
specialized sources or sinks of voice, such as speech 
recognition equipment or music synthesizers. 

All of the communication required for control in the 
voice system is accomplished via a remote procedure call 
(RPC) protocol3• For instance, conversations are established 
between two or more parties (Etherphones, servers, and so 
on) by performing remote procedure calls to the Voice 
Control Server. During the course of a conversation, RPC 
calls emanating from the Voice Control Server inform 
participants about various activities concerning the 

conversation. Active parties in a conversation use the Voice 
Transmission Protocol for the actual exchange of voice. 
Multiple implementations of the RPC mechanisms permit the 
integration of workstation programs and voice applications 
programmed in different environments. 

3. Examples of Applications to Date 

Most of our user-level applications to date have been 
created in the Cedar environment, although limited functions 
have been provided for Interlisp and for standalone 
Etherphones. This section describes the voice applications 

. that are currently available in Cedar, including telephone 
management, text-to-speech synthesis, and voice annotation 
and editing. Figure 2 shows a typical Cedar screen using 
voice, text, and graphics to support programming and 
document preparation activities. 

XEROX PARC, CSL-89-2, MAY 1989 



4 AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS 

'Phone Answer Dlsconnect SpeakText stopSpeech Dlrectory 
Called Party: Aquarius Theater info Callin g Party: outside line 

December 3J 1981 11:2.1: 18 am PST 
18: Finished speaking "Suppose Alexander Graham Bell had waited ... " 
52: Placin2: call to AQuarius Theater info (321-3240) 

OJ Dec 8,7 11:09:j8am abandoned OQ:OO:j$ flom Terry.pa.? 
03 Dec 81 11:11:28 am completed 00:01:15 to recording service (PolleZ.pa) 
OJ Dec 8,7 11:U:2jam busy OQ:OO:1S to ~7inehd1't.pa 
03 Dec 81 11:14:16 am completed 00:00:34 to Time Announcement (91612616) 
03 Dec 81 11:11:00 am completed 00:08:36 from outside line 
03 Dec 81 11:26:36 am completed 00:00:43 to text-to-speech service (PolleZ.pa) 
03 Dec 8'7 11:2'7:3'7 .am .active 00:00:2' to Aflu.arius The.ater info ('32'73240) 

Clear ~ Get GetImpl PrevFile 6t:ef& Save Time Split p~aces Levels @ Log 
Name om'ce Home Details 
SerTlices 

A Time For You 961-8140 961-9180 haircuts + 
AAA Emergency Service 595-3411 4081246-5811 Palo Alto J Mtn View 
Allways Travel 4081146-3636 * travel agnt: April 6129/81 9-6M-F qs 

~~US~~R i,ahemoto J enson Ui=ii'~ * Dentist 
Dr. Stegman J Deidre 321-4121 * TakeCare Primary Care physician 
Enrico's Foreign Car 961-4848 * Fiat repairs J 2145 O. Mdfd MV 
PA Square Theater info 493-1160 
Sears Appliance Repair 369-1151 * Redwood City 
Time A. 161-'.ti1ti 1ti1-2ti1ti 

Figure 3. Two workstation telephone management windows. The upper Finch window provides a two-dimensional user interface to the 
Etherphone system. It includes an Etherphone control menu (the first line, including 'Phone', 'Answer', etc. buttons), a redialing area (the second 
line), an area for system status reports, and a conversation log (indicating a call in progress to Aquarius Theater info). The lower window shows a 
portion of a personal telephone directory, which is a set of speed-dialing buttons that can be created easily from an ordinary text file. The call in 
progress was placed by clicking on the underlined 'Aquarius Theater info' entry. 

In order to make voice a first-class citizen of the Cedar 
environment, Etherphone functions are typically available in 
several ways: through an Etherphone control panel. through 
commands that can be issued in a command interpreter 
window, and through procedures that can be invoked from 
client programs. This integration of voice capabilities will be 
discussed more fully in the next section. 

3.1. Telephone management 

The telephone management functions provide improved 
capabilities for placing and receiving calls. Figure 3 shows an 
Etherphone control window, called Finch, and a personal 
telephone directory window. 

Users can place calls by specifying a name, a number, or 
other attributes of the called party. A system directory 
database for local Xerox employees (about 1000 entries) is 
stored on the Voice Control Server. Users can also create 
personal directories, which are consulted before the system 
directory to locate the desired party. A soundex search 
mechanismS helps compensate for spelling uncertainties. 

A variety of convenient workstation dialing methods are 
provided: a user can fill in fields in the Finch tool, select 
names or numbers from anywhere on the screen. use eIther of 
two directory tools that present browsable lists of names and 
associated telephone numbers as speed-dialing buttons, or 
redial any previously-made call by clicking on its 
conversation log entry. Calls can also be placed by name or 
number from the telephone keypad. 

Calls are announced audibly, visually. and functionally. 
Each Etherphone user selects a personalized ring tune, such 
as a few bars of "Mary Had a Little Lamb". This tune is 
played at a destination Etherphone to announce calls to that 
user. The caller hears the same tune as a ringback 
confirmation. During ringing, the telephone icon jangles with 
a superimposed indication of the caller's name, as shown in 
the bottom portion of Figure 4. An active conversation is 

Figure 4. Etherphone system icons. The two icons at the upper left 
show a closed personal telephone directory and a Finch icon at rest 
The icon at the upper right shows an outgoing call to Polle 
Zellweger's home (usemame PolleZ.pa). The four bottom icons show 
several stages of an incoming call from Doug Wyatt: the three left 
icons of the group are animated during ringing, while the right 
conversation icon is used after the call has been answered. 
Animation and visual feedback in the. icons provide useful 
information without consuming valuable screen area. 

XEROX PARC, CSL-89-2, MAY 1989 



AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS 5 

et e 
Find Word Def Position Normalize PrevPlace Reselect StyleKind 
AddVoice PlayVoice STOP EditVoice DeleteVoice DictationMachine DeleteLinks 

5, a Voice viewers 

The procedure outlined above is fine for Iilhort annotations, but for more complex annotations the 
user will need facilities to edit portions oJ voice, To k.eep things simple for rapid annotation, all 
that appeared in the text was an icon representing a complete voice utterance, To perform 
editing operations, t~~i~Ir:f:Y-I~'!:~~i::~:;i!tte user selects a region of text and buttons ',EditVoicQ, A 
l1oz'ce l1z'ewer opens up for each voice icon within the selection, Each of the selected voice icons 
at this point changes its appearance to that of an opened l1oz'ce icon - it now displays a number 
that identifies the corresponding voice viewer, Each voice viewer is labelled with its number, so 
tha t the user can easily see the associations between voice viewers and posi dons in text viewers, 

A 

,vntro .Four score and seven years ago 
>:::<_ - - I • • 

.Conclusion 

Figure 5. Voice annotation and editing. The upper window shows voice annotations being added to a Tioga document (the voice annotation 
system documentation). The third line of menu buttons ("AddVoice PlayVoice ... ") near the top of the window are used to manipulate voice. In 
the second line of text, a voice annotation appears on the word "short", indicated by the comic-strip dialog 'balloon' surrounding the character. 
In the fifth line, a similar annotation has been opened for editing in the lower window, labelled "Sound Viewer #1". In the sound-and-silence 
profile in the lower window, white rectangles depict silence, while dark rectangles depict sound. The profile contains several contextual 
indicators to orient the user during editing. The playback cue (the gray rectangle underneath the word "score") indicates the progress of voice 
playback. A temporary marker in the form of a small cross has been placed in the voice section marked "Intro". The textual annotations with 
arrows are permanent markers that will be stored with the document. 

represented as a conversation between two people with a 
superimposed indication of the other party's name (also 
shown in Figure 4). The system automatically fills in the 
Finch tool's Calling Party or Called Party field to allow easy 
redialing of the last call. It also creates a new entry in a 
conversation log. A user can consult the conversation log to 
discover who called while he was out of the office. 

Our methods of locating users in an office building 
utilize the personalized ring tunes, which allow Etherphone 
users to identify calls to them wherever they may be: in their 
own offices, within earshot, or at other Etherphones. If an 
Etherphone user logs in at a workstation, his calls can be 
automatically forwarded to the adjacent Etherphone. An 
additional feature, called visiting, allows him to register his 
presence with a second workstation or Etherphone, such as 
during a meeting. Registering with the destination location 
allows users to travel more freely than forwarding calls from 
the home location does. Each visit request cancels any earlier 
requests. The common problem of forgetting to cancel 
forwarding is eased by ringing both Etherphones during 
visiting. 

A more detailed series of examples that demonstrate how 
the Etherphone system's telephone management capabilities 
can increase office productivity appears in a 'related paper16. 

3.2. Text-to-speech synthesis 

A user or program can generate speech as easily as 
printing a message on the display by using one of the Text-to
speech Servers. A user can select text in a display window 

and click the Finch tool's SpeakText menu button. A 
program can call a procedure with the desired text as a 
parameter. These features are implemented by creating a 
"conversation" between the user's Etherphone and a Text-to
speech Server. The system sets up a connection to the Text
to-speech Server, sends the text (via RPC), returns the 
digitized audio signal (via the Voice Transmission Protocol), 
and closes the connection when the text has been spoken. A 
similar mechanism is used for voice recording and playback. 

Our primary uses for text-to-speech so far have been in 
programming environment and office automation 
applications. Programming environment tasks have included 
spoken progress indicators, prompts, and error messages. 
Office automation applications have included proofreading 
(especially comparing versions of a document when one 
version has no electronic form, such as proofing journal 
galleys) and audio reminder messages generated by calendar 
programs. 

3.3. Voice annotation and editing 

This section describes the addition of a voice annotation 
and editing mechanism to Tioga, the standard text-editing 
program in Cedar. More information about this system can 
be found in an earlier paper2. 

Tioga is a high-quality galley editor, supporting the 
creation of text documents that contain a variety of type faces, 
type styles, and paragraph formats as well as illustrations and 
scanned images. Tioga is the underlying editor for all textual 
applications in Cedar, including the electronic mail system, 

XEROX PARC, CSL-89-2, MAY 1989 



6 AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS 

the system command interpreter, and other tools that require . 
the user to enter and manipulate text Wherever Tioga is 
used, all of its formatting and multi-media facilities are 
available. Thus, by adding voice annotation to Tioga, we 
have made it available to a .variety of Cedar applications. 
Figure 5 shows a closeup of a Tioga document containing 
voice annotations, one of which is being edited by the user. 

Any text character within a Tioga document can be 
annotated with an audio recording of arbitrary length. The 
user interface of the voice annotation system is designed to be 
lightweight and easy to use, since spontaneity in adding vocal 
annotations is essential. Voice within a document is shown as 
a distinctive shape superimposed around a character, so that 
the document's visual layout is unaffected. Furthermore, 
adding voice to a document does not alter its contents as 
observed by other programs (such as compilers). 

To add an annotation, the user simply selects the desired 
character within a text window and buttons AddVoice in that 
window's menu. Recording begins immediately, using either 
a hands-free microphone or the telephone handset, and 
continues until the user buttons STOP. A voice annotation 
becomes part of the document, although the voice data 
physically resides on the Voice File Server. Copies of the 
document may be stored on shared file servers or sent directly 
to other users as electronic mail. To listen to voice, a user 
selects a region containing one or more voice icons and 
buttons PlayVoice. 

Simple voice editing is available on a visual 
representation of the voice. Users can select a voice 
annotation and open a window showing its basic sound-and
silence profile. Sounds from the same or other voice windows 
can be cut and pasted together using the same editing 
commands supported by the Tioga editor. Editing is done 
largely at the phrase level, representing the granularity at 
which we believe editing can be done with best results and 
least effort for an office situation *. A lightweight 'dictation 
facility' that uses a record/stop/backup model can be used to 
record and incorporate new sounds conveniently. The 
dictation facility can also be used when placing voice 
annotations directly into documents. 

Sound-and-silence profiles alone do not supply adequate 
contextual information for users to identify desired editing 
locations, so several contextual aids are provided. A playback 
cue moves along the voice profile during playback, indicating 
exactly the position of the voice being heard. While playback 
is in progress, a user can perform edits immediately or mark 
locations for future edits. Simple temporary markers can be 
used to keep track of important boundaries during editing 
operations, while permanent textual markers can be used to 
mark significant locations within extended transcriptions. 
Finally, the system provides a visual indication of the voice
editing history in an editing window. Newly-added voice 

* Editing on a word or phoneme level causes two difficulties: the system cannot 
easily identify word or phoneme boundaries for the user, and inserting or 
deleting words or phonemes is likely to cause results that sound choppy. 

appears in a bright yellow color, while less-recently-added 
phrases become gradually darker as new editing operations 
occur. This use of color is similar to Lippman et aI's use of 
color in text editing9• 

The voice annotation facility is implemented on top of a 
flexible set of voice editing and management primitives20. 
Instead of rearranging the contents of edited voice files, the 
Voice File Server builds a data structure to represent the 
edited voice and stores it in a server database. This data 
structure, called a voice rope, consists of a list of intervals 
within voice files. Voice is included in documents, electronic 
mail, and client programs solely by reference to voice ropes. 
To promote sharing voice throughout our distributed 
personal computing environment, voice ropes are immutable: 
recording and editing produce new voice ropes rather than 
modify existing ones. A modified style of reference counts 
enables unwanted voice ropes to be garbage collected. 

4. Progress toward a Voice System Architecture 

The original goals of the Etherphone project were to 
produce experimental prototypes that could "tame the 
telephone" or "tame the tape recorder" in novel and useful 
ways. As the project developed, however, a more 
fundamental goal emerged: to create and experimentally 
validate a comprehensive architecture for voice applications. 
The best way to explain the value of a voice architecture is to 
list some of the properties it should have: 

• Completeness. It must be able to specify the role of 
telephone transmission and switching, workstations, 
voice file servers, and other network services in 
supporting all the kinds of capabilities we have 
identified, such as telephone services and recorded 
voice services. 

• Programmability. It must permit workstation 
programmers to modify existing voice-related 
applications and to create new ones. Simple 
applications should be easy to write, requiring little or 
no detailed understanding of how the system is 
implemented. More elaborate applications might 
require a more thorough knowledge of the underlying 
facilities. The architecture must be designed to 
minimize the effect of faulty programming on the 
reliability and performance of the overall system. 
(Users of experimental software might experience 
program failure or reduced performance, but other 
users should not.) 

• Openness. It should define the role of each major 
component, so that different kinds of components 
could be used to provide the same functions. In this 
way, multiple vendors of telephone and office 
equipment could cooperate to provide advanced voice 
functions in conjunction with workstation-based 
applications. For example, a conventional PABX 
(business telephone system) could be used in place of 
the Etherphones to provide voice switching. Ideally, 

XEROX PARC, CSL-89-2, MAY 1989 



AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS 7 

such an architecture would evolve into a standard for 
voice component interconnection. 

The development of the Etherphone system has included 
an ongoing effort to define such an architecture, and to 
implement the system in compliance with it. Following the 
general methodology employed by such modern 
communications architectures as the ISO reference model7 or 
the Xerox Network Systems protocols22, the voice 
architecture is expressed as a set of layers, each calling on the 
capabilities of the layer below it through well-defined 
interfaces or protocols. We have identified five distinct 
layers. From highest to lowest, these are the Applications 
layer, the Service layer, the Conversation layer, the 
Transmission layer, and the Physical layer. 

The best way we have found to explain this organization 
is from the inside out, beginning with the heart of the 
architecture, the Conversation layer. It provides a uniform 
approach to the establishment and management of voice 
connections, or conversations, among the various services. It 
also provides a standard method for distributing conversation 
state transitions and other progress reports to the various 
participants in each conversation. All communications 
between services are mediated by Conversation layer 
facilities. In the Etherphone system, the functions of the 
Conversation layer are implemented entirely within the Voice 
Control Server. However, the architecture does not mandate 
centralized control. For example, Etherphones built with 
larger memories and more powerful processors could support 
a distributed implementation, each managing the 
conversations that it or its associated workstation initiated. 

The Service layer defines the various voice-related 
services - such as telephone functions, voice recording and 
storage, voice playback, speech synthesis, and speech 
recognition - that form the basis for the voice applications. 
Each of the services must follow the uniform Conversation 
layer protocols in creating voice connections with other 
services. However, each can register with the Conversation 
layer additional service-specific interfaces (protocol 
specifications). Connections may be formed between similar 
services (as in a call from one telephone to another), or 
among different services (such as a connection from a 
telephone to the recording service, mediated by a workstation 
program). It is not expected that ordinary programmers will 
produce new services; the services provide both the basic user 
facilities and interfaces to the building blocks for higher-level 
applications. In the Etherphone system, some services are 
implemented on the server machine that contains the Voice 
Control Server, others on separate server machines, still 
others on individual workstations. 

The Applications layer represents client applications that 
use the voice capabilities of the architecture. To establish 
voice connections, a client uses simplified facilities provided 
by a service that resides on the workstation along with the 
application. Client applications also negotiate with the 
Conversation layer to gain access to specialized interfaces 
provided by other services. The previous section illustrated 
many of the present voice applications using the Etherphone 

environment. 

Logically below the Conversation layer is the 
Transmission layer. This layer represents the actual methods 
for representing digital voice, for transmitting and switching 
voice, and for communicating control information among the 
components of the system. In the Etherphone system, voice is 
transmitted digitally, in discrete packets, using a standard 64 
kilobits/second voice representation and our own voice 
transmission protocol. Other transmission and switching 
methods could be substituted without affecting the nature of 
the programs operating in layers above the Conversation 
layer. Possibilities include synchronous digital transmission, 
or even analog transmission. The only requirement is that 
these components provide interfaces that allow the 
implementation of Conversation layer protocols. As we have 
mentioned, the control protocol selected for all control 
communications in the system was a locally-produced remote 
procedure call protocol. Other remote procedure protocols or 
message-based protocols would work equally well. 

Finally, the Physical layer represents the actual choice of 
communications media, for the transmission of both voice 
information and control (not necessarily the same media). 
Besides the research Ethernet that we use (operating at 1.5 
megabits/second), voice transmission on standard Ethernets, 
synchronous or token-oriented ring networks, digital PABX 
switches, or analog telephone switches could be used. 

Looking at the architectural layers, it becomes easy to see 
how our efforts differ from work being done elsewhere. Most 
of the current efforts to "integrate voice and data", such as 
those systems built around the Integrated Systems Digital 
Network (ISDN) definitions4, deal only with the 
Transmission and Physical layers. Other systems that include 
voice, such as the Diamond research effort at BBN21 and 
commercial voice mail services, support some specialized 
applications exhibiting very scanty Service and Conversation 
layers. They mostly build directly on capabilities 
corresponding to our Transmission layer. By contrast, we 
have concentrated our efforts on Conversation and Service 
layer specifications, and on the architecture in general. A 
project recently initiated at Bell Communications Research 
has been exploring similar goals and methods6• 

To date, only one instance each of the Physical, 
Transmission, and Conversation layers has been 
implemented. We have used the resulting facilities 
extensively to produce the various Services and Applications 
described in the preceding sections. We have produced a 
relatively complete workstation service for Cedar 
workstations, and a preliminary implementation for Interlisp. 

We are not yet fully satisfied with the architecture, 
particularly the interface between the Conversation and 
Service layers. This interface has proven to be somewhat 
clumsy to use, while at the same time restricting the number 
of capabilities that can be readily produced. Recent progress 
is encouraging, however. 

XEROX PARC, CSL-89-2, MAY 1989 



8 AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS 

5. Related Work 

Incorporating voice and/or telephony into a workstation 
environment is an active research area. 

Others have explored the use of local area networks to 
transport packetized voice. For example, the packet XCS 
system developed by Sincoskie and his colleagues at AT&T 
Bell Laboratories and later at Bell Communications Research 
also uses Ethernet5• In the Island system, the slotted 
Cambridge ring supplies guaranteed transmission bandwidth; 
voice and data are transported on the same network1. 

Work at IBM by Ruiz addressed both voice and 
telephony12. Off-the-shelf voice and telephone hardware was 
added to an office workstation. The system's prototype 
applications included directory-based autodialing, call 
logging, voice mail, telephone message recording and 
retrieval, and voice annotation of documents (one annotation 
per line). Annotated documents were stored in three parts: 
the text, a file of pointers to voice annotations, and a separate 
file for each annotation. However, there were no voice 
editing capabilities except for the ability to append new voice, 
and there was no visual representation of the recorded voice. 

The Sydis Information Manager is a commercial system 
that provides voice and telephonyll. It includes a shared 
central processor cluster with voice file storage, a voice 
processor, and a connection tq the local PBX. Special 
workstations with integrated telephones called VoiceStations 
support directory-based autodialing, voice and text mail, 
dictation and voice editing, voice annotation of documents 
(again, one annotation per line), and voice as a user interface 
output medium for items such as help messages or event 
announcements. The Sydis voice editing system uses a 
sound-and-silence representation similar to ours, but it lacks 
the ability to annotate the voice with text markers. 

Maxemchuk's speech storage system10, developed at 
AT&T Bell Laboratories in the late 1970's, provided many of 
the same facilities for recording, editing, and playing voice as 
our Voice File Server. Several additional features were 
included to permit scanning long voice messages: text 
markers that could be searched by a text editor, the ability to 
increase playback speed, and the ability to skip forward or 
backward in the message. Maxemchuk's system edited voice 
via divide and join operations that modified the control 
sectors of the stored voice messages. By contrast, our scheme 
of building data structures that reference segments of voice 
files allows many users and/or voice annotations to share a 
single copy of the voice bits. 

The Diamond multimedia message system21, like the 
Etherphone system, manages documents that contain various 
media elements by reference. Voice annotations appear in a 
document as an icon with a text caption; thus their placement 
is even more restricted than the one-annotation-per-line 
systems above, but the captions are available for text searches. 
Because only Diamond documents can reference voice 
passages, they can use a simpler reference counting scheme 
than ours. 

The MICE project at Bell Communications Research has 

constructed a centralized voice architecture to support rapid 
prototyping of communications services6, including remote 
call-forwarding, voice paging, voice mail, and combined 
voice/ data messages with editing. The central control process 
of the MICE system interprets finite state logic tables that 
specify the voice services. These tables allow changes to 
algorithms and services without recompiling or reloading the 
system (which would interrupt service to users). 

In contrast to the MICE and Etherphone centralized 
server architectures, the approach used by Schmandt and his 
colleagues at the MIT Media Laboratory associates a PC
based voice peripheral with a workstation15. The voice 
peripheral uses commercial speech and telephony cards to 
support voice filing and editing, telephony· functions, and 
speech recognition and synthesis. The system has been used 
to provide several sophisticated applications, including 
combined voice editing and recognition 13, conversational 
telephone answering14, and office activity management. 

6. Current and Future Directions 

Recall that the Etherphone project began with a set of 
applications-level functional goals for taming the telephone 
and the tape recorder. After building a basic hardware 
platform for achieving these goals, early applications-level 
efforts convinced us of the need for a voice system 
architecture. More recent efforts have focused on developing 
the architecture and a few interesting applications to 
demonstrate and explore its unique characteristics and 
flexibility. Voice project members have built most of the 
applications, although a few programmers have included 
telephone management or voice synthesis activities in their 
applications using interfaces provided by the Services layer. 

We have begun to explore a number of new directions 
and enhancements to the current capabilities. We have a 
skeletal implementation of call filtering that provides options 
based on the subject, urgency, or caller's identity to decrease 
the intrusiveness of the telephone for the callee. Our plan to 
integrate telephone conversation logs into the electronic mail 
system should have a side benefit of making the additional 
filtering information natural for the caller to supply. 

We are working on novel kinds of interactive voice 
connections, such as all-day "background" telephone calls, 
use of the telephone system to broadcast internal talks or 
meetings (as a sort of giant conference telephone call), and 
conference calls that allow side-conversations to take place. 
We have recently made it possible to register conversations by 
name (such as BudgetMeeting or RadioService); users may 
join these conversations as either listeners or participants. 

We plan to use our hardware-supported conferencing 
capabilities to incorporate text-to-speech or recorded voice 
into telephone calls. Among possible uses for text-to-speech 
are reading electronic mail over the telephone to a remote lab 
member as in PhoneSIave14 or MICE6 (but without 
dedicating a synthesizer solely to this task) and playing 
program-generated messages to callers, such as prompts or 

XEROX PARC, CSL-89-2, MAY 1989 



AN OVERVIEW OF THE ETHERPHONE SYSTEM AND ITS ApPLICATIONS 9 

reports of the user's location (possibly by consulting the user's 
calendar program, such as "Dr. Smith is at the Distributed 
Systems seminar now, please call back after 5 o'clock"). 

We are also exploring a novel scripting mechanism for 
creating viewing paths through one or more electronic 
documents23. Built on the capabilities of the voice 
architecture, scripted multi-media documents can contain a 
combination of text, pictures, audio, and action. Scripts can 
be used in a wide variety of ways, such as for formal 
demonstrations and audio-visual presentations, for informal 
interpersonal communications, and for organizing collections 
of information. Scripted documents are a dynamic form of 
hypermedia document whose additional structure can be 
layered on top of existing Tioga'documents. 

Finally, we would like to extend the system to other 
media, such as still and real-time video, other workstations, 
and other architectures. 

In concert with work on providing new features, we 
intend to continue to investigate the underlying systems and 
theories. Managing real-time and stored voice in a 
distributed environment presents many interesting problems 
in the areas of distributed systems19, user interface design, 
and voice transmission and processing technologies. 

Acknowledgments 

Larry Stewart, Severo Ornstein, and Susan Owicki were 
instrumental in the design and implementation of the 
Etherphone telephone management facilities. Lia Adams 
developed an early prototype of voice in electronic mail, 
Stephen Ades was responsible for the voice annotation 
system, and Luis Felipe Cabrera participated in the design of 
voice ropes and an analysis of the Voice Transmission 
Protocols. Dan Greene designed a prototype call filtering 
mechanism, John Osterhout implemented the Voice File 
Server, and Ken Pier implemented ring tunes. 

References 

1. S. Ades. An Architecturefor Integrated Services on the Local 
Area Network. PhD thesis, Cambridge University, February 
1987. 

2. S. Ades and D. Swinehart. Voice annotation and editing in a 
workstation environment. Proc. of AVIOS'86 American Voice 
Input Output Society Voice Applications Conference, September 
1986,13-28. Also available as Xerox PARC report CSL-86-3, 
September 1986. 

3. A. Birrell and' B. Nelson. Implementing remote procedure call. 
ACM Trans. Computer Systems 2,1, February 1984, 39-59. 

4. M.Decina. Progress towards user access arrangements in 
Integrated Services Digital Networks. IEEE Trans. 
Communications 30, September 1982,2117-2130. 

5. 1. DeTreville and W. D. Sincoskie. A distributed experimental 
communication system. IEEE Journal on Selected Areas in 
Communications SAC-I, 6. December 1983,1070-1075. 

6. G. Herman, M. Ordun. C. Riley, and L. Woodbury. The 
Modular Integrated Communications Environment (MICE): a 

system for prototyping and evaluating communications 
services. Proc. of International Switching Symposium '87. 
Phoenix, AZ, March 1987,442-447. 

7. International Organization for Standardization. ISO open 
systems interconnection - Basic reference model. ISOITC 
97/SC.16. 719, August 1981. 

8. D. Knuth. The Art of Computer Programming, Volume 3. 
Addison-Wesley. 1973 page 392. 

9. A. Lippman. W. Bender. G. Salomon. M. Saito. Color word 
processing. IEEE Computer Graphics and Applications. June 
1985.41-46. 

10. N. Maxemchuk. An experimental speech storage and editing 
facility. Bell System Technical Journal 59, 8. October 1980. 
1383-1395. 

11. R. Nicholson. Integrating voice in the office world. BYTE 8.12, 
December 1983.177-184. 

12. A. Ruiz. Voice and telephony applications for the office 
workstation. Proc. 1st International Conference on Computer 
Workstations, San Jose. CA. November 1985. 158-163. 

13. C. Schmandt The Intelligent Ear: a graphical interface to 
digital audio. Proc. IEEE Conference on Cybernetics and 
Society. October 1981, 393-397. 

14. C. Schmandt and B. Arons. Phone Slave: A Graphical 
Telecommunications Interface. Proc. Society for Information 
Display 1984 International Symposium. San Francisco. CA. 
June 1984. 

15. C. Schmandt and M. McKenna. An audio and telephone server 
for multi-media workstations. Proc. 2nd IEEE Conference on 
Computer Workstations. Santa Clara, CA. March 1988. 

16. D. Swinehart. Telephone management in the Etherphone 
system. Proc. of GlobeCom '87, IEEE Communications Society 
Conference, Tokyo, Japan, November 1987,392-402. 

17. D. Swinehart, L. Stewart, and S. Ornstein. Adding voice to an 
office computer network. Proc. of GlobeCom '83, IEEE 
Communications Society Conference, November 1983, 392-402. 
Also available as Xerox PARC report CSL-83-8, February 
1984. 

18. D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann. A 
structural view of the Cedar programming environment. ACM 
Trans. Programming Languages and Systems 8, 4, October 
1986,419-490. 

19. D. Terry. Distributed System Support for Voice in Cedar. Proc. 
of Second European SIGOPS Workshop on Distributed 
Systems, August 1986. 

20. D. Terry and D. Swinehart. Managing stored voice in the 
Etherphone System. To appear in ACM Trans. Computer 
Systems 6, 1, February 1988. An extended abstract appears in 
Proc. of Eleventh ACM Symposium on Operating System 
Principles, Austin TX, November 1987, 103-104. 

21. R. Thomas, H. Forsdick, T. Crowley, R. Schaaf, R. Tomlinson. 
V. Travers. G. Robertson. Diamond: A Multimedia Message 
System Built Upon a Distributed Architecture. IEEE 
Computer. December 1985. 65-77. 

22. Xerox Corporation. An Internetwork Architecture. XSIS 
028112. Xerox Corporation. Stamford. Conn .• December 1981. 

23. P. Zellweger. Active paths through multimedia documents. To 
appear in Proceedings of EP'88 International Conference on 
Electronic Publishing, Document Manipulation, and 
Typography. Nice. France. April 1988.r 

XEROX PARCo CSL-89-2. MAY 1989 





Telephone Management in the Etherphone System 

Daniel C. Swinehart 

© Copyright 1987 IEEE. Reprinted with permission. 

A.bstract: Several examples illustrate telephone management features that exist or are 

planned for the Etherphone system, which is an experimental environment that augments an 

existing electronic office system with methods for transmitting, storing, and manipulating digital 

voice. Some Etherphone capabilities are available from any telephone, while more 

sophisticated functions are obtained through applications running in an associated 

workstation. Knowledge of the user's identity and preferences form the basis for features not 

usually available in telephone systems. 

Etherphones have been deSigned to support the ready implementation of additional 

applications. Most enhanced telephone options and other voice services can be entirely 

implemented in the workstation environment. Those that prove particularly useful may migrate 

to a server in order to extend their availability to stand-alone telephones and to a wide range of 

operating system environments and workstation types. 

This paper appeared in the Proceedings of the IEEE/IEICE Global Telecommunications 

Conference (Tokyo, November 1987), 1176-1180. 

CR Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks): 

Distributed Systems - distributed applications; D.4.7 [Operating Systems]: Organization and 

Design - hierarchical design; distributed, real-time, and interactive systems; H.1.2 [Models 

and Principles]: User/Machine Systems - human factors; HA.3 [Information Systems 

Applications]: Office Automation; HA.1 [Information Systems Applications]: 

Communications Applications. 

General Terms: Design, experimentation, human factors. 

Additional Keywords and Ph rases: Etherphones, telephones, recorded voice, voice system 

architecture, workstation telephone management, multimedia conferencing, collaborative work. 

XEROX Xerox Corporation 

Palo Alto Research Center 

3333 Coyote Hill Road 

Palo Alto, California 94304 





TELEPHONE MANAGEMENT IN THE ETHERPHONE SYSTEM 1 

TELEPHONE MANAGEMENT IN THE 
ETHERPHONESYSTEM 

DANIEL C. SWINEHART 
Computer Science Laboratory 

Xerox Palo Alto Research Center 

Abstract: Several examples illustrate telephone management features that 
exist or are planned for the Etherphone system, which is an experimental 
environment that augments an existing electronic office system with methods 
for transmitting, storing, and manipulating digital voice. Some Etherphone 
capabilities are available from any telephone, while more sophisticated 
functions are obtained through applications running in an associated 
workstation. Knowledge of the user's identity and preferences form the basis 
for features not usually available in telephone systems. 

Etherphones have been designed to support the ready implementation 
of additional applications. Most enhanced telephone options and other voice 
services can be entirely implemented in the workstation environment Those 
that prove particularly useful may migrate to a server in order to extend their 
availability to stand-alone telephones and to a wide range of operating system 
environments and workstation types. 

1. Introduction 

The Etherphone system is an experimental facility that has 
been developed at the Xerox Palo Alto Research Center for the 
purpose of exploring a wide range of telephony, voice maiL 
voice annotation, and other multi-media document 
applications. Our approach has been to augment an existing 
office workstation environment with the capabilities needed to 
handle the transmission, storage, manipulation, and synthesis 
of digital voice and music, taking care to preserve conventional 
telephone behavior to avoid confusing unwary users. The 
system includes program packages and network services that 
permit other developers to incorporate sophisticated voice 
functions into their own applications with relatively little effort. 
All of the applications described here are implemented using 
these packages and services. 

From the beginning, although the project has required the 
construction of a complete system, our primary research focus 
has been not on the particular choices of switching or voice 
transmission methods, terminal equipment, or network 
architectures, but on the functionality we wished to achieve. 
Ironically, most of the earlier publications on the Etherphone 
system have emphasized the system objectives, the overall 
hardware and software organization [16, 18], and the specific 
software methodologies used to handle recorded voice [19], 
although we have published descriptions of the designs of the 
user interfaces that support voice annotation and editing [2] 
and scripted documents [22]. The intent of this report is to 
demonstrate through examples how the Etherphone system can 
be used to improve the nature of the telephone in the office 
setting. Here we concentrate primarily on telephone control 
and management functions, referring to the annotation and 
editing capabilities only as they relate to these functions. 

Section 2 contains the substance of this paper. It consists 
of a series of scenarios describing typical office situations and 
the way the Etherphone system might deal with them. Section 
3 outlines the implementation, concentrating on the way in 
which control responsibilities are shared by the workstation 
and other system components. Section 4 concludes with a 
discussion of the state of the Etherphone system and the future 
challenges we face. 

This is an active research area. We should mention some 
of the more relevant activities here. Many others have 
investigated the challenges of transmitting voice as datagrams 
on local area networks [4. 1]. Some notable approaches to 
high-level methods for programming telephone and voice 
functions include work by Ruiz [10], Richards et at [9], 
DeTreville [3], and Herman et at [5]. Advanced applications of 
recorded voice and document annotation have been 
extensively reported [7, 8. 20. 21]. A few products containing 
advanced telephone management and integrated voice 
capabilities are beginning to appear [7]. The Speech Research 
Group at MIT's Media Laboratory has produced remarkable 
results in their exploration of intelligent voice-directed 
interfaces to telephones, answering machines. and office 
systems in general [12, 13]. However. only recently have other 
broad-based experimental testbeds for office voice applications 
begun to emerge. most notably the Mice system [5] and the 
Island project [1]. 

2. A day in the life of an Etherphone user 

In this section, we wish to give the reader an 
understanding of the present and potential capabilities of the 
Etherphone system through a series of descriptive examples. 
This is not an exhaustive enumeration of the Etherphone's 
features, but is intended to evoke its look and feel, and to 
illustrate our general approach to the integration of voice 
facilities into an electronic office system. 

We will follow the activities of a peripatetic professional, 
Karmen Foozle, through a very busy day. Karmen spends a 
part of her day in the office, the rest visiting colleagues, 
attending meetings. and so on. She has frequent dealings with 
people over the telephone, and many of them have schedules 
as frantic as hers. 

In the scenarios that follow, we assume that each user's 
desk is equipped with a mUltipurpose workstation, such as a 
Xerox 6085 or an Apple Macintosh. All of our examples are. in 
fact, based on an implementation on a Xerox Dorado 
workstation running the Cedar programming environment [17]. 
Each workstation is connected to a communication network. 
Associated with each workstation is a conventional telephone 
handset and keypad, as well as a hands-free speakerphone. 
whose speaker is used in place of a ringer. The network 
functions include P ABX capabilities for managing voice 
connections to other internal phones, to outside lines, and to a 
variety of services, including text-to-speech synthesis and 
storing and playing digitally-recorded voice. 

2.1 Call forwarding is replaced by visiting 

As the day begins, Karmen is visiting Lee Strum in his 
office three doors from her own. Heard above the sounds of 
the office is. a simple melody that Karmen recognizes as her 
personal ring tune, or motif. A few seconds later. Kim 

XEROX PARC, CSL-89-2, MAY 1989 



2 TELEPHONE MANAGEMENT IN THE ETHERPHONE SYSTEM 

Rendell's motif joins in, in 

"l1Ilf!!!!!:I counterpoint to Karmen's tune. 
.. So that Karmen need not rush 

down the hallway to answer 
Kim's call, Lee turns to his 
workstation and registers Karmen 
as a visitor (Figure 1) Imme-

. . ..... --. diately, Lee's own telephone 
Figure 1. VIsiting. repeats the ring-duet. Lee's 

workstation presents a description of the call (Figure 2), and 
Karmen lifts the receiver with a friendly "Hi, Kim, what's up?" 
During Karmen's meeting with Lee, two additional calls find 
her in a similar way, and Lee also -answers one that rings with 
his own motif. An additional call to Karmen after she has 
returned to her office reminds Lee to terminate the visiting 
arrangement Had the visit to 
Lee's office been a scheduled 
meeting. Karmen's appointment 
calendar would have made and 
cancelled the visiting arrange-
ments automatically. Figure 2. Call for visitor. 

2.2 Many flexible call-filtering methods are available 

Karmen uses the morning hours for activities requiring 
intense concentration that the disturbance of frequent 
telephone calls woulQ disrupt Yesterday, she modified her 
personal profile to reject all normal-urgency calls altogether for 
several hours (Figure 3). For the remainder of the morning, 
internal callers were given an on-screen explanation for being 
turned away, while outside callers were routed to an attendant. 

Telephone profile'for Karmen Foozle 

... 
Urgent Calls: Ring 

Normal Calls: Reject 
Except for subjects: Yearend Report 

Except for callers: Frances . . . 
Explanation: Please call after 1 PM 

Vi'SiiOr 
.:I'li'iilrnll 

Expiration: 1 PM 

Ans~ Social Calls: Reject 

No Exceptions 
... 

Figure 3. Choose Do-not-disturb option. 

Today, Karmen simply wants to reduce the annoyance 
level of the telephone without ignoring it altogether. She again 
changes her personal profile (Figure 4), this time to institute 
subdued ringing. As a result. when Frances Brodsky calls, 
Karmen hears only a single, short. soft tone. On her screen 
appears the usual visual information (Figure 5), including 
Frances' name and an indication that it's neither extremely 
urgent nor merely a social call. If she were to ignore the call 
completely, it would be handled as if Karmen were not there at 

Urgent Calls: Ring 

Normal Calls: Subdued ring 

Social Calls: Reject 

No Exceptions 

Figure 4. Choose Subdued-ringing option 

aU: although it would appear to Frances that Karmen's phone 
was ringing, Karmen would hear no additional signals. 
Hearing no answer, Frances would have the standard options 
of speaking to an attendant. composing and sending a voice 
message. negotiating a later call with Frances' calendar, or 
simply trying again later. 

Figure 5. Negotiating a call. 

This time, Karmen indicates to Frances that she'll take the 
interruption if it's important enough. Frances, after a 
moment's thought. decides that it is and reissues the call at a 
higher priority, backed up by a short statement of the topic. 
Karmen answers, automatically switching the call to her 
speakerphone, and they agree to meet later in the day to 
resolve a budget crisis (Figure 6). . 

Figu re 6. Negotiation successful. 

2.3 Calls are to individuals, not locations 

After lunch, Karmen takes advantage of Brett Kornwald's 
temporary absence to spend an hour preparing a presentation 
at Brett's full-color workstation. Logging in tells the telephone 
system where Karmen is. For the duration of Karmen's 
occupancy. although Brett's incoming calls still ring there, so 
do Karmen's. She can tell them apart because her caUs ring 
with her own motif. Outgoing calls are identified to other 
colleagues as coming from her: in fact. the workstation and 
associated telephone behave in all ways as if they belonged to 
Karmen. 

2.4 Background calls and recorded voice support distributed 
meetings 

For their mid-afternoon budget discussion. Karmen and 
Frances remain in their own offices. connected by a 
background telephone caU. Both of them place and receive 
several calls to other parties during this meeting. sometimes 
adding them to the background call. sometimes superceding it. 
The system knows enough about the background connection to 
reestablish it, in a speakerphone configuration. whenever the 
standard behavior would otherwise be to hang up the phone. 
By remaining in their own offices. the participants have full 
access to their paper documents, workstation documents. 
policy manuals. etc. Using teleconferencing capabilities such 
as those described by Sarin [11]. Lantz [6]. or Stefik et al [14], 
they view a shared budget document, discussing changes as 
they make them. Karmen and Frances create, edit, and attach 
voice annotations to specific locations in this document [2]. 
combining these annotations into a narrative intended to 
convince their manager that several proposed new projects. 
although expensive. will be well worth it (Figure 7). When the 

XEROX PARC, CSL-89-2, MAY 1989 



TELEPHONE MANAGEMENT IN THE ETHERPHONE SYSTEM 3 

manager later plays this list of annotations, the corresponding 
budget document locations will be brought into view on his 
workstation, in synchrony with the audio presentation [22]. 

C~ear ~ Get GetImpl PrevFile ~ Save Time Split 
Fmd Word Def Position Normalize PrevPlace Reselect St 
AddVoice PlayVoice STOP EditVoice DeleteVoice Dictation 

for Ule first, and probably last, time. 

Philbin 'W'idget3, Inc. 

The Philbin project, if we pursue it vigorously, has 
the potential to generate a ~ignificant percentage of our 
~venue over the coming months. In a recent telephone 
call, @r. Philbin was very enthusiastic about the 
prospects for collaboration, as you can hear for yourself. 

Add Play STOP Save Store Redraw Mark DeleteMarks 

.Reaction .Proposal 

Figure 7. Voice annotation of text documents. The cartoon· 
like "talks balloons" su rrounding selected text cha racte rs 
represent voice annotations. The lower window is used to edit 
or extend voice annotations. 

2.5 Negotiated conference calls save time and annoyance 

Following the budget discussion, Karmen wants to advise 
her own team of the outcome. She turns to her workstation 
and composes a request for a conference telephone call, to take 
place ten minutes later. The call will involve Karmen, Lee, 
Kim, Pat Fisher, and Frances. Karmen selects their names 
from a hierarchical telephone/personnel directory that merges 
her personal entries with organizational and community 
directories, and adds them to the control panel for the 
conference call (Figure 8). Each participant or his workstation 
agent is consulted to determine if they will be available. Pat's 
calendar system accepts on his behalf, since it has been 
informed that he will be in his office, accepting appointments, 
and not otherwise engaged. Similarly, Frances already knows 
about the call, and has indicated a willingness to participate. 
The others must be consulted. Reacting to a distinctive melody 
on their telephones, Kim and Lee independently consult their 
workstations to learn of the proposed call. Each of them 
indicates whether he or she will be available (Kim can make it; 
Lee cannot). Meanwhile, Karmen engages in other activities, 
undisturbed until the scheduled time arrives, when another 
distinctive tone advises all parties that the conference 
connection has been established among their telephones. For 
the duration of the call, a control panel on each workstation 
screeri will inform the participants of the current state of the 
conference. 

Telephone Directory for Karmen Foozle 

WZ 
Zesch, Jim 

Karmen Pat Kim Lee 

III] lEI ~ III 
Caller OK (Calendar) OK Regrets 

Figure 8. Arranging a conference. 

As the call begins, Karmen has the "floor": hers is the 
only voice that will be transmitted to the other conference 
participants. After her opening introduction, she grants the 
floor to each of the other participants in turn for a reaction to 
the budget proposal. then opens the conference up for the 
remainder of the call to full interactive discussion [6, 15]. 
During the conversation, she lets all the participants see and 
hear the narrated document that she and Frances prepared 
earlier. A copy of the document itself appears on each 
workstation, and sections appear, as before, in synchrony with 
the narration. 

2.6 Broadcast facilities permit distributed meetings 

Despite her best intentions, 
Karmen finds herself with so 
much paperwork to clean up 
at the end of the day that she 
cannot attend the late after
noon in-service training ses
sion. Instead, she places a call 

F' 9 L' t ", ..... _ .... .a to the training room (Figure 
Igure . IS enmg m. 9), which adds her speaker' 

phone to an ongoing conference call carrying the audio portion 
of the meeting. During the meeting she mostly listens, 
occasionally obtaining the floor in order to ask a question or 
clarify a point. Using similar methods, Karmen has access to 
television and radio broadcasts, shared recorded audio flies, 
etc. 

2.7 The telephone attendant also benefits 

After Karmen has left for the day, George Geargrinder, a 
salesman from another firm, telephones her. Since Karmen 
has signed off from her workstation, the call rings immediately 
at an attendant's workstation. As the attendant converses with 
Mr. Gear~rinder, she uses the voice annotation capabilities [2] 
to record mto a form that has appeared on her workstation his 
answers to questions such as his name, the reaSOR for his call, 
and when he might be reached (Figure 10). The attendant also 
enters his name and telephone number textually. Having 
assured the caller that the message will be delivered, the 
attendant sends the message, which is already addressed to 
Karmen. It is waiting for her in her electronic mailbox the next 
f!10rning, alo~g with her conventional text-only mail. Having 
hstened to him tell her why he wishes to speak with her, she 
uses the handy "return call" button on the message border to 
call. him back. Voice mail from internal callers may include 
their photographs to identify them quickly, in place of the 
evocative sketch that accompanies the message from George 
Geargrinder. 

Readers familiar with the Phone Slave system [12] will 
realize that the Geargrinder call follows closely the Phone 

C~ear ~ Get GetI~pl PrevFile ~ Save Time Split 
Fmd Word Def POSluon Normalize PrevPlace Reselect St 
AddVoice PlayVoice STOP EditVoice DeleteVoice Dicf..atior. 

Date: August 27, 1981 0:09:21 am PDT 
Sender: Phone Attendant 
Su.ject: Telephone message (8 
Fro .... : George Geargrinder OV:!i'(aCorp) 
TelephoneNum.er: (909).555-4321 
To: Karmen Foozle <Foozle.pa) 
Cc: TelephoneLog 

The following is a recorded telephone message: 

• Figure 10. A recorded voice message. 

XEROX PARe. CSL-89-2, MAY 1989 



4 TELEPHONE MANAGEMENT IN THE ETHERPHONE SYSTEM 

Slave's automated scenario. We do not consider existing 
automated answering facilities, even those that are as advanced 
as the Phone Slave, sufficiently advanced to provide adequate 
service in the office setting, and therefore have proposed 
enhancing the role of the attendant rather than eliminating it 

3. Implementation 

3.1 Hardware environment 

A rather unconventional hardware architecture provides 
the voice services for Karmen and her colleagues (Figure 11). 
In place ofa conventional PABX, voice is transmitted as digital 
packets, or datagrams, on an Ethernet Digital-to-analog 
conversion, voice encryption, and datagram transmission are 
performed by microprocessors, called Etherphones, that 
connect each user's telephone hardware to the Ethernet. A 
telephone control server provides control functions, discussed 
more fully below. Separate network servers provide voice 
recording and playback, voice synthesis, and other services. 

The telephone control server manages voice switching by 
sending to each Etherphone or service the network addresses of 
the other participants. Thereafter, voice datagrams are 
transmitted directly among the participants, bypassing the 
control server. Etherphones achieve full-duplex conferencing 
by digitally summing the multiple voice datagram sequences as 
they arrive from the other participants and then converting the 
results to analog form and relaying it to the user. Thus, no 
special conference hardware is required. All control is also 
accomplished through datagram-based protocols in the 
internetwork. This architecture has been described in more 
detail elsewhere [16, 18]. 

Figu re 11. A simple Ethe rphone System Envi ronment. 

3.2 A distributed approach to telephone control 

The telephone control server controls voice conversations, 
implements the stand-alone behavior of telephone instruments, 
and coordinates the activities of workstations and adjacent 
telephones in their implementation of the various voice 
capabilities. In addition, it stores personal preference 
information about each user that allows it to support advanced 
features such as ring motifs and subdued ringing, without 
involving workstation programs. It uses dynamic information 
linking users to workstations in order to provide calls to 
individuals rather than fixed locations, and the registration of 
visitors in the offices of their colleagues. 

Finally, and most importantly, the telephone control 
server provides a set of network protocols that workstations use 
to participate in the operation of the system. Through these 

protocols, each workstation can monitor the status of the 
adjacent Etherphone and its voice conversations. Using 
additional functions, it can place calls to individuals, groups, or 
recording services. It can edit previously-recorded utterances. 
It can, if it chooses, selectively override basic call progress 
decisions. For instance, in response to information describing 
an incoming call, the workstation can prevent the phone from 
ringing and instead either reject the call without disturbing the 
user or even answer it immediately (providing an intercom 
arrangement). These functions form the basis for the manual 
and calendar-based call ftltering, sophisticated conference call 
management. and advanced telephone attendant features that 
were depicted in Section 2. Because we expect many of these 
features to be experimental, timeout-based safeguards in the 
server cause a return to conventional telephone behavior if the 
workstation does not respond in a tiinely manner to the events 
reported to it. 

During the development of the Etherphone system, we 
have discovered that as enhanced workstation-based 
applications mature, it makes good sense to transfer some of 
their functions to the voice control server or to other network 
servers. The server protocols are then extended to provide 
access to these functions. For some features, such as on-line 
telephone directories, this move has extended their capabilities 
to telephones in offices without workstations or whose 
workstations are not active. For other features, such as the 
package that manages voice editing, a server implementation 
permits applications written for other operating environments 
or workstation hardware to use the existing facilities without 
the necessity of rewriting them from scratch. A function that 
would benefit from this kind of migration, but which at present 
is implemented in workstation code, is the ability to filter 
incoming calls based on a caller's name. a calrs subject. or a 
call's urgency. 

5. Conclusions 

Most of the capabilities implied by the vignettes of Section 
2 either exist today in the Etherphone system, have been shown 
possible in experimental prototypes, or could be readily 
achieved by applications programs developed on workstations 
using existing Etherphone services. Others, such as the 
telephone attendant features exhibited by the Geargrinder 
episode in Section 2.7, would require some additional 
telephone control server development, but no modifications to 
the overall architecture. 

One disappointment has been the difficulty of providing a 
sufficiently straightforward interface to the applications 
programmer. At present. the applications programmer must 
choose between either very simple and limited capabilities or 
an undesirably complex programming task; workstation 
applications require the programmer to know far too much 
about the detailed state of each conversation. Extending these 
facilities to capture the full range of voice functions in a voice 
architecture that is easy to use is a challenge for future work. 

Overall, however, the distributed systems paradigm of a 
rich environment of personal workstations and services, 
connected by a general-purpose internetwork, has extended 
well to voice applications. Many of the user facilities of the 
Etherphone system are unmatched in existing voice products. 
We believe this is due to a system design that combines 
specialized servers, existing network facilities, and a flexible set 
of workstation functions that permit the applications 
programmer to produce sophisticated voice management tools 
for the office worker. 

XEROX PARC, CSL-89-2, MAY 1989 



TELEPHONE MANAGEMENT IN THE ETHERPHONE SYSTEM 

Acknowledgments 

Larry Stewart, Severo Ornstein, and Susan Owicki were 
instrumental in the design and implementation of the 
Etherphone telephone management facilities. Polle Zellweger 
and Doug Terry have kept this project advancing for the past 
two years, their most recent contributions being invaluable 
assistance in the preparation of this paper. Subhana Menis 
applied her considerable copy-editing skills in an attempt to 
reduce inscrutability by at least a little. I am grateful to Ed 
McCreight for suggesting the narrative approach (and some of 
the names) used in Section 2. 

Author's address: Xerox Palo Alto Research Center, 3333 Coyote Hill Road, 
Palo Alto. CA 94306. 

References 

1. S. Ades. An Architecture for IntegraJed Services on the Local Area Network. Ph.D. ·Ibesis. 
Cambridge University. February 1987. 

2. S. Ades and D. C. Swinehart. "Voice annotation and editing in a workstation environment." 
Proceedings AVIOS Voice Applications "86. September 1986. pages 13-28. 

3. J. DeTreville. Phoan: "An Intelligent System for Distributed Control Synthesis." unpUblished 

draft. 
4. J. DeTreville and W. David Sincoskie. "A Distributed Experimental Communications System." 

IEEE Journal on Selecled Areas in Communications SAC-l(6):107o-1075. December 1983. 
5. G. Herman. M. Ordun. C. Riley. and L. Woodbury. 'The Modular Integrated Communications 

Environment (MICE): a system for prototyping and evaluating communications services." 
Proceedings International Switching Symposium, Phoenix. AZ. March 1987. 

6. K. Lantz. "An Experiment in Integrated Multimedia Conferencing." Proceedings Conference on 
Computer-Supported Cooperative Work, Austin. TX. December. 1986. 

7. R. Nicholson. "Integrating voice in the office world." BYTE8(12):171-184. Decemberl983. 
8. J. K. Reynolds. J. B. Postel. A. R. Katz. G. G. Finn, and A. L. DeSchon. "The DARPA 

experimental multimedia mail system." Computer 18(10):82-89. October 1985. 

9. 1. T. Richards. S. 1. Boies. and 1. D. Gould. "Rapid Prototyping and System Development: 
Examination of an Interface Toolkit for Voice and Telephony Applications." Proceedings 
CHf"86 Conference on Human Faclors in Computing Systems. Boston. Mass .. April 1986. pages 
216-220. 

10. A. Ruiz. Voice and telephony applicarions for the office workstation. Proc. Istlnrernational 
Conference on Computer Workstations. San Jose. CA. Nm'ember 1985. 158-163. 

11. S. K. Sarin. Interactive On-line Conferences. Ph.D. thesis. Massachusetts Institute of 
Technology. Report MIT/LCSffR-330. 

12. Schmandt. C. and Arons. B. Phone Slave: A Graphical Telecommunications Interface. Proc. 
Society for Information Display 1984 International Symposium. June 1984. 

13. C. Schmandt and B. Arons. "Voice Interaction in an Integrated Office andTelecommunications 
Environment." Proceedings 1985 Conference of American Voice Input/Output Society. October 
1985. 

14. M. Stefik. G. Foster. D. Bobrow. K. Kahn. S. Lanning. and S. Suchman. "Beyond the 
Chalkboard: Computer Support for Collaboration and Problem Soh'ing in Meetings." Comm. 
ACAI 30(1):32-47. January 1987. 

15. D. Stodolsky. "Video Conferencing Process Management." Proceedings 33rd Annual 
Conference of the International Communication A~sociation. Dallas. TX. May 1983. 

16. D. C. Swinehart. L. C. Stey,art. and S. M. Ornstein. "Adding voice to an office computer 
network." 
Proceedings IEEE GloheCom "83. November 1983. Also available as Xerox Palo Alto Research 
Center. Technical Report CSL-83-8. February 1984. 

17. D. C. Swinehart. P. T.Zeliweger. R. J. Beach. and R. B. Hagmann. "A structural view of the 
Cedar programming environment." ACAI Transactions on Programming Languages and 
SY.ltems 8(4):419-490. Octllber 1986. 

18. D. C. Swinehart. D. B. Terry. and P. T. Zellweger. "An experimental environment for voice 
system development." IEEE Office Knowledge Engineering Ne ..... sleller. February 1987. 

19. D. B. Terry. D. C. Swinehart. "Managing Voice Stored Voice in the Etherphone System." to 
appear in ACM Transactions on Computer Systems. February 1988. 

20. R. H. Thoma~. H. C. Forsdick. T. R. Crowley. R. W. Schaaf. R. S. Tomlinsin. V. M. Travers. 
and G. G. Robertson. "Diamond: A multimedia mes.o;age system built on a distributed 
architecture." Computerl8(12):65-78. December 1985. 

21. H. Wilder and N. Maxemchuk. "Virtual Editing II: the User Interface." Proceedings of the 
SIGOA Conference on Office Automation Systems. Philadelphia. Penn. 1982. 

22. Zelliveger. P. "Scripted Documents." In preparation. 

XEROX PARC, CSL-89-2, MA Y 1989 

5 





Managing Stored Voice in the Etherphone System 

Douglas B. Terry and Daniel C. Swinehart 

© Copyright 1988 Association for Computing Machinery. Reprinted with permission. 

A bst ract: The voice manager in the Etherphone ™ system provides facilities for recording, 

editing, and playing stored voice in a distributed personal computing environment. It provides 

the basis for applications such as voice mail, annotation of multi-media documents, and voice 

editing using standard text editing techniques. To facilitate sharing, the voice manager stores 

voice on a special voice file server that is accessible via the local internet. Operations for 

editing a passage of recorded voice simply build persistent data structures to represent the 

edited voice. These data structures, implementing an abstraction called voice ropes, are stored 

in a server database and consist of a list of intervals within voice files. Clients refer to voice 

ropes solely by reference. Interests, additional persistent data structures maintained by the 

server, serve two purposes. First, they provide a sort of directory service for managing the 

voice ropes that have been created. More importantly, they provide a reliable reference 

counting mechanism, permitting the garbage collection of voice ropes that are no longer 

needed. These interests are grouped into classes; for some important classes, obsolete 

interests can be detected and deleted by a class-specific algorithm that runs periodically. 

A version of this paper appeared in ACM Transactions on Computer Systems 6(1), February 

1988,3-27. 

CR Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks] 

Distributed Systems; 0.4.2 [Operating Systems] Storage Management

al/ocation/deal/ocation strategies, storage hierarchies; 0.4.3 [Ope rating Systems] File 

Systems Management; 0.4.6 [Ope rating Systems] Security and Protection - access controls, 

cryptographic controls; E.2 [Data] Data Storage Representations; H.2.B [Database 

Management] Database Applications; H.4.3 [Information Systems Applications] 

Communications Applications - electronic mail. 

General Terms: Design, management, performance, security. 

Additional Keywords and Phrases: Etherphones, recorded voice, digitized voice, voice 

editing, voice-annotated documents,storage reclamation, voice file server, network services. 

XEROX Xerox Corporation 

Palo Alto Research Center 

3333 Coyote Hill Road 

Palo Alto, California 94304 





MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 1 

1. Introduction 

Voice is an important and widely used medium for interpersonal communication. Computers 

facilitate interpersonal communication through electronic mail and shared documents. Yet, our 

computer systems have traditionally forced us to communicate textually. A major focus of the 

Etherphone ™ system developed at Xerox PARe was to allow voice to be incorporated into computing 

environments and used in much the same way as text. This paper addresses the problems associated 

with managing stored voice in a distributed computing environment. 

The voice management facilities of the Etherphone system were designed with the following goals 

in mind: 

• Unrestricted use of voice in client applications 

As with text, we want the ability to incorporate voice easily into electronic mail messages, voice

annotated documents, user interfaces, and other interactive applications. Nicholson gives a 

good discussion of many office applications that are made possible by treating voice as data [17]. 

• Sharing among various clients 

If stored. voice is to be used as a means of interpersonal communication, then it must be possible 

for users to easily share a voice passage with one or more colleagues. Clients should be able to 

share voice as freely as they share files. 

• Editing of voice by programs 

Clients should be able to combine previously recorded voice in various ways and insert fresh 

voice into existing voice passages. The system should permit programmer control over all of 

these functions. 

• Integration of diverse workstations into the system 

Our environment contains a diversity of workstations and associated operating systems that 

must access the voice management facilities. Requiring users to learn and adapt to facilities that 

cannot be well-integrated into their existing workplaces is unacceptable. 

• Security at least as good as that of conventionalfile servers 

People are rightfully concerned about the privacy of their communications; the system should 

take all means to protect this privacy. 

• Automatic reclamation of the storage occupied by unneeded voice 

Requiring clients to explicitly delete voice passages when they are no longer needed places an 

unwarranted burden on users and hinders sharing in a distributed system. The system itself 

should aid in the automatic reclamation of voice storage. 

Many of these features are common in traditional file servers that store text files [21]. The 

characteristics of voice, however, differ greatly from those of text. Standard telephone-quality 

uncompacted voice occupies 64 Kbits of storage per second of recorded voice. This is several orders of 

magnitude greater than the equivalent typed text. Voice also requires special devices for recording and 

playing it; that is, a user cannot simply type in a voice passage. More importantly, voice transmission 

XEROX PARC, CSL-89-2, MAY 1989 



2 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

Voice 
Manager 

Volee FUe 
Server 

Voice 
Control 

Se wit r 

Figure 1. A simple Etherphone system environment. 

has stringent real-time requirements. These differences dictate special methods for manipulating and 

sharing voice. 

An abstraction that we call voice ropes serves as the basis of application-independent methods for 

recording, playing, editing, and otherwise manipulating digitized voice. The major technical 

contributions described in this paper involve the use of simple databases to: 

(1) describe the results of editing operations such that existing voice passages need not be 

moved, copied, or decrypted, and 

(2) provide a modified style of reference counting required to allow the automatic 

reclamation of obsolete voice. 

The next section provides the background for the rest of the paper including a quick overview of 

the Etherphone system architecture as well as some sample voice applications. Section 3 presents the 

operations on voice ropes designed to support these and future application programs. Section 4 then 

discusses the design and implementation of the voice rope operations and the rationale governing 

various design choices. Section 5 relates our experiences thus far with incorporating voice into 

workstation applications and examines the system's performance. Section 6 contrasts related work. We 

conclude by reviewing our design goals and how they were met. 

XEROX PARC, CSL-89-2, MA Y 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 3 

2. Background 

2.1 The Etherphone system 

The Etherphone system is intended for use in a locally distributed computing environment 

containing multiple workstations and programming environments, multiple networks and 

communication protocols, and perhaps even multiple telephone transmission and switching choices. 

The system is intended to be extensible in that introducing new applications, network services, 

workstations, networks, and other components is possible. 

Figure 1 depicts the basic components of the Etherphone system in a simple configuration [24]. 

Each personal workstation is associated with, but not directly attached to, a microprocessor-based 

telephone instrument called an Etherphone. Etherphones digitize, packetize, and encrypt telephone

quality voice and transmit it directly over an Ethernet. A voice manager, the main topic of this paper, 

provides storage for voice, telephone conversations, music, and other sounds, recorded at reasonable 

fidelity. The system can also include other specialized sources or sinks of voice, such as a text-to-speech 

server that receives text strings and returns the equivalent spoken text to the user's Etherphone. 

A voice control server provides control functions similar to a conventional business telephone 

system and manages the interactions between all the other components. In particular, it allows voice

carrying conversations to be established rapidly among two or more Etherphones or voice services. An 

Etherphone conversation is represented by a conversation identifier, a Conversation/D. The 

ConversationID is distributed by the control server to all participants in the conversation, including 

Etherphones, workstations, and voice services, when the conversation is established. It is used to 

identify the conversation in requests and reports issued by the server and the participants. 

All of the communication required for control in the voice system, such as conversation 

establishment and the distribution of encryption keys used in voice transmission, is accomplished via a 

secure remote procedure call (RPC) protocol [4] [5]. Multiple implementations of the RPC 

mechanisms permit the integration of workstation programs and voice applications programmed in 

different environments. During the course of a conversation, reports emanating from the voice control 

server via RPC inform participants about various activities concerning the conversation. 

Active parties in a conversation exchange voice using a specialized voice transmission protocol [22]. 

During each conversation, all transmitted voice is encoded using DES electronic-codebook (ECB) 

encryption [16] with a randomly generated encryption key issued by the voice control server. 

Workstations are the key to providing enhanced user interfaces and control over the voice capa

bilities. The extensibility of the local programming environment- be it Cedar, Interlisp, or the Xerox 

Development Environment-expedites the integration of voice into workstation-based applications. 

Workstation program libraries implement the client programmer interface to the voice system. The 

voice control server associates each workstation with the physically adjacent Etherphone and interprets 

control requests accordingly. The physical distinction between Etherphones and workstations allows a 

variety of workstations to be accommodated without requiring additional voice hardware development. 

XEROX PARe, CSL-89-2, MA Y 1989 



4 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

The server software and the initial workstation software was developed in the Cedar programming 

environment [23]. More information on the equipment and protocols used in the Etherphone system, 

as well as the applications built to date, can be found in related papers [221 [24]. 

2.2 Some applications of recorded voice 

The desire to annotate documents with voice passages spurred the development of facilities for 

recorded voice in the Etherphone system. More specifically, users want to attach voice to any point in a 

document, to play that voice on request, to move or copy annotations readily and quickly, and to store 

such annotated documents in their host file systems and common file servers. Users want to share 

annotated documents with their colleagues, who are perhaps using different types of workstations with 

different file systems and document editors. Users also want the ability to edit voice annotations. 

Figure 2 depicts two Cedar viewers (windows) involved in a voice editing session. In the top 

viewer, the Tioga multi-media editor displays a document that includes two voice annotations, 

normally shown as cartoon balloons. One of the annotations has been "opened" to produce the lower 

viewer, which uses the alternating dark and light bars to represent intervals of voice and silence 

proportional to the lengths of the bars. The user employs conventional Tioga editing operations to 

delete, copy, or reorder sections of the original voice annotation. New spoken material can be recorded 

into selected locations by invoking special editor extensions. At any time, the user can listen to selected 

passages. Once edited, the result is then stored back as an amended annotation. This annotation 

remains with the document and with any copies that are made. The voice editor encourages the 

replacement and reorganization of recorded voice at the level of entire sentences or phrases. Finer-

. ·TJ,:;er,:; ·Polle.::'.pa '~r01ce 'TlO~a'J01ceIloc .tlO~a (! 1) EdIted 
Clear ~ Get GetImpl PrevFile ~ Save Time Split Places Levels (C) Log Voice 
Find Word Def Position Normalize PrevPlace Reselect StyleKind 
Add Voice PlayVoice STOP Edi tVoice Delete Voice DictationMachine DeleteLinks 

5,2 Voice viewers 

The procedure outlined above is fine for ~hort annotations, but for more complex annotations the 
user will need facilities to edit portions of voice, To keep things simple for rapid annotation, all 
that appeared in the text was an icon representing a complete voice utterance, To perform 
editing operations, t~0j;r:1~~:lf~.x:~~.r~J~]h.e user selects a region of text and buttons EditVoice, A 
voice vz'ewer opens up for each voice icon within the selection. Each of the selected voice icons 
at this point changes its appearance to th.at of an opened voice icon - it now displays a number 
that identifies the corresponding voice viewer, Each voice viewer is labelled with its number, so 
tha t the user can easily see the associations between voice viewers and positions in text viewers, 

Add Play STOP Save Store Redraw Mark DeleteMarks Dlctat10nMachme DlctatlonOps 

,vntro J,Four score and seven years ago 
~_ - - .:. I • • 

J,Conclusion 

Figure 2. An example of voice annotation and editing. 

XEROX PARe, CSL-89-2. MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 5 

grained word or phoneme-level operations are discouraged for a variety of practical reasons explored in 

more depth in related publications [1]. 

The Etherphone system also includes a voice mail prototype, which is another application of the 

voice annotation and editing facilities just described. The main difference between mail messages and 

ordinary annotated documents is that the messages are sent by a general mail transport mechanism to 

lists of recipients, not manually filed by name in a filing system. Adding voice messaging to an existing 

environment is complex since mail is often read by a variety of mail programs running on a variety of 

systems. Most of these programs, both within our own and other interconnected networks, are not yet 

prepared to play or otherwise deal with recorded voice annotations. 

Other applications that need to be able to record, modify, and store voice may employ 

substantially different user interfaces and storage models than those required of annotated documents. 

For example, we have found it useful to retain a number of prerecorded prompts, announcements, and 

attention-getters in a simple directory. Another application that has been proposed would improve the 

ability to gather data during user studies, by recording the extemporaneous statements of users and 

synchronizing these recordings with time-stamped logs of other user actions. Additional applications, 

whose purposes and user interface requirements we cannot know in advance, are expected to be 

developed in the future. 

In general, adding such voice facilities to a diverse and complex software base presents challenging 

problems to the systems builder since much of the existing workstation and server software cannot be 

changed or extended. The voice management facilities described in this paper were designed to make'· 

such applications less tedious to build, more robust, and easier to comprehend. 

3. Operational Overview 

3.1 Voice ropes 

The implementation of facilities for recorded voice is somewhat involved, but the actions to be 

performed are conceptually quite simple. In looking for an application-independent abstraction to 

present to application programmers, it occurred to us that many of these actions closely resembled 

operations normally associated with text string manipulation. The Cedar system provides a powerful 

text string abstraction called a rope [23]. Cedar ropes are text strings of arbitrary length, represented as . 

memory pointers, or references, to storage that is managed automatically by the Cedar system. When 

no references to a rope remain active, its storage is reclaimed. Cedar ropes are immutable: once 

created, its value will not change, so that ropes can be shared simply by sharing references. To create 

modified values, editing operations are supplied that create new ropes. 

By analogy, in the Etherphone system, we refer to sequences of stored voice samples as voice ropes. 

A unique identifier, called a VoiceRopelO, is used instead of a memory pointer to identify each voice 

rope, because, unlike Cedar ropes, voice ropes are persistent objects with a potentially long lifetime. 

XEROX PARC, CSL-89-2. MA Y 1989 



6 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

To aid in sharing and to facilitate the use of voice by heterogeneous workstations, the storage for voice 

ropes, as well as the operations on them, are provided by a network service, the voice manager. 

Clients refer to voice ropes solely by reference, that is, by their unique VoiceRopeIDs. The voice 

manager places no restrictions on a client's use of voice ropes. Most uses involve embedding speech in 

some type of document, such as an annotated manuscript, program documentation, or electronic mail. 

The use of such embedded references to refer to voice, video, and other diverse types of information 

has been termed a hypermedia system [26]. 

From a client's perspective, a voice-annotated document should behave as though the voice were 

stored directly in the document's file rather than being included by reference. For example, once a 

voice message is sent using electronic mail, the author or another user should not be able to change the 

message's contents. For this reason, voice ropes, like Cedar ropes, are immutable. The recording and 

editing operations create new voice ropes; they do not modify existing ones. 

3.2 Recording and playing 

To record or playa voice rope, a conversation is set up between the voice manager and an 

Etherphone. The main operations supported by the voice manager are as follows: 

RECORD[conversationID] ~ 

voiceRopelD, requestlD 

Voice received by the server over the communication path defined by the given 

conversationlD is stored and assigned a unique voiceRopelD; recording continues until 

a subsequent STOP operation is issued. The requestlD identifies this operation in 

subsequent reports (see below). 

PLAY[conversationID, voiceRopelD, interval] ~ 

requestlD 

The specified interval of the voice rope is transmitted over the given conversation. An 

interval denotes either the entire voice rope or a time-indexed portion of it at a resolution 

of about 1 ms. 

STOP[conversationID] 

Any recording or playing operations that are in progress or queued for the given 

conversation are immediately halted. 

The RECORD and PLAY operations are performed asynchronously. That is, the remote procedure call 

returns after the operation has been queued by the server. Queued operations are performed in order. 

The voice manager generates event reports upon the start and completion of a queued operation. 

The requestlD returned by each invocation is used to associate reports with specific operations. In 

particular, the voice manager makes the following call to all participants in a conversation to inform 

them of the status of various requested operations concerning that conversation: 

XEROX PARC, CSL-89-2, MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 7 

REPORT[requestID, {started I finished I flushed}] 

The requested operation has been started, successfully completed, or halted by a STOP 

operation.' 

Having reports flow from server to clients is conceptually similar to Clark's upcalls and accomplished in 

a similar manner [7]. 

3.3 Editing support 

Once recorded, voice ropes can be used in editing operations to produce new, immutable voice 

ropes. Several of the operations on Cedar ropes, such as producing substrings or concatenating existing 

strings, are directly applicable to voice. Their transliteration for voice ropes yields these functions: 

CONCATENATE[voiceRopeID1, voiceRopelD2, ... ] -+ voiceRopelD 

Produces a new voice rope that is the concatenation of the given voice ropes. 

SUBSTRING[voiceRopeID1, interval] -+ 

voiceRopelD 

Produces a new voice rope consisting of the specified interval ofvoiceRopelD1. 

REPLACE[voiceRopeID1, interval, voiceRopelD2] -+ voiceRopelD 

Produces a new voice rope that is obtained by replacing the particular interval of 

voiceRopelD1 with voiceRopelD2. This is a composition of the CONCATENATE and 

SUBSTRING operations provided for efficiency and convenience. 

LENGTH[voiceRopeID] -+ length 

Returns the length of the given voice rope in milliseconds. 

One additional operation peculiar to voice ropes was provided to aid in editing: 

DESCRIBE[voiceRopeID] -+ intervals 

Returns a list of time intervals that denote the nonsilent talkspurts of the given voice 

rope. A talkspurt is defined to be any sequence of voice samples separated by some 

minimum amount of silence. 

These operations, available via RPC calls to the voice manager, are intended for use by programmers. 

Applications that handle voice must employ these operations to construct the facilities visible to the 

end user. 

3.4 Access control 

To ensure privacy, access control lists govern who is permitted to play or edit particular voice 

ropes. Associated with each voice rope are two types of access: play access allows a client to play a 

. voice passage while edit access allows the client to use it in editing operations. Access control lists may 

contain any number of individual or group names that are registered with the local name service, 

Grapevine [3]. The creator of a voice rope can change these access control lists at any time by calling: 

XEROX PARC, CSL-89~2. MA Y 1989 



8 'MANAGING STORED V01CEIN THE ETHERPHONE SYSTEM 

PEHM1T{voiceRopeID, players, editors] 

Restricts access to the specified vDice rope to the lists of pi-ayers and editors. 

Each newly-created voice rope is given the default access controls specified by its creator. Typically, 

voice ropes are initially given unrestricted access or else restrict access to the voice rope's creator. 

Clients can later adjust permissions explicitly by calling PERMIT. For instance, a mail sending 

program could routinely set the play access control list for a voice message to be the set of intended 

recipients. 

3.5 Interests 

The voice manager also provides operations for managing voice references. These operations 

provide a sort of directory for voice ropes. Although simple applications can use this directory as their 

means for naming and locating voice ropes, that is not its primary purpose. As with any storage system, 

unreferenced storage space should be reclaimed. With voice, or other voluminous media such as video, 

the need is particularly acute. Because voice ropes are shared by multiple users and multiple 

documents, manual management is impractical, and some form of garbage collection is required. In 

the Etherphone system, client code must assist with garbage collection by using the directory 

operations to express an interest in each referenced voice rope. The client operations are listed here 

while a discussion of the rationale for this approach and a description of the underlying 

implementation is deferred to Section 4.5: 

RETAIN[voiceRopeID, class, interest] 

Registers an interest of the particular class in the given voice rope. The interest 

uniquely identifies a reference to the voice rope within the class. This operation is 

idempotent; successive calls with the same arguments register at most one interest in the 

given voice rope. 

FORGET[voiceRopeID, class, interest] 

Deregisters the specified interest and deletes the voice rope unless there are other 

interests for it. 

LOOKUP[class, interest] ~ LIST OF voiceRopelD 

Returns the unordered list of voice ropes associated with a particular interest. 

Both interest and class are arbitrary text string values. The form of the interest value is generally 

class-specific. That is, each class controls its own name space of interests and may choose to use 

hierarchical, flat, or some other form of identifiers for its interest values. Clients are responsible for 

generating unique values for different interests within a class. 

The class of an interest identifies the way in which voice ropes are being used by a particular 

application. For example, we use the class "FileAnnotation" to indicate that a document stored in a 

named file is annotated by a set of voice ropes; the interest field is the file name. The class "Message" 

indicates that an electronic mail message incorporates recorded voice; in this case, the interest is the 

XEROX PARC,CSL-89-2. MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 9 

unique postmark supplied by the message system. 

A combination of client workstation software and automatic collection methods must hide these 

interest operations from actual users. Client applications must always register interests in order to 

ensure retention of voice ropes to which they hold references. For some classes, clients must also 

explicitly FORGET their interests; for others, such as the "FileAnnotation" class, automatic methods 

described in Section 4.5 make this unnecessary. 

4. Detailed Design Decisions 

4.1 Voice manager architecture 

The voice manager uses a voice file server to store voice data. This server provides RECORD, 

PLAY, and STOP operations that are semantically similar to those described in Section 3.2, but operate 

on voice files. The more complex voice rope editing and directory structures have been implemented as 

separate, higher-level components, in part to make the voice facilities independent of the choice of the 

underlying file storage. Voice ropes in the current implementation are actually made up of pieces of 

one or more voice files, but they could just as well be references to ordinary Cedar files, direct disk 

addresses, or address values from any other meaningful space. 

The implementations of both voice rope editing and interest management depend on a simple but 

robust database facility that was developed for these purposes. Although the operations for editing 

voice ropes have been patterned after the Cedar Rope package, a different underlying implementation 

was necessitated by the disparate characteristics of voice and text. Specifically, voice ropes are 

persistent, not transitory, values. Additionally, editing voice by actually copying the bytes, as is 

sometimes done for Cedar's ropes, is expensive since voice is voluminous. Thus, rather than 

rearranging the contents of voice files to edit them, the voice manager simply builds a data structure 

using the facilities of the database package. Interests are registered in a similar database. 

A garbage collector uses interests to reclaim voice storage that is no longer needed. Devising 

techniques for automatically collecting garbage in a distributed, heterogeneous environment was one of 

the most difficult problems faced in the design of the voice manager. 

The components of the voice manager are logically layered as in Figure 3. Each is discussed in 

more detail in the following sections. 

4.2 Voice file server 

A voice file server differs from conventional file servers [21] in that it must support the real-time 

requirements of voice. In particular, it must be able to maintain a sustained transfer rate of 64 

. Kbits/sec, and it should be able to support several such transfers simultaneously. There is no inherent 

reason why a general-purpose file server could not be extended to support these stringent real-time 

requirements. However, the file systems we had available at the onset of this project, having been 

XEROX PARe, CSL-89-2, MAY 1989 



10 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

operations reports 
.11\ 

Voice Manager 

Garbage 
Collector 

Voice file 
server 

Database 
system 

" 
,-' 

vo{ce transmission 

Figure 3. Voice Storage Components 

optimized for different styles of access, could not, in fact, support them. At present, our file server is a 

special-purpose extension of Cedar's standard file system [23]. 

The Etherphone voice file server implements the operations needed to allocate, record, and play 

voice files that are named by unique identifiers, VoiceFileIDs. As previously mentioned, Etherphones 

encrypt voice as it is transmitted, using the DES encryption key associated with the current 

conversation. The voice file server simply stores the voice in its encrypted form. The voice rope 

implementation assumes responsibility for managing the encryption keys associated with various voice 

files. The stored voice is never decrypted except by an Etherphone when being played. Tables locating 

the boundaries between sound and silence are stored along with the voice to permit efficient execution 

of the DESCRIBE operation. 

We will not describe the workings of the voice file server in greater detail. For the purposes of this 

paper, we assume that the reliable recording of voice files and the reliable playing of arbitrary queued 

sequences of voice file intervals are solved problems. We also presuppose the existence of relatively 

high-bandwidth network connections between the voice file server and Etherphones, a condition that is 

easy to meet in our local network environment. 

XEROX PARC, CSL-89-2, MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 11 

4.3 Database facilities 

Voice ropes and interests rely on a simple database management system for their implementation. 

The requirements placed on the database system are not particularly stringent. It need only store 

immutable objects, provide basic query and update mechanisms, and support sharing among many 

client programs. There is no need for multi-object atomic updates, join operations, or comprehensive 

query languages. Any database system satisfying these modest requirements would suffice. Since such 

a system was not available in the Cedar environment, we developed a simple, robust database 

representation that is particularly well-suited to voice ropes. 

The database system stores each entry, a sequence of attributes expressed as key/value pairs, in a 

write-ahead log [10]. Unlike most database systems in which the data is logged only until it can be 

committed and written to a more permanent location, the log is itself the permanent source of data. 

Once logged, the data is never moved. To allow rapid queries or enumeration of database entries, B

Tree indices [2] are built to map the values of one or more keys to the corresponding locations in the 

log file. 

This log-based database package was inspired by similar methods found in the Walnut electronic 

mail system [8] and recommended by Lampson [12]. In addition to managing the storage of voice ropes 

and interests, it has been used successfully for other data management needs in the Etherphone system. 

4.4 Voice rope structure 

The data structure representing a voice rope consists of a list of [VoiceFileID, key, interval] tuples. 

Additionally, an entry in the voice rope database contains attributes for the identifier, creator, access 

control lists, and overall length of the voice rope. Thus, a typical database log entry for a voice rope is 

as follows: 

VoiceRopeID: Terry.pa#575996078 

Creator: Terry.pa 

Length: 80000 

Play Access: VoiceProjectt .pa 

EditAccess: none 

VoiceFileID: 235 

Key: 174011210628103004604578 

Interval: 0 80000 

A database index allows voice rope structures to be retrieved efficiently by VoiceRopeID; an index is 

also maintained on VoiceFileIDs, which is useful in garbage collection. 

The database entry given above is for a simple voice rope consisting of a single interval within a 

single voice file. More complex voice ropes can be constructed using the editing operations presented 

XEROX PARC, CSL-89-2, MAY 1989 



12 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

in Section 3.3. For example, suppose two simple voice ropes, VR1 and VR2, exist with the following 

structures: 

VR1 = <VoiceFileID: VF1, Key: K1, Interval: [start: 0, length: 4000]> 

VR2 = <VoiceFiteID: VF2, Key: K2, Interval: [start: 500, length: 2000]> 

Then the operation 

REPLACE[base: VR1, interval: [start: 1000, length: 1000], with: VR2] 

produces a new voice rope, VR3, with the structure: 

VR3 = <VoiceFileID: VF1, Key: K1, Interval: [start: 0, length: 1000], 

VoiceFilelD: VF2, Key: K2, Interval: [start: 500, length: 2000], 

VoiceFilelD: VF1, Key: K1, Interval: [start: 2000, length: 2000]> 

as depicted in Figure 4. 

voice storage database 

VF1 : 

VF2: 

Figure 4. Structure of VR3 after REPLACE operation. 

To record a new voice rope, the voice manager calls on the voice file server to create a new voice 

file and store the voice arriving over a specified conversation as its contents. Once recording completes, 

a simple voice rope is added to the voice rope database to represent the complete voice file just 

recorded. The encryption key used to encode the conversation, and hence the voice file, is stored in the 

voice rope's entry. This key is carried along with the VoiceFileID during subsequent editing operations 

involving intervals of the voice rope. Independently enciphering small blocks of voice using ECB 

ecryption [16] ensures that voice can be edited on millisecond-resolution boundaries while remaining 

encrypted. Note that the actual voice is neither moved nor copied once recorded in a voice file, even 

XEROX PARC, CSL-89-2, MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 13 

during editing. 

When playing a voice rope, the voice manager retrieves the voice rope's structure from the 

database, checks access permissions against the caller's authenticated identity, distributes the 

encryption keys of the various intervals to the parties participating in the conversation, and calls upon 

the voice file server to play the intervals of the voice rope in the appropriate order. The voice file 

server provides sufficient buffering to support playing a queue of two or more voice file intervals 

without introducing gaps between the intervals. 

The structure of voic~ ropes is kept "flat" to enhance playing performance. By having each voice 

rope refer directly to voice files, only a single database access is required to determine the voice rope's 

complete structure. An alternative design, more closely modeled on the Cedar Rope abstraction, would 

store complex voice ropes as intervals of other voice ropes. In such a design, a voice rope would be 

expressed as a tree of other voice ropes with intervals of voice files at the leaves of the tree. This 

alternative design would reduce the work associated with each editing operation, but would increase 

the number of database accesses required to playa voice rope. The flat design was chosen because it 

improves playing behavior, and, in practice, playing is much more frequent than editing. Moreover, it 

yields simpler and more compact data structures when used to represent small numbers of coarse

grained edits to voice. The alternative tree design would be a sensible approach within an environment 

optimized for a different distribution of usage patterns. 

4.5 Storage reclamation 

4.5.1 Rationale/or interests 

Once all voice ropes that reference a given voice file have been deleted, no voice rope will ever 

again refer to that voice file, so the voice file can be deleted as well. This condition is easily determined 

by a database query. The more difficult problem is deciding when voice ropes themselves can be 

reclaimed. The interest operations of Section 3.5 were included primarily to permit automatic 

reclamation of storage for voice ropes and their associated voice files. 

From the client standpoint, the most straightforward method for garbage collecting voice ropes 

would be periodically to examine all of the clients' storage for references to voice ropes, then to collect 

any unreferenced ropes in a conventional sweep pass. Unfortunately, this sort of distributed garbage 

collector would be impossible to implement in our open, heterogeneous environment. We do not wish 

to restrict the uses clients make of voice ropes, or how and where- clients store VoiceRopeIDs. 

A common alternative is to provide a reference counting scheme in which counters are used to 

determine the number of clients interested in a particular object. When an object's counter goes to 

zero, the object's storage can be reclaimed. The burden is placed on clients to increment and 

decrement the counts for the objects that they are using. 

The use of standard reference counting presents formidable problems in a distributed 

environment. Reference counts cannot be managed reliably unless an atomic transaction can be made 

XEROX PARC, CSL-89-2, MAY 1989 



14 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

to span all of the activities involved in the creation and deletion of a reference. We consider this 

impractical to arrange. given our desire to accommodate a heterogeneous collection of participating 

systems. Without transactions. if the server or client fails in the process of incrementing or 

decrementing a reference count. the client may be left in an uncertain state regarding the outcome of 

the operation. In particular. client failure-recovery procedures might incorrectly repeat a reference 

count operation. Furthermore. it is not always possible to arrange for a reference count to be 

decremented, such as when a reference-containing file residing on a non-collaborating server is deleted. 

Lastly, reference counts are anonymous, giving no help in locating erroneous references. 

Interests were designed to remedy these shortcomings associated with simple reference counts. In 

a way, interests represent a return to the full-scan method first proposed: since an examination of the 

entire environment is not possible, clients are required to record their voice rope interests in a known 

place. The interests serve as proxies for the actual references for reclamation purposes. Interests 

address two problems: how to retain voice ropes for which references exist. and how to determine when 

voice ropes can be reclaimed. 

4.5.2 Retention a/voice ropes 

The use of interests to retain voice ropes is straightforward. Calling RETAIN adds an entry to the 

system's interest database, provided the entry is not already there, recording the supplied 

VoiceRopelD. class, and interest values along with the user's identification. The interest database 

includes indices permitting queries based on any of these attributes. Since a given entry appears in the 

database at most once, the RETAIN operation is idempotent. It can be safely retried in case of failures 

or uncertainty. The information stored in the interest database is sufficient to allow either human 

administrators or client applications to determine whether or not an interest is still valid. 

4.5.3 Interest invalidation 

Determining when to invalidate interest entries is more involved. Some client programs can 

determine both when to RETAIN an interest and when to FORGET it. One example is the electronic 

mail system that implements the "Message" class for which the interest design was first developed. 

When the mail system deletes an instance of a text message that contains voice references, it issues a 

FORGET for all of the associated voice ropes. Another example is the "SysNoises" class, a set of useful 

recorded announcements and sounds that system administrators manage manually. The FORGET 

implementation simply deletes the associated interest entry or entries from the interest database, 

ignoring requests to delete nonexistent entries to ensure that FORGET is also an idempotent operation. 

When every interest for a voice rope has been forgotten, the voice rope is vulnerable for deletion. 

As we discovered when we began including voice ropes as· annotations embedded in ordinary 

structured text documents, arranging for clients to issue FORGET actions at the necessary times is not 

always easy. Consider the following scenario. A user records a voice rope and embeds a reference to it 

in a document; an interest in the voice rope is then registered for the document. The user then copies 

XEROX PARCo CSL-89-2. MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 15 

this document from his workstation to a public file server and announces its existence in a message to 

interested parties. Several months later, he deletes the file, without remembering that it had voice 

annotations. Unless further actions are taken, the interest, and hence the referenced voice rope, will 

never be reclaimed. 

Expecting an arbitrary file server to delete interests is not really reasonable. In the above scenario, 

one could argue that the file server should have issued the necessary FORGET operation when the file 

was deleted. However, this implies that the software running on the file server could or should be 

modified to recognize the existence of files containing voice references, to understand their internal 

structures, and to take appropriate action. Many of the file servers in a typical network environment, 

including ours, cannot be so modified, either because they are old and written in some obscure 

programming language, or because they were purchased from outside vendors from whom source code 

is not available. 

In this case, although interests cannot be explicitly deleted by the agents whose actions invalidate 

them, the voice manager can determine automatically when a particular interest is no longer valid. 

Suppose that a knowledgeable workstation client program issues the operation 

RETAIN[vrID: voiceRopelD, class: 

"FileAnnotation", interest: "annotatedFile"] 

for each voice rope referred to in a file as the file is moved from temporary workstation storage to the 

file named "annotatedFile" on a public file server. At any later time, standard directory operations 

can be used to determine whether that specific named instance of the file still exists; if not, the 

associated interest is no longer valid and can be deleted. 

4.5.4 Garbage collection 

For automatically locating and removing outdated interests, the implementor of any interest class 

can register a procedure of the following type with the voice manager: 

GARBAGE[voiceRopeID, interest] -+ {Yes I No} 

Determines in a class-specific way whether or not the given interest still applies to the 

particular voice rope. 

As an example, for the class "FileAnnotation", this procedure returns Yes if and only if the file 

instance identified by the interest parameter still exists on some file server. A "Timeout" class records 

an expiration time as its interest value; its GARBAGE procedure returns YES when the timeout has 

expired. 

An interest verifier periodically enumerates the database of interests and calls the class-specific 

GARBAGE procedure for each interest. If the procedure returns Yes, then the verifier calls 

FORGET[voiceRopeID, class, interest] to delete the interest from the database. 

A garbage collector for voice ropes also runs periodically. For each voice rope in the database, the 

collector (1) deletes the voice rope if no interests exist that reference it, and (2) deletes voice files used 

by the voice rope if they are no longer a part of any other voice rope. This process refuses to collect 

XEROX PARe, CSL-89-2, MA Y 1989 



16 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

voice ropes that are too young in order to prevent a newly created voice rope from being collected 

before a client has the opportunity to express an interest in it. This method will find all unreferenced 

voice ropes, including those for which no client ever expressed an interest and those that might have 

been orphaned due to system errors~ otherwise, the actions of FORGET alone would be sufficient to 

eliminate unreferenced entries from the voice rope database. Note that, unlike a mark-and-sweep style 

garbage collector, these algorithms can be safely executed while the system is running and need not 

complete a full pass through the database in order to perform useful work. 

The decision to protect voice ropes for a time after their creation was a pragmatic one. An earlier 

design required the client programmer to specify an interest, possibly of class "Timeout", for every 

voice rope created in order to force an explicit statement of the minimum conditions for deleting it. 

But since many voice ropes are often created in the process of editing an annotation or voice message, 

this approach would generate unnecessary interests protecting these intermediate values. Instead, by 

choosing a minimum lifetime comparable to the interval between invocations of the garbage collection 

procedures, we leave ample time for a properly functioning application to express an interest in the 

final result. 

In summary, garbage collection takes place on three levels. The voice manager deletes voice files 

when they are no longer referenced by voice ropes. Voice ropes are deleted if they are old enough and 

no interests exist for them. Interests are either explicitly forgotten by client applications or 

automatically deleted based on a class-specific test for validity. 

5. Experience and Evaluation 

5.1 Current usage 

Approximately 50 Etherphones are in daily use in the Computer Science Laboratory. Our current 

voice file server runs ona Dorado [11], a 2-3 MIPS workstation developed at Xerox PARC, with a 300 

Mbyte local disk. Thus, it has the capacity to store over 7 hours of recorded voice; the actual storage 

capacity depends on the amount of suppressed silence. Most of our user-level applications to date have 

been created in the Cedar environment [23], although limited functions have been provided for 

Interlisp and for stand-alone Etherphones. We have had a voice mail system running since 1984 and a 

prototype voice editor available for demonstrations and experimental use since the spring of 1986. 

The current voice rope database contains approximately 2000 voice ropes with a total of 7000 

segments referencing about 800 distinct voice files. Thus, the average voice rope consists of 3.5 

segments, and an average voice file is used by 2.5 voice ropes. Half of the voice ropes have only a 

single segment, but some have over 20 segments. Half of the voice files are used by exactly one voice 

rope. 

Voice ropes have an average length of15.5 seconds. 95% are less than 45 seconds in duration. The 

average segment size among edited voice ropes is 3 seconds, which is in accordance with our preference 

XEROX PARC, CSL-89-2. MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 17 

for large-grained edits. 

51 MBytes of storage is used by the voice file server to store the collection of voice files whose 

aggregate length is 54 MBytes. Thus, only about 5% in storage is saved by suppressing silence. 

Summing up the total lengths of all voice ropes yields 180 MBytes, which indicates that a factor of 3 is 

gained through using the database to represent edits. 

A majority of the voice ropes in the current database were created in order to test the voice 

manager itself or its applications during their development, and are therefore somewhat artificial. We 

would expect voice ropes representing annotations in actual production use to be somewhat longer on 

average, to consist of longer average segments, and to contain fewer edits. Presently, the interest 

database has not grown large enough to provide interesting statistics. 

5.2 Voice-annotated documents 

Manipulating stored voice solely by textual references, besides allowing efficient sharing and 

resource management, has made it easy to integrate voice into documents. For example, we were able 

to build a local. voice mail system without changing the mail transport protocols or servers. Also, 

annotated documents can be stored on conventional file servers that are not aware that the documents 

logically contain voice. The annotation applications utilized facilities already available in the Tioga 

editor for associating additional named properties with arbitrary locations within a document. 

Significant performance benefits accrued by having documents refer to voice that is stored 

remotely. Although most requests to record or play voice ropes are initiated from a workstation, the 

voice data is never received by the workstation; instead, it is transmitted directly to the associated 

Etherphone. A typical text document containing several voice ropes as annotations might occupy 

30,000 bytes of storage, whereas inclusion of the voice, assuming a minute of total commentary, would 

swell its size to 500,000 bytes or greater. In fact, scanned images are included in Tioga documents by 

value, and the resulting sizes do present storage and performance problems even for high-performance 

workstations. 

Sharing documents and electronic messages that have been annotated with voice references, 

however, requires high-bandwidth network connectivity among the participants. Providing the 

applications described here among remote sites connected by limited-bandwidth channels would 

require additional mechanisms, such as those developed as part of DARPA's experimental multimedia 

mail project [18], which are beyond the scope of this paper. 

5.3 Editing voice 

We gained considerable experience with the voice manager by building the Cedar voice editing 

system described in Section 2.2 and illustrated in Figure 2. The small set of editing operations 

provided by the voice manager, including the specialized DESCRIBE operation that identifies the 

sound and silence intervals, has proven to be a sufficient base on which to build a complex voice editor 

XEROX PARe, CSL-89-2. MA Y 1989 



18 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

and a dictation machine. However, to reduce traffic to the voice manager, the Cedar voice editor 

maintains its own data structures to represent the edited voice temporarily. That is, the voice editor 

ended up replicating much of the functionality of the voice manager, something we were trying to 

avoid. Only when a user elects to save the edited voice passage does the voice manager get called to 

perform the necessary operations. Given this situation, a better approach may have been to let clients 

simply pass the voice manager a complete voice rope specification that it could store in its database. 

Experience with the initial implementation of the voice manager revealed that editing a voice 

passage invariably produced a set of "temporary" voice ropes used only in the construction of the 

finished result. These objects were eventually collected by the garbage collector and did no permanent 

harm, but they did create additional work for the voice manager. To alleviate the problem somewhat, 

the voice manager's interface was changed slightly so that an interval could be supplied for any voice 

rope parameter in any operation. This substantially reduced the voice editor's use of the SUBSTRING 

operation. 

Event reporting is important in allowing the voice editor to coordinate its visual feedback with the 

activities of the voice file server. In particular, the voice editor moves a cursor along the screen as a 

voice rope is being played (the gray marker below the word "score" in the voice displayed in Figure 2). 

A report indicating that the playing of a particular voice passage has started or finished is essential to 

synchronize the movement of the cursor with the transmission of voice data. 

Although the voice file server writes files on disk so that I-second segments can be continuously 

transferred, clients are allowed to edit voice ropes on I-millisecond boundaries. The file server could 

not possibly play a voice rope in real time if it had to perform a disk seek every millisecond. 

Fortunately, users of the voice editor are encouraged to insert, delete, and rearrange voice passages at 

the granularity of a sentence or phrase rather than trying to modify individual words or phonemes [1]. 

Thus, in practice, one rarely sees segments of a voice rope that are less than several seconds in length. 

5.4 Interests 

The notion of grouping interests into classes and providing class-specific garbage collection 

algorithms is a useful and workable concept. However, we are still groping with the details of how best 

to use these mechanisms. We have found several interest classes to be useful in Cedar. 

The Cedar mail system automatically registers and'deregisters interests of class "Message" as voice 

messages are saved and deleted by recipients. In addition, a "Timeout" class has been used to retract 

an interest automatically after a certain amount of time. For instance, when sending a voice message, a 

timeout of a week or two can be set by the sender to give recipients a chance to receive the message and 

register their own more permanent interests ifso desired. Of course, problems can arise if a recipient is 

on vacation for a period of time longer' than the timeout. For this reason, voice files are archived 

before being deleted from the server. 

For annotated documents in Cedar, the workstation software detects when a file is copied from the 

local disk to a public file server; it then calls RETAIN to register the appropriate "FileAnnotation" 

XEROX PARC, CSL-89-2, MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 19 

interests for the public file. Having workstation software automatically register interests as a file is 

copied to a file server works remarkably well. However, some important operations are not covered by 

this approach: renaming a file on a file server or copying files between two file servers. We see no way 

to detect such operations except by modifying file server software. 

We have defined the "FileAnnotation" interest class such that its interest represents a publicly 

stored file name including the version number. With this scheme, interests must be reregistered for 

each new version of the file, that is, whenever a file is written to a public server. Unfortunately, the 

times that people want to annotate documents are precisely those times when the document is being 

updated often, so many interests are registered repeatedly. We rely on the garbage collector to get rid 

of old interests. An alternative would be to register a file without a version number, but that causes 

minor problems if voice is deleted from the file but the file itself remains in existence. 

If we could obtain the cooperation of the file servers that store our documents, we could do a 

significantly better and less cumbersome job of managing interests. A collaborating file server could 

examine files for voice rope references and execute the necessary RETAIN and FORGET operations as 

the files were stored, copied, and deleted. This would reduce or eliminate the burden on application 

programs. We consider this a promising area for additional research. 

5.5 Reliability 

The voice file server, voice manager, and voice control server were implemented so that they could 

run on separate physical processors. That is, they all communicate among themselves and with voice 

clients using RPC. In practice, we run all three on the same Dorado. There is little to be gained by 

running them separately, since the voice file server cannot record or play voice files if the control server 

is down. Similarly, the voice manager cannot record or play voice ropes if the voice file server is down. 

Moreover, for all practical purposes, voice cannot be edited if the voice file server is down because 

users invariably need to listen to the voice passages that they are editing. 

Thus, availability is not adversely affected by having the voice manager and file server co-located 

with the control server. If this server crashes or is otherwise unavailable, then no operations can be 

performed on stored voice. For the most part, this is simply an inconvenience to users in the same way 

that the unavailability of conventional file servers is an inconvenience. In Cedar, the file servers 

containing the important system files, fonts, and documentation are replicated to improve their 

availability. In our prototype, we have not found it necessary to pay the cost to provide a highly

available voice file server. 

The one exception to this concerns voice interests. Clients often wish to register or deregister 

interests in voice ropes independently of playing the referenced voice. For example, an interest of type 

"FileAnnotation" is registered when a voice-annotated document is copied from a personal workstation 

to a public file server. A user should not be prevented from performing such a copy simply because the 

voice manager is unavailable. We have also observed that the interests for voice messages fail to get 

properly registered or deregistered if a person saves or deletes a voice message while the voice server is 

XEROX PARe, CSL-89-2, MAY 1989 



20 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

Operation Time: simple Time: complex 

RECORD t 264-390 (318) 
PLAyt 213-821 (394) 450-617 (563) 
CONCATENATE 219-367 (279) 878-1276 (1105) 
SUBSTRING 203-736 (373) 239-608 (345) 
REPLACE 398-509 (444) 683-1109 (937) 
LENGTH 33,72* 80 
DESCRIBE 163 1432 
RETAIN 285-881 (539) 
FORGET 290-763 (514) 531-1024 (718) 
LOOKUP 33 

t Time from beginning of RPC call to "started" report received by client. * For voice ropes whose length is not known by the database. 
= Identical performance for simple and complex voice ropes. 

Table 1. Performance of operations on simple and complex voice ropes (in milliseconds). 

down. This has led us to contemplate writing a program that enumerates a person's mail database and 

checks that all voice messages have properly registered interests. The better solution is to make the 

voice interest database highly available, at least for updates. Rather than fully replicating the database, 

we have designed a mechanism whereby operations to RETAIN or FORGET a voice interest are logged 

locally by a user's workstation if the database server is unavailable; the operations in this log will be 

retried when the workstation detects that the voice manager has returned to operation. 

5.6 Performance 

The time performance of both the voice file server and the voice rope facilities easily meet the 

requirements of intended applications. Table 1 gives the measured performance of the various 

operations that can be performed on voice ropes. Measurements were obtained for both a simple voice 

rope that contains a single 5-second voice segment and a complex voice rope consisting of ten 5-second 

segments obtained from ten different voice files with different encryption keys. For these experiments, 

the client is a Dorado on a 3 MBit Ethernet while the server is a Dorado on a 1.5 MBit Ethernet; the 

client and server are separated by a single gateway. Times are given in milliseconds; for operations 

with significant variance in measured times across several experiments, a range of times is given with 

the average in parentheses. 

The time given for a RECORD or PLAY operation is the period from the client initiation of the 

RPC call until the receipt by the client of a file server report that recording or playing has started. 

Clearly, the complete time for the operation depends on the length of the voice rope being recorded or 

played. This time can be easily computed given a voice transmission rate of 64 KBits/second. 

We were quite surprised by the large variance in the time observed for playing a voice rope. 

XEROX PARC, CSL-89-2, MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 21 

Further examination of the PLAY operation indicated where the time is spent, as depicted in Table 2. 

The variability is due to the time required to reliably distribute one or more encryption keys. 

Sub-operation 

Communication (RPC) overhead: 
Database lookup and access control: 
Distribution of encryption keys: 
Schedule playback with voice file server: 
Time to receipt of "started" report: 

TOTAL 

Time 

18 
18 
137-745 
4 
36 

213-821 

Table 2. Breakdown of time spent in the PLAY operation for simple voice rope. 

As expected, the cost of the DESCRIBE operation increases almost linearly with the length of the 

voice rope. For most of the other operations, the time depends heavily on the cost of database updates 

rather than the size or complexity of the voice rope involved. However, the complexity of a voice rope 

has an indirect effect on the cost of writing that voice rope to the database. The database system 

maintains a B-Tree index that keeps track of all voice ropes containing part of a given voice file. Thus, 

when adding a voice rope to the database, an update to this index is required for each segment of the 

voice rope. This explains why operations such as CONCA TENA TE and REPLACE are significantly 

more expensive for complex voice ropes. 

We do not have current measurements of the server load during RECORD or PLAY. However, 

early experience with the voice file server indicated that it can handle about eight simultaneous 

connections [22]. 

During the development of the voice manager, we have exercised the garbage collection routines 

and have verified that they properly identify the objects to delete, but we have not actually allowed 

them to delete anything. Because of this, there are quite a large number of voice ropes, voice files, and 

interests in existence. Even so, recent measurements indicate that the interest verifier makes a 

complete pass through the interest database in 13 seconds. The voice rope garbage collector runs in 140 

seconds, or approximately 80 ms. per voice rope. Thus, the entire garbage collection suite for a 

database of this magnitude can be executed in just a few minutes. Running the garbage collectors once 

per night, we could support a considerably larger population of voice ropes and interests than currently 

exist. 

This paper has been concerned with the editing and management of recorded voice, dealing with 

operations whose performances must be compatible with human response times: sub-second response 

at a peak rate of several operations per second is more than adequate. The measurements reported 

herein confirm that the voice manager meets these requirements. Moreover, since network communi

cation time is not a significant factor in the timings reported, the voice rope facilities would work in a 

XEROX PARC, CSL-89-2, MAY 1989 



22 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

substantially more extensive and heterogeneous network environment than we have tried to date. 

6. Related work 

Several companies provide speech message systems that can be accessed from standard 

telephones; one of the earliest examples of this type of system was IBM's experimental Speech Filing 

System, which was operational in 1975 [9]. Certainly the Etherphone system's facilities can be accessed 

from telephones, but that was not the driving application. We were interested in allowing voice to be 

integrated easily into a user's existing means of digital communications, rather than forcing users to 

learn a completely new system. The Sydis Information Manager provides workstation control over the 

recording, editing, and playing of voice as in the Etherphone system, but requires special workstations 

called VoiceStations [17]. Ruiz also developed a prototype voice system that integrates voice and data 

into some simple workstation applications; however, he did not address the important issues of sharing 

stored voice [19]. 

Maxemchuk's speech storage system {l4] provided many of the same facilities for recording, 

editing, and playing voice as our voice file server. (Actually, he provided much more control over the 

playing of voice than we do, such as the ability to vary playback speeds or adjust silence intervals.) The 

division of function between a main computer and a storage computer is also quite similar to the 

separation between our voice manager and voice file server. However, Maxemchuk's system edits 

voice using divide and join operations that modify the control sectors of stored voice messages. Our 

technique of building data structures that reference voice files better supports sharing by making voice 

ropes immutable and simplifies the requirements placed on the voice file server. For instance, our 

techniques are very amenable to write-once storage technologies such as optical disks. 

Version Storage in the Swallow system [20] has many similar characteristics to our voice manager. 

That is, it manages immutable objects of various sizes. Also, its "structured version images" used for 

large objects are similar to the data structures used by the voice file server to describe voice files. 

Unlike the voice manager, Swallow provides no editing mechanisms or garbage collection, just read 

and write operations. It does, however, maintain histories to link together objects that are derived from 

one another and supports atomic operations on multiple objects. 

The Diamond Document Store [25], like the Etherphone system, manages documents that contain 

various media elements by reference; it also allows documents to be shared among users by reference. 

Because the Diamond system does not allow documents stored outside the system to reference 

internally stored objects, a simple reference count mechanism suffices for deallocating objects that 

reside in the Document Store but are not referenced by any document or document folder. The 

Etherphone system, on the other hand, strives to provide voice services that can be used along with 

other existing services, such as the Grapevine mail system [3] and Alpine file servers [6]. 

The Cambridge File Server [15] was perhaps the first network-accessible storage system to require 

clients to take an explicit action to prevent files from being automatically garbage collected. In 

XEROX PARC, CSL-89-2, MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 23 

particular, it deletes files that are not accessible from server-maintained, but client-updated "indices". 

Thus, these indices play much the same role as the voice manager's interest database. 

Several methods for distributed garbage collection have been documented in the literature. For 

example, Liskov and Ladin have a scheme in which all sites that store references to other objects run a 

garbage collector locally and send information about non-local references to a reference server [13]. In 

some sense, their use of a reference server is similar to our use of registered interests, but much more 

limited. One interesting contribution they make is how to build a highly-available reference server; we 

could use these techniques to build an interest server. 

7. Conclusions 

The facilities for managing stored voice in the Etherphone system were designed with the intent of 

moving voice data as little as possible. Once recorded in the voice file server, voice is never copied 

until a workstation sends a play request; at this point the voice is transmitted directly to an Etherphone. 

In particular, although workstations initiate most of the operations in the Etherphone system, there is 

little reason for them to receive the actual voice data since they have no way of playing it. 

Maintaining voice on a publicly accessible server, the voice manager, facilitates sharing among 

various clients. Clients can freely share references to voice ropes without incurring the overhead of 

transmitting the voice itself. Because voice ropes are immutable, even though they are incorporated 

into documents. by reference, they exhibit copy semantics. 

To support efficient editing, a two level storage hierarchy is employed: voice ropes refer to 

intervals of voice files. A given voice rope can consist of intervals from several voice files, and a given 

voice file can be used by several voice ropes. A database stores the many-to-many relationships that 

exist between voice ropes and files. Editing operations simply create new voice ropes from old ones 

and add them to the database. 

The editing operations provided by the voice manager are similar to those in the Cedar Rope 

package. This is intentional so that programmers can manipulate voice in the ways to which they are 

accustomed to dealing with text. The basic facilities to support editing reside on a server; workstations 

are responsible for providing a user interface that is integrated with their programming environment. 

Several aspects of the voice manager were designed to accommodate the heterogeneous nature of 

our environment. Providing a single implementation of the voice rope facilities on a server obviates the 

need for each different workstation programming environment to provide its own implementation. 

Moreover, the only requirements placed on a workstation in order to make use of the voice services are 

that it have an associated Etherphone and an RPC implementation. In particular, workstations need 

not have direct hardware support for encryption or voice 110. 

The voice manager reduces the work generally associated with building voice applications by 

providing a convenient set of application-independent abstractions for stored voice. It makes no 

assumptions about the way clients make use of its services. This particularly impacted the design of the 

XEROX PARC, CSL-89-2, MAY 1989 



24 MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 

voice garbage collector. 

Automatic reclamation of the storage occupied by unneeded voice ropes is done using a modified 

type of reference counting. Clients register interests in particular voice ropes. These interests are 

grouped into classes and can be invalidated according to a class-specific algorithm. For the most part, 

users of voice applications are not aware of how or when interests are registered since the application 

software handles this transparently. 

The Etherphone system uses secure RPC for all control functions and DES encryption for 

transmitted voice. These ensure the privacy of voice communication, which is important even in a 

research environment, although the Ethernet is inherently vulnerable to interception of information. 

Storing the voice in its encrypted form protects the voice on the server and also means that the voice 

need not be reencrypted when played. All in all, the voice system actually provides better security than 

most conventional file servers. 

The Etherphone system has provided an environment in which to explore the management of 

voluminous, shared data among distributed and heterogeneous workstation clients. One could argue 

that compression of digitally recorded utterances would eliminate the need for special treatment in our 

current voice applications. However, even with compression, there is a performance penalty in 

manipulating such large objects. More importantly, high-resolution scanned images and real-time 

digital video recordings will continue to be voluminous. We believe that the techniques presented in 

this paper are applicable to and beneficial for the management of these media as well as to voice. 

Acknowledgments 

The design of voice ropes evolved for several years and many people contributed valuable 

suggestions, including Polle Zellweger, Stephen Ades, Luis Felipe Cabrera, and Larry Stewart. John 

Ousterhout designed and implemented the voice file server. Lia Adams built an early version of the 

voice mail system. Michael Schroeder suggested the use of interests for garbage collection of voice 

messages. Stephen Ades' implementation of a voice editor allowed us to get some experience with 

voice ropes. Severo Ornstein, Larry Stewart, and Dan Swinehart started the Etherphone project in 

1982 and designed the Etherphone equipment. We are grateful to the many Cedar implementors who 

provided a wonderful environment for the Etherphone system. 

Margaret Butler, Alan Demers, Bob Hagmann, Jack Kent, Guy Steele, PoUe Zellweger, and many 

anonymous reviewers, contributed insightful suggestions, comments, and corrections. Subhana Menis, 

Bridget Scamporrino, Polle Zellweger, and Rick Beach provided invaluable assistance with the 

composition and printing. 

XEROX PARC, CSL-89-2, MAY 1989 



MANAGING STORED VOICE IN THE ETHERPHONE SYSTEM 25 

References 

1. Ades, S., and Swinehart, D. C. Voice annotation and editing in a workstation environment. In 

Proceedings AVIOS Voice Applications '86, September 1986,13-28. 

2. Bayer, R., and McCreight, E. Organization and maintenance of large ordered indexes. Acta 

Informatica 1, 3 (1972), 173-189. 

3. Birrell, A., Levin, R., Needham, R. M., and Schroeder, M. D. Grapevine: An exercise in distributed 

computing. Communications of the ACM 25,4 (April 1982), 260-274. 

4. Birrell, A. D., and Nelson, 8. 1. Implementing remote procedure calls. ACM Transactions on 

Computer Systems 2, 1 (February 1984), 39-59. 

5. Birrell, A. D. Secure communication using remote procedure calls. ACM Transactions on Computer 

Systems 3, 1 (February 1985), 1-14. 

6. Brown, M. R., Kolling, K., and Taft, E. A. The Alpine file system. ACM Transactions on Computer 

Systems 3, 4 (November 1985), 261-293. 

7. Clark, D. D. The structuring of systems using upcalls. Proceedings Tenth Symposium on Operating 

Systems Principles, Orcas Island, Washington, December 1985,171-180. 

8. Donahue, 1., and Orr, W.-S. Walnut: Storing electronic mail in a database. Xerox Palo Alto 

Research Center, Technical Report CSL-85-9, November 1985. 

9. Gould, J. D., and Boies, S. J. Speech filing- An office system for principles. IBM Systems Journal 

23, 1 (January 1984),65-81. 

10. Gray, J. N. Notes on database operating systems. In Bayer et aI., Operating Systems: An 

Advanced Course, Springer-Verlag, 1978, 393-481. 

11. Lampson, B. W. and Pier, K. A. A processor for a high-performance personal computer. 

Proceedings 7th Symposium on Computer Architecture, La Baule, May 1980, 146-160. 

12. Lampson, 8. W. Hints for computer system design. Proceedings Ninth Symposium on Operating 

Systems Principles, Bretton Woods, New Hampshire, October 1983,33-48. 

13. Liskov, 8., and Ladin, R. Highly-available distributed services and fault-tolerant distributed 

garbage collection. Proceedings of Symposium on Principles of Distributed Computing, Calgary, 

Alberta, Canada, August 1986;29-39. 

14. Maxemchuk, N. An experimental speech storage and editing facility. Bell System Technical 

Journal 59, 8 (October 1980), 1383-1395. 

15. Mitchell, 1. G., and Dion, 1. A comparison of two network-based file servers. Communications of 

the ACM 25,4 (April 1982), 233-245. 

16. National Bureau of Standards. Data Encryption Standard. Federal Information Processing 

Standard (FIPS) Publication 46, U. S. Department of Commerce, January 1977. 

17. Nicholson, R. Integrating voice in the office world. BYTE 8, 12 (December 1983), 177-184. 

XEROX PARC, CSL-89-2, MAY 1989 



26 MANAGING STORED' VOICE IN THE ETHERPHONE SYSTEM 

18. Reynolds, 1. K., Postel, 1. 8., Katz, A. R., Finn, G. G., and DeSchon, A. L. The DARPA-, 

experimental multimedia mail system. Computer 18, 10 (October 1985), 82-89. 

19. Ruiz, A. Voice and telephony applications for the, office workstation. Proceedings 1st 

International Conference on Computer Workstations, San Jose, CA, November 1985, 158-163. 

20. Svobodova, L. A reliable object-oriented data repository for a distributed computer system. 

Proceedings Eighth Symposium on Operating Systems Principles, Pacific Grove, California, 

December 1981, 47-58. 

21. Svobodova, L. File servers for network-based distributed systems. ACM Computing Surveys 16,4 

(December 1984), 353-398. 

22. Swinehart, D. C., Stewart, L. C., and Ornstein, S. M. Adding voice to an office computer network. 

Proceedings IEEE GlobeCom '83, November 1983. Also available as Xerox Palo Alto Research 

Center Technical Report CSL-83-8, February 1984. 

23. Swinehart, D. C., Zellweger, P. T., Beach, R. 1., and Hagmann, R. 8. A structural view of the 

Cedar programming environment. ACM Transactions on Programming Languages and Systems 8, 4 

(October 1986), 419-490. 

24. Swinehart, D. C., Terry, D. B., and Zellweger, P. T. An experimental environment for voice 

system development. IEEE Office Knowledge Engineering Newsletter 1,1 (February 1987), 39-48. 

25. Thomas, R. H., Forsdick, H. C., Crowley, T. R., Schaaf, R. W., Tomlinsin, R. S., Travers, V. M., 

and Robertson, G. G. Diamond: A multimedia message system built on a distributed architecture. 

Computer 18, 12 (December 1985), 65-78. 

26. Yankelovich, N., Meyrowitz, N., and van Dam, A. Reading and writing the electronic book. 

Computer 18, 10 (October 1985), 15-30. 

XEROX PARC, CSL-89-2, MAY 1989 



System Support Requirements for Multi-media 
Workstations 

Daniel C. Swinehart 

© Copyright 1988 SpeechTech. Reprinted with permission. 

Abstract: Live and recorded voice, speech synthesis, speech recognition, and full-motion 

video can be of considerable value when integrated into a powerful text and graphics 

workstation environment. This paper complements a brief videotape that demonstrates a range 

of experimental voice and telephony applications - developed as components of the Xerox 

Etherphone project - with a discussion of the architectural and system support requirements 

that are necessary to form the basis for flexible, extensible multi-media applications. 

This paper appeared in the Proceedings of the Speech Tech '88 Conference (New York; April 

1988); Media Dimensions, Inc., New York, April 1988, 82-83. 

CR Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: 

Distributed Systems - distributed applications; D.4.7 [Operating Systems]: Organization and 

Design - hierarchical design; distributed, real-time, and interactive systems; H.4.3 

[Information Systems Applications]: Communications Applications. 

General Terms: Design, experimentation. 

Additional Keywords and Ph rases: Etherphones, telephones, recorded voice, voice system 

architecture, workstation telephone management, multimedia conferencing, collaborative work. 

XEROX Xerox Corporation 

Palo Alto Research Center 

3333 Coyote Hill Road 

Palo Alto, California 94304 





SYSTEM SUPPORT REQUIREMENTS FOR MULTI-MEDIA WORKSTATIONS 1 

Introduction 

Experimental and commercial workstation-based 
systems are beginning to emerge that support voice and 
video applications along with their traditional text, 
graphics, and computational abilities. Examples include 
sophisticated telephone management functions, telephone 
conference control, voice and video annotation of so-called 
hypermedia documents, voice mail, and audio editing 
facilities tailored both for ordinary applications and for 
studio-quality production. For these capabilities to achieve 
their potential, the underlying system support for them 
must be carefully planned and implemented. 

The evolution of computing systems produced for 
specific application areas has traditionally followed a 
natural maturation process, from ground-up 
implementations to applications built on supportive 
architectures. As an example, when the first workstation 
applications were built for office workstation systems (such 
as the Xerox 8010 Star system or the Apple Lisa), the 
development approach was to begin with the bare machine 
or perhaps a simple operating system, then to build each 
application as a complete, monolithic whole. At the time, 
this was necessary both because memory sizes were limited 
and because the system substrate supporting these 
applications had to be invented along with the applications 
themselves. However, this approach is undesirable because 
it leads to long development cycles and to systems whose 
applications are hard to extend and often not well 
integrated with each other. 

More recently, systems such as the Macintosh, Sun 
workstations, or the Xerox XDE and Cedar systems have 
been developed based on a layered set of system facilities 
that support rapid program development, flexibility and 
extensibility, and integration. Examples include 
generalized graphics packages, window management 
systems, and user interface tool kits. Activity in the field of 
User Interface Management Systems for traditional 
workstations is vigorous, and it is leading to a rapid 
maturation of interactive workstation tools. The later 
phases of this maturation process include industry-wide 
standardization on sets of facilities (example: X Windows) 
that permit systems written by multiple service providers to 
run on a variety of computing platforms, enabling 
widespread development and use of new applications. 

I contend that most workstation-based voice systems, 
whether they provide telephone management capabilities or 
sophisticated applications of digital recorded voice, speech 
synthesis, or speech recognition, are still in the initial "build 
it directly on top of the operating system" phase, while 
systems that deal in any interesting ways at all with full
motion video are still in their infancy. This paper presents 
an argument that the same process of architectural 
discovery, development, and eventually standardization is 
needed in order to support the wide range of voice and 
video applications that we can all envision, given the recent 

and continuing explosive development in the enabling 
technologies. 

Where things stand 

The state of architectural development in this area, as I 
see it, is that some low-level protocols and architectures for 
managing voice exist - analogous to the operating system 
level in the examples above - the most advanced of them 
represented by the emerging ISDN standard. We can also 
see in a number of research systems the beginnings of some 
parochial architectures advanced of them represented by 
the emerging ISDN standard. We can also see in a number 
of research systems the beginnings of some parochial 
architectures that provide higher levels of support. Notable 
examples are the BellCore Mice system [3], special-purpose 
designs such as the one developed by IBM for the 1984 
Olympics in Los Angeles [4], a more general IBM design 
supporting voice and telephone applications [5], an 
architectural philosophy advocated by Ades in his PhD 
dissertation [1], and the architecture of our own Etherphone 
project [9, 7, 2, 8]. Although each of these systems has its 
own emphasis, all share the need for a layered architecture 
providing a range of integrated and extensible capabilities. 

As a more detailed example, the architecture with 
which I am most familiar underlies the Xerox Etherphone 
system. This is an experimental facility developed to 
explore a wide range of telephony, voice mail, voice 
annotation, and other multi-media applications. We have 
augmented an existing workstation environment with the 
capabilities needed to handle the transmission, storage, 
manipulation, and synthesis of digital voice and music, 
while preserving ordinary telephone functions. These 
capabilities are presented to applications programmers as 
program packages and network services. A number of 
applications have been implemented to test the hypothesis 
that this environment can support their implementation 
and incremental extension. Applications to date include 
ordinary telephone behavior; a workstation-based program 
providing telephone status display, call control, call 
filtering, and dialing from a directory database; voice 
annotation and editing in the context of a multi-media text 
editor; a "meeting service" permitting the use of the 
telephone system to monitor remote meetings and to 
participate orally in them; and a scripted documents facility 
supporting narrated descriptions of visual documents. 

The basic components of the Etherphone system 
appear in the figure below. Each personal workstation is 
associated with, but not directly attached to, a 
microprocessor-based telephone instrument called an 
Etherphone. Etherphones digitize and encrypt telephone
quality audio and transmit it in packet form directly over an 
Ethernet. A voice manager provides storage for voice, 
telephone conversations, music, and other sounds, recorded 
at reasonable fidelity. The system also includes other 

XEROX PARC, CSL-89-2, MAY 1989 



2 SYSTEM SUPPORT REQUIREMENTS FOR MULTI-MEDIA WORKSTATIONS 

specialized sources or sinks of voice. such as a server 
connecting a voice synthesizer to the network. 

A simple Etherphone System Environment. 

In order to achieve many of these applications, the 
workstation needs to have preemptive control over many of 
the details of telephone call setup and supervision, while 
permitting ordinary stand-alone telephone behavior both as 
a default and as backup when the workstation facilities are 
unavailable. For many of these features, the workstation 
needs information about switch ports and users other than 
the ones associated with the local telephone instrument. To 
perform these actions with any kind of safety or reliability 
requires supporting facilities at a higher and more 
comprehensive level architectures such as present-day 
ISDN provide behavior both as a default and as backup 
when the workstation facilities are unavailable. For many 
of these features, the workstation needs information about 
switch ports and users other than the ones associated with 
the local telephone instrument. To perform these actions 
with any kind of safety or reliability requires supporting 
facilities at a higher and more comprehensive level 
architectures such as present-day ISDN provide. 

The most compelling published argument I have seen 
for a standard, rich architecture supporting multi-media 
applications appears in a recent IEEE Communications 
article by Strathmeyer [6]. In it, he distinguishes between 
the physical integration enabled and promoted by present
day ISDN protocols, and the junctional integration needed 
to support application-level activities. Strathmeyer 
proposes a voice architecture called Computer-Integrated 
Telephony (CIT). CIT combines ISDN facilities with 
additional ones providing extended operations. Although it 
doesn't deal with all of facilities needed for comprehensive 
voice architecture, the CIT proposal is a strong step in that 
direction. 

Towards a comprehensive voice architecture 

In a sense, any system that provides a particular set of 
capabilities exhibits an architecture for those capabilities. 
Clearly we are after more than that: a clear, concise, and 
sensible description of the actions and data structures 
available to the programmer for producing applications that 
are more reliable, easier to build. and more likely to 
integrate well with other applications than could be 
achieved by starting from scratch. In order to 
accommodate a wide range of implementations, using 
possibly differing hardware, the architecture should be 
expressed as a set of layers, each calling on the capabilities 
of the layers below it through well-defined interfaces or 
protocols. This is the same philosophy espoused by the 
Open Systems Interconnect (OSI) model, and indeed most 
system and network architectures. 

We do not claim to have created such an architecture 
as yet. What is outlined here has emerged from attempts to 
extract a clean architectural description of the facilities that 
comprise the Etherphone system. However, although it was 
implemented from a careful design, the Etherphone system 

. was not originally designed with all of the required 
attributes for a general architecture in mind. In particular, 
we believe that an architecture should be: 

• complete- expressing all of the underlying facilities 
needed by its applications, 

• programmable- capable of extension by workstation 
programmers, without changing any of the network 
services, in order to modify existing applications and 
create new ones, and 

• open - defining the role of each major component, so 
that different kinds of components could be used to 
provide the same functions - for instance. so that a 
PABX manufacturer could provide a system replacing 
the Etherphone hardware for voice transmission and 
switching, without massive reprogramming or loss of 
functionality. 

The Etherphone architecture, as it stands, is reasonably 
complete and reasonably programmable, but does not meet 
the openness criteria. Therefore, the following paragraphs 
represents goals that we would like to meet in completing 
the Etherphone architecture. This- discussion concentrates 
on voice, but most of the arguments would apply as well to 
the management of full-motion video applications. 

Following the general methodology of the ISO 
reference model, we have tentatively identified five distinct 
architectural layers. From highest to lowest, these are the 
Applications layer, the Service layer, the Conversation layer, 
the Transmission layer, and the Physical layer. The heart of 
this design is the Conversation layer, which provides a 
uniform approach to establishing and managing voice 
connections among telephones and between telephones and 
the various services, while also coordinating the activities of 
telephones with those of their associated workstations. The 
Service layer defines the various voice-related services-

XEROX PARCo CSL-89-2. MAY 1989 



SYSTEM SUPPORT REQUIREMENTS FOR MULTI-MEDIA WORKSTATIONS 3 

such as telephone functions, voice recording and storage, 
voice playback, speech synthesis, and speech recognition
that form the basis for the voice applications playback, 
speech synthesis, and speech recognition - that form the 
basis for the voice applications. Each of the services must 
follow the uniform Conversation layer protocols in creating 
voice connections with other services. However, each can 
register with the Conversation layer additional service
specific interfaces (protocol specifications) that individual 
applications use to invoke their specialized capabilities. 
The Applications layer represents client applications that 
use the voice capabilities of the architecture; the existence 
of this layer must appear in the architecture, but of course 
the architecture need not specify in detail the capabilities at 
this level. 

Logically below the Conversation layer is the 
Transmission layer. This layer represents the actual 
methods for representing digital voice, for transmitting and 
switching voice, and for communicating control 
information among the components of the system. Finally, 
the Physical layer represents the actual choice of 
communications media, for the transmission of both voice 
information and control (not necessarily the same media). 
Although these lower layers are represented in the 
Etherphone system by facilities for transmitting packet 
voice and control messages on an Ethernet, other local area 
networks or almost any compliant digital PABX could 

. provide at least most of the same services. 

Existing standards, notably ISDN specifications, deal 
reasonably well with the functions of the Physical and 
Transmission layers. They also contain facilities 
corresponding to some of the required capabilities of a 
comprehensive Conversation layer, although the protocols 
that have been defined to date are far from complete. It is 
clear that most of the capabilities of the service layer have 
not yet been addressed by ISDN. We believe that only 
after all the architectural levels outlined here have been 
developed and have been standardized enough for many 
developers to be using them, will truly successful 
workstation-based voice and video products become a 
reality. 

References 

1. S. Ades. An Architecturefor Integrated Services on the Local Area 
Network. Ph.D. Thesis, Cambridge University, February 1987. 

2. S. Ades and D. C. Swinehart. "Voice annotation and editing in a 
workstation environment," Proceedings AVIOS Voice Applications '86, 
Alexandria VA, September 1986, pages 13-28. 

3. G. Herman, M. Ordun, C. Riley, and L. Woodbury. "The Modular 
Integrated Communications Environment (MICE): a system for 
prototyping and evaluating communications services." Proceedings 
International Switching Symposium, Phoenix, AZ, March 1987. 

4. 1. T. Richards, S. J. Boies, and 1. D. Gould. "Rapid Prototyping and 
System Development: Examination of an Interface Toolkit for Voice 
and Telephony Applications." Proceedings CH 1'86 Conference on 
Human Factors in Computing Systems, Boston, Mass., April 1986, 

pages 216-220. 
5. A. Ruiz. Voice and telephony applications for the office workstation. 

Proc. 1st International Conference on Computer Workstations, San 
Jose, CA, November 1985, 158-163. 

6. C. Strathmeyer. "Voice/Data Integration: An Applications 
Perspective." IEEE Communications Magazine 25(12): 30-35, 
December, 1987. 

7. D. C. Swinehart, L. C. Stewart, and S. M. Ornstein. "Adding voice to 
an office computer network." 
Proceedings IEEE GlobeCom '83, November 1983. Also available as 
Xerox Palo Alto Research Center, Technical Report CSL-83-8, 
February 1984. 

8. D. Terry and D. Swinehart. "Managing stored voice in the Etherphone 
system." To appear in ACM Trans. Computer Systems 6,1, February 
1988. An extended abstract appears in Proc. II th ACM Symposium on 
Operating System Principles. Austin TX. November 1987. 103-104. 

9. P. T. Zellweger. D. B. Terry. and D. C. Swinehart. "An overview of the 
Etherphone system and its applications." Proceedings 2nd IEEE 
Conference on Computer Workstations. Santa Clara. CA. March 1988. 

XEROX PARe. CSL-89-2. MAY 1989 





Active Paths Th rough M,ultimedia Documents 

Palle T. Zellweger 

© Copyright 1988 Cambridge University Press. Reprinted with permission. 

A bst ract: We have developed a scripting mechanism for creating active paths through a 

document or set of documents. Scripted multimedia documents can contain a combination of 

text, graphics, audio, and actions. Scripts can be used in a wide variety of ways, such as for 

formal demonstrations and audio-visual presentations, for informal interpersonal 

communications, and for organizing collections of information. Scripted documents are a 

dynamic form of hypermedia document whose additional structure can be layered on top of 

existing documents. 

This paper appeared in Document Manipulation and Typography, J.C. van Vliet (ed.), 

Cambridge University Press, 1988. Proceedings of the EP'88 Conference on Electronic 

Publishing, Document Manipulation and Typography, held in Nice, France, April 1988. 

CR Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming 

Environments; H.1.2 [Models and Principles]: User/Machine Systems-human factors; H.2A 

[Database Management]: Systems - distributed systems; H.2.8 [Database Management]: 

Database Applications; HA.m [Information Systems Applications]: Miscellaneous

hypertext; 1.7.2 [Text Processing]: Document Preparation. 

General Terms: Design, experimentation, human factors. 

Additional Keywords and Phrases: Etherphones, Cedar, recorded voice, voice-annotated 

documents, multimedia documents, active documents, hypermedia, hypertext, presentation 

tools, collaborative work. 

XEROX Xerox Corporation 

Palo Alto Research Center 

3333 Coyote Hill Road 

Palo Alto, California 94304 





ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

POLLE T. ZELLWEGER 

Xerox Palo Alto Research Center 

ABSTRACT 
We have developed a scripting mechanism for creating active paths through a document or set of documents. 
Scripted multimedia documents can contain a combination of text, graphics, audio, and actions. Scripts can 
be used in a wide variety of ways, such as for formal demonstrations and audio-visual presentations, for 
informal interpersonal communications, and for organizing collections of information. Scripted documents 
are a dynamic form of hypermedia document whose additional structure can be layered on top of existing 
documents. 

1. Introduction 
The advent of workstations has enabled a new and qualitatively different kind of 
document: a dynamic one that can incorporate audio and video in addition to text and 
graphics, one that can present itself in different ways depending on the needs or wishes 

of a particular reader at a particular time, and one that can serve as the backbone of a 
variety of "computations" that a reader might wish to perform. A prototype system for 

investigating these new capabilities has been built in the Cedar programming 
environment [Swinehart86] at the Xerox Palo Alto Research Center using the 

capabilities of the Etherphone voice system [Zellweger88] and the Tioga text editor 
[Teitelman84, Beach85]. 

1.1. Overview of scripted documents 
A script is an active directed path through one or more documents that need not follow 

the linear order of the documents. Each entry in a script consists of a document 

location, such as a contiguous sequence of characters in a text document, together with 

an associated action and timing. Sample actions might play back a previously-recorded 

voice annotation, send text to a text-to-speech synthesizer, open a new window, 

animate a picture, or query a database. Script specifications are stored in a shared 

database separately from the underlying documents. A single document can have 

multiple scripts traversing it for different purposes. 

XEROX PARe, CSL-89-2. MA Y 1989 



2 
ACTIVE PATHS THROUGH MULTIMEDIA DoCUMENTS 

A script can be played back as a whole, in" which case the first document in the 
script is displayed on the screen, positioned to show the first location. The location is 
highlighted to call attention to it, and its associated action is performed. After the 
associated timing, the system highlights the location of the next script entry, scrolling if 
needed, performs its action, and so on. The same document location can appear at 
multiple points in the script, with the same or different associated actions and timing. 

Arbitrary actions at a scripted location allow scripted documents to perform a wide 
variety of tasks, including demonstrations, tutorials, and programming tools. 
Parameterized actions allow a script to be personalized, such as "Hello <usemame)," 
or to more accurately reflect the current state of affairs, such as "There are 
<currentNumber> entries in this category." Scripts can be very formal items that are 
carefully crafted for pedagogical reasons, such as a videotape or a presentation, or they 
can be informal, used to communicate from a single script writer to a single script 
reader (who might well be the same person). 

l.2. Related work 
The capabilities of electronic documents have been expanding rapidly in recent years. 
Multimedia document systems have extended the contents of documents from text and 
formatting to include bitmap images, geometric graphics, spreadsheets, attributes, and 
voice [Ades86, Crowley87, Luther87]. Hypertext systems allow users to link non
contiguous portions of documents to express the associations between them [Delisle86, 
Halasz86, Meyrowitz86, Conklin87]. Electronic books and encyclopedias combine 
multimedia (text, graphic illustrations, and sometimes video) and hypertext (to link 
related sections) and may also include interactive portions in which readers can run 
simulations or other experiments to improve their understanding [Feiner82, Weyer85, 
Yankelovich85]. Presentation tools make it possible for users to capture sequences of 
actions to create automatic demonstrations [Xerox85]. Other document systems have 
included animation [Fiume87], actions [Hogg84], or sequencing [Christodoulakis86]. 
These advanced capabilities have been provided in several ways: by example, by direct 
manipulation, or by some form of programming language. The scripted documents 
system described in this paper forms a unique combination of multimedia documents, 
hypertext links, sequencing, and actions that increases document functionality still 
further. 

2. Key ideas of scripted documents 
This section discusses some of the key aspects of scripted documents, emphasizing 
ways in which scripted documents differ from typical hypertext systems. 

XEROX PARC, CSL-89-2, MAY 1989 



3 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

2.1. Directed paths versus browsing 
Most hypertext systems have concentrated on providing links between related nodes, 
creating an information space that a user can browse at will. The related concept of a 

directed path through a set of documents allows authors or script writers to include 
more structure. This structure consists of timed sequences of information, unrelated to 
the ordering of the underlying documents, to help the user understand the material. 

Although a few hypertext systems allow a sequence of links to be combined to form a 
path [Conklin87], we have instead made paths our primitive mechanism in order to 
explore the applications of sequentiality in electronic documents (see Section 3). For 
example, a later path entry can rely upon the user having seen earlier entries to overlay 
or animate previously-seen images or to abbreviate explanations. 

There is a conceptual continuum from the directed mode of following paths to the 
browsing mode of exploring links. For example, although standard usage of scripted 
documents is to experience a path automatically, users can single-step through a group 
of directed paths to approximate the more conventional browsing paradigm. A more 
interesting combination of directed paths and browsing is an interactive path, in which 
the user ansWers questions to construct his or her desired path through the 
information. In fact, a hypertext link can be expressed as a degenerate script 
containing two locations that have no corresponding actions. 

2.2. Emphasis on voice 
As a result of the efforts of the Etherphone project, recorded and synthesized voice are 
widely available in the Cedar environment. Documents prepared with the Tioga editor 
can contain formatted text, graphics, and an unlimited number of arbitrary-length 
voice annotations. A direct-manipulation voice editor allows easy editing at the phrase 
or sentence level. 

Voice is a critical component of a script. It provides a unifying thread for 
presentations and interpersonal communication, and it provides an out-of-band way to 
organize and comment on written material. Finally, it is easy to collect and modify 
(but as yet hard to search, although speech recognition systems are rapidly improving). 

2.3. Script information separate from underlying ordinary documents 
Separating scripts from the underlying documents enables an interesting mixture of 
public and private scripts. Scripts can refer to public documents without modifying 

those documents, allowing a user to create a personally organized information space 
(such as during an authoring task) without copying information into a closed hypertext 
system. Separating scripts from the underlying documents also allows for a smooth 

integration of scripted documents with other documents: scripts can gradually be 

added to a set of documents that continue to be accessed as ordinary documents. 

XEROX PARC, CSL-89-2, MAY 1989 



4 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

2.4. Arbitrary actions accompany document locations 
Script actions are unconstrained - they can call upon the power of the surrounding 
computing environment to execute commands or program fragments. The following 

section illustrates the resulting flexibility and power of scripts. 

3. Examples of scripts 
Scripts have a wide variety of uses. Script writers can create formal teaching materials 
and documentation. Users can build scripts that organize information or perform 
repetitive tasks. In addition, programs can construct scripts to ease complex tasks. 

Teaching tool. A language dialog can be represented both textually and as a 
simultaneous sequence of voice annotations to demonstrate correct pronunciation. 
The same dialog can include multiple scripts, one for each language desired. Each 
script visits the same sequence of locations, but has different associated voice 
annotations. 

Interpersonal communication. To review a manuscript, each reviewer can prepare a 
script for the manuscript, including voice annotations as well as branches through 
other supporting documents. Each script can follow an arbitrary path through the 
manuscript to collect related points. This use provides much of the value of a face-to
face interaction between the reviewer and the author, in which the reviewer makes 
comments while flipping back and forth through the manuscript and other documents 
to substantiate those comments. 

Personal information management. A user can create multiple scripts through a set 
of documents, each organizing a different topic. These scripts can be reordered as 
needed. The use of voice to annotate each location can be particularly helpful in early 
stages of idea exploration. 

Audio-visual presentation. Voice, text, and graphics can be combined to simulate a 
"slide show" on a selected subject. Several versions of the slide show, including 
different or rearranged slides, can be constructed to accommodate different audiences 
or different time constraints. 

User documentation and demonstration. Scripts can be used to explain how to use a 
complex program, such as a graphic illustrator. Actions can load and start the 
program, apply it to an example, visit noteworthy places in the user manuals, and 
explain some beginner's projects. Different scripts can be prepared for novice, 

intermediate, and expert users. Figure 1 shows the first few entries of such a script 

applied to the tutorial for the Gargoyle illustrator [Pier88]. 
"Bouncing ball" for songs or poems (looping actions) . . The text of a song or poem 

with a refrain can be successively highlighted with simultaneous audio, returning to the 

single copy of the text for the refrain as appropriate. Representing the song or poem in 

XEROX PARe, CSL-89-2, MAY 1989 



5 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

this way emphasizes the identity of the refrain, so that the reader need not carefully 
compare repeated copies of a linear representation. Similarly, a presentation may 
repeatedly return to an overview slide to orient viewers or to emphasize important 
points. 

Program-constructed scripts as history mechanisms. Programs can automatically 
construct scripts to act as history mechanisms for their users. For example, searching 
through annotations in a voice-annotated document can be tedious. An annotation 
system could automatically construct three scripts whenever voice annotations were 
added to a document. The first would connect all annotations to the document in 
document order. The second would connect all annotations to the document in the 
order that they were made. A third more ephemeral script would cross document 
boundaries to connect all annotations made during a single session in the order that 
they were made. 

Scripts can also be used for collecting locations of interest rather than for their 
sequencing and/or action capabilities. Consider the following two examples. 

Program debugging tool (repetitive actions). To provide an easy way of controlling a 
named group of breakpoints during program debugging, a collection of locations in 
several program files can be joined into a script with actions that set appropriate 
breakpoints: standard, conditional, profiling, tracing, etc. This script can be executed 
whenever a user wishes to activate those breakpoints. They can later be removed 
without disturbing other active breakpoints by overriding the script's stored actions 
with a separately-specified action that clears the breakpoint. 

Program editing tool (empty actions). A compiler could build a script containing 
the locations of all the syntax errors in a group of files compiled together. The user 
could then single-step through the script, making corrections along the way. The script 
both makes it easy for the user to find the next error location and automatically 
manages the changing character positions as the user adds or removes characters to 
correct the errors. 

4. Creating and playing back scripts 
4.1. Script creation and editing 
A script has two parts: the script entries, in which the script writer specifies scripted 
locations, actions, and timing; and the script header, in which the script writer specifies 
the script name and a simple program describing the sequencing of the entries. 
Separating the sequencing information allows the same script entry to appear in 
multiple scripts or multiple times in a single script. 

A script tool is used to create and edit scripts. The prototype Script Tool is a form
based tool with a simple set of operations. 

XEROX PARC, CSL-89-2, MAY 1989 



6 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

Figure la: A sample user documentation script, part 1. 

Clear ~ Get Getlmpl PrevFile &tefe- Save Time Split Places Levels © Log 
Find Word Oef Position Normalize PrevPlace Reselect Style Kind 

The Gargoyle Tutorial 

Eric Allan Bier and Ken Pier 

@ Copyright 1986, 1987 Xerox Corporation. All rights reserved. 

Abstract: Gargoyle is an interactive 20 illustrator for creating color pictures. Gargoyle 
includes novel features to aid the user in precise geometric placement of objects in the scene. 
These features are called "snap-dragging" and "alignment objects." Refer to the Gargoyle 
manual (GargoYleOoc.tioga) for a complete description of the features and uses of Gargoyle. 

Introduction 

argoy o~a rare rence manua 
pa e tu sts t sorts of button combinations that Gargoyle looks for. Armed 
with this, the reader can learn a good deal about Gargoyle just by pressing buttons and 
seeing what they do. The second part of the tutorial is a set of exercises intended to 
introduce the reader to enough operations that a simple picture can be produced. 

You will want to have a running Gargoyle while you are reading this. The CommandTool 
commands: 

-p [Cedar]<CedarChest7.0> Top>Gargoyle.df 

should get you rOiling. A Gargoyle viewer will appear, iconic, in the left column. 

Sample script at the first entry. This action uses the text-to-speech synthesizer to greet the user by 
name, welcoming him or her to the Gargoyle tutorial. 

Clear ~ Get Getlmpl PrevFile &tefe- Save Time Split Places Levels © Log 
Find Word Oef Position Normalize PrevPlace Reselect StyleKind 

The Gargoyle Tutorial 

Eric Allan Bier and Ken Pier 

@ Copyright 1986,1987 Xerox Corporation. All rights reserved. 

Abstract: Gargoyle is an interactive 20 illustrator for creating color pictures. Gargoyle 
includes novel features to aid the user in precise geometric placement of objects in the scene. 
These features are called "snap-dragging" and "alignment objects." Refer to the Gargoyle 
manual (GargoYleOoc.tioga) for a complete description of the features and uses of Gargoyle. 

Introduction 

should get you rOiling. A Gargoyle viewer will appear, iconic, in the left column. 

Sample script at the second entry. This action retrieves the executable files of the Gargoyle 
illustrator and starts the program (the same actions that the text is instructing the user to 
perform). 

XEROX PARC, CSL-89-2, MAY 1989 



ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

Figure Ib: A sample user documentation script, part 2. 

Clear Reset- Get GetImpl PrevFile ~ Save Time Split Places Levels © Log Voice 
Find Word Def Position Normalize PrevPlace Reselect 

on November 2~ "1987 'f "1:28:30 pm PST 
Pier~ October "l5~ "1987 2:03:22 pm PO T 
Mdureen Stone~ October 2, '19876: '12:52 pm POT 

The Gargoyle Reference Manual 

Eric Bier and Ken Pier 

@ Copyright 1986, 1987 Xerox Corpor a tion. All rights reserved. 

Abst .. act: Gargoyle is an interactive 2D illustrator for creating color pictures. Gargoyle 
includes novel features to aid the user in precise geometric placement of objects in the scene. 
These features are called "snap-dragging" and "alignment objects." Refer to the Gargoyle 
tutorial (GargoyleTutorial.tioga) for an introduction to the features and uses of Gargoyle. 

7 

Sample script at the third entry. This is a different file. The action plays back the previously
recorded voice annotation on the first character of the scripted location (a tiny "word balloon" 
around the character G indicates the presence of voice). The voice annotation explains the 
difference between the Gargoyle tutorial and the Gargoyle reference manual. 

Clear Reset- Get GetImpl PrevFile ~ Save Time Split Places Levels © Log 
Find Word Def Position Normalize PrevPlace Reselect StyleKind 

This one was inspired by the Boxes and Pointers exercise. To me, it looks like four 
arms each grabbing the wrist of the arm in front. My solution involved rotating the 
four arms and circle as a unit, rather than building it up piece-meal. 

16. Advanced Topics 

Scale Rotate Fit Reset Ed ge Prev 
Stuff ToIP Selection Page AtPage: 1 

Sample script at the fourth entry. The script has returned to the tutorial document. The action 
displays on the screen an Interpress master for an image that was not included in the tutorial 
itself. 

XEROX PARC, CSL-89-2, MAY 1989 



8 
ACTIVE PATHS THRaUGH MULTIMEDIA DoCUMENTS 

Script entries. To create or edit a script entry, the script writer specifies its action 
and timing fields by filling in the fields of a script· entry form, sets its locatian by 
making a screen selection, and then saves the form. The user can name a script entry 
or provide keywords far later filtering, if desired. The system provides a unique 
identifier (id) for each script entry, records the creator and the create time, and writes 
the script entry to the script database. System defaults allow simple script entries to. be 
created without forms: the default action is to play back all voice annotations at the 
location, if any, and the default timing is to continue when the action completes. 

Action field Any Cedar system command can appear in the action field of an 
annotation. Since system commands can invoke the Cedar language interpreter, 
arbitrary Cedar language statements can also be included. 

Timing field The script system continues to the next script entry when the 
specified duration has passed, regardless of whether the action has completed. The 
script writer can specify "*,, to continue whenever the action completes or "#v" to wait 
for user confirmation before continuing. 

Script sequencing. The sequencing information for a script is specified separately 
from the script's entries. For a strictly sequential script, it consists of an ordered list of 
script entries (as unique ids). A script writer can create a sequential script by pointing 
to the script entries in order. To change the ordering of a sequential script, the script 
writer indicates the script entry that a selected entry should follow. (This situation can 
become a bit more complicated, because script entries can appear multiply in the same 
script, creating ambiguities in both the position being altered and the desired new 
position.) To create a more complex sequence, the script writer can edit the textual 
representation of the sequence to add loops, conditionals, or calls to other scripts. 

Figure 2 shows a simplified internal. representation of the script that appears in 
Figure 1. 

4.2. Script playback 

The Play command plays an entire script from the beginning, proceeding automatically 
from one location to the next, executing the associated actions with the associated 
timings. The user can pause an executing script at the end of the current action or 
abort the current action. A quiescent script can be continued or single-stepped. The 
user can also playa script backward or single-step backward from the current location. 
If the script contains branches or loops, the session history will be used to construct the 
backward path. 

A separate property sheet controls additional playback options. The user can 
inhibit the actions associated with annotations (so as simply to traverse through the 
scripted locations), specify a single action to be executed at every scripted location, and 
increase or decrease the timing by some factor. 

XERax PARCo CSL-89-2. MAY 1989 



ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

Figure 2: Simplified internal representation of the script for Figure 1. 

Script header 

script header id: 12345677 # PolleZ.pa 
script name: Introduction to Gargoyle 
file names: 

I cedar I docu mentation I Garg oyle Tutorial. tiog a 
I cedar I documentation/GargoyleDoc. tioga 

script sequence: 
12345678 #PolleZ.pa 12345679 # PolleZ.pa 
12345680 # PolleZ.pa 12345681 # PolleZ.pa 

Script entries 

script entry id: 12345678# PolleZ.pa 
filename: Icedar/documentation/GargoyleTutorial.tioga 
class: Tioga text 
location: 15 .. 121 
action: speak("Hello, ", UserCredentials.Get[].name, 

". Get ready to blast off. ") 
time: 15 sec 

script entry id: 12345679 # PolleZ.pa 
filename: I cedar Idocumentation/GargoyleTutorial. tioga 
class: Tioga text 
location: 624 .. 683 
action: bringover -pm Gargoyle.df; Gargoyle 
time: * 

script entry id: 12345680 # PolleZ.pa 
filename: I cedar I documentation/GargoyleDoc. tioga 
class: Tioga text 
location: 1 .. 17 
action: play(annotations) 
time: 10 sec 

script entry id: 12345681 # PolleZ.pa 
filename: I cedar Idocumentation/GargoyleTutorial. tioga 
class: Tioga text 
location: 55417 .. 55537 
action: PreView RomanLetterB.interpress 
time: * 

XEROX PARC, CSL-89-2, MAY 1989 

9 



10 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

4.3. Script visualization and navigation 
Script visualization is a problem for both the script reader and the script writer, 
because script sequencing and script actions are not directly visible through 
examination of the document. The script reader must be able to tell that a document 
has associated scripts and which scripts are appropriate for him ·or her to play back. 
The script writer has the more difficult problem, in that he or she must also have tools 
for debugging faulty scripts. -

The script reader is alerted to the presence of scripts in a document in two ways. 
First, when a document is displayed, a Script button appears in the document header 
if and only if the document has scripted locations. All script examination and playback 
operations are available from a popup menu generated by clicking the Script button. 
Second, each scripted location is distinctively marked. Textual scripted locations are 
marked with a surrounding rectangle; other scripted objects may be marked 
differently. The marker indicates the presence of one or more script entries at that 
location, which may appear at multiple places in multiple scripts. The user can view all 
script entries that include that scripted location or list the names of all scripts that 
include it. The reader can also ask what scripts have entries in a given document. 

In addition, a user can browse the script database for script names, script entry 
names, keywords, or any other script field. Other navigation commands show the user 
the document location associated with a script entry, all scripts the entry belongs to, 
and all possible preceding or following entries in a given script. 

5. Implementation 
Scripted documents are implemented in the Cedar programming environment in the 
Computer Science Laboratory of the Xerox Palo Alto Research Center [Swinehart86]. 
The two systems that they rely upon most heavily are the Tioga editor and the 
Etherphone system. We describe each of these systems briefly, and then we describe 
the implementation of scripted documents. 

5.1. The Tioga editor 
The Tioga editor is a WYSIWYG "what you see is what you gee' galley editor used for 
both program text and high-quality documents [Teitelman84, Beach85]. Tioga 
documents are tree-structured to express the organization of the document into 
sections, subsections, paragraphs, and so on. Tioga documents can be displayed at any 
level of detail, omitting nodes that are nested more deeply than the selected level. 

Tioga documents can contain rich formatting and typography. Each node has an 
associated format, which specifies such parameters as its leading, margins, default 
typeface, and so on. A document as a whole has an associated style, which defines the 

XEROX PARC, CSL-89-2, MAY 1989 



11 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

meanings of all formats used in that document. Nodes can also have arbitrary named 

properties, added by the user or by programs. These properties are not directly visible 

when the document is viewed, but a separate Edit Tool can be used to examine their 
values. One use of node properties is to specify images, Interpress masters, and 

additional parameters to support illustrations embedded in Tioga documents. 
Individual characters in a Tioga document can have looks, which specify special 

typeface parameters such as boldface, italic, subscript, and the like. Characters can also 
have arbitrary named properties. Tioga has search commands that allow rapid 

searching of documents for given node or character properties. 

5.2. The Etherphone system 
The experimental Etherphone system uses Ethernet communications to transmit 
digitized voice [Zellweger88]. The system consists of microprocessor-based electronic 
telephones, a centralized switching server, a voice file server, and workstation programs 
to support voice communications and voice recording services. From a workstation, a 
user can place and receive telephone calls, maintain private telephone directories, and 
manage a database of voice messages. A voice annotation package allows voice to be 
added to Tioga documents and provides a simple direct-manipulation interface for 
editing voice [Ades86]. Furthermore, a commercial text-to-speech synthesizer exists as 
a server in the Etherphone network. The synthesizer allows the system to "speak" text, 
initiated either by the user (perhaps by selecting the text in a viewer) or by a program 
(such as speaking an error message or proofreading a document). 

This work on scripted documents began as a project to exploit the capabilities of 
the Etherphone system by creating narrated documents. Narrated documents are 
scripted Tioga documents with a single type of action: playing back previously
recorded voice annotations. 

5.3. Scripted documents 
The two parts of a script specification, the script entries and the script sequencing 
information, are stored separately from the underlying documents in a simple B-tree
indexed database [Terry88]. The database's ability to merge the results of queries to 
multiple databases allows users to simultaneously access private databases containing 
their private scripts and public databases containing public scripts. 

5.3.1. Tagged and absolute references to scripted locations 
An important goal of the scripting system was to allow script writers to create script 
entries that refer to any document they can access, including documents they cannot or 
do not wish to modify (hereafter called read-only documents). This capability is 

especially important when scripts are being used as an organizational tool, such as 

XEROX PARC, CSL-89-2, MAY 1989 



12 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

during an authoring task. Ideally, the owners of a scripted document would also be 

able to edit unscripted portions of the document without damaging the script. 
Given our additional desire to use the existing version-based file system in our 

widely-distributed environment, we achieve reasonable functionality by allowing script 
entries to contain two different kinds of references to scripted locations. Absolute 
references refer to precise locations in documents, such as character or byte positions, 
while tagged references refer to uniquely tagged and hence movable objects within 
documents. 

The initial prototype of the scripting system used only tagged references and stored 
each document's script entries within the document. However, the desire to script 
read-only documents suggested database storage for their script entries, and it proved 
more convenient in the later implementation to store all script entries together. 

Absolute references are used to refer to items within read-only documents. The 
scripting system records the scripted location and the exact timestamp and version of 
the containing file. The file is considered immutable: if it is subsequently updated, the 
script will continue to refer to the older version. Note that many public documents, 
such as user documentation and reports, are likely to change less frequently than 
personal documents. We are exploring ways to handle such documents more robustly, 
such as also recording a signature containing the scripted location to permit the 
location to be found in the new version if it exists. 

By contrast, creating a tagged reference to a scripted location modifies its 
containing file. The scripting system writes the unique id of the script entry in the 
scripted object. Tagged references allow other portions of the file to be edited without 
disturbing the scripted location, even when the scripting system is not running. 
However, editing the scripted location itself generally destroys its pointer to the script 
entry. These semantics are reasonable, because it is not clear that the new version of 
the scripted location is related to the old script entry. For example, consider scripting 
the word "reindeer" in a document to have an action that plays a bit of "Rudolph the 
Red-nosed Reindeer," and suppose that later edits change "reindeer" to "moose." 

For either kind of reference, if a scripted location cannot be found during playback, 
the system displays an informational message and continues with the next script entry. 

5.3.2. Scripting different kinds of document content 
The design of the scripting system is object-oriented to permit scripting a variety of 
documents, such as Tioga documents and VLSI diagrams, and a variety of contents, 

such as text, bitmaps, and synthetic graphics. Each class of visual object must 

implement the following functions: 

XEROX PARC, CSL-89-2, MAY 1989 



ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

identify [object] -- returns class and location, suitable for storing 

add [object, unique id] -- tag object with unique id 

remove [object, unique id] -- remove tag 

showWithHighlight [filename, filedate and version, location, unique id] 

-- used to highlight the object when it is the script entry being executed 

13 

The identify function takes a selected object, such as a sequence of text characters 
or a piece of a bitmap, and returns both the class of that object and its location (a 
persistent way of addressing it), suitable for storing in a script. For a sequence of text 
characters, it returns a character position and a length, while for a piece of a bitmap, it 
returns the coordinates of its bounding box~ This function supports absolute 
references to scripted objects and provides a hint and a printable value for the location. 
of a tagged object. 

The add function supports tagged references to scripted objects by writing into the 
specified object a unique id that identifies a script entry. For example, for text in a 
Tioga file, the add function uses Tioga's ability to associate arbitrary property-value 
pairs with any character. The remove function is the inverse operation. 

A class's showWithHighlight function finds an object in a file using either a 
filedate and location (for an absolute reference) or a unique id (for a tagged reference). 
This function positions the file so that the corresponding object is visible and 
highlights the object. 

5.3.3. Making scripted locations visible 
To avoid unknowingly destroying scripted locations, script writers and other document 
editors must be able to see them. To make tagged references visible, the scripted 
object's add procedure is responsible for adding the visible scripted location indicator 
to the object. Similarly, the remove procedure removes the indicator when it removes 
the script entry id. Making absolute references visible presents more of a challenge . 

. The script system must consult the database whenever a new remote file is opened to 
see if absolute references to this file exist. If so, it constructs a view of the scripted 
read-only document with script indicators added. 

6. Status and future work 
The initial prototype of the scripting system was designed for creating narrated 
documents. Scripts performed a single action, namely playing back voice annotations, 

at each scripted location. Each script was constrained to refer to a single document, 

although a document could contain multiple scripts. Script entries were stored in the 
document header and contained their own sequencing information;, tagged references 

referred to scripted locations throughout the document. A simple script tool allowed 

XEROX PARC, CSL-89-2, MAY 1989 



14 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

users to create, edit, play hack, and navigate through scripts. 
The current prototype separates sequencing information from the remainder of the 

script entry (to permit multiple scripts to share the same entry) and stores both in a 
database (to allow scripting read-only documents and to make it easier to refer to 
multiple documents in a single script). The system has been -redesigned to permit 
scripting different classes of document content, but text is the only class that is 
currently handled .. The language for describing complex sequencing is still in its 
infancy: the scripting system currently allows only sequential scripts, although they 
may visit the same location rep,eatedly. The implementation of the scripting system 
uses a variety of previously-existing Cedar packages: the Tioga text editor, the 
Etherphone telephone and voice management system, the LoganBerry database 

"system, the Command Tool command interpreter (with its ability to execute Cedar 
language statements), and the FS version-based file system. Additional user interface 
features are still needed, as they have not progressed much from the earlier prototype. 
In particular, the more advanced user playback options, such as backward playback 
and variable playback timing control, have not yet been designed. 

We are working on extending our prototype scripting tool to allow conditional 
and/or interactive scripts; better visualization of scripts for both script readers and 
writers, including browsing· tools and visual displays of script sequencing; better 
control of screen and document layout at each script entry during script execution; and 
scripting other classes of documents, such as graphic illustrations or VLSI layouts. 

7. Summary 
The scripting concept unifies action, presentation, and hypermedia to form a useful 
and flexible mechanism for improving documents of the future. This novel 
mechanism allows writers to communicate additional information to readers. Scripted 
multimedia documents can contain any combination of text, graphics, audio, and 
action. Scripts need not follow the normal linear order of their associated documents. 
In addition, script writers can construct multiple viewing paths through documents for 
different readers and for different purposes. 

The scripting mechanism can be widely applied to create electronic documents with 
increased capabilities. Scripted documents can orchestrate formal presentations, 
arrange informal· communications, organize collections of information, and ease 
repetitive or complex tasks. 

Acknowledgments 
Dan Swinehart and Stephen Ades provided the initial impetus to create narrated 
documents. Jock Mackinlay suggested several improvements to the design of the later 

XEROX PARC, CSL-89-2, MAY 1989 



15 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

scripted documents system. While I would like to thank the many contributors to the 

Cedar programming environment as a group, I would also like to single out a few 

whose work has been particularly critical for the scripting system: Rick Beach and 

Michael Plass provided consultation on . its interaction with Tioga, Doug Terry's 

LoganBerry database package supplied just the needed functionality, and Russ 

Atkinson's efforts on the Command Tool and Cedar interpreter were invaluable. Pavel 

Curtis, Subhana Menis, and Ken Pier helped to clarify the exposition of this paper. 

References 
[1] Ades, S. & Swinehart, D. (1986). Voice annotation and editing in a workstation environment, 

Proc. AVIOS'86 American Voice Input Output Society Con/., Arlington, VA, 13-28. Also 
available as Xerox PARC Technical Report CSL-86-3. 

[2] Beach, R. (1985). Setting tables and illustrations with style, Ph.D. thesis, U. of Waterloo, 
Canada. Also available as Xerox PARC Technical Report CSL-85-3. 

[3] Christodoulakis, S., Ho, F. & Theodoridou, M. (1986). The multimedia object presentation 
manager of MINOS: a symmetric approach, Proc. ACM SIGMOD'86 Con/., Washington, 
DC, 295-310. 

[4] Conklin, 1. (1987). Hypertext: an introduction and survey, IEEE Computer, 20, 9, 17-4I. 

[5] Crowley, T., Forsdick, H., Landau, M. & Travers, V. (1987). The Diamond multimedia 
editor, Proc. USENIX Technical Con/., Phoenix, AZ, 1-18. 

[6] Delisle, N. & Schwartz, M. (1986). Neptune: a hypertext system for CAD applications, Proc. 
ACM SIGMOD'86 Con/., Washington, DC, 132-143. 

[7] Feiner, S., Nagy, S. & van Dam, A. (1982). An experimental system for creating and 
presenting interactive graphical documents, ACM Trans. Graphics, 1, 1, 59-77. 

[8] Fiume, E. & Tsichritzis, D. (1987). Multimedia objects, IEEE Office Knowledge Engineering 
Newsletter,!, 1, 60-64. 

[9] Halasz, F., Moran, T. & Trigg, R. (1987). NoteCards in a nutshell, Proc. ACM CHI + Gf'87 
Human Factors in Computing Systems and Graphics Interface Con/., Toronto, Canada, 45-52. 

[10] Hogg, 1. & Gamvroulas, S. (1984). An active mail system, Proc. ACM SIGMOD'84 Con/., 
Boston, MA, 215-222; also SIGMOD Record, 14,2. 

[11] Luther, W., Woelk, D. & Carter, M. (1987). MUSE: multimedia user sensory environment, 
IEEE Office Knowledge Engineering Newsletter,!, 1, 49-59. 

[12] Meyrowitz, N. (1986). Intermedia: The architecture and construction of an object-oriented 
hypermedia system and applications framework, Proc. OOPSLA '86 Object-Oriented 
Programming Systems, Languages and Applications Con/., Portland, OR, 186-201; also 
SIGPLAN Notices, 21, II. 

[13] Meyrowitz, N. & van Dam, A. (1982). Interactive editing systems: part 1, Computing 
Surveys, 14, 3, 321-352. 

[14] Pier, K., Bier, E. & Stone, M. (1988). Gargoyle: an interactive illustration tool, Proc. EP'88 
Int'! Con/. on Electronic Publishing, Document Manipulation, and Typography, Nice, France. 

[15] Swinehart, D., Zellweger, P., Beach, R. & Hagmann, R. (1986). A structural view of the 

XEROX PARC, CSL-89-2, MA Y 1989 



l(j 
ACTIVE PATHS THROUGH MULTIMEDIA DOCUMENTS 

Cedar programming environment, ACM Trans. Programming Languages and Systems, 8, 4, 
419-490. 

[16] Teitelman, W. (1984). A tour through Cedar, IEEE Software, 1,2,44-73. 

[17] TeJfY, D. & Swinehart, D. (1988). Managing stored voice in the Etherphone system, to 
appear in ACM Trans. Computer Systems, 6, l. An extended abstract appears in Proc. of 
Eleventh ACM Symposium on Operating System Principles, Austin; TX, 1987, 103-104; 

[18] Weyer, S. '& Borning, A. (1985). A prototype electronic encyclopedia, ACM Trans. Office 
Information Systems, 3, 1, 63-88. 

[19] Xerox Corporation. (1985). ViewPoint 1.0 Demo Maker tool, Xerox Corporation, P.O. Box 
470065, Dallas, TX 75427. 

[20] Yankelovich, N., Meyrowitz, N. & van Dam, A. (1985). Reading and writing the electronic 
book, IEEE Computer, 18,8,15-30. 

[21] Zellweger, P., Terry, D. & Swinehart, D. (1988). An overview of the Etherphone system and 
its applications, Proc. 2nd IEEE Con/. on Computer Workstations, Santa Clara, CA. 

XEROX PARC, CSL-89-2, MAY 1989 


