Palo Alto Research Center

Data Compression with Finite
“Windows

Edward R. Fiala and Daniel H. Greene

XEROX

Data Compression with Finite Windows
Edward R. Fiala and Daniel H. Greene

CSL-89-3 January 1989 [P89-00003]
© Copyright 1989 Association for Computing Machinery. Printed with permission.

Abstract: Several methods are presented for adaptive, invertible data compression in the style
of Lempel’s and Ziv’s first textual substitution proposal. For the first two methods, the paper
describes modifications of McCreight’s suffix tree data structure that support cyclic
maintenance of a window on the most recent source characters. A percolating update is used
to keep node positions within the window, and the updating process is shown to have constant
amortized cost. Other methods explore the tradeoffs between compression time, expansion
time, data structure size, and amount of compression achieved. The paper includes a graph-
theoretic analysis of the compression penalty incurred by our codeword selection policy in
comparison with an optimal policy, and it includes empirical studies of the performance of
various adaptive compressors from the literature.

A version of this paper will appear in the Communications of the Association for Corhputing
Machinery, 32(1), 1989.

CR Categories and Subject Descriptors: E.4 [Data]: Coding and Information Theory -
data compaction and compression; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems - computations on discrete structures,
pattern matching.

General Terms: Algorithms, design, experimentation, theory.

Additional Keywords and Phrases: textual substitution, suffix trees, minimum cost to time
ratio cycle, automata theory, amortized efficiency.

XEROX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

DATA COMPRESSION WITH FINITE WINDOWS 1

SECTION 1. INTRODUCTION.

Compression is the coding of data to minimize its representation. In this paper, we are con-
cerned with fast, one-pass, adaptive, invertible (or lossless) methods of digital compression which
have reasonable memory requirements. Such methods can be used, for example, to reduce the
storage requirements for files, to increase the communication rate over a channel, or to reduce
redundancy prior to encryption for greater security.

By “adaptive” we mean that a compression method should be widely applicable to different
kinds of source data. Ideally, it should adapt rapidly to the source to achieve significant compression
on small files, and it should adapt to any subsequent internal changes in the nature of the source.
In addition, it should achieve very high compression asymptotically on large regions with stationary
statistics.

All the compression methods developed in this paper are substitutional. Typically, a substi-
tutional compressor functions by replacing large blocks of text with shorter references to earlier
occurrences of identical text. [ZL 77][Z 78][ZL 78][RPE 81][SS 82][MW 84][W 84][BSTW 85][B 86].
(This is often called Ziv-Lempel compression, in recognition of their pioneering ideas. Ziv and Lem-
pel, in fact, proposed two methods. The unqualified use of the phrase “Ziv-Lempel compression”
usually refers to their second proposal [ZL 78]. In this paper, we will be primarily concerned with
" their first proposal [ZL 77].) A popular alternative to a substitutional compressor is a statistical
compressor. A symbolwise statistical compressor functions by accurately predicting the probability
of individual symbols, and then encoding these symbols with space close to —log, of the predicted
probabilities. The encoding is accomplished with either Huffman compression [H 51] which has
recently been made one-pass and adaptive [G 78][K 75][V 85|, or with arithmetic coding, as de-
scribed in [A 63; page 61][P 76][RL 79][G 80][J 81][LR 81}[RL 81][LR 83]. The major challenge of
a statistical compressor is to predict the symbol probabilities. Simple strategies, such as keeping
zero-order (single symbol) or first-order (symbol pair) statistics of the input, do not compress En-
glish text very well. Several authors have had success gathering higher-order statistics, but this
necessarily involves higher memory costs and additional mechanisms for dealing with situations
where higher-order statistics are not available [LR 83] [CW 84] [CH 86].

It is hard to give a rigorous foundation to the substitutional vs. statistical distinction described
above. Several authors have observed that statistical methods can be used to simulate textual
substitution, suggesting that the statistical category includes the substitutional category [L 83]
[BCW 88]. However, this takes no account of the simplicity of mechanism; the virtue of textual
substitution is that it recognizes and removes coherence on a large scale, oftentimes ignoring the
smaller scale statistics. As a result, most textual substitution compressors process their compressed
representation in larger blocks than their statistical counterparts, thereby gaining a significant
speed advantage. It was previously believed that the speed gained by textual substitution would
necessarily cost something in compression achieved. We were surprised to discover that with careful
attention to coding, textual substitution compressors can match the compression performance of
the best statistical methods.

Consider the following scheme, which we will improve later in the paper. Compressed files
contain two types of codewords:

literal z pass the next z characters directly into the uncompressed output

copy =, —y go back y characters in the output and copy x characters
forward to the current position.

XErROX PARC, CSL-89-3, JANUARY 1989

2 DATA COMPRESSION WITH FINITE WINDOWS

So, for example, the following piece of literature:

IT WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES

would compress to
(literal 26)IT WAS THE BEST OF TIMES, (copy 11 -26)(literal 3)WOR(copy 11 -27)

The compression achieved depends on the space required for the copy and literal codewords.
Our simplest scheme, hereafter denoted A1, uses 8 bits for a literal codeword and 16 for a copy
codeword. If the first 4 bits are 0, then the codeword is a literal; the next 4 bits encode a length x
in the range [1..16] and the following = characters are literal (one byte per character). Otherwise,
the codeword is a copy; the first 4 bits encode a length z in the range [2..16] and the next 12
bits are a displacement y in the range [1..4096]. At each step, the policy by which the compressor
chooses between a literal and a copy is as follows: If the compressor is idle (just finished a copy, or
terminated a literal because of the 16-character limit), then the longest copy of length 2 or more is
issued; otherwise, if the longest copy is less than 2 long, a literal is started. Once started, a literal
is extended across subsequent characters until a copy of length 3 or more can be issued or until the
length limit is reached.

A1l would break the first literal in the above example into two literals and compress the source
from 51 bytes down to 36. A1l is close to Ziv and Lempel’s first textual substitution proposal [ZL
77]. One difference is that A1l uses a separate literal codeword, while Ziv and Lempel combine
each copy codeword with a single literal character. We have found it useful to have longer literals
during the startup transient; after the startup, it is better to have no literals consuming space in
the copy codewords.

Our empirical studies showed that, for source code and English text, the field size choices for
A1l are good; reducing the size of the literal length field by 1 bit increases compression slightly
but gives up the byte-alignment property of the A1l codewords. In short, if one desires a simple
method based upon the copy and literal idea, A1 is a good choice.

A1 was designed for 8-bit per character text or program sources, but, as we will see shortly, it
achieves good compression on other kinds of source data, such as compiled code and images, where
the word model does not match the source data particularly well, or where no model of the source
is easily perceived. Al is, in fact, an excellent approach to general purpose data compression. In
the remainder of the paper, we will study A1l and several more powerful variations. The paper
is arranged as follows: Section 2 discusses the data structures which support the above style
of compression. It develops the idea of a percolating update, which allows a suffix tree to be
maintained for a fixed window of the input in constant average time per character. This innovation
makes Ziv and Lempel’s first style of compression more practically fcasible than was previously
believed [RPE 81].

Section 3 addresses some theoretical issues raised by this work. It proves that the percolating
update does, in fact, keep the suffix tree current and that the average number of nodes updated is
less than 2. In addition, it shows, by reduction to a graph search problem, that the A1 policy for
choosing between copy and literal codewords is at worst 25% larger than an optimal policy.

Section 4 discusses a simpler implementation which can be used when the maximum copy
length is not too long.

Section 5 elaborates the A1 encoding into a family of variable-width copy and literal codewords
that exploit statistical properties of the input to achieve significantly higher compression; this.
method will be called A2. v

XEROX PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WITH FINITE WINDOWS 3

Section 6 introduces B1 and B2, which are identical to A1 and A2, respectively, but with the
window position computed differently. For these methods, a simpler dictionary tree updated only at
codeword boundaries and between literal characters is used to represent the window. Compression
is about 3 times faster at the expense of slower adaptation and slightly slower expansion.

Section 7 introduces C2, which uses the same data structures as B2 but derives codewords
directly from the dictionary tree. C2’s compression is higher than A2 and B2, but it requires that
the expander maintain a parallel dictionary tree.

Finally, Section 8 includes empirical comparisons of the compression ratios for the methods
developed in this paper with others we have implemented according to the published literature.

SECTION 2. OVERVIEW OF THE DATA STRUCTURE

The fixed window suffix tree of this paper is a modification of McCreight’s suffix tree [M 76]
(see also [W 73] and [KBG 87]), which is itself a modification of Morrison’s PATRICIA tree [M 68],
and Morrison’s tree is ultimately based on a Trie data structure [K 75, page 481]. We will review
each of these data structures briefly. '

A Trie is a tree structure where the branching occurs according to “digits” of the keys, rather
than according to comparisons of the keys. In English, for example, the most natural “digits” are
individual letters, with the [th level of the tree branching according to the lth letter of the words
in the tree.

STRAY STRIDE

ASTRAY ASTRIDE

Figure 1. A Trie.

In Figure 1, many internal nodes are superfluous, having only one descendant. If we are
building an index for a file, we can save space by eliminating the superfluous nodes and putting
pointers to the file into the nodes rather than including characters in the data structure. In Figure
2, the characters in parentheses are not actually represented in the data structure, but they can be
recovered from the (position, level) pairs in the nodes. Figure 2 also shows a suffix pointer (as a
dark right arrow) that will be explained later.

XEROX PARC, CSL-89-3, JANUARY 1989

4 DATA COMPRESSION WITH FINITE WINDOWS

. 1 2 9 10
Flee ASTRI DE ASTRAY

Figure 2. A PATRICIA Tree with a Suffix Pointer.

Figure 2 represents some, but not all, of the innovations in Morrison’s PATRICIA trees. He
builds the trees with binary “digits” rather than full characters, and this allows him to save more
space by folding the leaves into the internal nodes. Our “digits” are bytes, so the branching factor
can be as large as 256. Since there are rarely 256 descendants of a node, we do not reserve that
much space in each node, but instead hash the arcs. There is also a question about when the
strings in parentheses are checked in the searching process. In what follows, we usually check
characters immediately when we cross an arc. Morrison’s scheme can avoid file access by skipping
the characters on the arcs and doing only one file access and comparison at the end of the search.
However, our files will be in main memory, so this consideration is unimportant. We will use the
simplified tree depicted in Figure 2.

For A1, we wish to find the longest (up to 16 character) match to the current string beginning
anywhere in the preceding 4096 positions. If all preceding 4096 strings were stored in a PATRICIA
tree with depth d = 16, then finding this match would be straightforward. Unfortunately, the cost
of inserting these strings can be prohibitive, for if we have just descended d levels in the tree to
insert the string starting at position ¢ then we will descend at least d — 1 levels inserting the string
at ¢ + 1. In the worst case this can lead to O(nd) insertion time for a file of size n. Since later
encodings will use much larger values for d than 16, it is important to eliminate d from the running
time.

To insert the strings in O(n) time, McCreight added additional suffix pointers to the tree.
Each internal node, representing the string aX on the path from the root to the internal node,
has a pointer to the node representing X, the string obtained by stripping a single letter from the
beginning of aX. If a string starting at ¢ has just been inserted at level d we do not need to return
to the root to insert the string at 7 + 1; instead, a nearby suffix pointer will lead us to the relevant
branch of the tree.

Figure 3 shows how suffix links are created and used. On the previous iteration, we have
matched the string a XY, where a is a single character, X and Y are strings, and b is the first
unmatched character after Y. Figure 3 shows a complicated case where a new internal node, a,
has been added to the tree, and the suffix link of a must be computed. We insert the next string

XErROX PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WITH FINITE WINDOWS 5

XYb by going up the tree to node (3, representing the string aX, and crossing its suffix link to
~v, representing X. Once we have crossed the suffix link, we descend again in the tree, first by
“rescanning” the string Y, and then by “scanning” from ¢ until the new string is inserted. The first
part is called “rescanning” because it covers a portion of the string that was covered by the previous
insert, and so it does not require checking the internal strings on the arcs. (In fact, avoiding these
checks is essential to the linear time functioning of the algorithm.) The rescan either ends at an
existing node &, or 6 is created to insert the new string XYb; either way we have the destination
for the suffix link of @. We have restored the invariant that every internal node, except possibly
the one just created, has a suffix link.

rescan

scan

Figure 3. Building a Suffix Tree.

For the A1 compressor, with a 4096-byte fixed window, we need a way to delete and reclaim
the storage for portions of the suffix tree representing strings further back than 4096 in the file.
Several things must be added to the suffix tree data structure. The leaves of the tree are placed
in a circular buffer, so that the oldest leaf can be identified and reclaimed, and the internal nodes
are given “son count” fields. When an internal “son count” falls to one, the node is deleted and
two consecutive arcs are combined. In Section 3, it is shown that this approach will never leave
a “dangling” suffix link pointing to deleted nodes. Unfortunately, this is not the only problem
in maintaining a valid suffix tree. The modifications that avoided a return to the root for each
new insertion create havoc for deletions. Since we have not always returned to the root, we may
have consistently entered a branch of the tree sideways. The pointers (to strings in the 4096-byte
window) in the higher levels of such a branch can become out-of-date. However, traversing the
branch and updating the pointers would destroy any advantage gained by using the suffix links.

XErOX PARC, CSL-89-3, JANUARY 1989

6 DATA COMPRESSION WITH FINI'TE WINDOWS

We can keep valid pointers and avoid extensive updating by partially updating according to a
percolating update. Each internal node has a single “update” bit. If the update bit is true when we
are updating a node, then we set the bit false and propagate the update recursively to the node’s
parent. Otherwise, we set the bit true and stop the propagation. In the worst case, a long string of
true updates can cause the update to propagate to the root. However, when amortized over all new
leaves, the cost of updating is constant, and the effect of updating is to keep all internal pointers
on positions within the last 4096 positions of the file. These facts will be shown in Section 3.

We can now suminarize the operation of the inner loop, using Figure 3 again. If we have just
created node a, then we use a’s parent’s suffix link to find 4. From 7y we move down in the tree,
first rescanning, and then scanning. At the end of the scan, we percolate an update from the leaf,
moving towards the root, setting the position fields equal to the current position, and setting the
update bits false, until we find a node with an update bit that is already false, whereupon we set
that node’s update bit true and stop the percolation. Finally, we go to the circular buffer of leaves
and replace the oldest leaf with the new leaf. If the oldest leaf’s parent has only one remaining son,
then it must also be deleted; in this case, the remaining son is attached to its grandparent, and
the deleted node’s position is percolated upwards as before, only at each step the position being
percolated and the position already in the node must be compared and the more recent of these
sent upward in the tree.

SECTION 3. THEORETICAL CONSIDERATIONS

The correctness and linearity of suffix tree construction follows from McCreight’s original
paper [M 76]. Here we will concern ourselves with the correctness and the linearity of suffix tree
destruction—questions raised in Section 2.

Theorem 1. Deleting leaves in FIFO order and deleting internal nodes with single sons will
never leave dangling suffix pointers.

Proof. Assume the contrary. We have a node a with a suffix pointer to a node 6 that has
just been deleted. The existence of & means that there are at least two strings that agree for l
positions and then differ at | + 1. Assuming that these two strings start at positions i and j,
where both i and j are within the window of recently scanned strings and are not equal to the
current position, then there are two even younger strings at ¢ + 1 and j + 1 that differ first at
l. This contradicts the assumption that § has one son. (If either i or j are equal to the current
position, then a is a new node and can temporarily be without a suffix pointer.)

There are two issues related to the percolating update: its cost and its effectiveness.
Theorem 2. Each percolated update has constant amortized cost.

Proof. We assume that the data structure contains a “credit” on each internal node where the
“update” flag is true. A new leaf can be added with two “credits.” One is spent immediately
to update the parent, and the other is combined with any credits remaining at the parent to
either: 1) obtain one credit to leave at the parent and terminate the algorithm or 2) obtain
two credits to apply the algorithm recursively at the parent. This gives an amortized cost of
two updates for each new leaf.

For the next theorem, define the “span” of a suffix tree to be equal to the size of its fixed window.
So far we have used examples with “span” equal to 4096, but the value is flexible.

Theorem 3. Using the percolating update, every internal node will be updated at least once
during every period of length “span.”

XEROX PARC, CSL-89-3, JANUARY 1989

DArA COMPRESSION WITH FINITE WINDOWS 7

Proof. It is useful to prove the slightly stronger result that every internal node (that remains
for an entire period) will be updated twice during a period, and thus propagate at least one
update to its parent. To show a contradiction, we find the earliest period and the node 3
farthest from the root that does not propagate an update to its parent. If 3 has at least two
children that have remained for the entire period, then 3 must have received updates from
these nodes: they are farther from the root. If 3 has only one remaining child, then it must
have a new child, and so it will still get two updates. (Every newly created arc causes a son to
update a parent, percolating if necessary.) Similarly, two new children also cause two updates.
By every accounting, 3 will receive two updates during the period, and thus propagate an
update— contradicting our assumption of (3’s failure to update its parent.

There is some flexibility on how updating is handled. We could propagate the current position
upwards before rescanning, and then write the current position into those nodes passed during
the rescan and scan; in this case, the proof of Theorem 3 is conservative. Alternatively, a similar,
symmetric proof can be used to show that updating can be omitted when new arcs are added so
long as we propagate an update after every arc is deleted. The choice is primarily a matter of
implementation convenience, although the method used above is slightly faster.

The last major theoretical consideration is the effectiveness of the A1l policy in choosing
between literal and copy codewords. We have chosen the following one-pass policy for A1: When
the encoder is idle, issue a copy if it is possible to copy two or more characters; otherwise, start a
literal. If the encoder has previously started a literal, then terminate the literal and issue a copy
only if the copy is of length three or greater.

Notice that this policy can sometimes go astray. For example, suppose that the compressor is
idle at position 7 and has the following copy lengths available at subsequent positions:

i il 42 i3 i+4 i+5 ')
1 3 16 15 14 13

Under the policy, the compressor encodes position ¢ with a literal codeword, then takes the copy
of length 3, and finally takes a copy of length 14 at position ¢ 4+ 4. It uses 6 bytes in the encoding:
(literal 1)X(copy 3 —y)(copy 14 —y)

If the compressor had foresight it could avoid the copy of length 3, compressing the same

material into 5 bytes:
(literal 2)XX(copy 16 —y)

The optimal solution can be computed by dynamic programming [SS 82]. One forward pass
records the length of the longest possible copy at each position (as in equation 1) and the dis-
placement for the copy (not shown in equation 1). A second backward pass computes the optimal
way to finish compressing the file from each position by recording the best codeword to use and
the length to the end-of-file. Finally, another forward pass reads off the solution and outputs the
compressed file. However, one would probably never want to use dynamic programming since the
one-pass heuristic is a lot faster, and we estimated for several typical files that the heuristically
compressed output was only about 1% larger than the optimum. Furthermore, we will show in the
remainder of this section that the size of the compressed file is never worse than 5/4 the size of the
optimal solution for the specific A1 encoding. This will require developing some analytic tools, so
the non-mathematical reader should feel free to skip to Section 4.

The following definitions are useful:

Definition. F(i) is the longest feasible copy at position i in the file.

XEROX PARC, CSL-89-3, JANUARY 1989

8 DATA COMPRESSION WITH FINITE WINDOWS

Sample F(i)’s were given above in equation 1. They are dependent on the encoding used. For now,
we are assuming that they are limited in magnitude to 16 and must correspond to copy sources
within the last 4096 characters. '

Definition. B(i) is the size of the best way to compress the remainder of the file, starting at
position 1.

B(i)’s would be computed in the reverse pass of the optimal algorithm outlined above.

The following Theorems are given without proof:

Theorem. F(i+1) > F(i) — 1.

Theorem. There exists an optimal solution where copies are the longest possible (i.e., only copies
corresponding to F(i)’s are used)

Theorem. B(i) is monotone decreasing.

Theorem. Any solution can be modified, without affecting length, so that (literal x;) followed
immediately by (literal ;) implies that x; is maximum (in this case 16).

We could continue to reason in this vein, but there is an abstract way of looking at the problem
that is both clearer and more general. Suppose we have a nondeterministic finite automaton where
each transition is given a cost. A simple example is shown in Figure 4. The machine accepts
(@ + b)*, with costs as shown in parentheses.

Start

Figure 4. A Nondeterministic Automaton with Transition Costs.

The total cost of accepting a string is the sum of the transition costs for each character. (While
it is not important to our problem, the optimal solution can be computed by forming a transition
matrix for each letter, using the costs shown in parentheses, and then multiplying the matrices
for a given string, treating the coefficients as elements of the closed semiring with operations of
addition and minimization.) We can obtain a solution that approximates the minimum by deleting
transitions in the original machine until it becomes a deterministic machine. This corresponds to

XErOX PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WITH FINITE WINDOWS 9

choosing a policy in our original data compression problem. A policy for the machine in Figure 4
is shown in Figure 5.

Start

Figure 5. A Deterministic “Policy” Automaton for Figure 4.

We now wish to compare, in the worst case, the difference between optimally accepting a
string with the nondeterministic machine, and deterministically accepting the same string with the
“policy” machine. This is done by taking a cross product of the two machines, as shown in Figure
6. '

In Figure 6 there are now two weights on each transition; the first is the cost in the nonde-
terministic graph, and the second is the cost in the policy graph. Asymptotically, the relationship
of the optimal solution to the policy solution is dominated by the smallest ratio on a cycle in this
graph. In the case of Figure 6, there is a cycle from 1,1’ to 1,2’ and back that has cost in the
nondeterministic graph of 2 + 1 = 3, and cost in the policy graph of 3 + 3 = 6, giving a ratio of
1/2. That is, the policy solution can be twice as bad as the optimum on the string ababababab. . ..

In general, we can find the cycle with the smallest ratio mechanically, using well known tech-
niques [DBR 66], [L 76]. The idea is to conjecture a ratio r and then reduce the pairs of weights
(x,y) on the arcs to single weights x — ry. Under this reduction, a cycle with zero weight has ratio
exactly r. If a cycle has negative weight, then r is too large. The ratio on the negative cycle is
used as a new conjecture, and the process is iterated. (Negative cycles are detected by running a
shortest path algorithm and checking for convergence.) Once we have found the minimum ratio
cycle, we can create a worst case string in the original automata problem by finding a path from the
start state to the cycle and then repeating the cycle indefinitely. The ratio of the costs of accepting
the string nondeterministically and deterministically will converge to the ratio of the cycle. (The
path taken in the cross product graph will not necessarily bring us to the same cycle, due to the
initial path fragment; we will, nevertheless, do at least as well.) Conversely, if we have a sufficiently
long string with nondeterministic to deterministic ratio r, then the string will eventually loop in
the cross product graph. If we remove loops with ratio greater than r we only improve the ratio of
the string, so we must eventually find a loop with ratio at least as small as 7.

XEROX PARC, CSL-89-3, JANUARY 1989

10 DATA COMPRESSION WITH FINITE WINDOWS

Start

Figure 6. The Cross Product.

The above discussion gives us an algorithmic way of analyzing our original data compression
problem. The possible values of F'(i) are encoded in a 17 character alphabet py...pis, represent-
ing the length of copy available at each position. The compression algorithm is described by a
nondeterministic machine that accepts strings of p;; this machine has costs equal to the lengths
of the codewords used by the algorithm. There are two parameterized states in this machine: I,
means that there is a literal codeword under construction with z spaces still available; c, means
that a copy is in progress with y characters remaining to copy. The idle state is lj = ¢y. In the
nondeterministic machine, the possible transitions are:

lo — li5 start a literal
l;—1 continue a literal (z > 1) @)

c;—1 start a copy

¢, — c¢y_1 continue a copy

(An asterisk is used as a wild card to denote any state.) Based on the theorems above we have
already eliminated some transitions to simplify what follows. For example,

Cy 2-() li5 start a literal from inside a copy (y > 1) (3)

XEROX PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WITH FINITE WINDOWS 11

is unnecessary. The deterministic machine, given below, eliminates many more transitions:

lo AN, lis start a literal if 1 < 1

Iy aAS, l.—1 continue a literal if x > 1 and ¢ < 2 (a)

ci-1 startacopyifi>3orz=0andi=2

Cy — Cy-1 continue a Copy

Finally, we add one more machine to guarantee that the strings of p; are realistic. In this machine,
state s; means that the previous character was p;, so the index of the next character must be at
least p;—1:

sio w5 s (Fzi-1) (5)
The cross product of these three machines has approximately 17K states and was analyzed me-
chanically to prove a minimum ratio cycle of 4/5. Thus the policy we have chosen is never off by
more than 25%, and the worst case is realized on a string that repeats a p; pattern as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pio Pio P9 Ps Pr Pée P5 P4 P3 P2 P11 P2 Pio Pio P9

(6)
(There is nothing special about 10; it was chosen to illustrate a long copy and to match the example
in Appendix A.) The deterministic algorithm takes a copy of length 10 in the first position, and
then switches to a literal for positions 11 and 12. Five bytes are used in each repetition of the
pattern. The optimal solution is one position out of phase. It takes a copy of length 10 in the
second position, and then finds a copy of length 2 at position 12, for a total of four bytes on each
iteration.

We have abstracted the problem so that the possible copy operations are described by a string
of pj, and we have shown a pathological pattern of p; that results in 5/4 of the optimal encoding.
There might still be some doubt that such a string exists, since the condition that our third machine
(5) guarantees, F(i + 1) > F(i) — 1, is a necessary but not sufficient condition. Nevertheless, the
details of an actual pathological string can be found in Appendix A.

SECTION 4. A SIMPLER DATA STRUCTURE

Although the quantity of code associated with A1 is not enormous, it is complicated, and the
data structures are fairly large. In this section, we present simpler methods for finding the suffix
and for propagating the window position.

The alternative to a percolating update is to update the positions in all nodes back to the root
whenever a new leaf is inserted. Then no updates are needed when nodes are deleted. The update
flags can be eliminated.

The alternative to suffix pointers is more complicated. The cost of movement in a tree is not
uniform; moving deeper requires a hash table lookup, which is more expensive than following a
parent pointer. So we can determine the suffix by starting at the suffix leaf and following parent
pointers back toward the root until the suffix node is reached. The suffix leaf is known because the
string at ¢ matched the string at some earlier window position j; the suffix leaf j + 1 is the next
entry in the leaf array. With this change, the suffix pointers can be eliminated.

From a theoretical perspective, these modifications, which have O(nd) worst case performance
for a file of size n and cut-off depth d, are inferior to the O(n) performance of the suffix tree. For

XErROX PARC, CSL-89-3, JANUARY 1989

12 DATA COMPRESSION WITH FINITE WINDOWS

A1, with a cutoff of 16, these modifications improve average performance, but the A2 method
discussed in the next section has such a deep cut-off that suffix pointers and percolated updates
are preferable.

SECTION 5. A MORE POWERFUL ENCODING

The 4,096-byte window of A1l is roughly optimal for fixed size copy and literal codewords.
Longer copies would, on average, be found in a larger window, but a larger displacement field
would be required to encode them. To exploit a larger window, we must use a variable-width
encoding that is statistically sensitive to the fact that recent window positions are more likely to
be used by copy codewords than those positions further back. Similarly, it is advantageous to use
variable-width encodings for copy and literal lengths.

There are several approaches we might use for variable-length encoding. We could use fixed
or adaptive Huffman coding, arithmetic encoding, a variable-length encoding of the integers, or a
manageable set of hand-designed codewords. We eliminated from consideration adaptive Huffman
and arithmetic coding because they are slow. Moreover, we felt they would provide (at best) a
secondary adaptive advantage since the “front end” textual substitution is itself adapting to the
input. We experimented with a fixed Huffman encoding, a hand-designed family of codewords, and
a variable-length encoding of the integers, so we will compare these options briefly:

Hand-Designed Codewords. This is a direct generalization of A1, with short copies that use
fewer bits but cannot address the full window, and longer copies that can address larger blocks
further back in the window. With a few codewords, this is fast and relatively easy to implement.
However, some care must be taken in the choice of codewords to maximize compression.

Variable-Length Integers. The simplest method we tried uses a unary code to specify field
width, followed by the field itself. Copy length and displacement fields are coded independently via
this technique, so any correlations are ignored. There are more elaborate codings of the integers
(such as [G 66], [E 75], or [ER 78]), that have been used by [RPE 81], and [GH 82| in their
implementations of Lempel-Ziv compression. These encodings have nice asymptotic properties for
very large integers, but the unary code is best for our purposes since, as we will see shortly, it can
be tuned easily to the statistics of the application. The unary code has the additional advantage
of a simple hardware implementation. We will return to the unary code in more detail shortly.

Fixed Huffman. Ideally, a fixed Huffman encoder should be applied to source consisting of the
copy length and displacement concatenated together (to capture the correlation of these two fields).
However, since we wish to expand window size to 16384 and maximum copy length to 2000, the
realities of gathering statistics and constructing an implementation dictate that we restrict the
input of the fixed Huffman compressor to a size much smaller than 2000 x 16384 by grouping
together codes with nearly equal copy lengths and displacements. To improve speed we use tables
to encode and decode a byte at a time. Nevertheless, the fixed Huffman approach is the most
complex and slowest of the three options compared here.

To decide how much compression could be increased with a Fixed Huffman approach, we
experimented with several groupings of nearly equal copy lengths and displacements, using a finer
granularity for small values, so that the input to the Fixed Huffman compressor had only about
30,000 states, and we computed the entropy to give a theoretical bound on the compression. The
smallest entropy we obtained was only 4% more compact than the actual compression achieved
with the unary encoding described below, and any real implementation would do worse than an
entropy bound. Consequently, because the Fixed Huffman approach did not achieve significantly

XEROX PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WITH FINITE WINDOWS 13

higher compression, we favor the simpler unary code, though this is not an overwhelmingly clear
choice.

Define a (start, step, stop) unary code of the integers as follows: The nth codeword has n ones
followed by a zero followed by a field of size start + n - step. If the field size is equal to stop then
the preceding zero can be omitted. The integers are laid out sequentially through these codewords.
For example, (3,2,9) would look like:

Codeword Range
Oxxx 0-7
10zxxxx 8-39
110zzzxxxe 40-167

111lzzzxxrrre 168-679

Appendix B contains a simple procedure that generates unary codes.

The A2 textual substitution method encodes copy length with a (2,1,10) code, leading to a
maximum copy length of 2044. A copy length of zero signals a literal, for which literal length is
then encoded with a (0, 1,5) code, leading to a maximum literal length of 63 bytes. If copy length
is non-zero, then copy displacement is encoded with a (10,2,14) code. The exact maximum copy
and literal lengths are chosen to avoid wasted states in the unary progressions; a maximum copy
length of 2044 is sufficient for the kinds of data studied in Section 8. The A1 policy for choosing
between copy and literal codewords is used.

Three refinements are used to increase A2’s compression by approximately 1% to 2%. First,
since neither another literal nor a copy of length 2 can immediately follow a literal of less than
maximum literal length, in this situation, we shift copy length codes down by 2. In other words,
in the (2,1,10) code for copy length, 0 usually means literal, 1 means copy length 2, etc.; but after
a literal of less than maximum literal length, 0 means copy length 3, 1 means copy length 4, etc.

Secondly, we phase-in the copy displacement encoding for small files, using a (10— z, 2,14 — z)
code, where z starts at 10 and descends to 0 as the number of window positions grows; for example,
z = 10 allows 20 +22 +2% = 21 values to be coded, so when the number of window positions exceeds
21, z is reduced to 9; and so forth.

Finally, to eliminate wasted states in the copy displacement encoding, the largest field in the
(10 — z,2,14 — x) progression is shrunk until it is just large enough to hold all values that must
be represented; that is, if v values remain to be encoded in the largest field then smaller values are
encoded with |log, v| bits and larger values with [log, v] bits rather than 14 — z bits. This trick
increases compression during startup, and, if the window size is chosen smaller than the number
of values in the displacement progression, it continues to be useful thereafter. For example, the
compression studies in Section 8 use an A2 window size of 16, 384 characters, so the (10,2, 14) code
would waste 5,120 states in the 14-bit field without this trick.

Percolating update seems preferable for the implementation of A2 because of the large max-
imum copy length; with update-to-root, pathological input could slow the compressor by a factor
of 20. Unfortunately, the percolating update does not guarantee that the suffix tree will report the
nearest position for a match, so longer codewords than necessary may sometimes be used. This
problem is not serious because the tree is often shallow, and nodes near the root usually have many
sons, so updates propagate much more rapidly than assumed in the analysis of Section 3. On
typical files, compression with percolated update is 0.4% less than with update-to-root.

XErROX PARC, CSL-89-3, JANUARY 1989

14 DAaTA COMPRESSION WITH FINITE WINDOWS

SECTION 6. A FASTER COMPRESSOR

A2 has very fast expansion with a small storage requirement, but, even though compression
has constant amortized time, it is 5 times slower than expansion. A1 and A2 are most appropriate
in applications where compression speed is not critical and where the performance of the expander
needs to be optimized, such as the mass release of software on floppy disks. However, in applications
such as file archiving, faster compression is needed. For this reason, we have developed the B1
and B2 methods described here, which use the same encodings as A1 and A2, respectively, but
compute window displacement differently. Copy codewords are restricted to start at the beginning
of the yth previous codeword or literal character emitted; they can no longer address every earlier
character, but only those where literal characters occurred or copy codewords started; we refer
to displacements computed this way as “compressed displacements” throughout. Copy length is
still measured in characters, like A1l. By inserting this level of indirection during window access,
compression speed typically triples, though expansion and the rate of adaptation are somewhat
slower.

With “compressed displacements,” suffix pointers and update propagation are unnecessary
and a simpler PATRICIA tree can be used for the dictionary. Entries are made in the tree only on
codeword boundaries, and this can be done in linear time by starting at the root on each iteration.
It is useful to create an array of permanent nodes for all characters at depth 1. Since copy codewords
of length 1 are never issued, it doesn’t matter that some permanent nodes don’t correspond to any
window character. Each iteration begins by indexing into this node array with the next character.
Then hash table lookups and arc character comparisons are used to descend deeper, as in Al.
The new window position is written into nodes passed on the way down, so update propagation is
unnecessary.

In short, the complications necessary to achieve constant average time per source character
with A2 are eliminated. However, one new complication is introduced. In the worst case, the
16,384 window positions of B2 could require millions of characters, so we impose a limit of 12 x
16,384 characters; if the full window exceeds this limit, leaves for the oldest window positions are
purged from the tree.

Because of slower adaptation, B2 usually compresses slightly less than A2 on small files. But
on text and program source files, it surpasses A2 by 6% to 8% asymptotically; the crossover from
lower compression to higher occurs after about 70,000 characters! A2 codewords find all the near-
term context, while B2 is restricted to start on previous codeword boundaries but can consequently
reach further back in the file. This gives B2 an advantage on files with a natural word structure,
such as text, and a disadvantage on files where nearby context is especially important, such as
scanned images.

We also tried variations where the tree is updated more frequently than on every codeword
boundary and literal character. All variations up to and including A2 can be implemented within
the general framework of this method, if speed is not an issue. For example, we found that about
1% higher compression can be achieved by inserting another compressed position between the two
characters represented by each length 2 copy codeword and another 0.5% by also inserting com-
pressed positions after each character represented by length 3 copy codewords. However, because
these changes slow compression and expansion we haven’t used them.

XErROX PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WITH FINITE WINDOWS 15

SECTION 7. IMPROVING THE COMPRESSION RATIO

In section 6 we considered ways to speed up compression at the cost of slower adaptation and
expansion. In this section we will explore the other direction: improving the compression ratio
with a slight cost to the running time of the algorithm.

When a string occurs frequently in a file, all the methods we have considered so far waste
space in their encoding; when they are encoding the repeating string, they are capable of specifying
the copy displacement to multiple previous occurrences of the string, yet only one string needs
to be copied. By contrast, the data structures we have used do not waste space. The repeating
strings share a common path near the root. If we base the copy codewords directly on the data
structure of the dictionary, we can improve the compression ratio significantly. (This brings us
closer to the second style of Ziv and Lempel’s textual substitution work [ZL 78] [MW 84] [J 85],
where a dictionary is maintained by both the compressor and expander. However, since we still
use a window and an explicit copy length coding, it is natural to view this as a modification of our
earlier compressors, in the style of Ziv and Lempel’s first textual substitution work.)

The C2 method uses the same PATRICIA tree data structures as B2 to store its dictionary.
Thus it takes two pieces of information to specify a word in the dictionary: a node, and a location
along the arc between the node and its parent (since PATRICIA tree arcs may correspond to strings
with more than one character). We will distinguish two cases for a copy: if the arc is at a leaf
of the tree, then we will use a LeafCopy codeword, while if the arc is internal to the tree will use
a NodeCopy codeword. Essentially, those strings appearing two or more times in the window are
coded with NodeCopies, avoiding the redundancy of A2 or B2 in these cases.

The C2 encoding begins with a single prefix bit that is 0 for a NodeCopy, 1 for a LeafCopy
or Literal.

For NodeCopy codewords, the prefix is followed by a node number in [0..mazNodeNo|, where
maxNodeNo is the largest node number used since initialization; for most files tested, maxNodeNo
is about 50% the number of leaves. Following the node number, a displacement along the arc from
the node to its parent is encoded; for most NodeCopy codewords the incoming arc is of length
1, so no length field is required. If a length field is required, 0 denotes a match exactly at the
node, 1 a displacement 1 down the arc from the parent node, etc. Rarely is the length field longer
than one or two bits because the arc lengths are usually short, so all possible displacements can be
enumerated with only a few bits. For both the node number and the incoming arc displacement,
the trick described in Section 5 is used to eliminate wasted states in the field; that is, if v values
must be encoded, then the smaller values are encoded with |log,v| bits and larger values with
[log, v] bits.

LeafCopies are coded with unary progressions like those of A2 or B2. A (1,1, 11) progression
is used to specify the distance of the longest match down the leaf arc from its parent node, with 0
denoting a literal; this progression leads to a maximum copy length of 4094 bytes. Since another
literal never occurs immediately after a literal of less than maximum literal length, the LeafCopy
arc distance progression is shifted down by 1 when the preceding codeword was a literal (i.e., arc
displacement 1 is coded as 0, 2 as 1, etc.) On a cross section of files from the data sets discussed
later, distance down the leaf arc was highly skewed, with about half the arc displacements occurring
one character down the leaf arc. Because of this probability spike at 1 and the rapid drop off at
larger distances, the average length field is small. Following the length field, the window position
is coded by gradually phasing in a (10,2, 14) unary progression exactly like B2’s.

Literals are coded by first coding a LeafCopy arc displacement of 0 and then using a (0, 1,5)
unary progression for the literal length exactly like B2.

XEROX PARC, CSL-89-3, JANUARY 1989

16 DATA COMPRESSION WITH FINITE WINDOWS

Unlike A2 and B2, the expander for C2 must maintain a dictionary tree exactly like the
compressor’s tree to permit decoding. Notice that this is not as onerous as it might seem. During
compression, the algorithm must search the tree downwards (root towards leaves) to find the longest
match, and this requires a hash table access at each node. By contrast, the expander is told which
node was matched, and it can recover the length and window position of the match from the node.
No hash table is required, but the encoding is restricted: a copy codeword must always represent
the longest match found in the tree. In particular, the superior heuristic used by B2 to choose
between Literal and Copy codewords must be discarded; instead, when the longest match is of
length 2 or more, a copy codeword must always be produced. With this restriction, the expander
can reconstruct the tree during decoding simply by hanging each new leaf from the node or arc
indicated by the NodeCopy or LeafCopy codeword, or in the case of literals, by hanging the leaf
from the permanent depth 1 node for each literal character.

SECTION 8. EMPIRICAL STUDIES

In this section, we compare the five compression methods we have developed with other one-
pass, adaptive methods. For most other methods, we do not have well-tuned implementations and
report only compression results. For implementations we have tuned for efficiency, speed is also
estimated (for our 3 MIP, 16-bit word size, 8 megabyte workstations). The execution times used
to determine speed include the time to open, read, and write files on the local disk (which has
a relatively slow, maximum transfer rate of 5 megabits per second); the speed is computed by
dividing the uncompressed file size by the execution time for a large file.

We tested file types important in our working environment. Each number in the table below is
the sum of the compressed file sizes for all files in the group divided by the sum of the original file
sizes. Charts 1-3 show the dependency of compression on file size for all of the compression methods
tested on the source code (SC) data set. The gray area in these charts shows the distribution of
file sizes in the data set, and the numbers next to the labels are the total compression ratios,
duplicating the SC column in the table below.

DATA SETS

SC Source Code. All 8-bit Ascii source files from which the boot file for our programming environ-
ment is built. Files include some English comments, and a densely-coded collection of formatting
information at the end of each file reduces compressibility. The files themselves are written in the
Cedar language. (1185 files, average size 11 Kbytes, total size 13.4 Mbytes)

TM Technical Memoranda. All files from a directory where computer science technical memoranda
and reports are filed, excluding those containing images. These files are 8-bit Ascii text with densely-
coded formatting information at the end (like the source code). (134 files, average size 22 Kbytes,
total size 2.9 Mbytes)

NS News Service. One file for each work day of a week from a major wire service; these files
are 8-bit Ascii with no formatting information. Using textual substitution methods, these do not
compress as well as the technical memoranda of the previous study group, even though they are
much larger and should be less impacted by startup transient; inspection suggests that the larger
vocabulary and extensive use of proper names might be responsible for this. (5 files, average size
459 Kbytes, total size 2.3 Mbytes)

XEROX PARC, CSL-89-3, JANUARY 1989

DAaTA COMPRESSION wiTH FINITE WINDOWS 17

Text. Binary Fonts Images
Method SC ™ NS CC BF SF RCF SNI SCI BI
HO 732 .612 .590 780 752 .626 .756 .397 .845 .148
H1 .401 424 467 .540 573 .380 597 181 510 101
KG 751 .625 .595 .804 .756 .637 767 415 .850 .205
\Y% .749 .624 .595 .802 756 637 .766 414 .850 .205
CW .369 .358 .326 .768 .544 516 .649 .233 608 | .106

MW1 .508 470 487 770 .626 .558 705 .259 728 117
MW2 458 449 458 784 .594 .526 .692 270 774 A17

Uuw .521 476 442 .796 .638 .561 728 295 697 118
BSTW .426 434 .465 — .684 081 — — —
Al 430 461 .520 741 .608 .502 .657 .351 766 215
A2 .366 .395 436 676 .538 .460 588 .259 .709 123
B1 .449 458 501 .753 .616 .505 .676 .349 Nk 213
B2 372 403 410 .681 .547 .459 .603 .255 714 A17
C2 .360 376 375 .668 527 445 D78 238 .662 105

Table 1. Comparison of Compression Methods.

CC Compiled Code. The compiled-code files produced from the SC data set. Each file contains
several different regions: symbol names, pointers to the symbols, statement boundaries and source
positions for the debugger, and executable code. Because each region is small and the regions have
different characteristics, these files severely test an adaptive compressor. (1220 files, average size
13 Kbytes, total size 16.5 Mbytes)

BF Boot File. The boot file for our programming environment, basically a core image and memory
map. (1 file, size 525 Kbytes)

SF Spline Fonts. Spline-described character fonts used to generate the bitmaps for character sets
at a variety of resolutions. (94 files, average size 39 Kbytes, total size 3.6 Mbytes)

RCF Run-coded Fonts. High-resolution character fonts, where the original bitmaps have been
replaced by a run-coded representation. (68 files, average size 47 Kbytes, total size 3.2 Mbytes)

SNI Synthetic Images. All 8 bit/pixel synthetic image files from the directory of an imaging
researcher. The 44 files are the red, green, and blue color separations for 12 color images, 2 of
which also have an extra file to encode background transparency; in addition, there are 6 other
grey scale images. (44 files, average size 328 Kbytes, total size 14.4 Mbytes)

SCI Scanned Images. The red separations for all 8 bit/pixel scanned-in color images from the
directory of an imaging researcher. The low-order one or two bits of each pixel are probably noise,
reducing compressibility. (12 files, average size 683 Kbytes, total size 8.2 Mbytes)

BI Binary Images. CCITT standard images used to evaluate binary facsimile compression methods.
Each file consists of a 148-byte header followed by a binary scan of 1 page (1728 pixels/scan line
x 2376 scan lines/page). Some images have blocks of zeros more than 30,000 bytes long. Because
these files are composed of 1-bit rather than 8-bit items, the general-purpose compressors do worse
than they otherwise might. (8 files, average size 513 Kbytes, total size 4.1 Mbytes)

XEROX PARC, CSL-89-3, JANUARY 1989

18 DATA . COMPRESSION WITHT FINITE WINDOWS

The special-purpose CCITT 1D and 2D compression methods reported in [HR 80] achieve,
respectively, .112 and .064 compression ratios on these standard images when the extrancous end-
of-line codes required by the facsimile standard are removed and when the extraneous 148-byte
header is removed. The special-purpose CCITT 2D result is significantly more compact than any
general purpose method we tested, and only CW and C2 surpassed the 1D result.

MEASUREMENTS AND COMPRESSION METHODS

HO and H1. These are entropy calculations made on a per file basis according to:

n—1

Hy= - Z P(z = ¢;)log, P(z = ¢;), (7)

i==()

n—1
Hy=— Z P(x = ¢;) P(y = ¢j|lx = ¢;)logy P(y = cjlx = ¢;). (8)
1.j=0
where zx is a random symbol of the source, xy is a randomly chosen pair of adjacent source characters,
and c¢; ranges over all possible symbols. Because of the small file size, the curves in charts 1 to
3 drop off to the left. In theory, this small sampling problem can be corrected according to [B
59], but we have found it difficult to estimate the total character set size in order to apply these
corrections. Nevertheless, chart 1 shows that HO is a good estimator for how well a memoryless
(zero-order) compressor can do when file size is a large multiple of 256 bytes and H1 bounds the
compression for a first-order Markov method. (None of our files were large enough for H1 to be an
accurate estimator.) :

KG and V. These adaptive methods maintain a Huffman tree based on the frequency of characters
seen so far in a file. The compressor and expander have roughly equal performance. The theory
behind the KG approach appears in [G 78] and [K 85]. The similar V method, discussed in [V
85], should get better compression during the startup transient at the expense of being about 18%
slower. It is also possible to bound the performance of Vitter’s scheme closely to that of a fixed
non-adaptive compressor. Except on the highly compressible CCITT images, these methods achieve
compression slightly worse than HO, as expected. But because of bit quantization, the compression
of the CCITT images is poor—arithmetic coding would compress close to HO even on these highly
compressible sources. '

CW Based on [CW 84], this method gathers higher-order statistics than KG or V above (which
we ran only on zero-order statistics). The method that Cleary and Witten describe keeps statistics
to some order o and encodes each new character based on the context of the o preceding characters.
(We’ve used o = 3, because any higher order exhausts storage on most of our data sets.) If the
new character has never before appeared in the same context, then an escape mechanism is used
to back down to smaller contexts to encode the character using those statistics. (We've used
their escape mechanism A with exclusion of counts from higher-order contexts.) Because of high
event probabilities in some higher-ordered contexts and the possibility of multiple escapes before
a character is encoded, the fractional bit loss of Huffman encoding is a concern, so [CW 84] uses
arithmetic encoding. We have used the arithmetic encoder in [WNC 87].

As Table 1 shows, CW achieves excellent compression. Its chief drawbacks are its space and
time performance. Its space requirement can grow in proportion to file size; for example, statistics
for o = 3 on random input could require a tree with 256* leaves, though English text requires
much less. The space (and consequently time) performance of CW degrades dramatically on
“more random” data sets like SNI and SCI. A practical implementation would have to limit storage
somehow. :

XEROX PARC, CSL-89-3, JANUARY 1989

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

128

256 512

Data COMPRESSION WITH FINITE WINDOWS

SsssssssnEsesEmun Ho, H1
o s cmm sms KG

ame mms s - V

" = mm sw sm | CW

\‘%\‘

""'--n..........---""""mm HO 0.732 V 0.749 KG 0.751

.
.

.
.
.
.

.
.

.+ H1 0.401

+ CW 0.369

L S I R N B

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Chart 1. Compression vs. File Size, Data Set SC

XEROX PARC, CSL-89-3, JANUARY 1989

19

20

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

DATA COMPRESSION WITH FINITE WINDOWS

\ —————
\‘ L] LN] -
\ -_— L

\ _—— e

\ \

._.--ll\---“--..\‘..-:‘l-..-l"""""""" HO 0.732
- \ \\‘\
\ s

AN

.

Vo

HO, H1

MW1, Mw2

BSTW

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Chart 2. Compression vs. File Size, Data Set SC

XEROX PARC, CSL-89-3, JANUARY 1989

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

128

256 512

DATA COMPRESSION WITH FINITE WINDOWS

HO 0.732

H1 0.401

HO, H1
A1, A2
B1, B2

C2

A1 0.43 B1 0.449

A2 0.366 B2 0.372 C2 0.36

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Chart 3. Compression vs. File Size, Data Set SC

XEROX PARC, CSL-89-3, JANUARY 1989

21

22 DAaTA COMPRESSION WITH FINITE WINDOWS

Even on English, Bell, Cleary, and Witten estimate that Moffat’s tuned implementation of CW is
3 times slower compressing and 5 times slower expanding than C2 [BCW 88].

MW1. This method, described in [MW 84], is related to the second style of Lempel-Ziv compres-
sion, alluded to in the introduction. It uses a Trie data structure and 12-bit codes. Initially (and
always) the dictionary contains 256 one-character strings. New material is encoded by finding the
longest match in the dictionary, outputting the associated code, and then inserting a new dictionary
entry that is the longest match plus one more character. After the dictionary has filled, each itera-
tion reclaims an old code from among dictionary leaves, following a LRU discipline, and reuses that
code for the new dictionary entry. The expander works the same way. MW1 is simple to imple-
ment and is balanced in performance, with good speed both compressing and expanding (250,000
bits/sec and 310,000 bits/sec respectively). The original method used 12-bit codes throughout for
simplicity and efficiency. However, our implementation starts by using 9-bit codewords, increasing
to 10, 11, and finally to 12 bits as the dictionary grows to its maximum size; this saves up to 352
bytes in the compressed file size. On text and source code, Miller and Wegman determined that
the 12-bit codeword size is close to optimal for this method.

MW2. One drawback of MW1 is the slow rate of buildup of dictionary entries. If, for example,
the word abcdefghi appears frequently in a document, then ab will be in the dictionary after the
first occurrence, abc after the second, and so on, with the full word present only after 8 occurrences
(assuming no help from similar words in the document). A1l below, for example, would be able
to copy the whole word abcdefghi after the first occurrence, but it pays a penalty for the quick
response by having a length field in its copy codeword. The idea of MW2 is to build dictionary
entries faster by combining adjacent codewords of the MW1 scheme. Longer words like abcdefghi
are built up at an exponential rather than linear rate. The chief disadvantage of MW2 is its
increased complexity and slow execution. Qur implementation follows the description in [MW 84]
and uses an upper limit of 4096 dictionary entries (or 12-bit codewords). We did not implement
the 9-12 bit phase-in that was used in MW1 so the size-dependent charts underestimate MW2’s
potential performance on small files.

UW. This is the Compress utility found in the Berkeley 4.3 Unix, which modifies a method de-
scribed in a paper by Welch [W 84]; the authors of this method are S. Thomas, J. McKie, S. Davies,
K. Turkowski, J. Woods, and J. Orost. It builds its dictionary like MW1, gradually expanding the
codeword size from 9 bits initially up to 16 bits. The dictionary is frozen after 65,536 entries, but
if the compression ratio drops significantly, the dictionary is discarded and rebuilt from scratch.
We used this compressor remotely on a VAX-785, so it is difficult to compare its running time and
implementation difficulties with the other methods we implemented. Nevertheless, because it does
not use the LRU collection of codes, it should be faster than MW 1. However, it has a larger total
storage requirement and gets worse compression than MW1 on most data sets studied.

BSTW. This method first partitions the input into alphanumeric and non-alphanumeric “words,”
so it is specialized for text, though we were able to run it on some other kinds of data as well. The
core of the compressor is a move-to-front heuristic. Within each class, the most recently seen words
are kept on a list (we have used list size 256). If the next input word is already in the word list,
then the compressor simply encodes the position of the word in the list and then moves the word
to the front of the list. The move-to-front heuristic means that frequently used words will be near
the front of the list, so they can be encoded with fewer bits. If the next word in the input stream
is not on the word list, then the new word is added to the front of the list, while another word is
removed from the end of the list, and the new word must be compressed character-by-character.

Since the empirical results in [BSTW 85] do not actually give an encoding for the positions of
words in the list or for the characters in new words that are output, we have taken the liberty of

XEROX PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WITH FINITE WINDOWS 23

using the V compressor as a subroutine to generate these encodings adaptively. (There are actually
four copies of Vitter’s algorithm running, one to encode positions and one to encode characters in
cach of two partitions.) Using an adaptive Huffman is slow; a fixed ¢ncoding would run faster,
but we expect that a fixed encoding would slightly reduce compression on larger files while slightly
improving compression on small files. We could not run BSTW for all of the data sets, since the
parsing mechanism assumes human-readable text and long “words” appear in the other data sets.
When the unreadable input parsed well, as in the case of run-coded fonts, the compression was
very good.

A1l. This is our basic method described earlier. It has a fast and simple expander (560,000
bits/sec) with a small storage requirement (10,000 bytes). However, the compressor is much slower
and larger (73,000 bits/sec, 145,000 bytes using scan-from-leaf and update-to-root). The encoding
has a maximum compression to 1/8 = 12.5% of the original file size because the best it can do is
copy 16 characters with a 16-bit codeword.

Caveat: As we mentioned above, the running times reported include the file system overhead
for a relatively slow disk. To provide a baseline, we timed a file copy without compression and
obtained a rate of 760,000 bits per second. Thus, some of the faster expansion rates we report are
severely limited by the disk. For example, we estimate that without disk overhead the A1 expander
would be about twice as fast. On the other hand, removing disk overhead would hardly affect the
compression speed of Al.

A2. This method, discussed in Section 5, enlarges the window to 16,384 characters and uses
variable-width unary-coded copy and literal codewords to significantly increase compression. The
running time and storage requirements are 410,000 bits/sec and 21,000 bytes for expansion and
60,000 bits/sec and 630,000 bytes for compression (using suffix pointers and percolated update).

B1. This method, discussed in Section 6, uses the A1l encoding but triples compression speed
by updating the tree only at codeword boundaries and literal characters. The running time and
storage requirements are 470,000 bits/sec and 45,000 bytes for expansion and 230,000 bits/sec and
187,000 bytes for compression.

B2. This method, discussed in Section 6, uses the same encoding as A2 but triples compression
speed by updating the tree only at codeword boundaries and literal characters. The compressor
and expander run at 170,000 and 380,000 bits/sec, respectively, and have storage requirements of
792,000 and 262,000 bytes.

C2. This method, discussed in Section 7, uses the same data structures as B2 but a more powerful
encoding based directly upon the structure of the dictionary tree. Compression is about the same
and expansion about 25% slower than B2; the compressor uses about the same storage as B2, but
the expander uses more (about 529,000 bytes).

Table 1 highlights some differences between textual substitution methods like C2 and statistical
methods like CW. (Time and space performance differences have been discussed earlier.) There
are several data sets where these methods differ dramatically. On NS, CW is significantly better
than C2. We believe that this is because NS shows great diversity in vocabulary: a property that
is troublesome for textual substitution, since it cannot copy new words easily from elsewhere in the
document, but this property is benign for CW, since new words are likely to follow the existing
English statistics. On CC, for example, C2 is significantly better than CW. We believe that this
is because CC contains several radically different parts, e.g. symbol tables, and compiled code. C2
is able to adjust to dramatic shifts within a file, due to literal codewords and copy addressing that
favors nearby context, while CW has no easy way to rapidly diminish the effect of older statistics.

XEROX PARC, CSL-89-3, JANUARY 1989

24

0.7

0.6

0.5

0.4

0.3

0.2

Dara COMPRESSION wiTH FiINITE WINDOW

S

=
. ;'.\. .
M s'.‘i L] ouss mmv 82
. * l..—.l SENE SN EEme RS SRS
\‘~.~.‘-—.-._'. ®® s 8= sz ss s s me ss am A2
. -—-—--._.-.
\' ¢ -.-'_-—-—-— C2
- \, \, .
D N N
\0 \0 * *
\o \, Ce
\ Ce
N, ~. .
~ \0 e .
.\o\ \q * ®e
'\. \0 * ‘e
\t\ \. t. ",
~, ~. A2
~ ~,
'\.\ ~.
~
'~, ‘' B2
~.
~.
\.\
'~ C2
| | | L I ! ! |
512 1K 2K 4K 8K 16K 32K 64K 128K

Chart 4. Compression vs. Window Size, Data Set NS (bottom) Data Set BF (top)

XErROX PARC, CSL-89-3, JANUARY 1989

Dara CoMPRESSION wiITH FINITE WINDOWS 25

For all of our methods, A2, B2, and C2, window size is a significant consideration because
it determines storage requirements and affects compression ratios. Chart 4 shows compression as
a function of window size for the NS data set (concatenated into a single file to avoid start-up
effects), and for the BF boot file. These two data sets were typical of the bimodal behavior we
observed in our other data sets: large human-readable files benefit greatly from increasing window
size, while other test groups show little improvement beyond a window size of 4K,

CONCLUSIONS

We have described several practical methods for lossless data compression and developed data
structures to support them. These methods are strongly adaptive in the sense that they adapt not
only during startup but also to context changes occurring later. They are suitable for most high
speed applications because they make only one pass over source data, use only a constant amount
of storage, and have constant amortized execution time per character.

Our empirical studies point to several broad generalizations. First, based on the HO and
H1 theoretical limits, textual substitution via A2, B2, or C2 surpasses memoryless or first-order
Markov methods applied on a character-by-character basis on half the data sets. On the other
half, even the CW third-order method can’t achieve the H1 bound. This suggests that, to surpass
textual substitution for general purpose compression, any Markov method must be at least second-
order, and to date, all such methods have poor space and time performance.

Secondly, the methods we’ve developed adapt rapidly during startup and at transitions in
the middle of files. One reason for rapid adaptation is the use of smaller representations for
displacements to recent positions in the window. Another reason is the inclusion of multi-character
literal codewords. Together the literals and short displacements allow our methods to perform
well on short files, files with major internal shifts of vocabulary or statistical properties, and files
with bursts of poorly compressing material—all properties of a significant number of files in our
environment.

Thirdly, it appears that the displacement-and-length approach to textual substitution is espe-
cially effective on small files. On 11,000-byte program source files, for example, A2 and B2 were
over 20% more compact than textual substitution methods which did not use a length field (UW,
MW1, and MW2). This is not surprising because the particular advantage of the length field
in copy codewords is rapid adaptation on small files. However, even on the largest files tested,
A2 and B2 usually achieved significantly higher compression. Only on images did other methods
compete with them; our most powerful method, C2, achieved higher compression than any other
textual substitution method we tested on all data sets. The effect of a length field is to greatly
expand dictionary size with little or no increase in storage or processing time; our results suggest
that textual substitution methods that use a length field will work better than those which do not.

Fourthly, studies of A2, B2, and C2 using different window sizes showed that, for human-
readable input (e.g. English, source code), each doubling of window size improves the the compres-
sion ratio by roughly 6% (for details see Chart 4). Furthermore, the data structures supporting
these methods scale well: running time is independent of window size, and memory usage grows
linearly with window size. Thus increasing window size is an easy way to improve the compression
ratio for large files of human-readable input. For other types of input the window size can be
reduced to 4096 without significantly impacting compression.

Going beyond these empirical results, an important practical consideration is the trade-off
among speed, storage, and degree of compression; speed and storage have to be considered for both

XEROX PARC, CSL-89-3, JANUARY 1989

26 DatA COMPRESSION WITH FINITE WINDOWS

compression and expansion. Of our own methods, A2 has very fast expansion with a minimal
storage requirement. Its weakness is slow compression, which is seven times slower than expansion,
even though the suffix tree data structure with amortized update uses constant amortized time per
character. However, in applications which can afford relatively slow compression, A2 is excellent;
for example, A2 would be good for mass distribution of software on floppy disks or for overnight
compression of files on a file server. Furthermore, if the parallel matching in the compression side
of A2 were supported with VLSI, the result would be a fast, powerful method requiring minimal
storage for both compressing and expanding.

B2 provides nearly three times faster compression than A2 but has somewhat slower expansion
and adaptation. Thus, B2 is well suited for communication and archiving applications.

A1l and B1 do not compress as well as A2 and B2, respectively, but because of their two-
codeword, byte-aligned encodings they are better choices for applications where simplicity or speed
is critical. (For example, J. Gasbarro has designed and implemented an expansion method like A1
to improve the bandwidth of a VLSI circuit tester [G 88].)

C2 achieves significantly higher compression than B2, but its expander is somewhat slower
and has a larger storage requirement. In the compression study reported in Section 8, C2 achieved
the highest compression of all methods tested on 6 of the 10 data sets.

We believe that our implementations and empirical results demonstrate the value of window-
based textual substitution. Together the A, B and C methods offer good options that can be
chosen according to resource requirements.

ACKNOWLEDGEMENTS.

We would like to thank Jim Gasbarro, John Larson, Bill Marsh, Dick Sweet, Ian Witten, and
the anonymous referees for helpful comments and assistance.

REFERENCES

[A 63] Norman Abramson
Information Theory and Coding
McGraw-Hill, 1963

(B 59] G. P. Basharin
On a Statistical Estimate for the Entropy of a Sequence of Independent Random
Variables
Theory Probability Appl. 4:333-336, 1959.

[B 86] Timothy C. Bell ’
Better OPM/L Text Compression
IEEE Transactions on Communications, COM-34(12):1176-1182, 1986.

[BCW 88] Timothy C. Bell, John G. Cleary, and Ian H. Witten
Text Compression
In press with Prentice Hall, 1988.

XEROX PARC, CSL-89-3, JANUARY 1989

DAaTA COMPRESSION WITH FINITE WINDOWS 27

[BSTW 85] Jon Louis Bentley, Danicl D. Sleator, Robert E. Tarjan, dand Victor K. Wei
A Locally Adaptive Data Compression Scheme
Communications of the ACM 29(4):320 330, 1985.

[CW 84] John G. Cleary and Ian H. Witten
Data Compression Using Adaptive Coding and Partial String Matching
IEEE Transactions on Communications, COM-32(4):396 -402, 1984.

[CH 86] G. V. Cormack and R. N. S. Horspool
Data Compression Using Dynamic Markov Modelling
The Computer Journal, 30(6): 541-550, 1987.

[DBR 66] G. B. Dantzig, W. O. Blattner, and M. R. Rao
Finding a Cycle in a Graph with Minimum Cost to Time Ratio
with Application to a Ship Routing Problem
P. Rosenstiehl, ed.
Theory of Graphs Gordon and Breach, 1966.

[E 75] P. Elias
Universal Codeword Sets and Representations of the Integers.
IEEE Transactions on Information Theory, I'T-21(2):194-203, 1975.

[ER 78] S. Even and M. Rodeh
Economical Encoding of Commas Between Strings
Communications of the ACM, 21:315-317, 1978.

G 78] R. G. Gallager
Variations on a Theme by Huffman
IEEE Transactions on Information Theory 1T-24(6):668-674, 1978.

(G 88] J. Gasbarro
An Architecture for High-Performance VLSI Testers
Ph.D. dissertation, Dept. of Electrical Engineering, Stanford University, 1988.

(G 66] Solomon W. Golomb
Run-Length Encodings
IEEE Transactions of Information Theory 1T-12:399-401, 1966.

(G 80] M. Guazzo
A General Minimum Redundancy Source-coding Algorithm
IEEFE Transactions on Information Theory 1T-26(1):15-25, 1980.

[GH 82] Gu Guoan and John Hobby
Using String Matching to Compress Chinese Characters
Stanford Technical Report STAN-CS-82-914, 1982.

[HC 86 R. Nigel Horspool and Gordon V. Cormack
Dynamic Markov Modelling—A Prediction Technique
Proceedings of the Nineteenth Annual Hawaii International Conference on System
Sciences, 700-707, 1986.

XErROX PARC, CSL-89-3, JANUARY 1989

28

H 51]

[HR 80]

[J 85]

[81)

[KBG 87]

K 75)

[K 85]

L 83]

[LR 81]

[LR 83

IL 76]

[M 76]

[MW 84]

DATA COMPRESSION WITH FINITE WINDOWS

D. A. Huffman
A Method for the Construction of Minimum-Redundancy Codes
Proceedings of the . R.E 40:1098-1101, 1952.

Roy Hunter and A. Harry Robinson
International Digital Facsimile Coding Standards
Proceedings of the IEEE 68(7):854-867, 1980.

Matti Jakobsson
Compression of Character Strings By an Adaptive Dictionary
BIT 25: 593-603, 1985. ‘

Christopher B. Jones
An Efficient Coding System for Long Source Sequences ’
IEEE Transactions on Information Theory 1T-27(3):280-291, 1981.

M. Kempf, R. Bayer and U. Giintzer
Time Optimal Left to Right Construction of Position Trees
Acta Informatica, 24:461-474, 1987.

Donald E. Knuth ;
The Art of Computer Programming, Volume 3: Sorting and Searching
Addison-Wesley, second printing, 1975.

Donald E. Knuth
Dynamic Huffman Coding
Journal of Algorithms 6:163-180, 1985.

Glen G. Langdon, Jr.
A Note on the Ziv-Lempel Model for Compressing Individual Sequences
IEEE Transactions on Information Theory 1T-29(2):284-287, 1983.

Glen G. Langdon, Jr. and Jorma Rissanen
Compression of Black—White Images with Arithmetic Coding
IEEE Transactions on Communications COM-29(6):858-867, 1981.

Glen G. Langdon, Jr. and Jorma Rissanen
A Double Adaptive File Compression Algorithm
IEEE Transcations on Communications COM-31(11):1253-1255, 1983.

Eugene L. Lawler
Combinatorial Optimization: Networks and Matroids
Holt, Rinehart and Winston, 1976.

Edward M. McCreight
A Space-Economical Suffix Tree Construction Algorithm
Journal of the Association for Computing Machinery 23(2):262-272, 1976.

Victor S. Miller and Mark N. Wegman

Variations on a theme by Ziv and Lempel

IBM Research Report RC 10630 (# 47798), 1984

Combinatorial Algorithms on Words, NATO ASI Series F, 12:131-140, 1985.

XErROX PARC, CSL-89-3, JANUARY 1989

[M 68]

P 76)

[RL 79]

[RL 81]

[RPE 81]

[S 48]

[SS 82]

[V 85]

[W 73]

[W 84]

[WNC 87]

(Z 78]

[ZL 77]

DATA COMPRESSION WITH FINITE WINDOWS 29

Donald R. Morrison
PATRICIA Practical Algortihm To Retrieve Information Coded in Alphanumeric
Journal of the Association for Computing Machinery 15(4): 514-534, 1968.

Richard Clark Pasco
Source Coding Algorithms for Fast Data Compression
Ph.D Dissertation, Dept. of Electrical Engineering, Stanford University, 1976.

Jorma Rissanen and Glen G. Langdon, Jr.
Arithmetic Coding
IBM Journal of Research and Development 23(2):149-162, 1979.

Jorma Rissanen and Glen G. Langdon, Jr.
Universal Modeling and Coding
IEEE Transactions on Information Theory 1T-27(1):12-23, 1981.

Michael Rodeh, Vaughan R. Pratt, and Shimon Even
Linear Algorithm for Data Compression via String Matching
Journal of the Association for Computing Machinery 28(1):16-24, 1981.

C. E. Shannon
A Mathematical Theory of Communication
The Bell System Technical Journal 27(3):379-423 and 27(4): 623-656, 1948.

James A. Storer and Thomas G. Szymanski
Data Compression via Textual Substitution
Journal of the Association for Computing Machinery 29(4):928-951, 1982.

Jeffrey Scott Vitter
Design and Analysis of Dynamic Huffman Coding
Brown University Technical Report No. C5-85-13, 1985.

Peter Weiner
Linear Pattern Matching Algorithms
Fourteenth Annual Symposium on Swztchmg and Automata Theory, 1-11, 1973.

Terry A. Welch
A Technique for High Performance Data Compression
IEEE Computer 17(6): 8-19, 1984. :

Ian H. Witten, Radford M. Neal, and John G. Cleary
Arithmetic Coding for Data Compression
Communications of the ACM, 30(6):520-540, 1987.

Jacob Ziv ‘
Coding Theorems for Individual Sequences
IEEFE Transactions on Information Theory 1T-24(4):405-412, 1978.

Jacob Ziv and Abraham Lempel
A Universal Algorithm for Sequential Data Compression
IEEE Transactions on Information Theory 1T-23(3):337-343, 1977.

XEROX PARC, CSL-89-3, JANUARY 1989

30 DArA COMPRESSION wiTH FINITE WINDOWS
[ZL 78 Jacob Ziv and Abraham Lempel

Compression of Individual Sequences via Variable-Rate Coding
IEEE Transactions on Information Theory 1T-24(5):530 536, 1978.

XEROX PARC, CSL-89-3, JANUARY 1989

DATA COMPRESSION WITH FINITE WINDOWS 31

APPENDIX A. A PATHOLOGICAL EXAMPLE

We now show a string that has the F' pattern of equation (6) of Section 3:

1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15 (6)
Pio Pio Py Ps Pr Pé Ps P4 P3 P2 P1 P2 Pio Pio Py

Hereafter we will stop abstracting the string by its copy lengths. Capital letters are strings, small
letters are single characters, and i, j, r, p, b are integers. The pathological string follows the pattern:

M)Ml---Mr_lM()Ml-.-Mr_lM)M1~--, (9)

where the parameter r is chosen large enough so that one iteration exceeds the finite window (this
prevents direct copying from the beginning of one M, to a subsequent M;). Within each M; we

have groups,
M; = GiyGi1Giz - .. Gitnyp-1), (10)

and each group is:

Gij = 8jpBos(j+iwCisip+1B18(+ipr1€iSipraBesivipratisipts - - - Bp-18(j+ipprp-16i- (11)

We have introduced two more parameters: p is the number of minor blocks B;, and n is the
number of s characters. All of the s subscripts in the above formula are computed mod n. The
groups skew so that, for example, the beginning of G19 = s1B15p+1 ... will not match entirely with
the beginning of Gg9 = $1B181.... It will, however, match in two parts: the prefix s;B; appears
in both strings, and the suffix Gi9 = ... B15p41 ... will match with the suffix of Go; = ... Bisp1.
If, for example, B, has 9 characters, this gives two consecutive locations where a copy of size 10 is
possible, in the pattern of equation 6.

It remains to create the match of length 2 at position 12 in equation (6). For this purpose, each
of the ¢; above are either e; or 0;. They will always precede respectively even and odd numbered
sj, and match in pairs with their following s;’s. For example, the ey in Goy = s1B1s1€952Bas2 . ..
will match with so. The e(yse match is hidden in a minor block, segregated from the odd numbered
8

By = xegspe0Ss2€084 - - - €0Sh—2

B = 1€p5p€05542€05b+4 - - - €0S2b—2
. Bn/b = X€1850)€182€184...€15p-2 (12)

Bp/2 = X0pS51005300S55 - - - 00Sh—1

This causes p and n to be related by:

pb = 2nr

XErROX PARC, CSL-89-3, JANUARY 1989

32 DATA COMPRESSION WiTH FINITE WINDOWS

In the case of our running example, where the finite window is size 4096 and the maximum copy
length is 16 characters, an appropriate setting of the above parameters is:

r=2 b=8 p=100, n =200 (13)

We need to take some care that the heuristic does not find the optimal solution. It turns out that if
we just start as in equation 9, then the first M will not compress well, but the heuristic will start
the behavior we are seeking in A;. Asymptotically we achieve a worst case ratio of 4/5 between
the optimal algorithm and the policy heuristic.

XEROX PARC, CSL-89-3, JANUARY 1989

Appendix B: Computing a Unary-Based Variable- Length Encoding of the Integers

In Section 5 we defined a (start, step, stop) unary code of the integers as a string of n ones followed by
a zero followed by a field of j bits, where j is in the arithmetic progression defined by (start, step,
stop). This can be defined precisely by the following encoder:

EncodeVar: PROC [out: CARDINAL, start, step, last: CARDINAL] ~ {
UNTIL out < Power2[start] DO
PutBits[1, 1];
out « out - Power2[start];
start « start + step;
ENDLOOP;
IF start < last THEN PutBits[out, start + 1] -- 0 followed by field of size "start"
ELSE IF start > last THEN ERROR
ELSE PutBits[out, start]; -- save a bit

b

PutBits: PROC [out: CARD, bits: INTEGER] ~
Output the binary encoding of "out"” in a field of size "bits."

Notice that the encoder is able to save one bit in the last field size of the arithmetic progression.

Data Compression with Finite Windows

Edward R. Fiala and Daniel H. Greene

