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SECTION 1. INTRODUCTION. 

COlnpression is the coding of data to minimize its representation. In this paper, we are con­
cerned with fast, one-pass, adaptive, invertible (or lossless) lnethods of digital compression which 
have reasonable nlelnory requirements. Such methods can be used, for example, to reduce the 
storage requirements for files, to increase the communication rate over a channel, or to reduce 
redundancy prior to encryption for greater security. 

By "adaptive" we lnean that a compression method should be widely applicable to different 
kinds of source data. Ideally, it should adapt rapidly to the source to achieve significant compression 
on small files, and it should adapt to any subsequent internal changes in the nature of the source. 
In addition, it should achieve very high compression asymptotically on large regions with stationary 
statistics. 

All the compression methods developed in this paper are substitutional. Typically, a substi­
tutional compressor functions by replacing large blocks of text with shorter references to earlier 
occurrences of identical text. [ZL 77][Z 78][ZL 78][RPE 81][SS 82][MW 84][W 84][BSTW 85][B 86]. 
(This is often called Ziv-Lempel compression, in recognition of their pioneering ideas. Ziv and Lem­
pel, in fact, proposed two methods. The unqualified use of the phrase "Ziv-Lempel compression" 
usually refers to their second proposal [ZL 78]. In this paper, we will be primarily concerned with 

. their first proposal [ZL 77].) A popular alternative to a substitutional compressor is a statistical 
compressor. A symbolwise statistical compressor functions by accurately predicting the probability 
of individual symbols, and then encoding these symbols with space close to -log2 of the predicted 
probabilities. The encoding is accomplished with either Huffman compression [H 51] which has 
recently been made one-pass and adaptive [G 78][K 75][V 85], or with arithmetic coding, as de­
scribed in [A 63; page 61][P 76][RL 79][G 80][J 81][LR 81][RL 81][LR 83]. The major challenge of 
a statistical conlpressor is to predict the symbol probabilities. Simple strategies, such as keeping 
zero-order (single symbol) or first-order (symbol pair) statistics of the input, do not compress En­
glish text very well. Several authors have had success gathering higher-order statistics, but this 
necessarily involves higher memory costs and additional mechanisms for dealing with situations 
where higher-order statistics are not available [LR 83] [CW 84] [CH 86]. 

It is hard to give a rigorous foundation to the substitutional vs. statistical distinction described 
above. Several authors have observed that statistical methods can be used to simulate textual 
substitution, suggesting that the statistical category includes the substitutional category [L 83] 
[BCW 88]. However, this takes no account of the simplicity of mechanism; the virtue of textual 
substitution is that it recognizes and removes coherence on a large scale, oftentimes ignoring the 
smaller scale statistics. As a result, most textual substitution compressors process their compressed 
representation in larger blocks than their statistical counterparts, thereby gaining a significant 
speed advantage. It was previously believed that the speed gained by textual substitution would 
necessarily cost something in compression achieved. We were surprised to discover that with careful 
attention to coding, textual substitution compressors can match the compression performance of 
the best statistical methods. 

Consider the following scheme, which we will improve later in the paper. Compressed files 
contain two types of codewords: 

literal x 

copy x, -y 

pass the next x characters directly into the uncompressed output 

go back y characters in the output and copy x characters 
forward to the current position. 
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2 DATA COMPRESSION WITH FINITE WINDOWS 

So, for example, the following piece of literature: 

IT WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES 

would conlpress to 

(literal 26)IT WAS THE BEST OF TIMES, (copy 11 -26)(literal 3)WOR( copy 11 -27) 

The conlpression achieved depends on the space required for the copy and literal codewords. 
Our simplest scheme, hereafter denoted At, uses 8 bits for a literal codeword and 16 for a copy 
codeword. If the first 4 bits are 0, then the codeword is a literal; the next 4 bits encode a length x 
in the range [1..16] and the following x characters are literal (one byte per character). Otherwise, 
the codeword is a copy; the first 4 bits encode a length x in the range [2 .. 16] and the next 12 
bits are a displacement y in the range [1..4096]. At each step, the policy by which the conlpressor 
chooses between a literal and a copy is as follows: If the compressor is idle (just finished a copy, or 
terminated a literal because of the 16-character limit), then the longest copy of length 2 or more is 
issued; otherwise, if the longest copy is less than 2 long, a literal is started. Once started, a literal 
is extended across subsequent characters until a copy of length 3 or more can be issued or until the 
length limit is reached. 

At would break the first literal in the above example into two literals and compress the source 
from 51 bytes down to 36. At is close to Ziv and Lempel's first textual substitution proposal [ZL 
77]. One difference is that At uses a separate literal codeword, while Ziv and Lempel combine 
each copy codeword with a single literal character. We have found it useful to have longer literals 
during the startup transient; after the startup, it is better to have no literals consuming space in 
the copy codewords. 

Our empirical studies showed that, for source code and English text, the field size choices for 
At are good; reducing the size of the literal length field by 1 bit increases compression slightly 
but gives up the byte-alignment property of the At codewords. In short, if one desires a simple 
method based upon the copy and literal idea, At is a good choice. 

At was designed for 8-bit per character text or program sources, but, as we will see shortly, it 
achieves good compression on other kinds of source data, such as compiled code and images, where 
the word model does not match the source data particularly well, or where no model of the source 
is easily perceived. At is, in fact, an excellent approach to general purpose data compression. In 
the remainder of the paper, we will study At and several more powerful variations. The paper 
is arranged as follows: Section 2 discusses the data structures which support the above style 
of compression. It develops the idea of a percolating update, which allows a suffix tree to be 
maintained for a fixed window of the input in constant average time per character. This innovation 
makes Ziv and Lempel's first style of compression more practically feasible than was previously 
believed [RPE 81]. 

Section 3 addresses some theoretical issues raised by this work. It proves that the percolating 
update does, in fact, keep the suffl-x tree current and that the average number of nodes updated is 
less than 2. In addition, it shows, by reduction to a graph search problem, that the At policy for 
choosing between copy and literal codewords is at worst 25% larger than an optimal policy. 

Section 4 discusses a simpler implementation which can be used when the maximum copy 
length is not too lon~. 

Section 5 elaborates the At encoding into a family of variable-width copy and literal codewords 
that exploit statistical properties of the input to achieve significantly higher compression; this 
method will be called A2. 

XEROX PARC, CSL-89-3, JANUARY 1989 



DATA COMPRESSION WITH FINITE WINDOWS 3 

Section 6 introduces Bl and B2, which are identical to Al and A2, respectively, but with the 
window position cOlnputed differently. For these methods, a simpler dictionary tree updated only at 
codeword boundaries and between literal characters is used to represent the window. Compression 
is about 3 tilnes faster at the expense of slower adaptation and slightly slower expansion. 

Section 7 introduces C2, which uses the same data structures as B2 but derives codewords 
directly frOln the dictionary tree. C2's conlpression is higher than A2 and B2, but it requires that 
the expander Inaintain a parallel dictionary tree. 

Finally, Section 8 includes empirical comparisons of the compression ratios for the methods 
developed in this paper with others we have implemented according to the published literature. 

SECTION 2. OVERVIEW OF THE DATA STRUCTURE 

The fixed window suffix tree of this paper is a modification of McCreight's suffix tree [M 76] 
(see also [W 73] and [KBG 87]), which is itself a modification of Morrison's PATRICIA tree [M 68], 
and Morrison's tree is ultimately based on a Trie data structure [K 75, page 481]. We will review 
each of these data structures briefly. 

A Trie is a tree structure where the branching occurs according to "digits" of the keys, rather 
than according to comparisons of the keys. In English, for example, the most natural "digits" are 
individual letters, with the lth level of the tree branching according to the lth letter of the words 
in the tree. 

STRAY 

ASTRAY ASTRIDE 

Figure 1. A Trie. 

In Figure 1, many internal nodes are superfluous, having only one descendant. If we are 
building an index for a file, we can save space by eliminating the superfluous nodes and putting 
pointers to the file into the nodes rather than including characters in the data structure. In Figure 
2, the characters in parentheses are not actually represented in the data structure, but they can be 
recovered from the (position, level) pairs in the nodes. Figure 2 also shows a suffix pointer (as a 
dark right arrow) that will be explained later. 
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4 DATA COMPRESSION WITH FINITE WINDOWS 

1 2 9 10 
File: ASTRI DE ASTRAY 

Figure 2. A PATRICIA Tree with a Suffix Pointer. 

Figure 2 represents some, but not all, of the innovations in Morrison's PATRICIA trees. He 
builds the trees with binary "digits" rather than full characters, and this allows hinl to save lllore 
space by folding the leaves into the internal nodes. Our "digits" are bytes, so the branching factor 
can be as large as 256. Since there are rarely 256 descendants of a node, we do not reserve that 
much space in each node, but instead hash the arcs. There is also a question about when the 
strings in parentheses are checked in the searching process. In what follows, we usually check 
characters immediately when we cross an arc. Morrison's scheme can avoid file access by skipping 
the characters on the arcs and doing only one file access and comparison at the end of the search. 
However, our files will be in main memory, so this consideration is unimportant. We will use the 
simplified tree depicted in Figure 2. 

For At, we wish to find the longest (up to 16 character) match to the current string beginning 
anywhere in the preceding 4096 positions. If all preceding 4096 strings were stored in a PATRICIA 
tree with depth d = 16, then finding this match would be straightforward. Unfortunately, the cost 
of inserting these strings can be prohibitive, for if we have just. descended d levels in the tree to 
insert the string starting at position i then we will descend at least d - 1 levels inserting the string 
at i + 1. In the worst case this can lead to O( nd) insertion time for a file of size n. Since later 
encodings will use much larger values for d than 16, it is important to eliminate d from the running 
time. 

To insert the strings in O(n) time, McCreight added additional suffix pointers to the tree. 
Each internal node, representing the string aX on the path from the root to the internal node, 
has a pointer to the node representing X, the string obtained by stripping a single letter from the 
beginning of aX . If a string starting at i has just been inserted at level d we do not need to return 
to the root to insert the string at i + 1; instead, a nearby suffix pointer will lead us to the relevant 
branch of the tree. 

Figure 3 shows how suffix links are created and used. On the previous iteration, we have 
matched the string aXY, where a is a single character, X and Yare strings, and b is the first 
unmatched character after Y. Figure 3 shows a complicated case where a new internal node, Q, 

has been added to the tree, and the suffix link of Q must be computed. We insert the next string 
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XYb by going up the tree to node j3, representing the string aX, and crossing its suffix link to 
'Y, representing X. Once we have crossed the suffix link, we descend again in the tree, first by 
"rescanning" the string Y, and then by "scanning" from 8 until the new string is inserted. The first 
part is called "rescanning" because it covers a portion of the string that was covered by the previous 
insert, and so it does not require checking the internal strings on the arcs. (In fact, avoiding these 
checks is essential to the linear time functioning of the algorithm.) The rescan either ends at an 
existing node 8, or 8 is created to insert the new string XYb; either way we have the destination 
for the suffix link of Q. We have restored the invariant that every internal node, except possibly 
the one just created, has a suffix link. 

A 
aX' , X , , , , 

y 

" y rescan , 
a 

, scan , , 

K a 
Figure 3. Building a Suffix Tree. 

For the Al compressor, with a 4096-byte fixed window, we need a way to delete and reclaim 
the storage for portions of the suffix tree representing strings further back than 4096 in the file. 
Several things must be added to the suffix tree data structure. The leaves of the tree are placed 
in a circular buffer, so that the oldest leaf can be identified and reclaimed, and the internal nodes 
are given "son count" fields. When an internal "son count" falls to one, the node is deleted and 
two consecutive arcs are combined. In Section 3, it is shown that this approach will never leave 
a "dangling" suffix link pointing to deleted nodes. Unfortunately, this is not the only problem 
in maintaining a valid suffix tree. The modifications that avoided a return to the root for each 
new insertion create havoc for deletions. Since we have not always returned to the root, we may 
have consistently entered a branch of the tree sideways. The pointers (to strings in the 4096-byte 
window) in the higher levels of such a branch can become out-of-date. However, traversing the 
branch and updating the pointers would destroy any advantage gained by using the suffix links. 
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6 DATA COMPRESSION WITH FINITE \VINDOvVS 

We can keep valid pointers and avoid extensive updating by partially updating according to a 
percolating update. Each internal node has a single "update" bit. If the update bit is true when we 
are updating a node, then we set the bit false and propagate the update recursively to the node's 
parent. Otherwise, we set the bit true and stop the propagation. In the worst case, a long string of 
true updates can cause the update to propagate to the root. However, when cUllortized over all new 
leaves, the cost of updating is constant, and the effect of updating is to keep all internal pointers 
on positions within the last 4096 positions of the file. These facts will be shown in Section 3. 

We can now SUllll11arize the operation of the inner loop, using Figure 3 again. If we have just 
created node a, then we use a's parent's suffix link to find ,. Fro 111 , we 1110ve down in the tree, 
first rescanning, and then scanning. At the end of the scan, we percolate an update frOlll the leaf, 
nloving towards the root, setting the position fields equal to the current position, and setting the 
update bits false, until we find a node with an update bit that is already false, whereupon we set 
that node's update bit true and stop the percolation. Finally, we go to the circular buffer of leaves 
and replace the oldest leaf with the new leaf. If the oldest leaf's parent has only one relllaining son, 
then it nlust also be deleted; in this case, the relllaining son is attached to its grandparent, and 
the deleted node's position is percolated. upwards as before, only at each step the position being 
percolated and the position already in the node nlust be cOlllpared and the lllore recent of these 
sent upward in the tree. 

SECTION 3. THEORETICAL CONSIDERATIONS 

The correctness and linearity of suffix tree construction follows fronl· McCreight's original 
paper [M 76]. Here we will concern ourselves with the correctness and the linearity of suffix tree 
destruction-questions raised in Section 2. 

Theorem 1. Deleting leaves in FIFO order and deleting internal nodes with single sons will 
never leave dangling suffix pointers. 

Proof. Assume the contrary. We have a node a with a suffix pointer to a node 8 that has 
just been deleted. The existence of a means that there are at least two strings that agree for l 
positions and then differ at l + 1. Assuming that these two strings start at positions i and j, 
where both i and j are within the window of recently scanned strings and are not equal to the 
current position, then there are two even younger strings at i + 1 and j + 1 that differ first at 
l. This contradicts the assumption that 8 has one son. (If either i or j are equal to the current 
position, then a is a new node and can temporarily be without a suffix pointer.) 

There are two issues related to the percolating update: its cost and its effectiveness. 

Theorem 2. Each percolated update has constant amortized cost. 

Proof. We assume that the data structure contains a "credit" on each internal node where the 
"update" flag is true. A new leaf can be added with two "credits." One is spent immediately 
to update the parent, and the other is combined with any credits remaining at the parent to 
either: 1) obtain one credit to leave at the parent and terminate the algorithm or 2) obtain 
two credits to apply the algorithm recursively at the parent. This gives an amortized cost of 
two updates for each new leaf. 

For the next theorem, define the "span" of a suffix tree to be equal to the size of its fixed window. 
So far we have used examples with "span" equal to 4096, but the value is flexible. 

Theorem 3. Using the percolating update, every internal node will be updated at least once 
during every period of length "span." 
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Proof. It is llseflll to prove the sliglltly stronger result that eveI:Y internal node (that remains 
for an entire period) will be updated twice during a period, and thus propagate at least one 
update to its pflrent. To SllOW a contradiction, we find the earliest period and the node f3 
farthest fron] the root that does not propagate an update to its parent. If f3 has at least two 
children that have remained for the entire period, then f3 must have received updates from 
tllese nodes: tllCY clre farther frOIn the root. If (3 has only one remaining child, then it must 
have a new child, and so it will still get two updates. (Every newly created arc causes a son to 
update a parent, percolating if necessary.) Similarly, two new children also cause two updates. 
By every accounting, (3 will receive two updates during the period, and thus propagate an 
llpdate---contradicting our assumption of f3 's failure to update its parent. 

7 

There is SOll1e flexibility on how updating is handled. We could propagate the current position 
upwards before rescanning, and then write the current position into those nodes passed during 
the rescan and scan; in this case, the proof of Theorenl 3 is conservative. Alternatively, a similar, 
synuuetric proof can be used to show that updating can be omitted when new arcs are added so 
long as we propagate an update after every arc is deleted. The choice is primarily a matter of 
ilupleluentation convenience, although the method used above is slightly faster. 

The last major theoretical consideration is the effectiveness of the Al policy in choosing 
between literal and copy codewords. We have chosen the following one-pass policy for AI: When 
the encoder is idle, issue a copy if it is possible to copy two or more characters; otherwise, start a 
literal. If the encoder has previously started a literal, then terminate the literal and issue a copy 
only if the copy is of length three or greater. 

Notice that this policy can sometimes go astray. For example, suppose that the compressor is 
idle at position i and has the following copy lengths available at subsequent positions: 

i+l i+2 i+3 i+4 i+5 

1 3 16 15 14 13 
(1) 

Under the policy, the compressor encodes position i with a literal codeword, then takes the copy 
of length 3, and finally takes a copy of length 14 at position i + 4. It uses 6 bytes in the encoding: 

(literall)X(copy 3 -y)(copy 14 -y) 

If the compressor had foresight it could avoid the copy of length 3, compressing the same 
111aterial into 5 bytes: 

(literal 2)XX(copy 16 -y) 

The optimal solution can be computed by dynamic programming [SS 82]. One forward pass 
records the length of the longest possible copy at each position (as in equation 1) and the dis­
placenlent for the copy (not shown in equation 1). A second backward pass computes the optimal 
way to finish compressing the file from each position by recording the best codeword to use and 
the length to the end-of-file. Finally, another forward pass reads off the solution and outputs the 
conlpressed file. However, one would probably never want to use dynamic programming since the 
one-pass heuristic is a lot faster, and we estimated for several typical files that the heuristically 
cOlupressed output was only about 1% larger than the optimum. Furthermore, we will show in the 
remainder of this section that the size of the compressed file is never worse than 5/4 the size of the 
optinlal solution for the specific A 1 encoding. This will require developing some analytic tools, so 
the non-nlathenlatical reader should feel free to skip to Section 4. 

The following definitions are useful: 

Definition. F( i) is tlJe longest feasible copy at position i in tlle file. 
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Sanlple F(i)'s were given above in equation 1. They are dependent on the encoding used. For now, 
we are assuming that they are limited in Inagnitude to 16 and'111ust correspond to copy sources 
within the last 4096 characters. 

Definition. B(i) is the size of the best way to conlpress the relnainder of the file, starting at 
position i. 

B(i)'s would be cOlnputed in the reverse pass of the optinlal algorithnl outlined above. 

The following Theorems are given without proof: 

Theorem. F(i + 1) ~ F(i) - 1. 

Theorem. There exists an optimal solution where copies are the longest possible (i.e., only copies 
corresponding to F(i)'s are used) 

Theorem. B(i) is monotone decreasing. 

Theorem. Any solution can be modified, without affecting length, so that (literal Xl) followed 
immediately by (literal X2) implies that Xl is maximum (in this case 16). 

We could continue to reason in this vein, but there is an abstract way of looking at the problem 
that is both clearer and more general. Suppose we have a nondeterministic finite autonlaton where 
each transition is given a cost. A simple example is shown in Figure 4. The machine accepts 
(a + b)*, with costs as shown in parentheses. 

Start 

Figure 4. A Nondeterministic Automaton with Transition Costs. 

The total cost of accepting a string is the sum of the transition costs for each character. (While 
it is not important to our problem, the optimal solution can be computed by forming a transition 
matrix for each letter, using the costs shown in parentheses, and then multiplying the matrices 
for a given string, treating the coefficients as elements of the closed semiring with operations of 
addition and minimization.) We can obtain a solution that approximates the minimum by deleting 
transitions in the original machine until it becomes a deterministic machine. This corresponds to 
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choosing a policy in our original data compression problenl. A policy for the machine in Figure 4 
is shown in Figure 5. 

Start 

a (3) 

Figure 5. A Deterministic "Policy" Automaton for Figure 4. 

We now wish to compare, in the worst case, the difference between optimally accepting a 
string with the nondeterministic machine, and deterministically accepting the same string with the 
"policy" machine. This is done by taking a cross product of the two machines, as shown in Figure 
6. 

In Figure 6 there are now two weights on each transition; the first is the cost in the nonde­
tenninistic graph, and the second is the cost in the policy graph. Asymptotically, the relationship 
of the optimal solution to the policy solution is dominated by the smallest ratio on a cycle in this 
graph. In the case of Figure 6, there is a cycle from 1, l' to 1,2' and back that has cost in the 
nondeterministic graph of 2 + 1 = 3, and cost in the policy graph of 3 + 3 = 6, giving a ratio of 
1/2. That is, the policy solution can be twice as bad as the optimum on the string ababababab . ... 

In general, we can find the cycle with the smallest ratio mechanically, using well known tech­
niques [DBR 66], [L 76]. The idea is to conjecture a ratio r and then reduce the pairs of weights 
(x, y) on the arcs to single weights x - ry. Under this reduction, a cycle with zero weight has ratio 
exactly r. If a cycle has negative weight, then r is too large. The ratio on the negative cycle is 
used as a new conjecture, and the process is iterated. (Negative cycles are detected by running a 
shortest path algorithm and checking for convergence.) Once we have found the minimum ratio 
cycle, we can create a worst case string in the original automata problem by finding a path from the 
start state to the cycle and then repeating the cycle indefinitely. The ratio of the costs of accepting 
the string nondeterministic ally and deterministically will converge to the ratio of the cycle. (The 
path taken in the cross product graph will not necessarily bring us to the same cycle, due to the 
initial path fragment; we will, nevertheless, do at least as well.) Conversely, if we have a sufficiently 
long string with nondeterministic to deterministic ratio r, then the string will eventually loop in 
the cross product graph. If we remove loops with ratio greater than r we only improve the ratio of 
the string, so we must eventually find a loop with ratio at least as small as r. 
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10 DATA COMPRESSION WITH FINITE WINDOWS 

Start 

Figure 6. The Cross Product. 

The above discussion gives us an algorithmic way of analyzing our original data compression 
problem. The possible values of F( i) are encoded in a 17 character alphabet Po ... Pl(j, represent­
ing the length of copy available at each position. The compression algorithm is described by a 
nondeterministic machine that accepts strings of Pj; this machine has costs equal to the lengths 
of the codewords used by the algorithm. There are two parameterized states in this machine: l;r, 
means that there is a literal codeword under construction with x spaces still available; cy means 
that a copy is in progress with y characters remaining to copy. The idle state is lo == Co. In the 
nondeterministic machine, the possible transitions are: 

lo 
p.(2) 

lt5 start a literal ~ 

lx 
p.(l) 

lx-l continue a literal (x ~ 1) ~ 

(2) 
Pi(2) 

l* ~ Ci-l start a copy 
P.(O) 

continue a copy c y ~ Cy-l 

(An asterisk is used as a wild card to denote any state.) Based on the theorems above we have 
already eliminated some transitions to simplify what follows. For example, 

Cy 
p.(2) 
~ lt5 start a literal from inside a copy (y ~ 1) (3) 
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is unnecessary. The deterministic machine, given below, eliminates many more transitions: 

lo 
Pi(2) 

115 start a literal if i :::; 1 --* 

lx 
Pi(l) 

lx-l continue a literal if x ~ 1 and i :::; 2 --* (4) Pi(2) 
lx --* Ci-l start a copy if i ~ 3 or x = 0 and i = 2 

P.(O) 
continue a copy cy --* CY-l 

Finally, we add one more machine to guarantee that the strings of Pi are realistic. In this machine, 
state Si means that the previous character was Pi, so the index of the next character must be at 
least Pi-I: 

S' J (j~i-l) (5) 

The cross product of these three machines has approximately 17K states and was analyzed me­
chanically to prove a minimum ratio cycle of 4/5. Thus the policy we have chosen is never off by 
more than 25%, and the worst case is realized on a string that repeats a Pi pattern as follows: 

2 

PlO PlO 

3 4 567 8 9 10 11 

pg P8 P7 P6 Ps P4 P3 P2 PI 
12 13 14 15 

(6) 
P2 PI0 PI0 pg 

(There is nothing special about 10; it was chosen to illustrate a long copy and to match the example 
in Appendix A.) The deterministic algorithm takes a copy of length 10 in the first position, and 
then switches to a literal for positions 11 and 12. Five bytes are used in each repetition of the 
pattern. The optimal solution is one position out of phase. It takes a copy of length 10 in the 
second position, and then finds a copy of length 2 at position 12, for a total of four bytes on each 
iteration. 

We have abstracted the problem so that the possible copy operations are described by a string 
of Pj, and we have shown a pathological pattern of Pj that results in 5/4 of the optimal encoding. 
There might still be some doubt that such a string exists, since the condition that our third machine 
(5) guarantees, F(i + 1) ~ F(i) - 1, is a necessary but not sufficient condition. Nevertheless, the 
details of an actual pathological string can be found in Appendix A. 

SECTION 4. A SIMPLER DATA STRUCTURE 

Although the quantity of code associated with Al is not enormous, it is complicated, and the 
data structures are fairly large. In this section, we present simpler methods for finding the suffix 
and for propagating the window position. 

The alternative to a percolating update is to update the positions in all nodes back to the root 
whenever a new leaf is inserted. Then no updates are needed when nodes are deleted. The update 
flags can be eliminated. 

The alternative to suffix pointers is more complicated. The cost of movement in a tree is not 
uniform; moving deeper requires a hash table lookup, which is more expensive than following a 
parent pointer. So we can determine the suffix by starting at the suffix leaf and following parent 
pointers back toward the root until the suffix node is reached. The suffix leaf is known because the 
string at i matched the string at some earlier window position j; the suffix leaf j + 1 is the next 
entry in the leaf array. With this change, the suffix pointers can be eliminated. 

From a theoretical perspective, these modifications, which have O(nd) worst case performance 
for a file of size n and cut-off depth d, are inferior to the O(n) performance of the suffix tree. For 
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AI, with a cutoff of 16, these modifications improve average performance, but the A2 method 
discussed in the next section has such a deep cut-off that suffix pointers and percolated updates 
are preferable. 

SECTION 5. A MORE POWERFUL ENCODING 

The 4,096-byte window of Al is roughly optimal for fixed size copy and literal codewords. 
Longer copies would, on average, be found in a larger window, but a larger displacement field 
would be required to encode them. To exploit a larger window, we must use a variable-width 
encoding that is statistically sensitive. to the fact that recent window positions are more likely to 
be used by copy codewords than those positions further back. Similarly, it is advantageous to use 
variable-width encodings for copy and literal lengths. 

There are several approaches we might use for variable-length encoding. We could use fixed 
or adaptive Huffman coding, arithmetic encoding, a variable-length encoding of the integers, or a 
manageable set of hand-designed codewords. We eliminated from consideration adaptive Huffman 
and arithmetic coding because they are slow. Moreover, we felt they would provide (at best) a 
secondary adaptive advantage since the "front end" textual substitution is itself adapting to the 
input. We experimented with a fixed Huffman encoding, a hand-designed family of codewords, and 
a variable-length encoding of the integers, so we will compare these options briefly: 

Hand-Designed Codewords. This is a direct generalization of AI, with short copies that use 
fewer bits but cannot address the full window, and longer copies that can address larger blocks 
further back in the window. With a few codewords, this is fast and relatively easy to implement. 
However, some care must be taken in the choice of codewords to maximize compression. 

Variable-Length Integers. The simplest method we tried uses a unary code to specify field 
width, followed by the field itself. Copy length and displacement fields are coded independently via 
this technique, so any correlations are ignored. There are more elaborate codings of the integers 
(such as [G 66], [E 75], or [ER 78]), that have been used by [RPE 81], and [GH 82] in their 
implementations of Lempel-Ziv compression. These encodings have nice asymptotic properties for 
very large integers, but the unary code is best for our purposes since, as we will see shortly, it can 
be tuned easily to the statistics of the application. The unary code has the additional advantage 
of a simple hardware implementation. We will return to the unary code in more detail shortly. 

Fixed Huffman. Ideally, a fixed Huffman encoder should be applied to source consisting of the 
copy length and displacement concatenated together (to capture the correlation of these two fields). 
However, since we wish to expand window size to 16384 and maximum copy length to 2000, the 
realities of gathering statistics and constructing an implementation dictate that we restrict the 
input of the fixed Huffman compressor to a size much smaller than 2000 x 16384 by grouping 
together codes with nearly equal copy lengths and displacements. To improve speed we use tables 
to encode and decode a byte at a time. Nevertheless, the fixed Huffman approach is the most 
complex and slowest of the three options compared here. 

To decide how much compression could be increased with a Fixed Huffman approach, we 
experimented with several groupings of nearly equal copy lengths and displacements, using a finer 
granularity for small values, so that the input to the Fixed Huffman compressor had only about 
30,000 states, and we computed the entropy to give a theoretical bound on the compression. The 
smallest entropy we obtained was only 4% more compact than the actual compression achieved 
with the unary encoding described below, and any real implementation would do worse than an 
entropy bound. Consequently, because the Fixed Huffman approach did not achieve significantly 
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higher compression, we favor the simpler unary code, though this is not an overwhelmingly clear 
choice. 

Define a (start, step, stop) unary code of the integers as follows: The nth codeword has nones 
followed by a zero followed by a field of size start + n . step. If the field size is equal to stop then 
the preceding zero can be omitted. The integers are laid out sequentially through these codewords. 
For example, (3,2,9) would look like: 

Codeword Range 

Ox xx 0-7 
10xxxxx 8-39 
110xxxxxxx 40-167 
111xxxxxxxxx 168-679 

Appendix B contains a simple procedure that generates unary codes. 

The A2 textual substitution method encodes copy length with a (2,1,10) code, leading to a 
maximum copy length of 2044. A copy length of zero signals a literal, for which literal length is 
then encoded with a (0,1,5) code, leading to a maximum literal length of 63 bytes. If copy length 
is non-zero, then copy displacement is encoded with a (10,2,14) code. The exact maximum copy 
and literal lengths are chosen to avoid wasted states in the unary progressions; a maximum copy 
length of 2044 is sufficient for the kinds of data studied in Section 8. The Al policy for choosing 
between copy and literal codewords is used. 

Three refinements are used to increase A2's compression by approximately 1% to 2%. First, 
since neither another literal nor a copy of length 2 can immediately follow a literal of less than 
maximum literal length, in this situation, we shift copy length codes down by 2. In other words, 
in the (2,1,10) code for copy length, 0 usually means literal, 1 means copy length 2, etc.; but after 
a literal of less than maximum literal length, 0 means copy length 3, 1 means copy length 4, etc. 

Secondly, we phase-in the copy displacement encoding for small files, using a (10 - x, 2, 14 - x) 
code, where x starts at 10 and descends to 0 as the number of window positions grows; for example, 
x = 10 allows 2° + 22 + 24 = 21 values to be coded, so when the number of window positions exceeds 
21, x is reduced to 9; and so forth. 

Finally, to eliminate wasted states in the copy displacement encoding, the largest field in the 
(10 - x, 2,14 - x) progression is shrunk until it is just large enough to hold all values that must 
be represented; that is, if v values remain to be encoded in the largest field then smaller values are 
encoded with llog2 v J bits and larger values with ilog2 v 1 bits rather than 14 - x bits. This tri~k 
increases compression during startup, and, if the window size is chosen smaller than the number 
of values in the displacement progression, it continues to be useful thereafter. For example, the 
compression studies in Section 8 use an A2 window size of 16,384 characters, so the (10,2,14) code 
would waste 5, 120 states in the 14-bit field without this trick. 

Percolating update seems preferable for the implementation of A2 because of the large max­
imum copy length; with update-to-root, pathological input could slow the compressor by a factor 
of 20. Unfortunately, the percolating update does not guarantee that the suffix tree will report the 
nearest position for a match, so longer codewords than necessary may sometimes be used. This 
problem is not serious because the tree is often shallow, and nodes near the root usually have many 
sons, so updates propagate much more rapidly than assumed in the analysis of Section 3. On 
typical files, compression with percolated update is 0.4% less than with update-to-root. 
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SECTION 6. A FASTER COMPRESSOR 

A2 has very fast expansion with a small storage requirement, but, even though compression 
has constant amortized time, it is 5 times slower than expansion. Al and A2 are most appropriate 
in applications where compression speed is not critical and where the performance of the expander 
needs to be optimized, such as the mass release of software on floppy disks. However, in applications 
such as file archiving, faster compression is needed. For this reason, we have developed the B I 
and B2 methods described here, which use the same encodings as Al and A2, respectively, but 
compute window displacement differently. Copy codewords are restricted to start at the beginning 
of the yth previous codeword or literal character emitted; they can no longer address every earlier 
character, but only those where literal characters occurred or copy codewords started; we refer 
to displacements computed this way as "compressed displacements" throughout. Copy length is 
still measured in characters, like AI. By inserting this'level of indirection during window access, 
compression speed typically triples, though expansion and the rate of adaptation are somewhat 
slower. 

With "compressed displacements," suffix pointers and update propagation are unnecessary 
and a simpler PATRICIA tree can be used for the dictionary. Entries are made in the tree only on 
codeword boundaries, and this can be done in linear time by starting at the root on each iteration. 
It is useful to create an array of permanent nodes for all characters at depth 1. Since copy codewords 
of length 1 are never issued, it doesn't matter that some permanent nodes don't correspond to any 
window character. Each iteration begins by indexing into this node array with the next character. 
Then hash table lookups and arc character comparisons are used to descend deeper, as in AI. 
The new window position is written into nodes passed on the way down, so update propagation is 
unnecessary. 

In short, the complications necessary to achieve constant average time per source character 
with A2 are eliminated. However, one new complication is introduced. In the worst case, the 
16,384 window positions of B2 could require millions of characters, so we impose a limit of 12 x 
16,384 characters; if the full window exceeds this limit, leaves for the oldest window positions are 
purged from the tree. 

Because of slower adaptation, B2 usually compresses slightly less than A2 on small files. But 
on text and program source files, it surpasses A2 by 6% to 8% asymptotically; the crossover from 
lower compression to higher occurs after about 70,000 characters! A2 codewords find all the near­
term context, while B2 is restricted to start on previous codeword boundaries but can consequently 
reach further back in the file. This gives B2 an advantage on files with a natural word structure, 
such as text, and a disadvantage on files where nearby context is especially important, such as 
scanned images. 

We also tried variations where the tree is updated more frequently than on every codeword 
boundary and literal character. All variations up to and including A2 can be implemented within 
the general framework of this method, if speed is not an issue. For example, we found that about 
1 % higher compression can be achieved by inserting another compressed position between the two 
characters represented by each length 2 copy codeword and another 0.5% by also inserting com­
pressed positions after each character represented by length 3 copy codewords. However, because 
these changes slow compression and expansion we haven't used them. 
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SECTION 7. IMPROVING TilE COMPRESSION RATIO 

In section (j we considered ways to speed up cOlupression at the cost of slower adaptation and 
('xpansion. In this section we will explore the other direction: inlproving the compression ratio 
with a slight cost to the running tiIue of the algorithnl. 

When a string occurs frequently in a file, all the luethods we have considered so far waste 
space in their encoding; when they are encoding the repeating string, they are capable of specifying 
the copy displacenlent to nlultiple previous occurrences of the string, yet only one string needs 
to be copied. By contrast, the data structures we have used do not waste space. The repeating 
strings share a conlluon path near the root. If we base the copy codewords directly on the data 
structure of the dictionary, we can ilnprove the compression ratio significantly. (This brings us 
closer to the second style of Ziv and Lempel's textual substitution work [ZL 78] [MW 84] [J 85], 
where a dictionary is 111aintained by both the compressor and expander. However, since we still 
use a window and an explicit copy length coding, it is natural to view this as a modification of our 
earlier conlpressors, in the style of Ziv and Lempel's first textual substitution work.) 

The C2 nlethod uses the sanle PATRICIA tree data structures as B2 to store its dictionary. 
Thus it takes two pieces of information to specify a word in the dictionary: a node, and a location 
along the arc between the node and its parent (since PATRICIA tree arcs may correspond to strings 
with nlore than one character). We will distinguish two cases for a copy: if the arc is at a leaf 
of the tree, then we will use a Leaf Copy codeword, while if the arc is internal to the tree will use 
a NodeCopy codeword. Essentially, those strings appearing two or more tinles in the window are 
coded with Node Copies, avoiding the redundancy of A2 or B2 in these cases. 

The C2 encoding begins with a single prefix bit that is 0 for a NodeCopy, 1 for a Leaf Copy 
or Literal. 

For NodeCopy codewords, the prefix is followed by a node number in [O .. maxNodeNo], where 
maxNodeNo is the largest node number used since initialization; for most files tested, maxNodeNo 
is about 50% the number of leaves. Following the node number, a displacement along the arc from 
the node to its parent is encoded; for most NodeCopy codewords the incoming arc is of length 
1, so no length field is required. If a length field is required, 0 denotes a match exactly at the 
node, 1 a displacenlent 1 down the arc from the parent node, etc. Rarely is the length field longer 
than one or two bits because the arc lengths are usually short, so all possible displacements can be 
enulnerated with only a few bits. For both the node nunlber and the incoming arc displacement, 
the trick described in Section 5 is used to eliminate wasted states in the field; that is, if v values 
Blust be encoded, then the smaller values are encoded with Llog2 v J bits and larger values with 
pog2 v 1 bits. 

Leaf Copies are coded with unary progressions like those of A2 or B2. A (1,1,11) progression 
is used to specify the distance of the longest match down the leaf arc from its parent node; with 0 
denoting a literal; this progression leads to a maximum copy length of 4094 bytes. Since another 
literal never occurs immediately after a literal of less than maximum literal length, the Leaf Copy 
arc distance progression is shifted down by 1 when the preceding codeword was a literal (Le., arc 
displacement 1 is coded as 0, 2 as 1, etc.) On a cross section of files from the data sets discussed 
later, distance down the leaf arc was highly skewed, with about half the arc displacements occurring 
one character down the leaf arc. Because of this probability spike at 1 and the rapid drop off at 
larger distances, the average length field is small. Following the length field, the window position 
is coded by gradually phasing in a (10,2,14) unary progression exactly like B2's. 

Literals are coded by first coding a Leaf Copy arc displacelnent of 0 and then using a (0,1,5) 
unary progression for the literal length exactly like B2. 
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Unlike A2 and B2, the expander for C2 111Ust Inaintain a dictionary tree exactly like the 
conlpressor's tree to pennit decoding. Notice that this is not as onerous as it nlight seelll. During 
conlpression, the algorithm nlust search the tree downwards (root towards leaves) to find the longest 
match, and this requires a hash table access at each node. By contrast, the expander is told which 
node was Inatched, and it can recover the length and window position of the Inatch frOln the node. 
No hash table is required, but the encoding is restricted: a copy codeword Inust always represent 
the longest Inatch found in the tree. In particular, the superior heuristic used by B2 to choose 
between Literal and Copy codewords nlust be discarded; instead, when the longest Inatch is of 
length 2 or nlore, a copy codeword Inust always be produced. With this restriction, the expander 
can reconstruct the tree during decoding simply by hanging each new leaf fronl the node or arc 
indicated by the NodeCopyor Leaf Copy codeword, or in the case of literals, by hanging the leaf 
from the permanent depth 1 node for each literal character. 

SECTION 8. EMPIRICAL STUDIES 

In this section, we compare the five compression nlethods we have developed with other one­
pass, adaptive methods. For most other methods, we do not have well-tuned implenlentations and 
report only compression results. For inlplementations we have tuned for efficiency, speed is also 
estimated (for our 3 MIP, 16-bit word size, 8 megabyte workstations). The execution times used 
to determine speed include the time to open, read, and write files on the local disk (which has 
a relatively slow, maximum transfer rate of 5 megabits per second); the speed is computed by 
dividing the uncompressed file size by the execution time for a large file. 

We tested file types important in our working environment. Each number in the table below is 
the sum of the compressed file sizes for all files in the group divided by the sum of the original file 
sizes. Charts 1-3 show the dependency of compression on file size for all of the cOlnpression methods 
tested on the source code (SC) data set. The gray area in these charts shows the distribution of 
file sizes in the data set, and the numbers next to the labels are the total compression ratios, 
duplicating the SC column in the table below. 

DATA SETS 

SC Source Code. All8-bit Ascii source files from which the boot file for our programming environ­
ment is built. Files include some English comments, and a densely-coded collection of fornlatting 
information at the end of each file reduces compressibility. The files themselves are written in the 
Cedar language. (1185 files, average size 11 Kbytes, total size 13.4 Mbytes) 

TM Technical Memoranda. All files from a directory where computer science technical memoranda 
and reports are filed, excluding those containing images. These files are 8-bit Ascii text with densely­
coded formatting information at the end (like the source code). (134 files, average size 22 Kbytes, 
total size 2.9 Mbytes) 

NS News Service. One file for each work day of a week from a major wire service; these files 
are 8-bit Ascii with no formatting information. Using textual substitution methods, these do not 
compress as well as the technical memoranda of the previous study group, even though they are 
much larger and should be less impacted by startup transient; inspection suggests that the larger 
vocabulary and extensive use of proper names might be responsible for this. (5 files, average size 
459 Kbytes, total size 2.3 Mbytes) 
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Text Binary Fonts lInages 

Method SC TM NS CC BF SF RCF SNI SCI BI 

HO .732 .612 .590 .780 .752 .626 .756 .397 .845 .148 

HI .401 .424 .467 .540 .573 .380 .597 .181 .510 .101 

KG .751 .625 .595 .804 .756 .637 .767 .415 .850 .205 

V .749 .624 .595 .802 .756 .637 .766 .414 .850 .205 

CW .369 .358 .326 .768 .544 .516 .649 .233 .608 .106 

MW1 .508 .470 .487 .770 .626 .558 .705 .259 .728 .117 

MW2 .458 .449 .458 .784 .594 .526 .692 .270 .774 .117 

UW .521 .476 .442 .796 .638 .561 .728 .255 .697 .118 

BSTW .426 .434 .465 -_.- .684 -- --- .581 - - -

Al .430 .461 .520 .741 .608 .502 .657 .351 .766 .215 

A2 .366 .395 .436 .676 .538 .460 .588 .259 .709 .123 

B1 .449 .458 .501 .753 .616 .505 .676 .349 .777 .213 

B2 .372 .403 .410 .681 .547 .459 .603 .255 .714 .117 

C2 .360 .376 .375 .668 .527 .445 .578 .238 .662 .105 

Table 1. Comparison of Compression Methods. 

CC COlnpiled Code. The conlpiled-code files produced from the SC data set. Each file contains 
several different regions: symbol nanles, pointers to the symbols, statement boundaries and source 
positions for the debugger, and executable code. Because each region is small and the regions have 
different characteristics, these files severely test an adaptive compressor. (1220 files, average size 
13 Kbytes, total size 16.5 Mbytes) 

BF Boot File. The boot file for our progral1ll1ling envirOlunent, basically a core il1lage and melnory 
Inap. (1 file, size 525 Kbytes) 

SF Spline Fonts. Spline-described character fonts used to generate the bitInaps for character sets 
at a variety of resolutions. (94 files, average size 39 Kbytes, total size 3.6 Mbytes) 

RCF Run-coded Fonts. High-resolution character fonts; where the original bitnlaps have been 
replaced by a run-coded representation. (68 files, average size 47 Kbytes, total size 3.2 Mbytes) 

SNI Synthetic Inlages. All 8 bit/pixel synthetic hnage files frol1l the directory of an imaging 
researcher. The 44 files are the red, green, and blue color separations for 12 color il1lages, 2 of 
which also have an extra file to encode background transparency; in addition, there are 6 other 
grey scale iInages. (44 files, average size 328 Kbytes, total size 14.4 Mbytes) 

SCI Scanned lInages. The red separations for all 8 bit/pixel scanned-in color iInages frol1l the 
directory of an inlaging researcher. The low-order one or two bits of each pixel are probably noise, 
reducing cOlnpressibility. (12 files, average size 683 Kbytes, total size 8.2 Mbytes) 

BI Binary lInages. CCITT standard inlages used to evaluate binary facsinlile cOl1lpression Inethods. 
Each file consists of a 148-byte header followed by a binary scan of 1 page (1728 pixels/scan line 
x 2376 scan lines/page). SOlne ilnages have blocks of zeros l1lore than 30,000 bytes long. Because 
these files are cOlnposed of I-bit rather than 8-bit itelns, the general-purpose compressors do worse 
than they otherwise l1light. (8 files, average size 513 Kbytes, total size 4.1 Mbytes) 
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The special-purpose CCITT 1D ano 2D cOlupression methoos reporteo in [HR 80] achiev(', 
respectively, .112 ano .064 cOlupression ratios on these stanoaro inlCl,ges when the extraneOllS eno­
of-line codes required by the facshnile standard an' reuloveo and when the extraneous 148-byte 
header is reuloved. The special-purpose CCITT 2D result is significantly n)or(' cOlupact than any 
general purpose uwthod we tested, and only CW ano C2 surpasseo the 1D result. 

MEASUREMENTS AND COMPRESSION l'vIETIIODS 

HO and HI. These are entropy calculations made on a per file basis accoroing to: 

n-l 

Ho = - L P(x = ri) 10g2 P(x = ri), 
i=O 

11.-1 

HI = - L P(x = Ci) P(y = Cj Ix = ri) log2 P(y = rj I;:r = ri). 
i.j=O 

(7) 

(8) 

where x is a rand01n sYlnbol of the source, xy is a rand01nly chosen pair of adjacent source characters, 
and Ci ranges over all possible sYlnbols. Because of the slnall file size, the curves in charts 1 to 
3 drop off to the left. In theory, this slnall salllpling problell1 can be corrected according to [B 
59], but we have found it difficult to estiInate the total character set size in order to apply these 
corrections. Nevertheless, chart 1 shows that HO is a good estinlator for how well a nlell10ryless 
(zero-order) COlllpressor can do when file size is a large ll1ultiple of 256 bytes and HI bounds the 
compression for a first-order Markov 11lethod. (None of our files were large enough for HI to be an 
accurate estinlator.) 

KG and V. These adaptive 11lethods maintain a Huffnlan tree based on the frequency of characters 
seen so far in a file. The conlpressor and expander have roughly equal performance. The theory 
behind the KG approach appears in [G 78] and [K 85]. The similar V method, discussed in [V 
85], should get better compression during the startup transient at the expense of being about 18% 
slower. It is also possible to bound the performance of Vitter's scheme closely to that of a fixed 
non-adaptive compressor. Except on the highly compressible CCITT ilnages, these 11lethods achieve 
compression slightly worse than HO, as expected. But because of bit quantization, the cOlllpression 
of the CCITT images is poor--arithilletic coding would C01llpreSS dose to HO even on these highly 
compressible sources. 

CW Based on [CW 84], this method gathers higher-order statistics than KG or V above (which 
we ran only on zero-order statistics). The method that Cleary and Witten describe keeps statistics 
to some order 0 and encodes each new character based on the context of the 0 preceding characters. 
(We've used 0 = 3, because any higher order exhausts storage on 1110St of our data sets.) If the 
new character has never before appeared in the same context, then an escape 11lechanislll is used 
to back down to smaller contexts to encode the character using those statistics. (We've used 
their escape mechanism A with exclusion of counts from higher-order contexts.) Because of high 
event probabilities in some higher-ordered contexts and the possibility of ll1ultiple escapes before 
a character is encoded, the fractional bit loss of Huffluan encoding is a concern, so [CW 84] uses 
arithmetic encoding. We have used the arithmetic encoder in [WNC 87]. 

As Table 1 shows, CW achieves excellent compression. Its chief drawbacks are its space and 
time performance. Its space requirement can grow in proportion to file size; for exaillple, statistics 
for 0 = 3 on random input could require a tree with 2564 leaves, though English text requires 
much less. The space (and consequently time) performance of CW degrades dramatically on 
"more random" data sets like SNI and SCI. A practical implementation would have to limit storage 
somehow. 
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Even on English, Bell, Cleary, and Witten estimate that Moffat's tuned ilnplelnentation of CW is 
3 thnes slower cOlnpressing and 5 tinles slower expanding than C2 [BCW 88]. 

MWI. This Inetho~ described in [MW 84], is related to the second style of Lelnpel-Ziv conlpres­
sion, alluded to in the introduction. It uses a Trie data structure and 12-bit codes. Initially (and 
always) the dictionary contains 256 one-character strings. New Inaterial is encoded by finding the 
longest match in the dictionary, outputting the associated code, and then inserting a new dictionary 
entry that is the longest 11latch plus one 1110re character. After the dictionary has filled, each itera­
tion redahns an old code from among dictionary leaves, following a LRU discipline, and reuses that 
code for the new dictionary entry. The expander works the same way. MWI is simple to imple­
ment and is balanced in performance, with good speed both compressing and expanding (250,000 
bits/sec and 310,000 bits/sec respectively). The origi'nal method used 12-bit codes throughout for 
sinlplicity and efficiency. However, our implementation starts by using 9-bit codewords, increasing 
to 10, 11, and finally to 12 bits as the dictionary grows to its maximum size; this saves up to 352 
bytes in the compressed file size. On text and source code, Miller and Wegman determined that 
the 12-bit codeword size is close to optimal for this method. 

MW2. One drawback of MWI is the slow rate of buildup of dictionary entries. If, for example, 
the word abcdefghi appears frequently in a document, then ab will be in the dictionary after the 
first occurrence, abc after the second, and so on, with the full word present only after 8 occurrences 
(assuming no help from similar words in the document). Al below, for example, would be able 
to copy the whole word abcdefghi after the first occurrence, but it pays a penalty for the quick 
response by having a length field in its copy codeword. The idea of MW2 is to build dictionary 
entries faster by combining adjacent codewords of the MWI scheme. Longer words like abcdefghi 
are built up at an exponential rather than linear rate. The chief disadvantage of MW2 is its 
increased complexity and slow execution. Our implementation follows the description in [MW 84] 
and uses an upper limit of 4096 dictionary entries (or 12-bit codewords). We did not implement 
the 9-12 bit phase-in that was used in MWI so the size-dependent charts underestimate MW2's 
potential performance on small files. 

UW. This is the Compress utility found in the Berkeley 4.3 Unix, which modifies a method de­
scribed in a paper by Welch [W 84]; the authors of this method are S. Thomas, J. McKie, S. Davies, 
K. Turkowski, J. Woods, and J. Orost. It builds its dictionary like MWI, gradually expanding the 
codeword size from 9 bits initially up to 16 bits. The dictionary is frozen after 65,536 entries, but 
if the compression ratio drops significantly, the dictionary is discarded and rebuilt from scratch. 
We used this compressor remotely on a VAX-785, so it is difficult to compare its running time and 
implementation difficulties with the other methods we implemented. Nevertheless, because it does 
not use the LRU collection of codes, it should be faster than MWI. However, it has a larger total 
storage requirement and gets worse compression than MWI on most data sets studied. 

BSTW. This method first partitions the input into alphanumeric and non-alphanumeric "words," 
so it is specialized for text, though we were able to run it on some other kinds of data as well. The 
core of the compressor is a move-to-front heuristic. Within each class, the most recently seen words 
are kept on a list (we have used list size 256). If the next input word is already in the word list, 
then the compressor simply encodes the position of the word in the list and then moves the word 
to the front of the list. The move-to-front heuristic means that frequently used words will be near 
the front of the list, so they can be encoded with fewer bits. If the next word in the input stream 
is not on the word list, then the new word is added to the front of the list, while another word is 
removed from the end of the list, and the new word must be compressed character-by-character. 

Since the empirical results in [BSTW 85] do not actually give an encoding for the positions of 
words in the list or for the characters in new words that are output, we have taken the liberty of 
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using the V COlnpressor as a subroutine to generate these encodings adaptively. (There are actually 
four copies of Vitter's algorithlll running, one to encode positions and one to encode characters in 
each of two partitions.) Using an adaptive HuffllIan is slow; a fixed encoding would run faster, 
but we expect that a fixed encoding would slightly reduce conlpression on larger files while slightly 
hnproving cOlnpression on slnall files. We could not run BSTW for all of the data sets, since the 
parsing Inechanislll aSSUllIes 11l11nan-readable text and long "words" appear in the other data sets. 
When the unreadable input parsed well, as in the case of run-coded fonts, the conI pression was 
very good. 

AI. This is our basic lllethod described earlier. It has a fast and sinIple expander (560,000 
bits/sec) with a slnall storage requirelnent (10,000 bytes). However, the compressor is much slower 
and larger (73,000 bits/sec, 145,000 bytes using scan-frOln-Ieaf and update-to-root). The encoding 
has a InaxillUlln cOllIpression to 1/8 = 12.5% of the original file size because the best it can do is 
copy 16 characters with a 16-bit codeword. 

Caveat: As we lllentioned above, the running tillIes reported include the file system overhead 
for a relatively slow disk. To provide a baseline, we tinled a file copy without compression and 
obtained a rate of 760,000 bits per second. Thus, SOlne of the faster expansion rates we report are 
severely lhllited by the disk. For exanlple, we estilllate that without disk overhead the Al expander 
would be about twice as fast. On the other hand, rellloving disk overhead would hardly affect the 
cOlllpression speed of AI. 

A2. This Inethod, discussed in Section 5, enlarges the window to 16,384 characters and uses 
variable-width unary-coded copy and literal codewords to significantly increase compression. The 
running tillle and storage requirenlents are 410,000 bits/sec and 21,000 bytes for expansion and 
60,000 bits/sec and 630,000 bytes for conlpression (using suffix pointers and percolated update). 

Bl. This nlethod, discussed in Section 6, uses the Al encoding but triples compression speed 
by updating the tree only at codeword boundaries and literal characters. The running time and 
storage requirenlents are 470,000 bits/sec and 45,000 bytes for expansion and 230,000 bits/sec and 
187,000 bytes for compression. 

B2. This nlethod, discussed in Section 6, uses the SaIne encoding as A2 but triples compression 
speed by updating the tree only at codeword boundaries and literal characters. The COllI pressor 
and expander run at 170,000 and 380,000 bits/sec, respectively, and have storage requirenlents of 
792,000 and 262,000 bytes. 

C2. This 111ethod, discussed in Section 7, uses the SaIne data structures as B2 but a lllore powerful 
encoding based directly upon the structure of the dictionary tree. Compression is about the same 
and expansion about 25% slower than B2; the COlllpressor uses about the sanle storage as B2, but 
the expander uses Inore (about 529,000 bytes). 

Table 1 highlights SOlne differences between textual substitution nlethods like C2 and statistical 
111ethods like CWo (Thne and space perfoflnance differences have been discussed earlier.) There 
are several data sets where these Inethods differ draInatically. On NS, CW is significantly better 
than C2. We believe that this is because NS shows great diversity in vocabulary: a property that 
is troublesOlne for textual substitution, since it cannot copy new words easily frOln elsewhere in the 
doculllent, but this property is benign for CW, since new words are likely to follow the existing 
English statistics. On CC, for eXaInple, C2 is significantly better than CWo We believe that this 
is because CC contains several radically different parts, e.g. sYlnbol tables, and conlpiled code. C2 
is able to adjust to dralnatic shifts within a file, due to literal codewords and copy addressing that 
favors nearby context, while CW has no easy way to rapidly dhninish the effect of older statistics. 

XEROX PARC, CSL-S9-3, JANUARv19S9 



24 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

512 

• • 
• • 

• •• • 

DATA COMPRESSION WITII FINITE 'VINDOWS 

· .. '-...... . · .......... " ...... -... -. -- _. _. -- -- -- --, ........... .a.. •• •• •• •• •• •• •• •• •• •• •• . .-.-._.-.-.-
,~ .-._.-.-._._._.-

• •• 

•• 
•• 

•• 
•• .. .. .. .. 

•• 
•• 

1K 2K 4K 8K 16K 32K 64K 

B2 
A2 

C2 

A2 

B2 

C2 

Chart 4. Compression vs. Window Size, Data Set NS (bottom) Data Set BF (top) 

XEROX PARC, CSL-89-3, JANUARY 1989 

128K 



DATA COMPRESSION WITH FINITE WINDOWS 25 

For all of our Bwthods, A2, B2, and C2, window size is a significant consideration because 
it detenllines storage requirclllents and affects cOlupression ratios. Chart 4 shows c0111pression as 
a function of window size for the NS data set (concatenated into a single file to avoid start-up 
cffects), and for the BF boot file. These two data sets were typical of the billl0dal behavior we 
observed in our othcr data sets: large hUluan-readable files benefit greatly frolll increasing window 
size, while other test groups show little illlprovCluent beyond a window size of 4I{. 

CONCLUSIONS 

We have described several practical lnethods for loss less data cOlupression and developed data 
structures to support theln. These 11l€thods are strongly adaptive in the sense that they adapt not 
only during startup but also to context changes occurring later. They are suitable for IUOst high 
speed applications because they 111ake only one pass over source data, use only a constant amount 
of storage, and have constant mnortized execution tilne per character. 

Our e111pirical studies point to several broad generalizations. First, based on the HO and 
HI theoretical lilnits, textual substitution via A2, B2, or C2 surpasses me1110ryless or first-order 
Markov Inethods applied on a character-by-character basis on half the data sets. On the other 
half, even the CW third-order 111ethod can't achieve the HI bound. This suggests that, to surpass 
textual substitution for general purpose c0111pression, any Markov method 111Ust be at least second­
order, and to date, all such Inethods have poor space and time perfornlance. 

Secondly, the lnethods we've developed adapt rapidly during startup and at transitions in 
the lniddle of files. One reason for rapid adaptation is the use of slnaller representations for 
displace111ents to recent positions in the window. Another reason is the inclusion of multi-character 
literal codewords. Together the literals and short displacements allow our methods to perform 
well on short files, files with nlajor internal shifts of vocabulary or statistical properties, and files 
with bursts of poorly conlpressing lnaterial-all properties of a significant number of files in our 
environillent. 

Thirdly, it appears that the displacenlent-and-Iength approach to textual substitution is espe­
cially effective on s11lall files. On 11,000-byte progrmn source files, for exa11lple, A2 and B2 were 
over 20% Blore cOlupact than textual substitution 11lethods which did not use a length field (UW, 
MWl, and MW2). This is not surprising because the particular advantage of the length field 
in copy codewords is rapid adaptation on slnall files. However, even on the largest files tested, 
A2 and B2 usually achieved significantly higher cOlupression. Only on i111ages did other lllethods 
cOlnpete with the111; our 1110st powerful Inethod, C2, achieved higher cOlllpression than any other 
textual substitution lllethod we tested on all data sets. The effect of a length field is to greatly 
expand dictionary size with little or no increase in storage or processing tillle; our results suggest 
that textual substitution nlethods that use a length field will work better than those which do not. 

Fourthly, studies of A2, B2, and C2 using different window sizes showed that, for human­
readable input (e.g. English, source code), each doubling of window size iluproves the the COlllpres­
sion ratio by roughly 6% (for details see Chart 4). Furtherillore, the data structures supporting 
these nlethods scale well: running tillle is independent of window size, and 11lemory usage grows 
linearly with window size. Thus increasing window size is an easy way to inlprove the COllI pression 
ratio for large files of hUlnan-readable input. For other types of input the window size can be 
reduced to 4096 without significantly ilupacting cOlnpression. 

Going beyond these enlpirical results, an iluportant practical consideration is the trade-off 
muong speed, storage, and degree of cOlnpression; speed and storage have to be considered for both 
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cOlllpression and expansion. Of our own lnethods, A2 has very fast expansion with a lninhnal 
storage requirelnent. Its weakness is slow cOlnpression, which is seven tilnes slower than expansion, 
even though the suffix tree data structure with anlortized update uses constant aInortized thne per 
character. However, in applications which can afford relatively slow cOlnpression, A2 is excellent; 
for example, A2 would be good for nlass distribution of software on floppy disks or for overnight 
compression of files on a file server. Furthermore, if the parallel matching in the cOlllpression side 
of A2 were supported with VLSI, the result would be a fast, powerful lllethod requiring lninimal 
storage for both compressing and expanding. 

B2 provides nearly three times faster cOlnpression than A2 but has sOlllewhat slower expansion 
and adaptation. Thus, B2 is well suited for communication and archiving applications. 

Al and Bl do not compress as well as A2 and B2, respectively, but because of their two­
codeword, byte-aligned encodings they are better choices for applications where simplicity or speed 
is critical. (For example, J. Gasbarro has designed and implemented an expansion lllethod like Al 
to improve the bandwidth of a VLSI circuit tester [G 88].) 

C2 achieves significantly higher compression than B2, but its expander is somewhat slower 
and has a larger storage requirement. In the compression study reported in Section 8, C2 achieved 
the highest compression of all methods tested on 6 of the 10 data sets. 

We believe that our implementations and empirical results demonstrate the value of window­
based textual substitution. Together the A, Band C methods offer good options that can be 
chosen according to resource requirements. 
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ApPENDIX A. A PATHOLOGICAL EXAMPLE 

We now show a string that has the F pattern of equation, (6) of Section 3: 

2 :J 4 I) ij 7 H 9 10 11 12 13 14 I G 
(6) 

PIO PIO P9 PH P7 Pc; PI) P4 P:J P2 PI P2 PIO PIO P9 

Hereafter we will stop abstracting the string by its copy lengths. Capital letters are strings, small 
letters are single characters, and i, j, r, p, b are integers. The pathological string follows the pattern: 

(9) 

where the paraIneter r is chosen large enough so that one iteration exceeds the finite window (this 
prevents direct copying frOln the beginning of one Mo to a subsequent Mo). Within each Mi we 
have groups, 

(10) 

and each group is: 

We have introduced two Inore parameters: p is the number of nlinor blocks B i , and n is the 
nunlber of S characters. All of the S subscripts in the above formula are computed mod n. The 
groups skew so that, for exanlple, the beginning of GlO = slB1sp+ 1 ... will not match entirely with 
the beginning of Goo = slB1s1 .... It will, however, match in two parts: the prefix slBI appears 
in both strings, and the suffix GlO = ... B1sp + 1 ... will match with the suffix of GO! = ... B1sp + I ' 

If, for exanlple, BI has 9 characters, this gives two consecutive locations where a copy of size 10 is 
possible, in the pattern of equation 6. 

It relnains to create the match of length 2 at position 12 in equation (6). For this purpose, each 
of the Ci above are either ei or 0i. They will always precede respectively even and odd nunlbered 
Sj, and Inatch in pairs with their following s/s. For exanlple, the eo in Goo = sIB1s1eOs2B2s2'" 

will nlatch with S2. The eOs2 Inatch is hidden in a Ininor. block, segregated frOln the odd nunlbered 

Bo = xeOsOeOs2eOs4 ... eOsb-2 

Bl = xeOSbeOSb+2eOSb+4 ... eOs2b-2 

(12) 

This causes p and n to be related by: 

pb = 2nr 
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In the case of our running excuuple, where the finite window is size 4096 and tIl<' llUl,xillllllll copy 
length is 16 characters, an appropriate setting of the above paralllCtcrs is: 

r = 2, b = 8, p = 100, n = 200 (13) 

We need to take SOllIe care that the heuristic does not find the opthual solution. It turns out that if 
we just start as in equation 9, then the first A10 will not COlupress well, but the heuristic will start 
the behavior we are seeking in Aft. ASYlnptotically we achieve a worst case ratio of 4/5 between 
the opt inIal algorithnl and the policy heuristic. 
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Appendix B: Computing a U nary-Based Variable-Length Encoding of the Integers 

In Section 5 we defined a (start. step. stop) unary code of the integers as a string ofn onesfollowed by 
a zero followed by a field ofj bits. where j is in the arithmetic progression defined by (start. step. 
stop). This can be defined precisely by the following encoder: 

EncodeVar: PROC [out: CARDINAL, start, step, last: CARDINAL] - { 
UNTIL out < Power2[start] 00 

PutBits[l, 1]; 
out ... out - Power2[start]; 
start ... start + step; 
ENDLOOP; 

IF start < last THEN PutBits[out, start + 1] -- 0 followed by field of size "start" 
ELSE IF start> last THEN ERROR 
ELSE PutBits[out, start]; -- save a bit 
}; 

PutBits: PROC [out: CARD, bits: INTEGER] -
Output the binary encoding of" out" in ~ field of size "bits. " 

Notice that the encoder is able to save one bit in the last field size of the arithmetic progression. 






