
The Yggdrasil Project:
Motivation and Design

Robert B. Hagmann

The Vggdrasil Project:
Motivation and Design

Robert B. Hagmann
Xerox Palo Alto Research Center

CSL-91-13 October 1991 [P91-00140]

© Copyright 1991 Xerox Corporation. All rights reserved.

Abstract: The Yggdrasil Project has been concerned with the design, building, and

operation of a large scale, persistent information storage server. The novel parts of this

system are that it supports multiple data models, merges file server and database server

implementation, scales both in record size and server total size, has set based properties,

and provides non-navigational access to hypertext.

The main type of information to be stored in the system is literature. This is the principle

form of stored human information. The electronic form of literature is the evolution of

printed literature that is current today. This information differs from the typical database

(that stores "data") or from a file server in the size of objects, object semantics,

interrelationships, lifetimes, criticisms, histories, and types of information to be stored.

This paper describes several parts of the design and implementation of Yggdrasil. The

paper concentrates on the novel parts of the design such as data model integration, a

storage design for datum of vastly varying sizes, delayed indexing, and alerters.

CR Categories and Subject Descriptors: H.2.2 [Database Management]: Physical

Design; H.2.4 [Database Management]: Systems; H.2.7 [Database Management]:

Database Administration - Logging and recovery

Additional Keywords· and Phrases: Hypertext, Object-Oriented Database

XEROX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

1. Introduction

1. Introduction

The Y ggdrasil Project has been concerned with the design, building, and operation of a large

scale, persistent information storage server. This paper discusses several of the issues and aspects

of the design and implementation of Y ggdrasil. The prime audience for the paper is intended to be

people interested in database systems implementation.

The project came out of the focusing of the corporate policy of Xerox Corporation on

"Document Processing." Xerox corporate strategy requires multimedia, large scale, unstructured,

robust, and efficient servers for the storage and retrieval of documents. Y ggdrasil was a project in

Xerox's Palo Alto Research Center, Computer Sciences Laboratory (CSL) that addressed many of

the research issues needed to provide such a service. A prototype server was built, but was never

used except by the developers.

The cost of secondary storage has continued to decrease over the years. In addition, the range

of size of individual objects that people wish to store has grown One storage object in CSL is a 160

megabyte file. The simple yet elegant hierarchal naming systems such as we have in file systems

do not work well for all kinds of data. Nor were the concepts and existing implementations of

relational database systems a panacea: they is missing several features that make it difficult for it to

model some applications (e.g., good solutions for repeating groups, hypertext, stored procedures,

transitive closure, large objects, ...). Object-oriented databases are a current research topic, but

significant problems arise in their performance. locking. security, evolution, archiving, execution

model. and robustness.

Although much of the resean:h in database systems is involved with increasing the semantics

of the system, many of the potential dients of these systems simply want data storage. They want

the database to "store the bits and get out of the way." Semantics will be provided by the

applications. The database must he fast. efti<,·ient. and robust.

The name Yggdrasil was chosen because of its definition IAmerXII:

Yggldralsll 11. Also Ygldralsll. Norse Mythology. The great ash tree that holds together earth,

heaven, and hell by its roots and branches. (Old Norse, probably "the horse of Yggr" : Yggr.

name of Odin, from yggr, variant of uggr. frightful (see ugly) + drasill, horse.]

CSL has a history of naming projects from the Sunset New Western Garden Book [Suns79]. The

project was meant to be infrastructure so that it "holds together" many other things. It supports

versions so "roots and branches" is relevant.

The theme of this paper is the solutions to new problems encountered when expanding storage

requirements in several dimensions at once. The reader will learn about data model integration, a

storage design for datum of vastly varying sizes, delayed indexing, and alerters. The paper

concentrates on the novel parts of the design and gives minimal treatment to the more standard

XEROX PARC, CSL-91-13, October 1991

2 The Y ggdrasil Project: Motivation and Design

parts of the system. Parts of the system that were designed but not built are not discussed since no

experience was gained in the construction or operation of those parts of the system. These parts

included the query system, tertiary storage issues, availability, compression, and client object

caching.

The lessons learned from this experience were:

integration of data models is important and feasible

all databases should strive to have file server interfaces for some of the stored data

generic parts of data models include properties, sets, naming, and containers

separate locking name spaces for different aspects of objects can help concurrency and file

server implementation

versioning is important and must be done on the server

external interfaces to servers should publish permanent names for objects and anchors

This paper is organized as follows. Section 2 provides a historical perspective on this work.

Section 3 is "Seven Key Ideas and Rationale" and deals with the basic data model and the reasons

for choosing these ideas. Section 4 has the basic overview of the system design. It provides the

understanding of the overall design so that the pieces that are discussed later fit together better.

Section 5 is "Data Model Integration" and shows how the server was built to support multiple data

models. Allocation and clustering of magnetic disk storage is discussed in Section 6. Y ggdrasil

normally performs its index updates in a delayed and as soon as possible (ASAP) manner. Section

7 discusses the implementation and justification for this. Section 8 discusses a simple triggering

mechanism called Alerters. Section 9 discusses related work. The paper last section is for

concl usions.

2 Historical perspective

The storage. presentation, organization, access, creation, tailorability, finding, and contributing

to the store of knowledge of mankind will be changing. That is, literature will have a new form.

Part of this change will be the underlying database support the new literature. This paper presents

the motivation and design aspects for a project that dealt with a database for the new literature. It

had a data model and was of the scale needed for departmental sized organizations to deal with the

new literature.

Literature today is thought of as a collection of writings that have been printed. Literature

distills the knowledge of mankind. At various times, literature was passed orally, was restricted to

"scholars," was not supposed to evolve, or was only available to the rich. Today, printed literature

is widely available and about half of the world's adult population is literate.

XEROX PARC, CSL-91-13, October 1991

3. Seven Key Ideas and Rationale 3

Literature will evolve away from pnntmg solely on paper. Movies, radio, telephone,

television, recorded video tape, recorded audio tape, electronic mail, FAX, CD ROM, and high

bandwidth communication will (continue) to provide alternative dissemination methods to printing.

By scanning old format printed material into an electronic form, and performing page recognition

and natural language processing, old literature will evolve into an electronic form. With electronic

literature, there is a further broadening of the availability of information.

The character of the literature also will change. A piece of literature can be designed to be

viewed as a hologram. The piece can be active: it can run simulations, perform database queries,

compute graphics, or compute sound. A document can be shown at the level of understanding of

the reader.

Literature will change faster. Much of what will be published will be of low quality.

Criticism and reviews will also be published. Criticism and reviews must be used to filter the

literature so that it is manageable.

Since literature will become electronic, the structure of it can change. There will be non­

linear documents (hypertext). Access to literature will also change: querying and filtering agents

will find information for us and hide junk from us.

One of the keys to having literature evolve is to have an appropriate database. To be useful. it

has to be large and persistent. It has to be able to store text files, object files, page description

language files, editable documents, video, audio, as well as the normal "data" that is stored in

databases (integers, dates, floats, etc.). The Y ggdrasil project addressed the database issue by

designing and building a database server whose's underlying data model is hypertext. that has the

scale and scalahility needed. which supports multiple data models. and has the "systems" aspects

done well.

3. Sel"en Ke~' Ideas and Rationale

This section presents the seven hasic ideas for the system. None of these ideas are new. The

value of this project is in bringing these ideas together in one place, applying them to the literature

problem, and implementing them in a rohust manner. The ideas are nodes, labeled links,

properties, containers, set oriented non-navigational access, names, and versions.

3.1 Nodes (documents or objects without semantics)

In keeping with the theme of literature, nodes in the database are also called documents. A

node may not have a real world analogy that the reader might consider a document. The node's

contents might be the number three. The node might be a source or object "file."

The system was designed to handle a large number of nodes (e.g., millions). A node can be of

XEROX PARC, CSL-91-13, October 1991

4 The Y ggdrasil Project: Motivation and Design

any size: one byte long, or a gigabyte. Nodes (or node parts) were to be archived to on-line tertiary

storage (e. g., an optical disk jukebox).

Nodes have a contents. The contents of a node is a primitive value: it is a type and a value (of

that type). Only a dozen or so types are understood by the server. For example, strings (any

length), dates, floats, object identifiers (or Document Identifiers or a DID), and integers (32 bit and

infinite precision) are supported. In addition, other types are stored without the server

understanding what the value means. For example, aDA documents and compressed scanned

images are stored, but the server treats them as uninterpreted bytes. The client code, not running on

the server, is expected to' provide the semantics for these types. The type space is fairly large

(almost 32 bits) and is administrated by a database administrator without much support from the

system.

The notion of an object, node, document, entity, or file seems pervasive in many of the areas

that are of interest. To support hypertext, file servers, and object-oriented databases then this

seems like the right place to start with the data model.

3.2 Labeled links

Nodes can be connected by links (hypertext) IBush45, Eng163, Nels81]. A link is a directed

pointer between two nodes. The link has a label, which is just a string. An in/ink or a to link are

links that point at a node, while an outlink or ajro111 link are links leaving a node.

Nodes can efficiently determine both their inlinks and outlinks. Although links are directional,

they can be followed in either way. Links are themselves nodes. Links were binary in the

implementation. but would have been expanded to be multi-headed and multi-tailed if the projel"t

continued. Anchors (link source or destinations of smaller granularity than an object) arc not in the

system. but should have heen.

Not only is the notion of node important. hut abo the relationships hetween nodes. Links are a

very flexible and simple notion. Binary relations hetween nodes IS the SImplest form of these, yet

it is capable of modeling most relationships. Links are dIrectional since most relations are not

reflexive.

Links are nodes (or at least can be reitied as nodes) for two reasons. First, sometimes the dual

view of the "schema" is important. That is, the entities and relationships are backwards: the entities

should be relationships and the relationships should be entities. Without the links being nodes this

is hard to model. Second, it is sometimes useful to have links as nodes. For example, assigning

properties to links can be useful.

XEROX PARC, CSL-91-13, October 1991

3. Seven Key Ideas and Rationale 5

3.3 Nodes have properties (attributes)

Nodes have a set of attributes or properties. Both terms are used interchangeably. The

attributes of a node are a set of attribute name and attribute value pairs. The attribute name is just a

string that identifies the attribute. The attribute value is a set of fields. Each field has afield name

and a field vallie. The field value is a set of primitive values. Each of the above sets may be

ordered or unordered.

So the attributes are a set with the elements identified by attribute name. Each attribute has a

value that is a set of fields. Fields are set valued where these values are primitive values. So the

attributes are three levels of sets.

Having no restriction of the number of levels of sets made constructing a query language much

harder. In contrast, only two levels made modeling of some applications difficult and less efficient.

The modeling difficulties seemed particularly true for the types of objects, literature, for which the

system was designed. Three levels of sets is a compromise that is powerful in capturing most

applications yet easier to implement than full generality. Note that relational systems have only

one level of sets: the fields of a relation are single valued.

With three levels, the common case of an auxiliary table used to simulate repeating groups can

be modeled as part of the object. The benefit is the elimination of the otherwise useless auxiliary

tahle. It also seems better to keep the private properties of an object with the object, and not create

auxiliary objects. Objects are then are more self contained, so less of the structure of the datahase

is hidden in processing and is easier to store together on disk. Not all cases of the usc of auxiliary

tahles arc eliminated. \\'here the auxiliary tahle serves some other purpo~e (e.g .. it is used to

indicate common structure) or if the repeating group is itself multi-levcl. then an auxiliary ohject is

preferable to putting the data "inline" the ohject.

If the sets arc ordered. then they give the n-ary relations as a field value (see next suhsection).

Ordering is also a natural for many applications. For documents we want to sec ehaptcr I first.

Relational systems arc guaranteed to be unordered.

Naming of attributes is common in systems we are trying to supplant or make persistent. File

servers have named attributes. Object oriented systems have named slots. Hence, attributes have

names.

Fields were named to allow for finer granularity in naming of attributes. These names are

optional.

3.4 Containers group nodes

Y ggdrasil is designed to hold millions or hillions of nodes. Without some help, it is easy to

get "lost in (hyper) space." Both databases and file systems have grouping mechanisms. Relational

XEROX PARC, CSL-91-13, October 1991

6 The Y ggdrasil Project: Motivation and Design

databases use relations to group similar nodes together. File systems have (hierarchical) directories

that are a well accepted improvement over a flat name space. Again, related items are placed in the

same group. However, the items are no longer similar (e.g., .c files and .0 files). Some sort of

context or grouping is needed by any large system.

Containers are the context mechanism in Y ggdrasil. A container is a (possibly ordered) set of

nodes. A container is associated with a root node of the container (analogous to directory in a file

system). A node can belong to any number of containers. A container can be the sub-container of

any number of containers. Loops are allowed in the sub-container relation (i. e., it is a directed

graph, not just a DAG).

3.5 Set oriented non-navigational access

One of the powers of relational databases is the non-navigationaL relational access to data.

Relations are just sets of similar items. The access to data is non-navigational in that the client

characterizes what the matching data looks like, as opposed to providing the systems with an

(imperative) program to get the data. Sometimes this is called non-procedural access.

Both navigational and non-navigational access are desirable. Hypertext systems are

outstanding for browsing (navigating). but are not good at finding starting points for browsing.

Containers can be configured to automatically maintain indices. For any attribute. all nodes

that can he real'hed in the tran~iti\'e closure of the containment graph starting at the container are

indcxcd. Index mamtcnam:c IS spccified hy the "owner" of the subtree or by the database

admini,trator. An mdex at a level replicates data of indices at lower Ievek The design of the

query system U\Cs the nntum of nmtamer. so that often the indices can be used during query

cvaluation.

3.6 Documents can he named

Any node l'an act as a directory. It is natural to expect the root nodes of containers to be

directories. but the system docs not make this restriction, A special system maintained property

provides the name and node binding, Not all nodes have to be named and a node can have many

names,

Naming can also help with the "lost in (hyper) space" problem. However, a major

consequence of providing naming is that Y ggdrasil can provide a view of a database that is a file

system or file server. A file server front-end can be built that talks a file server protocol, and

provides access to some of the data in the server. Links are not modeled in all file server protocols,

so they usually disappear from the file server view. A particular file server protocol may have a

restricted notion of attributes (e. g., a fixed number of them of fixed types) or the protocol may not

XEROX PARC, CSL-91-13. Octoher 1991

4. Design Structure: The Basics and Overview 7

type the contents of files. Directories mayor may not have contents. In any case, the file server

front-end provides a view of the database that is suitable for programs that are designed to talk to a

file server.

A few front-ends were anticipated. NFS, Xerox's NS Filing Protocol, and ANSVCCITT/OSI

Filing and Retrieval were all candidates for front-ends. A server is not restricted to only one front­

end filing protocol.

One prime benefit of this is to unify file systems and databases. There is one permanent

storage mechanism. Different views are provided for different software. It is possible to maintain

information in the database, and "publish" it via the naming system.

3.7 Versions and alternatives for nodes

Nodes can have have versions. re\'isions, and alternatives. A node is really a tree of states for

the node. A version is a modification of a state that produces a new state. An alternative is a new

branch added to an existing node. States can differ in any of contents, properties, links, containers

to which it belongs. and its value as a container. Major changes along a branch are called versions

while minor changes are called revisions. Changes are (usually) applied at the leaves of the tree. A

new version or revision is built whenever a transaction commits that changes some part of the node.

The version or revision is added to the version chain for the current alternative. A new version

collapses the revisions between it and the previous version.

Versions and alternatives arc a requirement for many systems. File servers files. documents,

ami CAD objects all benefit from having versioning. The distinction between versions and

revisions is more subtle. Revisions are intended to model changes that are minor. It is important to

(.."ommit the changes. hut after a short time the revisions arc irrelevant.

4. Desi~n Structure: The Basics and Overview

4.1 Foundations

4.1.1 Mach, Camelor, and the hardware platform

The operating system of choice for this project was Mach [Rash861. the transaction layer was

Camelot [Spec87], and the hardware platform were the SPARC based machines from SUN.

Unfortunately, the existing release of Mach during the design and implementation of the system did

not run on SPARC·s. While waiting for Mach to be ported. a Mach/Camelot emulator was built to

implement those features of Mach and Camelot needed by Yggdrasil, but running over SunOS.

XEROX PARe, CSL-91-13. October 1991

8 The Y ggdrasil Project: Motivation and Design

4.1.2 PCR

The Portable Common Runtime (PCR) provides many useful services for its clients [Weis89].

It has lightweight threads, numerous file descriptors, garbage collection, dynamic loading, and load

state management.

4.1.3 The Cedar Programming Language and PCedar

Cedar is a programming language and programming environment (Swin86]. It is a language

of the Algol family that features strong typing, data abstraction, monitors, lightweight threads,

garbage collection, single virtual address space, generic references, lists, atoms, procedure

variables, and exceptions.

Many of the basic abstractions needed by Y ggdrasil already exist In the programming

environment. There are some 2 million lines of code, so that there is much to use. Garbage

collection and lists were particularly useful.

4.2 Storage management

The system design has three levels of on-line storage. In current technology they correspond

to main memory, magnetic disk, and optical disk juke box. In the design of a three level system

with migration of objects between the two stable, slower levels, an identifier for an object cannot be

mapped directly to the secondary or tertiary storage. After ali, the object might move. Forwarding

pointer~ arc inconvenient. So the design has a storage map. indexed by DID, for all ohject~. This i~

called the DID Map. This map encode~ the secondary and/or tertiary ~toragl: u~ed to store the

stahk disk resident form of all objects. It also encode~ ~ome other metadata such a~ where

different versions of the objects are stored~ slot numher ... (for small ohjel"ts): u ... e. modify. and

backup times~ and c()mpres~ion techmque used (if any). Object ... that have large storage need" for

naming. contents. or other properties use a separate component file for ea<.:h large part of the object.

By providing a map. an external identifier for an ohject can be proVided that identities the

object over all the time that the object exists. Since the object might migrate between storage

levels, external identifiers that, in any way, encode the storage address are undesirable. The

combined benefit of permanent external identifiers, full flexibility in storage location and media,

and centralized storage of some object metadata justifies the cost of the DID Map. Extensive

caching made the time cost of the DID Map not too large.

The real design challenges in secondary storage management are clustering, migration

between stable storage levels, small object and big objects in the same system (objects vs. files),

and buffering policies. The design for Y ggdrasil makes a contribution in small object and big

objects allocator and clustering (see Section 6).

XEROX PARC, CSL-91-13, October 1991

4. Design Structure: The Basics and Overview 9

4.3 Naming

Every container has a "root" node which represents the container. A system maintained

property of any object, including the root node for a container, is naming. Naming maps a string

name to a DID.

The name matching may be case sensitive and may include versions. The naming property is

system maintained so as to preserve several invariants about naming.

The naming information is kept in a separate file for the object (see Section 6.3). This file is

used as the permanent storage for a B-Tree for the names mapped from the context of the object.

Although naming is a property, the disk data representation is not a list associated with the object.

For NFS, containers and directories are one and the same. Names are only allowed from

containers (directories). Lookup is case sensitive and the highest (most recent) version is always

found.

4.4 Locking

The existing design uses object locks. For the initial system, this makes sense since some

locking is already at the object level (e.g., flock in 4.3 BSD). Many OODBMS's use object locks.

The design admits page level and finer granularity locks.

But with object locks certain operations are unnaturally restricted. Linking to an object should

not require a lock on the object. Adding a name to a directory should not lock the underlying

object and the whole directory.

Locks are split for an object. There are ohject locks. directory locks. and meta lock~. The

object locks cover the contents and the (normal) properties. These arc the externally vlsihle locks.

Directory loc.:ks are for the naming code. Meta locks handle the system maintained properties such

a~ links and container memhership.

There are the usual read and write locks. but the design abo ha~ brow~e locks. A browse lock

is a breakable read lock. When broken, the agent performing the transaction is notified (see SeclJon

8 on Alerters). The transaction docs not abort.

4.5 Volatile and Stable Objects, Change Lists, and Object Update

Objects exist in two forms: volatile (in memory) and stable (on disk). A cache of volatile

objects is kept. When a cache miss occurs, the DID is looked up in the DID Map and the object (or

at least the small part of its metadata) is read from disk, parsed into a volatile form, and added to

the cache. Large objects are buffered while small objects are read completely.

To modify an object, an appropriate lock is first obtained. Modifications are kept as a list

associated with the volatile object. Large parts of objects are handled specially: only the pages

XEROX PARC, CSL-91-13, October 1991

10 The Y ggdrasil Project: Motivation and Design

changed are noted as modifications. Subtransaction commit [Moss81] is just a list operation: the

modifications of the subtransactions are appended to the lists of its parent. Modification lists make

the implementation of subtransactions easy. Lists are a language primitive in Cedar and they are

used freely in the implementation. Since Cedar has a garbage collector, lists are garbage collected

after use.

Transaction commit is divided into three phases: precommit, initiate Camelot commit, and

either a commit or an abort (from Camelot). To start a commit, precommit applies the changes to

the object. This is complicated by objects having multiple lock types (see above). Concurrent

transactions can be updating the same object. To avoid anomalies and deadlock, but still have good

parallelism during commit, changes are applied in a partial order. All objects to be updated in a

transaction arc hashed in such a way that all conflicting updates hash to the same value. Update of

the same DID is a conflict, hut so is update of two DID's that are stored on the same secondary

storage page. The necessary buckets of the hash for a transaction are latched in order. Holding the

latch, DID's matching the hash value are latched and the changes applied. When all objects for the

bucket are changed, the bucket latch is dropped. The object locks are kept until the commit record

is buffered. If a bucket latch cannot be obtained, the transaction waits. Deadlock cannot occur

since the hashing imposes a total order. Normally, little blocking occurs due to the hashing.

Multiple concurrent, non-conflicting updates are allowed. Once precommit is over, the system

asks Camel or to (..'ommit the transaction.

-'.6 Dela~t>d indt>~ management

"ggdrasll provides tor faCIlitIes to huild indll'es in containers. An index is huilt over the

propcnies or (. .'ontents of an ohject. Only values that are interpreted hy the server may he indexed.

The ohjects that arc mdexed are exactly those in the transitive closure of the container relation

seeded with the c.:ontainer. lndi<.:es arc built selectively hased on systems administrators direction.

Sec Section 7 for more mfomlation.

4.7 Query system

Part of the design of the system is to have non-navigational access to the data in the system.

This involves extending a relational query language with the native data model of the server (e.g.,

links). Since the query system was never built, so that the principles of the system were not

verified.

The major aspects of the query system were:

Sets: Sets of nodes are what is manipulated. A container is an example of a set of nodes.

Relational operations on sets: The normal set and relational operations are provided for sets

XEROX PARe. CSL-91-13, October lIJ'Ji

5. Data Model Integration 11

of nodes.

Dereferencing links: Links may be dereferenced either the the link itself or to the resulting

object.

Attdbute and field selection: Attributes and fields may be selected and operated upon using

conventional operations.

Transitive closure: Links may be followed to build a transitive closure for a query.

Expressions, Conditions, and Aggregation

5. Data Model Integration

5.1. Introduction

Interoperability with different persistent storage systems is a key problem in database systems.

Users and applications need to use multiple persistent storage systems. Often this problem is not

even recognized, and the user or appl ication takes on the interoperability burden.

To see the problem, consider the example of an electronic mail system for a user. Mail is sent

and routed to the user. The user's mail system accesses the mail from the mail server. It then

eliminates duplicates, inseI1s the new mail into a full text database, updates a relational database of

messages, marks interest in attachments (file. video, or whatever), adds an icon to the desktop, and

stores the message in a folder (directory) on a file server. All of this should he done under

transaction control. "ote the vanety of the persistent storage systems invol ved. They may have

different protocols. commit logic. and naming. It is rare that a common commit protocol is used

between the multiple persistent storage systems. The persistent storage systems do not share

coherent notions of hackup. The availahility of the system is the product of the individual

availahilities. Coherence and consistem:y are hard to enforce.

Other tools availahle to the user may not he used in their accustomed manner with the mail.

Suppose that the mail was completely stored in a relational datahase. Most printing ~oftware is file

based: the document formatters take a file and print it. To print maiL a file with the contents has to

be created and the file is then printed. The editor, spelling checker, keyword finder, and grammar

checker also may only expect files.

The main problem is that the application has to take on the full burden of interopcrability.

Useful components have been combined to give a service. But every application (or user) has to

provide interoperability for itself.

This section presents a way to address pan of this problem. In Y ggdrasil, a single server

supports multiple data models layered over a common storage system.

The method of persuasion of this section is to relate the design, implementation, and testing

XEROX PARC,CSL-91-13,Octoher 1991

12 The Y ggdrasil Project: Motivation and Design

experience of building a system that has data model integration.

5.2. Motivation and Solution Strategy

5.2.1 Why worry abollt integration?

Integration has usually been missing from persistent storage systems. If there is a problem,

why is it not more widely recognized?

One answer is that since different persistent storage systems have evolved separately, the

desire for integration and the feasibility of integration has not been appreciated. Within a particular

type of persistent storage system, interoperability is often recognized. Standard protocols for

connecting Distributed Relational Database systems are being developed. But interoperability

between different data models for data base systems or interoperability between different file

servers using different protocols is rare. The problem has been addressed for particular data

models, not for persistent storage systems as a whole.

There are also "legacy" applications or databases. These are existing software or databases

that provide some useful function. They are mostly fixed in their usc. It is impractical to change

them. These systems do not provide for integration so that they must be integrated by the user or

application writer.

5.2.2 Where can imeRratiol1 be done?

The simplest answer is nowhere. Integration of services is left to the user.

Often the burden of interoperability is taken by the application. It deab with the data model

and interface issues. Every application has to do this for itself.

One area that has had some research is that of accessing multiple databases from a common

interface. The implementation of the interface handles the interoperability problems.

Finally, much of the interoperability burden can be taken on by the persistent storage server.

The system support~ multiple data models over the same data.

5.2.3 Why not Federated Databases?

One area of research has been Federated Databases. An additional layer or view is typically

added on top of several existing databases. Integration is a key concept (see [Daya84]), but it is

hard to achieve. The existing databases have different schemas. They may be very structurally

different and not be mutually consistent. The databases may not cooperate during commit, so

additional inconsistencies may occur. The databases are not backed up in a consistent manner.

Loading backup of one database will destroy invariants. Performance can be a problem.

Controlling many independent databases and maintaining invariants (e.g., referential integrity

across databases) is hard.

XEROX PARC, CSL-91-13, Octoher 1991

5. Data Model Integration 13

If the underlying databases use different data models, additional problems arise. The tendency

is to have a database that is the "greatest common divisor" of the database models. The federation

layer has to mask the deficiencies and differences between the models to get something useful.

By having one system that incorporates multiple models, the tendency is to avoid the

inconsistencies. Performance, backup, restore, invariant maintenance, and integration are better

using data model integration than in Federated Databases.

5.2.4 Which models?

Y ggdrasil uses three different data models. Some of these, particularly the file server data

model. are not normally recognized as a data model. A brief discussion of data models is in order.

Date [Date86] defines a data model as consisting of three components: a collection of object

types, a collection of operators, and a collection of general integrity rules. This is a fairly broad

definition. File servers do have a data model.

Briefly, these models are described below.

Hypertext

Hypertext (or Hypermedia) has an extraordinarily simple data model. It has objects and links.

Objects are entities and links arc relationships between objects.

OODBMS backend

Many of the proposed and actual OODBMS systems have a client server model. The server is

called a backend.

The data model is often just objects with slots. The slots can contain object pointers or

primitive data. There is a special slot for the contents of the ohject. Semantics is performed either

on the dient. on the server, or on both.

File Server (NFS in the implementation)

The file server data model is not normally recognized as a data model. It is somewhat

degenerate as compared with traditional data models. In the UNIX File System, there arc only two

types of objects: directories and files. The operators are what we normally think of as system calls

(e.g., create, delete, and write). The integrity rules also are pretty minimal. In the UNIX File

System, loops are not allowed in the directory name space.

File servers provide a name to "urunterpreted sequence of bytes" mappmg. Their strengths

over normal databases is that they use naming for access, they are well integrated into many

application programs (e.g., compilers, editors, drawing programs, ...), they store large objects, and

they impose little structure on their data. Many of these strengths can also be viewed as

weaknesses.

XEROX PARe. CSL-91-13, October 1991

14 The Y ggdrasil Project: Motivation and Design

The file server protocol used in this work is NFS [SUN86]. This protocol was chosen because

of its wide use and simplicity. Other protocols have more structure in the name space (e.g.,

Xerox's NS Filing Protocol (XNS) and ANSI). Others have more structure in the objects (files)

themselves (e.g., FT AM). While the design for this system considered the requirements of other

filing protocols (particularly XNS), in this paper we will concentrate on NFS since that is the one

that was implemented.

5.2.5 Why these three models?

To make the points of interoperability and integration, at least two data models arc required.

The hypertext and file server data models arc implemented in the prototype. The OODBMS has

had extensive design work and simulation. It has not yet been implemented.

These three models arc all of particular interest to Xerox and to Xerox PARCo Xerox is "The

Document Company." This is part of its corporate strategy. Interconnections between documents

is quite naturally modeled with hypertext. and this model imposes few restrictions. It is flexible

and unstructured. In addition, PARC has been a leader in hypertext with the Notecards project

[Halz87] and in object-oriented systems such as Smalltalk [Gold83].

File servers were first built at PARCo Woodstock was designed and built in 1975 [Swin791.

The Interim File Server (lFS) was built in 1977 and was used until 1991. Much of our software

depends on flies from file servers.

The last rcason to select these three data models is that they do not all have complete. precise

semantl(.:S. Hypcncxt and OODBMS's have not existed long enough in the datahase community to

have the ,emantlc' that ~ ell developed. There are no standards. File servers typically only have

ver) weak sem<Jntic guarantees.

5.3.1 Why a sener emphasis rather thall a distrihw{>d systems emphasis

Scale is important in any system design. Scale can take on several meanings. Many large

servers storage will most likely exist in the future. There arc issues of scale within the,server and

issue of scale among' many servers. Since it was infeasible to pursue both of these scaling

dimensions at once, scaling within a server was emphasized over scaling over many servers. The

main reason for this choice was money. A single server can have an optical disk juke box to

provide low cost, archival, on-line storage. The per megabyte cost of an optical disk juke box is

very attractive.

None of this is intended to indicate that a Y ggdrasil server is not a network citizen. The server

is designed for participation in distributed transactions, dealing with external unique identifiers, and

XEROX PARC, CSL-91-13, October 1991

5. Data Model Integration 15

replication of services.

5.3.2 The union of the supported data models

The server has its own data model. It is roughly the union of the three data models. Common

concepts are merged and a generic primitive is used in the data model. There are objects (or nodes

or files), links, names, and sets of objects (directories or relations, called containers here). Objects

have set valued attributes (attributes are file properties and fields in a relation). The attributes are

named by a string name. Objects have object identifiers (OlD's in OODBMS's or inumber's in

NFS). Metadata about an object is everything known about an object except its contents (e.g.,

properties, containers the object is a member, ...).

5.3.3 Views imposed over the data

The server provides views over the data for the various data models. These views share many

properties with the views in relational systems. Not all of the data can be accessed through a view.

There also is the view update problem.

5.4. Design structure

5.4. J Naming

In Section 4.3. it was pointed out that all containers have naming maintained by the system as

a property of the "root" node for the container. This information is kept in a separate file for the

object with the data structurc of a B-Tree.

The main problem in naming was the amount of log data. A B-Tree causes lots of hytes to he

moved during an inscrt or delete. Since physical logging was used. a lot of log data could be

generated for large directories. Particularly for NFS. a different data structure, such as hashing,

could have been used that has simpler update.

But this has nothing to do with problems with data model integration. The real problems have

to do with other file server protocols. (Remember that Y ggdrasil was designed to support multiple

file server protocols. not just multiple data models.) No problems with the other data models arose.

Three problems with other file server protocols were uncovered. First, are names case

sensitive? If so, then "makefile" and "Makcfile" are different file names. If not, then they are the

same file name. A case insensitive lookup may have its invariants broken: two files have the

"same" name. A second problem is what are the valid characters in names. Xerox N S Filing

allows 16-bit characters in component names. Spaces are allowed. How are these presented in

NFS? The final problem is how do the access control of the multiple protocols interact'?

Many incompatibilities are solved simply by the view mechanism. Additional properties not

expected by NFS can be hidden. NFS only uses the most recent version. Set valued attributes

XEROX PARC, CSL-91-13, October 1991

16 The Y ggdrasil Project: Motivation and Design

select the first element of the set as the value.

Since only NFS was supported, not all of the problems had to be addressed. File names with

illegal NFS names are masked. Case insensitive naming must use versions, and the versions of the

case insensitive names merged (e.g., "maketile! I" and "Makefile!2"). Access control for the view

determines access.

Although not much insight was gained in supporting support multiple tile server protocols,

there was not much problem with naming in supporting the three data models.

5.4.2 The Graph engine and Vie\vs

A navigational graph engine interface is defined in the code. The other data models are

implemented as views over this interface. The interface corresponds to the data model of the

server. It has the abstractions of objects, contents, properties, indices, links, containers, and names.

OODBMS and hypertext fit easily into the native data model. The most challenging view was

for NFS. This was not particularly difficult, but the following problems occurred.

First of all was error reporting. The NFS protocol only defines a few errors. These do not

adequately model the errors that can occur in Y ggdrasil. How are commit failures reported? How

are inconsistencies reported? There was not adequate extensibility in the error reporting

mechanism in NFS.

Another problem was using short term transactions and locks. These naturally conflict with

the locking of longer running transactions. Since short term locks had to be held. different lock

modes were used for NFS naming. than were used for other access to the ohjects. Hence. there was

a separate lock space for naming apart from the normal object locking. Moderate complication of

the commit logic occurred due to concurrent. no-(:onfllcting transactions ommlltting while they

hoth were updating the samc object (sec Section 4.5).

Docs delete really delete the ohject? All that delete docs, in NFS. IS to remove the name trom

a directory. If It is no longer accessible (no other dIrectory names it). then the file Jtself is removed.

A compromise was taken in Y ggdrasil. An object that has only been mampulated through the NFS

interface is deleted when the last name is removed for it. To be exact, if the object is in any other

container besides the directory container, it is not deleted.

The NFS protocol has an object called a cookie. It is only 32 bits long. This small size was a

problem. The server could have more than a few billion objects.

Various locking games had to be played. For example, a rename between directories requires

locks in both directories. The code acquires the first lock normally (i.e., with waiting), but for the

second lock it attempts to get the lock without waiting. If it succeeds, all is well. If it fails, it drops

the first lock and attempts the locking in the opposite order. Repeated failures or timeouts can

terminate the operation.

XEROX PARe, CSL-91-13, October 1991

6. Magnetic disk page allocator and clustering 17

5.5. Conclusions

The design, implementation, and testing of Y ggdrasil show that data model integration for the

data models hypertext, OODBMS backend, and file server is quite possible. This section used the

design process of Y ggdrasil to uncover the problems. While the problems were irritating and

caused small glitches in semantics and implementation, nothing was insurmountable.

Databases can integrate and interoperate multiple data models. They can take on part of the

interoperability burden by integrating data models.

File server interfaces should be provided by databases.

6. Magnetic disk page allocator and clustering

This section presents the magnetic disk page allocator and clustering design for Y ggdrasil.

Only the clustering and part of the large object handling was implemented. The system never ran

with tertiary storage.

6.1 Requirements

The system had the following requirements:

Keep an object, its attributes, and its contents on a page - if it fits.

If an attribute value or the contents is bigger than a page, store it on its own page set.

Place no (real) restriction on the number of attributes or their sizes. An acceptable

restriction is that an object cannot exceed the size of a teniary storage device. tape,

or platter.

Perform concurrent allocation

Cluster leaf oojects ncar parents

Cluster links ncar" from" objects

Allocate big objects in big contiguous chunks

Have fast allocation

Good internal concurrency

Recover from crashes quickly.

6.2 The allocator and clustering

6.2.1 Splitting large objects

Clustering and small objects are related problems. For objects with large components, the

system splits off these large parts of objects into different files. For an object with a large contents,

XEROX PARC, CSL-91-13, October 1991

18 The Y ggdrasil Project: Motivation and Design

the properties and other metadata about a large object and the contents are in different files. Any

property that is large (such as the naming attribute for a container) is kept in a separate file. Small

objects and the metadata for large objects are both small.

6.2.2 Containers

Containers provide a natural way to organize large collections of objects. The notion of a

container is generic notion that comes from contexts in hypertext [Deli87], directories in file

systems, and relations in a RDBMS. The expectation is that a container holds objects that share

some semantic relationship with each other and the metadata (e.g.~ properties) of these objects are

the natural domain for queries. Hence, it is important to be able to search the metadata of the

objects in a container quickly. Also, access to the metadata of one object in a container is taken as

a good indication that other objects in the same container will be accessed.

All of this supports a clustering scheme that relies on the containers. Objects are clustered on

secondary storage ncar their container. This is complicated by objects being in more than one

container and the nesting of containers. For the purposes of clustering, an object has a primary

container.

If clustering were recursive, then everything would have to be clustered ncar everything else.

To break the circularity, container objects arc never clustered. Leaf objects that arc not containers

themselves arc clustered with their primary container.

The real test of a storage design i~ in a large scale, heavily used, perennial system. Yggdrasil

cannot make any claims here.

6.3 Object allocation on magnetic disk

Put simply, the basic idea is to cluster what is possible. For small objects that's everythmg.

For larger objects, this may be only the meta data. only the small parts of the meta data, or no meta

data. By trying to cluster at least the meta data, searches of the metadata (e.g., properties) can be

done quickly. As the size of the data and/or metadata gets so large that it interferes with clustering,

this data is allocated somewhere not in the duster.

Clustering is done for "leaf' objects near parent objects. Parent objects maintain a list of

cylinders where some of their children are located. This is a hint for allocation. They also maintain

a list of hints for partial pages that have some room on them that also contain children of the parent.

For example, a large object (a "file") can have it's metadata clustered. When the file is opened

and read, the file can be read in large runs from disk. These runs are not necessarily near the

metadata. For large objects these disk I/O's are not expensive since they are being amortized over

many bytes transferred.

XEROX PARCo CSL-91-13, October 1991

6. Magnetic disk page allocator and clustering 19

6.4 Allocating space on magnetic disk

6.4.1 Page allocation

There are three maps stably kept on disk for allocation. They are:

allocated/free page map: a bitmap indexed by page number

partially allocated page map: a bitmap indexed by page number - 0 means not a partial

page, I means a partial page

approximate size free: a byte map indexed by page number - the high order bits of the free

space on the page

Each of the stable maps has a volatile copy called the shadow map. Allocations are done to

the shadow map prior to transaction commit and then performed on the stable map during commit.

Deallocation follows a different order of update: stable modifications are made at commit and

shadow modifications after commit completes.

To allocate some pages, the system looks in the shadm'\,' allocated/free page map for a run of

bits big enough based on the clustering for the object. It sets the bits' on in the shadow for the pages

it gets. It locks the byte(s) where it allocated the pages (Camelot logging only logs bytes, not bits,

so there can be anomalies). Any further allocations look in the shadow so they will not reallocate

these page(s). Nor can other transactions allocate pages from the hytes that have been locked. This

is non-blocking: other page\ arc allocated instead. At precommit. the system logs old value/new

values from the stable and the shadow maps. respectively. Then the bits are set in the stahle

hitmap. At conumt. the \ystcm ooc, nothing but drop locks. If abort occurs. the system undoes the

allocations from hoth maps and then drop locks.

To free some pages. they are just rememhered in the file ohject during the transaction. "either

the shadow or stable maps arc modified. At precommit jf the lock can be ohtained. the bits arc

turned off in the stable map. and old value/new values for the shadow and the stable maps.

respectively. If the lock cannot he obtained. a transaction is forked to tum the bits off. If commit

succeeds, the bits are freed in the shadow. If abort occurs, normal recovery fixes the stable bitmap.

Locks are dropped after commit and abort. The forked transaction to turn the bits off can block on

the lock as long as needed. This does not guarantee that the delete actually occurs: a crash may

destroy the forked transaction. But there is only a loss of a few pages and only in the case of

conflict and a crash, which should be rare.

Why does this work? The shadow's bits are set until the page can be used by another

transaction. So the bits are set early by allocation and turned off late during freeing. Only pages

that are free no matter what transactions commit or abort will have 0 bits. Keeping the allocated

and freed runs associated with the file, which in tum is associated with the transaction, allows for

XEROX PARe. CSL-91-13, October 1991

20 The Y ggdrasil Project: Motivation and Design

the redo/undo processing on the bitmaps. By locking bytes, we guarantee that allocators do not

interfere with each other. Deallocators can interfere with other deallocators or with allocators.

When they interfere. the bytes that interferes gets their updates forked. The system never waits for

a lock during precommit, commit, or abort.

6.4.2 Slots and slot update

The system uses a slot table on pages holding small objects (or small parts of big objects).

These slots are known through the DID Map and are not visible outside the server.

When an (apparently) small object part is to be written, either for the first time or re-written,

the object value is written into non-recoverable VM. At commit, the size of the object parts can be

accurately computed. If the object is new or no longer fits on its old page. the allocator is called

(see the next section).

Assuming that we have a small object (or a small part of a large object), then the page for the

object is then locked. If the lock would block and forms a cycle .. then the lock attempt fails and the

object part is moved off to a different page. If this transaction commits, then a new transaction is

forked to remove the old object part. This extra transaction may be lost due to a crash, but we just

loose storage. The DID Map and the values it points to are valid. Deadlock is not possible in this

code.

6.4.3 DesiRl1 jor clusterillR

Ohjects arc created in a container. The container provides the prim:iplc hook for clustering..

Ohjects are clustered "ncar" the root object of the container.

When trying to allocate a largc ohject part. a li~t of "duster ncar" ohjects and .. segment.

page. and size" ranges is given to the allocator. Similarly. alhKating a small ohject part. a list of

"partial pagc" ohjects and "segment. page. and size" ranges is given to the allocator. At:. pages

are allocated or tilled they are added or deleted tTom the proper list.

Pages are grouped into sequences called cylinder groups (Leff89J. A cylinder group is a set of

cylinders that are very near each other. It takes a very short time to seek from any cylinder to

another in the group.

For some parents, there is a list of other groups where there children already have been

located. Once this hint list is also exhausted, it is time to try a completely different group. The

group is selected randomly from the groups that are somewhat empty.

At boot, the cylinder groups are arranged into lists of how full they arc. Separate lists are kept

for groups past the "little object low water mark" and before the "big ohject high water mark"

(Hagm86].

XEROX PARCo CSL-91-13, October 1991

7. Index maintenance 21

7. Index maintenance

Y ggdrasil provides for facilities to build indices in containers. An index is built over the

properties or contents of an object. Only values that are interpreted by the server may be indexed.

The objects that are indexed are exactly those in the transitive closure of the container relation,

initially seeded with the container. Indices are built selectively based on systems administrators

direction. They are used by the query system to speed up queries.

Whenever an document attribute is modified, the indices to this attribute have to be updated.

Also, whenever container membership is changed, indices have to be updated.

Index update in commercial databases is quite complex. High concurrency of update and

many indices per relation make this a hard problem to do well.

The indices are maintained by ASAP update, and hence are not guaranteed to be atomic with

respect to the transaction that made the update. It is intended that the update proceed very quickly,

but not using the client's transaction. The updates do have transaction guarantees, but not inside

the client's transaction.

This makes the index update much easier. It is much easier to get good parallelism, the code

is much shorter, and the code is easier to read.

The semantics for ASAP update are somewhat strange in the database community, but they

model many real world activities. For example when a phone is installed, "information" does not

immediately have the number. When a book is put in a library, the "card catalog" may not be

atomicly updated. If a document is in~erted into the database, why would the ~ame user

immediately query to tind it? The u~er already knew about the document. The imJcx update will

happen quite soon, but it is not atomic with the insert.

The point of thi~ is to argue that ASAP index updates have acceptahle semantics for the

principle uses of the database. There also an interface that can he used to delay informing a client

of the completion of an update until all indexing activity for the update has heen finished.

The DID for the document. its parent container DID's, and the add, mod, or delete information

are appended to a "index update list." This list is kept in recoverable storage as a circular list with a

start and an end pointer. One of the last things a transaction does before commit is to update this

list (if needed).

A set of processes do the deferred updates from the "index update list". Each takes successive

items off of the list. It tries to do the updates needed. If it cannot acquire a lock, it goes on to the

next item. The update will be tried again later.

The goal is to do the update recursively for all needed objects, indices, or containers.

However, the rules of the game can ehange. That is, while value that is indexed is changing, the

containment membership may concurrently be changing.

XEROX PARC,CSL-91-13,Octoher 1991

22 The Y ggdrasil Project: Motivation and Design

So updates go in the following phases (cyclically). The first phasc starts with all the

containers and indices that has to be done is found. Dependence on update on the data in the object

is detected (e. g., the parent objects of a container are important to index update due to a changed

attribute). As objects are modified by index update, they are time stamped. The update keeps track

of the largest timestamp seen. When it appears that the update is complete, the second phase starts.

The dependencies are examined again. If a larger timestamp is found than was current during the

first phase, the first phase is restarted. If no additional containers and indices are found, the update

is done. Otherwise these containers and indices arc processed as above.

Upon recovery, thc index update list is processed again. Some updates may be redone, but this

is idempotent.

8. Alerters

. Alerters arc a simple form of triggers. At some event on a Yggdrasil server, a "message" will

be sent. Only simple events related to locking were supported. Events can include insert, delete,

read, or update of some class of objects. The alerter will cause a message for some (probably)

external entity to be qucued. Thc alert will specify an object identifier for thc object causing the

alcrt, and optionally with a tag specified by the client. Alerts can either be one-shot or continuous.

Alerts will be either for an ongoing connection or for an external server.

Alcrters can have a lifetime of a transaction, an incarnation of the server, an incarnation of the

remote client. or be persistent over both client and server crash.

9. Comparison to other work

It is impractical to compare Y ggdrasil with all related work. Y ggdrasil touches on too many

arcas of file systems. hypertext. operating systems. and databases. In this section only a few

systems arc mentioned.

Y ggdrasil had three main roles: a file server, a hypertext storage system. and an object­

oriented database backend. Y ggdrasil made no contributions to file servers as such, but rather in

integrating file servers with other forms of persistent data storage.

Hypertext originated in Vannevar Bush's 1945 elassic article [8ush45]. Other notable early

works are by Ted Nelson [Nels81] and Douglas Engelbart [EngI63]. An excellent survey of

hypertext systems can be found in [Conk87]. One major hypertext project was done a PARCo This

is the Notecards system [Halz87]. There is a conferencc devoted to Hypertext.

Y ggdrasil does not make any contributions to the hypertext model. What it attempted to do

was to be a long-term, persistent, very large storage system for hypertext. It differs in scale and

implementation from nearly all other systems. One closely related system is Neptune [Deli86].

XEROX PARe, CSL-91-13, October 1991

References 23

The concept of containers in Y ggdrasil is modeled in part after the notion of Contexts for hypertext

[DeliS?].

Object-oriented databases are an active area within the database community. Many systems

have been built. A few of them are GemStone [MaieS7], Orion [Wilk90], 02 [Deux90], and Iris

[Wilk90j.

The concept of versions is common in many systems. A good book on the subject is [KatzS5].

One system that uses versions for programming environments in DOMAIN [LebIS5].

Clustering is a common technique in database systems. For example, ORION used clustering

based on complex objects [KimS?] and Chang and Katz used structural relationships and

inheritance [ChanS9]. Where Yggdrasil is different is that clustering is based on containers.

10. Conclusions

This paper describes the historical foundation, goals, motivations, and basic system design for

Y ggdrasil. This project contributions are in the selecting existing ideas to build an artifact. The

artifact is a large scale, full featured hypertext system with set oriented non-navigational access.

Another major theme of the project is the integration of databases and file servers.

The lessons learned from this experience were:

integration of data models is important and feasible

all databases should strive to have file server interfaces for some of the stored data

generic parts of data models include properties, sets, naming. and containers.

separate locking name spaces for different aspects of objects can help concurrency

versioning is important and must he done on the server

external interfaces to servers should publish permanent names for objech and anchors

Acknowledgements

William Jackson, Brian Oki, and Marvin Theimer all participated in the Y ggdrasil project.

This work was possible due to the support of the author's co-workers in the Computer Sciences

Laboratory at Xerox's Palo Alto Research Center and of Xerox Corporation.

References

[AmerSlJ The American Heritage Dictionary o/the English Language, W. Morris, Ed. Houghton

Mifflin. 19S1.

[Bush45] V. Bush, "As We May Think," The Atlantic Monthly. Vol. 176, No.1, pp. 101-10S,

XEROX PARC, CSL-91-13. October 1991

24 The Y ggdrasil Project: Motivation and Design

July, 1945. Reprinted in CD ROM The New Papyrus, S. Lambert and S. Ropiequet eds.,

Microsoft Press, 1986.

[Chan89] E. Chang and R. Katz. "Exploiting Inheritance and Structure Semantics for Effective

Clustering and Buffering in an Object-Oriented DBMS," Proceedings of the 1989 SIGMOD

International Conference on the Management of Data, Portland, June 1989, 348-357.

[Conk87] J. Conklin, A Survey of Hypertext. MCC Technical Report Number STP-356-86, Rev

l.

[Date86] C. J. Date. An Introduction to Database System,\', Volume I. Fourth Edition. Addison­

Wesley. 1986.

[Deli86] N. Delisle and M. Schwartz. "Neptune: a Hypertext System for CAD Applications,"

Proceedings ofSIGMOD '86, May. 1986, 132-143.

[Deli87] N. Delisle and M. Schwartz. "Contexts - A Partitioning Concept fro Hypertext," ACM

Transactions on Office Information Systems, 5, 2, April 1987.

[Deux90] O. Deux et al. "The Story of 02," IEEE Transactions on Knowledge and Data

En/?ineerill/?, 2. 1. March 1990.

[Eng163] D. Engelbart "A Conceptual Framework for the Augmentation of Man's Intellect," in

Vistas in Information Handlin/?, Volume L P. Howerton and D. Weeks, cd., Spartan Books,

London, 1963.

IGold83] A. Goldnerg and D. Rob~on. Smalltalk -80 Til(' wn/?lwge and irs ImplemenTation,

Addi~on- \\'c~ky. 1983.

IKatz85] R. Katz. I"lornwt;ol/ Manageme111 for Ellg;lU:,er;ll/? Dl'si/?n Applications. Springer-

Verlag. 1985.

IHagm~61 R. Hagmann. "RcJnlplcmcnting (he Cedar File System U~ing Logging and Group

Commit:' Proceeding.\ of tilt' Eh'\'elllh Symposium 011 Opaating Systems Principles, Aug. 1987.

155-162.

(Hala87] F. Halasz, T. Moran. and R. Trigg. "'Notecards in a ~utshell," CHI+G/87.

(Kim87] W. Kim, J. Banerjee, H. Chou, J. Garza, and D. Woelk. "Composite Object Support in

an Object-Oriented Database System," Proceedings OOPSLA '87, Oct. 1987, 118-125.

(Kim90] W. Kim, J. Garza, N. Ballou, and D. Woelk. "Architecture of the ORION Next-

Generation Database System," IEEE Transactions on Knowledge and Data Engineering, 2, 1,

March 1990.

[Leb185J D. Leblang, R. Chase, and G. McLean. "The DOMAIN Software Engineering

Environment for Large Scale Software Development Efforts," Proceedings lsi International

Conference on Computer Workstations, San Jose, California, Nov. 1985.

XEROX PARe. CSL-91-13, October 1991

References

[Leff89] S. J. Leffler, M. K. McKusick, M. Karels, and J. Quarterman, The Design and

Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, May, 1989.

25

[Maie87] D. Mainer, and J. Stein. "Development and Implementation of an Object-Oriented

DBMS" Research Directions in Object-Oriented Programming, B. Shriver and P. Wegner, ed.,

MIT Press, 1987. Also appears in [Zdon90].

[Moss81] E. Moss. Nested Transactions: All Approach to Reliable Computing. M. I. T. Report

MIT -LCS-TR-260, 1981.

rNels81] T. Nelson. Literary Machines. T. H. Nelson, Swarthmore, PA., 1981.

[Rash86] R. Rashid. "Threads of a New System," Unix Reviel'v, 4, 8, Aug. 1986.

[Spec87] A. Spector, et al. Camelot: A Distributed Transaction Management Facility for Mach

and the Internet - An Interim Report. Carnegie-Mellon Report CMU-CS-87-129, June 1987.

[SUN86] Network File Sy,\'tem Protocol Specification, Version 2, Revision B, Feb. 1986.

[Suns79] Sunset New Western Garden Book. Lane. 1979.

[Swin79] D. Swinehart, G. McDaniel, and D. Boggs. "WFS: A Simple Shared File System for a

Distributed Environment," Operating Systems Revie\1,', 13, 5, November 1979.

[Swin86] D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann. "A Structural View of the

Cedar Programming Environment," ACM Transactions on ProgramminK Lan~lIa~es and

Systems, 8, 4, October 1986.

[Weis89] M. Weiser. A. Demers, and C. Hauser. "The Portable Common Runtime Approach to

Interoperahility," Twe({th ACM Symposium on Operating System Principles. which is printed as

Operating Systems Re\·;('\\,. 23. 5. Decemher 1989.

[Wilk901 K. Wilkinson, P. Lyngbaek. and ~'. Hasan. "The Iris Architecture and

Implementation." IEEE Transaction.\· on KnoH.'ledKe and Data Engineering. 2, J, March 1990.

(Zdon90] S. Zdonik and D. ~1aier, cd .. Readings in Object-Orie11led Datahase Systems. Morgan

Kaufman. 1990.

XEROX PARC, CSL-91-13, October 1991

-f
::::r
<1l

-<
(Q
(Q
D-

Ol
111.

:0
o
0'

~
III

I
OJ

(Q

3
OJ
:l
:l

