
..

TEACHING SMALLTALK
(2 papers)

SSL 77-2 June 1977

Methods For Teaching The Programming
Language Small talk

by Adele Goldberg and Alan Kay

Smalltalk In The Classroom

by Adele Goldberg

Key Words and Phrases:

Small talk. computer uses in education. teaching children programming, computer-based
curriculum. message-oriented programming language. programming projects.

CR Categories

1.5, 1.50. 4.22

© Copyright 1977 by Xerox Corporation

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto / California 94304

..

..

Abstracts

Methods For Teaching The Programming
Language Small talk

by Adele Goldberg and Alan Kay

A description of the Smalltalk programming language is presented, based on how it is taught
to children. Curriculum materials are composed of model Smalltalk class definitions that
the student uses, modifies and extends to new models. A problem formulated in Smalltalk
involves. first, description' of all the objects that might be involved in the solution and their
relations; second, grouping of these objects in classes according to the similarity of actions -
each can take: third, design of the message system that the objects will use to communicate
with one another: and fourth, creating members of each class with the desired
characteristics. Each member of the class remembers its individual properties, but refers to
the class definition in order to know what messages it can receive.

After presenting Smalltalk. as a message-oriented system, a number of projects carried out by
junior high school students over a two-year period are exhibited. Student-made videotapes
are used to monitor tutorial sessions and to evaluate the final results.

Smalltalk In The Classroom

by Adele Goldberg

We have been teaching the programming language Smalltalk since the Spring of 1974.(n
1976 we placed several Small talk systems in the independent study center of a Palo Alto
Middle School. Three new courses were taught, in computer simulation methods, graphic
techniques, and geometry. Each course is described, illustrating a number of applications of
the Small talk system. Evaluative comments on the use of the school resource center are
provided.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote- Hill Road I Palo Alto I California 94304

" ..

METHODS FOR TEACHING THE PROGRAMMING LANGUAGE SMALL TALK

by

INTRODUCTION

Adele Goldberg and Alan Kay

XerOK Palo Alto Research Center

Learning Research Group

Computer programming is a popular subject area for school-age children. The basic goals of

courses available in many elementary. junior. and senior high schools are to give students an

introduction to computer techn010gy and its potential impact on society. as well as to teach

programming as a problem-solving tool. Computer programming provides a unique environment

in which to teach problem solving concepts: it is a context in which the concepts are

immediately useful and create immediate pleasure. For each programming project, there are a

variety of possible solutions and a variety of methods with which the solution can be presented.

For these reasons, and because a student can generate his own project ideas. programming is a

creative activity. As we will point out again. a number of properties of good problem-solving

can be emphasized through programming: planning and organizing, describing, implementing,

carrying out a plan to completion. and evaluating. Through the immediate feedback provided by

the computer (from error diagnostics or the results of executing a program). a child becomes his

own evaluator and. potentially. gains confidence in his learning abilities.

We are devising curriculum materials which center around a programming language called

Smalltalk [1]. Smalltalk is implemented on a small. stand-alone computer system. This

computer system includes a high-resolution. black and white display screen for graphic input and

output. devices for pointing at objects on the screen, a typewriter keyboard, and a

digital-to-analog converter for sound output. Although we attempt to teach basic programming

concepts and analytic skills in the Smalltalk curriculum materials, this system differs from other

computer environments significantly enough to result in a very new learning experience. The

combination of a computer medium in which it is possible to access and i.lse a variety of kinds of

information (sound and pictures. as well as text and numbers). and a programming language that

makes it not only easy to do these activities. but also obvious that they can be done. is a powerful

new medium for educational applications.

COMPUTER PROGRAMMING

Historically. computer progr:l.mming projects have concentrated on numerically-oriented

problems. with a great deal of emphasis given to playing and writing interactive games. Since the

input/olltput devices of the past have typically been teletypewriters. the games concentrated on

typ~written output and, if possible. short. one letter responses by the game user. Availability of

plot!ers tended to increase the emphasis on picture making (computer art).

,
Methods for Teaching Smalltalk

Other programming curricula included picture construction with lines. following the introductory

work. in Logo ''Turtle Geometry" [2]. In some systems, the completed line-drawn pictures could

be animated. Non-graphic projects examined the development of number systems by

reproducing algebraic algorithms and arithmetic-teaching programs [3]. Some projects examined

the structure of simple sentences in order to generate English sentences or foreign language

translations. Also. a number of innovative studies in physics, topology, and economics have been

carried out using computer models [4, 5].

Typically, a student's resultant computer program is in the form of a linear sequence of

operations that tends to be a set of simple transformations on numbers. strings. or matrices; the

program causes some expected result. The student programmer is taught to view the problem in

terms of subproblems to be solved, and to represent the solution of the subproblems in terms of

computer programs that can be combined to provide a solution to the problem as a whole.

Instructional emphasis is often placed on finding a representation for the problem data (for

example, the grid for a board game or the grammar of a language) that allows the data to be

easily accessed and manipulated. Most programming courses for students in junior or senior high

school also try to give the students experience using basic computer science techniques, such as

search and sort algorithms, various levels of numerical methods, or special "tricks" for

representing data for fast retrieval.

These projects are useful in teaching basic programming concepts, in particular.

sequencing

conditional action

evaluation of stored sequences

literals

name/value pairs

procedures and procedural parameters

as well as higher-level sk.ilIs for dealing with compu~~tional context. goal/subgoal planning

(problem formulation), representation of information, and self-evaluation of results

("debugging").

THE PROGRAMMING LANGUAGE SMALL TALK

Smalltalk differs from most other programming languages in that the act of programming in

Smalltalk is one of description of a model. The programmer describes how a single object works,

and then abstracts this to describe the actions and properties of a general class of objects. In the

process, it is necessary to clarify the notion of what properties are characteristic of all, or only of

some. class members. These methods are closest to that of Smaillalk's grandparent. Simula [6J.

A problem formulated in Smalltalk involves,

3
Methods for Teaching Smalltalk

first. description of all the objects that might be involved in the solution and their relations;

second, grouping of these objects in classes according to the similarity of actions each can take;

third, design of the message system that the objects will use to communicate with one another;

and

fourth. creating members of each class with the desired characteristics. Each member of the

class remembers its individual properties, but refers to the class definition in order to know

what messages it can receive.

Ultimately, it is necessary to ~mbed the members of the classes in a controlling method for

scheduling their activities. Given an easy way of expressing class properties and the set of ways

for classes to interact, specifying algorithms is as simple in Smalltalk as in other languages.

Hence. a great deal of emphasis in teaching Smalltalk is placed on skills connected with the

organization and commun ication of information. At some stage, the students' abil ities to specify

an algorithm is assumed: ir.struction turns to the problem of how to model a complex situation

of interacting, active components. Because Smalltalk is specially designed as a simulation

language, the act of building the model results in a description that runs on a computer. The

model can then be observed, modified, and run again.

Smalltalk Project- Proposing Curriculum

We introduce Smalltalk by presenting the student with a model Smalltalk class definition. The

key idea is to furnish a definition of a class whose members can cause effects that interest the

student. Programming concepts of .sequencing, naming. and conditional action are taught by

having the student write simple sequences that make use of one or more instances of the class. In

this manner. the student learns two basic Smal1talk ideas: instantiation--creating members of a

group or class of objects; and communication--sending a message to an object in order to have

the object carry out some sequence of actions. He also learns that. while the class definition

conla ins the description of messages and actions, it is the instances of the class that actually do

the work. i.e .. draw lines, paint gray tones. print text. and so on. This factoring of descriptions

and actions is different from many programming languages in which the programmer must deal

with the active sequence of events at the same time he or she tries to specify the abstract objects.

The student can then modify the class definition in order to add new capabilities or change the

methods used to realize current ones. Each new class member. as well as those already created

before the class was modified. responds immediately to any changes in the class definition. The

student can thereby ex.plore the concept of sharing capabilities and knowledge among class

members. When In object receives a message that it understands, the object responds by carrying

out some sequenf..'e of instructions. By substituting different sequences of instructions in the

original model. the student can produce new results. For ex.ample, the student could create a new

4
Methods for Teaching Smantalk

graphic image as the response to the message display. This modified model can be further

extended, or it can be used in new contexts.

This basic idea of presenting a model Smalltalk class definition that the student uses, modifies,

and expands, is called a "project-proposing curriculum." The model is proposed as an example

of a class with capabilities extending over a whole family of objects. For example, a class of

squares might have capabilities similar to any regular polygon, such as triangle. hexagon. or

circle. The model is involved in a set of initial projects that are chosen to describe the language

syntax and basic communication concepts. Each model has several possible extensions from

which the student can choose in order to learn new programming techniques, for example,

graphic communication or storage methods. The explanations of model projects, with suggested

extensions, are presented to the students in the form of illustrated booklets.

The curriculum framework we use, then, involves

use of an already existing model,

reproduction of the model with some addition,

substitution into the model to produce a new result (new class definition), and then

recycling with further extensions to the class definitions. and introduction of the model in new

contexts.

In their initial experiences, the students explore models that get them into programming with

quick and fun results. At the same time. they get sufficient knowledge about the basic concepts

so that they can carry out project ideas of their own. In this manner. programming techniques

are taught and practiced within a structured framework that encourages innovation on the part of

the students.

An Example Project: Box

One introductory activity we have employed with elementary and jiJnior high school students is a

series of projects that use, modify, and extend the definition of a box class. A box is an object

that looks like a square: it can be drawn on the display screen or erased; it can grow bigger or

smaller. and turn right or left; it is possible to make a box move to different screen locations.

The illustrated booklet, The Box Book. helps a student learn Small talk by exploring square boxes,

having them "play leap frogs", "dance" together. and make designs. The following explanation is

adapted from the booklet

Small talk consists of objects that send and receive messages. Each object must know how to

receive and respond to any messages it is sent. Smal1talk is like a post office. The objects are

like people who mail letters containing "messages". The object, or person. who receives the letter

must read each message to find out what things to do. The name box is the name of a class of

•

5
Methods for Teaching Smalltalk

Smalltalk objects that we have provided. [f you type

box new name "joe".!

you are telling Smalltalk to create joe, a new member of the box class. (Note that the symbol we

call "do-it", !. indicates the end of the message.) Because joe is now a member of the box class,

anything a box can do, joe can do.

For example, a box can grow. You can send joe a message to grow by typing

joe grow 50.!

which says to a box, increase the length of your sides by 50 units. The original image of the box

as a square on the screen disappears and a larger square appears.

You can type different numbers after the message grow in order to have joe grow by different

amounts. You can make joe smaller by typing a minus sign before the number.

joe grow -20.!

After creating more Smalltalk objects that act like boxes, you can tell them to grow different

sizes. For example, try

box new name "ann".!

ann grow lOa.!
box new name "jan".!

jan grow 50.!

The result is shown in Figure 1.

If you type the message

3+4.!

Figure 1.

you are sending a number, 3, the message to add itself to another number, 4. The number 3

responds with the sum, 7. When a box receives the message grow, it expects to then receive a

6
Methods for Teaching Smalltalk

numerical value telling it how much to grow. That value can be the result of a message to a

member of the number class. So, for example, you can type

joe grow 10 ,. 3.!

or, if i is the name of an number,

joe grow 10 ,. i.!

A box can turn. Send joe the message to turn by typing

joe turn 30.!

joe turns right because the number is greater than O. To make joe turn left, you type a minus

sign before the number.

joe turn -45.!

ann can turn around and around when you repeatedly send her a message to turn. Tell ann to do

the turning lots of times .

do lots (ann turn 10).!

Or jan can rock back and forth.

do lots (jan turn 20. jan turn -20).1

By working with boxes in this manner, the students learn about the display of graphic

information on a video screen. By examining the changes in the boxes, they learn about the

relative sizes and orientations of graphic objects.

In The Box Book, we adopt the metaphor that programs are "movies" in which there are "roles"

that actors play. A role may always be filled by the same actor, that is, the role is a constant.

For example, in the movie in which the box jan rocks back and f.orth, the role of the rocking

box is always filled by jan. But usually the actors vary, that is, the role is a variable.

The Box Book continues by introducing the movie class, a method for creating a script for one or

more characters. One movie might have an object spin around and around. Let's write a movie

in which any member of the box class can be the actor. We will give the movie the name spin.

movie new name "spin".!

This movie will have one character, wheel.

spin characters wheeL!

7
Methods for Teaching Small talk

In the script. the character wheel is told, 36 times. to turn 10 units. The counter 'repeat' can

start at 1 and count to 36.

spin script (do 36 (wheel turn 10)).!

Who will be the star in the movie? Each time we want the movie to play, we must send it a

message that tells which box will be the star actor. For example. we might type

spin with jan.!

The object wheel in the definition of spin is the name of a character in the movie. It is just like

Mr. Spock in the movie Star Trek. "Mr. Spock" is the name of the character. and Leonard

Nimoy is the actor. When we type

spin with jan.!

the movie spin is given a chance to do something. The first thing it does is receive the message

with. It then responds to this message by finding out who will play the role, wheel. In this case,

the message was the box jan. Now, whenever the script for spin tells the character wheel to do

something. it is actually the actor jan that does il That is, wheel is an alias for whichever square

box we name in the message.

The Box Class Definition

There are several ways to define the class box. One version has each member of the class retain

knowledge of its size. its position on the screen. and the orientation (the tilt) of its drawing. An

alternative definition. which we describe below, provides each member of the class with

knowledge of an instance of the class pen. The pen remembers the proper orientation and

location on the display screen.

The pen class is provided in the basic Small talk system. Members of the class respond to

messages to draw a line on the display screen. The line can be black or white, thick or thin. The

pen itself can be positioned at different points on the display screen, facing in any direction.

We might use a pen to draw a square:

pen new name "pal".!

do 4 with (pal draw 100. pal turn 90).!

Here we created a pen whose name is pal. We then told the new pen to draw a line 100 units

long and then to change its orientation by 90 degrees (turn a right angle). Doing this four times

means that four lines, of equal length and perpendicular to one another. are drawn on the display

screen.

In The Box Book, we show the students a "planning table" for the box class. Table I is an

example of Stlch a table. In it we include English descriptions of the intended response to each

8
Methods for Teaching Smalltalk

planned message, followed by the Smalltalk descriptions needed to carry out the response. In the

example planning table, we have used a special Smalltalk symbol SELF. It is a reference to the

currently active class instance, and is used for having an object send itself a message. For

example, to create a new instance, the class responds to the message create. The response is to

create the pen, pal, and the number, size. Then the new instance sends itself the message draw.

Each time you see a colon <:) in the Small talk description, it means that the object expects to

receive a value, an instance of a class such as number, from the message. The name SELF is

actually not required; interpreting a message such as undraw within the context of the class

description refers first to the class' dictionary of messages and then to the supraclass', and so on.

The response to the message undraw is to erase the box from the screen. The pen can draw with

white or black ink. We assume the background of the display is white. Drawing with white ink

is a way of erasing black marks. So we can erase the box by changing the pen's ink. to white and

having ~he box object send itself a message to draw. This effectively has the box trace over its

square image with the white ink.

Modifying the Box Class

The students can then modify the box class definition in order to make it possible for members

of the class to move around the display screen. Supp~se we would like to type

joe moveto point 200 100.!

We want this message to mean that the box jan will reposition its graphic image such that the

lower lefthand corner of the square is at screen coordinate 200, -100. Hence. to get boxes to move

around, the students must learn about the coordinate system of the display screen. The plan for

the new message is shown in Table II. It shows that, to move the box, it is first necessary to

erase the current image. get the pen pal to change locations. and then draw the box again in pal'S

new location.

A box can also move around the screen by following a pOinting device. Typically, the pointing

device is a "mouse", a rectangular object with three buttons on it. It inputs its x and y positions

as it is moved about on a table. A cursor on the screen tracks the mouse position. The mouse is

a Smalltalk object that can send three different messages about (1) the vertical position of the

cursor (mouse x), (2) the horizontal position of the cursor (mouse y), and (3) the combination of

buttons currently pressed (mouse button <button identifier». The message mouse point returns

the point at mouse x, mouse y.

To get the boxes to follow the mouse. the students must learn about the correspondence between

the movement of the mouse and the movement of the cursor on the screen. We devised several

hand/eye coordination exercises to give the students practice with this new - mode of

9
Methods for Teaching Smalltalk

communication. Simple programs such as "chase" and leapfrog games, and "sketching" with

different-sized boxes, resulted from the use of the new move message, and provided further

practice with the pointing device.

The students can write movies that make a box grow, turn, and follow the cursor only when a

mouse button is pressed. To write a conditional statement in Smalltalk, one uses a special

symbol.~. This symbol is always preceded by a question and followed by one or more messages

delimited by parentheses. The message(s) will be sent only if the answer to the question is not

false.

question ~ (action if question is not false)

Suppose the mouse buttons are ordered left to right on the rectangular surface. Then a possible

box control movie is

movie new name "boxcontrol".!

boxcontrol characters star.!

boxcontrol script

(do lots

(mouse button left

mouse button middle

mouse butte.:l right

.. (star grow 5)

.. (star turn 10)

.. (star moveto mouse point))).!

If the left button is pressed, the character whose name is Star will grow 5 units; if the middle

button is pressed, Star will turn 10 units; if the right button is pressed, Star will change its

location to follow the cursor; else, we repeat the process of checking for mouse buttons.

Who can be the actor in this movie? Clearly, any box. But actually any Small talk object that

can "read the script", i.e., respond to the messages in the sequence (in this case, grow, turn,

move to). We might type

boxcontrol with joe.!

or

boxcontrol with ann.'

If objects respond to the same messages, then, and only then, they can fill the same roles. So, for

example, the students can modify the box class definition. substituting other shapes for the

drawing of a square box: a circle. a rectangle, a spaceship, a flower, and so on. These different

shapes still respond to the same messages as box; therefore. a member of one of these new

classes can fill the same roles as a box in any of the students' already-defined movies.

10
Methods for Teaching Smalltalk

There are many possible extensions of the box project that the students are encouraged to try.

For example.

increase the numbers of characters in a movie;

give boxes the ability to have different border widths;

keep track of the box instances you create in order to guarantee that one box doesn't erase

another box;

create a member of a class as a copy of an already existing member;

define the class polygon;

send messages by pressing mouse buttons or pointing to words or pictures (menus) on the

display screen;
use the class rectangle to have boxes that are "painted" with different gray tones;

use the class paragraph to have boxes with text words in them; or

create the class picturebox, a box in which you can sketch a picture and move it around the

display screen.

More general types of extensions to projects are discussed in (7]. In a subsequent section. we

will describe several extensions that Smalltalk students have completed.

In summary, Smalltalk is based on a few simple anthropomorphic metaphors having to do with

communication, state, and classification. The basic parts of Small talk to be learned consist of:

(1) The notion of classification: in particular, the syntax for defining a class of objects and the

methods for creating members of a defined class.

(2) The methods of communication: in particular, mechanisms for sending and recelvmg

messages. In order to trace the flow of events, the programmer asks: who sends the message, in

what context; who receives the message, when; and how does the receiver get the message.

Sending yourself a message (recursion) is treated as a natural phenomenon.

(3) The special symbols of the language:

for receiving messages

: receive the value of the next thing in the message

g receive literally the next thing in the message (next word or words grouped by parentheses)

g peek to see the literal next thing in the message. and see if it matches an expected word;

<l peek to see the next word in the message, and, if it matches an expected word. then fetch it.

for returning values

11' followed by an expression

11
Methods for Teaching Sm:llitalk

for specifying a conditional clause

as in

question ~ (action if question not false)

(4) The methods for iteration, basically for repeatedly carrying out some sequence of instructions

do lots « instructions»

or doing something a fixed number of times

do < number of times> « instructions»

Thpre are other. of course, more complex scheduling methods not typically taught at this level

of instruction.

(5) Knowledge of the basic classes already defined and available to every Smalltalk user because

these classes have proven to be generally useful: e.g., number and float (for arithmetic); pen.

rectangle. and paragraph (for preSenting graphic information); and point, text, list, and file (as

storage methods).

STUDENT'S EXTENSIONS OF BOX

During the past three years, we have used The Box Book with a number of children ranging in

age from 9 to 15. They have followed the suggested extensions in order to create a number of

interesting projects. In this section. we describe a few examples.

Painting Systems

The clown construction example in Figure 2 was done by nine-year old Kathy who wrote class

definitions for several geometric shapes, each modelled after the box definition. The shapes are

controlled by pushing buttons on the pointing device. Her clown. like many of the "box movies"

she wrote. is part of her attempt to learn how to use geometric abstraction to represent movement

and real forms.

Figure ~ Kathy's Clown constructed from geometric shapes.

12
Methods for Teaching Smalltalk

Another student, Marian, placed images of each kind of geometric shape in a box at the top of

the display screen. She could then point with the cursor to one of the boxes in order to copy the

shape onto a new location on the display screen, thus using the shapes as though they were ink

stamps (Figure 3).

.' :,-, :~.: ,1.,.,/ ,.
I I

.• 't/.:' II. ,-I .. ~.' • ... ~ .. ::, , ..
• • ' t .- • I I .: I I" · :t ,,- I .: \:' .' -..a. • •• I.... . . • a:,:" ~ I. ". . ,I ,1',· ::.

••••• , " .. t~ 't I I.... "., . I . ,. ... I
•• '. 'I. • I '~ • , • f '. 'h~~ " ..' . "'~."

... " ~ I" • \ .••• -... . • • I, ',- •• ~r.'

• " "'Io! L~' . Y'}I'_V- i .;." :~
• • -.. • :I ./ '., .", •

• ~ \ /r" "i;.~.' . ~.
II "' , •••• 'JJ1
~'1

.. ' .' ., ... ~I; J .. _ ;~;.':.:. , .,
J , ". ", ... ".~\ ~ , .. -

....... . -".... . .
- II ,','.
Figure 3. Marian's Ink Stamp painting system.

Twelve-year old Susan generalized these geometri<; classes into a class of polygons she named

shapes: each instance remembers its position on the screen, its orientation, its size, and the

number of its sides. She changed the meaning of the message grow in order to increase the

number, as well as the length, of the sides. After learning how to create Smalltalk text windows

(rectangles with text in them), and how to determine which word the cursor is pointing at, she

defined a class menu (shown at the bottom right corner in Figure 4). Susan is able to point to a

shape instance on the screen, and then send the shape messages to grow, turn. move, change its

border width. delete. or copy itself by pointing in a menu of message words.

Methods for Teaching Smalltalk

••••• •••••

pdllt SClll~7i:..t1·t'
~.iJlt SCIll~"""l:o'e
)!(-iJlt sclllc"""l:e1e
~.iJlt sclllCTtere

'11)t 1 llm.u..'>n .0. .3d'
pC mt SClllt""!:Ot •
~,iJlt SCIllC !:O.;

.tint

Figure 4. Susan's Painting tool includes menus for creating geometric shapes and
painting with gray tones.

13

These kinds of painting tools are generally useful. With them, we can devise exercises that help a

student form abstractions, for example, to see a triangle as a hat, a tree, an eye, or a nose,

depending on the context in which the pieces are arranged.

Spacewar

Several kids were interested in designing rocketships for the game of spacewar. Dennis wanted

his ship to shoot torpedoes, while Kathy was interested in simulating rocket takeoff, ignition fire,

travel, and landing. Kathy's rocketships are simple extensions of the box class in which the

response to the message draw is to combine a rectangle and two triangles to form a ship with fire

coming out one side. Dennis invented two kinds of ships: instances of the class trek were

peaceful ships that moved in formation through space, serving as "sitting ducks" under attack by

the war ships. Both ships move forward and backward, turn left and right, move slow or fast, all

under keyboard or mouse control. The ships shoot rockets which cause other ships to explode on

impact

" \
" " \ ..

'~
Figure 5. Various games of Spacewar.

14
Methods for Teaching Smalltalk

We note that. in order to do their projects, these programmers had to understand division by

negative numbers, testing inequalities. counting by increments, graphing, and testing for inclusion

within an area of a polygon, as well as notions of classification and instantiation. They studied

the differences between integer and decimal arithmetic, the application of conditional logic and

sequencing operations, and coped with problems of computational context In each example, the

students had to be able to schedule the activities of the several kinds of objects in the

environment simultaneously. These concepts were made clearer to the students because they 'had

a need to know the concepts in order to apply them to their project work.

Games

Lisa extended the box definition. adding the ability to recognize the message open. The response

to this message was to have the instance of the box open its lid (one side of the square) a

specified amount

Dennis wrote a guessing game as a means for learning how to read characters from the typewriter

keyboard. The object of this game was to choose a secret code number corresponding to a

character on the keyboard; the player tries to guess the appropriate character bystriking the keys.

Lisa used this game, adding hints and the restriction that the player has only ten guesses, after

which the player receives the correct answer. She then incorporated the game in her extended

box ci<!5S: each instance remembers a code number and responds to the message guess by starting

the game. If the player guesses correctly. the box lid opens and a design appears (see Figure 6).

Figure 6. Lisa's box guessing game. When all the secret codes have been
guessed, each box displays a different spiral design,

15
Methods for Teaching Smalltalk

She then extended the definition once more by adding the ability to point with the mouse cursor

to a box on the screen. Now the player presses a button on the mouse to indicate that the game

should start; the box that finds the cursor inside its square area plays the guessing game.

Pong, shown in Figure 7, was implemented by two students, Elliot and Sandy. They scheduled

paddle turns according to input from the keyboard, and kept a running score in a scorebox.

Comparing their original game to those in the stores, the boys realized that the store version

provided different ball returns depending on where the ball hit the paddle and whether or not

the paddle was in motion; they revised their own game accordingly. Because the boys designed

the class definition for paddle, they were able to extend the game so that each player had

multiple paddles.

I

Bv Ellict, l{;e 11. Illd :)Uld,. Ig.: 11. Tho:: pOllg gune.
The follo-.riull k",kud d:U1Ctcn «'lltlC,jt!::e piddles.

Figure 7. The game of Pong.

I

Scott's blackjack game shown next makes good use of the menu idea for selecting messages, and

extends the notion of a box as an area for holding information, in this case, about a playing

card. The game depends on two class definitions for player and card; it runs by shuffling and

dealing I.:ards to the different players. one of whom is always the dealer. and keeps cumulative
track of the winnings and losses of the players.

16
Methods for Teaching Smalltalk

ITST

Figure 8. The game of Blackjack. In the middle of playing, it is Jack's turn to select
f"rom the menu of "hit, stick, or double down".

Simulations

After several attempts to group the parts of the body, twelve-year old Marian provided

definitions for arm, leg, and head. Her class human. then. owns instances of arms, legs, and a

head. and was capable of moving at all possible body joints. She then placed the members of the

class human in dance routines, baseball games. and a badminton game.

J •

/
l/

V .-
'/ ~ I ,

l/ ~ 1- / , V
'I l/

V "' i\.. l/
~

J
J

--
- ..

Figure 9 Marian's simulated game of badminton.

Many other examples of simulations were done in the context of a course taught at Jordan

Middle School, Palo Alto, California. and described in detail in a companion paper [8].

OTHER PROJECTS IN THE CURRICULUM

As we have stated, our focus in teaching programming is actually on communication and

classification. We attempt to give the students models in which they can easily communicate

with some entity. such as the graphic entity of a box. in order to explore its original capabilities

17
Methods for Teaching Smalltalk

and to provide new ones. There are a number of such entities that we have identified as

appropriate for initial programming experiences. In the area of graphics, we are preparing The

Box Book. as already described; The Picture Book, in which the students program using icons

that are provided for them, or that they design themselves; The Movie Book, for creating

animated picture sequences that can be associated with text in order to tell a story; and The

Palette Book, emphasizing the design and implementation of painting and animation tools.

The Word Book and The Poetry Book will help the students work with verbal communication.

With access to an on-line dictionary of words. their meanings, and, possibly, visual images, the

students can play with and invent word games. A computer graphics systems is an exciting place

to explore the impact of the form of a word--the size of its characters, whether they are bold or

italics. whether they are static or dynamic--these all enter into the message the word actually

carries. The Poetry Book explores a new use of this medium, something we call "dynamic

concrete poetry". There is planned, of course, a Number Book and a Book Book, for writing

down stories. fiction or non-fiction. using both pictures and words. And a Music Book for

composing musical pieces and designing instruments to play them. My Book will be a place for

creating calendars. diaries. budget forms, greeting cards, and so on.

One thing that makes a computer special for educational purposes is the ability of its user to

store and retrieve a variety of kinds of information--sound and pictures. as well as text and

numbers. This multi-modal approach provides several ways in which students can retrieve and

view information. With a storage/retrieval system that allows the student to add his own data

and his own methods for relating the data, students can gather information which they can share

with others. The information can then become part of the total bank of information which an

entire class can use as a basi~ for inferences and generalizations. We will explore this idea in

The Find-It Book.

EVALUATION METHODS

We are interested in evaluating our work on two levels: individual student accomplishments and

the teaching methods of the learning environment

Individual Student Accomplishments

Some individual student accomplishments have been outlined in the previous sections. It is our

empirical observation that children in the age group we have worked with most (12 years and

older) can learn to write Smalltalk class definitions and to embed instances of the classes in

complex environments. They can build tools that demonstrate an integration of problem-solving

skills. producing unique extensions of the tutor-provided projects. In doing so. the children have

shown a willingness to share their newly acquired knowledge. and to cooperate with their peers

and adult tutors to generate new project ideas.

18
Methods for Teaching Smalltalk

The question remains, however, when using anecdotal evidence such as we have presented, "Who

really got the ideas and who really wrote the definitions?" Initially, we attempted to learn this

information by saving the student's on-line protocol (each keystroke input). Although this

provided us with a sense of which exercises the children repeated often. and which syntactic parts

of Smalltalk entered into recurring errors, the information lacked the verbal exchanges and the

planning or descriptive sketches provided by the tutor.

Videotaping all class or tutorial sessions appeared to solve this problem. At least one other

research group (the Logo group at the University of Edinburgh) has attempted to use videotape.

They agree with our observation that the tutor's interference, generally with motivational

intentions, is more extensive than imagined. Our videotapes are particularly useful for training

new tutors through self-observation, or by criticizing other tutorial interactions. The

approximately fifty hours of videotaping we have done will be applied to this purpose.

It is not possible, however, when taping a class of five or more students, to monitor each student

all of the time. Moreover, it is not sufficient to follow the tutor (if there is only one) to capture

dialogues, because it is also important to obtain the student's responses. to the tutorial--making

use of plans. reviewing any sketches made, describing any new information to another student,

and so on. Often we observed that the students will turn to the tutor for information they could

have determined themselves (from written materials or some on-line experimentation). Tutors,

wanting to participate actively, rather than waiting to be asked for help, tended to offer

unsolicited advice. At the public school in which we placed several Smalltalk systems, however, a

tutor was often not available. The students had more time alone, so more of the ideas and

solution methods could be attributed to them.

If we assume it is not generally possible to determine the planning "nd implementing history, we

can still determine the extent to which the student comprehends a completed projecl

Comprehension can be measured by having the student use the project. in expanded form or in a

different context. Each student is asked to describe the projects he or she carried out. The

verbal description and an on-line demonstration is videotaped.' In order to "improve the

videotape", the student is asked by the "cameraman" to make changes in individual definitions,

or, in the case of a class-planned tape, to integrate (coordinate) two or more projects. Typical

changes involve the

regrouping of instances of two classes into one class

control methods (e.g .• use of the keyboard rather than mouse buttons. or use of a textual

menu ra~her than typing)

numbers of objects (e.g .• a race for five rather than ten cars)

kinds of objects (e.g., substitute a swimmer for a car in a race simulation)

19
Methods. for Teaching Smalltalk

mixture of kinds of objects (e.g., a waiting line with trucks as well as cars)

placement of graphic information on the display screen (perhaps a suggested improvement in

layout, or thicker lines for better visibility)

. (re)scheduling of existing objects with different actions to take during a simulation, or with

different decisions models

Success in this task is purely a behavioral test of whether or not the changes were carried out

Each of the above kinds of changes requires the student to know who (which object) has what

information, or who has control of which parts of the active events. As we said eartier, these are

kernel ideas in writing Smalltalk programs. This test is a learning experience that is fun; it

, provides a videotape for the class of their work. When carried out as a class-planned tape,

changes for improvement are imposed by the students themselves, providing additional review.

Use of this non-competitive evaluation method is described in [8].

Teaching Methods

The two levels of evaluation are closely tied, since the students' accomplishments result from the

programming projects proposed in the curriculum. The teaching methods used are highly

structured in terms of particular introductory materials to be followed by each student; they are

very flexible with regard to the kinds and numbers of modifications the students might make to

the models. Giving the students the freedom to select introductions from a variety of

well-organized materials, and to define the use of the materials according to individual interests.

gives the students some control of their learning environment. We have implemented our

curriculum in a framework. of self-assessment and self-imposed review. Programming is an

interesting course of study foc this purpose. Projects last long enough so the students can get

involved with their work; a number of different visual or verbal ideas can be tried in the search

for a solution. Since several solutions are possible, the students can begin to make judgments

about the relevant worth of each approach, comparing and sharing new techniques with one

another.

Each time a new programming project is attempted. the student is able to practice skills already

acquired. Review comes in the form of redoing work. perhaps with some variation in the

resulting definitions. or in the form of using previous work. (for example, using previously

defined data storage methods or methods for user interactions). Algorithms that are embedded

in a class definition for one project reappear in new definitions. The students can see a transfer

of their (developing) skills into new project areas.

Will the curriculum project books teach the basic programming concepts as intended? This

evaluation is carried out in two parts. First, do the books contain material related to teaching

these concepts? Second. do the students learn the concepts?

20
Methods for Teaching Smalltalk

The Box Book is the only one with which we have extensive experience. A researcher. familiar

with teaching programming. but independent of the development of The Box Book, composed

Table III, a categorization of concepts she found in the book. These clearly include the basic

concepts listed earl ier.

Evaluation of whether or not the students learned from The Box Book is confounded by the

mixture of students we have had--differences in age and differences in previously acquired

programming skills. The Box Book seems somewhat oversimplified for students with strong

backgrounds in programming in other languages. However, the book does give these students a

useful introduction to the new programming notation; it also offers a metaphor that helps the

students understand the notions of classes and instances.

The Box Book begins with a simple sequence on using the members of the box class in order to

make pictures on the display screen. This material is understandable to children under 11 years

of age. Because the concept of classification is not well-known to the younger students, the

Smalltalk class concept appears better suited to students ~bove 11 years of age. Hence our

interest in providing iconic languages for young children as bridges to the Smalltalk.

programming concepts. And, of course, non-keyboard input devices, such as a button box or

touch-sensitive screen, make the bridges easier to build.

Our teaching method, to propose projects that the students tryout and modify, is based on the

premise that there is no one best way to teach programming, but that we should provide a variety

of projects and a variety of teacher/student arrangements from which the kids can choose. The

projects, to be successful, have to lead the students on enough to get them to generate unique

extensions. If the students only try out the examples as given, then the curriculum is, in a sense,

a failure. For the students we have worked with, the material has encouraged many different

kinds of projects that have :;ustained their interest for long periods of time.

21
Methods for Teaching Smalltalk

REFERENCES

1. A. Goldberg and A. Kay (Eds), (1976), Smal/[alk-72 Instruction Manual, Xerox Palo Alto

Research Center Technical Report SSL-76-6.

2. Seymour Papert, Teaching Children Thinking, (1970), I FI P Conference on Computer

Education, Amsterdam: North-Holland.
'-

3. Wallace Feurzeig, et at. Programming-Languages as a Conceptual Framework for Teaching

M atizemalics, (1977), Final Report on BBN Logo Project

4. Hal Abelson and Andy deSessa, (1977), Student Science Train:ng Program in mathematics,

physics, and computer science, MIT Logo Memo 29.

5. Marian Visich and Ludwig Braun, (1974), The Use of Computer Simulation in High School

Curricula, Huntington Computer Project, State University of New York at Stonybrook.

6. Ole-Johan Dahl, and Kristen Nygaard, (1966), SIMULA--an ALGOL-Based Simulation.

Language, CACM, IX, 9, pp 671-678.

7. A. Goldberg and B. Tenenbaum, (1975), Classroom Communication Media, ACM SIGCUE

TOPICS in Instructional Computing, Vol 1, Teacher Education.

8. A. Goldberg, Smal/talk in the Classroom, (1977), Technical Report SSL-77-2 (this report).

Table I. A Planning Table for the Box Class

Message the
box can receive

English description of the action
the box will carry out

new

draw

undraw

grow

turn

It creates a new box. that needs its own
pen to draw the new box. on the display,
and that must remember its size whose
first value is 50. Then it draws itself on
the display screen

The box has its pen draw a square on
the screen at the pen's current location
and orientation. The length of its four
sides is size.

Erase the box.

After erasing itself, the box instance
retrieves a message which is inter­
preted as an increment of its size. It
then redraws itself as a bigger or
smaller square.

After erasing itself, the box. instance
retrieves a message which is interpreted
as an increment of its orientation. Note,
since the pen, rather than the box,
remembers the orientation, the box has
to tell the pen to turn.

Small talk description

pen new name "pal".
number new name "size".
size value 50.
SELF draw.

do 4
(pal draw size.

pal turn 90).

pal white.
SELF draw.
pal black.

SELF undraw.

size increase by •.
SELF draw.

SELF undraw.

pal turn :.

SELF draw.

23

Table II. Plan for Adding a Message to the Box Class

Message the Engl ish descri ption of the action
box can receive the box will carry out Smalltalk description

move to After erasing itself, the box instance SELF undraw.
retrieves two messages which are
interpreted as the m!w coordinates pal place at ..
of the box. Note. since the pen, rather
than the box. remembers the location. SELF draw.
the box has to tell the pen to place
itself at the new location.

24

Table III. Concepts Found in The Smalltalk Project Book: The Box Book

Small13lk

objects
receive and send m~sages
name/v:lIue
class (has name)
instantiaLion
completeness of description
syntax
SELF--name for object that is looking at the message
meS5:1ges consist of many submessages

sequence of instructions

grouping
can have name (procedure)
sequence generalized as procedure
local variables
contrast between procedure definition and calling on a procedure
procedure may receive more than one message
redefinition

now of control

order of eV:lluation
bierarchies
condition:lI clauses
iteration
infinite loop
repetition
increment
termination conditions
interrupt

symbol may have different meanings in different contexts
substitutability (e.g., instances or same class)
type constraints (c.g., instances of different classes that can play

same role in a procedure)

problem solving

many possible solutions to a given problem
planning. templates
identification of components
determination of differences
o;:"pansion of model
demonuration of active process
analysis (is it working 3S you thought it would?)
coordin3tion, integration (c.g., shooting one box out of ::mother)
extension (e.g., make polygons from box class)
interrogation -- asl: obj~cts about their properties
experimentation--wh3t will happen if? try and see ...
reaching :l final :1nswcr through successive parti31 results

incrcasinl! dimensions
il1'\/lsible -e>:is{cnc.: (objects exist but may not be shown on the display)
nc:;ative numb.:r, allu binary arithmetic
ori::ntltion. rot:lllun
uenot:ltlon (e.g .. multiple n3mes of same object)
Cartesi:m coordin:ltcs--lines named by numbers
oi rcct lonali ty
complemcnt3tiun. in..-ersion (c.g .• of display screcn--black to while)
I.kLlUits
printing

INTRODUCTION

SMALL TALK IN THE CLASSROOM

by

Adele Goldberg

Xerox Palo Alto Research Center

learning Research Group

In an earlier paper [1], we described the methods we have developed for teaching children how

to write computer programs in a language called Smalltalk. We are interested in this endeavor

for two main reasons. First. programming can be rewarding both as a creative activity and as a

model of analytic problem-solving. A child gains confidence in his learning by becoming his

own evaluator. This is accomplished through the immediate feedback provided by the computer.

or by the child's own comparison of his results with his intentions. In his ability to generate

programming project ideas, a child also gains some control over his learning environment and.

potentially, is motivated to explore more, or deeper, problem solving tasks. A number of

properties of good problem-solving can be emphasized through programming: planning and

organizing, describing. implementing, carrying out a plan to completion, and evaluating;

An even more significant reason stems from our interest in developing methods for manipulating

information in ways that are interesting to users who are not computer professonals. These

methods include ways to store and retrieve information, edit it, organize it, provide structure for

it, speculate about it, and generalize about it. A difficult and important problem in designing

such an information system is that of providing easy means to:

give the owner of the computer immediate control over the available information, and

allow the owner to augment the system with new methods that fit individual requirements.

Children (and their teachers) represent a significant portion of the potential users of such a

system. A child's learning experiences typically involve searches for new information; new facts

and ideas are related to those previously acquired. Reorganizing information often helps

highlight non-obvious connections. For example, building special classifications for the facts,

sllch as a timeline or a graphic map of trade relationships or of territorial control, often makes it

possible to discover dependency relationships.

Hence we are interested in providing a system in which children can easily store, retrieve and

organize information, and can test out, through simulations that they themselves build, their

ideas of how that information can be used. One of our initial concerns, then, was how to teach

children to program in a language, Small talk, that is especially designed for describing

classifications and simulations.

2
Small talk in the Classroom

PROGRAMMING CLASSES

We have been teaching Smalltalk to children since the Spring of 1974; for an outline of classes

see Table I. The basic purpose of the classes was to develop and use a variety of methods for

teaching Smalltalk programming, and to prepare, with the help of our students. illustrated project

booklets that the students could use. Our methods. and the format of the booklets. are described

in detail in [1].

Until the Spring of 1976. these classes were held at the Xerox Palo Alto Research Center

(PARC). In order to participate in our program, a student had to be excused from two

consecutive Jordan classes or .1franged to attend after school hours. Parents or teachers had to

provide transportation, or the kids bicycled a considerable distance. In the Spring of 1976, we

pl~ced two Smalltalk systems in the independent study center at Jordan Middle School, Palo Alto,

California. This center is funded through the state program for "mentally gifted minors"

(MGM). Prior to this. most of our programming classes consisted of seventh and eighth graders

(12- and 13-year olds) from Jordan.

Locating the computer systems at their school made it easier for the kids to schedule class and

work sessions. especially for shorter time periods. With the elimination of the transportation

problem. the students were able to come before school opened. during their "brunch" and lunch

breaks or study periods. and after school, as well as during scheduled class periods. Because the

computers were located in their school, many students, not singled out for attention in the MGM

program, but still curious about the new technology, could be made aware of our classes. We

tried to provide tutorial help, before and after school hours, to students who showed such an

interest

The Jordan experience. then. represents an attempt to place the Smalltalk system in an open

educational environment or resource center. This five-month experience served as a pilot study

for transferring our learning center model into a typical school environment. The model

consisted of several Smalltalk systems linked by a communications line (the original two systems

were subsequently increased to three), one Diablo printer, and one Data General Nova system

and button box device used to control a robot "turtle" [2]. Paper copies of graphic information

displayed on the screen were available from a Xerox Graphics Printer located at PARCo In

addition to these computer devices, we used standard audio-visual equipment, and a variety of

toys and games from conventional manufacturers for the purpose of stimulating ideas and acting

out programmable sequences. Materials for building cardboard mocks-ups of businesses and

public facilities that (might) use computers was part of :1 study of the application and impact of

the technology on society.

3
Smalltalk in the Classroom

Figure 1. Jordan Resource Center

The casual access to the Smalltalk system at Jordan was highly successful in terms of the usage of

the room and in clarifying our own curriculum ideas. Almost 100 students utilized the center's

resources, 53 of whom were in formally organized courses. Table II shows a breakdown of the

average number of hours spent in the room by students in the various classes. This data was

obtained from a log book kept by the students who were responsible for signing in and out of

the room. Since students often forgot to sign the log, we must aSSU'lle that the data is not exact,

but is, rather, a lower bound. Also, the time indicated does not include time spent in large group

presentations.

Table II includes an entry for "hangers-on". This was a label we used for students who did not

actually work on the computers, but just spent time in the room. These students' roles as critics

appeared to provide an on-going discussion of the computer's impact on society and its potential

for the future; hence their inclusion in the usage table.

JORDAN CURRICULUM

Four courses were taught during the Spring 1976 semester. One, an animation class, was

conducted informally by a former Jordan student. now in high school. who returned to the

middle school twice a week. Courses in computer simulation methods, graphic techniques, and

some geometry were prepared.

Simulation

The initial Smalltalk simulation course focuses on the development of mechanisms for specifying

abstractions of physical activities that fit into a counter-service paradigm (counters with clerks,

and lines filled with objects such as cars or people waiting for service). The course emphasizes

skills in observing dynamic events, collecting data about these events, and using the graphic

capabilities of the computer to represent essential characteristics of the events.

4
SmalltaHc in the Classroom

The material is considerably more difficult than any we had previously attempted; it was

especially directed to students who already had programming experience (each student in the

simulation class had previous experience programming in Basic). Two classes were held. each

consisting of nine students who attended formal presentations and discussions once a week for a

regular forty-minute school period. They were expected to work on the computer at least one

additional hour each week. The course continued throughout the five-month semester. Written

summaries of the class presentation were always provided.

The course begins with a model of a simple list of objects. in this case. circular bubbles floating

randomly around the display screen. Everything in Smalltalk is based on a few simple

anthropomorphic metaphors having to do with communication. state. and classification. Every

object in the system belongs to a class; objects communicate with each other by sending

messages. A class definition contains a description of the properties of each class member and

methods the objects use to recognize and reply to messages. Each class has certain capabilities

such as drawing pictures. making musical (or other noises). or adding numbers.

The bubble" class is a model class definition that is easily extended to represent other objects

floating about: letters. numbers. snowflakes. designs. polygons. Exercises to modify the graphic

representation of a bubble introduce methods of visual communication: line drawing. text. and

gray-scale sketching. These exercises are similar to those used' in The Box Book discussed in a

separate paper [1].

o ® :Jo o
Cb

...

..-

..

Figure 2. Bubbles and Bubble Ex tensions

• ~
c

- ..
..

5
Smalltalk in the Classroom

In this course, we discussed the basic parts of a Smalltalk class definition and the concept of

communication among members of classes. We did not teach the syntax· of the Smalltalk

programming language. Rather. we concentrated on schemes for classifying objects, such as the

bubbles, according to descriptive properties and actions. The schemes were written in a special

format we call design templates. They are forms in which a student can specify (a) a set of

variable names, whose values describe properties of a class (such as the size of a bubble); and (b)

a set of messages a class member might be sent. The messages can be annotated with comments

stating the intended response to, and expected side effects of, each message.

Students were expected to learn the precise programming syntax from the project booklets and

the instruction manual [3]. sharing examples and helping one another during small group

sessions. They could complete the design templates by appending an appropriate sequence of

Smalltalk instructions to the comments. If a student needed help, a tutor could check the

correspondence between the comments and the actual instructions, as well as discuss the

communications design. This format succeeded (in the sense that each student wrote several class

definitions) probably because the students already knew the basic programming concepts of

sequencing, iteration, and conditional action. Significantly different introduction methods are

necessary with less experienced students.

The simulation curriculum continues by introducing methods for modifying lists. The students

built a model of bubbles bursting when they get too near one another; the list of active bubbles

changes when a bubble bursts and goes away, or bursts into two or more new bubbles. Here, we
focus on the implications of decisions, such as the definition of near and the model of how

bubbles will actually burst on contact (one or the other or both). We also examine different

scheduling methods for simulating sequential or parallel processes, and study the possibly

different results by having the students themselves act out the roles of the bubbles.

We then use lists of objects to create races of cars, horses, and swimmers, beginning an

exploration of the idea of collecting statistics on the activities of the objects in the simulated

environment. The pictures shown in Figure 3 are taken from some of the students' races.

Although each student was presented with an identical model, each designed a unique variation,

both in terms of the graphic presentation and in terms of the underlying method for determining

the objects' movements. A number of the students incorporated a clock to indicate "simulated

time".

6
Smalltalk in the Classroom

1. 3

START
CAR 1 WIN5

I II
I IT ~ I

: 1 ' I: _I I I
FINIS1I - musH

Figure 3. Races

We believe that in this simulation class. junior high school students designed a data storage

mechanism for the first time. The available Smalttalk storage mechanisms proved not to be

comprehensive enough for use as waiting-lines. so the kids designed their own. Their method

(with several variations actually implemented) was a waiting line class: members of the class are

lines that objects can join. leave. and get service from on a first in-first out basis; an object may

also cut ahead of objects already in the line. The storage method is not concerned with details of

the actual obje.:ts in the line. passing on responsibility by sending messages to the objects. and

leaving it up to their class definitions to handie the actual drawing. undrawing. and moving.

Hence a line can contain members of several different classes.

7
Smalltalk in the Classroom

The students proceeded to study Simpu/a, a Small talk simulation of scheduling mechanisms in

the Simula programming language [4]. Simpu/a operates primarily through scheduling

pseudoparallel processes by means of a sequencing set. The set holds the quiescent processes

sorted by desired time of activation. Associated with each process are the object itself, the time

the object is scheduled to wake up and do something, and a message to tell the object what to do.

This message is either constructed by the object when it runs, or is a default message. There is a

system time which indicates the simulation's cllrrent progress. One object can be scheduled in

connection with more than one event, each event invoking a different activity by the object. In

order to understand the structure of Simpu(a, the students designed a class definition for chained

lists; it was possible to add and delete items from such a list, where items were ordered with

respect to a numerically-valued property (typically, this property represented time).

Up to this point, the students had been considering the problems of taking actual dynamic

processes, such as their school cafeteria, a car wash, or parking lots at a shopping center, and

building models in Smalltalk. The reverse process was illustrated in order to demonstrate to the

students the kinds of information that can be obtained from an abstract model. A hospital

simulation. built with SimpuJa, was shown to the students as an example of an already running

machine model. The objects in the simulated environment are hospitals, departments. staff,

patients who walk through corridors to get to department desks, waiting rooms, and staff

attention. Each of these objects is able to describe, on demand. itself, its history and/or its

immediate future.

One of the simulation groups proceeded to design a simulated amusement park. Included in the

design were lines of cars waiting to enter the park. lines of people waiting to get on rides or buy

cotton candy or be seated in a restaurant, and, of course, ticket counters, cafeteria-style food

services, and souvenir shops. The students took into consideration such variations as rides in

which all seats were filled and emptied at once (e.g., merry-go-round), and rides in which seats

were filled and emptied continuously (e.g .• jungle boat ride). An amusement park consists of a

variety of events happening simultaneously; each can be modelled separately and combined in a

number of ways that illustrate different scheduling models. The students' design work on this

simulation will be expanded into a new illustrated project booklet. One student built part of the

amusement park simulation, adopting the graphic layout from the example hospital simulation.

A view of his work is shown in Figure 4.

8
Smalltalk in the Classroom

Figure 4. An Amusement Park Simulation. Each rectangular area represents a ride or service; x
denotes the number of available seats. People are denoted by numbers, as riders,
waiting or walking between rides.

Graphics

The number of students interested in using the Small talk systems was increased as a result of

math class "field trips" to the jordan resource center by over 400 students. During these trips, we

gave the kids demonstrations of ~he use of the turtle robot, of a dial-up line to the school district

time-shared computer, as well as of the Small talk graphic capabi Ii ties.

As a result of this increased demand, we presented two more courses: one on computer graphics

and one on geometry. Each course attempted to provide some interesting pre-programmed tools

that the students might use to create designs on a computer display screen.

The graphics curriculum is designed to give the students an awareness of the possibilities of

high-resolution computer graphics. Basically, the students study models for line drawing, text

presentation and editing, use of half -tones to give the impression of "color" or texture, and a

variety of ways to make pictures move on the screen. We call the tools brush strokes (lines

whose width's vary), polygons (string designs), and paint (shaded areas).

During the final class session, after an unfortunately short eight weeks, this class of fifteen

students came up with a number of interesting ideas for a painting system: design and store new

brush shapes. build new brushes by mixing already existing ones, use a scrolling menu of brushes

in order to expand the virtual display space, (recursively) use the painting system to paint new

brushes, and provide a variety of picture scaling and rotation operations. The ultimate goal in

the course is to have the students design and build their own painting and animation tools.

Often a student from the graphics class teamed up as an "idea" person with another student, the

"implementor". who could program, thus forming a very productive "research" team.

Undoubtedly it was this sharing of ideas and knowledge that made the resource center the

9
Smalltalk in the Classroom

stimulating place it proved to be. In examining the students' files after the study was completed.

we found the same programs copied on several student disks, especially ones such as fantasy

shown in Figure 5. In another case, a spacewar program written by one student showed up in

another student's file, but modified to include a maze in which the ships travelled; and rockets

that bounced off the maze walls.

Figure 5. Fan tasy

Geometry

In the geometry curriculum, the students are given class definitions for pOint, line, triangle, and

circle. They are taught the basic Smalltalk notions of creating instances of the classes and of

sending messages to these instances. For example, a student can create a triangle and then make

designs by changing the positions of the vertices of the triangle. Several of the students' designs

are shown in Figure 6.

, "

','

Figure 6. Triangle Designs

10
Smalltalk in the Classroom

Figure 6. Triangle Designs (Continued)

The geometry curriculum pays particular attention to the problem of constructing a circle that

circumscribes or inscribes a triangle. Members of the class triaflgle are created by pointing to

three positions (vertices) on the display screen. Each triangle responds to a message of the form

bisect side <side identifier> by creating a new line, i.e .• the one that bisects the designated side.

A line responds to messages of the form intersect <line) by returning the point of intersection.

In order to circumscribe a triangle. we bisect two sides of the triangle and determine the

intersection of the new lines. A circle is then formed with this point as center, and with radius

equal to the distance from thi; point to a triangle vertex.

(l~"""'I}_'..I"

• tti_tJI u.. Of1eie

Figure 7. Circumscribe a Triangle

11
Smalltalk in the Classroom

We inscribe a circle in a triangle by bisecting two angles of the triangle. The angle bisection is

carried out by forming an isosceles triangle using the angle's adjacent sides; the bisector of the

base of the new triangle also bisects the desired angle. The point of intersection of the lines that

bisect the two angles is the center of the circle; the radius is the line from the point

perpendicular to a side of the triangle.

(t b"sect angie I) name 'L l' b 1 :s the base of the isosceles triangle

(t bisect angie 2) name '1..2· b2 IS the baH Df t.he isosceles triangle:

(I. t :ntet"see~ l2') Aame 'po P is the center or the Circle

circle P t si.de 1 di$tance P The distance from a side to the center

IS tne radius or the circle

Figure 8. Inscribe a Circle in the Triangle

This geometry course is one example of how a trained teacher might make use of the Smalltalk

environment to enhance classroom explanations. The particular sequence described here

corresponds to a seventh-grade mathematics unit at Jordan.

EVALUATION

As reported on in [1]. we have considered several methods for evaluating the students' individual

accomplishments. We are interested, first, in whether or not the students learned how to use

Smalltalk systems. We also wished to determine whether the casual access provided by the

in-school resource center produces a qualitative difference in the use of the facilities.

Because the systems were located in their school, several students were able to involve their art

and mathematics teachers in center activities, notably to include their Small talk work as a

component of their regular class work. Many teachers considered the Smalltalk resource center as

a kind of school library, and gave the students access to the center whenever regular cbss work

was completed or whenever class problems could be done on the system. A number of the

students received credit in their regular classes for work they accomplished on the Smalltalk

system.

12

Smalltalk in the Classroom

At Jordan. a tutor was often not available. The students had mor~ time alone. so more ideas for

extensions or methods for solving a problem could be attributed to them. rather than to the

tutor. The lack of an adult tutor also seemed to encourage more cooperation and sharing of

definitions among the students.

Videotapes of Smalltalk Projects

Once a student completes a project, we are interested in knowing the extent to which that student

understands its components, that is, the class definitions and scheduling methods used. We

attempt to measure this level of understanding by having each student both describe the project

and use it, in expanded form or in a different context. Each student from the simulation class

videotaped a v~rbal description and on-line demonstration. In order to "improve the videotape",

the students were asked by the "cameraman" to make changes. Typical changes involved the

numbers of objects (e.g., a race for five rather than ten cars);

kinds of objects (e.g., substitute a swimmer for a car in a race simulation);

mixture of kinds of objects (e.g., a waiting line with trucks as well as cars);

placement of graphic information on the display screen (e.g., thicker lines for better visibility);

decision model for interaction among the objects (e.g .• moving the race cars according to some

fixed probability rather than random number selection).

Success in this task is purely a behavioral test of whether or not the changes were carried out.

Each of the above kinds of changes requires the student to know who (which object) has what

information. or who has control of which parts of the active events. These are kernel ideas in

writing Smalltalk programs. This test is a learning experience that is fun; it provides a

videotape for the class of their work. When carried out as a class-planned tape, changes for

impJovement are imposed by the students themselves, providing additional review.

The result of using this non-competitive evaluation method is now incorporated in a 30-minute

videotape that we have put together to demonstrate a variety of Smalltalk. projects. Each of the

students was adept at making changes for graphic presentation and adding new capabilities to

eXIsting class definitions. They had good control over the class properties. knowing where

changes had to be made.

The students were weakest on iterative methods used for scheduling objects. especially those in

which the iteration counter is used as a variable in the computation. For example. one student

was asked to change a ten-car race into a five-car one. Computation of each car position was a

function of the initial display location, the position of the car at the starting line, and a spacing

parameter that was used as the iterative increment. The student was not able to determine the

increment. The simulation curriculum had not dealt in detail with iterative methods. mistakenly

relyi ng on the studen ts' previous program m i ng experiences.

13
Smail talk in the Classroom

The Jordan students were expected to learn the syntax of Smalltalk from The Box Book, a project

book we described in [1], and from the longer instruction manual we prepared [3]. The Box

Book seems somewhat oversimplified for students with strong backgrounds in Basic (that is, these

Jordan students). However, the book does give these students a useful introduction to the new

programming notation; it also offers a metaphor that helps the students understand the notion

of classes and instances. These students showed some surprise at the ease with which. they were

able to implement programs they had previously thought impossible to do. For example, one

student in the simulation class independently decided that the bubbles should burst. He also

independently, and incorrectly, assumed they could not be made to burst in a computer

simulation.

The Computer as Catalyst

An important. but difficult to measure aspect of our work at Jordan was the enthusiasm for the

"research-oriented" approach to curriculum. in which students and teachers function as

colleagues. With both students and teachers taking on roles as active learners, the students were

free to fantasize, explore, and make mistakes. To quote the teacher assigned to the independent

study center: "Since the curriculum was deliberately flexible. incorporating as it did the students'

own ideas and projects, the students saw themselves as researchers and their work as valuable.

The rigorousness of the curriculum arose then, as it should, out of their own self-imposed need

for tools to carry out their ideas." [5]

14
Smalltalk in the Classroom

ACKNOWLEDGEMENTS

Steve Weyer prepared and taught the geometry class; Steve, Dave Robson, and AI Borning

assisted as tutors at Jordan Middle School.

REFERENCES

1. Adele Goldberg and Alan Kay, Methods for Teaching the Programming Language Smallialk,

(1977), Xerox Palo Alto Research Center, Technical Report SSL-77-2 (this report).

2. Radia Perlman, Using Computer Technology to Provide a Creative Learning Environment for

Preschool Children, (1976), Logo Memo 360, MIT AI Lab.

3. Adele Goldberg and Alan Kay (Eds.). Smalltalk-72 Instruction Manual, (1976), Xerox Palo

Alto Research Center, Technical Report SSL 76-6.

4. Dahl, Ole-John and Kirsten, Nygaard, "SIMULA--an ALGOL-Based Simulation Language",

(1966), CACM, IX. pp. 671-678.

5. Joan Targ, Independent Study Center report to the principal of Jordan Middle School, (1976).

Date

Spring
1974

Summer
1974

Fall
1974

Spring
1975

Fall
1975

Spring
19i6

Summer
1976

15

Table I. History of Smalltalk Classes for Children

Number of Number
of Kids

Kids'
Age

Class
Schedule Systems Where

4 12 yrs twice a week,
1-112 to 2 hrs
each session

16 9-10 yrs 5 times a week
2 classes 1-112 hrs each

session

3 3-4 yrs once a week
1 hour

5 12 yrs

10 12-13
yrs

10 12-13
yrs

19 12-13
in 2 yrs
classes

15

9

9

10

3

12-13
yrs

12-13
yrs

12-13
yrs

12-13
yrs

13-15

twice a week
1-112 to 2 hrs
each session

twice a week
1-112 to 2 h rs
each session

once a week
2 hrs
each session

once a week for
40 minutes plus
individual work
sessions

once a week for
40 minutes plus
individual work
sessions

once a week for
40 minutes

once a week for
40 minutes

lotal of 80 hrs
during the
summer

10 hrs per week

2

4

1

5

8

10

3

3

3

3

10

Xerox
PARe

PARe

PARe

PARe

PARe

PARe

Jordan
Middle
School

II

PARe

PARe

Purpose

Determine if Smalltalk can be
taught to jr. high school students;
develop initial teaching material.

Use of completed project book.
(Box Book); trial with elementary
school children.

Develop and tryout ex.ercises
using the robot turtle running
from a com.mercial minicomputer.

Peer teaching study: a 13-year
old taught her own class using
the Box Book. All sessions
were videotaped.

Each student in the Fall class
tutored a new classmate. Each
group worked alone once a week.

Animation Class--text editing to
plan animated sequences that were
then implemented in the Smalltalkl
Shazam system.

Simulation Class--build
running simulations in Smalltalk
and test the models with data
collected from dynamic environments
(e.g. the school cafeteria).

Graphics Class--study communication
through high-resolution graphics;
design painting or animation tool.

Geometry Class--study the rela­
tionships among points, lines,
triangles. and circles.

Animation Class--implement simple
animated sequences In the Smalltalkl
Shanm system.

Exploratory Experience-­
students fr(.m Jurd3n continued
theIr programming studies.

Work Study program--hlgh school
students worked on appl,,:ations
pfl'grams.

16 '

simulation class

graphics class

geometry class

animation class

'"hangers-on"

visitors '

Table U. Usage of Resource Center

19 students. first part of course
10 students. second part of course
average per student: 45.9 hours
range: 14 to 150 hours

15 students
average per student: 13 hours
range: 0 to 60 hours

9 students
average per student: 12.5 hours
range: 4 to 22 hours

9 students who entered other classes
10 students not in other classes
average per student: 8 hours
range: 4 to 30 hours

12 students
average per student: 11.5 hours
range: 4 to "22 hours

27 junior high school students
average per student: 1 hour
4 elementary school students
teachers and school administrators

