
On the Equivalence of
Office Models

By Clarence A. Ellis and Gary J. Nutt

On the Equivalence of Office Models
BY Clarence A. Ellis AND Gary J. Nutt

December 1979

SSL·79·8

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

Office Research Group, PARe

ABSTRACT

Office information flow studies have led to a variety of notations, including a class which emphasizes
forms flow and another class which emphasizes work statiPll activity. Questions of the relative
descriptive power of these notations have arisen. This paper addresses that issue by defining two
sets of abstract models which, between them, encompass. many of these models. We show that these
sets of models are equivalent in their expressive power. However, transformations of models from
one type to the other lead to computationally complex (Le. NP-Complete) algorithms; we also show
how reasonable restrictions on the classes of models lead to transformation algorithms having
realistic (Le. polynomial) computational times.

KEY WORDS AND PHRASES

Office modeling, model equivalence, NP-complete algorithms, automata, network flow models,
computational complexity

On the Equivalence ofOffi~e Models

INTRODUCfION

The perspective of the user of an office model may cause him or her to characterize the office in

different ways. Higher level managers often want to see a more abstracted view of the total

business than low level managers who may want to see a detailed model of a subset of the total

business. A clerk may want to see only a view of his or her portion of the work. In general, an

office information system must serve a diverse clientele of customers from the chief executive

officer to the secretary9 so flexibility is necessary. If one is concerned about whether an order for

goods can ever get to the shipping department without having been routed through billing, then a

forms-otiented view is preferable~ if one is wondering about equitability of workload, then a

people-oriented view is most appropriate.

Within offices, one can describe the processing of information by describing a set of "tasks" with

precedence constraints. The precedence ordinarily specifies control flow, (e.g. see [ELLI79]);

however, it may show data flow, (e.g. see [HAMM77)). The diagrams can be embellished by

attaching other information, depending upon -the purpose of the model. For example the tasks

may be partially interpreted in order to specify service time distributions, (cf. queueing networks

[KIEN79]); a supplementary graph may identify domains and ranges for tasks, (cf. precedence

graphs in [COFF73]). We refer to this class of models as precedence-oriented models.

Another class of models has been oriented toward the specific processing performed at a work

station within the, office; a model from this class would emphasize the set of tasks that can be

perfonned at the work station at any given time, (e.g. see [BAUM80, NESS77]). These models

explicitly assume that only one task from the collection of tasks delegated to a processor can be

ex~cuted at a time (Le., the processors -- human or machine -- are thought of as sequential

machines). Models within this category are called state-oriented models.

We conjecture that if one knows complete information about each work station's information

processing functions, then one also knows complete information about the processing of each

transaction, and vice versa In this paper we consider algorithms to convert from a model of one

type to a model of the other type. The algorithm to convert precedence to state models, and all

others that perform the same task, may result in an exponential explosion of states as a function of

the number of tasks in a precedence model. A subclass of the precedence-oriented models is then

introduced which can be transformed into equivalent state-oriented models in less than an

exponential number of steps.

Office Research Group, PARC

DEFINITIONS

Precedence-oriented Models

l\10dels which are oriented toward the processing of a form tend to specify the precedence of

operations on that form (as opposed to the precedence of operations by the processors of the

form). For example if a form must have 4 fields filled in, and the order in which some of them

are filled-in is important, then the precedence of fill-in activities can be specified by the mode1.

Thus field a may have to be filled in before fields band c, and field d cannot be filled until both

band c have been completed. The precedence of the four fill-in activities is a<b, a(c, b(d, and

C<d.

It is possible to fonnally define a precedence-oriented model as a directed graph, in order to show

formal properties of such models (e.g., consider the "UCLA model" [RAZ079]). In the following

definitions, p(x) denotes the power set of x.

Definition 1: A precedence model is a bilogic, directed graph,

(A,P, '11 ,1/I,a)

where

A = a finite, nonempty set of activity nodes,

P = a finite, nonempty set of office operators,

'11 = '11i U '110
'11i: A ... P(A)

'11 0: A ... P(A)

1/1: A -+ {*,ES}

a: A -+ P activity assignment to office operators

3!ao 3 'lTi(ao) = f(J

3!an 3 '11 o(an) = f(J

The flow of control in the model is described by A, 'IT, and ljI. If a given activity, x, has AND

logic, then 1/I(x) = *; exclusive OR logic is represented by ES. Activity x with t/I(x} = * can be

initiated iff each activity in 'lTi(x) has terminated; when x terminates, each activity in '11 o(x) is

signalled that x has terminated. Activity x with tf!(x) = E9 can be initiated if any activity in 'lTi(x)

has tenninated; when x terminates, exactly one activity in '11 o(x) is signalled that x has terminated.

There exists one entry point and exactly one exit point. The a mapping represents the assignment

of activities to office operators, (Le., workstations or people).

Definition 2: A transaction in the model is the set of activity executions which result from the

initiation of the entry activity; each transaction begins with the initiation of the entry activity, and

ends with the termination of the exit activity. No two activities are allowed to initiate at exactly

the same time. l'hus for the processing of a transaction, t, there exists an activity sequence

*'W7IUM,t..4khIA4M4 W4,Ax.?)7.,

On the Equivalence of Office Models

wet) = anal ... ~
listing the order in· which activites were initiated in the processing of the· transaction.

Figure 1 is a diagram of a precedence model. Activities are represented by circles, precedence by

arcs, node logic by a symbol adjacent to the node, and operator assignment by an integer adjacent

to a node. For example, activity a1 has been assigned to operator 1 and it has AND logic;

activities a2 and a3 are enabled when a1 terminates. An activity sequence for the model might be

a1a2a6a3a7aSa9

The formal representation of the model is given as:

A = {a~a~a3'~~S~&a7~~a9}
p = {1,2,3}

7Ti(a1) = 0 71 0(a1) = {a2,a3} ",(a1) = * a(a1) = 1

7Ti(a2) = {a1} 7To(a2) = {a4,a6} "'(a2) = ED a(a1) = 3

7Ti(a3) = {a1} 71 0(a3) = {~} "'(a3) = * a(a3) = 2

7Ti(a4> = {a2} 71 0(a4) = {as} "'(a2) = * a(a4) = 3

7Ti(aS) = {a4} 71 o(aS) = {a7} "'(as) = * a(aS) = 3

7Ti(a6) = {a2} 71 o(a6) = {a7} "'(a6) = * a (a6) = 1

7Ti(a7) = {as,a6} 71 o(a7) = {as} "'(a7) = ED a(a7) = 2

7Ti(aS) = {a7} 71 o(aS) = {a9} "'(as) = * a (as) = 2

7Ti(a9) = {a3,aS} 7To(a9) = 0 "'(~) = * a(a9) = 1

State-oriented Models

The person-oriented view of information processing in the office also incorporates precedence, but

the emphasis is on the set of things that an operator can be doing at any given time. An implicit

assumption is that a person can do only one nontrivial activity at any given time. Thus, an
intuitive model of the processing done by any individual is the finite state machine.

Definition 3: A state model is

{Mill<i<n}

where

Office Research Group, PARe

Mi = (Si,siOJi,Oi,8i'Yi)

such that

Si = a finite, nonempty set of states,

si 0 = the initial state,

Z = a finite, nonempty universal alphabet containing the null symbol A,

Ii = Zn,

0i = Zn,

c5i: Si x Ii -+ _ P(Si)

'Yi: Si x Ii -+ P(0i)

Thus, a state model is made up of a collection of n finite state machines, each of which reads its

inputs from an n track tape, Ii' Each machine also writes an n track tape, 0i' Machine Mi

changes state either by A -moves, i.e., the input tape is ignored, (A,A, ... ,A), or by the current tuple

input. A A -move can take place in Mi from. state Sj to sk iff

8i(sj,(A,A, ... A» = sk'

A move in Mi from state sr to sk based on inputs to Mi from Mj is possible iff

8i(sr,(A,A, ... ,U, ... A» = sk'

where the "u" is in the jth position of the tuple. Mi can write a "v" output to Mj iff

'Yi(sr'("'» = (A,A, ... ,v, ... A),

where the "v" is in the jth position of the tuple. It is also apparent that the machine need not

necessarily produce output on each atomic move. Thus one track of each automaton's input

(output) tape leads from (to) each other automaton, see Figure 2. An output on track j of Mi

appears as an input on ~rack i of Mj ; this is simply a relabeling of track numbers so that each

track is labeled with the automaton that it is connected to. Position i in the input and out~ut

tUples represents external inputs and outputs to machine Mi' Any single machine may "process"

an external input, provided that its transition function is appropriately defined; similarly, any

machine may write external output provided that its output function is appropriately defined. The

class of automata is constrained so that exactly one automaton can receive external input, and one

automaton can. write an external output

Definition 4: A transaction starts with exactly one external input to any machine and ends when

anyone machine produces an external output; no two transitions occur shnultaneously. Thus for

any transaction, t, there exists a state sequence

<1(t) = siO~l sk v

listing the order in which transitions occur.

Figure 3 shows two state-oriented models; they describe similar tasks, except that the model in 3a

presumes that all sub tasks are done by the same operator, while that in 3b presumes that three

different automata model three different operators. The model shown in Figure 3b is formally

a

On the Equivalence of Office Models

defined by:'

S - {2 ,.. , , 2} 2 - s O,a3,a 3,a 3,a7,a 7,aS,a S,S n

S 3 ::: {s3 O,a2,a4,aS,a' S}

Z = {X,r,s,u,v,w,x,y,z}

c5 l (al,A) = {a'l} 'Yl (al,A) = {(X,u,v)}

c5 l (a'l,(A,X,w» = {a6} 'Yl(a'l'(X,X,w» = {A}

c5 l (a'l'(X,xy,X» = {~} 1'l(a'1,(X,xy,A» = {A}

c5 l (a6,A) = {a'6} 'Yl(a6,A) = {(A,Z,X)}

c5 l (a' 6'(X,xy,X» = {a9} 'Yl (a' 6,(A,Xy,A» = {A}

c52(s20,(U,A,A» = {a3} 'Y2(s20,(U,A,X» = {A}

c52(s20,(Z,A,A» = {a7}

c52(s20,(X,A,S» = {a7}

c52(a3,(z,A,X» = {a'7}

c52(a3,(X,A,S» = {a'7}

c52(a'3,A) = {a'S}

c52(a"3,A) = {s2n}

c52(a7,A) = {as}

c52(a7,(u,A,X» = {a'3}

c52(a'7,A) = {a'S}

12(S20,(Z,A,A» = {A}

12(s20,(A,A,S» = {A}

'Y2(a3.(z.X,A» = {(x,X,X)}

12(a3,(A,X,S» = {(X,A,A)}

12(a' 3,A) = {(X,A,X)}

'Y2(a" 3,A) = {(X,A,A)}

Y2(a7,A) = {A}

'Y2(a7'(u,X,X» = {A}

'Y2(a'7,A) = {A}

aM

Office Research Group, PARe

82(ag,A) = {a"3} 'Y2(ag,A» = {(y,X,X)}

82(a' g,A) = {s2 n} 'Y2(a'g~A» = {(y,X,X)}

83(s30,(v,X,X» = {a2} 'Y3(s30,(v,X,X» = {A}

83(a2,A) = {a'S,a4} 'Y3(a2,A) = {(w,X,X),A}

83(a4,A) = {as} 'Y3(a4,A) = {A}

83(aS,A) = {a'S} 'Y3(aS,A) = {(X,s,X)}

Communication Protocol

Any model must either assume implicit communication or explicit communication between office

operators. This decision depends upon the purpose of modeling, and the level of modeling detail.

(Explicit communication means that there is a separate activity denoting communication whenever

synchronization among operators occurs.) A reasonable comparison should consider similar levels

of detail in all models; so in this paper we assume implicit communication. The explicit case is

subsumed in this analysis, and the explicit model can be obtained by adding another activity for

each message transmittal and receipt. WIthin the precedence oriented model, a message sent from

operator 1 during activity a to operator 2 received in activity b is modeled as a precedence

requirement that activity a preceed b. Within the· state oriented model, communication is modeled

as input and output transition functions as specified above. We adopt the conventions that an

automaton Mi can simultaneously send to other automata (say j and k) by placing an identifier

onto tracks j and k of its output tape. Similarly, automaton Mi can change state upon receipt of

input from both j and k by specifying within its 8 function entries in positions j and k of its input

tape.

Equivalence of Models

There are many ways in which one can consider the equivalence of two models. The two models

may represent the same system, but with different perspectives. For example, one model illustrates

the steps in processing a transaction, while the .other illustrates the tasks of an office worker. This

type of equivalence is called representational equivalence. The two models may actually represent

different systems which accomplish "the same information processing." In this case, the archives

and resulting forms from some initial activity may be the same in the two systems, while the

intermediate processiilg of the transaction may be different. This type of equivalence is called

junctional equivalence. Representational equivalence is useful in generating diffcring views of the

same system, while functional equivalence is useful in determining that a variant of a system still

performs the same overall function as the original.

On the Equivalence of Office Models

DefinitionS: Let X=(A,P,'I1,1/t,a) be a precedence model and let Y={mi Il<i<n} be a state

model. X and Y are represenlalionally equivalent (R-equivalent) iff:

i) IPI = n

ii) For every activity sequence w(t)= anal ... ak in X there exists a state sequence a(t)=sosl ... sk

in Y, such that 3 9:A -+ P(S) where 'VaiEw ~ 3sjEa, where. sjE9(~)

iii) For every state sequence a(t)=sOsl ... sk in Y there exists an activity sequence w(t)= aoal

... ak in X, such thai 3 4>:8 -. P(A) swhere 'VsjEa ~ 33j,Ew, where aiE4>(~)

Informally, X and Yare R -equivalent if

i) there is a correspondence, (the maps e and 4», between the aCQvities of X and the states of

Y and,

ii) the sequences of actions as defined by the correspondence is the same.

The models shown in Figure 1 and Figure 3b are represcntationally equivalent

Office Research Gro~p, PARe

REPRESENTATIONALI.JY EQUIVALENT MODELS

Transforming a State Model to a Precedence Model

Given a state model Y = {mi 11 < i < n}, there exists a precedence model, X=(A,P,w,"',a), such

that Y is representationally equivalent to X.

Algorithm 1:

1. Set P and A to 9J;
2. FOR 1 ~ i ~ j{Mi} I DO

Add i to P;
StatesToTasks[siO,i);

ENDLOOP;

Where the recursive procedure StatesToTasks is defined by:

StatesToTasks: PROCEDURE [S:STATE, i:INTEGER)

1. Create activity s in A and delete state S from Si;

a(s) .. i; "'(s) .. e;

2. IF 8i(s,P) =. 9J THEN RETURN;

3. FOR EACH transition 8i(s,P) from S DO;

Choose s' from 8i(s,P);

wi(s') .. 7Ti(s') U {s}; 7T o(s) .. 7T o(s) U {s'};

IF p :;l: A THEN

BEGIN

FOR EACH j 3 Pj:;l:').. DOCOMMENT: Pj is an element of p
FOR ALL Yj(s",b") 3 Pj=b"i DO

Add a new activity *s' to A; ",(*s') .. *;

"i(*s') .. {s}; 7T o(s) .. {*s'};

"i(s') .. {*s'}; 7T o(*s') +- {s'};

"i(*s') .. {sIt}; 7T o(s") +- {*s'};

ENDLOOP;

ENDLOOP;

END;

IF Yi(s,P) :;l: A THEN

BEGIN

FOR EACH j 3 PjEYi(S'P) AND Pj:;l:').. DO

FOR ALL 8ls",b") 3 Pj=b') DO

Add a new activity s* to A; ",(s*) .. *.

W&&ZMMUwnmq&:"U,Aij·;' $ - ."' ·1 -

On the Equivalence of Office Models

'7Ti(s*) +- {s}; 'IT o(s) +- {s*};

71i(s~) +- {s*}; '7T o(s*) +- {s'};

'7Ti(s*) +- ~is",b"); '7T o(~j(s" ,b"» +- {s*};

ENDLOOP;

ENDLOOP;

END;

StatesToTasks[s"i];

Delete s' from ~i(s,P);

ENDLOOP;

It can be shown that the application of Algorithm 1 to a state machine will produce an R­

equivalent precedence model, although the resulting precedence model may contain more than the

minimum number of AND nodes. The minimum number could be attained at the expense of

complexity; we have chosen to produce precedence models with extra AND nodes in order to

simplify the exposition. It is also assumed that these additional AND nodes are distinguishable by

an algorithm which transforms precedence models into state models. Algorithm 1 also assumes

that "messages" transmitted among the individual automata are unique; without this assumption, it

would be necessary to include additional OR nodes to handle cases corresponding to messages

arriving 011 the tape from different sources.

Transfonning a Precedence Model to a State Model

Given a precedence model, X=(A,P,'7T,l/I,a), there exists a state model Y={mi}' such that X is

representationally equivalent to Y.

Algorith~ 2a: Given any activity b, this algorithm finds the set l:a(b) of all predecessors of b

which are performed by the operator, a (a), and which may have been the most recent preceeding

activity performed by a(a) (called operant a-predecessors of b). l:a<b) +- {dl [a (d) = a(a)] and [3

an activity sequence ending in b, w(b) 3 (VcEw(b)3a(c)= a(a), c<d)]}.

Algorithm 2b: From a precedence graph, this algorithm constructs a set of automata (one for each

element of Pl. In the following, w is an arbitrary activity in a precedence model (A,P,'7T,~,a),

immediately preceeded by v and immediately fo~lowed by x with a(w) = i. The algorithm uses a

list for each elenlent of P. Each element, w, of each list consists of a unique name for the

instance, w.a, a string of activities to be done, w.b, a string of counters denoting number of

predecessors (with same a) of activities, w.c, and a (level,element) pair identifier, w.d.

l. FOR 1 :::;.j < IPI DO define Mj=({~0}'~0,An,An.0,0) ENDLOOP.

2. FOR 1 < i < IPI DO

initialize table Li with the entry activities;

Office Research Gro~p, PARe

wmLE Li ¢ f2J 00

w +- next element in Li:

Li +- Li - w; DONEi +- DONEi + w;

FOR EArn xEwo{w) DO

IF a(x) = a(w) THEN W.C.X +- w.C.X -1

ENDLOOP;

msg +- X; childNumber +- 1;

FOR EACH (y_ in w.b with w.C.y = 0) AND (a(y)¢a(w» DO

IF l/I(w)¢Ef) THEN

msg +- msg + ma(Y)[Y]
ELSE

add w'.a to 8(w.a,X);

associate with 8(w.a,A) the output y(w.a,A)=y sent to a(y).

ENDLOOP;

FOR EArn (y hi w.b with w.c.y = 0) AND (a(y) = a(w» DO

add element to list Li with a unique name, y.a;

construct y.b and y.c

i.e., find all activities which need to be done after y

(applying algorithm 2a);

construct y.d by forming (level + 1,childNumber);

childNumber +- childNumber+ 1;

Si +- Si U {y.a};

add y.a to 8i(w.a,A);

define Yi(w.a,A) as msg;

ENDLOOP;

IF {y 3 a(y) = a(w)} is empty mEN

Si +-_ Si U {w.a*};
add w.a* to 8i(w.a,X);

send messages in msg as corresponding y function

ENDLOOP

It can be shown that Algorithm 2 transfonns a precedence model into an R-equivalent state model.

Note that a buffer of messages may accumulate and the receiving automaton must order these

messages appropriately.

In algorithm 2, a state machine is generated for each operator in the precedence model. Whenever

two activities are independent in the precedence model, yet both executed by the SaIne operator,

a££"(W44)1 ,W$·" -

On the Equivalence of Offi,ce Models

then it nlust be possible for the operator to do only one of those things, with the order unspecified

by the model. Figure 3a illustrates this observation if one compares it to a precedence similar to

the one shown in Figure 1, except that all activities are executed by the same operator. The

algorithm handles such cases by allowing the state machine to choose any sequence of executions

that could possibly have been chosen by a single operator in the precedence model. The result is

that the state machine has to replicate states that correspond to the execution of a given activity.

The number of times each such state is replicated is determined by the number of combinations of

ways in which the operator could "schedule" the corresponding task.

SU,,'IAMa

Office Research GrollP, PARe

COMPUTATIONAL COMPLEXITY OF MODEL TRANSFORMATIONS

In this section, we show that any general transformation algorithm from precedence models to state

models is NP-Complete. This is tantamount to showing that the transformation is in general

intractible [GARE79]. However, this does not rule out the possibility that there are significant

subclasses of models for which this transformation is tractable. Later in this paper we elucidate

one such subclass.

The class NP is the class of computations that can be performed on a !,!ondeterministic ,Qolynomial

time bounded Turing machine. This class has received much attention in the literature (see e.g.

KARP72, GARE79) and has been shown to include many apparently hard combinatorial problems,

such as the "traveling salesman problem". The reader is referred to any of the above cited

references for a discussion of the class NP, the reduction of one problem to another, and the

matter of encoding problems as Turing machine tapes. Certain problems in NP are polynomial

complete or NP-complete, meaning that if they have polynomial time deterministic algorithms, then

so does every problem in NP. Since for no polynomial complete problem has a less than

exponential algorithm been found, a proof of NP-completeness for a problem strongly suggests,

but does not imply, a proof of intractability.

There are a variety of equivalent abstraclions of computation in which to discuss complexity and

NP-completeness. OUf exposition is carried out in terms of "abstract algorithms" as espoused by

Richard Karp [KARP72]:

An abstract algorithm r is defined as -

(1) a countable set Jl (the domain)

(2) a cO!lntable set P (the range)

(3) a finite alphabet A such that A * n P = cp

(4) an encoding function E: b. -+ A *
(5) a transition function T: A * -+ A * U P.

1be computation of r on input xEd is the sequence Y1' Y2' ... such that Y1 = E(x), Yi + 1 =
T(Yi) for all i. If the sequence is always unique, then r is a detelministic algorithm, otherwise r is

a nondeterministic algorithm. If tlle sequence is finite, then its length t(x) is the running time of r

on x. r is terminating if all its computations are finite. A terminating algorithm r computes the

function fr:d -+ P such that fr(x) is the last element of the computation of r on x. TI1US fr(x)

= Yk E P*. A computation is within ~e class NP iff there is an abstract algorithm which

computes tlle correct output for it in polynomial nmning time. This means that t(x) =
p(length(x» where p denotes some polynomial. If this can be done by a deterministic algorithm,

then the problem is said to be within the class P.

One prob1cm proven to be NP-complete is the job sequencing problem in which a set of jobs with

On the Equivalence of Office Models

known execution times, deadlines, and penalties must be scheduled sequentially to minimize the

sum of the penalties of the jobs' which missed their deadlines.

JOB SEQUENCING -

Input: "execution time vector" (T l' ... ,T k)

"deadline vector" (D1, ... ,Ok)

"penalty vector" (VI' ... ,Vk)

Problem: Find schedule with minimal penalty -

minimize 1: (if T 71(1) ++ TwO) > 0710) then V'110) else 0)

where the above minimization is performed over all permutations '11 of (1,2, ... ,k) and the

summation ranges over j = 1 to k. Since this problem is known to be NP-complete, its solution

by a deterministic algorithm in polynomial time would mean solution to all of the other problems

in the NP class and resolution of the famous question "P = NP?". We will next show that

transformation of our office models within deterministic polynomial time would imply solution to

the job sequencing problem, and is therefore probably impossible.

Theorem: Transformation from precedence oriented models to state oriented models is an NP­

complete computation.

Proof:

(a) First we show that the problem is not too difficult (Le. it is NP).

The transformation can be' performed in polynomial time by a nondeterministic Turing machine

which traverses the input precedence graph according to algorithm 2b, and outputs an automaton

node at each step. It splits into n machines whenever it encounters a node with n immediate

successors in the precedence graph. Any particular Turing machine traverses at most one possible

sequential execution path through the precedence graph without looping. Thus its time (# of

steps) is a linear function of the number of nodes in the original precedence graph.

(b) Second we show that the problem is not too simple (Le. it is complete).

If the transformation can be performed by a detenninistic algorithm in polynomial time, then the

sub-problem of processing k activities with no precedence constraints can also be done. So

consider the subclass of precedence models with IAI = k; IPI = 1; Pi = Po = cpo If this case can

be processed, then the job sequencing problem can be solved because the transformation in this

case constlucts a path for each permutation of the original k activities To solve the job sequencing

problem, we interpret the k activities as jobs. The only extra processing which needs to be done is

for each node to calculate its minimum penalty sum by taking a minimum over its predecessors,

test for its own deadline, and add a penalty to the sum. This processing is only carried out when a

==

Office Research Gro~Pt PARe

node is visited within the algorithm. so it only adds a linear amount of work in order to solve the

job sequencing problem. Since the job sequencing problem is NP-complete. so is the

transformation.

As an example. consider the precedence model shown in Figure 4a; activities b. c, d, and e are all

enabled when activity a terminates. If all five tasks are executed by the same operator. then that

operator may do b through e in any order. i.e., the order in which the operator is to execute the

four activities is unspecified. \ The resulting state model is shown in Figure 4b. From this exampl~,

it can be seen that precedence models like the one shown in Figure 4a, where an activity has n

successors enabled simultaneously. results in a state machine with o(kn) states and thus takes

exponential time to generate by a deterministic algorithm.

&UAAM#i4

On the Equivalence ofOf~ce Models

PROPERLY CONCURRENT PRECEDENCE MODELS

Informally~ one can describe the effect of ~(x) = * to mean that successive activities to activity x

can be done in parallel~ or in either order. Precedence models can be restricted such that the *­
specification explicitly specifies (logical or potential physical) concurrency. This is accomplished by

restricting the a mapping of the concurrent activities.

Definition 6: Suppose that xEA, and l/I(x)=*. Define the concurrency reach of task x along arc i,

denoted R(x,i), to be the set of all tasks reachable from task x via iEw o(x), but not reachable via

arc jEw o(x) Vi¢j.

Definition 7: Let X=(A,P,w,~,a) be a precedence model, and VxEA such that l/I(x)=* the

following is true. If't/ i,jEw o(x), i¢j for qER(x,i), rER(xj) then a(q)¢a(r). Then the precedence

model is properly concurrent.

Consider algorithm 2 which converts a precedence model into a state model. In the case of

inlproper concurrence, it was necessary to create all combinations of states which could be

executed by a single operator concurrently. When the precedence model is properly concurrent,

then there are no tasks which can be done concurrently by an individual operator. If there were

such a task~ then it would be in R(x,i) and R(xj) for some i:;t:j; but then, by definition, the graph

is not properly concurrent. The transfOlmation algorithm is not exponential for this subclass of

state models, since the state model never needs to show alternative schedules that the operator is

free to choose from. The schedule for the automaton is completely specified by the precedence

model.

Office Research Grou.p, PARe

SUMMARY

Studies of the flow of information in offices have led to a variety of different graph models. Such

models tend to emphasize the flow of transactions through an office or the functionality of

individual work stations in the office. Two formal notations have been defined in this paper which

represent the two approaches; using these notations, we have shown that for any model expressed

in one view, a corresponding model in the complementary view can be derived, although this

derivation is an NP-complete computation. Finally we introduce a sub-class of transaction-oriented

models in which the expression of parallel processing represents real potential concurrency. In this

case the transformation between models becomes a tractable (polynomial time) computation.

A formal theory of information flow in the office has not yet been proposed, but the work in this

paper is a step in that direction. Informal notions of forms-flow and workstation office models are

fonnalized, and then algorithms are shown which transform models of one type to the other. A

rigorous framework for constlucting proofs have been provided and a formal proof of Np·

completeness has been presented within this framework.

"---------------"-""--"-------------"-

On the Equivalence ofOfqce Models

REFERENCES

[BAUM80] Baumann, L. S. and R. D. Coop "Automated Workflow Control: A Key to Office

Productivity", AFI PS Digest of the Office Automation Conference, March, 1980.

[COFF73] Coffman, E. G. Jr. and P. J. Denning, Operating Systems Theory, Prentice-Hall, Inc.

Englewood Cliffs, NJ, 1973.

[ELLI79] Ellis, C. A., "Infonnation Control Nets: A Mathematical Model of Information Flow",

ACM Proceedings of the Conference on Simulation, Modeling and Measurement of Computer

Systems, August, 1979, pp. 225-240.

[GARE79] Garey, M. R., and S. Johnson, Computers and Intractability" (1979).

[HAMM77] Hammer,M., W. G. Howe, V. J; Kruskal and I. Wladawsky, "A Very High Level

Programming Language for Data Processing Applications", Communications of the ACM,

Vol. 20, No. 11, (November~ 1977), pp. 832-840.

[KARP72] Karp, R. M., "Reducibility Among Combinatorial Problems", in Complexity of

Computer Computations, Miller, R. E., et.al. editors, (1972), pp. ~ 85-103.

[KIEN79] Kienzle, M. G. and K. C. Sevcik, "Survey of Analytic Queueing Network Models of

Computer Systems", ACM Proceedings of the Conference on Simulation, Modeling and

Measurement of Computer Systems, August, 1979, pp. 113-129.

[NESS77] Ness, D., "Office Automation Project: Non-Deterministic Procedures in Office

Processes", Working Paper 77-02-02, Dept. of Decision Sciences, Wharton School,

University of Pennsylvania, 1977.

[RAZ079] Razouk, R. R., M. Vernon and G. Estrin, "Evaluation Methods in SARA -- The Graph

'Model Simulator", ACM Proceedings of the Conference on Simulation, Modeling and

Measurement of Computer Systems, August, 1979, pp. 189-206.

[ZISM77] Zisman, M. D., Representation, Specification and Automation of Office Procedures, Ph.D.

dissertation, Dept. of Decision Sciences, Wharton School, University of Pennsylvania, 1977.

3i 3'

A PRECEDENCE ~J10DEL

FIGURE 1

n-TRACK TAPE OF,
, , AUTOMATON i ;'

-" _ .. -_.-.

t-T-R-{l.-. ~-J<-1--'-!&
• • •

TR~Cf(i ~-.----

• • •
TRACK n

n-TRACK TAPE OF

, ~~T_~0~~~~r;

TRACK 1

• •
•

TRACKi

• •
•

~

TRACI~ j
~

• • •
TRACK n

THE CO~\.q rvl U N I CATI 0,,] NETVJOR ~<

FIGURE 2

AWUi4JIMMI1MWMM a.MPM4# $, $#,

. - -
. EACH ARC IS LABELED AlA

A STATE MODEL

FIGURE 3{a)

,

A STATE MODEL

FIGURE 3(b)

(X, ~, ·s) ~ (z, l~A)

(x ~ A, A)

Ca}

(b}

EXPONENTIAL E)(PLOSION OF STATES
' .

. FIGURE 4

