
The Nature of Heuristics
By Douglas B. Lenal

COGNITIVE AND INSTRUCTIONAL SCIENCES SERies

CIS-12 (SSL·81·1)

The Natu re of Heu ristics

Douglas B. Lenat

April 1981

XEROX
PALO ALTO RESEARCH CENTER
Cognitive and Instructional Sciences Group
3333 Coyote Hill Road / Palo Alto / California 94304

The Natu re of Heu ristics

1. OVERVIEW

Douglas B. Lenat1

December, 1980
Revised April, 1981

The impressive performance of expert kno':;ledge-based systems [Barr 81][Feigenbaum 80][Hayes­
Roth et al. 81] have led us to consider anew the field of Heuretics: the study of the infonnal~
judgmental "rules of thumb" which underlie such programs. To understand the successes of the
expert systems, and perhaps ultimately to improve such results, Heurctics asks What is the source of
power of heuristics? Similarly, with an eye toward understanding, facilitating, and perhaps ultimately
automating the construction of expert systems, Heuretics asks How do new heuristics originate?
Experiments with the AM and EURISKO programs provide some initial answers, and some concrete
methodological suggestions about how to go about getting better answers.

1.1. What is the source of power of heuristics?

By examining the situations in which heuristics fail (in Section 2.3), we are led (in Section 3) to
hypothesize that the underlying source of heuristics' power is a kind of two-dimensional continuity.
If a heuristic H was (or would have been) useful in situation S, then it is likely that heuristics
similar to H will be useful in situations similar to S. In other words, if we could somehow actually
compute APPROPRIATENESS(Action,Situation), that function would be continuous in both variables~
and would vary very slowly.

One useful exercise (Sec. 3.3) is to consider the graph of APPROPRIATENESS values for a fixed action~
varying over the situations in which it might be applied. The language of graphs of functions is
then at our disposal, an attractive metaphor within which to discuss such processes as specializing a
heuristic, using multiple heuristics, and measuring attributes of a heuristic's performance.

Of course the world isn't so accomodating. There are many possible measures of Appropriateness
(efficiency, low down-side risk. comprehcnsibiJity), and many dimensions along which Situations can
vary (difficulty. time, importance, subject matter). Compounding this is the nonlinearity of the
Situation space along most of these dimensions. Thus the "zeroth order theory" espoused in the last
two paragraphs is merely a metaphor.

Yet it is too attractive. too close to what human experts actua11y do, to reject out of hand. It can
be extended into a "first order theory": It is frequently useful to behave as though the zeroth order
theory were true. i.e., to behave as though APPROPRIATENESS(Action,Situation) exists and is continuous.
To give an example: the current situation may appear similar to ones in which it was cost-effective
to skip to the Conclusions section of the paper: even though you can't be sure that's an appropriate
action to take now, it may be u~eful for you to behave as though the wor1d is that continuous, to
take that action anyway. Jf you do so, you're following a heuristic. '[bat heuristic guidance is only
as good as the generalization process you used in deciding the situation was sirrliJar (e.g., would you
apply it to an artic1es? an artic1es written by X?)

] The author is a consultant at Xerox PARC. and is an asst. professor of CS at Stanford University.

2

As the world changes, a heuristic which was valid and useful may become invalid. E.g., maybe Xs
writing style has improved. In the extreme case of a rapidly changing environment, the mean useful
lifetime of a heuristic may be too small to make it worth relying on. Consider, for example, the
prices of stocks on the exchange, or the locations of atoms in a gas in a flask. There, continuity is
not at issue, but volatility is.

There is a difference between these last two examples though; we can record the stock prices, but it
is impossible to record the positions of all the modecules in the flask of gas.

We thus have three considerations -- continuity, stability, and observability -- determining which
domains may adequately be modelled by heuristic search programs. Observability: If data cannot
be gatfiered, heuristics cannot be formed and evaluated. Continuity: If the environment changes
abruptly, the heuristics may never be valid. Stability: If the changes are continuous but rapid, the
heuristics may have too short a lifetime before becoming useless -- or worse than useless.

At the present time, the most constraining of these requirements is observability. Very few fields
admit automatic data acquisition. One might build a program which proposed promising new
experiments to perform in molecular biology, but it is beyond the capabilities of present technology
to automate the carrying out of the experiments to see the results. The most obser'lable fields are
those which can be completely formalized within the machine: mathematics, programming, and
games. But the behavior of a running program can also be recorded and inspected by the program,
in particular a program which employs heuristics might monitor its own performance; therefore, we
may add H euretics to that list of observable fields. EURISKO (Sec. 4) is such a program, and from it
we have begun to learn more about Heuretics.

1.2. How do new heuristics originate?

Empirical results from AM (Sec. 2) suggest that new heuristics arise from 3 sources:

Specialization of existing, more general heuristics. This often has the form of adapting, binding,
matching a template to observed data, producing a more specialized, more efficient offspring.
Compiling and structured programming are two computer science analogues of this process. A second
way in which specialization occurs is when an exception to a general heuristic is noted, and a more
specialized, higher-precedence heuristic is formulated. Debugging and type-checking are the
computer science analogues of such accomodation.

Generalization of existing, more specialized heuristics. An extreme -- but common -- fonn of this
is abstraction from observed data. In such a case, the heuristic is a prediction about
APPROPRIATENESS(Actton.situation) for a whole domain of situations and actions, based on having
actually seen one or more elements of that domain. Often, a powerful new theorem or technique
will be proven for some domain D; it may then be a useful heuristic to apply it outside 0 as well.
For instance, the values of some infinite series were sllccessfully guessed at by pretending they were
differentiable; once the series' value is conjectured, proving it is made much simpler.

Analogy to existing heuristics and to past, successful acts of creating new heuristics. It is a
remarkable thing; that analogy works, a sign of an even deeper kind of continuity than was sought
in 1.1. Even though two domains may appear disparate, analogous heuristics may be equally
powerful in coping with them (e.g., Look for examples of concept C before you try to prove any
theorems about C). Even if the heuristics for the two domains seem disparate, the paths which were
followed in getting the powerful heuristics of the field may be similar (c.g., Examine successful and
unsuccessful attempts at finding proofi~ . and embody(inheurislip) any features that discriminate
between them.}

Which of these three is most efficacious? Under what circumstances are each of these three
methods indicated or contraindicated? These are Heuretics questions, and best answered by
performing experiment'!. Results from such experiments on AM and EURISKO are presented in
Section 4, and surprisingly (to us) lead us to favor analogy over the other two methods.

1.3. Other Heuretics issues

One Heuretics question which will not be addressed herein is What is the impact of an individual
heuristic upon a search? That issue has been well covered elsewhere, both qualitatively and
quantitatively, by Michie, Nilsson, and others. See, for example, [Gaschnig 77] and the references
he cites.

Another issue given only brief consideration is How should advice from several heuristics be
combined? Results from building expert systems lead to the conclusion that the details of the
control structure are not crucial. As Feigenbaum is wont to say, "In the knowledge lies the power."
One can view the heuristics as production rules, and then this issue becomes: What interpreter
should run the rules? This problem can itself be recursively "solved" by making the interpreter a
production system, and so on ad infinilum, although when one tries to find such strategic rules there
are few to be had, and even fewer of noticable impact. See, for example, [Davis 81].

1.4. Heuretics as a Field of Knowledge

We spoke earlier of Heuretics as a field of knowledge. Polya championed the study of heuristics as
a separate scientific discipline forty years ago, and traced its origins back to Liebnitz, Descartes, and
even Pappus. A decade ago, Pospelov and Pushkin tried to define the field as "the science which
studies the laws governing the design of new actions in new situations." To merit the designation of
"field of knowledge", Heuretics must comprise some more or less well agreed-upon objects of
study, some motivation for studying such objects, some central questions about the nature of such
objects, and some accepted Inethods for investigating those questions.

The objects of study are of course heuristics. Our initial definition of a heuristic is: a piece of
knowledge capable of suggesting plausible actions to follow or implausible ones to avoid. In Section
2.2 it becomes apparent that this is insufficient; for a body of heuristics to be effective (useful for
guiding rather than merely for rationalizing in hindsight) each heuristic must specify a situation or
context in which its actions are especially appropriate or inappropriate. In other words, heuristics
must have both an IF- and a THEN- part. The theory developed in Section 4 extends this
definition: a heuristic is seen as a bundle of attributes (and corresponding values) which includes
many kinds of conditions and actions, and also several non-executable attributes such as its worth,
origin, and average running time. Section 4.1 presents a principled method for automatically
generating aI1 the possible "legal" attributes that a heuristic might possess.

What is the motivation for studying heuristics? Two are detailed in Section 2.1: (1) The recent
successes with heuristic rule based expert systems drive us to investigate their apparent source of
power, heuristics. (2) One of the major bottlenecks in constructing such systems is extracting
domain-dependent heuristics from human experts, and that could be partially automated by a
program whose field of expertise is itself the formulation, discovery, extraction, modification, etc. of
heuristics. In order to build such a program, a better understanding of heuristics is necessary.

We have already presented some of the major heuretics questions: what is the source of a heuristic's
power, the origin of new heuristics, the quantitative impact of a heuristic on a search, the
interactions between heuristics working toward the same ends?

Finally, there must be a methodology for answering such questions, an accepted experimental
procedure. This paper proposes to usc the standard empirical inquiry paradigm which dominates
A I research: test hypotheses about heuristics by constructing -- and studying -- computer programs
such as AM and EURISKO, programs which usc heuristics and which try to find new ones.

3

4

1.5. Heuristics about Heuristics

As with any field of human endeavor, Heuretics is accumulating a corpus of infonnal judgmental
knowledge -- heuristics about heuristics. These guide the heuretician to extract heuristics from
experts, to decide when the existing corpus of heuristics needs to be augmented, to represent
heuristics within knowledge bases, to evaluate the worth of a heuristic, to troubleshoot a program
built around a large collection of heuristic rules, etc. Some examples are:

1. The expert, if asked initially to state his informal judgmental rules, will probably either deny their
existence or provide a very small fraction of them. Each domain object and operation mentioned
by the expert probably has some heuristics peculiar to it. Each pair of domain entities may have one
or two heuristics about such combinations. Therefore, one extraction technique is to present each
domain object or operation, or pair of same, to the expert, and ask him/her to introspect on rules
of thumb for dealing with that entity or combination of entities. l It is rarely cost-effective to carry
out that procedure for the co-occurrence of all triples (or larger sets) of domain objects and
operations.

2. Creating new examples of a domain concept can be a straightforward process, but creating new
instances of the use of a heuristic is often lnuch more timeconsuming -- each usage of a heuristic
often demands the creation and investigation of many new domain concepts. The impact of having
and using a domain concept for a while that later turns out to be a "blind alley" is much less
serious than having and using a bad heuristic for a while.

3. If the representation is well suited to the vocabulary of the heuristic, then it is possible for the
heuristic to be concisely represented and efficiently used. In the extreme case, a heuristic might
simply say "C1 R C2", as in "Children CanBeTrainedLike Pets" and "Children LikeToEat Sweets".
Such compaction obviously depends upon the proper relation R being defined. In cases where one
heuristic is used very frequently, or where several heuristics could all be compacted, it is worth
defining one or more new relations R to shorten the heuristics.

Just as the study of computational linguistics had to be grounded in particular languages during its
maturation, so "Heuretics" has had to remain grounded in particular task domains. Eventually, the
theory of formal grammars lifted itself above the details of any individual language, though specific
grammars are used to illustrate the various theorems and relationships. Analogously, we are
attempting study Heuretics in a domain-independent fashion, but of necessity must ground our
examples -- and our test programs -- in particular domains.

2. AM: The Origin of New Concepts & Conjectures

This section of the paper is a detour, a demonstration that new domain facts and conjectures can be
discovered by employing a body of heuristics for guidance. Sections 3 and 4 return to the "main
line" by respectively considering the two primary Heuretics questions: the source of a heuristic's
power and the origin of new heuristics.

1 To provide an argument for heuristic (1) above, it is worth mentioning that the author initially drew a blank when
composing this subsection of the paper, specifically when trying to think of examples of heur:stics for heuristics. The
problem vanished after listing several precise roles that such heuristics could fulfill (at the end of the first paragraph of
this subsection), and then considering each role in turn: introspecting on heuristics for extracting heuristics. heuristics for
deciding vihether to try to get riew heuristics, heuristics for representing a heuristic in a program. etc. Since the
development of EURISKO, 25 additional "heuristics about heuristics" have been produced by hand, and EURISKO itl)clf
has ~ynthesiLCd over 300.

2.1. Motivation

Heuretics is important for both theoretical and practical reasons. As Zavalashina said in [Pushkin
72]. "one of the basic conditions for further evolution of heuristic programming, for an increase in
the range of problems with which it can deal, is investigation of the qualitative structure of heuristic
activity, its 'informal' components." The subsequent successes of programs (e.g., see [Feigenbaum
80]) built upon a large core of domain knowledge -- both facts and heuristics -- reinforce this
argument for the importance of heuristic reasoning as a phenomenon worthy of study.

More pragmatically. one current bottleneck in constructing such expert systems is the problem of
knowledge acquisition: extracting knowledge from a human expert and representing it for the
program. The expert must communicate not merely the "facts" of his field. but also the heuristics:
the informal judgmental rules which guide him in rapid decision-making. These are rarely thought
about concretely by the expert, and almost never appear in his field's journal articles, textbooks, or
university courses. Techniques for automatically discovering domain knowledge could alleviate this
extraction problem.

Can this be done? Since knowledge comprises both facts and heuristics, the quest:'Jn divides into
two parts: can new domain concepts and relationships be discovered (addressed in Sections 2.2 and
2.3), and can new domain heuristics be discovered (addressed in Sections 3 and 4)?

Should this be done? Consider the making of a human expert. Having him or her rediscover the
knowledge of the field seems at first glance hardly the typical pedagogical practice. That's certainly
true for the Jacts of the field, which are readily presented in texts. Yet practitioners of many fields
become experts only after a period of apprenticeship to a master, a trying period during which they
must induce the heuristics of their craft from examples. Witness the crucial role of the internship of
medical doctors, counselors, graduate students, and many others.

2.2. The Process of Discovery

"How was X discovered?" When confronted with such a question, the philosopher or scientist will
often retreat behind the mystique of the aU-seeing I's: Illumination, Intuition, and Incubation. A
different approach would be to provide a rationalization, a scenario in which a researcher proceeds
reasonably from one step to the next, and ultimately synthesizes the discovery X. In order for the
scenario to be convincing, each step the researcher takes must be justified as a plausible one. Such
justifications are provided by citing heuristics. more or less general rules of thumb, judgmental
guides to what is and is not an appropriate action in some situation.

For example, consider the heuristic in Figure 1. It says that if a function f takes a pair of A's as
arguments, then it's often worth the time and energy to define g(x) = f(x,x), that is, to see what
happens when fs arguments coincide. If f is multiplication, this new function turns out to be
squaring~ if f is addition, g is doubling. If f is union or intersection, g is the identity function; if f
is subraction or exclusive-or, g is identically zero. Thus we see how two useful concepts (squaring,
doubling) and four fundamental conjectures might be discovered by a researcher employing this
simple heuristic.

IF f: AxA --) B,
THEN define g:A--) B as g(x)=f(x,x)

Figure 1. A heuristic which leads to useful concepts and conjectures

5

6

Elsewhere [Lenat 79], we describe the uses for the following heuristic: "If f: A--->B, and there is
some extremal subset b of B. Then define and study f-1(b)." If f is Intersection, this heuristic says itts
worth considering pairs of sets which map into extremal kinds of sets. Well, what's an extremal
kind of set? Perhaps we already know about extremely small sets, such as the empty set. 'Then the
heuristic would cause us to define the relationship of two sets having empty intersection _. i.e.,
disjointness. If f is Employed-as, then the above heuristic says it's worth defining, nroning, and
studying the group of people with no jobs (zero is an extremely small number of jobs to hold), the
group of people who hold down more than one job (two is an extremely large number of jobs to
hold). If f is Divisors-of, then the heuristic would suggest defining the set of numbers with no
divisors, the set of numbers with one divisor, with two divisors, and with three divisors. The third
of these four sets is the concept of prime numbers. Other heuristics might then cause us to gather
data, to do that by dumping each number from 1 to 1000 into the appropriate set(s), to reject the
first two sets as too small, to notice that every number in the fourth set is a perfect square, to take
their square roots, and finally to notice that they then coincide precisely with the third set of
numbers. Now that we have the definition of primes, and we have found a surprising conjecture
involving them, we shall say that we have discovered them (note that we are nowhere near a proof
of ~hat conjecture).

Of course the above instances of discoveries are really just reductions. We can be said to have
reduced the problem "How might Squaring be discovered?" to the somewhat simpler problem
"How might Multiplication be discovered?" by citing the heuristic in Figure 1. Similarly, we
reduced the problem of discovering Primes to the problem of discovering Divisors-of. Such
reductions could be continued, reducing the discovery of Divisors-of to that of Multiplication,
thence to Addition or Cartesian-product, and so forth. Eventually, we would go down all the way
to our conceptual primitives, to concepts so basic that we feel it makes no sense to speak of
discovering them. See Figure 2.

PRIMES
I
I
V

DIVISORS-OF
I
I
V

TIMES
/\

/ \
/ \

/ \
PLUS CARTESIAN PRODUCT
I I
V V

Figure 2. Reducing each concept's discovery to that of a simpler one. Notc that multiplication can
be discovered if the researcher knows either addition of numbers or Cartesian products of sets.

Why, then, is the act of creation so cherished?]f some significant discoveries are merely one or two
"heuristic applications" away from known concepts, why are even one-step discoveries worth
communicating and getting excited about? 'Ille· answer is that the discoverer is moving upwards in
the tree. not downwards. He is not nitionalizing, in hindsight, how a given discovery might have

been madc~ rather, he is groping outward into the unknown for some new concept which seems to
be useful or interesting. The downward, analytic search is much more constrained than the upward,
synthetic one. Discoverers move upwards; colonizers (axiomatizers and pedagogues) move
downwards. Even in the limited situation depicted in Figure 3, the researcher might apply the
"Repeat" heuristic to multiplication, and go off along the vector containing exponentiation, hyper­
exponentiation, etc. Or he might apply "look at inverse of extrema" to Divisors-of in several ways,
for example looking at numbers with very many divisors.

\ t I \ t I
\ I I \ I I
\ I I \ I I
PRIMES NUMBERS-WITH-MANY-DIVISORS

\ t I
\ I I \ I I
\ I I \11

DIVIS-OF EXPONENTIATION
\ t I I
\ I / I
\ I I I
TIMES I

tIt I
PARTITION

\ I I I /
\ I I \ I
PLUS CARTESIAN PRODUcr

Figure 3. The more explosive upward search for new concepts

Once a discovery has been made, it is much easier to rationalize it in hindsight, to find some path
downward from it to known concepts. than it was to make that discovery initially. That is the
exp1anation of the phenomenon we've all experienced after working for a long time on a problem,
the feeling "Why didn'l / solve Ihat sooner!" When the reporter is other than ourselves, the feeling
is more like "/ could have done that. thaI wasn'l so difficult!" It is the phenomenon of wondering
how a magic trick ever fooled us, once we've seen the method. It enables us to follow mathematical
proofs with a false sense of confidence, being quite unable to prove simiJar theorems. It is the
reason why we can use PoJya's heuristics [Polya 45] to parse a discovery, to explain a plausible route
to it, yet feel very little guidance from them when faced with a new problem and a blank piece of
paper.

There still is that profusion of upward arrows to contend with. One of the triumphs of AI has been
finding the means to muille a combinatorial explosion of arrows: one must add some heuristic
guidance criteria. That is, add some additional knowledge to indicate which directions arc expected
to be the most promising ones to follow, in any situation. So by a heuristic, from now on, we shall
mean a contingent piece of guiding knowledge, such as the top entry in Figure 4, rather than an
unconstrained Polya-esque maxim (4b). The former is a heuristic, the latter is an explosive.

7

8

(a) IF the range of one operation has a large intersection with the domain of a second,
and they both have high worth,
and either there is a conjecture connecting them or

the range of the second operation has a large
intersection with the domain of the first,

THEN compose them and study the result.

(b) Compose two operations and study the result.

Figure 4. A contingent heuristic rule and an explosive one.

2.3. AM: A Computer Program that Discovers Math Concepts and Conjectures

There is a partial theory of intelligence here, which claims that discovery can be adequately guided
by a large collection of such heuristic rules. In particular, mathematical discovery may be so
guided. To test this hypothesis, we designed and constructed AM, a l.JSP program whose task was to
explore elementary finite set theory: gathering empirical data, noticing regularities in them, and
defining new concepts. AM is described at length elsewhere [Lenat 79], and a very brief
recapitulation here should suffice.

AM began with 115 set theory concepts. This included static structures (sets, bags, lists) and many
active operations (union, composition, canonize). For each concept, we supplied very little
information besides its definition. In addition, AM contained 243 heuristic rules for proposing
plausible new concepts, for filling in data about concepts, and for evaluating concepts for
"interestingness". Among them are the two heuristics we saw earlier, for looking at the inverse of
extrema and for looking at the new function g(x) = df f{x,x).

Each concept was represented as a frame-like data structure, using the property list feature of LISP.
Figure 5 illustrates a typical mathematical function (composition), and Figure 6 illustrates a typical
mathematical object (primes). These show very extensively fleshed-out concepts; the knowledge
initially provided to AM about Composition was merely its definition (Statement and Coded­
Statement), Is-a, View, and Origin slots. The other slots of Compose -- and all the slots of
Primes -- were subsequently filled in by AM.

During the course of its longest run (one PDP KI-IO cpu hour), AM defined two hundred new
concepts, about half of which were judged to be reasonable (e.g., wen-known to humans already,
some interesting regularity involving them found by AM, etc.) AM noticed hundreds of simple
relationships inyolving the old and new concepts, most of which were trivial. AM synthesized
concepts from set theory (disjointness, de Morgan's laws), defined natural numbers, found
arithmetic and elementary divisibility theory, and began to bog down in advanced number theory
(after finding the fundamental theorem of arithmetic, Goldbach's conjecture, and a conjecture about
highly composite numbers first found earlier in this century by Ramanujan).

The total number of "discoveries" AM made is roughly (300 old and new concepts) x (10 new slots
filled in for each) x (10 entries for each slot) = 30,000. Each "discovery" involved relying on
(executing) 20-50 heur~stics~ the typical heuristic was used in an integral way in the making of
several hundred different discoveries. Thus the set of heuristics is not merely "unwound" to
produce the discoveries. In almost an cases, the discoveries made were unexpected (by both
program and author), and often were concepts and conjectures unknown to the author. Since AM'S
heuristics did lead to its discoveries, they nlust in some sense be an encoding for them, but they
were not a conscious or (even in hindsight) obvious encoding.

NAME: Compose
ABBREVIATION: - 0 -

STATEMENT (=DEFINITION)
English: Compose two functions F and G into a new one FoG
LISP: A (F,G,H)... <an executable LISP predicate testing that F(G(x» = H(x) here>

DOMAIN (= IF-potentially-relevant): F, G are functions
IF-truly-relevant: Domain of F and Range of G have some intersection
IF-resources-available: at least 2 cpu seconds, at least 200 cells
THEN-add-task-to-agenda: Fill in entries for some slots of FoG
THEN-conjecture: Properties of F hold for FoG

Properties of G hold for FoG
THEN-modify-slots: Record FoG as an example of Compose
THEN-print-to-user: English(Compose)
THEN-define-new-concepts: Nanle FoG;

ORIGIN Compose F,G;
WORTH: Average(Worth(F),Worth(G»
DEFN: Append(Defn(G),Defn(F»
Avg-cpu-time: Plus(A vg-cpu(F),Avg-cpu(G»
IF-potentially-rele: IF-potentially-rele(G)
IF-truly-rele: IF-truly-rele(G)

CODED-STATEMENT (= ALGORITHM)
CODED-IF-PART: A(F,G) ... <an executable LISP predicate testing the args here>

CODED-THEN-PART: A(F,G) ... <an executable LISP function producing FoG here>

CODED-IF-THEN-PARTS: A(F,G) •.. <a concatenation of the preceding two slots>

COMPILED-CODED-IF-THEN-PARTS: <a compiled version of the preceding slot>

SPECIALIZATIONS: Composition-of-bijections, Composition-of-F-with-itself
GENERALIZATIONS: Combine-concepts, Sequential-execute, Combine-functions

Immediate-Generalizations: Combine-functions
IS-A: Function
EXAMPLES:

Good-Examples: Compose Count and Divisors
Bad-Examples: Compose Count and Count

CONJECTURES: Composing F and F is sometimes very good and usually bad
ANALOGIES: Sequence, Append
WORTH: 700
HISTORY:

NGoodExamples: 14
NGoodConjectures: 2
NGoodTasks-added: 57
AvgCpuTime: 1.4 seconds

NBadExamples: 19
NBadConjectures: 1
NBadTasksAdded: 34
A vgListCells: 160

Figure 5. Frame-like representation for a InathematicaI function from AM. It is composed of
nothing but attribute:value pairs. After each attribute or slot (often heavi1y hyphenated) is a colon,
and then a list of the entries or values for that attribute of the Compose concept.

9

10

NAME: Primes
STATEMENT

English: Numbers with two divisors
Lisp: A (n) (Apply* (Lisp-Statement Doubleton)

(Apply* (Compiled-Coded-If-Then-Parts Dvisors-Of) n»
SPECIALIZATIONS: Odd-primes, Small-primes, Pair-primes
GENERALIZATIONS: Positive numbers
IS-A: Class-of-numbers
EXAMPLES:

Extreme-exs: 2,3
Extreme-non-exs: 0,1
Typical-exs: 5,7,11,13,17,19
Typical-non-exs: 34, 100

CONJECTURES:
Good-conjecs: Unique-factorization, Formula-for-d(n)
Good-conjec-units: Times, Divisors-of, Exponentiate, Nos-with-3-divis, Squaring

ANALOGIES: Simple Groups
WORTH: 800
ORIGIN: Divisors-oel (Doubletons)

Defined-using: Divisors-of
Creation-date: 3/19/76 18:45

HISTORY:
NGoodExamples: 840
N BadE:~amples: 5000
NGoodConjectures: 3
NBadConjectures: 7

Figure 6. Frame-like representation for a static mathematical concept from AM.

AM'S basic control structure was simple: select some slot of some concept, and work to fill in
entries for it. Since AM began with over 100 concepts, and each had about· 20 slots to fill in
(Examples, Generalizations, Conjectures, Analogies, etc.), there were 2000 small tasks for AM to
perform, initially. This number grew with time, because new concepts would usually be defined
long before 20 slots were filled in on old ones. Each task was placed on an agenda, with symbolic
reasons justifying why it should be attended to. Those tasks having several good reasons would
eventually percolate to the top of the agenda and be worked on. To accomplish the selected task,
AM located relevant heuristics and obeyed them. They in turn caused entries to be Hlted in on
hitherto blank slots, defined entirely new concepts, and proposed new tasks to be added to the
agenda.

Let us briefly illustrate the three types of actions initiated by heursitics. One task AM worked on
was "Fill in Examples of Set-Equality". One relevant heuristic said to look at the domain of Set­
Equality (which was pairs of sets), look at the Sets concept, look at its Exanlp]es slot, pick
(randomly) a pair of sets from there. and feed them as the input to the definition of Set-Equality,
thereby producing an output of either T (tJue) or NIL .. (false). By this method, a few examples of
Set-Equality were found. but hundreds of non-examples were rejected in the process -- after all, very
few random sets are equal to each other. This illustrates how a few entries for the Examples slot of
Set-equality were recorded Another heuristic reacted to the rarity of the Set-Equality predicate
returning '1': it added a new task to the agenda, namely "Fill in Generalizations of Set-Equality".

When that task eventually ran, it caused heuristics to fire which defined whole new concepts -­
predicates similar to Set-Equality but with a definition that was slightly laxer than Set-Equality's.
For instance, one heuristic accessed a recursive definition of Set-Equality, saw that it recurred in
both the CAR and CDR direction, and eliminated one direction of recursion, thereby producing
two new, weaker predicates (LISP functions which would return T whenever Set-Equality did, and
perhaps more frequently as well). One of these two predicates turned out to be Same-First­
Element-As, and the other turned out to be quite powerful, namely Same-Length-As.

There is one more issue about AM that should be discussed in this paper: how it was able to
efficiently restrict its attention to a small set of potentially relevant heuristics at all times. Consider
for a moment the AM heuristic that says "IF a composition fog preserves most of the properties that
f had, THEN it's more interesting." That's useful when evaluating the worth of a composition, but
of course is of no help when trying to find examples of Sets. We associated that heuristic with the
Composition concept, the most general concept for which it was relevant. Another heuristic AM has
says "IF the domain and range of an operation coincide, THEN it's morc interesting." That one
was tacked onto the Operation concept. But note that since Compositions are special kinds of
Operations. the heuristic should apply to them as well. The general principle at work here is the
following: If a heuristic is relevant to C, then it's also relevant to all specializations of C. If we
loo~~ at the AM representation for Composition, we would see a frame-like data structure (schema,
property list) one of whose slots is Generalizations, and one of the entries therein is Operation. This
is AM'S way of recording the fact that Composition is a specialization of Operation. The obvious
algorithm, then, when dealing with some specific concept C, is to follow Generalization links
upward, gathering heuristics tacked onto any concept encountered along the way. See Figure 7. In
general, this means that AM'S attention is restricted to log (n) heuristics, rather than n. AM can
completely ignore all the rcst, and need only evaluate the IF parts of these 109 (n) potentially
relevant oncs. In other words, the Generalization/Specialization hierarchy of concepts has induced a
similar powerful structuring upon the set of heuristics. The power of this technique is dimmed
somewhat by the unequal distribution of heuristics in the Generalization/Specialization tree: a large
number of heuristics clustered near the few topmost (very general) concepts.

Anything
I INT. IF RELATED TO SOMETHING VERY INT.

I
I

Any-Action
I INT. IF REVERSIBLE

I
I

Any-Math-Operation
/ \ INT. IF DOMAIN = RANGEn

/ \ INT.IFDOMAIN=AxA (for some A)

/ \
/ \

Any-Composition Any-Op-With-Domain = Range
INT. IF fog HAS PROPERTIES OF f \ / INT. TO FIND THE SET OF FIXED-POINTS

\ /
\ /

Complement 0 Complement

Figure 7. One branch of the Generalization hierarchy of concepts, with a few of the attached heuristics

11

12

As AM forayed into number theory, it had only heuristics from set theory to guide it. For instance,
when dealing with prime pairs (twin primes), there were no specific heuristics relevant to them; they
were defined in terms of primes, which were defined in terms of divisors-of, which was defined in
terms of multiplication, which was defined in terms of addition, which was defined in terms of set­
union, which (finally!) had a few attached heuristics. Because it lacked number-theory heuristics,
embodying what we would call common-sense about arithmetic, AM'S fraction of useless definitions
shot way up (Numbers which are both odd and even; Prime triples; The conjecture that there is
only one prime triple (3,5,7) but without understanding why; etc.) It was unexpected and gratifying
that AM should discover numbers and arithmetic at all, but it was disappointing to see the program
begin to thrash. When a few dozen concepts from plane geometry were added to AM, the same
type of thrashing soon occurred; the addition of specific geometry heuristics delayed this collapse.

There are two relevant conclusions from the AM research: (i) It is possible for a body of heuristics
to effectively guide a program in searching for new concepts and conjectures involving them. (ii) As
new domains of knowledge emerge, the old corpus of heuristics may not be adequate to serve as a
guide in those new domains; rather, new specific heuristics are necessary.

One feature of Heuretics' being a "field of knowledge" is that there can be -- nay, must be -­
hypotheses about heuristics, experiments tt' test them out, and eventually a developing theory of
heuristics. Toward that end, we can begin collecting elements of such a theory based on our
experiences with AM. See Figure 8. One remark, besides the two mentioned in the last paragraph,
is that heuristics can be used both to suggest promising actions and to discourage poor ones. AM'S
search space is never explicitly described; there is no clear notion of a set of legal operators which
defines some immense space of syntactic mathematical concepts and conjectures, etc. Any such
attempt would probably produce a search space of such size as to be useless (10020 in AM'S domain
of elementary finite set theory, where definitions were about twenty nontrivial words long, and there
were about 100 concepts to choose frOIn to fill each of those blanks). Rather, AM'S set of heuristics
implicitly defines its search space. If you remove a heuristic from AM, it has less to do; this is
exactly the opposite of the case with most heuristic search programs, where heuristics are used
exclusively to prune away implausible paths. The fraction of the legal concepts that would rank as
interesting, recognizable, or important is negligible; contrast that with the almost 50% hit rate of
concepts proposed by AM'S heuristics.

The final remark noted in Figure 8 is that the heuristics can be organized into a hierarchy, induced
by the Generalization/Specialization hierarchy between domain concepts (a la Figure 7). The key
point here is that each heuristic has a domain of relevance: the most general concept to which it's
relevant and all the specializations of that concept. This organization enables the interpreter,
through simple inheritance, to focus on the log of the number of all heuristics in the system, rather
than that entire set, at each moment.

(i) A SET OF HEURISTICS CAN GUIDE CONCEPT DISCOVERY

(ii) A NEW FIELD WILL DEVELOP SLOWLY IF NO SPECIFIC NEW
HEURISTICS FOR IT ARE CONCOMIITANTLY DEVELOPED

(iii) HEURISTICS CAN BE USED AS PLAUSIBLE MOVE GENERATORS
OR AS IMPLAUSIBLE!MOVE ELIMINATORS

(iv) THE GENERALIZATION/SPECIALIZATIONHIERARCHY OF CONCEPTS
INDUCES A SIMILAR Sl'RUCTURE UPON THE SET OF HEURISTICS

Figure 8. Elements of a theory of heuristics, learned from work on AM

2.4. Controlling the Use of Heuristic Knowledge

There is an implied "control structure" for the processes of using and acquiring knowledge (solving
and proposing problems, using and discovering heuristics, choosing and changing representations,
etc.) In fact, it's a nontrivial assumption that a single control loop is powerful enough to manage
both types of processes. Our experiences with expert systems in the past [Feigenbaum 80] have
taught us that the power lies in the knowledge, not in the inference engine.

What is that topmost control loop? It assumes that there is a large corpus of heuristics for choosing
(and shifting between) representations. From time to time, some of these heuristics evaluate how
well the current representations are performing (e.g., is there now some operation which is
performed very frequently, but which is notoriously slow in the current representation?) At any
moment, if the representations used seem to be performing sub-optimally. some attention will be
focused on the problem of shifting to other ones, maintaining the same knowledge simultaneously
in multiple representations, devising whole new systems of representation, etc. Similarly, we assume
there are several heuristics which monitor the adequacy of the existing stock of heuristics, and as
need arises formulate (and eventually work on and solve) tasks of the form "Diagonalization is used
heavily, but has no heuristics associated with it; try to find some new specific heuristics for dealing
with Diagonalization". A typical rule for working on such a task might say "TJ find heuristics
specific to C, try to analogize heuristics specific to concepts which were discovered the same way
that C was discovered".

I t is assumed that these representation heuristics and heuristic heuristics have run for a while, and
the system is in a kind of equilibrium. The representations employed are well suited to the tasks
being performed, and the heuristics being followed serve as quite effective guides for "plausible
move generation" and "implausible move elimination." The system now proceeds for a while
along its object-level pursuits, whatever they_ may be (proving theorems in plane geometry,
discovering new concepts in programming, etc.) Gradually, the object level may evolve: new
concepts will be uncovered and focused upon, new laboratory techniques will be discovered, long­
standing open questions will be answered. etc. As this occurs, the old representations for
knowledge, and the old set of guiding heuristics, may become less ideal, less effective. This in turn
would be detected by some of the heuristic heuristics discussed in the last paragraph, and they
would cause the system to attempt to recover its equilibrium, to search for new representations and
new heuristics to deal effectively once again with the objects and operations at the object level.

So new concepts. conjectures, theorems, etc. emerge all the time; as they are investigated, some
turn out to be useful and some tum out to be dead-ends; using a fixed set of guiding heuristics,
the rate at which useful new discoveries are made will decline gradually over time; eventually it's
worth pausing in the search for domain-specific knowledge, and turning instead to the problem of
finding new heuristics (perhaps by articulating experiences to date in the task domain). The
discoverer later returns to his original task, armed with new and hopefully more powerful heuristics.
This cycle of looking for domain concepts, occasionally punctuated by an effort to find new
heuristics, continues until, gradually, it becomes harder and harder to find new heuristics. At that
point it becomes worthwhile to look for new and different representations for knowledge.

The top-level control structure is thus homeostatic: detecting and correcting for any
inappropriateness of representations employed or heuristics employed. For these purposes, we
hypothesize that it suffices to have (and use) a corpus of heuristics for guidance. Of course that top
level loop could itself be implicitly defined by a set of heuristic rules, and we would expect such
rules to change from time to time, albeit very slowly. If, for example, no new concepts or
operations were defined at the object level for a long period of time, then the need for close
monitoring of the adequacy of the representations being employed would evaporate.

In EURISKO, meta-heuristics are in no way distinguished from object-heuristics. For example, the
very general recursive rule "To specialize a complex construct. find the component using the most
resources. and replace it by several alternate specializations" applies to specializing laboratory
procedures. mathematical functions, heuristics (including itselfl), and representational schemes.

13

14

3. The Source of Heuristics' Power

3.1 AM's Need to Acquire New Heuristics

AM was armed with a powerful set of heuristics and concepts for its initial domain (finite set
theory), and it progressed as best it could without ever abstracting its experiences into new
heuristics. Earlier we claimed that the thrashing which ultimately ensued was due to the absence of
such compiled bits of hindsight. By examining that claim more carefully, we hope to justify the
necessity of periodic learning of new heuristics, at least for open-ended domains such as empirical
scientific theory formation.

During the period in which AM defines its first 200 concepts (beyond the 115 it began with), 125 are
judged to be "acceptable" (Le., well-known mathematical concepts which humans have given names
to, and about which AM finds some nontrivial conjectures). This "hit rate" of 62.5% falls off
rapidly, however, if the program continues to nm. Of the next 300 concepts AM defines, only
twenty-nine (less than 10%) satisfy the above criterion for meaningfulness.

By adding heuristics manually, this degradation can be delayed. For example, after the 200th new
concept is defined, the human observer notes that all of the conjectures involving Primes and
Addition have turned out to be useless; indeed, most of them have turned out to be false. Forming
this into a heuristic, and supplying it to AM, causes many poor paths to be avoided. When AM is
restarted, the same 29 useful concepts emerge at the expense of 260 poor ones, rather than 271.

An experiment was performed in which, instead of the specific heuristic mentioned in the last
paragraph, the new heuristic added by the user is the following more general one: "conjectures
involving C and f are more likely to be useful if fhas some relationship to the terms out of which
C was defined." In particular, conjectures involving Primes and Multiplication (or Division) are
more likely to be valuable than conjectures involving Primes with Addition, Subtraction,
Composition, or Printing. Adding this heuristic to AM prevents many blind alleys from being
explored, at the expense of a few genuine conjectures being missed. 27 of the useful concepts are
found, and only 220 of the poor ones.

Just by adding this one heuristic, AM'S hit rate rises from 9% to 11%. We conclude that augmenting
AM by a few tens of new heuristics (based on its experiences in working with concepts 1-300) would
be necessary if it were to maintain its initial high 62.5% hit rate while developing the next few
hundred concepts. More generally, we conclude that periodic learning of new heuristics is necessary
to sustained high performance at the task of developing a scientific theory. Heuristics formed
during the initial theory formation experiences will be important for guiding subsequent attempts to
extend that theory.

3.2. The Zeroth-Order Theory o/Heuristics

Heuristics are compiled hindsight; they are judgmental rules which. if only we'd had them earlier,
would have enabled us to reach our present state of achievement more rapidly. Why, then, is there
any reason to rely on such rules to guide future behavior? It must be because of continuity in the
world, that rules which were useful will continue to be useful, that rules useful in situation S will be
useful in situations similar to S. Of course the actions taken in the future will be slightly different
than the ones taken in the past, and there must be a presumption that sm,lll differences along that
dilTIension also are tolerable. -

The basic Oth-order theory. the central assumption underlying heuristics, appears to be the
following: "ApPROPRIATENESS(ACTIONSITUATION) is continuous and time-invariant." 111at is.
Appropri£ttcness, viewed as a function of actions and of situations. is a continuous function of both
variables. Moreover, of all the features of the situation which might be relevant. time is (we
assume) far from thc most critical !Variable.

--

Of course we can't compute the Appropriateness function precisely; we can't even sample more
than a few variables from Actions and Situations. Nevertheless, this abstraction implies several
interesting corollaries, and serves as a theoretical base which can be examined, criticized, and (in
Section 3.3) improved. Indeed, simply by considering Appropriateness as a function, we open up
the possibilities of visualizing graphs of it, a technique which proves to be a useful metaphor below.

Corollary 1: For a given action, its appropriateness is a continuous function of situation.
Heuristics specify which actions are appropriate (or inappropriate) in a given situation. One
corollary of the central assumption is that if the situation changes only slightly, then the judgment
of which actions are appropIiate also changes only slightly. Thus compiled hindsight is useful,
because even though the world changes, what was useful in situation X will be useful again
sometime in situations similar to X.

Oth. Appropriateness(action,situation) is a continuous time-invar:2nt function.

COR. 1: Analogize:
I f action A is appropriate in situation S,
Then A is appropriate in most situations which are very similar to S.

COR 2: Satisfice:
If action A is appropriate in situation S,
Then so are most actions which are very similar to A.

COR 3: Remember:
If action A would have been appropriate in the past situation S,
Then the rule "If similar to S, Then try A" may be useful in the future.

Figure 9 The Central Assumption underlying heuristics, and three special cases

Cor. 1 says, in effect, that if the current tasK appears to be similar to one you've seen elsewhere,
then many of the features of the task environment will probably be very similar as well: i.e., the
kinds of conjectures which might be found, the solvability and difficulty anticipated with a tasK, the
nature of blind alleys in which one might be trapped, etc. may all be the same as they were in that
earlier case. For instance, suppose that a certain theorem, U Fr, was useful in proving a result in
number theory. Now another task appears, again proving some number theory result. Because the
tasks are similar, Cor. 1 suggests that UFf be used to try to prove this new result. Cor. 1 is the
basic justification for using analogy as a reasoning mechanism. A sentiment similar to this was
voiced by Poincare' during the last century: The whole idea oj analogy is thai 'l:.JJects: viewed as a
junction of situation. is a continuous junction.

Corollary 2: For a given situation, appropriateness is a continuous function of actions.
lbis means that if a partkular action was very useful (or harmful) in some situation, it's likely that
any very similar action would have had similar consequences. Cor. 2 justifies the use of inexact
reasoning, of allocating resources toward finding an approximate answer, of satisficing. It is the
basis for employing "generalization of stimuli" as a mechanism for coping with the world: if the
appropriateness function were not (usually) continuous as a function of actions, then most
genera1izations would be false.

15

16

Corollary 3: It is cost-effective to fonn and use situation/action rules which would have hclped in
the past. The "time-invariant" condition in thc statement of the Central Assumtion (the zeroth
order theory) means that the world doesn't change much over time, and is the foundation for the
utility of memory. In a world changing radically enough, rapidly enough, memory would be a
useless frill; consider the plight of an individual atom in a gas. Cor. 3 therefore states that the
world is assumed to be a stable, nonvolatile place, that any rule which we know (via hindsight)
would have been useful to obey in the past, will probably be of use in the future. We are
presumed to be inhabiting a world in· which McCarthy's Frame Problem really is a problem, where
most valid assertions remain valid as situations evolve.

If the Central Assumption holds, then the ideal interpreter for heuristics is the one shown in Figure
10. Note that this is very similar to a pure production system interpreter. In any given situation,
some rules will be expected to be relevant (because they were truly relevant in situations very
similar to the present one). One or more of them are chosen and applied (obeyed, evaluated,
executed, fired, etc.) This action will change the situation, and the cycle begins anew. Of course
one can replace the "locate relevant heuristics" sub task by a copy of this whole diagram: that is, it
can be perfonned under the guidance of a body of heuristics specially suited to the task of finding
heuristics. Similarly. the task of selecting which rule(s) to fire, and in what order, and with how
muel of each resource available, can also be implemented as an entire heuristic rule system
procedure. EURISKO has this self-representing architecture, and overcomes the apparent
inefficiencies by employing software caching (compiling the rule sets).

Situation
/ -) \

/ \
/ \

Changes to the situation \
(hopefully for the better) l' Locate relevant heuristics
(hopefully quickly) /

\ /
\ /

\ +- /
Apply chosen heuristic(s)

Figure 10. The Oth-order interpreter for a body of heuristic rules

By examining the loop in Figure 10, we can quickly "read off' the possible bugs in heuristics, the
list of ways in which a heuristic can be "bad": .

It might not be interpretable at all.
It might be interpretable but it might never even be potentially relevant.
It might be potentially relevant but its IF part might never be satisfied.
Jt might trigger, but never be the rule actually selected for execution (firing).
It might fire. but its THEN pa11 might not produce any effect on the situation.
It might produce a bad effect on the situation~
It might produce a good effect, but take so long that it's not cost-effective.

This is reminiscent of John See]y Brown's work on a generative theory of bugs [Brown & VanLehn
80], and is meant to be. Perhaps by viewing heuristics as perfonners. this approach can lead to an
effective method for diagnosing buggy heuristics. hence improving or e1iminating them.

---~---

3.3. The Power of Each Individual Heuristic

What is the nature of a single heuristic, what is its source of power? One way of interpreting
Corollary 1, above, is that each heuristic has its own particular domain of relevance, outside of
which it is useless or perhaps worse than useless. Consider the following very special situation:
you are asked to guess whether a conjecture is true or false. What heuristics are useful in guiding
you to a decision rapidly? If the conjecture is in the field of plane geometry, one very powerful
technique is:

IF you are guessing the truth of a conjecture,
THEN draw a diagram and see if it holds in that analogic model.

But if the conjecture is in the field of point-set topology, or real analysis, this is a terrible heuristic
which will often lead you into error. For instance, if the conjecture mentions a function, then any
diagram you draw will probably portray a function which is everywhere infinitely differentiable,
even if such is never stated in the conjectures's premises. As a result, many properties will hold in
your diagram that can never be proven from the conjecture's premises. 111e appropriate technique
in topology or analysis is to pull out your book of 101 favorite counterexamples, and see whether
any of them violate the conjecture. If it passes all of them, then you may guess it's probably true.

This example dramatizes the idea that the power or utility of a heuristic changes from domain to
domain. Thus, as we move from one domain to another, the set of heuristics which we should use
for guidance changes. Many of them have higher or lower utility, some entirely new heuristics may
exist, and some of the old ones may be actually detrimental if followed in the new domain. For
instance, the ttIF object is falling THEN catch ittt rule is useful for most situations, but each year
many people are burned needlessly when they try to catch falling clothes irons and soldering irons.

According to the fundamental assumption of heuristics (the zeroth-oder theory), the power of a
heuristic is a continuous function of the task it is being applied to. But here is one of the most
powerful heuristics for theory formation:

. IF one quantity is spoken of as a function of another,
THEN graph it, and visually inspect the graph.

Let's follow its advice in our present situation, that of grappling with the development of the theory
of heuristics. It says to take a heuristic Ho' and plot the graph of its power as a function of task
domain, i.e., imagine graphing the utility of applying Ho as a function of situation.

Suppose Ho is the heuristic that says ttIF you don't know the solution, THEN ask the human
expert to supply the answer". This heuristic is being used inside a program which is processing a
knowledge base about aircraft carriers, answering database queries from nonexperts. The task or
situation axis (x-axis) will be arranged by the difficulty of the problenl being worked on, and the
power or utility axis (y-axis) will correspond to the difference between the time required to get an
answer from the human expert and the time required to get an answer using other methods
(resolution theorem proving, simulation, etc.) See Figure 11. In the case of very trivial problems,
it is not worth bothering the user -- it would be better for the program to work on its own for a
fraction of a second and derive the answer itself, via a few database lookups and some simple
inference. Thus the leftmost portion of the graph is below zero -- the utility of employing the "ask
an experttt heuristic on a trivial problem is negative. For problems somewhat more difficult, asking
an appropriate expert might very well be the most cost-effective method of obtaining a solution. this
becomes a reasonable rule to follow. So in the middle, the graph of the heuristic's utility rises to a
high value. For very difficult problems, superhuman amounts of computation may be required, and
a detailed simulation may far surpass the abi1ity of any human to provid.e an answer. Thus the
utility declines and becomes negative. If the problem is extraordinarily difficult, then it may be
insoluble no matter what methods are tired, and therefore using this heuristic is no worse than using
any others -- so the udity eventually rises again toward zero.

17

am",.",., llit

18

t
A
P
P
R
o
P
R
I
A
T
E
N
E
S
S

I
I
I
I
I
I
I
I
I TASK DIFFICULTY e)

•
•

..
•

•

•
•

• • • ..
1---------------·---············-···········-··· E-...............•.. -.---....... --M -.. --.--..... -.... -.-... -......... H .----...... -... -.... I .".

• • • .. • •
• • •

Figure 11. The graph of the utility of "Ask an expert". For very easy (E) problems, it's a wasteful
strategy. For medium (M) problems it's good. For hard (H) problems, the expert won't know, but
a simulation might have worked. For impossibly (I) difficult problems, no heuristic is much worse
than any other, so the utility of "Ask an expert" rises asymptotically towar~ zero.

As a second example, consider the heuristic that said, IF you are guessing the truth of a conjecture,
T'HEN draw a diagram and see if it's true therein. This time, the y·axis (utility, appropriateness,
power) can correspond to the chance of such a technique yielding the right answer. The task or
situation axis can correspond to the ordering of domains of mathematics in curricula; thus we use
set theory to define arithmetic, so set theory is located to the left of arithmetic on this axis. See
Figure 12. In the case of logic, very few diagrams of any use can be drawn, so the heuristic is a
slight waste of time. In set theory. Venn diagrams may be useful for easy problems, but otherwise
tend to clutter up the situation rather than relieving it. In geometry, however, diagrams are in their
glory; Gelernter's geometry theorem prover demonstrated vividly the power of drawing even a
single diagram for a problem. Advancing to topology and real analysis, the situation reverses, and
diagrams which appear to capture the situation are in fact often misleading. Diagrams are gradually
rehabilitated in the etherial heights of category theory, though even there they play only an
auxilliary role.

t
I
I
I
I

P I
o I
WI
E I
R I

I
I SUBFIELD· >

•
•
•

..
•

--*----L----------------------------------S··-------------.----*----------------0 ---.------------*------------'fR ------------.-.----. *--e-
* • .. * • ..

• • •
Figure 12. rnle graph of the power of drawing a diagram, as a function of the mathematical
sub field in which it is tried. Neutral for logic (L), misleading for set theory (S), useful for
geometry (G), misleading for topology and real analysis (TR), and neutral for category theory (C).

The diagram above resembles the potential well around a particle, and for that reason a heuristic
such as "Assume that two point masses repel each other" would have a utility graph similar to
Figure 12. Namely, at far distances, gravity makes that statement slightly wrong. As the objects get
closer, the statment is more and more wrong, until they are so close that nuclear interaction forces
overbalance gravitational ones. At nuclear distances, it's a fine heuristic to employ. Analogues of
this in various situations abound (e.g., "A void getting too close in personal relationships").

As a fourth example, consider the task of planning for company coming to your house to visit.
There are many subtasks to schedule: shopping for food, planning menus, cleaning, cooking, talking,
etc. There are several heuristics (planning techniques) you might apply to deal with the problem:
Pert charts. Noah-like symbolic evalutions. dynamic replanning, setting up of agendas, etc. Each of
these methods has some situations in which it works, some in which it fails, and some in which it
can't even be tried. For instance, Pert charts demand a full knowledge of dependencies, and the
absence of "cycles" among such dependencies. If the dependencies aren't known, the method is not
directly applicable; if the dependencies change over time, the pert charts will be worse than useless.
Thus the graph of the utilty of the Pert chart method would peak in a certain region, become
negative further out, and eventually become zero (as the task got far away from planning).

In t:~neral, then, graphing the utility or power of a heuristic Ho' as function of' task domain,
generates (if it can be done at all) a curve or histogram resembling that of Figure 12. Typically,
there is some range of tasks for which the heuristic has positive value. Outside of this, it is often
counterproductive to use the heuristic. For tasks sufficiently far away, the utility approaches zero,
because the heuristic is never even considered potentially relevant, hence never fires. E.g., the
heuristic "If a predicate rarely returns True. Then define new generalizations of it" is useful in set
theory, worse than useless in number theory, and useless in domains where "predicate" is
undefined.

Sometimes, one (or both) sides of the negative region simply keep getting more negative (as in
Figure 11) rather than reapproaching zero. Sometimes one side drops precisely to zero and stays
there (e.g., if the heuristic has a very crisp condition under which it is applicable, then considering
using it anywhere else has zero utility because the heuristic will never "fire"). Of course the shape
of the curve depends on how the tasks are ordered on the x-axis, and on what the utility measure is
along the y-axis. Indeed, as we have mentioned. the whole notion of graphing this function is
primarily a metaphorical device to aid us in further development of the theory of heuristics.

t

p
o
W
E
R

+

++

+ +

* + +*
* *

* + + *
TASK -) * * -.*---- + ---*--------- + -------------- + --------*_:_--------------------------------------+ *-
* + * * +*

* + * + + * + *
* * * *

* + * + + * +*
* * *

* + + + +

+ +

Figure 13. The change in power when a heuristic (*) has its THEN- part specialized (+)

19

20

If we specialize the THEN-part of a heuristic, it will typically have higher utility but only be
relevant over a narrower domain. See Figure 13. Notice the area under the curve appears to be
remain roughly constant; this is a geometric interpretation of the tradeoff between generality and
power of heuristic rules. Since the graphs are metaphorical, this notion of conservation of area
under a curve is likewise a "zeroth-order" idealization. It is also worth noticing that the new
specialized heuristic may have negative utility in regions where the old general one was still positive,
and it will be meaningless over a larger region as well. Consider for example the case where
"Generalize a predicate" is specialized into "Generalize a predicate by eliminating one conjunct
from its definition". The latter is more powerful, but only applies to predicates defined
conjunctively; EURISKO found a domain where this heuristic has negative worth (see Fig. 19c).

By examining Figure 13, it is possible to generate a list of possible bugs that may occur when the
actions (THEN -part) of a heuristic are specialized. First, the domain of the new one may be so
narrow that it is merely a spike, a delta function. This is what happens when a general heuristic is
replaced by a table of specific values. Another bug is if the domain is not narrowed at all; in such
a case, one of the heuristics is probably completely dominated by the other. A third type of bug
appears when the new heuristic has no greater power than the old one did. For example, "Smack a
vu-graph projector if it makes noise" has much narrower domain, but no higher utility, than the
more general heuristic "Smack a device if it ') acting up". Thus, the area under the curve is greatly
diminished.

While the last paragraph warned of some extreme bad cases of specializing the THEN- part of a
heuristic, there are some extreme good cases which frequently occur. The utility (power) axis may
have some absolute desirable point along it (e.g., some guarantee of correctness, or optimal
efficiency), and by specializing the heuristic it may exceed that threshhold (albeit over a narrow
range of tasks). In such a case, the way we qualitatively value that heuristic may alter; e.g., we may
term it an algorithnl. One way to rephrase this is to say that algorithms are merely heuristics which
are so powerful that guarantees can be made about their use. Conversely, one can try to apply an
algorithm outside its region of applicability, in which case the result may be useful and that
algorithm is then being used as a heuristic. The latter is frequently done in mathematics (e.g.,
pretending one can differentiate a complicated expression, to aid in guessing its .value). Another
pathologically extreme specialization of a heuristic is turning it into one which applies only on a set
of measure zero. This is not necessarily a bad thing: tables of values do have their uses.

Specializing the IF-part of a heuristic rule results in its having a smaller region of non-zero utility.
That is, it triggers less frequently. As Figure 14 shows, this is like placing a filter or window along
the x-axis, outside of which the power curve will be absolutely zero. In the best of cases, this
removes the negative-utility regions of the curve, and leaves the positive regions untouched. For
example, we might preface the "Draw a diagram" heuristic with a new premise clause, "If you are
asked to test a geometry conjecture". This will cause us to use the rule in Geometry situations,
where it has been found to have a high utility.

I
I

t I
I

P I
o I *
W I * •
E I * *
R I *.
1**

I TASK .) * *
--*--*----------------------------------_._-*-._------------------._--------------------*-

• * * •

Figure 14. The graph of a heuristic's power, after its IF part has been optimally specialized.

By examining Figure 14, we can generate a list of possible bugs ansmg from specializing the
conditions (IF-part) of a heuristic rule. The new window may be narrowed to a spike, thus
preventing the rule from almost ever firing. There may be no narrowing whatsoever: in that case,
it typically would add a little to the time required to test the IF-part of the rule, while not raising
the power at all. Of course the most serious error is if it clips away some -- or all! -- of the positive
region. Thus, we would not want to replace a general diagram-dr~wing recommendation with one
which advised us to do so only for real analysis conjectures. Empirical results from experiments on
specializing and generalizing heuristics are presented in Section 4.l.

What are implications of this simple "theory of heuristics"? One effect is to determine in what
order heuristics should be chosen for execution; this is discussed two paragraphs down. A second
effect is to indicate some very useful slots that each heuristic can and should have, attributes of a
heuristic that can be of crucial importance: the peak power of the rule, its average power, the sizes
of the positive and negative regions (both projections along the task axis (x-axis) and the areas
under the curves), the steepness with which the power curve approaches the x-axis, etc. Let us
take the last attribute to illustrate. Why is it useful to know how steeply the power curve
approaches Utility =0 (the x-axis)? If this is very steep, then it is worth investing a great amount of
resources detennining whether the rule is truly relevant in any situation (for if it is slightly
irrelevant, then it may have a huge negative effect ifused). Conversely, if the slop'': is very gentle,
then very little harm will result from slightly-inappropriate applications of the rule, hence not much
time need ever be spent worrying about whether or not it's truly relevant to the situation at hand.

The whole process of drawing the power curves for heuristics is still conjectural. While a few such
graphs have been sketched, there is no algorithm for plotting theIn, no library of thousands of
catalogued and plotted heuristics, not even any agreement on what the various power and task axes
should be. Nevertheless, it has already proven to be a useful metaphor, and has suggested some
important properties of heuristics which should be estimated (such as the just-mentioned downside
risk of applying a heuristic in a slightly inappropriate situation). It is a qualitative, empirical theory
[Newell & Simon 76], and predicts the form that a quantitative theory might assume.

How should heuristics be chosen for execution? In any given situation, we will be at a point along
the x-axis, and can draw a vertical line (in case of multi-dimensional task axes. we can imagine a
hyperp]ane~. Any heuristics which have positive power (utility) along that line arc then useful ones
to apply (according to our theory of heuristics), and the ones with high power should be applied
before the ones with low power. Of course, it is unlikely we would know the power of a heuristic
precisely. in each possible situation; while diagrams such as Figs. 11-14 may be suggestive, the data
almost never is available to draw them quantitatively for a given heuristic. It is more likely that we
would have some measure of the average power of each heuristic, and would use that as a guess of
how useful each one would be in the current situation. Since there is usually a tradeoff between
generality and power, a gross simplification of the preceding strategy is simply to apply the most
specific heuristic first. and so on. This is the scheme AM used, with very few serious problems. If
all heuristics had precisely the same multiple integral of their power curves. this would coincide
with the previous scheme. Of course, there are always some heuristics which, while being very
general. really are the most important ones to listen to if they ever trigger ("If a conflagration
breaks out, Then escape it"), and some so important that natural selection has "wired them in".

Notice that the "generality vs. power" tradeoff has turned into a statement about the conservation
of volumes in nxm-dimensional space, when one takes the multiple integral of all the power curves
of a heuristic. In particular. there arc tradeoffs among all the dimensions: a gain along some utility
dimension (say Convincingness) can be paid for by a decrease along another (say Efficiency) or by a
decrease along a task dimension (a reduction of breadth of applicability of the heuristic). One
historically COlnmon bug has been over-reliance upon (and glorification of) heuristics which are
pathologically extreme along SOlne dhnension: tables, algorithms, weak methods, etc.

Heuristics arc often spoken of as if they were incomplete. uncertain knowledge. much like
mathematical conjectures or sdentifk hypotheses. This is not necessarily so. The epistemological
status of a heuristic, its justification, can be arbitrarily sound. For example, by analyzing the
optimal play of Blackjack, a rather complex table of appropriate actions (as a function of situation)

21

22

is built up. One can simplify this into a "Basic Strategy" of just a few rules, and know quite
precisely just how well those rules should perform. That is, heuristics may be built up from
systematic, exhaustive search, from "complete" hindsight. Another example of the formal, complete
analysis of heuristic methods is familiar from physics, where Newtonian mechanics is known to be
only an approximation to the world we inhabit. Relativistic theories quantify that deviation

. precisely. But rather than supplanting Newtonian physics, they bolster its use in everyday situations,
where its inadequacies can be quantitatively shown to be too small to make worthwhile the
additional computation required to do relativistic calculations.

Many, nay most, heuristics are merely conjectural, empirical, aesthetic, or in other ways
epistemologically less secure than the Basic Strategy in Blackjack and Newtonian physics. The
canonical use of heuristics is to guide future behavior in cost-effective channels; the canonical use of
a conjecture is to guide a search for a proof of it. If a conjecture turns out to be false (such as
Newtonian mechanics, or the assertion that there is always a generality vs. power tradeoff) it may
yet stand as a useful heuristic.

3.4. The Space of Heuristics

Imagine graphing the utility of an entire set of heuristics, as a function of the tasks it's being
applied to. Not surprisingly, the curve produced would resemble the one produced by a single
heuristic, for it is (to first approxitnation) a huge compund heuristic (call it a Mega-heuristic).
Hopefully, the set of heuristics is more useful than any member, thus it is probably much broader
and taller (or less negative) than any single heuristic inside it.

One cannot simply "superpose" or "max" the curves of its members: the interactions among
heuristics are often quite strong, and independence is the exception rather than the rule. Often, two
heuristics will be different methods for getting to the same place, or one will be a generalization or
isomorph of the other, etc., and as a result the set will really not benefit very much from having
both of them present. On the other hand, sometimes heuristics interact synergistically, and the
effects can be much greater than simple superposition would have predicted. The opposite of this
sometimes happens: two experts have each provided a set of heuristics which works, yet some
heuristics in each set directly contradict some in the other set. Using either half-corpus would solve
your problclTI, but mixing them causes chaos (e.g., one mathematician gives you heuristics for
finding empirical examples and generalizing, while a second gives you heuristics for formally
axiomatizing the situation; either may suffice, the unstructured mixing of the two sets can be
catastrophic).

Heuretics is interested in the space of all the world's heuristics. What is its structure? What are
regularities in it tha~ can be exploited? The sheer size of this space -- and our as yet minuscule
experience in navigating within it -- make these tantalizing questions difficult to investigate.

Imagine arranging all the world's heuristics in a generalization/specialization hierarchy, with the
most general heuristics at the top. At that top level lie the so-called weak methods (generate & test,
hill-climbing, matching, means-ends analysis, etc.) At the bottom are millions of very specific
heuristics, involving domain-specific terms like "King-side" and "DDT". In between are heuristics
such as those il1ustrated in Figure 15. A purely "legal-move" estimate of the size of this tree gives a
huge final number: Based on the lengths and vocabularies of heuristic rules in AM, one may
suppose that there are about 20 blanks to be filled in in a typical heuristic, and about 100 possible
entries for each blank (predicate. argument, action, etc.) related to AM's math world. So there are
1040 syntactical1y well-formed heuristics just in the elementary mathematics corner of the tree. Of
course, most of these are never (thankfully!) going to fire, and almost an the rest will perform
irrelevant actions when they do fire. From now on, let's restrict O\lr attention to the tree of only
those heuristics which have positive utility at least in some domains.

What docs that tree actually look like? One can take a specific heuristic and generalize it gradually,
in all posible ways, unti1 all the generalizations dissolve into weak methods. Such a preliminary
analysis (using a few of AJ\{S heuristics) led us to expect the tree to be of depth about 50, and in

the case of an expert system with a corpus of a thousand rules, we might expcct a picture of them
arranged so to form an equilateral triangle. But when we went through this partial trec, analyzing
the power of the rules therein, it quickly became apparent that most generalizations were no less
powerful than the rule(s) beneath them! Thus the specific rule can be eliminated from the tree.
The resulting tree has depth of roughly 3 or 4, and is thus incredibly shallow and bushy. Professors
Herbert Simon, Woody Bledsoe, and the author analyzed the 243 heuristics from AM, and were
able to transform their deep (depth 12) tree into an equivalent one containing less than fifty rules
and having depth of only four. Looking at a few heuristics arranged in a tiny tree (Fig. 15), we can
see that all but the top and bottom levels can be eliminated. A similar phenomenon was seen
earlier, in the case of a heuristic which said to smack a vu-graph projector in case it acted up; it and
several levels of its generalizations can be eliminated, since they are no more powerful than the
genera] "Smack a malfunctioning device" heuristic. Some very specific rule, such as "Smack a
Nanook 807 vu-graph projector on its right side if it hums", might embody some new, powerful,
specific knowledge (such as the location of the motor mount and this brand's tendency to misalign),
and thus need to stay around.

\ Toward weak methods l' /

\ /
IF f is a subset of ... Ax ... xBx ... , and R:A--)B, and AcB,
THEN define {(oo.,a, ... ,R(a), ...) e f}

/ \
/ A =B \ R +- Equality

/ \
/ \

IF f is a subset of oo.Ax ... xA ... , and R:A--)A, IF f c ... Ax ... xBx ... , and AcB,
THEN define {(... ,a, ... ,R(a), ...) e f} THEN define{(... ,a, ... ,a, ...) e f}

\ /
\ R +- Equality / A =B
\ /
\ /

IF f is a subset of .ooAx ... xAx ...
THEN define {(... ,a,oo.,a, ...) e f}

/ \
/ ... Ax ... xAx ... +- AxCxAxB

/
\ ... Ax ... xAx ... +- AxCxA
\

/ \
IF f:AxCxA--)B /
THEN define g(x,Y)= f(x,y,x)

I
Ie is singleton

I
I

IF f:AxA--)B
THEN define g(x) = f(x,x)

/ \
/ \ Toward domain-specific heuristics

I
v

IF f:AxC--)A
THEN define {(a,c) I f(a,c) = a}

I .
Ie is singleton

I
I

IF f:A--)A
THEN define {a I f(a)=a}

/ \
/ \

Figure 15. A tiny fragment of the graph of all heuristics, related by Generalization/Specialization.
Note the similar derivation of Coalescing and Fixed-Points heuristics.

This "shallow-tree" result should make advocates of weak methods happy, because it means that
there really is something special about that top level of the hierarchy. Going even one level down
means paying attention not to an additional ten or twenty heuristics, but to hundreds. It should
also please the knowledge engineering advocates, since most of the very specific domain-dependent

23

24

rules also had to remain. It appears, however, to be a severe blow to those of us who wish to
automatically synthesize new heuristics via specialization, since the result says that that process is
usually going to produce something no more useful than the rule you start with. Henceforth, we
shall term this the shallow-tree problem.

There are two ways out of this dilemma, however. Notice that "utility of a heuristic" really has
several distinct dimensions: efficiency, flexibility, power for pedagogical purposes, usefulness in
future specializations and generalizations, etc. Also, "task features" has several dimensions: subject
matter, resources allotted (user's time, cpu time, space, etc.), degree of complexity (e.g., consider
Knuth's numeric rating of his problems' difficulty), time (Le., date in history), paradigm, etc. If
there are n utility dimensions and m task dimensions, then there are actually nxm different power
curves to be drawn for each heuristic. Each of them may resemble the canonical one pictured in
Figure 12. If by specializing a heuristic we create one which has the appearance of Figure 13 in
anyone of these nxm graphs, then it is a useful specialization. So, while a specialization is unlikely
to be useful in any particular utility/task graph, it is quite likely to be useful according to some one
of the nxm such graphs.

Consider the Focus of Attention heuristic, that is, one which recommends pursuing a course of
actl'm simply because it's been worked on recently. Using this as one reason to support tasks on its
agenda made AM appear more intelligent to human observers, yet actually take longer to make any
given discovery. Thus, it is useful in the "Convincingness" dimension of utility, but may be
hannful vis a vis "Efficiency".

As another example. consider the heuristics "Smack a vu-graph projector if it's acting up", "Smack
a child if it's acting up", and "Smack a vu-graph projector or child if it's acting up". There may be
some utility dimensions in which the third of those is best (e.g., scope, humor). However the
rationale or justification for the first two heuristics is quite different (random perturbation toward
stable state versus reinforcement learning). Therefore the third heuristic is probably going to be
deficient along other utility dimensions (clarity, usefulness for analogizing).

But there is an even more basic way in which the "shallow tree" problem goes away. There are
really a hundred different useful relationships that two heuristics can have connecting them
(Possibly-triggers, More-restrictive-IF-part, Faster, My-average-power-higher-than-your-peak-power,
Asks-fewer-questions-of-the-user, etc.) For each such relation, an entire graph (note that even the
Gent/Spec relation generated a graph, not a tree -- see Figure 15) can be drawn of all the world's
heuristics; pragmatically. we considered only those in a given program. In some of these trees or
graphs, we found the broad, shallow grouping that was found for the AM heuristics under
Genl/Spec. For others, such as Possibly-Triggers, we found each rule pointing to a small collection
of other rules, and hence the depth was quite large (approximately 30 for AM, not including cycles).
There are sti!! many difficult questions to study, about this phenomenon, even '.vith ~'1e ~'1eory in
this primitive state: How does the shape of the tree (the graph of heuristics related by some
attribute R) relate to the the ways in which R ultimately proves itself to be useful or not useful?
Already, one powerful correlation seems to hold: In cases where the tree depth is great, that
relation is a good one to generalize and specialize along; in cases where the resulting tree is very
broad and shallow, other methods (notably analogy) may be more productive ways of getting new
heuristics.

3.2. The First-Order Theory of Heuristics

There are several things wrong with the Oth-order theory: it presumes that knowledge is complete
and unchanging~ that is, it ignores the "potato in the tailpipe" problem, and "solves" the frame
prob1em by asserting that assertions never change their validity. Corollary 1 above (see Figure 9)
presumes that the axis of "Situations" is well-defined and continuous, when of course it. is neither.
As we said earlier. the items in Figure 8 are 2nd-order correction terms to a theory of heuristics, and
Figure 9 is a very simplified Oth-order theory. Intermediate between them lies a theory which
interfaces to each. .

--- - - -----_._. __ .. _-_ ... - .. -_ ... _ _-- _ _ ... - - --_._._---- ------------------_. ------~~--.-..

That 1st-order theory says that the Oth-order theory is often a very useful fiction. It is cost-effective
to behave as though it were true, if you are in a situation where your state of knowledge is very
incomplete, where there is nevertheless a great quantity of knowledge already known, where the
task is very complex, etc. At an earlier stage, there may have been too little known to express very
many heuristics; much later, the environment may be well enough understood to be algorithmized;
in between, heuristic search is a useful paradigm. Predicting eclipses has passed into this final stage
of algorithmization; medical diagnosis is in the middle stage where heuristics are useful; building
programs to search for new representations of knowledge is still pre-heuristic.

1 st : IF you are in a complex, knowledge-rich, incompletely-understood world,
THEN it is frequently useful to behave as though it were true that

Appropriateness(action,situation) is continuous and time-invariant.

Figure 16. The first-order theory of heuristics: the Oth-order theory is a useful fiction

Notice that the 1st-order theory is itself a heuristic! This is not too disturbing, since it is dubious
that we will ever know enough about thinking to supplant it. Until your model of me is absolutely
perfect, your predictions of my behavior will diverge more and more as time proceeds, and after a
relatively short interval you will have to rely upon heuristics again to understand and predict my
thoughts and actions. And there is probably something akin to Heisenberg's uncertainty principle to
guarantee that your model of me can never be perfectly complete.

3.3. The Second-Order Theory of Heuristics

The second-order corrections in Figure 8 (and, as we shall soon see, Figure 17 below) now apply to
the first-order theory (e.g., the division of heuristics into generators and pruners). Additionally,
some new second-order ones are apparent. For instance, the adjective "frequently", used in Figure
16, can be replaced by a body of rules which govern when it is and is not useful to behave so.
Finally, careful examination of the use of heuristics in AM reveals SOlne regularities which seem to
be the opposite of the claims of the Zeroth-order theory.

Heuristics are compiled hindsight: they are nuggets of wisdom which, if only we'd had them sooner,
would have led us to our present state much faster. This means that some of the blind alleys we
pursued would have been avoided, and some of the powerful discoveries would have been made
sooner.

Even the synthesis of a new discovery can be considered to be the result of employing guidance
heuristics, rules of good guessing based on analogy, aesthetic criteria such as symmetry, or random
combination. A few typical such rules would be "Analogies are useful in fonnulating biological
and sociological theories", "Symmetry is useful in postulating the existence of fundamental particles
in physics", "Randomly look at empirical data for regularities in elementary number theory and
plane geometry", "Once a correlation is observed, consider the extreme cases of that relationship".
Those guidance heuristics were in turn based on several past episodes, hence are themselves
compiled hindsight. Nilsson and others have argued for the primacy of search; we are simply
stating the very special case where we cannot deicide which node to investigate next, but rather
must let Time carry a stream of events past us, each event serving as a nod(! for our observation and
recording: the primacy of compiled experiential knowledge.

As new empirical evidence accumulates, it may be useful to "recompile" the new hindsight into
heuristics (synthesize new heuristics and modify old ones). AM demonstrated that, certainly by the
time you've opened up a whole new field, you must recompi1e. Working i:1 point-set topology with
geometry heuristics is not very efficient, nor was AM'S working in nu::nber theory using only

25

26

heuristics from set theory. The set of heuristics must evolve: some old ones are no longer useful,
some must be refined to suit the new domain, and some entirely new heuristics may be useful. As
the task varies. or as time varies and one gains new experiences, one's set of guiding heuristics is no
longer optimal. The utility of a heuristic will vary, then, both across tasks and across time, and this
variance is not necessarily continuous.

Exactly what kinds of changes can occur in a domain of knowledge that might require you to alter
your set of heuristics? In other words, what are the sources of granularity in the space of "fields of
knowledge"?

First, there might be the invention of a new piece of apparatus. This could be theoretical (such as
Goders theorem) or technological (such as the computer). The first few painful experiences with a
new invention quickly lead to a specialized corpus of heuristics: rules which tell you how to use
such a thing, where not to poke your fingers, when it's relevant, how to fix one, what kind to buy,
etc. In addition, many of the old heuristics may be less or (rarely) more useful than they used to
be. The invention of the airplane invalidated most of the long distance travel heuristics then extant,
reinforced the heuristic that said to be skeptical of printed timetables, and led to the creation of
many new rules of thumb for dealing with air travel.

Second, there might be a new technique devised, one which doesn't actually depend upon any new
apparatus. Again, this can be theoretical (such as Bentley's widespread application of divide and
conquer in complexity theory) or practical (such as Maxam and Gilbert's ingenious method for
sequencing DNA). New heuristics about reliability, applicability, etc. become useful

Third, a new phenomenon may be observed. When a new invention (e.g., the telescope) occurs,
there are often two immediate new phenomena: the sociological one of how the invention is used,
and the "real" one now observable using the invention.

Fourth, and most unusually, there may be a newly-explicated or newly-isolated concept or field, one
which was always around but never spoken about explicitly. Three such concepts are: paradigms in
scientific research, the whole field of heuristics itself, and the analysis of algorithms.

In brief, the four sources of granularity in the space of "domains of knowledge" are precisely those
components which, if varied, lead to a new domain of knowledge. In other words, they define what
we mean by a domain of knowledge: a set of phenomena to study, a body of specific problems
about those phenomena which are considered worth working on, and a set of methods (both
theoretical and experimental, mental and material) for attacking such questions.

The space of domains is granular, quantized, hence the "power curves" we drew earlier for
individual heuristics are reaiiy step-functions (or histograms) rather than smooth curves as we've
drawn them. One implication of this is that there is a very precise point along the task axis where
the utility drops from positive to negative (or zero). Often, this is a large, sudden drop across a
single discontinuity in the axis (e.g., when a product emerges, an expert dies, a theorem is proved.)

One frequent problem we face when trying to apply heuristics is not being able to evaluate their IF­
parts, their conditions. We may not know whether the acyclic preconditions demanded by Pert
techniques are satisfied; we may not know for sure whether the difficulty of the request from the
aircraft database is neither too trivial nor too complex; etc. In such a situation, we rely on
heuristics for deciding which heuristics to apply. A few such are:

L Nonmonotonic reasoning: assume that some of the uncertain conditions hold, and tag
dependencies so that it is easy to undo consequences of that heuristic application if it later turns out
that the assumption was wrong.

2. Deferral: if all of the alternative heuristics would cause a certain action to be taken (as one
subpart of their THEN parts), then take that action now and hope that by the time it finishes more
knowledge will be available to aid in choosing an appropriate method.

3. Approximate: weaken some of the conditions for applicability of the heuristics. E.g., replace
"all" by "most", "equal" by "similar", eliminate one entire conjunct from a condition comprised
of many conjuntive tests, etc. This applies to heuristics for choosing heuristics as well; thus one
could weaken (2) above, into a rule that said "if most of the alternative heurisitics would cause a
certain action to be taken ... "

This section has now contributed three new elements to our growing theory of heuristics:

(v) HEURISTICS ARE COMPILED HINDSIGHT

(VI) THE SPACE OF "DOMAINS OF KNOWLEDGE" IS GRANULAR

(vii) USE HEURISTICS TO DECIDE WHICH HEURISTIC TO APPLY NEXT

Figure 17. Three additional elements of a theory of heuristics

4. EURISKO: The Origin of New Heuristics

Recently, the AM program has been extended into EURISKO, a program capable of discovering new
heuristics as well as new math concepts. The AM heuristics were originally coded as opaque lumps
of LISP code -- immutable and uninspectable by the system. In EURISKO, these have each been
recast as full-fledged units, with their content spread out into dozens of kinds of slots. lbe corpus
of heuristics guides the synthesis, data gathering, and judgmental evaluation of new concepts -- be
they new math concepts (PrimeNumOfDivis), representation concepts (VolatileSlots), or heuristics.
This section briefly recounts some of the experiences we have had to date with EURISKO.

4.1 Meta-Heuristics are Just Heuristics

Is there something special about the heuristics which inspect, gather data about, modify, and
synthesize other heuristics? That is, should we distinguish "meta-heuristics" from "domain
heuristics"? According to our general theory, as presented in Section '3, domains of knowledge are
granular but nearly continuous along every significant axis (complexity of task, amount of
quantification in the task. degree of formalization, etc.) Thus, our first hypothesis is that it is not
necessary to differentiate meta-level heuristics from object-level heuristics -- nay, that it may be
artificial and counterproductive to do so.

This is one hypothesis upon which the design of EURISKO rests. Figure 18 illustrates three
heuristics which can deal with both heuristics and mathematical functioris. The first one says that if
some concept f has always led to bad results. then f should be marked as less valuable. If a
mathematical operation. like Compose, has never led to any good new math concepts, then this
heuristic would lower the number stored on the Worth slot of the Compose concept. Similarly, if a
heuristic, like the one for drawing diagrams, has never paid off, then its Worth slot would be
decremented. EURISKO put this rule to frequent and good use,so there was little chance in
practice of it applying to itself (though in principle it might have).

27

28

IF the results of performing f have always been numerous and worthless,
THEN lower the expected worth of f

IF the results of performing f are only occasionally useful,
THEN consider creating new specializations of f by specializing some slots of f

IF a newly-synthesized concept has slots that coincide in value with those of an
already-existing concept,
THEN the new concept should be destroyed because it is redundant

Figure 18. Three heuristics capable of working on heuristics as well as math concepts

The second heuristic says that if some concept has been occasionally useful and frequently
worthless, then it's cost-effective to seek new, specialized versions of that concept, because some of
them might be much more frequently utile (albeit in narrower domains of relevance). Composition
of functions is such a math concept -- it led AM to some of its biggest successes and failures; this
heuristic added a task to AM'S agenda, which said "Find new specializations of Compose". When it
was eventually worked on, it resulted in the creation of new functions, such as "Composition of a
function with itself', "Composition resulting in a function whose domain and range are equal",
"Composition of two functions which were derived in the same way", etc. This second heuristic
also applied to heuristics, in fact it applied to itself. It itself is sometimes useful and sometimes not,
and so it truly does pay to ~eek new, specialized variations of that heuristic. Four of the many
specializations are: heuristics which demand that f has proven itself useful at least 3 times, that f be
specialized in an extreme way, that f have proven itself extraordinarily useful at least once, and that
the specializations still be capable of producing any of the successful past creations of f. EURISKO'S
full results in this case were:

2 heuristics that were more specialized and potentially more useful and more powerful
(including "... then specialize one of its criterial (not merely descriptive) slots".}

4 heuristics which looked more specialized but were exactly the same as the original one
(including "... and which has been used several times ... ,")

180 heuristics which were more restricted in applicability, yet performed actions identical to the
original when they were applicable (e.g., " ... and the concept represents a heuristic rule ... ".)

107 heuristics which were so specialized they would (essentially) never fire (e.g., " ... and the
concept is Set-Union". "and the concept is a set-theory function and a geography-function".)

5 heuristics which were simply wrong -- i.e., would cause much more harm than good if they
were used in guiding the program (including "if the results of applying f are never useful", "then
specialize a noncriterial slot" .)

The conclusion is that heuristics can operate on each other (and themselves) to synthesize new
heuristics, but the process is very explosive. and must he heavily constrained if it is to be
worthwhile pursuing. Ncar the end of section 3.3, we found it feasible to constrain the "choose the
next heuristic to apply" problem by using a few heuristics for guidance. A similar approach was
tried in the above case,. not by hand but by EURISKO itself:

Rather than hand-crafting some "meta-rules", we simplyre-ran EURISKO all over again. but keeping
the four synthesized heuristics to which EURISKO had given its highest Worth ratings. These are
shown in Figure 19. The first two arc special cases ,of H 18a (the first heuristic listed in Figure 18.
above). Each of them also claims to subsume I-U8a. thereby effectively turning it off for the
duration of the second run. Heuristic H19a suggests specia1izing only those slots of f which are
Criterial (defining rather than commentary). Thus. a terrible specialization such as used to arise by
altering only the EnglishSt4tement slot could no longer occur. Hl9h, the second heuristic in

Figure 19, is similar; it limits its recommendations to those slots which, viewed as units in their own
right, have high Worth values. Occasionally, both rules will support the same task, and that task
will jump to the top of the Agenda and be worked on almost immediately.

IF the results of performing f are only occasionally useful,
THEN consider creating new specializations of f by specializing some criterial slots of f

IF the results of performing f are only occasionally useful,
THEN consider creating new specializations of f by specializing some highly-rated
slots of f

IF modifying any "IF-"part of a heuristic H,
THEN don't replace "AND" by any other predicate.

IF a newly-synthesized concept has Cl' ~terial slots that coincide in value with those of
an already-existing concept,
THEN the new concept should be destroyed because it is redundant

Figure 19. Two "constrained generation" heuristics and an "implausible pruning" heuristic, which
together replace the second heuristic in Figure 18, yielding less explosive results.

The next heuristic, H19c, is a bit of compiled hindsight which, if only it had existed all along,
would have prevented one of the disastrous explosions of worthless concepts due to the synthesis of
a terrible heuristic. How did this rule get synthesized? EURISKO 'originally used H18a, sometimes
to good advantage, and decided to generalize it EURISKO chose, at random, the
IfPotentiallyRelevant slot as one to generalize. This had contained "IF the task is to specialize C,
and no slot to specialize has yet been chosen"; that is, this test was a conjunction with two
conjuncts. EURISKO generalized this by replacing "AND" by "TheFirstOf' -- i.e., by eliminating the
second conjunct Instead of placing tasks on the Agenda only when a particular slOt" hadn't been
decided. the new. specialized heuristic fired even when the selected slot was known! This resulted
in a continuous stream of new tasks. and eventually new concepts, being synthesized. Eventually,
another heuristic caught this, by noticing the sudden influx of uninvestigated, uninstantiated
concepts. It destroyed the mutant version of H18a, and added a few new heuristics, rules which
would have been capable of preventing such a mutant from ever being created. One of those
eventual1y got a high Worth rating, and it appears as the third one in Figure 19.

The final heuristic in Figure 19 needs little commentary; it is a specialization of the final heuristic
in Figure 18. but is much more useful, as the empirical results of rerunning EURISKO showed. With
the four heuristics from Figure 19 added to the intia1 state of the EURISKO system" the results
changed dramatically. For the particular case above, of HI8b applying to itself, they were:

2 heuristics' that were more specialized and potentially useful.
4 heuristics which looked more specialized but weren't.
9 heuristic which applied less often and did the same thing.

20 heuristics which were so specialized they would never fire.
4 heuristics which were simply wroJ)g and harmful.

The very good -- and the very dangerous -- heuristics were still generated 'and passed on for future
consideration: the intermediate ones. the ones which would appear foolish to a human on first
reading them, were almost completely suppressed. To eliminate al1 4 harmful specializations from
being considered, however, it was necessary to add (by hand) four new pruning heuristics.

29

30

Overall, the number of new heuristics synthesized was reduced by an order of magnitude. Five
hundred tasks were worked upon, during the first execution, but only 75 needed to be run during
the second. The time for these run were, respectively, 34 and 9 cpu minutes (on a DEC 20/60,
running Interlisp). The 256k of adctfess space was quickly exhausted, and it was necessary to
employ a means to swap units out onto dis~ (we used the RLL language) or a machine with a larger
virtual address space (we had access to a Xerox Dolphin).

When run for very long periods of time, EURISKO invents ways of entering infinite loops (e.g., a
mutant heuristic which manages to alter the situation so that it will soon be triggered again). Much
of our current work involves adding new capabilities to the program to detect and break out of such
infinite loops, and to compile its experiences into one or more heuristics which would have
prevented such situations from arising. It is not always easy to explain what is wrong with a certain
"bad product". For instance, one newly synthesized heuristic kept rising in Worth, and finally I
looked at it. It was doing no real work at all, but just before the credit/blame assignment phase, it
quickly cycled through all the new concepts, and when it found one with high Worth it put its own
name down as one of the creditors. Nothing is "wrong" with that policy, except that in the long
run it fails to lead to better results.

One additional factor which appears to have a dramatic effect upon the quality :md rapidity of
heuristic synthesis is the precise set of slots that are known to the system. This is the topic of
Sections 4.2, 4.3, and 4.4.

4.2 Attributes of a Heuristic

In AM, heuristics examine existing frame-like concepts, and lead to new and different concepts. To
have heuristics operate on and produce heuristics, EURISKO represents each heuristic as a full­
fledged frame-like concept. E.g., the first heuristic listed in Figure 18 needs to reset the value of
the Worth slot (attribute) of the concept f it operates on, hence even if f is a heuristic it must have
a Worth slot (else we cannot run H18a). Similarly, a heuristic that referred to such slots as Average­
running-time, Date-created, Is-a-kind-of, Number-of-instances, etc. could only operate upon units
(be they mathematical functions or heuristics) having such slots.

Figure 20 illustrates (some of the slots from) a heuristic from EURISKO. Notice its similarity to the
representation of a mathematical operation (Figure 5). The heuristic resembles the math function
(compare Figures 20 and 5) much more than the math function resembles the static math concept
(compare Figures 5 and 6).

Earlier, we defined a heuristic to bea contingent piece of guidance knowledge: In some situation,
here are some actions that may be especially fnIitful, and here are some that may be extremely
inappropriate. While some heuristics have pathological formats (e.g., algorithms which lack
contingency: delta function spikes which can be succintly represented as tables), most heuristics
seem to be naturally stated as rules having the format "IF conditions, THEN actions." As the body
of heuristics grows, the conditions faU into a few common categories (testing whether the rule is
potentially relevant. testing whethez th_e.re are enough available resources to expect the rule to work
successfully to completion, etc.) and so do the actions (add new tasks to the agenda, print
explanatory messages. define new concepts, etc.) Each of these categories is worth making into a
separate named attribute which heuristic rules can possess; Sections 4.3 and 4.4 will show tbe power
which can arise from drawing such distinctions. So instead of a heuristic baving an IF slot and a
THEN slot. it will have a bundle of slots which together comprise the conditions of applicability of
the heuristic, and another bundle of slots which comprise the actions. See Figure 20.

By a "slot" of a unit, we mean something closely related to the standard attribute/value pairing
provided by property lists in LISP. However, there is no requirement that the value for the slot
actually be stored explicitly: rather, we require that it be retrievable upon demand. Thus our
system, EURISKO. has a slot caned Compiled-Coded-lf-Then-Parts; no rule ever explicitly writes a
value on such a slot. but some rules (such as those which define a rule interpreter) access such slots
and EVAL them. \\'hen one is accessed. and found to be nonexistent, the unit called Compiled-

------- --------~-------

Coded-If-Then-Parts is accessed, and its Definition is found. That definition says to access the
Coded-If-Then-Parts slot, and then run the LISP compiler on that value. But suppose the Coded-If­
Then-Parts slot doesn't exist, either; so its definition is consulted. That results in the Coded-If-Part
and the Coded-Then-Part being accessed, and their values being put together into a Conditional
expression. The Coded-If-Part doesn't exist, and the Definition slot of the unit called Coded-If-Part
says to access -- and conjoin -- all the slots called If-Potentially-Relevant, If-Truly-Relevant, If­
Resources-Available, etc. This looking up of slots' definitions continues until the only slots called
for are ones which are primitive, which are actually stored on the property list of the unit.

One analogue of hardware caching is to store the virtual slots' values as they are computed; thus the
property list of Generalize-Rare-Predicate might eventually look like that shown in Figure 20, even
though very few of those slots had their values stored there explicitly. Should the If-Truly-Relevant
slot of Generalize-Rare-Predicate ever change, the system automatically updates the virtual slots
defined using If-Truly-Relevant (in EURISKO, this currently would include If-Relevant, If-Parts,
Coded-If-Parts, If-Then-Parts, Coded-If-Then-Parts, and Compiled-Coded-If-Then-Parts.)

These two features -- software caching of slots' values, plus the ability to have virtual slots defined
in terms of more primitive ones -- lead to the dynamic expansion of the vocabulary of legal slots.
Thl';'; the original EURISKO syst~m had heuristics with primitive Coded-If-Part and Coded-Then-Part
slots; these were later given definitions in terms of more primitive slots (such as Then-Define-New­
Concepts). Any existing rule, which had only the Coded-If-Part and Coded-Then-Part lumps of
code, still runs for all purposes. All rules which ask for either of those slots still run. But new rules
have the option of being specified in terms of more refined slots, and their Coded-If-Part and
Coded-Then-Part slots are assembled upon demand out of those smaller pieces.

All the previous attributes have been effective, executable conditions and actions. These are
paramount, since they serve to define the heuristic -- they are the criterial slots. Many non-effective
non-criterial slots are important as well, for describing the heuristic. Some of these relate the
heuristic to other heuristics (Generalizations, Specializations), classes of heuristics (I sa), and non­
heuristic concepts (View.) Several slots record its origins (Defined-using, Creation-date) and the
case studies of its uses so far (Examples).

Once a rich stock of slots is present for heuristics, several new ones can be derived from them by
choosing an n-ary relation R, and n slot names, and defining R(Sl,s2""Sn) as a new type of slot.

First, consider choosing just a single kind of slot (e.g., Examples), and ask some questions about it:
how docs it evolve over time in length? what relationships exist among entries that fill it? how
useful are those values?, etc. Each such question spawns a new kind of slot, e.g.,
AvgNumberOfExtremeExamples, RelnsAmongMy ExtremeExamples, A vg WorthOfExtremeExamples.
In EURISKO. these are thought of, and implemented, as full-fledged slots in their own right, not as
subparts of slots. In our program, the various IF- slots have not been relegated to second-class
citizenship beneath Coded-If-and-Then-Parts.

We now have an ad hoc way in which to generate new kinds of slots out of old ones. To
accomplish this in a principled way, one would draw a flowchart of the primitive slot functions (Get,
Put, Assert, etc.), and categorize -- for each kind of flow chart primitive -- what "questions" one can
ask about it. Thus, for a flowchart arrow that symbolizes a Write, one could ask about the old
value, the new value, the amount of time the old value was present, tl1e source of the new value,
etc. More complex slots (such as average length of entries written) could be defined from these
more elementary records. The above method focused on R(S), i.e. on slots defined by asking unary
questions about other slots, but the concept generalizes:

One can take a pair of slots (say ThenConjecture and If-Truly-Relevant) and a relation (such as
Implies) and define a new unary function on heuristics -- a new kind of slot that any heuristic can
have -- where HI would list H2 as an entry on that slot only if (in the present case) the
ThcnConjccture slot of HI Implies the IfrrulyRelevant slot of H2. A good name for this new slot
might be "CanTrigger", because it lists some heuristics which might trigger when HI is fired.

31

32

NAME: Generalize-rare-predicate
ABBREVIATION: GRP
STATEMENT

English: If a predicate is rarely true, Then create generalizations of it
IF-just-finished-a-task-dealing-with: a predicate P \ THESE 3 ATTRIBUTES COMPRISE

IF-about-to-work-on-task-dealing-with: an agenda A 1--- IF-POTENTIALLY-RELEVANT

IF-in-the-middle-of-a-task-dealing-with: *never* /
IF-truly-relevant: P returns True less than 5% of Average Predicate
IF -resources-available: at least 10 cpu seconds, at least 300 cells
THEN-add-task-to-agenda: Fill in entries for Generalizations slot of P
THEN-conjecture: P is less interesting than expected

Generalizations of P may be better than P
Specializations of P may be very bad

THEN-modify-slots: Reduce Worth of P by 10%
Reduce Worth of Specializatio~s{P) by 50%
Increase Worth of Generalizations(P) by 20%

THEN-print-to-user: English{GRP) with "a predicate" replaced by P
THEN-define-new-concepts:

CODED-IF-PART: h{P) ... (LISP function definition omitted here>

CO DED-THEN -PART: A{P) ... (LISP function definition orqitted here>

CO DED-IF-THEN -P ARTS: A(P) ... (LISP function definiti,on omitted here>

COMPILED-CODED-IF-THEN-PARTS: #30875
SPECIALIZATIONS: Generalize-rare-set-predicate

Boundary-Specializations: Enlarge-domain-of-predicate
GENERALIZATIONS:' Modify-predicate, Generalize-con~ept

Immediate-Generalizations: Generalize-rare-contingent-piece-of-knowledge
Siblings: Generalize-rare-heuristic

IS-A: Heuristic
EXAMPLES:

Good-Examples: Generalize Set-Equality into Same-L~ngth
Bad-Examples: Generalize Set-Equality into Same-First-Element

CONJECTURES: Special cases of this are more powerful than Generalizations
Good-Conjec-Units: Specialize, Generalize

AN ALOG IES: Weaken-overconstrained-problem
WORTH: 600
VIEW: Enlarge-structure
ORIGIN: Specialization of Modify-predicate via empirical induction

Defined-using: Specialize
Creation-date: 6/1/78 11:30

HISTORY:
NGoodExamples: 1
NGoodConjectures: 3
NGoodTasks-added: '2
AvgCpuTime: 9.4 seconds

NBadExamples: 1
NBadConjectures: 1
N Badl'asksAdded:
AvgListCells: 200

o

Figure 20. Frame-like representation for a heuristic rule from AM. The rule is composed of
nothing but attribute:value pairs.

If there are n slots, and m binary relations, then this technique generates a space of mn2 "cross­
term" type slots. Naturally most of them won't be very useful, but this provides a generator for a
large space of potentially worthwhile new slots. Some heuristics guide EURISKO in selecting
plausible ones to define, monitoring the utility of each selection, and obliterating any losers (slots
which, empirically, fail to facilitate the statement of or discovery of a highly-rated concept of any
type). An excerpt from EURISKO illustrating this process is given in Section 4.3.

Again, there is nothing magical about the number two, and one could pick an n-ary relation Rand
n slot names, and use them all to build a new slot, as mentioned in the first paragraph of this
subsection.

4.3 Discovering a New Heuristic

The heuristics present in AM and EURISKO create new concepts via specializing existing ones,
generalizing (either from existing ones or from newly-gathered data), and analogizing. These are
the three "directions" new heuristics will come from. We have exemplified Specialization already.
One point about Generalization is worth making: Heuristics which serve as plausible move
generators originate by generalizing from past successes; heuristics which prune away implausible
moves originate by generalizing from past failures. Since successes are much less common than
failures, it is not surprising that most heuristics in most heuristic search programs are of the pruning
variety. In fact, many authors define heuristic to mean nothing more than a pruning aid.

One of the typical "common sense number theory" heuristics which AM lacked was the one which
decides that the unique factorization theorem is probably more significant than Goldbach's
conjecture, because the first has to do with multiplication and division, while the latter deals with
addition and subtraction, and Primes is inherently tied up with the former operations. How could
such a heuristic be discovered automatically? This is the starting point for the example we now
begin, an exaalple which concludes in the following section, 4.4. What is the tie between these two
sections? That is, what in the world does discovering heuristics have to do with representation of
know ledge? The connection is much deeper than we originally suspected.

Consider just the special case where we restrict our representations to frame-like ones. The larger
the number of different kinds of slots that are known about, the fewer keystrokes are required to
type a given frame (concept, unit) in to the system. For instance, if NGoodConjecs weren't known,

. it might take 40 keystrokes rather than 1 to assert that there were 3 good conjectures known
involving prime numbers. Moreover, no special-purpose machinery to process such an assertion
would be known to the system.

This is akin to the power INTERUSP derives from the thickness of its manual, from. the huge
number of useful predefined functions. Merely thickening the LISP 1.5 manual by defining random
LISP functions wouldn't make it as useful as INTERLISP -- the latter comprises a profusion of
predefined predicates and functions that have proven themselves necessary and useful in many
applications over a long period of time. A large, appropriate vocabulary streamlines
communication.

Not only does a profusion of slot types facilitate entering a concept (assuming that the slots have
been defined only when needed). it makes it easier to modify a concept once it's entered. Finally, it
makes it easier to discover it in the first place; think of it. as combining terms in a more powerful,
higher levellangllage. (E.g.~ although random schema instantiation is a terrible way to· do automatic
programming. one gets qualitatively better results working in LISP (Lenat's PWl, in .[Green et al 74])
than in machine language [Friedberg 58].)

So we see thatthe task of discovering heuristics can be profoundly accelerated -- or retarded -- by
the choice of slots we make for our representation~ In the case of an excellent choice of slots, a
new heuristic would frequently be simply a new entry on one slot of some concept Let's see how

33

34

that can be.

Recall that primes were originally discovered by the AM system as extrema of, the function
"Divisors-of'. This was recorded by placing the entry "Divisors-of' in the slot called "Defined­
using" on the concept called "Primes" (see Figure 6). Later, conjectures involving Prim~s were
found, empirically-observed patterns connecting Primes with several other concepts, such as Times,
Divisors-of, Exponentiation, and Numbers-with-3-divisors. This is recorded on the
GoodConjecUnits slot of the Primes concept. Notice that all the entries on Primes' DefinedUsing
slot are also entries on its GoodConjecUnits slot. This recurred several times while runnin~
EURISKO, that is for several concepts besides Primes, and ultimately the heuristic H99 (below)
became relevant (its IF-part became satisfied):

H99: IF (for many units u) most of the entries on u.r are also entries on u.s,
THEN-ASSERT that r is a subslot1 of s (with justification H99)

This heuristic said that it would probably be productive to pretend that DefinedUsing was always a
subslot1 of GoodConjecUnits. Thus, as soon as you define a new concept X in terms of Y, you
shollld expect there to be some interesting conjectures between X and Y. This new expectation is a
new heuristic; in our 01<L cumbersome IF /THEN language we might express it by two rules saying:

(A) "IF a concept is created with a value in its DefinedUsing slot,
THEN place that value in its GoodConjecUnits slot, with justification H99."

(B) "IF Y is an entry· Oll the GoodConjecUnits slot of X, but no good conjecture between X and
Y is yet known, THEN propose a task for the agenda, to look for conjectures between X cpld Y."

The second of these, (B), bas nothing to do with DefinedUsing slots. In fact, it is really no more
powerful than a combination of (i) a very general rule that says to verify suspected members of any
given slot, and (ii) enough facts about GoodConjecUnits and Conjectures to know how to apply (i)'
to them. The first one, (A), is the "new heuristic" synthesized by H99. It needn't be represented
as shown above; rather, we can simply go to the concept called DefinedUsing (the data structure
which holds all the infonnation the program knows about that kind of slot in general), and record
that one of its Superslotsl is GoodConjecUnits. EURISKO also explicitly recorded H99 as the
justification for this entry - after all, it is just a heuristic, not a known fact (and, if it turns out
exceedingly well or ill, H99 should get the blame or credit). Figure 21 depicts what this record
looks like in our current implementation of EURISKO. The new heuristic is simply the line or two
emboldened below; all the non-bold text was present in the program already (though it h'ld been
written by the program itself at earlier times, not provided by human hands).

To reiterate: EURISKO has already' almost a thousand separate kinds of slots, most of which are
defined using other slots, all of which were useful at some time or times. As a result of this large
vocabulary of useful slot types, many entire heuristics can be recorded succintly as a single atom or
two placed in the right sl~ Heuristic (A) was added to the program merely by adding the atom
GoodConjecUnits to the slot called SuperSlots of the unit called Archetypical-"Defined-UsiQg"-slot.

It is important to make dear that the semantics of a value v appearing as an entry on slot s of
concept c does not neceSsarily mean that it is formally proven that v merits a position there; rather,
it is merely plausible. Anf entry v can have an explicit justification, but in lieu of any infonnation
to the contrary, the default justification is merely empirical. Thus, when an entry, say Palindromes,
is on the GoodConjecUnits slot of Primes, it may mean that some interesting conJectures have been

lOur usage of the term 'subslols drawn from subset, subgroup. etc.: namely. r is a subslot ofs iff (for all copcepts u)
any entry on u.r is also a valid mtry one could place on u.s. So Extreme-examples is a subslot of Examples, since any
extreme example of a concept as is also an example of u. Mother is a subslot of Parent. Subslot is a subslot of
Specializations. Another way to formulate this is to say that, for every concept u. the legal entries for its r slot are a
subset of the legal entries for its j slot. The inverse of the subs/or relation is called supers/ot. Unlike some uses of these
words, the fact that one slot is a 5uperslot of another has no bearing on how it is slored. retrieved, elc .. nor on whether
one is primitive and the 0IM virlual.

found between Primes and Palindromes, or just that it is suspected -- and expected -- that such
conjectures can be found if one spends the trouble looking for them.

How does the EURISKO program know what the justification of a slot is, if it isn't explicitly
recorded? It goes to the unit for the archetypical representative of that slot, looks up a slot called
Justification, and retrieves that value. In the case 'of the Defined-Using slot, there is almost never
any question. of uncertainty about its values -- the definition of one slot in terms of another has to
be spelled out in black and white. Therefore, as Figure 21 shows, the Justification slot for the unit
called Archetypical-"Defined-Using"-slot is filled with the entry "Formal". Things are not so clear­
cut for entries on most units' Worth slots, and therefore in the EURISKO system, on the Justification
slot of the Archetypical-"Worth"-slot unit, there is no entry. Rather, by inheritance from the very
high-level unit called Any-Slot, the justification for Worth values is determined to be "Empirical".

Thanks to the large number of useful specialized slots, thousands of heuristics which would be
bulky if stated as IF- THEN- rules can be compactly, conveniently, efficiently represented as simple
links -- as a single atom entered on the appropriate slot of the appropriate unit. Most of these
useful slots are very general (e.g., SuperSlots, Worth), but some are domain dependent (e.g:,
Predators, Toxicity). Thus, as new domains of knowledge emerge and evolve, ne\":' kinds of slots
must be devised if this powerful property is to be preserved. The next natural question is,
therefore, "How can useful new slots be found?" By way of answering those two questions, the
next section continues -- and concludes -- the example we've begun in this section.

NAME: Archetypical-"Defined-Using" -slot
SPECIALIZATIONS:

Su bSlots: Really-Defined-Using, Could-Have-Defined-Using
GENERALIZATIONS:

SuperSlots: Origin, GoodConjecUnits
Justification: H99

IS-A: Kind of slot
WORTH: 300
ORIGIN: Specialization of Origin

Defined-using: Specialize
Creation-date: 9/18/79 15:43

AVERAGE-SIZE: 1
FORMAT: Set
FILLED-WITH: Concepts
JUSTIFICATION: FOmlal
CACHE? Always-Cache
MAKES-SENSE-FOR: Concepts

Figure' 2l. Part of the concept containing centralizing knowledge about all DefinedUsing slots.

4.4. Heuristics used to extend existing representations

Each kind of representation makes some set of operations efficient. often at the expense of other
operations. Thus, an exploded-view diagram of a bicycle makes it easy to see which parts touch
each other, sequential verbal instructions make it easy to assemble the bicycle, an axiomatic
fonnulation makes it easy to prove properties about it. etc.

3S

-----._--------_._---------

36

As a field matures, its goals vary, its paradigm shifts, the questions to investigate change, the
heuristics and algorithms to bring to bear on those questions evolve. Therefore, the utility of a
given representation is bound to vary both from domain to domain and within a domain from time
to time, much as did that of a given corpus of heuristics. The representation of today must adapt
or give way to a new one -- or the field itself is likely to stagnate and be supplanted.

Where do these new representations come from? The most painless route is to merely select a new
one from the stock of existing representational schemes. Choosing an appropriate representation
means picking one which lets you quickly carry out the operations you're now going to carry out
most frequently.

In case there is no adequate existing representation, you may try to extend one, or devise a whole
new one (good luck!), or (most frequently) simply employ a set of known ones, whose union makes
all the common operations fast. Thus, when· I buy a bicycle, I expect both diagrams and printed
instructions to be provided. The carrying along of multiple representations simultaneously, and the
concommitant need to shift from one to another, has not been much studied -- or attempted -- in
AI to date, except in very tiny worlds (e.g., the Missionaries & Cannibals puzzle; graphics).

Th~~·e are several levels at which "new representations" can be found. At the lowest level, one may
say that AM changed its representation every time it defined a new domain concept or predicate,
thereby changing its vocabulary out of which new ones could be built. At the highest level would
be true open-ended exploration in "the space of all representations of knowledge". The latter may
someday be possible, but we currently lack adequate experience to fOffilulate the necessary
generation rules.

The example below lies inteffilediate between these two extremes: it shows how EURISKO discovers
new kinds of slots which can be used to advantage. For instance, when AM found the unique
factorization conjecture (UFf), it would have been helpful if AM had at that instant defined a new
kind of slot, Prime-Factors, that every Number could have possessed. A EURISKO rule capable of
this sort of second-level representatiori augmentation is the following one:

IF the average size of s slots is large,
THEN propose a new task: replace s by new specializations of s.

The vague teffils in the rule have specific computational interpretations, of course, in EURISKO; for
instance, "large" is coded as "more than twice the average size of all slots, and also larger than the
average number of slots a unit has". In one experiment, the various types of examples (extreme,
typical. boundary, etc.) were not given separate slots initially, but were unioned into huge Examples
slots. The above rule then caused the program to focus on defining new specializations of Examples;
recall that we term such specializations "subslots", though this does not mean that they are
implemented as pieces of their superslots; the old Examples slot still exists and has many entries,
even if everyone of those entries also exists on some subslot(s) of Examples. Note that the subslots
will not in general be disjoint. In a more domain-dependent usage, the above rule causes Factors to
be split up into PrimeFactors, OddFactors, LargeFactors, etc.

A slightly more advanced level at which "new representations" are synthesized by EURISKO is to
actually shift from one entire scheme to another -- potentially novel -- one. The following two rules
indicate when a certain type of shift is appropriate:

IF the problem is a geometric one,
THEN draw a diagram.

IF most units have most of their possible slots filled in,
THEN shift from property lists to record structures.

All the heuristics of this type are specializations of the general one which says IF some operation is
performed frequently, T'HEN shift to a representation in which it is very inexpensive to perform.

Let us continue our example. Here is a heuristic which is capable of reacting to a situation by
defining an entirely new slot, built up from old ones, a new slot which it expects will be useful:

HIOD: IF a slot s is very important, and all its values are units,
THEN-CREATE-NEW-KIND-OF-SLOT which contains "all the relations

among the values of my s slot"

When the number stored in the Worth slot of the GoodConjecUnits concept is large enough, the
system attends to the task of explicitly studying GoodConjecUnits. Several heuristi~s are relevant
and fire; among them is HIOO, the rule shown above. It then synthesizes a whole new unit, calling
it RelationsAmongEntriesOnMy"GoodConjecUnits"Slot. Every known way in which entries on the
GoodConjecUnits slot of a concept C relate to each other can be recorded on this new slot of C.
In practice, this slot typically had only a few entries, for most units: only relations which were
explicitly defined could be perceived and recorded therein (e.g., all the various types of slots), and
EURISKO is not designed to spend its time in undirected searching for entries for that slot.

How was the new slot used by the program? Take a look at the Primes concept (Figure 6). Its
GoodConjecUnits slot contains the followin:: entries: Times, Divisors-of, Exponentiation, Squaring,
and Numbers-with-three-divisors. The first two of these entries are inverses of each others; that is,
if you look over the Times unit, you will see a slot called Inverse which is filled with names of
concepts, including Times. Similarly, still looking over the TImes unit, one can see a slot called
Repcat which is filled with the entry Exponentiation, and one can see a slot called Compose filled
with Squaring. So Inverse and Repeat and Compose are some of the relations connecting entries on
the GoodConjecUnits slot of Primes, hence the program will record Inverse and Repeat and
Compose as three entries on the RelationsAmongEntriesOnMy"GoodConjecUnits"Slot slot of the
Primes concept.

Now it so happens that several concepts wind up with "Compose" and "Inverse" as entries on their
RelationsAmongEntriesOnMy"GoodConjecUnits"Slot slot. The alert reader may suspect that this is
no accident, and an alert program should suspect that, too. Indeed, the following heuristic says that
it might be useful to behave as if "Compose" and "Inverse" were always going to eventually appear
there:

HIOl: IF (for many units u) the s slot of u contains the same values Vi'

THEN-ADD-V ALUE Vi to the ExpectedEntries slot of the Typical-s-slot unit

This causes the program to add Compose and Inverse to the slot called ExpectedEntries of the
concept called RelationsAmongEntriesOnMy"GoodConjecUnits"Slot. This one small act, the
creation of a pair of links, is in effect creating a new heuristic which says:

IF a concept gets entries X and Y on its GoodConjecUnits slot,
THEN predict: it will get Inverse(X), Inverse(Y), and Compose(X,Y) there as well.

How is this actually used? Consider what occurs when the program defines a new concept, C,
which is DefinedUsing Divisors-of. As soon as that concept is formed, the heuristic link from
DefinedUsing to GoodConjecUnits automatically fills in Divisors-of as an entry on the
GoodConjecUnits slot of C. Next, the links just illustrated above come into action, and place
Inverse and Compose on the RclationsAmongEntriesOnMy"GoodConjccUnits"Slot slot of C. That
in turn causes the inverse of Divisors·of, namely Times, to be placed on the GoodConjecUnits slot
as well as the already-present entry, Divisors-of. Finally, that causes the program to go off looking
for conjectures between C· and either multiplication or division. When a conjecture comes in
connecting C to one of them, it will get· a higher a priori estimated worth than one which doesn't
connect to them.

If only we'd had the new heuristics back when Primes was first defined. they would have therefore
embodied enough "common scnse" to prefcr the Uniquc Factorization Theorem to Goldbach's
conjecture. If wc'd had them then, these hcuristics would have led us to our present state much

37

W=="",,,=rO;·;;;;;;=.;'";%',M!

38

sooner. Because of our assumptions about 'the continuity of the world, such heuristics are still
worth having and using -- we expect them to be useful from time to time in the future.

Notice that there's nothing special about mathematics -- the newly synthesized heuristics have to do
with very general slots, like DefinedUsing and GoodConjecUnits. For instance, as soon as a new
concept (say Middle-Class) is defined using the old slot Income, the program immediately fills in
the following underlined information:

NAME: Middle-Class
Defined-using: Income
RelationsAmongEntriesOnMy" GoodConJecUnits" Slot: Inverse, Compose
Good-Conjec-Units: Income, Spending, EarnedInterest

Figure 22. A non-math concept for which some predictions have been rec,)rded.

Thus, it goes off looking for (and will expect more from) conjectures between Middle-Class and any
of Income, Spending, and EarnedInterest. In one run of the EURISKO system, some such
conjectures were then found (including "MiddleClass spends all its income"), but we primed the
system with very caricatured data about Americans' incomes and spending habits. When we
removed heuristic HIOO, RelationsAmong ... slots never was defined, so 1-1101 didn't fire, so Income
and Spending weren't placed on the GoodConjecUnits slot of MiddleClass, and the preceding
conjecture was never found. So the new slot is useful, though it has a terrible name, and the new
little heuristics (which looked like little links or facts but were actually permission to make daring
guesses) wer~ powerful after all.

We have relied"heavily on our representation being very structured; in a very uniform one (say a
calculus of linear propositions, with the only operations being Assert and Match) it would be
difficult to obtain enough empirical data to easily modify that representation. This is akin to the
nature of discovering domain facts and heuristics: if the domain is too simple, it's harder to find
new knowledge and -- in particular -- new heuristics. Heuristics for propositional calculus are much
fewer and weaker than those available for guiding work in predicate calculus; they in tum pale
before the rich variety available for guiding theorem proving "the way mathematicians really do it".
This is an argument for attacking· seemingly-difficult problems which turn out to be lush with
structure, rather than working in artificial worlds so constrained that their simplicity has sterilized
them of heuristic structure.·

5. Conclusions

The field of Heuretics was proposed as a promising one for AI to investigate, one which may aid us
in understanding -- and constructing -- expert systems. We began by defining what it meant for
something to be a scientific discipline, and showing that Heuretics met these criteria.

Hcuretics asks "What is the source of power of heuristics?", to which our first-order reply is:
"Behave as though APPROPRIATENESS(action,situation) were time-invariant and continuous in both
variables." Heuristic sea~ch is adequate' for modeling worlds which arc observable (so heuristics can
be fonned), stable (so heuristics abstracted from past experiences will be useful in the future), and
continuous (so that if A was (in)appropriatc in S, then actions similar to A will be (in)appropriate in

situations similar to S). Corollaries of this provide the justification for the use of analogYt
generalization, and even for the utility of memory. The central assumption was seen to be just
that -- an assumption. It's often false in small ways, but nevertheless the central assumption has
proven itself to be a useful fiction to be guided by.

Using the metaphor of Appropriateness being a function, we considered graphing the power curves
of a heuristic (the utility of that heuristic as a function of task being worked on), and were able to
see the gains -- and dangers -- of specializing and generalizing heuristics to get new ones.
Consideration of such curves led us to an algorithm for deciding in which order to obey relevant
heuristics, and suggested several specific new attributes worth measuring and recording for each
heuristic (e.g., the sharpness with which it flips from useful to harmful, as one leaves its domain of
relevance).

By arranging all the world's heuristics (well, at least all of AM'S, and several more randomly-chosen
ones from chess, biology, and oil spills) into a hierarchy using the relation "More-General-Than",
we were surprised to find that hierarchy very shallow, thereby implying that analogy (a side-to-side
operation) would be more useful a method of generating new heuristics than would specialization or
generalization (up-and-down operations). By noting that both Utility and Task have several
dinjensions, most of this "shallow-tree" problem went away. By noting that two heuristics can have
many important relations connecting them, of which More-General-Than is just one example, the
shallowness problem turns into a powerful heuristic: if a new heuristic h is to differ from an old one
along some dimension (relation) r, then use analogy to get h if r's graph is shallow, and use
generalization/specialization if r's graph is deep. We also discussed some useful slots which
heuristics can have, and a principled method for generating new kinds of slots.

Heuretics asks "How do new heuristics originate?", to which we recursively reply: "By generalizing
other heuristics, abstracting from data, specializing other heuristics, finding analogies to other
heuristics and to processes whereby other heuristics were formed." EURISKO demonstrated that these
processes themselves can be guided adequately by a corpus of heuristics, that there is no need to
distinguish such "meta-heuristics" from "object-level heuristics", and -- surprisingly to us -~ that
analogy has more potential than generalization or specialization. In more detail:

AM demonstrated the adequacy of the heuristic search paradigm to guide a program in formulating
useful new concepts, gathering data about them, and noticing relationships connecting them.
However, as the body of domain-specific facts grew, the old set of heuristics became less and less
relevant, less and less capable of guiding the discovery process effectively. New heuristics must also
be discovered.

EURISKO was developed as the successor system, one whose field of expertise was not mathematics,
or diagnosis, but rather Heuretics. That is, EURISKO had a corpus of heuristics which, as they ran,
gathered data about their own running, and synthesized new members of that corpus (and modified
old ones). As expected, this process was very slow and explosive. By taking the four best (in
EURISKO'S jUdgment) synthesized heuristics, and rerunning the program from scratch, almost an
order of magnitude improvement in performance was obtained (a factor 7 in the number of tasks
executed, a factor of 8 in the number of losing heuristics synthesized, a factor of 4 in the cpu time
involved, and a factor of 9 in the storage cells used). The explosive process of synthesizing
heuristics was made feasible only by having "the right representation". EURISKO. like AM, used a
schematized representation, so the right representation meant having a large repertoire of very
useful kinds of slots.

We saw how. in EURISKO. heuristics led to the development of useful new kinds of slots, to
improved representations of knowledge. Note that the same representation AM used for attributes
and values of object-level math concepts was also used to represent heuristics and even to represent
representation. E.g., Primes (a set of numbers), GeneralizeRarePredicate (a heuristic),
GeneralizeRareHeuristic (a meta-heuristic), and DefinedUsing (a representation concept) are all
represented adequately as concepts (units with slots having values.) Since meta-heuristics are not
distinguished from heuristics, a singJe interpreter of necessity runs both types of rules, and is itself
represented as a col1ection of units (and dynamically rcdefinable). While meta-heuristics could be

39

40

tagged to distinguish them from heuristics, the utility of doing so rests on the existence of rules
which genuinely treat them differently somehow .. - and few such rules have to date been
encountered.

To advance the Heuretics research programme, much more must be known about analogy, and
more complete theories of heuristics and of representation must exist. Toward that goal we must
obtain more empirical results from programs trying to find useful new domain-specific heuristics
and representations.

Acknowledgements

Productive discussions with lohn Seely Brown, Bruce Buchanan, lohan deKleer, John Doyle, Mark
Stefik, and Mike Williams have heavily influenced this work. Danny Bobrow, Bruce Buchanan,
Bill Clancey, and Russ Greiner provided valuable critiques of earlier versions of this paper, which
have led to substantial changes in its organization and content. Section 2 presents lessons learned
from AM, for which I thank Bruce Buchanan, Ed Feigenbaum, Cordell Green, Don Knuth, and
Allen Newell. The data for Section 3.4's "shallowness" conclusion about the tree of heuristics was
gathered while I was at CMU. with the aid of Herb Simon and Woody Bledsoe. Much of Section 4
relies upon RLL, a self-describing and self-modifying representation language constructed by Russ
Greiner and the author. Finally, I wish to thank XEROX PARe and Stanford's HPP for providing
superb environments (intellectual. physical, and computational) in which to work. Financial support
was provided by ONR (N00014-80-C-0609), NSF (MCS 79-01954)) and XEROX.

References

Barr, Avron, and Edward A. Feigenbaum, eds., Handbook of Artificial Intelligence, Volume II,
William Kaufman, Los Altos, 1981.

Brown, John Seely, and Kurt VanLehn, "Repair Theory: A Generative Theory. of Bugs in
Procedural Skills," to appear in J. Cog. ScL, IV, 4, 1980.

Clancey, William J., "Dialogue Management for Rule-Based Tutorials," Proc. Sixth International
Joint Conference on Artificial Intelligence, Tokyo, 1979.

Davis, Randall, and Douglas Lenat, Knowledge Based Systems in Artificial Intelligence, McGraw­
Hill, 1981.

Feigenbaum, Edward A., "Knowledge Engineering: The Practical Side of Artificial Intelligence,"
HPP Memo, Stanford University, Stanford, Ca., 1980.

Friedberg, R. M., "A Learning Machine", IBM J. Res. and Dev., 2, 1, January, 1958. Part II
published in 3, 3, July, 1959.

Gaschnig, John, "Exactly How Good Are Heuristics?: Toward a Realistic Predictive Theory of Best­
First Search", Proc. Fifth International Joint Conference on Artificial Intelligence, Cambridge, 1977.

Green, Cordell, Richard Waldinger, David Barstow, Robert Eischiager, Douglas Lenat, Brian
McCune, David Shaw, and Louis Steinberg, Progress Report on Program Understanding Systems,
AIM-240, STAN-CS-74-444, AI Lab, Stanford, Ca., August, 1974.

Hayes-Roth, Frederick, Donald Waterman, and Douglas Lenat (cds.), Building Expert Systems,
proceedings of the 1980 San Diego workshop in expert systems, to appear 1981.

Lenat, DougJas B., "On Automated Scientific Theory Formation: A Case Study Using the AM
Program," in (Jean Hayes, Donald Michie, and L. I. Mikulich, cds.) Machine Intelligence 9, New
York: Halstead Press, a division of John Wiley & Sons, 1979, pp. 251-283.

Lenat, Douglas B., and Russel D. Greiner, "RLL: A Representation Language Language," Proc. of
the First Annual Meeting of the American Association for Artificial Intelligence (AAAI), Stanford,
August, 1980.

Minsky, Marvin, "Steps Toward Artificial Intelligence", in (Feigenbaum and Feldman, eds.)
Computers and Thought, McGraw-Hill, 1963.

Newell, Allen, and Herbert Simon, "Computer Science as Empirical Inquiry: Symbols and Search",
CACM, 19, 3, March, 1976.

Poincare', H., The Foundations of Science. The Science Press, New York, reprinted in 1929.

Polya, G., How to Solve It, Princeton University Press, 1945.

Pushkin, V. N., ed., Problems of Heuristics, Institut Psikhologii Akademii Pedagogicheskikh, Nauk,
USSR, English translation published by Keter Press. Jerusalem. 1972. Note esp. the articles by
Pospelov et al (pp 1-11) and Zavalishina (pp 132-142).

41

i
z ,
c ...
CD
o ...
~
CD
C ...
;;;'
ct,
n ...

.f
5' c
tQ.
III

r­
et

!

