
The Optical Mouse,
and an Architectural Methodology for
Smart Digital Sensors

by Richard F. Lyon

The Optical Mouse,
and an Architectural Methodology for Smart Digital Sensors

Richard F. Lyon

VLSI·81-1 AUGUST 1981

@ Xerox Corporation 1981

Abstract: The optical mouse is a pointing device for controlling the cursor on a personal

workstation display; the mouse is held in one hand and is moved around on a pad to move the

cursor on the display. Unlike earlier electro-mechanical mice, motion is detected optically by

watching the pad, so there are no internal moving parts. The key to the optical mouse is a sensor

chip that reports motion of visible spots relative to the chip coordinate system, using a combination

of new techniques. The first technique is a simple "mostly digital" circuit that produces digital

image snapshots (bitmaps) of features in a contrasting field, using self-timed circuit techniques and

mutually inhibiting sensors. The second technique is the tracking of features in bitmap images,

using an easy-to-track contrasting pattern, with a detector array and inhibition network matched to

that pattern. The current implementation of the optical mouse chip uses a four-by-four NMOS

photo-diode array, and tracks light spots hexagonally arrayed in a dark background.

The optical mouse project illustrates the power of making custom LSI design and implementation

capabilities, and simplified design methodologies, available to system designers. After a development

effort of less than two man-months, and a total elapsed time of six months from conception, the first

implementation of the 3mm by 4mm chip proved to be fully functional and compatible with existing

electro-mechanical mice used on personal computers.

A version of this report will be presented as an invited paper at the CMU Conference on VLSI

Systems and Computations, October 1981.

XEROX
PALO ALTO RESEARCH CENTER
3333"Coyotc Hill Uoad I Palo Alto I California 94304

Cable

Figure Ia . The Xerox Wheel Mouse

Figure I b. The Xerox Ball Mouse

Button

PC board

Mirror £
(Lamp R
behind)

Patterned Pad Surface

Switch o

Figure Ie. The Optical Mouse

The Optical Mouse,
and an Architectural Methodology for Sma:t Digital Sensors

1. Introduction

A mouse is a pointing device used with interactive display-oriented computer systems, which

tracks the movement of a user's hand as the user pushes the mouse about on a pad (usually on the

work surface next to the user's keyboard). Mice have recently become available in the office

products market as a part of the Xerox "Star," the 8010 Professional Workstation [Business 1981,

Seybold 1981-1, and Seybold 1981-2].

The work reported here is motivated by the desire for a high-reliability mouse with no moving

parts (excluding button switches if any). In Xerox research, the mouse has been in popular use for

over eight years, and has been found to be preferable to other pointing devices [Card et al. 1977].

However, it has not been outstandingly reliable; the balls or wheels can get dirty and slip on the

pad, rather than rolling, or the commutators can get dirty and skip. This is likely to be a significant

problem in maintaining workstations that use the mouse in an uncontrolled environment. Another

disadvantage of the electro-mechanical mouse is that it's expensive; the one-chip optical mouse is

cheap. And the special patterned pad that it needs to make it work is cheap, too, as it can be

printed for about a penny on an ordinary ink press.

The goal of a mouse with no moving part.'> has been achieved through the use of a combination

of innovations in electro-optics, circuits, geometric combinatorics, and algorithms, all implemented

in a single custom NMOS integrated circuit (patent pending).

2. Background on mouse implementations

Electro-mechanical mice were first developed in the 1960's at Stanford Research Institute, and

are described in [Newman & Sproull 1973, Englebart 1970, and Englebart & English 1968.

Englebart et al. 1967]. The original mouse used a pair of wheels turning potentiometer shafts to

encode X and Y motion into analog signals. Each wheel turns as the mouse is moved along its

respective dimension, and slips sideways as the mouse is moved in the orthogonal dimension; both

wheels turn and slip simultaneously as the mouse is moved diagonally. More recent mice are shown

in figure 1, and described below.

The mouse was redesigned at Xerox to use ball-bearings as wheels, and optical shaft encoders

to generate a two-bit quadrature signalling code (see figure 2). That is, the motion of a wheel

caused the two output bits for that dimension to form square waves in quadrature, with phase and

frequency determined by the direction and speed of travel; each bit transition represented motion of

one resolvable step, which was used to move the cursor one pixel on the screen [Hawley et al.

1975]. The mouse was again redesigned to use a ball instead of two wheels, eliminating the drag of

side-slipping wheels [Rider 1974, and Opocensky 1976]; it was built like a trackball [Koster 1967].

with shafts turning against the ball, and using commutators as shaft encoders (figure 1b).

XA

XB

YA

•••• •• •• • •
• • • • ··c·· • • • • • • • • • ... ••••••••• •• ••• •••• ••••• •••••• ••••••• •••• •• •• • • • •• •• •• •• •• ••

XA leading means Left. XB leading means Right

YB leading means Up. Y A leading means Down.
YB

Figure 2. Quadrature Encoding of Pointer Motion
on a Bitmap Display System.

The Optical Mouse, 2
and an Architectural Methodology for Smart Digital Sensors

The concept of an optical mouse, which "watches" the pad and tracks an image of it, is not

entirely new; however, until now the problem of extending the familiar one-dimension quadrature

encoding techniques to two dimensions has not been satisfactorily solved. A popular attempt has

been to use a "grid· tracking" conc\!pt to try to directly emulate the quadrature commutator scheme,

using a pair of optical detectors for each dimension. Unfortunately, there is no known easy way to

separate the optical images of the lines for the two dimensions, and to make the mouse work even

when rotated.

In the electro-mechanical mouse and our new spot-tracking optical mouse, motion is detected

relative to the mouse body axes, independent of mouse body rotation; they use "pads" with no

inherent coordinate systems. The grid-tracking idea would detect motion relative to the pad axes,

and degrade with mouse body rotation. It is not obvious which tracking style is preferable, but the

way the electro-mechanical mouse and optical mouse work now is certainly acceptable.

3. Overview of the imager and motion trackcr-a smart digital sensor

The mechanism described in this paper combines two novel concepts to make a one-chip

imaging and tracking system for an optical mouse. The imaging technique may have other

applications. as well (but does not compete with dense CCD analog imagers). The optical tracking

imager for the mouse application has been implemented in the form of an NMOS chip, which is

compatible with the Xerox mouse; it has been packaged in a standard mouse housing, and is in

routine use.

• The first concept is a simple "mostly digital" circuit that produces digital image (bitmap)

snapshots of bright features in a dark field, using self-timed circuit techniques and mutually

inhibiting light sensors (a variation on this technique, which detects dark features in a light field, is

also discussed).

• The second concept is a tracking algorithm, involving an easy-to-track contrasting pattern, a

detector array and inhibition network matched to the pattern, and the design of the digital machine

that takes images of that pattern as input and tracks relative image motion.

Both concepts apply equally well to either linear or two-dimensional sensor arrays.

There are other novel aspects of the mouse chip, such as the integration of sensors, memory,

and logic in a single array, using a standard MOS logic technology. The chip also illustrates several

interesting layout, circuit, and timing styles that are widely applicable.

Symbol:

Aluminum Metal Interconnect

Layout: I

Ij\
L __ _

l l'
- -- -~ --------- ____ -.oJ

Diffusion

Cross Section:

oxide

oxide
l' Electron

Junction '¥ Hole

P-type silicon substrate

Figure 3.
An NMOS Photo-Diode.

The Optical Mouse, 3
and an Architcctural Mcthodology for Smart Digital Scnsol'S

4. Architcctural mcthodology

The optical mouse chip was designed as an experimental application, in a new domain, of the

logic, timing, circuit, and layout design methodologies taught by [Mead & Conway 1980]. It was

designed with the goal of fab-line and process-parameter independence, so it utilizes only very

simple and conservative device models, design rules, circuits, and timing techniques. 'Those

methodologies have been informally extended into an architectural methodology for sensors, which

have to deal with real-world analog effects and convert them to stable and reliable digital fonn in

the face of wide parameter variations. An architectural methodology is a set of guidelines and

constraints that help a designer pick a system architecture, by showing how certain architectural

concepts can be implemented and made to work, with high certainty. An architectural methodology

for a different domain is discussed in [Lyon 1981].

The layers of design methodologies used to map a concept into a layout must be supported by

a compatible implementation system that will map that layout into working silicon. Such a system.

described in [Hon & Sequin 1980 and Conway el al. 1980], was used to carry out the

implementation of the Optical Mouse design as part of a multiproject chip set, on an outside vendor

fab line.

The benefits of this approach are clear in the resulting chip: design time was very short.

standard switch-level simulation could be used to verify the correctness of the circuits, the first

implementation worked, several orders of magnitude of light-level variation are tolerated, and the

techniques developed are very robust against process parameter variation, temperature variation, etc.

The idea of using lateral inhibition to make a digital imager was conceived in June 1980; the

rest of the techniques discussed here were developed while writing up the inhibition idea, in June

and July 1980. A chip design was done quickly in the latter part of July, and was debugged by

hand cross-checking of the layout against design sketches (thanks to C. P. Thacker, some bugs were

found and corrected). After the chip was into implementation, our tools for design rule checking,

circuit extraction, and simulation became more available, and the design was verified as correct

except for some non-fatal design rule violations.

Finished chips were delivered by the implementation system in December, and were quickly

tested on a crude test lash-up connected to the mouse port on a personal workstation. Later, with

the help of several interested colleagues, a completely packaged mouse prototype based on this chip

was completed.

The optical mouse chip should be regarded as only the first representative of a new

architectural methodology for smart digital sensors. It seems clear that there will be many more

applications of bits and pieces of this methodology to sensors of all sorts. For example, even in

something so simple as an analog-to-digital converter, great performance enhancements can be made

by using self-timed successive approximation logic to optimize speed while avoiding metastable

conditions.

Circuit Diagram (NMOS)

Reset

Photo-Diode

Logic Diagram

Reset ·1 light ~ Output
~etector ~

Output changes from low to high
at a rate proportional to light level.

Figure 4. Simple "Analog" Imager Cell

The Optical MOllse, 4

and an Architectural MCU10doiogy for Smart Digital Sensors

5. Digital imager description

Because it is easily available to us at Xerox, the NMOS integrated circuit technology was

chosen to implement the optical mouse chip; other technologies, such as PMOS, CMOS, or bipolar,

could be used as well. In NMOS, when light strikes the circuit side of a chip, the photons get

converted to hole-electron pairs with some reasonable quantum efficiency (see figure 3); the holes

are generally attracted to the negative-biased p-type silicon substrate, while the electrons are

attracted into n-type diffused source/drain regions and channel regions [Sequin & Tompsett 1975].

Thus, light is detected by collecting negative charge (electrons). If a node is isolated by a turned-off

transistor. it is said to be a "dynamic node". A dynamic nodc which has becn charged to a positive

voltage will "leak" to a lower voltage as light is received. An imager is simply an array of

subcircuits, with a dynamic node in each, which can watch the declining voltages and make a

sensibJc bitmap image from them.

The guts of each imager pixel (subcircuit or cell) is therefore a dynamic node, a transistor to

"reset" it high and then isolate it, and an "inverter" circuit to sense the voltage of the node and

communicate it out to other circuits. The output voltage from the inverters will start low when the

array is reset, then go toward high as the corresponding dynamic nodes go low due to light. Figure

4 shows a schematic diagram of this simple "analog" imager cell.

An array of analog imagers of this sort has a digital all-low output initially, then has an

interesting analog image for a while, but eventually ends up in the digital all-high state until it is

reset. Both of its digital states are uninteresting. What we would like is a way to get an interesting

digital bitmap image reliably. A way to do this is to impJcment a form of "inhibition" between

cells, so that after some cell outputs have gone high, all others are held low and the picture is stable

from then on. This is somewhat analogous to the lateral inhibition in the retina of most biological

vision systems [von Bekesy 1967]. It has the desirable effect of producing sensible images, almost

independent of light level. Such digital sensor arrays can be built in a self-timed loop of logic that

recognizes stable images, latches them, resets, and starts over, at a rate roughly proportional to the

light intensity.

The simplest imager with mutual inhibition is the two-pixel system shown in figure 5. Each

pixel circuit is essentially a NOR-gate, with one input of each being the light-sensitive dynamic

node, and the second input being the output of the other cell. The initial reset state is 00, with

outputs being pulled low by the NOR inputs that are connected to the initially high dynamic nodes.

The final state can be either 01 or 10, since 00 will decay with time and 11 is not possible as the

output of cross-coupled NOR gates.

The existence of a final state can be sensed by an OR gate whose logic threshold is higher than

the thresholds of the pixel NOR gates. Intermediate and metastable states will have both output

voltages near the NOR gate thresholds, but distinctly below the OR gate threshold. So this two­

pixel digital imager compares the light level at two points, and indicates when it has made a

decision (but there is no bound on how long it might take, even in bright light).

Circuit Diagram

Sensor-Node-l Sensor-Node-2

VDD

Logic Diagram

Reset

Pixel-Li ht-2

Sensor-N ode-1

* Low-Threshold-NOR gate
High-Threshold-OR gate

Figure 5_ Two-Pixel Digital Imager

t-l

The Optical Mouse, 5

and an Architectural Methodology for Smart Digital Sensors

More complicated logic can be used to detect stable images (Done) in larger sensor arrays with

more complicated inhibition NOR networks.

The concept illustrated by the two-clement imager is the use of additional transistors to convert

the image sensing inverters to cross-coupled NOR gates, as in a flip"flop. Any pairs of elements in

an imaging array may be chosen to be connected by these two-transistor mutual inhibition

subcircuits. For example, each pixel may be connected with its eight neighbors in a square grid,

resulting in nine-input NOR gates.

For any pattern of inhibition and any shape and size image array, the set of possible stable

images can be easily enumerated. For example, in a three-by-three array with neighbor inhibition,

the following eight images can be derived by inspection (notice that all 0 bits are inhibited from

changing to 1, by virtue of having a neighbor equal to 1):

0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1

Of course, in larger arrays the images are more interesting, and often more numerous.

In section 9, we will show that by using a four-by-four sensor array, with inhibition of cells up

to 2.9 or more pixels away, it is easy to formulate a simple and reliable tracking algorithm that

follows spots in a hexagonal array and represents their motion with a quadrature code.

6. Digital imager logic definition

In the mutually-inhibiting detector array, the cells race to see which can be the first within a

neighborhood to get enough light and inhibit the others. To formally define the logic of these cells,

including general done-detect capability, we use four logic variables in each cell: Sensor-Node,

Pixel-light, Spot-Detected, and Cell·Done. Start by resetting to the state Sensor-Node = 1, Pixel­

light = 0, Spot· Detected = 0, and Cell-Done = O. Then, with the following logic, wait until Cell­

Done = 1 in all the cells:

Sensor-Node discharges slowly from 1 to 0 as light hits.
Pixel-light = NOR (Sensor-Node, Pixel·light's from other cells in neighborhood
Spot-Detected = High-Threshold-Buffer (Pixel-light)
Cell-Done = OR (Spot-Detected, Spot-Detected's from other cells in neighborhood

The inhibition network is defined by choosing an inhibition neighborhood for each cell.

Generally, we choose neighborhoods symmetrically, such that if A inhibits B, then B inhibits A; we

say A "is coupled with" B, reflecting the cross-coupled NOR structure. In many cases, the

inhibition neighborhood of some cells will be all other cells in the array; Cell-Done signals from

such cells will be redundant, but may be implemented just for the convenience of layout regularity.

Typical Configuration:

Figure 6.

Linear Motion Detector
including generalized done-detect.

Vfrue

LFi= Sensor-Node-l

9
lFi= Sensor-Node-2

9
~ Sensor· N ode-3

9
Lfi"" Sensor-Node-4

9

t-

Pattern of
bright lines on a
dark background

~~1Xel-Li(!ht-l II

I
high-
threshold
buffers

t--~ _T'1-Li'ht-2~

I-~ -Tel' Lil'ht-3-G>at>

t-
ft,)-Pixel-Li!!ht-4-G>at>

'r Done

l-
~Readv

I l"
* low-threshold Timing NOR gate

Logic
Reset I I Phi-Short ...

t-

t--
-

t-_

t-

1/\ "

4-bit

1 Up
direction of motion
(of imaged lines relative to sensor cells)
Down

fI:::pell-Done-I

(Cell-Done-2 and
Cell-Done-3 are

~cell' Done-2 redundant here)

~Ccll-Do"~Jfo-
~Cell-Done-4

Snot-Detected-l
Snot-Detected-2
Snot-Detected-3
Snot-Detected-4

L...~ L-

r-

II

Phi-I.onll Register
~ t ..

D Moved-Down I 4-state Counter U -- Moved-Un

Count-A
Count-B -:

uadrature Si llin Q goa g

Output to User System

Old-Snot-l
Old-Snot-2
Old-Snot-3
Old-Snot-4

The Optical Mouse, 6

and an Architectural Methodology for Smart Digital Scn~rs

Note that we do not use the inhibition NOR gate output itself for done-detection, but a

buffered version of it after a high threshold buffer (inverter pair); this is the easiest way to prevent

false done-detection during a metastable condition [Seitz 1980]. The buflcred signal is not used for

inhibition, since that would make it participate in the metastable condition, and because the extra

delay would cause oscillatory metastable states.

7. One-dimensional tracking imagers

The simplest application that illustrates the digital imager/tracker is a linear motion sensor,

which is built from a row of imager cells looking at white stripes (approximately orthogonal to the

row of imager cells) on a dark background. It is possible to apply our digital imager idea directly

to the familiar quadrature detection scheme, by using four sensors in two interleaved coupled pairs;

Le., sensors A neD would have A coupled with C and B coupled with D. The possible stable

images that can result are these four:

o 0 1 1 o 1 1 0 1 1 0 0 100 1 (two-pair inhibition)

If the white and dark line widths are both equal to about twice the sensor spacing, these images

correspond in an obvious way to positions of the stripes relative to the sensors. Any two adjacent

sensor outputs, say A and n, can be used directly as quadrature output signals that sequence

through the states 00, 01, 11, 10, forward or backward, depending on the direction of motion. The

advantage over previous optical quadrature detectors is tllat no fixed threshold or specific light level

is needed. The sensors will cycle at a rate depending on the light level, and latched outputs will be

made available to the host system.

Another linear tracking scheme that is closer in spirit to our two-dimensional tracker uses

narrow white lines (about one-third white) and a different inhibition pattern. If four imager cells

are used, and we arrange to have each cell inhibit cells up to two steps away (say cells at distance

less than 2.5), then we get a set of three stable images, shown here:

100 1 o 1 0 0 0010 (radius 2.5 inhibition)

If the white line spacing (imaged onto the chip) is about three cell widths, then these images

correspond in an obvious way to positions of the bright lines relative to the cells (1 = bright); see

figure 6. The figure illustrates a simple digital machine (on the same chip) that would compare the

current image with the previous image (i.e., the machine has only three states) and output a signal

that says moved up or moved down. Thus we have a relative motion sensor for one dimension of

travel. A 2-bit counter is used to convert to the familiar quadrature signal representation which is

convenient for asynchronous sampling by the host system.

Inhibition Inhibition Stable Images Total
Ncighborhoods Radius and how many ofcach Images

1 .. ++1 I.+++! <1 I ! 1 1

liE] I!'i:i1 - I!:!:J 2 1C!l1 C!iJl 4

t::!:E ILEI 1.5 I!:!J 2 1C!l1 3

C!:J J:!::3 2.5 C!J2 1C!l1 3

C!:J I!::J 3.5 C!J2 1!::J2 4

Figure 7a. Inhibition neighborhoods and stable images for a four-by-one sensor array.

Black cells are "rcsponsive" (a dot is detected there).
White cells are "inhibited" and not responsive.
Cells with a + are not inhibited by the indicated responsive cell.

Inhibition Inhibition Stable Images
Neighborhoods Radius and how many of each

+++++ •• ++ •••• .a++ ++++ ++++ <1 ==:= 1 ++++ ++++ ++++
++++ ++++ ++++ ••••

+ ++ • ++ • + m ~ w ~ [S] • + ++ 1.1 2 • I 8 · · 8 .·.·8 .. 2 + ++ ++++ ++++
++++ ++++ ++++ • • • • • • • •

j." •• 12 r::;;] m ~ .. " 4 •• •• 4 · · 4
• I • •

~ • ++ • + l;:;] L;J ~ ~4 + 1.5 • .8 .. 8 D8 · 8 +++:
++++ •••• ++++ ++++ • • • • •

U D r:;) LJ [;] . 4 • 8 · 4 . 8 .. 4
• I • •

1-" •• 12 0 1 D Q · .4 . 8
• I •

I:J
• + • I·· .. 12 0 1 Dc:::] ++ + 2.1 8 · 8 + • •• ++++ ++++ • • • •

r:;) D8 r:J4 [::18 · 4 •

[~] :.:i 1+:.:1 2.3 c:J4 0 1 Dc:JL:JLJ s 4 4 · 4
• I

• • • •

c:J I:+JII.:..I 2.9 [:]4 L:J4 0 1 Qs c:J4 • •

[:] r . .:11.:..1 * 3.0s [:]4040 2 [:18LJSc:J4

[:]LJl:J 3.1 c:J4L:J402L:JSLJS
c:JQ[:J 3.2 c:J4 0 2 L:Js

c:JOLJ 3.7 [:]402LJ8

c:JDLJ 4.3 c:J4D4LJ8

Total
Images

1

42

79

43

2S

21

30

26

14

14

16

Figure 7b. Inhibition neighborhoods and stable images for a four-by-four sensor array.

* "3.0 special" was chosen for the optical mouse; its images are simply characterized
as either a central dot or a pair of dots on opposite edges but not sharing an edge.

The Optical Mouse, 7
and an Architectural Methodology for Smart Digital Sensors

Other spacings, inhibition patterns, numbers of cells, etc., can be applied easily to the linear

motion detector problem. The real challenge is to make it work in two dimensions, and to make it

tolerant of rotation (of the imager with respect to the pattern). After discussion of inhibition

patterns, we show how to extend the 4-element one"dimensional line-tracker to a 4· by-4-element

two-dimensional dot-tracker.

8. More about inhibition

First we need to understand patterns of inhibition. We can do this with pictures like those

above, but showing only a single 1 (in each possible position) and the set of elements that are

inhibited (forced to 0) by being coupled with it. Other elements remain unknown and are

designated + (at least one +, if any exists, must change to a 1 to make a stable image).

For the first one-dimensional tracker, the inhibition patterns are these:

1 + 0 + + 1 + 0 o + 1 + + 0 + 1 (two-'pair inhibition)

And for the second they are these:

1 00+ o 1 0 0 o 0 1 0 + 00 1 (radius 2.5 inhibition)

In many cases, we can specify inhibition neighborhoods as all cells within a certain radius, by

Euclidean distance in the plane, assuming unity cell spacing. We choose a radius such that no cells

fall at exactly that radius, to avoid ambiguity; hence radius 1.5 means cells at distance 1.414 in the

plane are inhibited, but cells at distance 2.0 are not. Some inhibition neighborhoods, however,

cannot be specified simply by a radius; two-pair inhibition is an example.

Figure 7 graphically tabulates a succcssion of inhibition ncighborhoods and the resulting stable

images, for four-element linear sensor arrays and four-by-four two-dimensional sensor arrays.

Square symmetry is assumed to reduce the complexity of the figure.

Notice that radius 2.9 is the smallest inhibition ncighborhood such that when comparing

images, no dot can appear to have moved to two different adjacent pixels. That is, this sequence

cannot occur:

old new
0 0 0 0 1 0 0 0 (moved up-left or down-right?)
0 1 0 0 0 0 0 0 (can't happen for radius> 2.83)
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

What appears to be most useful is the "3.0 special" pattern of inhibition, a cross between the

radius 2.9 and radius 3.1 patterns (radius 3.0, where points separatcd by exactly three pixels are

coupled only if they are corners). The stable images that can result from this inhibition pattern fall

into two classes: Either there is a single 1 in the central quad of pixels, or there are two 1's on

0 -:' D (.~ Q
r; I ,-..

I"" •

.~ cal I
f- H.. (. ,,--.. •

o
'-' H

(. IJ
f- • • •

C •
•

Figure 8.
Various positions of 4x4 imagers with respect to a hexagonal dot array,
showing ways to see all the possible stable images for radius 2.9 or more inhibition.

'The Optical Mouse. 8
and an Architectural Methodology ror Smart Digital Sensors

opposite edges (but not on adjacent corners). If the 1's represent white dots being imaged onto the

chip, any motion of the dots forming the image will either leave one or two dots within the field of

view, or one dot will leave the field of view and the other will stay. So there is always a dot to

track.

9. Image tracking using bitmaps

The general tracking concept is to use a hexagonal array of white dots (which just looks like

dots of constant spacing but no particular orientation when seen through a small window at an

arbitrary angle), and to pick a dot spacing such that bitmap images can be associated with the dot

array easily and movement can easily be detected by comparing successive snapshots. The white

dot spacing should be slightly more than the inhibition distance, as a general rule of thumb. For

example, using radius 2.9, "3.0 special", or 3.1 inhibition with a four-by-four sensor array. we

recommend a dot spacing of about 3.4 pixels, because that is about the average distance between

dots in the stable images with two dots. Then the dots in the stable images correspond in an

obvious way (see figure 8) to positions of one or more dots of the hexagonal dot array.

If we use radius 2.9 inhibition instead of "3.0 special" or 3.1, the "four-comers" image would

give us an interesting problem. Although the images of two and three dots are easy to integrate

into a set of images of dots in a hexagonal array, the image of four dots is not. Worse than that, it

is possible for a positioning of two dots near opposite corners to force the four-dot image to occur;

then it is impossible to tell in which pair of opposite corners the dots were really seen. This is why

the "3.0 special" pattern was developed--it eliminates the four-corner image and the images of three

dots, while still allowing all the images of two dots, some of which would have been eliminated by

going to radius 3.1. The images of three dots are not really missed, since seeing only two of the

three dots still guarantees that with movement at least one of the dots will remain in the field of

view, so the image can be tracked by looking at local dot motion.

Counting all rotations and mirrorings, there are 30 distinct stable images for the "3.0 special"

inhibition. Of the 900 combinations of two successive stable images, most have an obvious

interpretation in terms of movement of the white dots with respect to the imager; those that do not

have an obvious interpretation must be handled by the tracking algorithm, but will probably not

occur often.

A possible non-specific implementation of the tracking algorithm is simply a finite-state

machine which takes one stable image as input (possibly encoded in just a few bits), looks also at its

current state (state equals previous input, most likely), and outputs a signal indicating direction of

movement based on the state and input, and also outputs a new state. If the machine is built of a

simple PLA (programmed logic array) with no special encoding, the PLA can have as many as 32

inputs and 900 product terms, which would occupy most of a reasonable size NMOS chip. The size

could be reduced by first encoding the 30 images into 5 bits (PLA with 10 inputs instead of 32).

Figure 9. Imager and Logic tied together by Self-timed Clock Circuit,
. with timing waveform diagram .

....-----------.;;:-----1 Stable

Timing Interface

Done

Sensor-Node

Pixel-Light

Ready

Digital Bitmap
Imager

Ready

Reset

--l-'
I
'I

Image
Detect
Logic

Tracking Outputs
~ _____ • Logic &

Counters

Phi-Short

Phi-Long

~

I
.....

I

Done '" 'h
't

Stop

Phi-Long

Phi-Short

Reset

Watchmg
(Long Time)

)

'I
'" r
~ .I

't..

CyclIng
(Short Time)

-
'1.
)

The Optical Mouse, 9
and an Architectural Methodology for Smart Digital Sensprs

and by not decoding image pairs which are meaningless or which correspond to no motion (maybe

about 600 terms instead of 900); so it may fit in a quarter of a chip. We are still free to design the

tracking algorithm and specify PLA outputs required, and program the PLA accordingly (i.e. the

tracking problem may be regarded as a simple matter of programming). A more specific tracking

algorithm and a novel compact implementation of it will be described in section 11.

10. The self-timed action of the imaging/tracking system

Before going into tracking algorithms, we should indicate how the imager and the synchronous

finite-state machine get tied together by timing logic to make a self-timed machine, and how they

control the output logic that generates the two pairs of quadrature signals that the host computer

wants to see as an indication of mouse movement.

What is needed is a circuit which will generate two-phase nonoverlapping clock signals to run

the digital logic, such that each cycle is synchronized to the reset-done cycle of the imager. This

same clock runs an up-down counter controlled by the PLA for each of X and Y, to generate

quadrature signals which can be communicated off chip. So we have three things to design, the

particulars of which are not interesting in isolation: done and ready detectors, clock and reset signal

generation circuit, and up-down counter with quadrature outputs.

These parts are blocked out, along with logic· level and timing details of the clocking circuit, in

figure 9. Clocks are generated through a delay-independent (self-timed) handshake with the imager

array, and it is assumed that the digital logic is fast enough to keep up with the imager (this

assumption becomes a constraint for the designer to satisfy). The generated clocks are called Phi­

long and Phi-short, to indicate which one is of unbounded length; Phi-long should be used as a

quasi-static feedback enable to keep the logic alive and insensitive to light while waiting for the

imager. The steps of operation of the clock generator are in quick succession as follows:

Start in the initial sensing state, just after Reset ~ 0;
Ready = 1 (meaning all Pixel· Lights are 0),
Done = 0 (meaning not a stable image),
Phi-long = 1 (this is during the long, or waiting, clock phase),
Phi-short = 0 (because the other phase is 1),
Stop = 0 (because not Done yet).

After a little light is received, some Pixel-Light output starts toward 1; then:
Ready ~ 0 (at some irrelevant time before the picture is stable).

When enough light is received, one or more Spot· Detected's goes to 1, the picture becomes one of
the stable images, and this happens:

Cell-Done ~ 1 in all cells,
Done ~ 1,
Stop +- 1,
Phi·long +- 0,
Phi-short ~ 1,
Stop +- 0,
Reset +- 1,

New Image >
~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~ nagc 

• - .... ~ 
~, J T .". II- .! T ,I- - .! .... 

- • ~ .! J ? ., T - '-
., , 

' .. - -.. 
~, T • - ' .. J .! ~ 

/. - ~ .! - ,l' ~~ 

T ,I- -• J .. ' ~ ' . ..... II- '. ~ ..... lI- I 

--. J ..... J - J -- ~ T ? J ? J • 
J .. ' J ,l' J • -- ~ 

, 
J ? J ? l 

~ ' .. /- , 
II- II- • -.. ' .... .. .. .! ..... -

T ., - ? .! .10 - -... • .... / .. .. .... ...... -... .! ' . T T ,l' ..... • ~ ? ..... 
" " 

, 
,l' ..... II- - .10 ~ ' .. .. ' T • .! .... , , , 
.10 ... , ..... ? J .. .. .. ' ,l' • ? ? J II-

.! .10 
,l' T J ? .. .. ' . .', ? • J ? '-. -.... II- ". ? J ,l' .! 

, 
" ? J • ? 

, 
,I- ... .! - J ? .... .... , 

" J ? ? - • 
.... ... .! J - T ... .... 

" ~ - .... 
.10 • • 

x 
x 

X 

x 
x 

X 

X 

J - .! ? J , -.... • ? J X , , .. 

The legend of 
the tadpoles: 

Stayed: Moved Up: Moved Up-Right: 

8 [!] [j 
Impossible combinations: Jump: 

[!J 81 [2] 

Figure 10. 

X X 

X 

X x 
x x 

• 
• 

• 
• 

• 
• 

• 

-
• -. 

• 
• 

~ • )I 

.. • 
• 

- T T T ..... - " 
, J )I T J J ~ 

Straight half step: Diagonal Half Step: 

~=[!J 0= ~OR~ 
Opposing motions: Almost opposing motions: 

D = OJ OR[Z] 0=[Q 

The "900 little squares" approach to tracking bitmap images in the optical mouse chip. 

J 

-
,l' 

.! 
J 

" ... 
...... 

• 
? 

J 

X 

T 

" • 
II-, , , 
.... 
• , 
T 

J 

.. 
.10 

J 

J 

-. 
• 



The Optical Mouse, 
and an Architectural Methodology for Smart Digital Sensors 

Sensor-Node +- 1 in all cells, 
Pixel· Light +- 0 in all cells, 
Spot-Detected +- 0 in all cells, 
Done +- 0, 
Ready +- 1, 
Phi·short +- 0, 
Phi·long +- 1, 
Reset +- 0, 

And It is all back where it started, having gone through a cycle. 

10 

The good thing about this technique is that it doesn't care how slow the imager is; everything 

is willing to wait till there is a solid digital answer. Hopefully, the imager will receive enough light 

to cycle faster than once every few hundred microseconds on the average, so it will be able to get 

image samples often enough to track mouse motion of several thousand steps per second. 

The counters needed for X and Y simply count through four states, in either direction (up or 

down), changing only one bit at a time (i.e., 00, 01, 11, lO). This is a simple case of either a Gray­

code counter or a Johnson counter (Moebius counter). The PLA (tracker machine) outputs needed 

to control the counters are just Right-X, Left-X, Up-Y, and Down-Y. 

In the scheme actually implemented, the counters run through eight states, so that the tracking 

algorithm can report a finer gradation of motion (Up-Half-Y, etc.). Only four states, representing 

full steps, would be seen by the host system; the states mentioned above are simply augmented by 

an alternating "least significant bit", so the eight-state sequence is 000, O~, OlO, Oll, 1l0, lll, 100, 

101. 

11. Designing and implementing a tracking algorithm 

That brings us back to tracking algorithms. The simplest "algorithm-design" technique is to get 

a big piece of paper, draw the 30 stable images across the top and again down the left side, and 

make 900 little squares to fill in. For each combination of an old image from the left edge and a 

new image from the top edge, write in the square which way it looks like the dots moved, and by 

how much (half step or full step). 

Figure 10 is a partially filled-in table of moves, to illustrate the concept. One quickly develops 

simple algorithms to describe the reasoning about filling in the squares. But how do we write some 

simple rules to do this in a digital machine, without resorting to precomputing all the cases? To fit 

the capabilities of VLSI, we have come up with a distributed local algorithm which can be 

implemented right in the imager array. Each pixel saves its old value in a register, and on each 

cycle compares it with its new value and that of all its neighbors. Each pixel reports one of eleven 

results (my dot moved <to one of 8 neighbors), my dot stayed, my dot disappeared, or I didn't have 

a dot to track) to some decision logic. The decision logic then just has to see what gets reported, 

and filter out contradictions (a move and a stay can be converted to a half-step move). 



Example: 

Old fill 
Image L.!J 

This cell reports I Moved-Down 

Old 

New 

~ 
New D 
Image • 

~ 
Moved-Right 

Resultant: 
Half-Step Down-Right 

Moved-Up-Left 

Moved-Up 

Moved-Up-Right 

Moved-Left 

Staycd- Here 

Moved-Right 

Moved-Down-Left 

Moved-Down 

Moved-Down-Right 

Exactly q, 1, or 2 
of these IS true. 

Moved-Down 

Old New 

L This cell reports 
Moved-Right 

Tracker 

PLA 

(22 terms) 

X-Right 

X-Half X Counter 

X-Full (8 states) 

Y-Up 

Y-Half Y Counter 

Y-Full (8 states) 

Any-Good 

Jump 

Counter control 
and test signals 

X-A 

X-B 

X-L 

Y-A 

Y-B 

Y-L -

Figure 11. Tracking Spots by Comparing Images 

ToHos t 



The Optical Mouse, 11 

and an Architectural Methodology for Smart Digital Sensors 

The decision logic can also be partially distributed as a set of nine AND-OR-INVERT gates 

running through the array (one for. each of the eight move directions and one for the no-move 

cas(..'-disappearing dot and no dot to track are not reported). These gates report a low logic state if 

a pixel had a dot in the old picture, AND the appropriate neighbor has a dot in the new picture, 

OR any other pixel met a similar condition. A single 9-input conflict resolution PLA is needed 

outside the array to decode combinations of zero, one, or two reported move directions and to 

produce the counter control signals (see figure 11). Actually, of the 36 conceivable patterns of more 

than one indicated movement, only twelve are both possible and clearly meaningful (as half-steps); 

so the logic can be very simple (PLA with only 20 telms, for the eight possible full-steps and the 

eight possible half-steps, four of which occur two ways). Any other sequence, whether sensible or 

not, will produce no count commands. The eight-state up-down counters are also most easily 

designed as PLA's. 

The algorithm just described gives results which agree with the table of examples above (with 

appropriate conflict resolution logic programmed in the PLA to generate the half-steps). Question 

marks are interpreted as no move. 

12. The mouse chip layout 

A mouse chip has been designed in NMOS, as a direct one-chip substitution for the existing 

electro-mechanical mouse works (to go with a light and three button switches). For complete 

compatibility, the chip includes debounce electronics for the button switches. A floorplan of the 

chip is shown in figure 12. It is about 3.5mm by 4.5mm in a typical NMOS process (with 

lambda = 2.5 microns, or 5-micron lines). 

There is a single layout for a programmable sensor and logic cell, which can be customized for 

each position in the array to implement any inhibition pattern and the described tracking algorithm. 

The logic to detect a stable image is also partly programmable and distributed. The cell layout with 

programming for the top left position is shown in figure 13. A logic diagram with more details of 

the overall chip function is shown in figure 14. 

The layout style used in this first version of the chip treats a sensor cell with its logic and 

memory as a low-level cell, and constructs the array by selective programming of the cells in 

different positions. This approach costs large amounts of wiring area, since every cell has to have 

access to every other cell's Pix e 1 - L i 9 h t line. This area penalty was not regarded as a problem, 

until it was realized that it causes a related light sensitivity problem-about 90% of the photons get 

lost in the wires, far from the sensor nodes where they could do some good. To improve light 

sensitivity, and also to improve the magnification ratio needed in the optical path, we have switched 

to a new layout style, using a densely packed array of N + diffused areas as sensor nodes, with all 

logic in compact regular structures outside of it. A new chip based on this approach has been 

designed by M. P. Haeberli, and will be the subject of a future report 



if·'"·::·:·''·''·:·''' I : : : . ~~ : ... : : :1··:·"::::·:I.·:·~~~.:·:·r'''··:: I· ~~~ ... [ :·:·"·'·:'·:::1· .~~~~ . : : : : I·~:::·"":"«"'·ffi 

1.1.1.1. i~I~~!~i .... ~;;.e· .. :.:.:.::.: ... :.. . . . .. ... .. .. :;::.. .................. N..............::;:::~::~,c:" .. i.l. i.
1 

............... .... ............... . . .... ............... .. .. 

iEJ": JIvIP ;::::i~: :: : · . . ............ .. .. · • . ............. •• o. · . . ............ .. .. 
:: .: :::::::::::: :: Red :: · . . ............ .. . . 
. : . :::::::::::: :: Bu,g :: 

•. E)': AG \~i~~ .: Ii 
.,.~ . ............ . . 
. ' . ............ 1------4. 
• • • •••••••••••• ',' '0-
• • • •••••••••••• '0' '.' · . ',............ ',' '.' 
• • • •••••••••••• -w' ',' .' . ............ ',' ,,' 
: . . ~~~~~~ 

i'G'! X' :'::::!:~~:W---4----+---t------r----1 
: : .. -..: :::::::::::: 
:: : :::::::::::: Yel · . " ........... . 
:: : :::::::::::: Bug · ....... ..., ... ... .... . ............. . 
:1]':::::::::::: · . . ........... . . ' ............ . · . . ........... . · . . ........... . 
:: XL : :::::::::::::J, .. L-___ ---I ____ --L. ____ --L... ____ -.L..._--I-, .' ............. ~--· . . ............ '.' ',' · . . ............ ',' '.' o· "............ '.' '." o· . .••••••••••. '" '.' 
• • • •••••••••••• ',' 'e' 
o' • •••••••••••• '.' '.' 

· ................ MouseBottom '.' .. ' 

··0·· YB i'i~II!!i~ ·8: PhiL:1 .' . ............ .. .. · . . ............ .. .. 
: : .: :::::::::::: MouseTY\7ires ::. :: :: :m .:: , :: 
rG'~ ~"~~1F~~ Done' ~G'~"'" ~'l 
~! YL! !t.~~~~. X Y Tracker PLA Timin g ~ ~ PhiS ~ ~ 
· . ',............... ::. :: 
: : : ::::::::::::::: Count Count 0 Lo gic : : : : 
: .. : :"~~~~~~:: PLA DO~S 0 :::""" ::: .... .................. PLA PLA :"';'0 0 '.' .. ' 
:::: :::::::::::::::::: DO: .... : ::: ::: 
:::: :::::::::::::::::: 0000 ::: ::: 
:::: :::::::::::::::::: oDD .' '.' ::: 
•••• •••••••••••••••••• " '0° -.' 

i;i,:~::"i:J:::::::::::::::El:::::::::::::::::::I.::.: .~l~~~:~:·':·:·';"··:·:·I:::::;;n:~:.,,:~;;~J 
Figure 12. Floorplan of the Optic'al Mouse Chip 





Pixel-Light distribution wires (red) 

Figure 13 

StaY,ed 

Rig~t 

Down-Lef 

Down 
;':T: 

Sensor-Node ' 

The Layout of the Upper Left Optical Mouse Cell 



The Optical Mouse, 12 
and an Architectural Methodology for Smart Digital Sensors 

One other layout feature of note is the regular structure used for the "random" timing logic. It 

is essentially just like one plane of a PLA, except that it can also be programmed with contacts 

between the lines running orthogonally through it. With a bit of optimization, this becomes 

topologically identical to 12L-style gate-matrix layout. Look for more on this in a future report. 

13. Tracking dark spots, instead of light spots 

If we redefine the logic of the sensor cells, we can make an array that looks for a set of images 

of dark spots in a light field; this approach has some different and interesting properties. In the 

design previously described (light-spot detector), the cells race to see which can be the first within a 

neighborhood to get enough light and inhibit the others; in this new technique, the cells want to see 

which can be the last to get enough light-which requires quite a different logical approach. To 

define the logic of this new cell, we use five logic variables in each cell: Sensor-Node, Pixel-Light, 

Pixel-Dark, Spot-Detected, and Cell-Done. Start by resetting to the state Sensor-Node = 1, Pixel­

Light = 0, Pixel-Dark = 1, Spot-Detected = 0, and Cell-Done = o. Then, with the following logic, 

wait until Cell-Done = 1 in all the cells (Sensor-Node goes slowly from 1 to 0 as light hits): 

Pixel-Light = NOR ( Sensor-Node, Spot-Detected ) 
Pixel-Dark = Invert ( Pixel-Light ) 
Spot-Detected = NOR ( Pixel-Light, Pixel-Dark's from other cells in neighborhood ) 
Cell-Done = High-Threshold-OR ( Pixel-Light, Spot-Detected ) 

A simple three-pixel example, diagrammed in figure 15, will serve to clarify the properties of 

this kind of detector array_ Note that when all cells have received light, it is possible for the array 

to arrive at a stable state in which no dots were detected (Spot-Detected = 0, Pixel-Light = 1 in all 

cells). Any set of dots which is a subset of an image that would have been detected by the 

equivalent inhibition pattern in a light spot detector array is a possible stable image. 

Therefore, for the three-pixel neighbor-inhibiting dark spot sensors, we get these stable images: 

1 a 1 (1) 

1 a a (2) 

a 1 a (1) 

a a a (1) 

("complete" images) 

("subset" images) 

For four-by-four arrays, the additional stable "subset images" are illustrated in figure 16_ One 

result is that with the radius 2.9 inhibition pattern, seeing spots on opposite corners does not force 

the four-corners image, but is actually most likely to· give the correct two-corners image. A more 

general result is that the spot pattern to be tracked does not need to be so closely matched to the 

inhibition pattern, since the circuit is willing to wait for spots to really be there before it claims to 

see them; a pseudo-random distribution of dots would probably work quite well. 

With this technique, it would be possible to make a linear motion tracker with only three cells, 

each inhibiting all the others, with a dark line spacing of three cells or greater; similarly, a 2-D 



from other cells 
in neighborhood 

Photo-Diode 

Substrate 

sensor 
NOR 
gate 

* the transistor that discharges the 
dynamic node to ground is optional. 

Mouse-Cell 
Things inside the dashed line 
are contained within the cell. 

Done-Detect and Move-Detect 
NOR and AOI gates are distributed 
across the array, with their 
pullups outside the array. 

to 
(all) 
other 
cells 

Done Timing Logic 
Reset 

----------Z(pullup)/Z(pulldown) is i~dica~ed i; ;o;e-g:rte;. - - - - - - - -
Higher value (k) implies lower threshold. 
a metastable state on the k = 16 NOR gates should have 
an output value lower than the k = 4 inverter's threshold 

S ot-Detected 

ot 

Pixei-Li ht 

Some-Grou -Done' 
e.g. Top-Edge-Done' 
or Central-Quad-Done' 
Corner cells go to 
two done-detect 
NOR gates; others 
go to just one. 

The groups are 
arranged like this: 

[J [J 

[J a [J 
[J [J [J [J 

[J [J 

mult.iple A ND sections 
occur in other cells. 

Moved-Left' 

Nine of these AOI gates for 
the nine tracking directions. 

~--------~-------------------------------------------- ----The rest of the logiC looks like this: . . - , qU3S1-statiC 
input register 

Phi-Long Phi-Short Phi-Long Phi-Long This is what comes out: 

Tracker 
Conflict 
Resolution 
Logic 
(PLA) 

8-state 
Count 
Logic 
(pLA) 

XI--...,X""A:..-O=ut .... JLr 

XB-Out SU 

XL-Out 

All three outputs feed 
back like this one. 

And there is another counter for Y. 

------------------------------------------------------ ----~ 
Figure 14. 
Details of the Logic of the Prototype Optical Mouse Chip 



Sensor-Node-l 

Sensor-N ode-2 

Sensor-Node-3 

Reset 

Figure 15. Three-pixel Dark-spot Sensor Example, 
with nearest-neighbor inhibition. 

Stable Images are 101, 010, 100, DOl, 000. 

* low-threshold 
** high-threshold 

Spot-Detected-l 

Cell-Done-2 

Spot-Detected-2 

Spot-Detected-3 

Ready Done 



Inhibition Additional "Subset" Images Grand 
Radius seen by dark-spot sensor array Total 

2.1 [:]4 D4LJSD4[34 146 

D8D8D4D2~S 
L38~8~SCJ4L:J4 
. 8 . 4 [:;JGJ r .. 14 0 1 

2.3 [:]4 D4LJ8D4[34 72 

OSOSD4D201 
* 2.9 04u8DSDS 60 

D4D4D2 01 
3.0s 04LJSOl 43 

3.1 04LJSOl 39 

Figure 16. 
Additional patterns for the four-by-four dark-spot detector array. 

* Radius 2.9 may be best for the dark-spot detector scheme. 



The Optical Mouse, 13 

and an Architcctural Mcthodology for Smarl Digit,'l! Sensors 

trackcr might bc built with just a thrcc-by-thrce array of cells. For the linear tracker, thc image 

sequence for uniform motion could be cithcr the 100, 010. 001,000 cycle or the 100, 010, 001 cycle. 

These trackers would havc to assume that a dot disappearing from one edge and/or appearing on 

the other rcpresents a step of motion (or a half step, depending on what assumptions are made 

about the line spacing). 

14. Of mice and pens 

The optical mousc's compact internals will allow it to be repackaged into various other forms. 

For example, a pen-like dcvice with a big base that keeps it from falling over might be desirable. A 

"ball-point" tracking device that wat.ches a golfball-like pattcrn of dots on a rolling ball in the tip of 

a pen may also bc useful. 

15. Summary 

The optical mouse embodies several ideas that are not obvious extensions of standard digital or 

analog design practices, but which contribute to the design of robust sensors of the analog-to-digital 

sort. Using the concept of lateral inhibition, sensor cells that are trivial and useless alone become 

powerful in their synergism. A sensor array that forces itself into a useful and informative stable 

digital state is very easy to deal with, through standard digital techniques. It is especially useful if it 

can decide when it has reached such a stable state, and when it has been reset enough to be ready 

to start over, for then it can be regarded as self-timed, and clocks can be generated that cycle it 

quickly yet reliably. 

The optical mouse is just one simple example of an application of smart digital sensors, which 

happens to involve a few stages of logic to arrive at the answer in the desired format. Fortunately 

for this project, the NMOS technology that we know and love for logic is also well suited for 

sensing photons; so once the ideas and algorithms were firm, the chip design was relatively routine, 

and quick-turnaround implementation was avaWlble through the standard well-greased path. 

The interrelated inhibition neighborhoods, contrasting patterns, sets of stable images, and 

tracking strategies for the optical mouse application have been thoroughly discussed in the text, and 

do not seem amenable to summarization here. 





111e Optical Mouse. 14 
and an Architectural Methodology for Smart Digital Sensors 

16. Concluding remarks 

We have examined a family of smart digital sensors, specifically including motion-sensing 

imagers, which may find applications in places other than the mouse. Other applications of 

mutually-inhibiting and/or self-timed light detectors can be imagined, such as in character 

recognizers. edge detectors, light-controlled oscillators. etc. Other kinds of sensors can benefit from 

some of the same techniques. 

A complete optical mouse has been in use for many months. with only one minor problem: 

when one is forced to use a workstation with an electro-mechanical mouse after becoming 

accustomed to the optical mouse, the erratic performance is an annoying contrast 



AND-PLANE 

" 

'1\ , 1\ , 1\ \ , I" 

j ) > ;r L). L). !r i~ !r i~ 
t-- I-- I-- -

PHI-LONG INPUT LATCH I 

9 INPUTS: !~ 
MOVED UP-l,E 

MOVED UP 
MOVED UP-RIGHT 
MOVED LEFT 
STAYED HERE 

MOVEDRJGHT 
MOVED DOWN-LEFT 

MOVED DOWN 
MOVED DOWN-RIGHT 

OR-PLANE 

.... 

, 

.... 

, 

..... , 

.... 

.... , 

, 
.... 

, 

\ \ 'v \ 

L). 
t--

J 

22 TERMS: 
TERM DOW N HALF RIGHT HALF 

N I IALF LEFT HALF 

ALF RIGHT HALF 

ALF LEFT HALF 
N-RIGHT HALF 

TERM DOW 

TERMUPH 

TERMUPH 
TERM DOW 

TERM DOW 

TERM DOW 
N HALF 
N-LEFrHALF 

TERM RIGI-I T HALF 
TERM LEFT HALF 
TERM UP-RI GHTHALF 
TERMUPH ALF 

TERM UP-LE FTHALF 
TERM DOW N-RIGHT 

TERM DOW N 
TERM DOW N-LEFr 

TERMRIGH T 
TERMLEFr 
TERMUP-RI GHT 

TERM UP 
TERMUP-LE FT 
TERM STAY 

TERM JUMP 

8 OUTPUTS: 

X RIGHT 

X HALF 

X FULL 
YUP 

YHALF 

YFULL 

ANY GOO D 
JUMP 

CIRCLES INDICATE GATE INPUTS TO AND-GATES (TERMS) AND OR-GATES (OUfPUTS). 

LOGIC EQUATIONS CAN BE READ OFF BY INSPECTION. 

EXAMPLE AND-PLANE EQUATION: 

TERM DOWN HALF RIGHT HALF = (NOT MOVED UP-LEFT) 
AND (NOT MOVED UP) 
AND (NOT MOVED UP~RIGHn 
AND (NOT MOVED LEFr) 
AND (NOT STA YED HERE) 
AND ( MOVED RIGI-In 

Appendix A. 

AND (NOT MOVED DOWN-LEFn 
AND ( MOVED DOWN) 
AND (NOT MOVED DOWN-RIGI-In. 

EXAMPLE OR-PLANE EQUA nON: 

x RIGHT = (TERM DOWN HALF RIGHT HALF) 
OR (TERM UP HALF RIGHT HALF) 
OR (TERM DOWN-RIGHT HALF) 
OR (TERM RIGHT HALF) 
OR (TERM UP-RIGHT HALF) 
OR (TERM DOWN-RIGHn 
OR (TERM RIGHT) 
OR (TERM UP-RIGI-In. 

Symbolic Representation of the Tracker Conflict Resolution PLA. 



References 

[Business 1981] 

The Optical Mouse, 
and an Architectural Methodology for Smart Digital Sensors 

Business Week, "Will the boss go electronic, too?" pp 106-108, May 11, 1981. 

[Card et al. 1977] 

15 

S. K. Card, W. K. English, and B. Burr "Evaluation of mouse, rate-controlled isometric 
joystick. step keys, and text keys for text selection on a CRT", Xerox Palo Alto Research 
Center SSL-77-1, April,1977. 

[Conway et al. 1980] 
L. A. Conway, A. G. Bell, and M. E. Newell, "MPC79: The lArge-Scale Demonstration of a 
New Way to Create Systems in Silicon," Lambda-The Magazine of VLSI Design. pp. 10-19, 
Second Quarter, 1980. 

[Englebart 1970] 
D. C. Englebart, "X-Y position indicator for a display system", U. S. Patent 3,541,541. Nov. 17, 
1970. 

[Englebart & English 1968] 
D. C. Englebart and W. K. English, "A Research Center for Augmenting Human Intellect", 
FJCC 1968. Thompson Books, Washington Books, Washington, D. C., p. 395. 

[Englebart et al. 1967] 
D. C. Englebart, W. K. English, and M. L. Berman, "Display-selection techniques for text 
manipulation", IEEE Transactions on Human Factors. HFE-8, 1,5, 1967. 

[Hawley et al. 1975] 
J. S. Hawley, R. D. Bates, and C. P. Thacker, "Transducer for a display-oriented pointing 
device", ll. S. Patent 3,892,963. July 1, 1975. 

[Hon & Sequin 1980] 
R. W. Hon and C. H. Sequin, A Guide to LSI Implementation, Xerox PARC Technical Report 
SSL-79-7, Palo Alto, California, 1980. 

[Koster 1967] 
R. A. Koster, "Position control system employing pulse producing means indicative of 
magnitude and direction of movement", U. S. Patent 3,304,434. Feb. 14, 1967. 

[Lyon 1981] 
R. F. Lyon, "A Bit-Serial VLSI Architectural Methodology for Signal Processing", VLSI 81 
Very Large Scale Integration. (Conference Proceedings, Edinburgh, Scotland. John P. Gray, 
editor), Academic Press, August, 1981. 

[Mead & Conway, 1980] 
C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, 
Mass., 1980. 

[Newman & Sproull 1973] 
W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics, McGraw Hill, 
1973. 

[Opocensky 1976] 
W. J. Opocensky, "Cursor position device", U. S. Patent 3,987,685. Oct. 26, 1976. 



AND-PLANE 

... 

..., 

.-

... 

... 

... 
_ .... 
... 

..-

... 

... 

... 

..-

... 

... 

I' I' I' I' 
, 

) ( -
..J L;:' !f ..!J L;:' ..:~ I - l- I-

OR-PLANE 

1/ V V 

- --
I I 

TERM RIGHT 

TERM RIGHT 

TERM STAY 1 

BA 

FULL 11 

HALF 11 

1 
TERMLEFfH ALFll 

FULL 11 TERM LEFT 

TERM RIGHT FULL 10 

HALF 10 

o 
TERM RIGHT 

TERM STAY 1 

TERMLEFfH ALF10 

ULL10 TERMLEFfF 

TERM RIGHT 
TERM RIGHT 

TERM STAY 0 

FULL 01 

HALF 01 
1 

TERMLEFfH ALF01 

ULLOl TERMLEFfF 

TERM RIGHT FULL 00 

HALF 00 

00 

TERM RIGHT 

TERM STAY 

TERMLEFfH ALFOO 
ULLOO TERMLEFfF 

TERMXLO 

TERMXL1 

PAIRSOFOR-GATE OUTPUTS 
TOGETHER 
DED"PLA. 

ARE AND-ED 
IN THIS :'FOL 

PHI-SHORT INPUT LATCH J I OUTPUT LATCH PHI-LONG 

X RIGHT 
X HALF 

X FULL 

.. I 
STATE 

FEEDBACK 
,. XL .. -... XB 
,. XA .. -

~ 

I 
... 
... , 

0 UTPUTXB 

PUTXA OUT 

CIRCLES INDICATE GATE INPUTS TO AND-GATES (TERMS) AND OR-GATES (OUTPUTS). 

LOGIC EQUA nONS CAN BE READ OFF BY INSPECTION. 

EXAMPLE AND-PLANE EQUATION: 

TERM RIGHT FULL 11 = ( X RIGHT) 
AND !NOT X HALF) 
AND XFULL) 
AND XA) 
AND X B). 

Appendix B. 

EXAMPLE OR-PLANE EQUATION: 

XL = «TERMXL1) 
OR (TERM RIGHT HALF XX) 
OR ( TERM LEFf HALF XX) ) 

AND « TERM X LO) 
OR ( TERM RIGHT FULL XX) 
OR (TERM STAY XX) 
OR ( TERM LEFf FuLL XX) ). 

(OR-ING TERMS FOR ALL VALUES OF XX) 

Symbolic Representation of the Eight-State X Counter PLA. 



The Optical Mouse, 16 
and an Architectural Methodology for Smart Digital Sensors 

[Rider 1974] 
R. E. Rider, "Position indicator for a display system", U. S. Patent 3,835,464. Sept. 10, 1974. 

[Seitz 1980] 
C. L. Seitz, "Ideas about arbiters," Lambda-The Magazine of VLSI Design. pp. 10-14, First 
Quarter, 1980. 

[Sequin & Tompsett 1975] 
C. H. Sequin and M. F. Tompsett, Charge Transfer Devices, Academic Press Inc., New York, 
1975. 

[Seybold 1981-1] 
The Seybold Report, "Xerox's 'Star'." Vol. 10, No. 16. April 27, 1981. 

[Seybold 1981-2] 
The Seybold Report on Word Processing, "The Xerox Star-A 'Professional' Workstation." Vol. 
4, No.5. May, 1981. 

[von Bekesy 1967] 
G. von Bekesy, Sensory Inhibition, Princeton University Press, 1967. 





rr ... 
:II 
n 
':s • a. 
:n 
~ o 
::I 


