
Inter-Office Memorandum - DRAFf

To: Distribution

From: C. Irb~, T. Shetler, and C. Simonyi

Subject: Programming Conventions

Qt>M1l1feJ..s jecfreJO>\S
~1'ZlM. 1 (h;.

/'

Date: February 11, 1977

Organization: SDD/SD

Keywords: Programming Conventions, Policies, Procedures XEROX SDD ARCHIVES
I have read and understood

Pages To -----Filed on: tonimemo.bravo on Toni Pack One
Rev1ewer _________ Date ----# of Pages Ref' . 17$1)-3'7:;;

Attached is the draft of the Programming Conventions subsection (2.2) of the Software
Development Procedur~s section of the SOD Policies and Procedures document.

The concept of a Programmer's Notebook is introduced in the attached subsection and refers to
the collection of reference and training materials that every programmer in SD should have.
While this notebook is not intended to replace any existing or planned documentation, it is
considered a necessary repository for related memorandum, notes, etc. The outline and content
of this notebook is not discussed here because it is more appropriately addressed in the context
of training or reference materials for the staff than in a discussion of programming conventions,
though materials that are described as in the Programmer's Notebook will simply be attachmt!nts
that follow the subsection. The exception is the reference to good coding examples which are
still being sought. A "Programmer's Notebook" already exists whether it is in a formal format
or in a form each individual defines for himself. (Perhaps someone already has created such an
object for himself and with a few modifications, we could adopt it for SD?)

Please read, use, and prepare comments on these Programming Conventions. We would like to
have the first final form of this document available for general distribution by the end of
February. If you have any questions, please contact one of us. There will be a meeting during
the week of February 28th to review comments based on your trial use of these conventions.

Distribution:

B. Ayres
G. Benedict
L. Bergsteinsson
I. Clark
D. DeSantis
J. Francleen
E. Harslem
P. Heinrich

R. Johnsson
D. Liddle
M. Lorous
B. Malasky
W. Maybury
R. Metcalfe

B. Parsley
R. Purvy
W. Shultz

R. Sonderegger
D. Stottlemyre
R. Sweet
J. Sz~long
C. Thacker
T. Townsend
D. Wallace
J. Wick

2

2.0 SOFTWARE DEVELOPMENT PROCEDURES

2.1 Documentation Conventions

This section will be completed at another time with another set of text.

2.2 Programming Conventions

Introduction:

The purpose of these conventions is to support the software generation effort so the code
produced will:

o Facilitate the creation of the software components of the OIS products.

o Be portable among the technical staff.

o Be extensible and maintainable over the life of the product.

In addition, we expect these conventions to be easy to train new staff members to use.

The conventions presented are, for the most part, not a radical deviation from many
practices of our experienced staff, nor do they diverge dramatically from the literature on
accepted software engineering conventions and practices. Adherence to this set of
conventions is expected to have long-term gains in the development and on-going
maintenance of software that should offset any short-run setbacks that result from
modifying existing code, modifying work habits, or adjusting to different coding rules.

The three areas of programming conventions described are: format conventions, naming
conventions, and coding conventions. The concept of general and special conventions
underlies the description of these Programming Conventions. QflJ.f!.f!.L~Q!1Y.f!1UQ!1§' apply to
all the code generated and are explicitly defined in the description of each area. §Jzfflf!.l
~QIJ.Y.f!l£IQ!1§' apply to logical subsets of the software development effort -- for a specific
system, sllch as Pilot -- and the description of currently available special conventions will be
included in The Programmer's Notebook Templates are predefined form files which contain
the skeleton for program or data modules. The skeleton includes program delimiters such as
PROGRAM END, and it may also contain placeholder text which can be replaced by
actual names. Dictionaries contain both rules for generating names and definitions for
special technical terms or words with specialized meaning. Templates and dictionaries can
be enhanced by descriptions of spt!cific coding rules to which a project will adhere. Existing
templates, dictionarices, anti supplimental coding rules are contained jn The Programmer's
Notebook (see attachment A, -It and e for Diamond, Mesa Runtime,)l1'ld Tools conventions,
respecti vely).

3

Special conventions are not a way to subvert generai conventions. They are wel\ defined
rules to guide the programming activity and are implemented through the definition and
description of specific coding conventions. programming templates. and dictionaries, which
identify structures, naming rules, and definitions of technical or special terms that apply to
the software development effort. The staff on a particular project may create a set of special
conventions for the system they are working on if their needs cannot be met by using a set
(or subset) of existing special conventions. We expect new sets of special conventions to be
introduced infrequently. Special conventions must be approved and published for inclusion
in The Programmer's Notebook.

4

Since the reader is assumed to be familiar with the programming language documentation.

references to language characteristics are not included in this section. \ I\,.I'I""(~L)

({t,.~~~~ fjr b()\
Format Conventions I lQl~

The objective of formatting conventions is to facilitate read a e code. The

coll:en:::se;~t:tr ~~: t:o
c:::

a
::: i:r:RA VO ~e 6.0 or a fol ow-on editpr.· ~

c...v V S(.· \ ~o t'e. t'ktU-1.. c ~'l e :~U
o Each statement is a separate BRAVO paragraph. ls c! (S C v't"Af, c.J. ~ 1J> 'f.J.. rt:>f'.Q. "('U

rta4...ll~. tve /;11 t'9'/Irl!t, 10 • .11;11' ~~A
All ~ . . d . h;jf k . ~ c.... '(d"" ~wrfl.. I' (-tIl> o In entatioll IS one usmg t e 00 s nesting com man an preset margllls. LIS •

W\ ;i. "1 cA_ I~ II~ I WfAV'i"'" 'fir. ,.~ ('") e;:".~t;;.
o Comments: Comments appearing at the right of some conf-truct refer only to that '*.
construct. except for comments appearing to the right of a BEGIN which apply to the
block. Longer comments are in paragraph form and refer to the program text which
follows. (Do Not begin each line with "--" as this makes updating difficult.)

o Spacing:

1. A space should be placed after a comma, semicolon, or colon. but not
before.

2. No spaces should be placed around brackets or parentheses.
Exceptions to this are: a) there should be spaces between declaring words
such as RECORD. PROCEDURE, and RETURN and the adjacent brackets; and
b) there should be equal amounts of space next to matching brackets and
parentheses that are hard to spot.

3. Equal amounts of space should be placed on each side of ~ or any
binary operator that connects two lengthy expressions.

o I n(knta tiOll and Lille Breaktn~
Q PwvO ~~stIU>

1. Use i'tt.d"~ commands, not tabs.

2. Write no mo(c than one statement on a line, except where several

short statements are logically one.

temp ... x; x'" y; y ... temp;
WriteString[s]; WriteChar[CR]:

3. Indent the labels of a SELECT (including the ENDCASE) one level, and
the statements a second level (unless a statement will fit on the same line
with the label).

SELECT e FROM
easel => s;
case2 ::>

lengthy
statement;

case3 =>
BEGIN

END
ENDCASE

4. Indent one level for the statement following a THEN or ELSE (unless it
fits on the same line). Put TIIEN on the same line as IF, and indent ELSE
the same amount as IF. If the ELSE is followed by another IF, write both
on the same line.

IF condition THEN consequence ELSE alternative

IF condition THEN consequence
ELSE alternative

or

IF condition I THEN consequence

ELSE IF condition2 THEN alternative

ELSE
BEGIN

END ,~

V
5. Consider llsing a SELECT TRUErather than a string of ELSE IFs for
readability.

SELECT TRUE FROM
condition 1 =>

lengthy
consequence

condition2 =>
lengthy

alternative
ENDCASE =>

BEGIN

END

6. A compound should be either all on one line or one item per line. A

5

compound should be indented from the surrounding material.

BEGIN s; s; END

BEGIN
s;
s;
END

DO s; s; ENDLOOP

~ DO
s;
s;
ENDLOOP

7. A record declaration should be either all on one line or one
identifier list per line with the brackets on separate lines.

Bla: TYPE = RECORD[x: Dictionary, y, z: INTEGER];

Bla: TYPE = RECORD
[
x: Dictionary,
y, z: INTEGER
];

8. A procedure declaration should have the BEGIN and END on separate
lines. -- .-

SomeProc: PROCEDURE[x: Ta, y, z: Tb] RETURNS [Tc] =
- - T..fti-&-mtty-dt>-S&~t~P.: ,- I • .
BEGIN <:> r- ~vt~1'"toV\·. • . . J. ~)
END (ta.)l,I't1t \PrJ i If ba. aJo~H t /""

G o...bol,lT
9. If a procedure declaration will at fit o(one line move the
RETURNS clause to a second line indented one space). If either the
PROCEDURE [arglist] clause or the RETURNS [retlist] clause will
not fit on a single line, break it into one line for each member of the
arglist or retlist, respectively, with the enclosing brackes, []. on separate
Ii nes. + ':;::) 1'2,~ ~ i'ty(1\ v--'S f~" -.."" . • •

SomeProc: PROCEDUR E [x: Ta, y, z: Tb]

RETU~~61~TC] = ~Y-f~~ l~e$>'J, ·~';e v:s 10 ~;IJ 114e
END

The following illustration assumes the arglist will not fit on one
line or that the author wishes to comment the arguments.

SomeProc: PROCEDURE

[~ SomeProc: PROCEDURE [x: Ta, y, z: Tb]
RETURNS [Tc] =

BEGIN

6

ENDk
x: Ta,
y, z: Tb
]

RETURNS [Tc] =
BEGIN

END

10. A long statement should be broken into many lines by: a) rewriting it
as several statements, b) indenting the arguments of the main procedure
call or record constructor as one would indent the components of a long
record declaration, or c) breaking the statement into lines at reasonable
places and indenting the continuation lines one space in from the initial
line.

Example of a rewrite of several statements:
a ~ TheFirstProc[TheSecondProc[...]. TheThirdProc[...]];

temp2 ~ TheSecondProc[...]:
temp3 ~ TheThirdProc[...];
a ~ TheFirstProc[temp2, temp3];

Example of indenting the arguments of the main procedure call or
record constructor as one would indent the components of a long
record declaration:

a ~ TheFirstProc
[
TheSecond Proc[... J,
TheThirdProc[...]
]; .

~ample of breaking the statement into lines at reasonable places and
indent the continuation lines one space from the initial line:

a ~ TheFirstProc[TheSecondProc[...],
TheThirdProc[...]];

The special format conventions are: ---e.......

o There are no Standard Fonts. A project creating a system, such as PILOT, may
decide upon a standard font and should include this in the programming
documentation for the system.

.. ~ Use of specialized text features, other than the indentation command of BRAVO,
/1.:.hOlild be minimized (for example, forcing page boundaries).

Naming Conventions

The objective of naming conventions is to provide a meaning to the names in the code.

7

J

The general conventions are:

o Capital Letters: Type, procedure, label, module, and signal names start with a
capital letter, all else starts with a lower case letter.

o Compound names: Each component is captialized (e.g .• maxFilePage) in
compound names.

o Procedure with side effects (such as changes to the abstract state of its

8

object): The procedure name begins with a verb ,(except "is"~ "has"); \ [{'t~IN~
otherwise, verb/noun naming is preferred:"" bMoi- c+ r ~ L)~vCJ,. ~(iI.~~;)" J

. WO\"o\ . f'1 I L. .

~dictionary.Insert[WOrd] ~~«.....,: I~~#~
stream.Get[]
pooI.ObtainBufferWhichHas[virtualAddr] \ I .

----~As opposed to: A!J... lU ~Tt. .-:::r -- dictionary.IsEmpty[word]--use dictio\tary.6+eMWord[word]
.. dictionary.Has[word]--use dictionary.~Word[word]

dictionary.Meaning[word]--use dictionary.SetMeaning[word]
~ stream.CurrentPos[i]--use dictionary.SetPos[i]

o Abbreviations: If used, the standard prefixes are:

p* pointer to a *
i* index of something in a *
1* length of a *
n* number of *'s

] i"" INJI"' +

Any other special abbreviations appear in a section in a dictionary.
V'

o SignaiSand Errors: Precede an invocation of a signal or error by the word SIGNAL

or ERROR.

Special naming conventions may appear in a project dictionary and include:

o Additional rules for contructing names.

o Technical or special terms that are used for naming.

Coding Conventions

Except for the restrictions contained in the language manuals which reflect language
constraints, the coding rules to which we expect the projects to adhere can be found in books
or articles such as The Elements of Programming Style (Kernighan ~nd Plaguer), and the
redundancy of repeating those in this section is n9} necessary. -I-fls~fia;-eme-ftw~~k.
acceptable rcference(s) of programming wisdom~ be selected and made available+Ft otlr

Sa,e. ... e-h ... ~'U~p-me.nt-I~.n.lljrollm-ef1t. (A~tQF.tAis. ~l.-€.x.petime.nt, a.oop~ of l~[s:ed IIp.o.l+<.source
..shoLild-b~h "~t:f. member when he jQin5.-.the-fH=9ject.) Copies of good
illustrations of practices we would like to see (coding literature?) will be contained in The
Programmer's Notebook

9

APPENDIX A: MESA Formatting Rules for DIAMOND

"Rules of programming style, like those of English, are sometimes broken, even by the best writers. When a
rule is broken, however, you will usually find in the program some compensating merit, attained at the cost of
the violation. Unless you are certain of doing as well, you will probably do best to follow the rules."
(Kernighan/PlaguerIStrunk/White)

1. No special formatting (bold, fonts, etc.) except in comments !f there is a real need.

2. Tabs are used for indentation (standard tab width is 55pt). --€..-
3. Punctuation rules are similar to those in the Mesa manual:

a space (or carriage return) after a comma, semicolon, or colon and none before.
However in declarations, a colon may be followed by a tab (see below).

no spaces (immediately) inside brackets or parenthesis. Space should be left between
reserved words and [: RETURN [];

spaces should be written around binary operations at the outermost level, e.g. ~ in an
assignment statement, < in a conditional statement, + in a ~ a + 1; When embedded in
expressions, parameter lists and so on, it is recommended (but not required) that spaces
be omitted.
(as in n ~ IF (n~n+1)<nMac THEN n1 ELSE n2;)

spaces are not written around. and ..

4. In general, indentation sr.ould be used sparingly, only when dictated by ihe logical structure.
If a long identifier or expression pushes a delimiter beyond the correct level of ind~ntation,
that delimiter should be written on a new line. Indentation rules for statements are (almost)
according to the Mesa manual (p137). These rules are best summarized in the following
examples:

IF a < aMac THEN a ~ aNi!;

IF a < aMac THEN
BEGIN
a ~ aNit;
END

ELSE IF a < aMax THEN
BEGIN OPEN x;
a ~ aNit;
EXITS
End =) a ~ ttl;
NoMoreEntries =)

BEGIN
a ~ a2;
END;

END; -- OF OPEN x

FOR a IN [0, aMac)
DO
PrintA(a);
ENDLOOP;

SELECT a + da FROM

-- short statement

-- Label naming is explained below

10

~)
L aFirst => ; t.? IN [aFirstfree .. aLastfree] =>

a (- aNil·
~ ENDCASE; ,

5. Comments may appear to the right of some construct, preceded by a tab, and then they may
refer only to that construct. Longer comments appear on separate lines', without indentation,
referring to the program text which follows.

6. In other declarations, the type is preceded by a tab:

a: INTEGER = a1;
a, ta: INTEGER;
bmpicergcaLast: INTEG ER;

Records (and procedures, see below) are declared as follows:

B: TYPE:: MACHINE DEPENDENT RECORD
[a: A,
pa: Pa,
aLastfreemac: A
];

C: TYPE:: MACHINE DEPENDENT RECORD
[a: A ~ aNit,
VARIANT:
SELECT vr: VrC FROM
vrCl => [b: B,

d: D
],

vrC2 => NULL,
ENDCASE
];

Note that the variant part has the standard name VARIANT by convention. The naming of
the variants is explained below.

If the type includes indenting (procedure or record type), type should start strictly one level
, indented from the (possibly long) name:

LongProcedureName:
PROCEDURE

[a: A,
b: B,
c: C,
d: 0
];

7. Procedure declaration format is defined in the Module template. Note that in the common,
non-local, procedures, some of the outermost levels of indentation are omitted by convention,
so that the procedure bodies may start without any indentation.

Procedures with simple parameter lists Illay be declared in a single line:

PROCEDURE [a: A] RETURNS [A] ::

while more complex procedures should be declared in the same format as two records: one

11

containing the parameter list. and the other the returned values.

PROCEDURE
[a: A.
b: B.
c: C.
d: D
]

RETURNS
[A.
B.
C
] =

12

8. Pack and Module formats are described in the module templates. Emphasis to procedure
names in heading comments is given by expanding and capitalizing I NTH I S WAY.
Characters originally capitalized should be preceded by en extra blank:
X YIN I T. t (rr.tf4
9. Continuation lines are indented 'by~ blanks. For example:] USe s I~? e I'\."'"~

g a ~ a1 + a2 + a3 + wi +4 Q R
a4 + a5;

10. Variable and constant names start with a lower case lette;; type, procedure. label. mOdule.l-t.
and signal names start with a capital letter. Reserved words \even if reserved by convention)
are fully capitalized.

11. Variable and constant names consist of a type tag Rnd 0 or more modifiers. The type tag
may not contain capitals. The first letter of each of the modifiers (if any) is capitalized.
Some type tags are standards, others may be defined in the meta-programs. New type tags may
be constructed using standard constructors which are described below. Type tags are usually
defined to be very short (two or three letters) so·.that the lengths of constructed tags remain
manageable. <.' . . .

The type tag denotes the type of the variable or constant, of course. The name of the type is
just the type tag. Note that the first letters of type names are capitalized. For example, in:

cpMac: Cp

the "cp" is the tag, "Mac" is a modifier. "Cp" is the name of the type.

Modifiers are lIsed to distinguish variables in some scope (record, local. or global frame) which
have the same type. Single digits or numbers may be used as modifiers in some cases. Some
modifiers imply standard semantics, as described below. If there is just one value of a given
type in some scope, the modifier should be left empty; e.g.

write GetObject(nh: Nh) instead of GetObject(nhObject: Nh)

If constructed tags get too long and cumbersome, a new tag may be defined to stand for the
complex type.

Painting (particularizing) of types is done by the modifier. For example the nh of a pI is
written as: nhPl. This is not a type construction, therefore PI is capitalized. The type of nhPI
is N h. of course.

To express repented painting and modifying of quantities, the modifiers should be concatenated
in the order of construction (the earliest modifier first). Eg: hrFreeMin: an hr. painted Free;
then the hrFree modified by Min.

12. Standard types (and constants) are defined in StandardDefs:

F: TYPE = BOO LEA N; -- Flag
W: TYPE = CARDINAL; -- Unsigned word
INT: TYPE = INTEGER; -- Handy abbreviation, not a tag
VrF: TYPE = {vrTrue, vrFalse}; -- Used for certain variant fields
InNi\: TYPE = [0 .. 0); -- Domain for variable size arrays

-- Powers of 2, to be used in field definitions
w2toO: W = 1;
w2t01: W = 2;
w2t02: W = 4;

w2to15: W = 1000008;

13. The standard type constructions are the following: (X and Y denote arbitrary tags,
througout).

pX type is declared as: ORDERED POINTER rO X
Poil1tel ~. Let t be the indirection operation. pXt is then an X.

aX type is declared the same as X, with initial POINTER removed .
A structure pointed to by X. paX would be an X. Used for declaring larger records. a
in conjunction with mp or rg (see below) is used to declare arrays.

bX type is declared as: I NT '? ~
8ased X. There exists some pointer Y such that Y +bX is an X. Used, for example, to
name relative pointers to fields in records which have fields of varying sizes.

bXY type is declared as: INTf,t.= {(
Based X. Same as above, with the type of the base given. ?

cX type is declared as: W or INTE:. 4E~ (lCO •
Counts instances of X (not necessarily all instances). For example, cco could be a
counter counting colors which appear in a graph (assuming the type definition co =
{coRed, coGreen, coBlue}).

dX type is declared as: INTEGe.R... ~ b~Ce/Pft;e F17~­
First difference of X. X + dX is an X~

mpXY type is declared as _A Y InX OF Y
Array (map) with domain X and range Y. The domain InNil is specified if the array
is of variable size. mpXYt[X] is a Y. Note that ampXY is an ARRAY InX OF Y,
ampXY[X] is a Y.

InX type is declared as [O . .xMax)
This is a type construction only, for use in array declarations and loops. There need
not be any values of type InX. "In" stands for "index", "interval", and "IN" (as in
FOR ALL x IN InX DO). See below for XMax.

rgX short for mpiXX, array with domain iX and range X.

iX type is declared as: JNT£,",Ee
Domain of rgX. Not defined to be an interval, so that XNil, XMac, and XMax, all of
which are, strictly speaking, outside of the domain of rgX, can all be declared IX.
Same is true for other index types, that is for any tag X which appears in the domain
of a map mpXY.

IX type is declared as: INTE~ fiR
Length of an instance of X in words.

tX temporary X, the same type as X. A somewhat unelegant but efficacious device to
distinguish between parameters and local (temporary) variables in procedures, without

13

APPENDIX A. continued: DIAMOND Template

Pack: set of Mesa modules implementing an abstraction.
Reasons for more than one module/pack:

1. single module may be too small to hold all operations
2. the frequency of usage (and core residency) may be different for groups of
operations. In particular, initialization should, in most cases, be separated
from the frequently used operations.

A Pack implementing the Abstraction Xy would consist pf the following modules:

Xy.

Xy1

Xy2
Xylnit
XyTest
XyDefs

XyPriv

containing the declaration of the Xy structure and the most frequently
used operations
no declarations, more operations of the data structure. Reasons for
split from Xy. as above.·
2nd split, and so on.
initialization and binding code
test output and check procedure code (same format as xy1)
contains the type declarations and external interface definition
(externally lIsed operations in Xy, Xyl etc.)
private type declarations and internally lIsed operations in Xy, Xyl etc.

Module named XX would be stored in file xX.mesa. The command file to be executed
when xX.mesa is changed is xx.cm. Under current operational procedures, the
command files are created by the programmer at the same time as the corresponding
source file, and contain the following:

xy.cm
xyl.cm
xyinit.cm
xytesLcm
xydefs.cm
xypriv.cm

?
?
?
similar to xyl
?
?

Module templates follow .. The standard formatting for Mesa files is (single ~
paragraph/module):

Margins: L: 8Spt R: 580pt
Lead: X: Ipt Y: Opt
Tabs: Plain-tabs: 5Spt
Font: 0

p: ~O

Other formatting rules are described in mesa-rules.memo.

The suggested use of the template is as follows: start creating the pack by editing the
template. scrolling back and forth between definitions. declarations. initialization, and
code. For smaller packs. it may be worthwhile to save the pack as a whole on a .pack
file. When ready to compile. select a modul am ra h selection copy it into a
new window and write it on the correct .mesa file. rt er edits may be macle on the
saved .pack or .mesa file (but not interchangeably) a. it is convenient.

16

-- X Y

DIRECTORY
-- Pack Specific

XyDefs: FROM "xydefs",
XyPriv: FROM "xypriv",

-- Module Specific
StandardDefs: FROM "standarddefs";

DEFINITIONS FROM
-- Pack Specific

XyDefs,
XyPriv,

-- Module Specific
StandardDefs;

-- END OF DIRECTORY

Xy:
PROGRAM =
BEGIN

-- Pack Data Structure

ntn1: Nm;

-- Pack Operations

-- 0 P 0 N E

OpOne:
PUBLIC PROCEDURE [nm1: Nm, nm2: Nm] RETURNS [Nm] =
BEGIN
nm3:
Proc:

Nm;
PROCEDURE =
BEGIN
END; -- OF Proc

IF nml THEN
BEGIN
END;

END; -- OF OpOne

-- 0 P TWO

OpTwo:
...
EN D; -- OF OpTwo

-- Private Operations

-- 0 P T H R E E

17

18

OpThree:
PROCEDURE [nml: Nm, nm2: Nm] RETURNS [Nm] = J BEGIN

-:Y END; -- OF OpThree

END. -- OF Xy

-- X Y 1

DIRECTORY
-- Pack Specific

XyDefs:
XyPriv:
Xy:

FROM "xydefs",
FROM "xypriv",
FROM "xy",

-- Module Specific
Standard Defs:

DEFINITIONS FROM
-- Pack Specific

XyDefs,
XyPriv,

-- Module Specific
StandardDefs;

-- END OF DIRECTORY

Xyl:

FROM "standarddefs";

PROGRAM [xy: POINTER TO FRAME [Xy]] SHARING Xy ::
BEGIN OPEN xy;

-- Pack Operations

-- 0 P F 0 U R

OpFour:
...
END; -- OF OpFour

-- Private Operations

END. -- OF Xyl

19

-- X YIN I T

DIRECTORY
-- Pack Specific

XyDefs:
XyPriv:
Xy:
Xyl:
Xy2:
XyTest:

-- Module Specific

FROM "xydefs".
FROM "xypriv".
FROM "xy".
FROM "xyl",
FROM "xy2".
FROM "xytest",

Con trolDefs: FROM "controldefs".
FROM "standarddefs"; StandardDefs:

DEFINITIONS FROM
-- Pack Specific

XyDefs.
XyPriv.

-- Module Specific
Con trol Defs,
StalldardDefs;

-- END OF DIRECTORY

Xylnit:
PROGRAM [nm: Nm] SHARING Xy, Xyl, Xy2, XyTest =
BEGIN

SetBindingEntry: EXTERNAL PROCEDURE [frame, entry: GlobaIFrameHandle];

-- Private Operations

-- I NIT

Init:
PROCEDURE =
BEGIN

-- Local Declarations

nm:
yzlnit:
xy:
xyl:
xy2:
xytest:
xyInit:

Nm;
POINTER TO FRAME [Yzlnit]; -- "Owned" Module
POINTER TO FRAME [Xy];
POINTER TO FRAME [Xyl];
POINTER TO FRAME [Xy2];
POINTER TO FRAME [XyTest];
POINTER TO global FrameBase;

-- Remove Self From Binding Path

xylnit ~ REGISTER[Greg];
SetBi nd i ngEn try[xyl nit, xyJ ni t.bindlin k];

-- Initialize "Owned" Modules

20

yzlnit +- NEW Yzlnit[...];
BIND yzlnit; START yzlnit;

-- Instantiate Pack

xy +- NEW Xy[];
xyl +- NEW Xyl[xy];
xy2 +- NEW Xy2[xy];
xytest +- NEW XyTest[xy];
SetBi ndingEntry[xyl niLownerlink. xyl nit.bindentry];
BIND xy;
BIND xyl;
BIND xy2;
BIND xytest;

-- Initialize Pack Data Structure

BEGIN OPEN xy. xyl, xy2. xytest;

(initialization code)

---.. NO; -- OF OPEN xy

END; -- OF Init

Init[]:

END. -- OF XyInit

21

-- X Y D E F S

DIRECTORY
StandardDefs:

DEFINITIONS FROM
Standard Defs;

-- END OF DIRECTORY

XyDefs:
DEFINITIONS =
BEGIN

-- Abstractions

Nm: TYPE = INT;

nmNiI: Nm = -1;

-- Operations

FROM "standarddefs";

OpOne: PROCEDURE [nm1: Nm. nm2: Nm] RETURNS [Nm];

END. -- OF XyDefs

22

-- X Y P R I V

DIRECTORY
XyDefs:
Standard Defs:

DEFINITIONS FROM
XyDefs,
StandardDefs;

-- END OF DIRECTORY

XyPriv:
DEFINITIONS =
BEGIN

-- Abstractions

Nm: TYPE = INT;

-- Opemtions

FROM "xydefs",
FROM "stnndarddefs";

OpThree: PROCEDURE [nml: Nm, nm2: Nm] RETURNS [Nm];

END. -- OF XyPriv

23

-- S TAN DAR D D E F S

Standard Defs:
DEFINITIONS =
BEGIN

-- Abstractions

F:
W:
Ch:
Sm:
INT:
VrF:
InNiI:

w2toO:
w2tol:
w2to2:
w2to3:
w2to4:
w2to5:
w2to6;
w2to7:
w2to8:
w2to9:
w2tolO:
w2toll:
w2to12:
w2to13:
w2to14:
w2to15:

TYPE = BOOLEAN;
TYPE = UNSPECIFlEO;
TYPE = CHARACTER;
TYPE = STRING;
TYPE = INTEGER;
TYPE = {vrFalse, vrTrue};
TYPE = [0 .. 0);

W = IB;
W = 2B;
W = 4B;
W = lOB;
W = 20B;
W = 40B;
W = 100B;
W = 200B;
W = 400B;
W = 1000B;
W = 2000B;
W = 4000B;
W = 10000B;
W = 20000B;
W = 40000B;
W = 100000B;

END. -- OF StandardDefs

24

25

Appendix A. continued: DIAMOND Dictionary

To Be Supplied Next Week By C. Simonyi

RACK

see hz.spec, hzdefs.mesa

hz
ahf
hf
hff
hfn
hI'
h
hx
rghx
i-hx
nh
hzace
hzce

CACHES

heap global frame
block descriptor
pointer to ahf
pointer to free ahf
pointer to normal ahf
pointer to block
pointer to hI' = pointer to pointer to block
convertible finger
finger table
index into rghx
pointer to hx
hz-type ace
pointer to hzace

see ca.spec. cadefs.mesa

ca
nw
lu
ace
ce
rgce
ice
rgace

cache global frame
name of whatever is being cached
last used time
cache entry descriptor
cache entry, pointer to ace
cache entry array
index into rgce
descriptor array

OBJECT S~/APPING

see nsg.spec, n$gdefs.mesa

ns
sns
rgsns
isns
dw

name of swapable object
object segment
segment array
index into rgsns
segment chunk size

PAGE SWAPPING

see pbg.spec, pbgdefs.mesa

np
snp
rgsnp
isnp
f1
rgfl
ifl
fp
fpn
rVi
frw
pb
hrpb
hpb
pbgace
pbgce
fh
sh

name of page
page segment
segment array
index into rgsnp
file descriptor
array of f1
index into rgfl
file pointer
file page number
relative Vlord in page
relative word in file
page buffer = [array[256],np]
pointer to pb
pointer to pointer to pb
pbg-type ace
pointer to pbgace
file handle
stream handle

Appendix B: TOOLS Special Convention Setion

To Be Supplied Next Week By C. (rby

26

27

Appendix C: Mesa Runtime Special Convention Setion

To Be Supplied Next Week By C. Irby

