
liller-Office Memorandum 

To Wendell Shultz. David Liddl.e Date July 5. 1977 

From Charles Irby location Palo Alto 

Subject Final Draft of Programming Conventions Organization 
(hopefully) 

SDD/Sd 

XEROX XIROX SDD AROHIVES 
I have read and understood 

Pages _________ To __________ _ 

Filed on: <lrby>PC-Cover .. b~avo 
Reviewer Date ____ _ 

# of Pages' Ref .,ZZSAA - e:2 00 

Attached. please find the final draft (hopefully) of the Programming Conventions section. 
of tlte SDO Policies and Procedures. I apologize for the long delay -- 1 was forced to give 
highe~ priority to other activities. 

In the reviews of this set of conventions, several things came lip that are not properUy part 
of the conventions section but do require management attention. They are: 

o The Mesa Source Formatter should be developed as soon as possible. Much 
of the effect of these conventions will not be realized until the formatter 
exists. Many bad habits and much improperly formatted code may result if 
the formatter is delayed. (I regret having introduced an additional delay by 
failing to publish these conventions sooner.) 

o An improved version of Bravo is being developed. However, maintenance of 
this central tool is still uncertain, I recommend that the Tools Group 
accept maintenance responsibility ror Bravo 7.0 for SDO (and no one 
else!). Also, a program should be developed that will print Bravo files of 
thc stylized form we will be using directly from Maxc, the Alto exec, or the 
Program Librarian. This program should be released along with the Source 
Formatter. Again. 1 recommend that the Tools Group undertake this 
development. 

o Individual software projects arc being allowed the priviledge of specifying 
their own naming conventions and othcr specialized cOllventions. In return. 
each such project should publish the naming and other special conventions 
it is using -- and keep this liP to date. Both the Diamond and Tools 
Groups havc published slIch conventions. SOD Cv1anagcmenl will h:lve to 
see to it that this is done with all projects. It has been suggested {hat either 
the Source Formatter or another program check the naming lIsed within 
programs against the associated naming dictionary for the project. I think 
this warrents investigation. 

o To give the Source Formatter the ability to treat COllllllents ~lIld blank lin~s 
rcason:tbly. it may be necessary to add a unique right COmI1H.'nt ddimiter to 
Mcs<l. This need will become morc npparcnl when detailed work Oil the 
formatter is underw~y. This. of necessity. is 3 pure addition to the Mesa 
language. 

o A separate "Guidelines for Producing Efficient DO/Mesa Cede" document 
should be pubiished by the Mes:. Group. ;\f; new perform~lI1ce parameters 



Finul Draft ~f Programming Conventions (hopefully) 2 

are discovered or old ones changed. the document should be updated and 
re-distributed to. our progmmmers. I do not mean to imply that our 
programmers should sidestep Mesu and super-optimize their code. 
Ho~ever, ir we know that, for exam pit!. passing more than N words. of . 
parameters to procedures causes significantly slower procedure calls. we 
may be able to structure interfaces to avoid this perrormance problem. 

o Management should seek out "good" coding examples and distribute them to 
the programmers. In particular. examples showing good use of Mesa types 
and signals would be very helpful and would contribute to the long-term 
maintenance of our software. 

o An option to the cross reference program that reports possible signals that 
can result from calling a procedure should be developed. 

c:.;·SD Managers, S. Wallace, 1. Wick. D.' Sweet, R. Ayers, T. Shetler 



2.0 SOFTWAIU<: DEVELOPMENT PROCEDURJ':S 

2.2 ))rogramming Conventions 

2.2.1 Introduction 

The purpose of these conventions is to support the software generation effort so t~e 
code produced will: 

o Facilitate the creation of the software components of the OIS products: 

o Be portable among the technical staff. . 

o Be extensible and maintainable ,over the life of the product 

In addition. a program (described below) will.be provided to automatically format source 
fiI.es according to .these conventions. Consequently. we expect these conventions to be easy 
to train new staff members to use. 

The conventions presented are, for the most part. not a radical deviation from many 
practices of our experienced staff, nor do they diverge dramatically from the literature on 
accepted software engineering conventions and practices. Adherence to this set of 
conventions is expected to ,have long-term gains in the development and on-going 
maintenance of software that shOlild offset any short-run setbacks that result from 
modifying existing code. modifying work habits. or adjusting to different coding rules: 

The' three areas of programming conventions described are: formatting conventions, 
naming conventions, and coding conventions. The concept of general and special 
conventions underlies the description of these Programming Conventions. Q~!!f.!:.gl 

~Q!1f~!1aQ!1~ apply to all the code generated and are explicitly defined in the description of 
each area below. ~llgfl!!.Lr!w!'~!!aQ!1~ are in addition to the General Conventions and 
apply to logical subsel<; of the software development effort -- for a specific project, Stich as 
Pilot. Each project must publish any special conventions it uses. Sp~cial Conventions 
should include templates and dictionaries. Template~ me predefined form files which 
contain the skeleton for program or data modules. The skekion includes program 
delimiters such as PROGRAtvf .... END, and it may also contain placeholder text which can' 
be replaced by actual names. Dictionaric'\ contain both rutes for generating name~ and 
definitions for special technical terms. 

Since the rcndt!r is assumed to be familiar with the proeramming language doculHentation, 
references to language characteristics are not included in this section. 



2.2.2 Formatting Conve-ntions 

The objective of fOfll'!atting conventions is to facilitate readable code. Format conventions 
adherence is achieved through the use of a program called the Mesa Source Formatter (see 
below). This program creates a new source file in the correct format. 

The Mesa Source Formatter 

The Mesa Source Formatter will be used to establish uniformity of Mesa programs with 
minimal programmer inconvenience. The following goals should be met: 

Standardize fonts to ·ensure reasonable consistency when the program is viewed, 
printed, and edited. 

Establish the horizontal and vertical spacing of ttie program in a way which reflects 
,~. its logical structure. 

The Mesa Source Formatter converts its input source file into a source file that conforms 
to the SOD Standard. It may be automatically called by the Program Librarian when a 
source file in checked in. It will utilize the parser from the Mesa compiler, to ensure 
completeness and correctness. 

Fonts and Formatting 

The formatter produces a Bravo-compatible file as its output. It utilizes only a subset of 
Bravo format which is described in detail below. However. some general comments should 
be made here. 

Horizontal spacing is done by setting the left margin. The formatter adjusts the 
paragraphing so that a series of statements at the same level form a single paragraph. At 
most two fonts are lIsed (regular and small); identifiers containing all capital letters 
(notably Mesa keywords) appear in the smaller font. The names of procedures are bold 
where they arc defined. 

Comments are set to italics. to help distinguish them from program text. Multiple blank 
lines before or after comments are replaced by a single blank line. 

Standard User.em 

Because disk space is at a premiuol (for one-disk users) and because of Bravo operational 
difficulties. the User.Cm on the Basic Mesa Disk will be set lip with jw;t one Alto font and 
two (optional) ,Ears fonts. To maximize the content of a page, fonls slightly smaller lhan 
standard are used. The standard Mesa fonts are as follows: 

FontO Helvetica 8 MesaFont 10 
Fontl Helvetica 6 MesaFont 10 

MesaFont is a copy of Jlclvetical0.AI but with eight point capital kners. Thi5 allows the 
progralll to be typed in and edited u5ilig a single font; it will slill resemble its eventual two 
font forlll. An eight point version of lhis font will also be proeluceo so that look hardcopy 

, will work. 

2 



The use of a single font is optional, but recommended. {If Bravo performance with 
multiple fonts is improved, then this recommendation is withdrawn.} The formaLter will 
always output the program lIsing two fonts, so that it will hardcopy correctly. We have 
collapsed them into a ,single font in User.em to improve Bravo's performance and conserve 
disk space. ' 

Spacing 

The following spacing conventions are a refinement of the rules in the Mesa Language 
Ma/lual. In general, there are no spaces before or after atoms containing only special. 
characters. Exceptions to this rule are as follows: 

A space or carriage return follows a comma, semicolon, or colon (but none before). 
A space precedes all the interval constructions. 

A space precedes a left square bracket when the bracket follows any of. the 
keywords RECORD, MACHINE CODE, PROCEDURE, RETURNS, SIGNAL, PORT, PROGRAM, and DATA. 

~, 

Spaces surrollnd the left-arrow operator, except when the assignment is embedded 
in an expression. 

The exclamation point (enabling) and equal-greater (chooses) operators are always 
surrounded by spaces. This also applies to equal signs lIsed in initialization, and to 
asterisks lIsed in place of variant record tags. 

The equivalent of about five spaces are lIsed for each level of indenting. The User.Cm on 
the Basic Mesa Disk will be compatible with this nesting and other attributes of the 
resulting files so that editing ,vill be as straight forward as possible. If a comment appears 
to the right of a statement, it is preceded by two spaces; the entire comment should fit on 
the line in this case for good legibility. 

We have not yet investigated a number of heuristics which the formatter might use in 
spacing complex expressions (for a suitable definition of "complex"). For example. in 
complex conditionals, spaces on each side of the relational operator improve readability. 
The general rule is that spacing should follow the precedence of the operators; the details 
of this rule will need to be worked out as part of the implem~ntation. This mechanism 
will determine line breaks for multi:...line expressions. 

Structure 

The remaining job of the formatter is to determine the indenting structure of the program. 
While there is general agreemenl on the indenting rules for the bodies of compound 
statements, there are several different rules currently in lise for the placement of the 
bruckcts surrounding the compounds. (The brackets in Mesa include (), [J. BEGIN-END. 
DO-ENDLOOP, nnd FHOM-ENDCASE.) Where there <Ire conflicting convelltions. we have chosen 
the one which maximizes the amount of information on a page. For' example: 

Record: TYPE :: RECOilD [ 
field: Type, 
field: Type, 
field: Type, 
field: Type]; 

Record: TYPE = RECORD 
[ 
fiele!: Type, 
field: Type 
]; 

3 



In both cases" the structure is clear: it is indicated by the indenting. not the placement of 
the brack.ets. We prefer the form on the left, because it requires less vertical space. 

The rule illustrated above is not applied absolutely to all bracketing pairs, however; the 
placement of a bracket depends not only on the bracket itself, but also on its prefix and· 
the clauses which follow (its suffix). For example, a loop statement has the following 
possible prefixes, brackets, and suffixes: 

Prefixes 

FOR, WHILE 
UNTIL, (empty) 

Brackets 

DO 
ENDLOOP 

Suffixes 

OPEN 
ENABLE 

Obviously, there are several special cases which must be examined. The sections below 
contain a number of examp.1es. They observe the fotJowing rules for the placement of 
opening and closing brackets: 

The opening brackets [. FROM, and DO appear'on the same line as their prefixes; on 
the other hand, BEGIN starts on a new line. 

If the remainder of the statement fits on a single tine (with its dosing bracket), it is 
placed there, indented one level. Otherwise, all closing brackets except] appear on 
lines by themselves. 

These rules apply to all statements which do not fit on a single line. In general, each of 
the rules for placing statements on a line should have the phrase "if it will fit" attached. 

Basic Statements 

The basic statements are indented according to the rules in the Mesa Language Manual. 
These are repeated below, following the examples. 

IF bool THEN 
BEGIN 

body 
END 

ELSE 
BEGIN 
body 
END 

FOR I IN [O .. n) DO 
body 
ENDLOOP 

SELECT tag FROM 

case => statement; 
case => statement; 
ENDCASE 

The statement following a THEN or ELSE is indented one level, unless it fits on the same 
line. THEN is on the same line as its matching IF, and ELSE is indented the same amount as 
IF. In the case that the statement following ELSE is another IF. both are written on the same 
line. 

The labels of a SELECT (and its terminating ENDCJ\SE) nre indented one level, and the 
statements a second level, unless they fit on the sallie line with the label. 

Each compound BEGIN-END, DO-ENDLOOP, or bracket pair is indented one level. When the 
rules for IF and SELECT call for indenting ~I statement. a BEGIN is not indented an extra level. 

A body can appear on the same line with its brackets if the whole construction will rit. 
This leads to the following shorter forms: 

IF bool THEN statement 
ELSE BEGIN hody END 

Fon i IlJ (O .. n) DO 

body END LOOP 

4 



The outer most Uegin-:End of a Module is not indented. however. More complex forms of 
these statements are considered in the following sections.' 

Statements with Opens alld Enables 

Some of the basic statements described above can have various optional clauses attached. 
In particular. BEGIN and DO statements may have OPEN and ENABLE clauses; they are formatted 
as follows: . 

FOR i IN [O .. n) D"O 

ENABLE 

BEGIN 

label =) action; 
label =) 

BEGIN 

body 
END; 

END;. 
body 
END LOOP 

FOR i IN [O .. n) DO 

OPEN def1, def2; 
ENABLE label => action; 
body 
ENDLOOP' 

BEGIN OPEN def: 
ENABL{: 

label => action; 
bOdy 
END 

A compound ENABLE clause is indented the same as a SELECT statement, with the action on 
the same line as the label if it will fit. If there is but one clause, it may appear on the 
same line as the ENABLE. . 

Note the two statements are handled slightly differently. In BEGIN statements, the OPEN or 
ENABLE keyword goes on the line with the BEGIN. whereas a DO always goes with its prefix. If 
there is no prefix, DO is on a line by itself and indented as though there were a prefix. If a 
Begin-End block exists without a prefix. it is not indented. The formatter will bracket 
such a block with blank lines. 

Statements with Repeats and Exits 

The REPEAT and EXITS keywords always begin a new line at the current indenting level. The 
exit clauses which follow are indented one level, and each appears on a separate line. 

FOR i IN [O.:n) DO 

body 
REPEAT 

label => action; 
label => action; 

END LOOP 

BEGIN 

body 
EXITS 

END 

label => action; 
label => action; 

If an action does not fit on the line with its label, it is indented as in a select statement. If 
there is a single exit clause, it may appear· on the same line as REPEAT or EXITS. 

FOR i IN [O .. n) DO 

body 
REPEAT 

label => 
BEGIN 

body 
END 

label => action; 
ENDLOOP 

FOR i IN [O .. n) DO 

body 
REPEAT label =) action; 
ENOLOO? 

BEG:N 

body 
EXITS label => action; 
END 

5 



Brackets without Prefixes 

The example on the right illustrates a problem discussed ahove with the form of BEGlt~ 
which starts a new statement: because this form has no prefix (nnd because in general we 
indent BEGIN-END blocks), its scope would appear merged with the previolls statement if it is ' 
also indented. In the example, the Begin-End block is not indented. 

Program Structure 

At the outermost level, the BEGIN-END pairs which surround program definitions are not 
indented although those surrounding procedure definitions ure idented just as they are in, 
simpler constructions. This gives the program the following format: 

DIRECTORY 

OneDefs: FROM "onedefs". 
TwoDefs: FROM "twodefs"; 

DEFINITIONS FROM OneDefsj 

Prog: PROGRAM [parm: Type] = 
BEGIN 

Proc1: PROCEDURE [parm: Type] = 
BEGIN 
body 
RETURN, 

ENDj 

Proc2: PROCEDURE. 
BEGIN 

ENDj 

main body 
END 

The procedures ar~ separated by one blank line (or equivalent leading); the main body of 
the module is preceded by two blank lines. If declarations 'inside the procedures are 
separated from the code by a blank line, then two blank lines separate procedures. and 
three blank lines precede the main body. 

Comments which begin a line are indented to the same level as the statement following 
them. Line spacing before and after such comments is collapsed to at most one blank line. 
Comments which appear to the right of statements are preceded by two spaces, 

Breakage 

We have not yet addressed all of the issues involved in breaking long lines (or combining 
short ones). The most common cases occur in procedurt! headings, recnrcl constructors, and 
catch phrases. They are handled as follows: 

Proc: PROCEDURE [ 
fieldName: TypeNnme, fieldName: TypeName, fieldName: TypeNamc] 
RETURNS [fieldNarne: TypeName, fieldName: TypeNarne] = 
BEGIN 

-- body of the procedure 

6 



ENO; 

pointer: POINTER TO • 
pointer t +- Constructor[ 

expression, expression, expression, expression]; 
next statement; 

pointert +- Proc[ arg, arg ! 
signal 1 => statement; 
signal 2 => 

BEGIN 
body 

. ENO]; 
next statement; 

Long procedure headings are handled by first placing the RETURNS clause on a new line. 
Next, the parameters are placed on a separate line. Finally, the parameter or result lists are 
split. into several lines. Constructors are handled in· a similar manner, with the field lists 
inde~hted one level. Catch phrases are indented just as SELECT statements. as if the 
procedure call had been the SELECT exp FROM prefix. 

2.2.3 Control Conventions 

Readers who are not interested in the control codes (included in the stored file) can skip 
this seclion and gO to 2.2.4. 

Mesa Source Formatter Output 

The purpose of this section is to describe in detail the output format of the Mesa Source 
Formatter. The above discussed forl)latting in terms of the source's visual appearance, 
since that is how it is most commonly consider~d. The output of the Formatter. howeve~. 
is of course a file, not paper and toner. The output format of the formatter is designed to 
be appropriate for subsequent input to a) compilers, cross-referencers. and other tools 
whic~ view the file as Mesa source, b) program editors, which view the file as 
machine-readable text, and c) hardcopy programs which con produce results that 
approximate the visual formatting disclIssed earlier. 

Control Colle Formatting 

The basis for the output format of the formatter is a restricted subset of the control codes 
lhat are used by the current series of I3ravo editors. We will first describe these control 
codes, both their syntax and their ClIrrent semantics, and will then describe the Formatter 
oulput in terms of them. 

The output of the Form~tter is a seql/ence of paragraphs. A paragraph is a sequence of 
characters which satisfies the following properties: 

1. It ends with a carriage return (ascii octal 15). 

7 



2. It contain exa<;t1y one contralZ (ascii octal 32). 

3. The character sequence beginning with the controlZ and continuing up to the 
terminating carrai.ge return are the paragraph's looks. Th'e looks are defined as follows:'. 

a. They consist of a .sequence of margin looks. followed by a slash ("1"). followed 
by a sequence of run looks. 

b. A margin look is either the letter "I" [that's an ell] followed by a gecimal integer, 
. or the letter "d" foJ~owed by' ,a decimal integer. ' 

c. A run look is: 
-- a non-nit sequence of distinct letters from the set "B" "b" "I" "i" [those are 

. e)les] followed by a decimal integer. or 
-- an ''fO'' o( an "fl" followed by the above, or' 
-- an ufO .. or tin " followed by a decimal integer. 

·4. The sequence of characters in the paragraph prior to the controlZ are the body of 
the paragraph. The body may contain any characters other than a cont.roIZ. and it is 
the set of paragraph bodies within the source program that are compikd by .the mesa 
compiler. 

In terms of the current Bravo editors. the meanings of the paragraph looks are as follows: 

The margin looks define the left margin ("I") and the first line in the paragraph's left 
margin (nd"). 

The run looks define the formatting to be applied to a sequence of characters within. 
the body of the paragraph. As the run looks are scanned from the slash to the carriage 
return, an occurrence of a "B" sets a "bold" flip-flop off; a "b" sels it on; an ''I'' sets the. 
"italic" flip-flop off, an "i" sets it on; a ''fO'' sets the "font" value to zero. an "fl" sets it 
to one. As the s~an begins. the cells are set to off, off, and zero. When a decimal 
integer is encountered in the nlll looks, that many characters from the body are given 
the characteristics defined by the current "bold" "italic" and "font" values. When the 
run looks nre exausted, any remaining characters in the body get the final characteristic 
values. 

Example: ,the paragraph 

IF foo<2 THEN ERROR;[contiOIZJ13200d3000/fl 3fO 6fl 5b5fOB[return] 

defines a line to be formatted as 

IF foo<2 TlIEN [(mon; 

Input Formatting 

8 



All Bravo-like control codes whic~ appear within the input source file are completely 
ignored by the Formatter. A set of parngraph looks, as described above, is skipped over 
whenever encountered. (In other words, whenever a cOl1trolZ is encountered within the 
input stream, all subsequent characters lip to, but not including. the following return are. 
ignored.) Any controlL characters within the input are ignored. 

Output Form:\ting 

As it creates its "formatted" output file fr~m the supplied source input, the Formatter uses 
the above control codes in the following ways: 

1. Whenever it puts a new Mesa statement on a new "line", it either begins a new 
paragraph or combines the statement wi.th the previous paragraph. The only other· time 

$oit puts returns· within the body of a· paragraph is to fold a single Mesa statement that is 
too long to easily fit on a line, as discussed in the section on "breakage". 

2. Whenever it puts a single statement on multiple lines for the purpose of indenting, 
as in a record definition, it creates separate paragraphs. 

3. All indenting is done via the margin looks: the "I" and tid" margin looks are 
specified for every paragraph. 

4. The basic (leve) zero) margins are 13000 d3000. This provides for no additional 
indentation on line folding and the numeric values are appropriate to current usage. 

5. ~hen a paragraph is indented, 635 is added to both the ")" and "d" margins .. [635 is 

a reasonablle number of micas for indenti·ng and is half the default Br:l\'o 'nest' adjustment.] 

6. All Mesa keywords are made font one; everything else is made font zero. Except 
that. in the case of consecutive Mesa keywords, the entire sequence, including imbedded. 
spaces, is made font one. 

7. An comments are made italic; everything else is made non-italic . 

. 8. The names of procedure constants are made bold where they are defined; everything 
else is made non-bold. 

Hardcopy 

One result of the above output formatting rules is that the Formatter output will hardcopy 
correctly (in the scns~ of.agreeing with the conventions discussed above) when the output is 
printed via the normal "hardcopy" command of Bravo. Bravo will obtain the fonts that 
correspond to "zero" and "one" from the invoker's "lIser.cm". It will also obtain the right 
margin and pamgraph and line leading information from "user.crn". 

9 



2.2.4 Na!ninl! Conventions 

The objective of naming conventions is to provide a standard means of generating and 
interpreting names in the code. The general conventions are: 

o C;l I)it a I Letters: Type. procedure, label, module, and signal names start with a 
capital letter. all other names begin with a lower case letter. 

o Compound names: Each component after the first is capitalized (e.g., 
maxFilePage) in compound names. Components may be nOllns, verbs, prepositions, 
adverbs, and so forth. -

o Procedures that modify the state of an object: Procedures that modify the state 
of data structures that are part of an abstract object such that subsequent cal1s on 
the object/interface 'give different results, should be named with primary verb and 
noun components that clearly express the change to the object. For example, 
consider the following: 

. word: RECORD [name: STRING, meaning: INTEGER] 

dictionary.DeleteWord[word] -- not, dictionary.lsEmpty[word] 
dictionary.AddWord[word] -- not, dictionary.Has[word] 
dictionary.SetMeaning[word] . -- not, dictionary.Meaning[word] 

Note that .this _ convention is not meant to exclude names such as 
DictionarySetMeaning or SetMeaningTo. 

o Abbreviations: If used as initial name components, the standard prefixes are: 

p. pointer to a * 
i* index of something in a '" 
1* length of it '" 
n* number of *'s 

Any other special abbreviations appear in a section in a project's special 
conventions dictionary. No standard suffix abbreviations exist at this writing. 

Special naming conventions may appear in a project dictionary and include: 

o Additional rules for contructing names. 

o Technical or special terms that are used for naming. 

2.2.5 Coding Conventions 

Except for the restrictions contained in the language manuals which reflect language 
constraints and thl! material that follows, the coding rulcs to which we expect the 
projccts to adhere can be found in books or <Jflicks such as The t'/emeIiIS of 
Programming Style (Kernighan and Plaugcr). This <lncl other acceptahle refercncc(s) of 
progwmming wisdom will b~ made available to our programmers, 

10 



In general. conventions for the lise of signals. procedure variables, records, ports. 
processes and other Mesa features will be established on' a project basis and will be 
documented as s.pecial conventions by the project. However, we do suggest the. 
following for your consideration: 

o Precede an invocation of a signal or error by the word SIGNAL or ERROR. The Mesa 
compiler does not require this. but your fellow programmers may. Signals behave very 
differently from procedure calls and the reader of your code should have no doubts 
about which you are using. 

o Use signals with some care. Unless there is good reason to resume a signal (to save 
redoing an extensive computation) use nn Error instead: As part of an interface 
specification. clearly indicate what Signals/Errors can result. If you have data that is 
"global" to an object in an inconsistent state when you call procedures that can result in 
signals that your caller might terminate, you should ~nabl~ the UNWIND signal so you can 
clean lip. 

~. ,. 
o Use a SELECT TRUE rather than a string of ELSE IFS for readability. 

SELECT TRUE FROM 

condition1 => 
lengthy 

consequence 
condition2 => 

lengthy 
. alternative 

ENDCASE => 
BEGIN 

END 

o Use ennumerated types rather than individually declared INTEGERS to represent the 
possible states of an object or control parameter. This ellbances readability and ensures 
that you arc using the correct vallles for the desired slate. This also minimizes the 
storage required for the state information. 

o Use discretion in the application of the PUBLIC and PRIVATE qualifiers in' 
declarations. Declare items PUBLIC only if clients need to get at lhem. Use PRIVATE to 
hide variables and functions that your catler need not and should not know about. 
Recall that PUBIC is the default for Definition modules and PRIVATE is the default for 
Program and Data modules. 

o Brackets should always be used when calling procedures with no parameters. 

o Don't use t with the. or array ind~xing opporators.Let the compiler do the 
dereferencing for you. 

11 


