PmCover.txt 27-3UL-77 23:25:47 PAGE 1

/P/’lo,‘)dsot/s Miwo;‘ 617 g /24/2‘(/17.

This document attempis to do several things. There is a proposed conceptual
structure for the Tools Group programs. There is & ‘ot of propcsing of names for
things. There is a section that proposes solutions for several of the major problem
#*s

that we have encountered. 1 also go through some of the structure piece by piece
and 1ist all the defficiences I have been able to think of. This is an attempt at a
**n .

exhaustive list of defficiencies. For many of the pieces I propose some changes to
the current interfaces and implementations.

It should be noted that most of the proposed changes are not due to real
defficiences, but 'are usually ideas that I or others have had about better ways to
do things. None of the proposed changes should be taken as inferring that

anybody has been guilty.of bad design work. A ot of the ideas came from using
the existing software and then thinking of ways it might be changed to make it
easier or smoother to use. There are some proposed deletions of some code that
experience has indicated would rarely be used. There are a bunch of minor
"cleanup" things suggested.

It should also be noted that everything in this document is intended as a proposal
-- to be discussed and debated by the group prior ito approval or rejection: I have
not often included some phrase like "I propose" or "I suggest” in the document. I
hope everyone will take all of the ideas stated in here as if there were such a
phrase somewhere in the discussion of the idea.

I have not had time to put all this material into a nice, formal memo form. Please
bear with all the rough edges that are in here. I'll try to smooth it out later. I
%* %

have not had time to write down all my reasons and Just1f1cat10ns for the proposed
changes. I would like to present those verbally.

I suggest that we all spend Wednesday afternoon doing something like the

following: Go through the document and decide which things we will do and

which we won't. For those things that we decide to do, decide when, e.g., for the
Preview Release, as soon as possible after that, "eventually"., For those things tha
**t

are to be done soon, we should decide who is to do them.

A

EROX SDD ARCHIVES
¥ ad and understood

1 have Tre
Pages To__
Reviewer Date,

Ref. 10D 287

" # of Pages

PmDeStructure.txt 27-JUL-77 23:25:47 PAGE 1

John Weaver proposes the term "Development Environment"” to mean all the

software listed below (in large part written by the Tools Group with some major
help from others on things like the guts of the Compiler Server; several of the
tools will probably be written by others also).

The Development Environment is made up of three pieces: the "Tools
Environment"”, a collection of "tools", and several "servers".

The Tools Environment +s mode up of 6 pieces: the module Telnit that constructs

the Tools Environment (an image file), the configuration that is the "Tools
EXecutive", and 4 configurations that are "packages" of subroutines or "interfaces".
%* %

The four interfaces are: the User Interface, the Librarian Interface, the Fifo
Interface, and the Pup Package (including FTP).

Here 1is the hierarchical structure of the Development Environment (with
abbreviations):

Tools Environment (TE or fe)
Telnit
Tools Executive (TEX or Tex) -- TexDefs

TexStimLev
TexProclLev
TexBackLev
TexQueue
TexManipTools
TexTool

User Interface (UI or Ui) -- UiDefs

UiDisplay
_ UiFonts)
UiWindowBasics and UiWindowContents
UiMenus and UiMenuCS
UiSelections
UiCursors
UiUAS
UiMisc
UiContexts

Librarian Interface (LibI or Libi) -= LibiDefs

LibiObjects
LibiPropLists

Fifo Interface (Fifol or Fifoi) -- FifoiDefs
?7?

Pup Package ~-- PupDefs

PmDeStructure.txt 27-JUL-77 23:25:47 PAGE 2

Servers

Librarian Server

Fifo Server

File Store

Compiler Server

Xref Server

Info Server

Printer Server(s) -- EARS, 3100, etc.
Source Formatter Server

Tools

Local Librarian

Examine

TypeScript

Program Editor

General Editor

Compiler

Spooler

Message

Chat

Debugger(s)

Configuror

Dynamic Program Analyzer
Cursor Editor

various project management tools
various testing tools

The following things should be noted about the pieces and names above:

The Tools Environment is basically all the code that 1ives in one of the
Tools.image files (but doesn't include the Mesa Runtime System).

The module TeInit has no corresponding Defs file. The files TexDefs and
UiDefs have no impiementors. The module TexTool includes the Window

Manager. The modules UiWindowBasics and UiWindowContents both

implement the Defs file UiWindowDefs. The modules UiMenus and UiMenuCS

(Menu Command Select) may get combined into just one UiMenus. The

modules LibiObjects and LibiPropLists implement LibiDefs and have no other
corresponding Defs files. The same situation will probably hold true for the
Fifo Interface module(s). There are a whole Tot of modules that impliement
PupDefs. A1l the other modules in the TE have exactly one Defs file that they
implement. The Pup Package was not written by the Tools Group.

I'm not greatly attached to the particular spel1fngs of the prefixes Tex, Ui, Libi
* %

and Fifoi, but I do think it very important that each of the files that make up

a configuration or interface all start with the same short prefix. I also think

that lumping all the modules listed above into the User Interface is a good idea.

I'm not greatly attached to any of the server names. The File Store will not be
done by the Tools Group. The Librarian Server, Fifo Server, and the File Store
will each have exactly one dedicated machine (but we may want to run both
the Librarian and Fifo Servers in the same machine). There may be zero or
several instances of the other servers at any particular time. .The compiler part
of the Compiler Server will not be written by the Tools Group. The Info Server
is my name for something that would perform functions 1ike the current Lister
and/or Simonyi's CR programs (or maybe this should all be combined into a
more general Xref Server). The Source Formatter is the "Procedures and

" Standards" name for the program that makes Mesa source code files conform to
the standards. The above list of servers is probably not exhaustive.

PmDeStructure.txt 27-JUL-77 23:25:47 PAGE 3

T'm not greally zttached to any of the tool names. There may he no need to

have all of the Examine, TypeScript. Program Editor. and General tditor Tools

as separate tools since they are so similar. The General Editor (probably
Diamond) may never be i mpiemented as a tool. The Compilter Tool should be

atle to-do a single: local compilation and do a "consistent” compilation of some
group of modules either locally or via a Compiler Server. The Spooler Tool is
my idea for one tool that could set things up for any of the Xref, Info, Printer,
or Source rormatter Servers (or any other "data processing” servers there may
be). The Message Tool will probably be mostly written by Metcalf's group.

The Chat tool may be written by Schwartz. The Debugger Tool(s) assumes the
existence of a "Core Debugger”. The Configuror assumes the existence of
"configurations". The various project management and testing tools will
probably not be written by the Tools Group. .

I think it is very important for us (the Tools Group) to ‘agree on some such
conceptual structure as the above and to agree on the names of things. I think
this would be a great aid in our thinking, our communications with each other,
and in our documentation. I think an agreement on (what I have called) the
Tools Environment's structure and names should be settled on very soon. I think
we can leave the names and even the existence some of the tools and servers a
1ittle vague for a while longer. '

PmProblems.txt 27-JUL-77 23:25:47 PAGE 1

Here are some proposed solutions to problems that currently exist:

How does a PNR or MCR retain control while a PBK 1is held down?
I propose the following routine that will live in TexProclLev:
IsPbkStil1Down: PROCEDURE [TexDefs.PBK] RETURNS [BOOLEAN];

Each time the routine is called, it will go through the User Action Queue,

looking for the appropriate down PBK item. It will throw away all items
(including the looked-for item) until the queue is empty or the item is found
(this merely means that no PNRs will be called). The returned BOOLEAN tells
(the converse of) whether the item was found. Each call will do the right

thing so that subsequent calls on GetProclLevCursorPosition will return the

right thing -- that"'s the hardware coordinates of the cursor if the PBK is still

down, or the coordinates in the looked-for queue item if the PBK just went up.
In both cases the coordinates returned are a BitmapPlace and have been

corrected for the hot spot. ’

What to do about subwindow boundéry crossings with PBKs held down?
I propose the following routine that will live in TexProclev:
EnumerateDownPBKs: PROCEDURE [UiDefs.PNRsHandle, TexDefs.UpDown];

The idea is that cursor PNRs could call this routine if they wanted to warn

their tool about down PBKs when the subwindow was being entered or exited.

This routine would go through the Processing Level state (NOT the Stimulus

Level state) looking for PBKs that were down and call the appropriate PNR if it

found one. Note that the PNRs will ‘always be called with the UpDown

specified above. This is so, e.g., the cursor PNR can fool its PNRs into thinking
* %

the PBKs went down on entry into the subwindow but went up on exit. Note

also that the cursor PNR may just want to use the standard PNRs of its

subwindow, or it may use another set of PNRs for this sort of thing (and

possibly different PNRs for entering and exiting). Note also that if the

subwindow isn't interested in some of the PBKs, it is free to use

UiMiscDefs.NopPbkPNR in any of the fields of the PNRsObject.

What to do about the cursor "hot'spot" problem?

I think the thing to do is to change the cursor package so that any time a
StoreCursor or SwapCursor is done, the hardware cursor and mouse coordinates
get changed according to the relative differences of the old and new hot spots.
Note that interrupts should be turned off when changing the hardware
coordinates.

The cursor may jump a little bit, but users should be told that the hot spot will
track smoothly. Note that this scheme follows our convention that the user

must predict what the situation will be if he/she types ahead. I think it's
actually easy for the user. I think he/she need merely always point at things
with the hot spot of whatever cursor is currently on the screen.

About image files:
I think that there are at least 8 different image files that various people will

want to have available. (Below, "most Mesa" currently means all Mesa.except
Keystreams.)

PmProblems.txt 27-JUL-77 23:25:47 / PAGE 2

Mesa. image

211 Mesa code segmeats
all Mesa syr segments

PupBare. image

all Mesa and Pup Package code segments
no symbols

PupPared. image

all Mesa and Pup Package code segments
all Mesa symbols, but only Coolie's symbols from the Pup Package

PupAll.image

all Mesa and Pup Package code segments
all Mesa and Pup Package symbol segments

TeBare. image

most Mesa, all Pup Package, and all TE code segments
no symbols ’

TePared. image

most Mesa, all Pup Package, and all TE code segments
most Mesa, but only Coolie's from the Pup Package, and no TE symbols

TeFull.image

most Mesa, all Pup Package, and all TE code segments
most Mesa, but only Coolie's from the Pup Package, and all TE symbols

TeAll.image

most Mesa, all Pup Package, and all TE code segments
most Mesa, all Pup Package,. and all TE symbol segments

I propose to write the small amount of code required to produce PupPared.image.

I also propose that someone (probably me) generate each of the files listed
above. We should keep as many of them as will fit in <Tools> or on IFS. . The
others may be kept on a disk pack somewhere.

About selections (and in particular how to get more.than one tool named TestTool
instantiated):

It should be noted that we do NOT currently have a very useful selection
mechanism.

I propose a (possibly temporary) solution: Somebody should write a TypeScript
Tool. TEX would "define" that tool at startup time. Using a UAS, the
TypeScript Tool would allow type-in. New type-in up to a CR or ESC would
become the current selection. The tool would also (eventually) have selection
button PNRs. This seems the quickest way to get type-in to be selected for use
as parameters to commands (at least to the Instantiate-tool command).

Note that the tool would be made up almost exclusively of routines that I

propose for inclusion in UiMisc and UiSelection. This tool could serve as a

prototype or testbed for those routines before we actually include them in the
" User Interface. ’

There may be some problems about bitmaps and turning the display on and off

PmProblems.txt 27-JUL-77 23:25:47 PAGE 3

before and after calls on MakelImage.

* %k

I talked to Wick about this a 1ittle. Smokey. the three of us should get together
and make sure we do the right thing
Here's an idea for which I can find no better place in this document:

It would be nice if the Fifo Server could glom onto any Alto on the Ethernet

that was running DMT and set up a server there. Boggs and Taft know how

to do this. Note that such a server would have to do all of its file I/0 over the
* ¥

Ethernet. (I'm not sure I'm the originator of this idea.)

I would like to take this._opportunity to point out anothef of our unsolved
problems, but I have no solutions to propose:

What, if anything. is the Librarian Server going to do about automatically
compiling, formatting, printing, xrefing, etc. files as they are checked in?

PmProposalsl.txt 27-JUL-77 23:25:47 PAGE 1

Using my proposed hierarchical structure of the Tools Environment, here are my
(intermixed) lists of deficiencies and propesed changes. At various points you
will find listings of some of the Defs files for the User Interface. They should
help to indicate or explain some of the things I have in mind.

Some of the proposals below have the "keyword" "done" attached to them. That

means they've already been done. Some have the keyword "eveantually". That

means I suggest we wait a (long) while before doing them. Some have the

keyword "sometime". That means I suggest we don't try to do them for the

Preview Release. I suggest that we try to incorporate all the other proposals (that
* ¥ .

get accepted) in the Preview Release.

First I would 1ike to talk a bit about the organization of the User Interface
definitions files. I -am unable to decide which of several schemes I think is the
better. I'd 1ike to mull this over with you all. Here are the schemes:

The scheme proposed in this document which basically just breaks the former
ToolWindowDefs into UiDefs (types and constants only) and UiWindowDefs
(the procedures).

Leave ToolWindowDefs as it is (but rename it UiWindowDefs).
Move the Places, Boxes, etc. definitions to TexDefs.

Treat PNRsObjects as contexts. Note that then the "pnrs" field of
SubwindowObjects would be deleted. Then we could move all the PNRs
definitions (including the {Cursor/Pbk}PnrTypes) into their own Defs file. .We
would then have to provide routines like
{I/Uni}nstantiatePNRs{With/From}{W/Subw}indow. Below I have proposed

that CreateSubwindow take a PNRsHandle parameter. That would have to

change if this idea is accepted.

We could make SubwindowObject.contextChain be PRIVATE and of type

POINTER. Then we could move all the context definitions into UiContextDefs.
Note that no one except the Contexts package is ever supposed to touch this
field, so it might not be very dangerous.

PmProposalsl.txt 27-3UL-77 23:25:47 PAGE 2

Telnit
Change name of file from TexInit to Telnit.
Move Unhew to Te.ManipTools.
Detete TexInitDefs.
Move code in LibjectlLoader to this file.
Load UiDisplay and UiFonts.
Do the right thing about getting the display initialized.
Load the Fifo Interface.
Get new Pup Package.

Eventually, move some of the initialization code to TexProclev so that this
module and its global frame may be released before the Makelmage. .

Eventually, pare Mesa runtime further.

PmProposalsl. txt 27-JUL-77 23:25:47 PAGE 3

Toals Executive (TE* ér Tex) -- TexDefs
TexDefs
No proposed chanées.
TexStimlev

Put in the new way of getting to the debugger via a chord. This will
(usually) leave the debugger pointed at the right frame of the right process.

Maybe, have the "wiggling bit" problem taken care of by the Stimulus
rather than the Processing Level.

Sometime, add abort chord(s)-.
Sometime, add "clear User Action Queue" chord.

TexProclLev
Query the user as to where the Librarian and Fifo Servers and the File Store
are. If they are to be on the local machine, then some NBSs must be done.
In any case, the information has to be conveyed to the appropropiate parties.
Change so that user actions occuring while the cursor is in a window's -
frame go to TexTool (assuming-that the frame is not in any of the
subwindows of that window).

Do an UnNew on Telnit.

Add IsPbkStil11Down (see the discussion about the problem of PNRs retaining
control while a PBK is held down).

The Window Manager is going to need an analagous routine to help with
the continuous Move commands before the "click" (see below).

Add EnumerateDownPBKs (see the discussion about the problem of
subwindow boundary crossings while PBKs are held down).

Eventually, redo the PNR mechanism using coroutines.
TexBackLev ‘

Rename TexBackground{Defs} to be TexBackLev{Defs}.

Eveﬁtual]y, redo background mechanism using coroutines.
TexQueue

No changes‘proposed.
TexManipTools

Move UnNew procedﬁre from TexInit to here.

Add uas field to ToolInstanceObject. -- see UiUAS discussion

Add warmStart field to ToolInstanceObject. This is a procedure in each tool
to be called for "warm starting"” tool instances after something like TexTool's
Subsys command.

TexMisc

Move the procedures and their definitions to UiMisc. "Move some other

PmProposalsl.txt 27-JUL-77 23:25:47 PAGE 4

defiritions to TexDefs. Delste TexMisc{Defs]. -- dene

PmProposalsl.tixt 27-3UL-77 23:25:47 PAGE 5

TexTool -- the Window Manaqer is discussed below

ested an ivea about making texwWindow be a real window. * 1'm

Smokey sugges
b I ocurrently think iv's siightiy betier the way ibL is now.

net osurs .,

Add the foliowing comaands: Subsys. Nstall., Reset. Checkpoint. See my
memo “Wish List for a Mesa System” for details and justifications.

Add a command to turn the Monitor on and off.
Eventually, add the Kill command.

Window Manager -- the code will live in TexTool
I propose the following -menu commands:

Flip

Move

Grow

Tiny

Normal

Zoom

Unzoom

Permanent-menu-window/Destroy-menu-window (sometime soon)
Cleanup-screen (sometime soon) ’

About Flip: If the indicated window is on top, put it on the bottom, else put
it on top (or there could be separate Bottom and Ontop commands).

About Permanent-menu-window/Destroy-menu-window:

The idea here is to make a "normal" window containing a Ring Menu
Subwindow (see below) and leave it displayed on the screen, i.e., not just
while the menu button is held down.

There's a potential problem here if the user uninstantiates the tool
containing the MCRs without Destroying the Menu Window. Another
potential problem is that the Window Manager has no good way of
knowing which windows are Menu Windows.

About Cleanup-séreen: This- is Titleman's idea about automatically
straightening out a chaotic screen full of windows (perhaps by making them
all tiny and distributing them as evenly as possible over the bitmap)..

Most of the commands above need a (corner of a) window as an operand. I
propose the following rules for picking the operand.

If the command is invoked from a window's menu ring, use that
window's corner that is nearest to the cursor.

If the command is invoked from TexTool's menu ring while the cursor is
in some window's name frame, use that window's nearest (upper left or
right) corner. '

If the command is invoked from TexTool's "window", use the "nearest”
window corner. :

Note that if the command is invoked from a menu, the button will be UP
when the MCR is called. I suggest that the Flip, Tiny, Normal, Unzoom,
and Permanent-menu commands turn themselves into Move (continuous)
commands after doing their thing. Then the user will terminate those
commands and the Move and Grow commands by "clicking" the menu

button (or any PBK) which will "deposit" the window and terminate the
command.

PmProposalsl.txt 27-JUL-77 23:25:47 PAGE 6

Annther possihle way to do this would he to have the wser select the
command in the normal manaer. The the Window Manager would wait for

tne menu button to go down. throwing away ail other-user zctions. When
the buticn went «down, the Wiwgow Managec wouln pich a co.»r and

procesd with the command until the button went up. I think this might be
a harder way to do things.

1 propose that we allocate the mouse button PNRs of TexWindow as follows:
blue -- normal MenuPbkPnr

yellow -- will do the Grow command, with zooming done via running
the cursor to any of the corners of the screen

red -- will put the.window on top and then turn into the Move command

PmProposals2.txt . 27-JUL-77 23:25:47 PAGE 1

User Interface (UI or Ui) -- UiDefs

Note that all file names will have to be changed 1f my proposed names are
zccepted. ') ' :

UiDefs

See the attached listing for what this file might look like. I will discuss$ the
* % -
Coords. etc. section immediately below. The Windows and Subwindows
sections are discussed in the UiWindow section below. The only change in
the PNRs section is the order of the parameters for a PbkPnrType -- this one
seems more "natural" to me, it is more inkeeping with the sub-standard that
the "major" abstraction be the first parameter. The Contexts section is
discussed under UiContexts.

If the CARDINALity of Dimension necessitates ANY loopholes, it should be
changed to be an INTEGER.

The type Coords may well be supeff1u0us. I put it in for completeness and
symmetry.

The types ScreenPlace and ScreenBox are meant to be used by UiDisplay
when dealing with bitmaps.

The Coord and Dimension types are defined following the reasoning of the
"sub-standards" that predefined types should be used as little as possible.
Also note that if Dimension must be changed to INTEGER, there is only one
thing to change rather than several.

I think breaking boxes into places and Dimensions will prove to be a useful
thing, maybe primarily for clarity of code. There is also the point that
under the old scheme, one couldn't do something 1ike the following:
box.place « WindowPlaceFromBitmapPlace [...]; -- new scheme
[box.x, box.y] « WindowPlaceFromBitmapPlace [...]; -- old scheme

Note that there are few comments in UiDefs. I think this makes it more
readable and nobody has to worry about errors in the comments. Also, there
is now documentation for the stuff here, so the need for comments is greatly
lessened and there is the potential problem of keeping, two versions of the
same thing consistent (the comments and the documentation).

PmProposals2.txt © 27-JUL-77 23:25:47 PAGE 2

UiDisplay
Remove HovaOps from 1he direciory cf the implenenior.
Use ScreenPlace and/or ScreenBox from UiDefs.

The Defs file has a several definitions that 1 would guess are copied from
Mesa system Defs files. I'm not sure that's a good idea.

PmProposals2.txt 27-JUL-77 23:25:47 PAGE 3

UifFonts
Remove NovaOps from the directéry of the implementor:
Remove MopCodes from the diréctory of the Defs file.
Add the following types: FontHeight CharWidth, StringWidth.
Define the type FontHandle either instead of or as a synonym for FAptr.

See the attached Defs file listing for details about most of the above proposed
changes, . :

The Defs file has a several definitions that I would Juess are copied from
Mesa system Defs files. I'm not sure that's a good idea.

PmProposals3.txt 27-JUL-77 23:25:47 PAGE 1 -

UiWindowBasics and UiWindowCortents and UiWindowDefs

See the attached listings of UiDefs and UiWindowDhefs for details about a 1ot
of the suggestions discussed belcw. MNote that theése haven't been updated
yet to reflect the iastest changes in the proposals.

Note that there are few comments in UiWindowbDefs. I think this makes it
more readable and nobody has to woerry about errors in the comments. Also,
there is now documentation for the stuff here. so the need for comments is
greatly lessened and there is the potential problem of keeping two versions’
of the same thing consistent (the comments and the documentation).

I added several types to UiWindowDefs to conform to the sub-standard of
using predefined types as little as possible and to avoid keywords in calling
sequences.

Remove KeyDéf; and.StreamDefs from the directories.
Fix bug abéut window.box « box untrimmed to bitmap.
Fix bug involving MoveWindowContinuous.

Use UiDisplay and UiFonts.

A careful check should be made of the Defs 'versus the implementors to try
to weed out any remaining discrepancies.

Add routines Validate{W/Subw}indow which would raise the ERRORs
{W/Subw}indowNotEnlinked when they were called to check parameters to
other routines. The errors {W/Subw}indowAlreadyEnlinked should also be
raised under the appropriate circumstances.

The Window Manager is going to be the prime, if not the only, user of
several routines in UiWindowBasics, e.g., MoveWindow. This is because
tools are not generally supposed to do things like Move or Zoom their
windows, but rather are to leave that up to the user to do using the Window
Manager. I designed the Window Manager and then realized that there was
probably 1ittle or no need for some window fields, types, and procedures.
Here is a list:

Delete window.size and the type WindowSizeType.

Delete the Places from window.{normal/tiny}Box, so they get renamed
{normal/tiny}Dims and are of type Dimensions. Note that the Window
Manager commands Tiny and Normal will get the Place from the cursor
because they turn themselves into a Move command.

The five routines that changed a window's size, e.g.,
MakeWindowSizeTiny, all got coalesced into one: GrowWindow. Note
that the Window Manager command Zoom will get the window's .
Dimensions from the bitmap's Dimensions. Unzoom, Tiny, and Normal
can look into the WindowObject to get the Dimensions.

Note that the tiny and normal parameters to CreateWindow are now
Dimensions rather than BitmapBoxes.

In writing a MenuPbkPNR, I discovered that I wanted to specify the INSIDE
dimensions of the window to CreateWindow. Since I had no easy way of

knowing the dimensions of the window frame, I couldn't specify the

OUTSIDE dimensions easily. I would think that a almost all users of

CreateWindow would rather specify the inside dimensions too. Also, when

it comes time for a tool to divide up it's window into subwindows, I think it

would T1ike to know the space it has to work with, i.e., the inside dimensions.
But note that it can only use the dimensions of the main subwindow once
for this, since the tool will probably shrink that subwindow to make room

PmProposals3.txt 27-JUL-T77 23:25:47 PAGE 2

for others {ntherwise it's going to have to dezl with overlapping

subwindows). On the other hand. all sorts of routines want to know the

outside box of a window, e.g.. to decide what's visible. I also think that ai?l
windews ocught to have frames and names and thus name frames. Thesd
considerations led to the following suggesticens:

rdave hoth a window.inBox and a window.outBox rather than just the
present window.box. They are redundant in that each can be calculated
from the other, but they ought to serve as "accelerators”. It might be
sufficient to have just an outBox and an inDims.

Change the meaning of the normal and tiny Dimensions parameters to
CreateWindow to refer to inBoxes rather than outBoxes (or we could add a
parameter to the calling sequence to say which box the caller wanted or
we could add a routine that converted an outBox to an inBox). _Note that
the boxes parameters of AdjustWindowBoxProc and GrowWindow are

similarly affected.

Have CreateWindow NOT create the main subwindow. I think the

primary purpose of that subwindow was to provide the information about
the inner space of the window to the tool. That's now available via
window.inBox. The "specialness" of the main subwindow always seemed

a little questionable to me. This way there will be no "special"”
subwindows.

I think all WindowPlaces ought to be relative to inBox rather than outBox.

CreateWindow takes the window's name as a parameter. It should make
its own copy of this string. DrawWindowNameFrame is deleted, but
DisplayWindowFrame always does a name frame. DisplayWindow should
always call DisplayWindowFrame. This should mean that
DisplayWindowFrame will rarely, if ever, be called by anybody but
DisplayWindow.

Note that now DisplayWindowFrame will NOT change the box of any
subwindow. .

If we wanted to retain the possibilities of windows without any frames or
with just a border and no name, we could adopt the following (rather
hokey) convention: if window.name = NIL, that means no frame at all;

if the length of the name string is 0, that means just a border, but no
name. -

Partly in order to make the creation of subwindows and windows more .
parallel and partly to help out TexTool, I suggest that the enlinking of the
window be removed from CreateWindow. Instead, the two routines
{En/De}LinkWindow have been added. For the same reasons, I have moved

the place parameters from the Create routines to the Enlink routines for both
windows and subwindows. Presumably parallel to the subwindow linking
procedures, they will cause the display to be updated appropriately.

I renamed the old type name "AdjustProcType" to be)
"AdjustWindowBoxProc". I choose that name since it gets called every time
someone tries to change (adjust) the bitmap box of the window.

There are a couple of strong reasons why I think that the refresh proc ought
to be in the SubwindowObject rather than the WindowObject, but it would

take too long to explain here. Note that this idea calls for some changes in
the calling sequences to CreateWindow and CreateSubwindow. Also, I

changed the name of the refresh proc type to be "RefreshSubwindowProc".

Note that I added the parameter PNRsHandle to CreateSubwindow. Since all
subwindows should have a set of PNRs, this seems reasonable. Note,
however, that this would blow the scheme of making PNRsObjects into
contexts and moving the PNRs definitions to their own Defs file.

PmProposals3.txt 27-3UL-77 23:25:47 PAGE 3

I changed the field name "backlLink" in SubwinpdowObjecd because scmeone
might think it was & 1iuk back up the subwindow chain. i.e., to the previous
subwindow on the chain. “window"” seems iike a better name to me.

I changed the field name “"contexts" in SubwindowObject to "contextChain™ to
conform to the sub-standards.

Note that DestroyWindow and DestroySubwindow have had the suffix "Etc"
added since they both destroy contexts also (contexts may now be hung off
of windows too -- see UiContexts).

I added ."Put" to the names of WindowOnto{Top/Bottom} to conform to the
convention that all such procedure names should contain a verb. Similar
reasoning led to the adding of "Find” to WindowFromBitmapPlace.

I deleted all the box conversion routines because the place conversion
routines ought to serve well enough since the Dimensions don't ever get
converted and now you can say box.place « Convert [box.place] whereas
before you couldn't say [box.x, box.y] « Convert [[box.x, box.y]].

Because I think they will be rarely if ever used, I suggest deleting all the
routines that display something in a window rather than a subwindow.
DisplayWindowFrame might have trouble, but that's the only likely

drawback I can think of to this suggestion.

I picked what I think will be-the only commonly used display content
routines and left them in (and changed the name of
"ReplaceCharacterToPlaceInSubwindow" to be

"DisplayCharacterInSubwindow"” and added the routine
"DisplayStringInSubwindow"). A1l the other display routines got coalesced
into the three Bitbilt{Pattern/Array/Character}To{Box/Place}InSubwindow
routines. I never could figure out what the old routines did anyway. I'm
assuming that these three routines can do everything that the 11 routines
that they replace could do.

Note that with the proposed set of procedures and name changes, the rather
confusing (at least to me) use of the terms Paint, Draw, Shade, Display,
Alter, etc. has been mostly eliminated or least made simpler and I- hope
consistent and "intuitive".

Maybe each window should have an additional field curDims. This field
would be used when a user moves a window over the edge of the bitmap

and then back again. Note that when the window goes off the edge, curBox
gets trimmed. curDims would be used to remember what size the user really
wanted his window to be.

PmProposals3.txt ' 27-JUL-77 23:25:47 PAGE 4

UiMenus and UiMenuCS (Menu Command Specification)
The scheme I propose is (in rough outline):

Each window has a ring of menus associated with it. The number of
items in (some) menus may change (they're called "dynamic”, "static" if
the number of items 1s always constant). All menu items have
"keywords". There are three types of menu items. A "leaf" item has a
MCR (Menu Command Routine). A "switch" item has a BOOLEAN (more

on these- later). A "branch" item has a pointer to a (sub)menu. Menus
containing one or more branch items are considered to be the root of a
"tree" of menus.

Most of the credlt for the ideas about rings and trees of menus goes to
Bob.

There are three methods provided by the User Interface for specifying a .
menu command to be executed (a MCR). One may use the MenuPbkPNR

(MPP) which displays menus while a PBK is held down and "selects"

menu items. -One may use Menu Subwindows (MSWs). The Menu

Subwindow mechanism is a lot 1ike the MenuPbkPNR mechanism except

that the menus are always displayed (whether a PBK is held down or not)
and if the subwindow is too small to display the whole menu, it may be
scrolled. A menu command may also be specified via type-in (MCT). In
geneneral the user types enough characters to unambiguously specify a
keyword.

Now here are some implementation details:

(Aimost) all windows would have exactly one ring of menu trees (a

window can't have more than one, but it could have zero). The
MenuRingObject structure would be a context hanging off the window.

A MenuRingObject has two fields: curlnst which points to the "current”
MenuInstanceObject in the ring. Note that the "ring" is a ring of
MenuInstanceObjects. The other f1e1d points to the "current" MenuObject
(more on this Tater).

Because dynamic menus are allowed, there must be an extra level of
indirection provided since the actual menu items move around as the
array changes size. This extra level of indirection is provided by the
MenuInstanceObjects. Menu instances are also used because there are
expected to be a large number of instances of some menus, e.g., the
TexTool and Window Manager menus.

A MenuObject has fields that say whether it's a static or dynamic menu,
count how may times this menu has been instantiated (so there won't be
any dangling references), give the width of the widest keyword (an
accelerator when displaying menus), name it (I think all menus ought to
have names), and describe the whereabouts and number of the actual
menu items (the array descriptor).

I advocate providing for dynamic menus and menu trees (branch items)
mostly because I think they will prove to be very useful. TexTool already
uses both. Bob has said something about how nice it might be to select
which font you wanted from a list (probably via branch item with a

dynamic submenu). Jim has indicated that his Xref tool would like to have
different items in its menu depending on circumstances (this may be a case
of a "variable" rather than a "dynamic" menu).

Note: Smokey and I agreed yesterday that we would use
MenuInstanceObjects so that some sort of dynamic menus could be
implemented. But we also agreed that the mechanisms for dynamic menus
would be PRIVATE (not part of the "off1c1a1" or public part of the User
Interface).

PmProposals3.txt 27-JUL-77 23:25:47 PAGE 6

Add a MenuPbkPNR.

Add a facility for Menu Subwindows .

PmProposals3.txt 27-3UL-77 23:25:47 PAGE 6

UiSelections

Sometime soon., add various text selection PBK PNRs. -I haven't specified any
of these yet. .

See the discussion of the problem of selections above (in the "Problems”
section) for more information.

Sometime soon, we need to agree on a full-blown selection mechanism.

PmProposals3.txt 27-JUL-77 23:25:47 PAGE 7

UiCursors v

Make the necessary changes to StoreCursor (and SwapCursor) to implement
the fix for the hot spot probiem dgiscussed above.

Rename CursorRecord to be CursorObject (as per sub-standards).

Define a CursorArray type. Using that type, make the code in UiCursors
shorter by saying things like "hardCursorArrayPt « newCursor.array;"
rather than using a FOR loop.

Use the GetUniqueCursorType scheme. If this isn't done, then there must be
a constant declared that says which values of a CursorType are pre-defined
and which are not.

See the attached Defs file listing for details about most of the above proposed
changes. i

Define lots of CursorTypes.
Eventually, we will want to keep cursor definitions in a file and probably

implement some sort of caching scheme. Also we'll probably want a tool to
manipulate the file and define new cursors.

PmProposals3.txt 27-3UL-77 23:25:47 PAGE 8

Ui1UAS

Because User Action Streams are implenented via PORTs, there can b® only

one User Action Stream per tool instance (the reasons are too hard to explain
here). The solution 1 propose is to put a "uas" field in ToolInstanceObjects
and create User Action Streams relative to a tool, not a window or

subwindow as before.

Note that now you can have different combinations of PNRs in different
subwindows used for the same User Action Stream. The new scheme should
use a good deal less heap space. Also the interface is simpler. The Menu
Command Type-in implementation will be changed similarly, except that

you can have a MCT per window.

See the attached listing-of UiUasDefs for the details of the new scheme.

I would like to change the DestroyUasContextProc to just generate an ERROR

if it ever gets called. The idea is that a tool should close the User Action
Stream for a subwindow before it tries to destroy the subwindow.

Sometime, DestroyUasForTool should release any local frames left around by
the coroutines.

PmProposais3.txt 27-JUL-77 23:25:47 PAGE 9

UiMisc

See the attached listing of U1M15cDefs for details about most of the stuff
discussed helow.

Move stuff from TexMisc to here. -- done

Use UiDispiay and UiFonts.

Delete BlinkScreen (it's done as BlinkDisplay in UiDisplay now).
Add ComputeStringWidth. 4

A convenience routine that repeatedly calls ComputeCharwldth Perhaps
this would be better put in UiFonts.

Add NopPbkPNR. -- done

This should probably only be used by TexProcLev when one of the

"blank" PBKs goes down (the "wiggling” bit problem). Everybody else
should use IgnorePbkPNR so that the user is warned that his type-in has
been ignored via the blinking of the screen.

Make yellow be the same "shift key" as blue for Paddle-Button chords.

Since blue will usually be used as the menu button and since currently

red and yellow are treated as equivalent shift keys when using the

keyset, it makes sense to put the two "shift" buttons on the two least used
buttons. Smokey and I will have to-learn some new habits, but that's
probably the only drawback to this proposal.

Add Prompt, Answer, FileName, and PnrChoices types.

The first three types are defined according to the reasoning in
"sub-standards" so that keywords don't have to appear in Defs files and so
that predefined types occur as little as possible. PnrChoices is used by
both the User Action Stream and Menu Command Type-in stuff.

Add AskUserForParameter and delete AskUserForConfirmation.

This is the first cut at Secondary Parameter Specification. The clients of
this program may supply a subwindow in which the dialog will take

place or they may say NIL in which case the Mesa window will be used.

This routine will type the prompt in the appropriate place and then

somehow grab the machine to receive all user actions until a

Command-Accept is typed. The typed characters will be echoed and put

in the Answer string supplied by the client. At least for now, it's up to
the client to convert the Answer string to whatever form it needs.

Add NopRefreshProc.

This is a RefreshSubwindowProc (see UiWindows). It could be used by
subwindows with no "content", scroll bar subwindows for instance.

Add TextFileRefreshProc (sometime very soon).
This is a RefreshSubwindowProc (see UiWindows). It could be used by
text file and typescript subwindows for instance. Initially it will just do
straight text files. Eventually there should be Bravo and/or Diamond file
refresh procs (and maybe Markup, Press, SIL, etc.). .

Add {Create/Destroy}{Vertica]/Hoﬁizontal}Scro]1BarSubwindow.

These routines will create a generalized scroll bar subwindow, using some

PmProposals3.txt 27-3UL-77 23:25:47 PAGE 10

standard conventions aboui how they work. I have not yet worked out
the calling sequence for what I have called the ScrollProc type. but it
shouldnr't be too hard.

Add {Create/Desiroy}TypeScriptSubwindowEic (sometime very soon).

This will create a subwindow which may be typed into and the typing

will be echoed, put in a file, and selected. There will also be a veritcal
scroll bar subwindow created (that's the reason for the Etc in the name).
The subwindow will use the standard text selection button PNRs.

Add {Create/Destroy}TextFileSubwindowEtc (sometime very soon).

This will create a subwindow in which a text file will be displayed.
There will also be a veritcal scroll bar subwindow created (that's the

reason for the Etc in the name). The subwindow will use the standard
text selection button PNRs.

PmProposals3. txt 27-JUL-77 23:25:47 PAGE 11

UiContexts
See the listing of UiDefs for some minor changes.
I'm not sure that the enumeration of context types is right.

Add fTacility for hanging contexts off of windows (besides subwindows).
Note that this proposal is not reflected in any of the Defs file listings yet.

PmProposalsé4.txt 27-JUL-77 23:25:47 PAGE 1

Librarian Interface {TLI or T11) -- LibiDefs

I find.it difficult to suggest improvements or discern defficiencies in the
Librarian Interface because 1 don't understand it very well. T think my lack of
understanding arises primarily trom two factors: The documentation (and
routines and parameters) are not consistent or clear about naming things. Also
the documentation could be better organized and give clearer explanations of
things. (I also think there are several misleading or even erroneous statements
in the spec). I would suggest a couple of things:

Smokey, I very strongly urge you go through all of the Librarian, very
carefully figure out the structure of both the code and the data, decide
exactly what the pieces or "abstractions" are, give exactly one name to each
thing, and very carefully define what it is exactly that each name refers to
(such definitions should include exactly what pieces (if any) a thing is
made up of. I urge you to write this all down.

Such a document would be a great help to all of us in understanding the
Librarian. Remember.that future users of the Librarian Interace are going to
have to be able to understand the documentation or you're going to be
constantly plagued by questions.

I then suggest that you go through your spec and use all the defined names
in the proper manner. This would include changing procedure and type
names where necessary. Then you could make any necessary changes in

the code.

A1l of this naming and defining is going to have to be done sooner or later.
I suggest that the sooner it gets done, the better the Librarian is going to
turn out. The more people understand about your design, the more they

can help. I hope that you'll do the naming and defining this week. The
changing of the documentation and code could be left for a Tittle while
longer.

Smokey, I hope you won't be upset by these suggestions. They are just

some advice from me to be taken for what its worth. I really do feel that
following these suggestions will lead to a better "Development Environment”.
The Librarian is so central to our whole project that I think it is
particularly important that it gets done as well as we can possibly do it, and
I think having more people able to make informed suggestions about it

would help.

LibiDefs
Remove TimeDefs from the‘directory. It's not referenced.

Partly because the two modules of the Interface will now be in the main
binding path, but mostly because I don't think it was a good idea to start
with, I suggest you delete the interface vectors. Note that those things take
up a lot of extra heap space. Note also that their usefulness will be mostly
gone when the new binding scheme happens.

LibjectLoader
Move all this code to Telnit.

LibiObjects
Remove SysDefs and InlineDefs from the directory. They're not referenced
and SysDefs.xm is taking up (unnecessary) space on my disk.

It's of course necessary to uSe the Pup interface vector, but I think you
ought not to use the Mesa vector.

Write a "real" LibjectContent{File/Stream}.

PmProposalsd.txt 27-JUL-77 23:25:47 PAGE 2

Implement SnapShots (maybe this only gets done in the Librarian Server?).
LibiProplLists
The four GetProperty~ routines might be coalesced inio one.

The Make{Empty/String/Record}Pair routines don't seem very useful to me.
Wouldn't constructors work as well?

It's of course necessary to use the Pup interface vector, but I think you
ought not to use the Mesa vector.

I would suggest that you seriously consider using "dynamic" property lists
(roughly analagous to dynamic menus). Then user programs would never

have to worry or guess at what size to allocate. Code for expanding or
contracting property lists would only have to be written once. The
Bund1eOfBits routines would go away, as would the PropertyListFull

SIGNAL. I would then suggest that probably ALL storage allocation and
freeing could be put in the Librarian Interface and no user program would
have to worry about it.

Eventually, there should be a way to "register" new property numbers.
Perhaps by having something analagous to GetUniqueContextType that
would live in the Server. '

PmProposalsd.txt 27-JUL-77 23:25:47 PAGE 3

F1IFO Interface (TF1 or Tfi) -- FifoiDefs

1 have a few more very minor suggested changes. I've noted them on My
latest copy of the functional spec.

PmProposalsé4.txt 27-JUL-77 23:25:47 PAGE 4

Pup Package -- PupDefs

We haven'l loaded the F1P part of the package yet.

There are dangling references in the Mesa interface vector. There'll be more
as we throw away more pieces of the Mesa Runtime System. 1It's a crock! Don't
use it!

UiDefs.mesa 26-JUL-77 5:04:39 PAGE 1

-- File: UiDefs.mesa; Last modified by: Parsley, 24 July 1977

DIRECTORY TexDefs: FROM "TexDefs";

UiDefs: DEFINITIONS = BEGIN
-- Coords, Dimensions, Places, and Boxes

Coord: TYPE = INTEGER;
Coords: TYPE = RECORD [x, y: Coord];

Dimension: TYPE = CARDINAL;
Dimensions: TYPE = RECORD [w, h: Dimension];

RECORD [x, y: Coord];
BitmapPlace: TYPE = RECORD [x, y: Coord];
WindowPlace: TYPE = RECORD [x, y: Coord];
SupwindowPlace: TYPE = RECORD [x, y: Coord];

ScreenPlace: TYPE

ScreenBox: TYPE = RECORD [place: ScreenPlace, dims: Dimensions];
BitmapBox: TYPE RECORD [place: BitmapPlace, dims: Dimensions];
WindowBox: TYPE RECORD [place: WindowPlace, dims: Dimensions];

SubwindowBox: TYPE = RECORD [place: SubwindowPlace, dims: Dimensions];

-- Windows

WindowObject: TYPE = RECORD [
. 1ink: PRIVATE WindowHandle,
subwindowChain: SubwindowHandle,
inBox: BitmapBox,
outBox: BitmapBox,
adjustProc: AdjustWindowBoxProc,
name: WindowName,
tinyDims: Dimensions,
normalDims: Dimensions J; .
WindowHandle: TYPE = POINTER TO WindowObject;

AdjustWindowBoxProc: TYPE = PROCEDURE
[WindowHandle, BitmapBox] RETURNS [BitmapBox];

WindowName: TYPE = STRING;
-- Subwindows

SubwindowObject: TYPE = RECORD [

link: SubwindowHandle, .

window: WindowHandle,

box: WindowBox,

pnrs: PNRsHandle,

refreshProc: RefreshSubwindowProc,

entered: PRIVATE BOOLEAN,

contextChain: PRIVATE ContextHandle J;
SubwindowHandle: ‘TYPE = POINTER TO SubwindowObject;

RefreshSubwindowProc: TYPE = PROCEDURE
[SubwindowHandle, SubwindowBox, RefreshSequencer] RETURNS [SubwindowBox];
RefreshSequencer: TYPE = RECORD [first, last: BOOLEAN]; .

-~ PNRs

PNRsObject: TYPE = RECORD [-
cursorPNR: CursorParType,
keysetPNR: PbkPnrType,
keyboardPNR: PbkPnrType,

UiDefs.mesa - 26-JUL-77 5:04:39 PAGE 2

redButtonPNR, yellowButtonPNR, blueButtonPNR: PbkPnrType];:
PNRsHandle: TYPE = POINTER TO PNRsObject;

CursorPnrType: TYPE = PROCEDURE [SubwindowHandle, TexDefs.EnterExit]s;

PbkPnrType: TYPE = PROCEDURE
[TexDefs.PBK, TexDefs.UpDown, SubwindowHandle, SubwindowPlace];

-- Contexts
ContextObject: TYPE = RECORD [
link: PRIVATE ContextHandle,
type: ContextType,
own: OwnContextData, :
destroyProc: DestroyContextProcType];
ContextHandle: " TYPE-= POINTER TO ContextObject;
ContextType: . TYPE = {menu, mct, uas, selection, textFile, typeln};
OwnContextData: TYPE = UNSPECIFIED;
DestroyContextProcType: TYPE = PROCEDURE [ContextHandle, SubwindowHandle];

END.

UiCursorDefs.mesa 28-JUL-77 18:04:47 PAGE

- obidar UdCereerletesimacar Dot medif g 0 by Paey

-
fale]
E=1
pe
Gz
)

RO HORY
oy s BRENS Cvexy
SRS A B 15 N |
UiCurszorDefs: DEy INTTIONS = cIGIH
-~ lypes and Constants
CursorObject: TYPE = RECORD [
info: CursorInfo,
array: CursorArray 1;
CursorHandle: TYPE = POINTER TO CursorObject;
Cursorinfo: TYPE = RECORD [
type: CursorType,
hotSpot: CursorHotSpot 1;:
CursorInfoHandle: TYPE = POINTER TO CursorlInfo;

CursorArray: TYPE = ARRAY [0..16) OF WORD;
CursorArrayP: TYPE = POINTER TO CursorArray;

CursorType: TYPE = {testPointer, ...}:
CursorHotSpot: TYPE = RECORD [x, y: [0..16)];
hardCursorArrayP: CursorArrayP = PRIVATE LOOPHOLE[431B];

-- Procedural Interface |
GetCursorFromType: PROCEDURE [CursorType] RETURNS [CursorHandle];
StoreCursor: PROCEDURE [CursorHandle];
FetchCursor: PROCEDURE [CursorHandle];
SwapCursors: PROCEDURE [old, new: CursorHandle];
GetCurrentCursorInfo: PROCEDURE RETURNS [CursorInfoHandle];
GetUniqueCursorType: PROCEDURE RETURNS [CursorType];

BitmapPlaceFromCurrentCursorAndXY: PROCEDURE [TexDefs.CursorXY]
RETURNS [UiDefs.BitmapPlace];

-- Signals and Errors

END.

UitontDefs.mesa 26-Jul -77 15:04:47 PAGE 1

Fite: Witontlefs.merno Dot moaiied by: Poarstey, 24 Joly 1677

PYRTCTORY Soomentbhefs: PR USompeqthingen

BETRVRES IS IREN § 0 O I T

Cop e g
1)';_‘:;1-

- bont Heoornds
FontHeight, Charwidth, StringWidth: TYPE = CARDINAL;
FontHandle: T1YPE = POINTER TO fontArray;

FHptr: TYPE = POINTER TO FontHeader:

Fptr: TYPE = POINTER TO FONT:

FCDptr: TYPE = POINTER TO FCD;

FAptr: TYPE = POINTER TO FontArray;
FontArray: TYPE = ARRAY [0..256) OF FCDptr;

FONT: TYPE = MACHINE DEPENDENT RECORD

FHeader: FontHeader,

FCDptrs: FontArray, -- array of self-relative pointers to
-- FCD's. 1Indexed by char value.
-- font pointer points hear!

ExtFCDptrs: FontArray -- array of self-relative pointers to
-- FCD's for extentions. As large an
-- array as needed.

1s

FontHeader: TYPE = MACHINE DEPENDENT RECORD
maxHeight: CARDINAL, -- height of tallest char 1in font (scan lines)
variableWidth: [0..1], -- IF TRUE, proportionally spaced font
blank: [0..177B], -- not used

maxWidth: [0..377B] -- width of widest char in font (raster units).
1: ’

FCD: TYPE = MACHINE DEPENDENT RECORD

L

widthORext: [0..77777B], -- width or extention index
hasNoExtension: BOOLEAN, -- TRUE=> no ext.;prevfield=width
height: [0..377B], -- # scan lines to skip for char
displacement: [0..377B] -- displacement back to char bitmap
I

-- Font Procedures

GetSystemFont: PUBLIC PROCEDURE
RETURNS [FAptr, CARDINAL];
GetFont: PUBLIC PROCEDURE [filename: STRING]
RETURNS [SegmentDefs.FileSegmentHandle];
LoadFont: PUBLIC PROCEDURE [segment: SegmentDefs.FileSegmentHandle]
RETURNS [p: Fptr]; :
ComputeCharWidth: PUBLIC PROCEDURE
[char: CHARACTER, font: POINTER]
RETURNS [CARDINAL];

END. of Too]Fonthfs

YiMenubals . mesa 28-JUl-77 15:94:47 PAGE

- Uiber s DiMenubel s maenn b omes Tand her Baeyloy, 90 daly 1370

[SRFIETESVITE S SRS S SRR A UES N

Ustienuliers: DEFINDIIOHS = BEGIN
-- lypes and Constants

MenuRingObject: PRIVATE TYPE = RECORD [
curlnst: MenulnstanceHandle,
curMenu: MenuHandle];
MenuRingHandle: PRIVATE TYPE = POINTER TO MenuRingObject;

MenulnstanceObject: PRIVATE TYPE
Tink: MenulnstanceHandle,
menu: MenuHandle 7];

MenuInstanceHandle: PRIVATE TYPE

RECORD [

u

POINTER TO MenulInstanceObject;

MenuObject: PRIVATE TYPE = RECORD [
static: BOOLEAN,
nInstances: [0..1778],
widestKeyword: [0..377B],
name: MenuName,
items: MenultemArrayD];
MenuHandle: TYPE = POINTER TO MenuObject;

MenuName: TYPE = STRING;

MenultemArrayD: TYPE = DESCRIPTOR FOR ARRAY OF MenultemObject;
MenultemArrayDHandle: TYPE = POINTER TO MenultemArrayD;

MenuItemObject: TYPE = RECORD [
keyword: MenuKeyword, -
variant: SELECT COMPUTED MenultemType FROM
Teaf => [mcrProc: McrType],
branch => [subMenu: MenuHandle],
switch => [onOff: BOOLEAN],
ENDCASE 7; .
MenuItemHandle: TYPE = POINTER TO MenultemObject;
MenuItemIndex: TYPE = CARDINAL;

MenuItemType: TYPE = {leaf, branch, switch};
MenuKeyword: TYPE = STRING;

menuKeywordBranch: CHARACTER
menuKeywordSwitch: CHARACTER

lT;
|?:

"o

McrType: TYPE = PROCEDURE
[UiDefs.SubwindowHandle, MenuHandle, MenultemIndex];

-- Procedural Interface
CreateStaticMenu: PROCEDURE [MenultemArrayD, MenuName]
RETURNS [MenuHandle];
DestroyStaticMenu: PROCEDURE [MenuHandle];

CreateDynamicMenu: PROCEDURE [MenuName] RETURNS [MenuHandle];
DestroyDynamicMenu: PROCEDURE, [MenuHandle];

" AddItemToDynamicMenu: PROCEDURE [MenuHandle, MenultemObject];
DeleteItemFromDynamicMenu: PROCEDURE [MenuHandle, MenultemHandle];
DeleteIndexFromDynamicMenu: PROCEDURE [MenuHandle, MenuItemIndex];

Uilleoulbefs.mesa 28-3Ut-77 13:04:4/ PAGE 2

Do bede Kayee eddFoaniiynamas oo o PROCTORE Pegdan e Mo oor

Pectanty - oo i bbbl ing Pty b
THanithee fle iDefs N
M o f1Defs ' L
L - SERV I S RS 1 N R
(anuHancie UaDefs Win toutivigie]
Tewtellenuneyrords PRIVATL PPOCEDULRET [reuxey: Mainwboyuord]

Lz tdBNS [neuhey s Menuhoyeord]:
DastroyMenukeyword: PrIVAIE PROCLDURD [Nenukeyword];
AddUndefTienToDynamicenu: PRIVATE PROCLOURE

[MenuHandie., MenuKeyword] RETURNS [MenultemHandle]:
DeleteUndefItemFromDynamicMenu: PRIVATE PROCEDURE

[MenuHandle, MenultemIndex];
FixMenuKeywords: PRIVATE PROCEDURE

[menu: MenuHandle, newlndex: MenultemIndex];
DestroyMenuRingContext: PRIVATE UiDefs.DestroyContextProcType;

GetMenuFont: PRIVATE PROCEDURE
RETURNS [UiFontDefs.FontHandle, UiFontDefs.FontHeight];
ChangeMenuFont: PRIVATE PROCEDURE '
[UiFontDefs.FontHandle, UiFontDefs.FontHeight];

CreateMenuRingForWindow: PRIVATE PROCEDURE [UiDefs.WindowHandle];
DestroyMenuRingFromWindow: PRIVATE PROCEDURE [UiDefs.WindowHandle];

-- Signals and Errors

MenultemNotFound: ERROR;
MenuInstanceNotFound: ERROR;
MenuKeywordsConflict: ERROR;
MenuStatDynError: ERROR;
MenulnUse: ERROR;

END.

UiMenulsDais.m3sa 20-JUL-77 18:04:47 FAGE

i R N AT Shs Fivad iy siay 24 Yy 7
Mo, 7S efande fo 3 i R ERTE
3 bor o i
v far i UL
vofor Fena] vt 3
Y M Tenueta”
Uissetrs: Pty "Unlaefs”
Uikenudzfs: FROM “"UidenuDefs™,
Cilhveciueio: FRUM "UabiiscDefs™.

I0Defs: FKOM "ICDefs":

DEFINITIONS FROM UiMenuDefs;

UiMenuCsDefs: DEFINITIONS = BEGIN
-- Types and Constants

-- Types and Constants used by more than one of MPP, MSW, MCT

MenuMatrixDimension: PRIVATE TYPE = [0..3778B);
menuMargin: PRIVATE CARDINAL = 2;

-- MPP's Types and Constants

noFlip: PRIVATE CARDINAL = 16;
-- if cursor is this close to a Menu Window, it won't flip

-- MSW's Types and Constants

MswObject: PRIVATE TYPE = RECORD [-- pointed to by context.own
scrollMenuVerticalSw, scrollMenuHorizontalSw: UiDefs.SubwindowHandle,
nHorItems, nVerItems: MenuMatrixDimension,
horOffset, verOffset: MenuMatrixDimension,
variant: SELECT MswType FROM

ring => [scrollRingSw: UiDefs.SubwindowHandle],
tree => [rootMenu, curMenu: MenuHandle],
ENDCASE]

MswHandle: PRIVATE TYPE = POINTER TO MswObject;
MswType: PRIVATE TYPE = {tree, ring}
-- MCT's Types and Constants

MctObject: PRIVATE TYPE = RECORD [-- pointed to by mainSw.context.own
feedBack: ~UiDefs.SubwindowHandle,
pbs: TexDefs.PaddlesButtons,
partial: STRING };

MctHandle: PRIVATE TYPE = POINTER TO MctObject;

mctPartiallnitlLength: PRIVATE CARDINAL = 4;
mctUserCA: PRIVATE CHARACTER = IODefs.ESC;

-- Procedural Interface
-- Procedures used by more than one of MPP, MSW, MCT

RefreshMSW: PRIVATE UiDefs.RefreshSubwindowProc;
PaintMSW: PRIVATE PROCEDURE [sw: UiDefs.SubwindowHandle,
nHorItems, nVerItems, horOffset, verOffset: MenuMatrixDimension];

-- MPP's Procedural Interface

UilenuLsists.mesa 2E-JUL- 77 1030447

1 LRSS cys Phelart ore
23 POt tater bz
LT bkt . [¢ ! !
FoMenpne [V ben Pryone Fopney MY !
{hes S R i Ao {
== by Proceuural interfoc:
LreatelictForWindow: FROCEDu L

[Uhbefs. windowHandle, UiDels.SubwindewHandle]:
-- subwindow is used for teedback: if NTL. use "system”

DestroyMctFromWindow:

PROCEDLURE [UiDefs.WindowHandle]:

OpenMctForWindow: PROCEDURE

[UiDefs.WindowHandl
OpenMctForSubwindow:

e, UiMiscDefs.PnrChoices];
PROCEDURE

[UiDefs.SubwindowHandle, UiMiscDefs.PnrChoices];
CloseMctForWindow: PROCEDURE [UiDefs.WindowHandle];

CloseMctForSubwindow:
-- Signals and Errors

SubwindowAlreadyIsMsw:

PROCEDURE [UiDefs.SubwindowHandle];

SIGNAL;

MswNotLargeEnough: SIGNAL;

MswTreeMenuNotInRing:
ItlegalMsw: ERROR;

ERROR;

WindowAlreadyHasMCT: ERROR;

Il1legalMctFeedBackSubwi
WindowHasNoMCT: ERROR;

ndow: ERROR;

InvalidPNRsForMCT: ERROR;

END.

window

ra

ittisocbefs mesa 28-5UL -7/ 18:04:47 PAOL

UitthiscDefs: DEFINITIONS = BeGlLE
-- Types and Constants
KeyCode: TYPE = [0..177B]:
KeyDescription: 1YPE = RECORD [
uselock: BOOLEAN,
shiftCode: KeyCode,
normalCode: KeyCode 7:
KeysDescriptionTable: TYPE = ARRAY TexDefs.Key OF KeyDescription;
PaddlesTransString: TYPE

ButtonsTransTable: TYPE
ButtonsShiftTable: TYPE

STRING;
ARRAY [0..8) OF CHARACTER;
ARRAY [0..8) OF CARDINAL;

Prompt, Answer, FileName: TYPE = STRING
PnrChoices: TYPE = RECORD [keyboard, keyset, red,yellow,blue: BOOLEAN];
-- Procedural Interface

IgnorePbkPNR: UiDefs.PbkPnrType;
NopPbkPNR: UiDefs.PbkPnrType;
NopCursorPNR: UiDefs.CursorPnrType;

NopRefreshProc: UiDefs.RefreshSubwindowProc;
TextFileRefreshProc: UiDefs.RefreshSubwindowProc;

CreateVerticalScroliBarSubwindow: PROCEDURE

[UiDefs.SubwindowHandle, Scrol1Proc] RETURNS [UiDefs.SubwindowHandle];
CreateHorizontalScrol1BarSubwindow: PROCEDURE

[UiDefs.SubwindowHandle, ScrollProc] RETURNS [UiDefs.SubwindowHandle];
DestroyScrolliBarSubwindow: PROCEDURE [UiDefs.SubwindowHandle];
ScrollProc: TYPE = PROCEDURE [UiDefs.SubwindowHandle--77--7;

CreateTextFileSubwindowEtc: PROCEDURE

[UiDefs.WindowBox, StreamDefs.DiskHandle]

RETURNS [UiDefs.SubwindowHandle]; ‘
DestroyTextFileSubwindowEtc: PROCEDURE [UiDefs.SubwindowHandle];

CreateTypeInSubwindowEtc: PROCEDURE
[UiDefs.WindowBox, FileName]
RETURNS [UiDefs.SubwindowHandle];
DestroyTypeInSubwindowEtc: PROCEDURE [UiDefs.SubwindowHandle];

PostMessage: PROCEDURE [STRING]; .
PostMessage2: PROCEDURE [STRING, STRING]; .
PostMsgCont: PROCEDURE [STRING];

AskUserForParameter: PROCEDURE [Prompt, Answgr, UiDefs.SubwindowHandle];
SetStateOfPBKs: PROCEDURE [TexDefﬁ.PBKsP, TexDefs.PBK, TexDefs.DownUp];

SetStateOfPaddlesButtons: PROCEDURE
[TexDefs.PaddlesButtonsP, TexDefs.PBK, TexDefs.DownUp];

i

ViNischor o uvasa Lo STT G0 ans)

S Vv et H S PN

i sy 1y @ i
{) ! N ‘ ' LENIER HE H

Ty

£ 0t i b
D S O A !
Fofcabuiargeupner: DU tor JHRARG D e
ForceSurangtower: oFufibukt fto STRING, from

TranslateiaddliesintoChar:

PROCEDURE [TexDefs.Paddles. Texttafs.Buttons] RETURNS [CHARACTERT:
TranslateButtonsintoChar:

PROCEDURE [TexDefs.Buttons] RETURNS [CHARACIER];
TranslateKeyIntoChar:

PROCEDURE [TexDefs.Key, TexDefs.KeysP] RETURNS [CHARACTER];

-- Signals and Errors

END.

ST S AR ook NN SRS N VO vars!t !
- L R P O SR A
TR S S TR AN OO A KPR RN I
| TN I

UadenUhied s BLD UM Iselo
UibasDefs: DEFINITICONS = BRGIY
-- Types and Constants

UasObject: PRIVATE TYPE = RECORD [-- is pointed tu by ToolInstanceObject.uas

pbs: TexDefs.PaddlesButtons,
getUasCharP: GetUasCharPortP,
putUasCharP: PutUasCharPortP,
portBlock: UasPortBlock J:
UasHandle: PRIVATE TYPE = POINTER TO UasObject;

GetUasCharPortType: TYPE

[]

PORT RETURNS [CHARACTER];

GetUasCharPortP: TYPE POINTER TO GetUasCharPortType;
PutUasCharPortType: PRIVATE TYPE = PORT [CHARACTER]:
PutUasCharPortP: PRIVATE TYPE = POINTER TO PutUasCharPortType;
UasPortBlock: PRIVATE TYPE = ARRAY [0..8] OF UNSPECIFIED;

-- two ports get stored here;
-- the extra words allow the beginning addresses to end in 2B

Tool: TYPE = TexManipToolsDefs.ToolInstanceHandle;
-~ Procedural Interface k

CreateUasForTool: PROCEDURE [Tool];
DestroyUasFromTool: PROCEDURE [Tool];

OpenUasForWindow: PROCEDURE .
[Tool, UiDefs.WindowHandle, UiMiscDefs.PnrChoices]
RETURNS [GetUasCharPortP];
OpenUasForSubwindow: PROCEDURE
[Tool, UiDefs.SubwindowHandle, UiMiscDefs.PnrChoices]
RETURNS [GetUasCharPortP]:
CloseUasForWindow: PROCEDURE [UiDefs.WindowHandle];
CloseUasForSubwindow: PROCEDURE [UiDefs.SubwindowHandle];

-- Signals and Errors
ToolAlreadyHasUAS: ERROR;
ToolHasNoUAS: ERROR;
InvalidPNRsForUAS: ERROR;

END.

UivindowDuedi s niesa 20000 -77 18:04:47 PAGE

Paler oeseoaalelelr sy oo ifed by: Parsley., 224 Jdnly 1977

UiindowDefs: DEFINITIONS = BEGIN
-- Types and Constants
-- Most of the definitions of UiDefs would normally occur here

IntegerArrayD: TYPE = DESCRIPTOR FOR ARRAY OF INTEGER;

Roundedness: TYPE = [0..47; .
SubwindowPlaceArrayD: TYPE = DESCRIPTOR FOR ARRAY OF SubwindowPlace;
BitbltPattern: TYPE = ARRAY [0..4) OF WORD;

Bitbl1tArrayP: TYPE POINTER;

WordsPerlLine: TYPE CARDINAL;

-- Procedural Interface
-- Basic procedures; deal with [sub]windows as a whole, not contents of -

CreateWindowEtc: PROCEDURE [

name: WindowName,

normal, tiny: Dimensions,

adjustProc: AdjustWindowBoxProc]

RETURNS [WindowHandle, SubwindowHandie];
DestroyWindowEtc: PROCEDURE [WindowHandle];

NopAdjustWindowBoxProc: AdjustWindowBoxProc;

EnlinkWindow: PROCEDURE [WindowHandle, BitmapPlace];
DelinkWindow: PROCEDURE [WindowHandle];

CreateSubwindow: PROCEDURE [Dimensions, PNRsHandle, RefreshSubwindowProc]
RETURNS [SubwindowHandle];
DestroySubwindowEtc: PROCEDURE [SubwindowHandle];
NopRefreshSubwindowProc: RefreshSubwindowProc;
EntinkSubwindow: PROCEDURE
[WindowHandle, SubwindowHandle, WindowPlace];
DelinkSubwindow: PROCEDURE [SubwindowHandle];
GrowWindow: PROCEDURE [WindoﬁHand1e, BitmapBox];
MoveWindow: PROCEDURE [WindowHandle, BitmapPlace];
MoveWindowContinuous: PROCEDURE [WindowHandle, MoveContinuousProc];
MoveContinuousProc: TYPE = PROCEDURE
[WindowHandle] RETURNS [BOOLEAN, BitmapPlace];

PutWindowOntoTop: PROCEDURE [WindowHandle];
PutWindowOntoBottom: PROCEDURE [WindowHandle];

-- Conversion probedures

FindWindowFromBitmapPlace: PROCEDURE [BitmapPlace]
RETURNS [WindowHandle]; ‘ -7

Uithindovbels . nesa 2E-JUL =77 15:04:47

FEGCEDUNC

[Windowrdandi-. Windowk _ TURNS [GivaapPlace];
BitnapllacetrumsubwindowPlaca: PR
i

ROCED IR

[SubwindowHandle. SubwindowPlace] REIURNS [BitmapPlace];

WindowPlacefromBitmapPlace: PROCEDURE
[WindowHandle., BitmapPlace] RETURNS [WindowPlace]:
WindowPlaceFromSubwindowPlace: PROCEDURE
[SubwindowHandle. SubwindowPlace] RETURNS [WindowPlace];

SubwindowPlaceFromWindowPlace: PROCEDURE
[SubwindowHandle, WindowPlace] RETURNS [SubwindowPlace];

-- Miscellaneous display procedures
DisplayWindow: PROCEDURE [WindowHandle];
DisplayWindowFrame: PROCEDURE [WindowHandle];

MoveBoxInSubwindow: PROCEDURE
[SubwindowHandle, SubwindowBox, SubwindowPlace];

TrimSubwindowBox: PROCEDURE [SubwindowHandle, SubwindowBox]
RETURNS [SubwindowBox];

-- Content procedures; display bits inside of subwindows

DisplayCharacterInSubwindow: PROCEDURE
[SubwindowHandle. SubwindowPlace, CHARACTER, UiFontDefs.FontHandle]
RETURNS [SubwindowPlace];

DisptayStringInSubwindow: PROCEDURE
[SubwindowHandle, SubwindowPlace, STRING, UiFontDefs.FontHandle]
RETURNS [SubwindowPlace];

WhitenBoxInSubwindow: PROCEDURE [SubwindowHandle, SubwindowBox];
BlackenBoxInSubwindow: PROCEDURE [SubwindowHandle, SubwindowBox];
InvertBoxInSubwindow: PROCEDURE [SubwindowHandle, SubwindowBox];

BitbltPatternToBoxInSubwindow: PROCEDURE
[SubwindowHandle, SubwindowBox, BitbltPattern,
UiDisplayDefs.BbSourceType, UiDisplayDefs.BbOperation];

Bitbl1tArrayToBoxInSubwindow: PROCEDURE
[SubwindowHandle, SubwindowBox, Bitbl1tArrayP, WordsPerlLine,
UiDisplayDefs.BbSourceType, UiDisplayDefs.BbOperation];

BitbltCharacterToPlaceInSubwindow: PROCEDURE
[SubwindowHandle, SubwindowPlace, CHARACTER, UifFontDefs.FontHandle,
UiDisplayDefs.BbSourceType, UiDisplayDefs.BbOperation]
RETURNS [SubwindowPlace];
-- Graphic content procedures; draw bits inside of subwindows

DrawDiagonalOfSubwindowBox: PROCEDURE
[SubwindowHandle, SubwindowBox];

DrawRectilinearCurveInSubwindow: PROCEDURE

UardiadowDeis. 12 a Lot ioiRy
Ly Vaon i : |
(e o Lr
3 1o, ;
(s .
Prave - R

LoSoo Ll
{:Nl)’-u
GetlUw

[UiBis

-- Signals and Errors

WindowNotEnlinked: ERROR;
WindowAlreadyknlinked: ERROR;
SubviindowNotEnlinked: ERROR;
SubwindowAlreadyEnlinked: ERROR;

END.

