
Inter-Office Memorandum

To Mesa Users Date October 17, 1977

From Jim Sandman, John Wick Location Palo Alto

Subject Mesa 3.0 Change Summary Organization SOD/SO

IEF.OX SDD ARCHIVES
1 have read and undel'stood XEROX

Pages _________ To---------

Reviewer Da te ___ _
Filed on: [MAXC]<MESA-DOC>MESASUMMARY30,BRAVO # of Pages Ref., '115I)D' ::'1/-1

This memo outlines changes made in Mesa since the last release (May l3, 1977).

References

The following documents can be found on [MAXC]<MESA-DOC>; all files are in Bravo format.
They are available in a single package as MESA30.EARS.

Mesa 3.0 Change Summary. MESASUMMARY30,BRAVO

Mesa 3.0 Compiler Update. MESACOMPILER30.BRAVO

Mesa 3.0 Binder Update. MESABINDER30.BRAVO

Mesa 3.0 System Update. MESASYSTEM30.BRAVO

Mesa 3.0 Debugger Update. MESADEBUGGER30.BRAVO

In addition, a revision of the Mesa Language Manual (version 3.0) is available. The
contents of the MESA-DOC directory has also been updated (the Mesa System Documentation
and Mesa Debugger Documentation).

Converting to the New Binder

Mesa 3.0 introduces the notion of configurations: a collection of pre-bound modules. In
conjunction with configurations, this release implements a new scheme for binding
references between modules. These extensions require modification of all Mesa source
programs. Once these changes have been made, improvements of about a factor of ten in
binding time will result ..

In the old scheme, procedures and signals were bound individually by name (and type) after
a module was loaded. In the new scheme, procedures and signals are collected together into
interfaces (defined by DEFINITIONS modules); binding is achieved by maLching interface
names. Most of the binding now takes place before modules are loaded.

Note: the term interface refers to the collection of. procedures and Signals (and
programs) declared in a DEFINITIONS module. The interface name is the same as the
DEFINITIONS module name.

Mesa 3.0 Change Summary 2

To use this binding scheme, each PROGRAM module must include (in its module header) a list
of the interfaces it uses (in the IMPORTS clause) and a list of the interfaces it implements (in
the EXPORTS clause). The following steps should be performed:

I) Ensure that all externally referenced procedures and signals are declared in some
DEFINITIONS module (Le., in some interface). This is necessary only for items defined
in one module and used in another; e.g. local procedures (which are normally
PRIVATE) need not appear in any DEFINITIONS module.

2) Identify the PROGRAM modules which implement each procedure and signal. These
modules should export the interfaces which declare the items they implement (by
listing the interface names in the EXPORTS clause of the module header).

3) Each module which uses a procedure or signal in a DEFINITIONS module should
import that interface (by listing its name in the IMPORTS clause of the module
header). All EXTERNAL declarations should be eliminated in this step, and replaced by
a reference to some imported interface.

Users should make an initial pass over their programs, performing these steps, before
attempting to compile them with the new compiler. Otherwise a very large number of error
messages (one for each reference to an external item) will be generated.

Example

The following example illustrates the changes which must be made to convert to the new
binder. A fragment of the StreamIO module before conversion is shown below.

DIRECTORY

IODefs: FROM "iodefs",
InlineDefs: FROM "inlinedefs",
StreamDefs: FROM "streamdefs";

DEFINITIONS FROM StreamDefs, IODefs;

StreamlO: PROGRAM [Input, Output: StreamHandle]
IMPLEMENTING IODefs SHARING StreamDefs = PUBLIC BEGIN

-- Externals from Strings
StringToDecimal: EXTERNAL PROCEDURE [STRING] RETURNS [INTEGER];

... ,

ReadDecimal: PROCEDURE RETURNS [INTEGER] =
BEGIN

... ,
RETURN [StringToDecimal[s]]
END;

.. ,
END.

As an aid to conversion, a program has been written which makes a guess as to which
included DEFINITIONS modules should be imported and exported. It also lists all external and
public items which cannot be found in any included interface; these items mllst be assigned
to some interface (or eliminated) as part of the conversion process. Th' nrogram can be

Mesa 3.0 Change Summary 3

found on rMAXC]<MESA)IMPEXPLISTER.IMAGE; documentation is contained in the Appendix at
the end of this memo.

Part of the output generated by the import/export lister for the old version of StreamlO
(and old versions of the DEFINITIONS files which it includes) is as follows:

Import Export Lister

File: streamio

Imports streamdefs.xm.
ClearCurrentLine: PROCEDURE

ClearDisplayChar: PROCEDURE

Unlmported EXTERNALS

StringToDecimal: PROCEDURE

Exports iodefs.xm.
WriteOctal: PROCEDURE

WriteDecimal: PROCEDURE

Write Number: PROCEDURE

UnExported PUBLICS

InvalidNumberBase: ERROR

The sections labeled "Unlmported EXTERNALS" and "UnExported PUBLICS" contain those items
which could not be found in any included interface. Following step one, we find that
StringToDecimal is declared in StringDefs, and that InvalidNumberBase should be declared
in IODefs. (Alternately, this ERROR could be eliminated or made PRIVATE.)

The "Exports" section shows that StreamlO implements the interface defined in IODefs; this
interface should be added to the EXPORTS clause (step two). In step three, StringDefs is
included in the DIRECTORY statement, and both StreamDefs and StringDefs are added to the
IMPORTS clause. All of the EXTERNAL declarations are also removed in this step. The final
version of StreamlO appears below.

DIRECTORY

IODefs: FROM "iodefs",
InlineDefs: FROM "inlinedefs",
StreamDefs: FROM "streamdefs"
StringDefs: FROM "stringdefs;

DEFINITIONS FROM StreamDefs, IODefs;

StreamlO: PROGRAM [Input, Output: StreamHandle]
IMPORTS StreamDefs, StringDefs
EXPORTS IODefs
SHARES StreamDefs = PUBLIC BEGIN

ReadDecimal: PROCEDURE RETURNS [INTEGER] =
BEGIN

... ,
RETURN [StringDefs.StringToDecimal[s]]
END;

Mesa 3.0 Change Summary 4

END.

Note that InlineDefs was not involved in the modifications, since StreamlO lIses no
procedures or signals declared there. Note also that there has been no change in the
DEFINITIONS FROM statement (or any OPEN clauses); the IMPORTS and EXPORTS lists do not
automatically open included modules.

Once these steps have been completed, modules can be loaded individually as before (except
that the BIND command is no longer necessary). If your application consists of several
modules, you will first want to bind it into a single configuration which can be loaded as a
lInit (it is both faster and more space efficient to do this, instead of loading modules
individually). The following section contains an example of a configuration familiar to most
Mesa users.

Configurations

This section shows how one Mesa package was converted to take advantage of the new
binding scheme. The Window Manager is a small configuration containing four modules:
WManControl, WManPosition, WManSelection, and WManWindows. In old versions of
Mesa, it also included a small control program (WManLoader) which loaded, bound, and
initialized its other components. The relevant sections of this module are shown below.

DIRECTORY
... ,
WManagerDefs: FROM "wmanagerdefs",
WManControl: FROM "wmancontrol",
WManPosition: FROM "wmanposition",
WManSelection: FROM "wmanselection",
WManWindows: FROM "wmanwindows",
Double: FROM "double";

DEFINITIONS FROM WManagerDefs, ... ,

WManLoader: PROGRAM = BEGIN

control: POINTER TO FRAME[WManControl];
position: POINTER TO FRAME[WManPosition];
selection: POINTER TO FRAME[WManSelection];
windows: POINTER TO FRAME[WManWindows];

datarec: WMDataHandle; -- common shared data

datarec f- AllocateHeapNode[SlzE[WMDataObject]];
control f- NEW WManControl[datarec];
selection f- NEW WManSelection[datarec];
windows f- NEW WManWindows[datarec];
position f- NEW WManPosition[datarec];

BIND selection;
BIND windows;
BIND position;

Mesa 3.0 Change Summary

BIND control;

START selection;
START windows;
START position;
START control;

END.

5

Instead of this small loader, we can write a configuration description that specifies (to the
binder) the modules to be packaged together. The description is basically just a list of
modules to be included; it also specifies the interfaces needed but supplied elsewhere (by the
Mesa system, in this case).

WManager: CONFIGURATION
IMPORTS MenuDefs, RectangleDefs, SegmentDefs,

StreamDefs, StringDefs, SystemDefs, WindowDefs
EXPORTS WManagerDefs
CONTROL WManControl =
BEGIN
WManControl;
WManPosition;
WManSelection;
WManWindows;
END.

Running this description through the binder will produce a single binary configuration
description that can be loaded (and bound to the system) by using a single NEW command.
The description also designates a CONTROL module (WManControl); its global frame will be
the result of the NEW operation. When it is STARTed, it is responsible for initializing all of
the other modules in the configuration. The following commands load and initialize this
configuration:

Alto/Mesa 3.0 12-0CT -77 12:39
>New Filename: wmanager -- 1324048
>Start Global frame: 1324048
>

When it is started, WManControl should create the common data record and pass a pointer
to it to each of the other modules (as a module parameter), just as the old version of
WManLoader did. To accomplish this, the control module must obtain handles on all the
other modules, in order to START them. The old loader conveniently had a POINTER TO FRAME
for each module which it obtained by instantiating them individually. In the new scheme, all
the modules were instantiated at once, and only the frame of the control module was
returned as a result.

To obtain handles on the other modules in the configuration, we can make use of a new
language feature which allows declarations of PROGRAMS as well as procedures and signals to
be included in DEFINITIONS modules. Such PROGRAMS are part of the interface, and are bound
just as procedures and signals in the interface are. Since we already have an interface
(WManagerDefs) that is shared among all components of this configuration, we just add a
few lines to it.

Mesa 3.0 Change Summary

WManagerDefs: DEFINITIONS = BEGIN
· .. ,
WMDataHandle: TYPE = POINTER TO WMDataObject;
· .. ,
WManSelection: PROGRAM[WMDataHandle];
WManWindows: PROGRAM[WMDataHandle];
WManPosition: PROGRAM[WMDataHandle];
· .. ,
END.

6

With this change, the control module can obtain all the necessary frame handles from the
shared interface WManagerDefs. All that remains is to move the module initialization code
from the old window manager loader into the main body of WManControl.

DIRECTORY
· .. ,
WManagerDefs: FROM "wmanagerdefs";

DEFINITIONS FROM WManagerDefs, ... ;

WManControl: PROGRAM
IMPORTS WManagerDefs,
EXPORTS WManagerDefs =
BEGIN

· .. ,
datarec: WMDataHandle; -- common shared data

datarec ~ AliocateHeapNode[SIZE[WMDataObject]];
START WManSelection[datarec];
START WManWindows[datarec];
START WManPosition[datarec];
· .. ,
END.

Note that there has been an important change in the relationship between NEW and START:
parameters are now passed by the START statement. The NEW construct creates an instance of
a module (or configuration) as before, but it no longer runs any of its code. This allows
binding to be performed prior to loading, and allows a configuration's control module to
exercise complete control over the initialization process.

These examples illustrate the major points that must be addressed in converting to Mesa 3.0.
The documents listed at the beginning of this memo contain more details.

Mesa 3.0 Change Summary 7

Appendix

One of the requirements imposed by the new binding scheme is that all external references
must come from DEFINITIONS modules. The Import Export Lister will facilitate the generation
and modification of DEFINITIONS modules. as well as the import and export lists now required
in the module heading.

The Import Export Lister processes an XM file and guesses which DEFINITIONS files should be
imported and exported. The output for each file contains four sections:

1. A list of procedures and signals obtained from each included DEFINITIONS module;
these interfaces should be imported.

2. Procedures and signals that were declared EXTERNAL; these should be imported
from some DEFINITIONS file.

3. A list of public procedures and signals which match a like declaration in some
included DEFINITIONS module. Barring name conflicts. these interfaces should be
exported.

4. Those procedures or signals that are public but not declared in any included
DEFINITIONS file. If any of these are referenced externally. they should be included in
some exported interface.

The lister takes file names either from the command line or interactively from the keyboard.
The default extension is "xm". If an included DEFINITIONS file can't be found on the disk, it is
reported as missing.

The program is available on [MAxcl<OLD-MESA>IMPEXPLlSTER.IMAGE. This image file runs with
the old version of Mesa only (not with Mesa 3.0).

Distri bution:
Mesa Users
Mesa Group

