
To: Distribution 

From: Dick Sweet 

XEROX 
BUSINESS SYSTEMS 

System Development Division 
October 27, 1977 

Subject: Mesa Language Working Group minutes 

The Language Working Group met on 25 October, 1977. The first item considered was an 
ordering of priorities for languages changes for Mesa 4. 

First Priority Group 

Open Procedures 
Monitors 
Long and Based Pointers 
String Constants 

Second Priority Group 

Sequences 
Allocation 
Mutable variant records 
Pointer Arithmetic 
Default Parameters and Fields 
Ports 
Field Descriptors 
Included Identifiers 
Long Integers, Real 

Third Priority Group 

Machine Dependent Records 
Main body as a Procedure 
Painted Integers 

XEROX SDD ARCHIVES 
I have read and understood 

Pages _________ To---------
Reviewer Da te ___ _ 

'1 ~D "'1~1 # of Pages ___ Ref .7 (jV -;;, (. 

Declaration Syntax (anywhere in body, after BEGIN, etc.) 

Fourth Priority Group 

LOOP statement 
Coerce clause 

It was decided that someone (Ed, John, and Dick?) should write a proposal for sequences. 
allocation, mutable, pointer arithmetic, and string constants, which are thought to be 
interconnected. The previous proposals for long pointers and based pointers should be 
dusted off and recirculated. 

A discussion of Open Procedures followed, with the following points made: 

Some reorgainzation of the Symbol Table will obviously have to be made. 

Where should a procedure be specified as open? At the declaration, it is declared as 
potentially inline, along with the default way of calling. A call can specify a means 
of calling other than the default. 



What does it mean to EXPORT an open coded procedure? One would have to have a 
body for the procedure and EXPORT a closed instance. As I recall, the automatic 
generation of a body was not a popular idea. 

What about an open coded procedure whose body is in a DEFINITIONS module when 
someone wants to call it in a closed manner? There should be some way for an 
implementer module to say "Put the code here." 

It was noted that the debugger's fine grain table is not well suited to setting breaks 
inside an open coded instance. 

Likewise, if there are copies of parameters and/or local variables of the open coded 
procedure, the debugger may have trouble. This also goes for the general expansion 
of "contexts" provided for by new declaration syntax on a compound statement 
basis. 

Several consecutive open coded calls should share storage for local variables. 

When should the compiler make local copies of input parameters? This requires 
global flow analysis or more to do in the general case. It was deemed safe not to 
copy in the following case. 

1. The variable is not assigned to or subject to the @ operator. 

2. There are no field assignments using pointers. 

3. There are no procedure calls. 

There was a discussion of other fuzzy features of local variables that would make 
them substitutable, but no real conclusions. It would be nice to allow a terminal 
procedure call, so that the Pilot people could repackage parameter I ists efficiently, 
e.g. 

p: PROCEDURE [h: Handle, a,b,c, ... ] = INLINE 
BEGIN 
h.p[a,b,c, ... ]; 
END; 

It has also been observed that the ability to SHARE program modules makes all global 
variables suspect after an external procedure call. 

Syntax Discussion 

It was agreed that the attribute of being open coded should appear on the body. The 
popular choice of keyword was INLINE. Syntax was needed for the following cases 

1. At the declaration, to specify INLlNE, and to specify the default method of 
calling (inline or out-of-line). Butler suggested INLINE ON DEMAND for a 
default of out-of-line. ' 

2. At the declaration, to specify that a body is also to be compiled. This would 
presumably be automatic if the default calling method is out-of-line. 

3. In an implementer module, when the body is in a definitions module, 
something to specify "Put a body here." Presumably the same keyword 
would work for 2 and 3. 

4. At the call site, whether to call in or out of line. No particular resolution. 

2 


