
This document is for Xerox internal use only.

Ftp Functional Specification

Version 2.0
November, 1977

,

XEr.JX SDD ARCHIVES
II have read and understoo<f

Pages To '\ ---- ----,
Beviewer D~te ------- --------
f of Pages __ ,Ref115Df>3t,'8

XEROX
SYSTEMS DEVELOPMENT DIVISION
3408 Hillview Avenue / Palo Alto / California 94304

This document is for Xerox internal use only.

ftp FUIICtioll3 I Specification

Preface

1. Introduction
1.1 Purpose
1.2 Program structure
1.3 File naming conventions
1.4 Exception handling

FTPError

2. Ftp

Table of Contents

2.1 Program management primitives
FTPlnitialize, FTPFinalize

3. Ftp User
3.1 Program management primitives

FTPCreateUser, FTPDestroyUser

3.2 Connection management primitives
FTPOpenConnection, FTPRenewConnection, FTPCloseConnection

3.3 File access and specification primitives
FTPSetCredentials, FTPSetFilenameDefaults

3.4 File enumeration primitives
FTPEnumerateFiles

3.5 File transfer primitives
FTPStoreFile. FTPRetrieveFile

3.6 File manipulation primitives
FTPDeleteFile. FTPRenameFile

4. Ftp Listener
4.1 Program management primitives

FTPCreateListener, FTPDestroyListener

References

Appendix A: Additional Primitives
A.l Introduction
A.2 Infrequently used connection management primitives

FTPSetConlactSocket, FTPEnableTrace, FTPDisableTrace

A.3 Dump file primitives
FTPlnventoryDumpFile, FTPBeginDumpFile, FTPEndDumpFile

Appendix B: Mail Primitives
8.1 Introduction
8.2 Delivery primitives

FTPBeginDeliveryOfMessage, FTPSendBlockOfMessage, FTPEndDeliveryOfMessage

8.3 Retrieval primitives
FTPBeginRetrievalOfMessages, FTPldentifyNextMessage. FTPRelrieveBlockOfMessage,
FTPEndRetrievalOfMessages

2

4

5
5
5
5
6

8
8

8
8

9

10

11

12

14

14
14

16

17
17
17

17

20
20
20

21

Ftp Functional Specification

Appendix C: Client Listener Appendages
C.l Description of the option
C.2 Exercising the option
C.3 General characteristics
CA Server encapsulation appendages

NoteServerCrealion, NoteServerError, NoteServerDestruction

Appendix 0: Client File Primitives
0.1 Description of the option
0.2 Exercising the option
0.3 General characteristics
0.4 Filename manipulation primitives

DecomposeFilename, ComposeFilename

0.5 Access control primitives
InspectCredentials

0.6 File enumeration primitives
EnumerateFiles

0.7 File transfer primitives
OpenFile, ReadFile, WriteFile, CloseFile

0.8 File manipulation primitives
DeleteFile, RenameFile

Appendix E: Sample Configuration and Program
E.l I ntrod uction
E.2 Sample configuration
E.3 Sample program

Appendix F: Production Configurations and File Locations

3

24
24
24
25
25

27
27
27
28
29

30

30

31

32

33
33
33
33

35

Ftp Functional Specification 4

Preface

This document details the procedural interface to the recently completed Mesa Ftp Package,
Ftp 2.0, an outgrowth of earlier work by Smokey Wallace and Hal Murray. This document
obsoletes the author's two previous design documents, [1, 2]. The code described herein is
currently running and available. The reader is referred to Appendices E and F for file
locations and other details concerning its use. Comments, bug reports, suggestions for
change or addition, and cries for help should be addressed to the implementor, Jim White
(Wh ite@Maxc).

Ftp Functional Specification 5

1. Introduction

1.1. I~urpose

The File Transfer Package (Ftp) is one means of several for accessing and manipulating
remote files via the network. Ftp provides primitives for storing. retrieving, deleting,
renaming, and enumerating remote files. Ftp trades in whole files, in contrast to a page­
level access package, for example, which trades in smaller units (i.e. pages of files). or
CopyDisk, which trades in larger ones (i.e. an entire disk).

Ftp provides an interface to Alto, Maxc. IFS, and Juniper file systems, and any others that
implement the long-standing File Transfer Protocol (FrP) described in [3].

In addition to providing file-related services, Ftp 2.0 provides primitives for delivering mail
to and retrieving mail from remote mailboxes. Ftp is thus also a means for accessing
mailboxes on Maxc or any other host that implements the recently specified Mail Transfer
Protocol (MTP) described in [4].

1.2. I~rogram Structure

Every Ftp dialogue involves two parties, designated user and server, which are linked by a
network connection. In point of fact, file and mail operations are implemented by separate servers and
hence a dialogue in which operations of both types are carried out actually involves three parties: the local user.
the remote file server, and the remote mail server. The Ftp implementation, however. disguises the distinction
between the two servers and presents to the client the illusion of a single server capable of handling both types
of requests. At one end, a client program initiates and controls the dialogue by calling
procedures provided by a local Ftp User. At the other end, a passive Ftp Server responds
and replies to requests it receives from the distant Ftp User. Several Servers can coexist
within a single host and hence several independent file transfers can proceed concurrently.
Ftp Servers are created by a single, resident Ftp Listener in response to connection requests
from distant Ftp Users. Each Server is spawned as a separate process and competes for
system resources with other local processes under the control of a scheduler. When the
distant Ftp User terminates its dialogue with the local Ftp Server, the Server destroys itself.

The remainder of this document describes the client's interface to the Ftp User and Listener;
the Ftp Server, having no external interface, is not discussed further. In the procedure
descriptions presented later in this document, the terms local and remote distinguish the
host containing the described procedure from the distant host to which that host is
connected, respectively.

1.3. File Naming Conventions

Ftp provides the client with two separate mechanisms for designating remote files: absolute
filenames, which must conform to the file naming conventions of the remote file system;
and virtual filenames, having a host-independent structure, which are mapped into absolute
filenames by the remote file system. The purpose of this two-fold scheme is, on the one
hand, to permit the exact specification of remote filenames by human users familiar with
remote file naming conventions and, on the other, to permit the mechanical generation of

Ftp Functional Specification 6

filenames by clients ignorant of such conventions.

Absolute filenames are STRINGs. Any internal structure an absolute filename might possess
is indicated by delimiters embedded in the STRING. Virtual filenames, on the other hand,
have four components--device, directory, name, and version--each of which is a STRINO:

VirtualFilename: TYPI~ = POINTER TO VirtualFilenameObject;

VirtualFilenameObject: TYPE = RECORO [device, directory, name, version: STRING];

As part of its mapping operation, the remote file system combines these components to
form a legal absolute filename (using appropriate field delimiters where necessary). The Maxc
file system maps the device, directory, and version components of a virtual filename into the corresponding
Tenex filename fields and maps the name component into the name and extension fields. The Alto file system
ignores the device and directory components, maps the name component into the name and extension fields, and
maps the version component into the corresponding Alto filename field. IFS ignores the device component,
maps the directory component into the directory and subdirectory fields, and maps the name and version
components into the corresponding IFS filename fields.

The client may use either or both of the file naming schemes outlined above. or a
combination of the two. Whenever the local Ftp User communicates a remote filename to
the remote Ftp Server. it sends both an absolute filename and a virtual filename. The
absolute filename is that supplied by the client as a parameter to the Ftp User procedure
that initiates the exchange. The virtual filename is that supplied by the client in a previous
call to the FTPSetFilenameDefaults procedure described in Section 3.3. If all components of
the virtual filename are NIL (e.g. before FTPSetFilenameDefaults is called), the remote file is
completely specified by the absolute filename. If the absolute filename is NIL, the remote
file is completely specified by the virtual filename. If both the absolute and virtual
filenames are non-NIL, the remote Ftp Server has the option of lIsing the virtual filename to
default unspecified fields in the absolute filename.

The term file group designator denotes a filename, either absolute or virtual or both, that
names a group of files, rather than a single file. File group designators often contain special
characters that indicate wild or unspecified portions of the filename. The Maxc file system
recognizes as a legitimate value for the device, directory, name, version, and/or extension field, the special
character, asterisk ('*), denoting an arbitrary field value. The Alto file system recognizes the two special
characters, asterisk COo), denoting zero or more arbitrary characters, and pound sign ('#), denoting exactly one
arbitrary character. I FS recogniZes the special character, asterisk ('*), denoting zero or more arbitrary characters.

1.4. Exception Handling

Exceptional conditions encountered by Ftp are reported to the client by means of a single
ERROR signal. FTPError; its one parameter, an enumerated type, pinpoints the error.
Exceptional conditions reported in this way include not only those explicitly detected by Ftp
but also those that originate as signals within the Pup package, as well as some that originate
as signals within the Alto file package. Ftp restores itself to a consistent state after every error (in
response to the UNWIND signal). Therefore, for example, if the client's connection to a remote Ftp Server
breaks (e.g. because the remote host breaks), the client can close the connection and open a new one (in this
case, to another host) without first having to destroy and recreate the local Ftp User.

Ftp Functional Specification 7

The errors that Ftp may report to the client are summarized below. The most prominent of
the errors generated by particular procedures are listed (using a notation something like that
used for Mesa declarations) with the descriptions of those procedures later in this document.
The errors classed below as implementation or unidentified errors can be generated (at least
in principle) by nearly every procedure. Because they are so pervasive in principle and rare
in practice, such errors are excluded from the descriptions of the individual procedures to
which they nevertheless apply:

FTPError: F.RROR [ftpError: FtpError];

FtpError: TYI)F. = {

-- credential errors
missingCredentials, noSuchPrimaryUser, noSuchSecondaryUser,
incorrectPrimaryPassword, incorrectSecondaryPassword, requestedAccessDenied,

-- communication errors
noSuchHost, connectionTimedOut, connectionRejected, connectionClosed,
noRouteToNetwork,

-- file errors
iIIegalFilename, noSuchFile, noRoomForFile, fileDataError, unexpectedEOF,

-- dump errors
errorBlocklnDumpFile. unrecognizedBlocklnDumpFile, blocklnDumpFileTooLong,
dumpFileCheckSumlnError,

-- mail errors
noValidRecipients, noSuchMailbox, noSuchForwardingHost, noSuchDmsName,
maiJboxlsBusy,

-- client state errors
duplicateListener, filesModuleNotLoaded, mailModuleNotLoaded, missingConnection,
duplicateConnection, busyConnection, unopenedForFiles, unopenedForMail,
enumeratedFileProcessedOutOfSequence,

-- implementation errors
protocolVersionMismatch, notlmplementedLocally, notlmplementedRemotely,
unrecognizedMarkByte, unexpectedMark, inappropriateMarkByte, stringTooLong,
missingPropertyList, malformedPropertyList, unrecognizedProperty,
duplicateProperty, iIIegalBooleanProperty, iIIegalExceptionlndex,
duplicateMailboxException.illegaIExceptionErrorCode. missingMessageLength,
inappropriateCommandReported, malformedPropertyListReported,
illegalFileCharacteristicReported, pupGlitch,

Ftp Functional Specification 8

-- unidentified errors
unidentifiedTransientError, unidentifiedPermanentError. unidentifiedError};

2. Ftp

2.1. I)rogram Management Primitives

Ftp provides two procedures for controlling its overall operation. The first, FTPlnitia)ize.
initializes Ftp for operation by preparing the necessary internal data structures and
initializing the Pup Package (via a call to PupDefs.PupPackageMake). The client must call
this procedure before calling any other Ftp procedures. Redundant calls simply increment
a use count:

FTPlnitialize: PROCEOURE;

The second procedure, FTPFinalize, finalizes Ftp's operation by finalizing the Pup Package
(via a call to PupDefs.PupPackageDestroy) and disposing of Ftp's internal data structures.
Before calling this procedure, the client should destroy any Users and Listener that may
exist. The client must call no other Ftp procedures (except FTPlnitialize) once this
procedure has been invoked. Calls corresponding to redundant calls to FTPlnitialize simply
decrement the use count:

FTPFinalize: PROCEOURE;

3. Ftp User

3.1. Program Management Primitives

Ftp provides two procedures for controlling Ftp Users, several of which can coexist within a
single host. The first procedure, FTPCreateUser, creates a new Ftp User:

FTPCreateUser: PROClmu R Ii: [clientFilePrimitives: ClientFilePrimitives, clientData:
UNSPECIFIF.O] RETURNS [ftpuser: FTPUser];

ClientFilePrimitives: TYPE = POINTER TO ClientFilePrimitivesObject;
ClientFiJePrimitivesObject: TYPE = R(;;CORf) [•••];

FTPUser: TYPE = POINTF.R TO FTPUserObject;
FTPUserObject: PRIVATE TYPIi: = RECORO[•.•];

The client must retain the result ftpuser, since each of the other procedures described in this
section requires it as a parameter. The ftpuser is a pointer to a private record containing all
of the state information the newly created Ftp User requires to function properly.

By supplying the parameter clientFilePrimitives (rather than setting it to NIL), the client can
provide its own local file system interface, rather than accept the interface to the standard
Alto file system which Ftp otherwise supplies. If it elects to exercise this option, the client

Ftp Functional Specification 9

may also provide a parameter, clientData, to be passed by Ftp as an argument to each of the
file primitives the client supplies. The reader is referred to Appendix 0 for detailed
motivation for and instruction in the use of this option.

The second procedure, FTPDestroyUser, destroys a previously created Ftp User, reclaiming
any local resources that may have been allocated to it and, if necessary, closing its
connection to the remote host (which may involve a delay as control messages are exchanged
via the network);

FTPDestroyUser: PROCF.OURE [ftpuser: FTPUser];

3.2. Connection Management Primitives

Ftp provides three procedures for controlling communication with remote Ftp Servers. The
first, FTPOpenConnection, establishes a connection to an Ftp Server at the designated host
(which is specified by any string acceptable to PupDefs.GetAddress). A single Ftp User can
support just one open connection at a time. The client must specify, by means of the
purpose parameter, the class(es) of remote objects--files, mail, or filesAndMail--it intends to
manipulate via the connection. The Ftp User employs this information to make contact with the

appropriate server(s);

FTPOpenConnection: PROCEOURF, [ftpuser: FTPUser, host: STRING, purpose: Purpose];

Purpose: TYPE = {files, mail, fiJesAndMail};

FTPError: F.RROR [{noSuchHost, connectionTimedOut, connection Rejected,
connectionClosed, noRoute T oNetwork, filesModuleNotLoaded,
mailModuleNotLoaded, duplicateConnection}];

The second procedure, FTPRenewConnection, prevents a previously established but long
inactive connection from being timed out and broken by the remote Ftp Server. A Server
created by Ftp 2.0, for example, will break its connection to a remote Ftp User after ten
minutes of inactivity. Calling the procedure below, while performing no real operation, is
sufficient to convince a remote Ftp Server that the local client is alive, well, and interested
in maintaining the connection. The client may call this procedure at any time (except
during the course of a remote file enumeration or dump file inventory) without ill effect
upon the connection. Because file and mail operations are implemented by different servers, the client's

connection to one can be timed out because of inactivity while its connection to the other remains intact. To

avoid such anomalies, the client must take care to exercise each connection with the required frequency:

FTPRenewConnection: PROCEOURF. [ftpuser: FTPUser];

FTPError: ER ROR [{connection TimedOut, connectionClosed,
noRouteToNetwork, missingConnection, busy Connection}];

The third procedure, FTPCloseConnection, breaks a previously established connection to a
remote Ftp Server. Redundant calls upon this procedure are treated as no operations:

Ftp Functional Specification 10

FTPCloseConnection: I)ROCF.OURr~ [ftpuser: FTPUser];

The three connection management procedures described above block the client until the
connection to the remote Ftp Server has been established, renewed, or broken, respectively
(which may involve a delay as control messages are exchanged via the network).

3.3. File Access and Specification Primitives

Ftp provides two procedures for obtaining access to remote files and for assisting in the
formulation of remote filenames. The first, FTPSetCredentials, specifies the credentials to
be implicitly used to access the remote files or mailboxes specified in subsequent procedure
calls. This procedure declares either the client's primary or secondary identity, which the
Ftp User associates with the first or second remote filename, respectively, in subsequent
parameter lists. Mail primitive.') use the client's primary credentials only. To rename a file, for
example. the client must present two sets of credentials, one (primary) to access the file and
the other (secondary) to access its new location. The credentials are inspected only when
access to the remote file is actually attempted (as the result of a subsequent procedure call).
The client can retract previously specified primary or secondary credentials by calling
FTPSetCredentials with both user and password set to NIL (or. of course. by assigning user
and password new values):

FTPSetCredentials: PROCEOURR [ftpuser: FTPUser, status: Status, user, password:
SrRING];

Status: TYPE = {primary, secondary};

The second procedure. FTPSetFilenameDefaults, specifies the virtual filename to be
implicitly associated with the remote (absolute) filenames specified in subsequent procedure
calls. The reader is referred to Section 1.3 for a discussion of virtual filenames and their
use. This procedure declares either the client's primary or secondary virtual filename, which
the Ftp User associates with the first or second remote filename, respectively, in subsequent
parameter lists. To rename a file, for example, the client may have to specify two virtual
filenames, one (primary) to identify the file to be renamed, the other (secondary) to specify
its new name. The virtual filename is interpreted only when access to the remote file is
actually attempted (as the result of a subsequent procedure call). The client can retract (or
decline to specify) components of a previously specified primary or secondary virtual
filename by calling FTPSetFilenameDefaults with those components set to NIL (or, of course,
by assigning them new values).:

FTPSetFilenameDefaults: PROCEOURE [ftpuser: FTPUser, status: Status,
virtualFilename: VirtuaIFilename];

Status: TYPE = {primary, secondary};
VirtualFilename: TYPE = POINTER TO VirtualFilenameObjectj

Ftp Functional Specification 11

VirtualFilenameObject: TYPE = RECORD [device, directory. name, version: STRING];

3.4. File Enumeration I~rimitives

Ftp provides one procedure for enumerating the members of a remote file group. This
procedure, FTPEnumerateFiJes, supplies in turn to a client-provided procedure, processFile,
the absolute and virtual filename of each file in the remote file group whose file group
designator, remoteFiles, is specified, along with various pieces of information about the file
and an additional parameter, processFileData, supplied by the client. Unknown or
unspecified file information is specified as unknown, zero. or NIL, as appropriate. The
reader is referred to Section 1.3 for a discussion of virtual filenames and their use. The order

in which the filenames are presented to the client is host-dependent:

FTPEnumerateFiles: PROCEDURE [ftpuser: FTPUser. remoteFiles: SrRING, intent: Intent,
processFile: PROCF.DURI<: [UNSPF.CIFIED, STRING. VirtualFilename, FileJnfo],
processFileData: UNSPECI FIF.D];

Intent: TYPF. = {enumeration, retrieval, deletion, renaming, unspecified};
VirtualFilename: TYPF. = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPF. = RECORD [device, directory, name, version: SrRING];
Filelnfo: TYPF. = POINTER TO FilelnfoObject;
FilelnfoObject: TYPE = RECORD [

fileType: FileType, byteSize: CARDINAJ., byteCount: InlineDefs.LongCARDlNAJ..
creationDate, writeDate. readDate, author: SrRING];

FileType: TYPF. = {text, binary, unknown};

FTPError: ERROR [{missingCredentials, noSuchPrimaryUser,
noSuchSecondaryUser, incorrectPrimaryPassword,
incorrect Secondary Password, requestedAccessDenied, connectionTimedOut,
connectionClosed, noRouteToNetwork, iIIegalFilename, noSuchFile,
noRoomForFile. fileDataError. missingConnection, busyConnection.
unopenedForFiles}];

As a part of requesting the enumeration, the client indicates to the Ftp User. via the
parameter intent, how it intends to process the files in the group. This information enables
the Ftp User to intelligently select from among several possible strategies for effecting the
enumeration. Since most of the enumeration strategies occupy the remote Ftp Server until
the enumeration is complete. Ftp prohibits processFile from calling local Ftp User
procedures. other than those implied by intent, that communicate with the remote Server.
The client may specify any of the following intents:

1. An intent of enumeration declares that the client seeks the names (and file
information) of the designated files (e.g. for presentation to a human user) and
intends to manipulate the files in no other way during the course of the
enumeration. More specifically. the client guarantees (and Ftp enforces) that
processFile wil1 make no calls to local Ftp User procedures that communicate with
the remote Ftp Server.

Ftp Functional Specification 12

2. An intent of retrieval declares that the client seeks to retrieve some or all (but
possibly none) of the designated files and to manipulate them in no other way
during the course of the enumeration. The client's processFile procedure may
retrieve the file whose name is presented to it by supplying that name to the
FTPRetrieveFile procedure described in Section 3.5. More specifically. then, the
client guarantees (and Ftp enforces) that processFile will make no calls to local Ftp
User procedures (other than FTPRetrieveFile) that communicate with the remote Ftp
Server.

3. An intent of deletion declares that the cJien"t seeks to delete some or all (but
possibly none) of the designated files and to manipulate them in no other way
during the course of the enumeration. The client's processFile procedure may delete
the file whose name is presented to it by supplying that name to the FTPDeleteFile
procedure described in Section 3.6. More specifically. then, the client guarantees
(and Ftp enforces) that processFile will make no calls to local Ftp User procedures
(other than FTPDeleteFile) that communicate with the remote Ftp Server.

4. An intent of renaming declares that the client seeks to rename some or all (but
possibly none) of the designated files and to manipulate them in no other way
during the course of the enumeration. The client's processFile procedure may
rename the file whose name is presented to it by supplying that name to the
FTPRenameFile procedure described in Section 3.6. More specifically, then. the client
guarantees (and Ftp enforces) that processFile will make no calls to local Ftp User
procedures (other than FTPRenameFile) that communicate with the remote Ftp
Server. In point of fact, renaming is currently little more than a synonym for unspecified. described

below; all filenames are spooled onto a local scratch file before any are presented to the client.

5. An intent of unspecified declares that the client seeks unconstrained access to the
designated files. The client's processFile procedure may retrieve, delete, or rename
the file whose name is presented to it (or any other file, for that matter) by calling
the appropriate Ftp User procedure. More specifically, processFile may make calls
on any local Ftp User procedures it chooses since. in this case, Ftp spools the
filenames onto a local scratch file (which Ftp promptly deletes once it has served its
purpose) before presenting them to the client.

3.5. File Transfer Primitives

Ftp provides two procedures for transferring files between the local and remote file systems.
The first, FTPStoreFile, stores a copy of the designated localFile in the remote file system,
creating a new remoteFile with the indicated name and returning the size, byteCount, of the
transmitted file in bytes:

FTPStoreFile: PROCmURIi: [ftpuser: FTPUser, local File, remoteFile: STRING, fileType:
FileType] RETURNS [byteCount: InlineDefs.longcAROINAI,];

Ftp Functional Specification 13

FileType: TYPE = {text, binary, unknown};

FTPError: ERROR [{missingCredentials, noSuchPrimaryUser,
no Such Secondary User , incorrectPrimaryPassword,
incorrectSecondaryPassword, requestedAccessDenied, connectionTimedOut,
connection Closed, noRouteToNetwork, i1JegalFilename, noSuchFile,
noRoomForFile, fileDataError, missingConnection, busyConnection,
unopenedForFiles, enumeratedFileProcessedOutOfSequence}];

As an additional parameter to FTPStoreFile, the client specifies the fileType--text or
binary--of the file to be stored. The remote Ftp Server uses this information in deciding
how it should store the file in its file system (e.g. on Maxc, text files are stored as 7-bit
bytes, binary files as 8-bit bytes). If the client declines to provide this information (e.g.
because it doesn't have it), FTPStoreFile makes an educated guess about the file's type.
The reader is referred to the discllssion of the OpenFile procedure in Appendix D for a
description of the algorithm used in making this determination.

The client can effect the remote storage of a whole group of local files by using
FTPStoreFile (to store a single file) in conjunction with the EnumerateFiles procedure
described in Appendix D (to enumerate the files to be stored).

The FTPStoreFile procedure has yet another use in connection with the construction of
remote dump files, as· described in Appendix A.

The second procedure, FTPRetrieveFile, stores a copy of the designated remoteFile in the
local file system, creating a new localFile with the indicated name and returning the size,
byteCount, of the transmitted file in bytes:

FTPRetrieveFile: PROCEOURF. [ftpuser: FTPUser, local File, remoteFile: STRING]
RETURNS [byteCount: InlineDefs.LongcAROINAL];

FTPError: ERROR [{missingCredentials, noSuchPrimaryUser,
noSuchSecondaryUser, incorrectPrimaryPassword,
incorrectSecondaryPassword, requestedAccessDenied, connectionTimedOut,
connection Closed, noRouteToNetwork, iIIegalFilename, noSuchFile,
noRoomForFile, fileDataError, errorBlocklnDumpFile,
unrecognizedBlocklnDumpFile, blocklnDumpFile TooLong,
dumpFileCheckSumlnError, missingConnection, busy Connection ,
unopenedForFiles, enumeratedFileProcessedOutOfSequence}];

The client can effect the local storage of a whole group of remote files by using
FTPRetrieveFile (to retrieve a single file) in conjunction with the FTPEnumerateFiles
procedure described in Section 3.4 (to enumerate the files to be retrieved).

The FTPRetrieveFile procedure has yet another use in connection with the retrieval of
remote dump files, as described in Appendix A.

Ftp Functional Specification 14

3.6. File Manipul:ltion Primitives

Ftp provides two procedures for manipulating existing remote files. The first.
FTPOeleteFile, deletes the specified remoteFile. reclaiming the space it occupied on secondary
storage:

FTPOeleteFile: PROCF.OURE [ftpuser: FTPUser, remoteFile: STRING];

FTPError: ERROR [{missingCredentials, noSuchPrimaryUser.
noSuchSecondaryUser, incorrectPrimaryPassword.
incorrect Secondary Password, requestedAccessOenied. connectionTimedOut,
connection Closed, noRouteToNetwork, illegalFilename, noSuchFile,
fileOataError, missingConnection, busyConnection. unopenedForFifes,
enumeratedFileProcessedOutOfSequence}];

The client can effect the deletion of a whole group of remote files by using FTPOeJeteFile
(to delete a single file) in conjunction with the FTPEnumerateFiles procedure described in
Section 3.4 (to enumerate the files to be deleted).

The second procedure, FTPRenameFile, renames the remote file whose current name,
currentFile. is specified, assigning it the new name, newFile:

FTPRenameFile: PROCEOURE [ftpuser: FTPUser, currentFiIe, newFile: STRING];

FTPError: F.R ROR [{ missingCredentials, noSuchPrimaryUser,
noSuchSecondaryUser, incorrectPrimaryPassword.
incorrectSecondaryPassword, requestedAccessOenied, connectionTmedOut,
connectionClosed, noRoute ToNetwork, iIIegalFiJename, noSuchFile,
noRoomForFile, fileOataError. missingConnection. busyConnection,
unopenedForFiles. enumeratedFileProcessedOutOfSequence}];

The client can effect the renaming of a whole group of remote files by using FTPRenameFile
(to rename a single file) in conjunction with the FTPEnumerateFiles procedure described in
Section 3.4 (to enumerate the files to be renamed).

4. Ftp Listener

4.1. I)rogram Management I)rimitives

Ftp provides two procedures for controlling the local Ftp Listener. The first procedure.
FTPCreateListener, creates the Listener. The client must specify. by means of the purpose
parameter, the class{es) of local objects--files, mail, or filesAndMail--it wishes be made
accessible to remote Ftp Users. The Listener employs this information to monitor the appropriate contact

socket(s). The newly created Ftp Listener will create local Ftp Servers in response to requests
from remote Ftp Users. A Server is destroyed when the remote User explicitly terminates its
dialog with the Server, or after ten minutes of inactivity:

Ftp Functional Specification

FTPCreateListener: PROCEDURE [purpose: Purpose, clientListenerAppendages:
ClientListenerAppendages, clientFilePrimitives: ClientFilePrimitives, clientData:
UNSPECII'IEO];

Purpose: TYI'E = {files, mail, filesAndMail};
ClientListenerAppendages: TYPE = POINTER TO ClientListenerAppendagesObject;
ClientListenerAppendagesObject: TYPE = RECORO [•••];

ClientFilePrimitives: TYPE = POINTER TO ClientFilePrimitivesObject;
ClientFllePrimitivesObject: TYPE = RECORO [•••];

FTPError: ER ROR [{ duplicateListener, filesModuleNotLoaded,
MailModuleNotLoaded}];

15

By supplying the parameter clientListenerAppendages (rather than setting it to NIL), the
client can provide procedures to be called at strategic points in the operation of the Ftp
Listener and any Servers it creates. The reader is referred to Appendix C for detailed
motivation for and instruction in the use of this option.

By supplying the parameter clientFilePrimitives (rather than setting it to NIL). the client can
provide its own local file system interface, rather than accept the interface to the standard
Alto file system which Ftp otherwise supplies. If it elects to exercise this option, the client
may also provide a parameter, clientData, to be passed by Ftp as an argument to each of the
file primitives the client supplies. (Alternately, the client may supply this parameter on a
per-Server basis by means of the NoteServerCreation listener appendage.) The reader is
referred to Appendix D for detailed motivation for and instruction in the use of this option.

The second procedure, FTPDestroyListener, destroys the previously created Ftp Listener.
reclaiming any local resources that may have been allocated to it and, if so instructed by the
abortServers parameter, destroying any of its Servers that may exist at the time (rather than
waiting for them to terminate normally). Destroying an Ftp Server may require closing its
connection to the remote host, which may in turn involve a delay as control messages are
exchanged via the network. Redundant calls upon this procedure are treated as no
operations:

FTPDestroyListener: PROCEOURE [abortServers: BOOLEAN];

Ftp Functional Specification 16

References

1. Jim White, "Mesa FTP Specification", 15 June 1977.

2. Jim White, "Mail Update to Mesa FTP Specification", 9 August 1977.

3. John Shoch, "A File Transfer Protocol Using the BSP -- 2nd edition", 15 June
1976.

4. Ed Taft, "Pup Mail Transfer Protocol (Edition 4)", 4 September 1977.

5. Ted Myer and Austin Henderson, "Message Transmission Protocol" (RFC 680), 15
May 1975.

6. Hal Murray. "How to get at the Pup Package", 19 October 1977.

7. Hal Murray, "Specifications for the current Mesa Pup Package", 19 October 1977.

Ftp Functiou;.1 Specification 17

Appendix A: Additional Primitives

A. t. Introtluction

In addition to the primitives described in the body of this document, Ftp supplies a number
of less frequently used procedures, described below.

A.2. Infrequently Used Connection Managemelit I)rimitives

Ftp provides three procedures for controlling communication with remote Ftp Servers in a
debugging context. The first, FTPSetContactSocket, specifies the remote socket at which
the local Ftp User should expect to find the remote Ftp Listener, in subsequent calls to
FTPOpenConnection. Experimental Ftp Listeners are often attached to non-standard sockets
during their checkout phase; the FTPSetContactSocket procedure permits communication
with such Listeners. The client must specify, by means of the purpose parameter, the
class(es) of remote objects--files, mail, or filesAndMail--it expects to find accessible at this
socket (file- and mail-related transactions being supported by distinct servers created by distinct listeners on

distinct sockets). A socket number of zero resets the affected socket(s) to their standard,
default values (i.e. 3 for files and 7 for mail):

FTPSetContactSocket: PROCF.DURF. [ftpuser: FTPUser, socket: PupDefs.Pair, purpose:
Purpose];

PupDefs.Pair: TYPF. = MACHINF. DF.PENDF.NT RECORD [first, second: CARI>INAL];

Purpose: TYPF. = {files, mail, filesAndMail};

The second procedure, FTPEnableTrace, causes a textual representation of all subsequent
interactions between the local Ftp User and the remote Ftp Server to be presented to the
client in zero or more calls to a write5tring procedure it supplies. Successive STRINGs

represent successive segments of the character stream describing the dialogue; STRING

boundaries are insignificant. Redundant calls to FTPEnableTrace are treated as no
operations. Be advised that passwords may appear in the trace:

FTPEnableTrace: PROCEDURF. [ftpuser: FTPUser, writeString: PROCEDURE [STRING]];

The third procedure, FTPDisableTrace, prevents the textual representation of User/Server
interaction from being reported to the client, and disassociates from the Ftp User the
writeString procedure supplied by the client in a previous call to FTPEnableTrace.
Redundant calls to FTPDisableTrace are treated as no operations:

FTPDisableTrace: PROCEI)URF. [ftpuser: FTPUser];

A.3. Dump File l)rimitives

Ftp provides three procedures for manipulating remote dump files. The first,
FTPlnventoryDumpFile, supplies in turn to a client-provided procedure, processFile, the
(absolute) filename of each file in a specified remoteDumpFile, along with an additional
parameter, processFileData, supplied by the client:

ftp functional Specification

FTPlnventoryDumpFile: PROCEOURE [ftpuser: FTPUser, remoteDumpFile: STRING,

intent: DumpFilelntent, processFile: PROCEOlJRF. [UNSPF.CIFIEO, STRING],

processFileData: UNSPECIFllm];

Intent: TYPE = {enumeration, retrieval, deletion, renaming, unspecified};
DumpFilelntent: TYPE = Intent[enumeration .. retrievaJ];

18

FTPError: F.RROR [{missingCredentials, noSuchPrimaryUser.
noSuchSecondaryUser, incorrectPrimaryPassword,
incorrectSecondaryPassword, requestedAccessDenied, connectionTimedOut,
connectionClosed, noRouteToNetwork, iIIegalFilename, noSuchFile,
fileDataError, errorBJocklnDumpFile. unrecognizedBlocklnDumpFile,
blocklnDumpFile Toolong, dumpFileCheckSumlnError, missing Connection,
busy Connection , unopenedForFiles}];

As a part of requesting the inventory, the client indicates to the Ftp User, via the parameter
intent, how it intends to process the files contained in the dump file. This information
enables the Ptp User to intelligently select from among several possible strategies for
effecting the inventory. Since each of the inventory strategies occupies the remote Ptp
Server until the inventory is complete, Ptp prohibits processFiJe from calling local Ftp User
procedures, other than those implied by intent, that communicate with the remote Server.
The client may specify either of the following intents:

1. An intent of enumeration declares that the client seeks the names of the dumped
files (e.g. for presentation to a human user) but has no interest in retrieving their
contents. More specifically, the client guarantees (and Ptp enforces) that processFile
will make no calls to local Ptp User procedures that communicate with the remote
Ftp Server.

2. An intent of retrieval declares that the client seeks to retrieve some or all (but
possibly none) of the dumped files. The client's processFile procedure may retrieve
the file whose name is presented to it by supplying that name to the FTPRetrieveFile
procedure described elsewhere. More specifically, then, the client guarantees (and
Ftp enforces) thatprocessFile will make no calls to local Ptp User procedures (other
than FTPRetrieveFile) that communicate with the remote Ptp Server.

The second procedure, FTPBeginDumpFile, initializes a new remote dumpFile and prepares it
to receive files via the FTPStoreFile procedure described elsewhere. In the presence of an
open dump file, FTPStoreFile's invocation is interpreted as a request to dump the specified
localFile. In this context, FTPStoreFile's remoteFile parameter is interpreted as the name by
which the file is to be known within the remote dump file. Since the construction of a
remote dump file occupies the remote Ptp Server until the dump file is complete, Ftp
prohibits the client from calling local Ptp User procedures, other than FTPStoreFile, that
communicate with the remote Ftp Server while the dump file is under construction (i.e. until
the FTPEndDumpFile procedure described below is invoked):

Ftp Functional Specification 19

FTPBeginDumpFile: PROCEnURR [ftpuser: FTPUser, remoteDumpFile: STRING];

FTPError: RR ROR [{ missingCredentials, noSuchPrimaryUser,
noSuchSecondaryUser, incorrectPrimaryPassword,
incorrectSecondaryPassword, requestedAccessDenied, connectionTimedOut,
connectionClosed, noRouteToNetwork, iIIegalFilename, noRoomForFile,
fileDataError, missingConnection, busyConnection, unopenedForFiles}];

The third procedure, FTPEndDumpFile, finalizes a newly created remote dump file after all
the desired files have been added to it:

FTPEndDumpFile: PROCROURR [ftpuser: FTPUser];

FTPError: F.RROR [{ connectionTimedOut, connectionClosed,
noRouteToNetwork, noRoomForFile, fileDataError, missingConnection,
busyConnection}];

Ftp Functional Specification 20

Appendix B: Mail Primitives

8.1. Introduction

In addition to file primitives, Ftp supplies a family of procedures. described below, for
manipulating remote mailboxes.

8.2. Delivery I:}rimitives

Ftp provides three procedures for delivering (and/or forwarding) mail to remote mailboxes.
The first, FrPBeginDeliveryOfMessage. initiates the delivery and/or forwarding of a message
by enumerating its intended recipients via a linked list. mailbox List. In the simpler case.
called delivery, in which a recipient's mailbox resides on the remote host (a case which Ftp
distinguishes by finding mailboxHostName set to NIL), the corresponding list element need
contain only the host-specific name. mailboxName, of the remote mailbox to which a copy
of the message is to be appended. and a pointer. next. to the next element in the list (NIL

signalling the end of the list). In the more complex case. called forwarding (which not all
Ftp Servers will support), in which a recipient's mailbox resides on a third host, the
corresponding list element must also contain the name. mailboxHostName, of that third host
and (optionally) the full dmsName of the target mailbox (which the forwarder may be able
to use to locate the recipient if he has moved):

FTPBeginDeliveryOfMessage: PROClmURE [ftpuser: FTPUser, mailboxlist: Mailbox,
allocateString: PROCEDURE [CARIlINAL] RETURNS [STRING]];

Mailbox: TYPE = POINTER TO MailboxObject;
MailboxObject: TYPE = RECORD [next: Mailbox,

mailboxName, mailboxHostName, dmsName: STRING,

errorCode: ErrorCode, errorMessage: SrRING];

ErrorCode: TYPE = {ok, noSuchMailbox, no Forwarding Provided,
unspecifiedTransientError, unspecifiedPermanentError, unspecified Error };

FTPError: ERROR [{noSuchPrimaryUser, noSuchSecondaryUser,
incorrect PrimaryPassword, incorrectSecondaryPassword,
connection TimedOut, connectionClosed, noRoute T oNetwork,
noValidRecipients, noSuchForwardingHost, noSuchDmsName, mailboxlsBusy,
missingConnection, busy Connection, unopenedForMail}];

Delivery of the message succeeds or fails for each of its intended recipients independently.
Either FTPBeginDeliveryOfMessage or the FTPEndDeliveryOfMessage procedure described
below may report the failure of an individual delivery attempt by despositing in the
appropriate list element an errorCode intended for examination by the client (ok signalling
successful delivery. but only tentatively by FTPBeginDeJiveryOfMessage) and, if errorCode is
one of the three having the form unspecified ... Error, an error Message intended for
examination by a human user. Storage for any error messages that may be returned is
allocated via the allocateString procedure provided by the client. which assumes
responsibility for releasing the storage.

Ftp Functional Specification 21

-'The second procedure, FTPSendBlockOfMessage, specifies a portion of the text of a message

and is called repetitively after the message's recipients have been identified to
FTPBeginDeliveryOfMessage. Successive calls specify the location in the client's address
space, source, and the length in bytes, byteCount, of successive blocks of text. The text of
the message must include a message header conforming to ARPANET standards as defined
in [5]. Throughout the message, end of line is indicated via a carriage return (CR):

FTPSendBlockOfMessage: PROCEDURE [ftpuser: FlPUser, source: POINTER,

byteCount: CARDINAL];

FTPError: F.R ROR [{connection TimedOut, connectionClosed,
noRouteToNetwork, missingConnection, busyConnection,
unopenedForMaiJ}];

The third procedure, FTPEndDeliveryOfMessage, signals the end of the sequence of calls to
FTPSendBlockOfMessage and, therefore, of the message's text, and effects the message's
delivery and/or enqueues it for forwarding:

FTPEndDeliveryOfMessage: PROCEDU R Ii: [ftpuser: FTPUser];

FTPError: ER ROR [{connection TimedOut, connectionClosed,
noRouteToNetwork, missingConnection, busyConnection,
unopenedForMail}];

Like the FTPBeginDeliveryOfMessage procedure already described,
FTPEndDeliveryOfMessage reports its failure to deliver the message to one of its intended
recipients by despositing in the corresponding element of the recipient list supplied to
FTPBeginDeliveryOfMessage, an errorCode intended for examination by the client (ok here
signalling successful delivery with finality) and, if errorCode is one of the three having the
form unspecified ... Error, an errorMessage intended for examination by a human user.
Storage for any error messages that may be returned is again allocated via the aliocateString
procedure provided by the client, which assumes responsibility for releasing the storage.

B.3. Retrieval Primitives

Ftp provides four procedures for retrieving the contents of (and then resetting to empty) a
remote mailbox. Thefirst,FTPBeginRetrievalOfMessages, initiates retrieval of the contents
of the remote mailbox whose host-specific name,mailboxName. is specified. To obtain
access to the mailbox. the client must first have supplied the necessary credentials (if any)
by calling the FTPSetCredentia's procedure described elsewhere:

FTPBeginRetrievalOfMessages: PROCEDURE [ftpuser: FTPUser, mailboxName: SrRING];

FTPError: ERROR [{missingCredentials, noSuchPrimaryUser,
noSuchSecondaryUser, incorrectPrimaryPassword,
incorrectSecondaryPassword, requestedAccessDenied, connectionTimedOut,
connection Closed, no Route ToNetwork, noSuchMailbox, mailboxlsBusy,
missingConnection, busyConnection, unopenedForMail}];

Ftp Functional Specification 22

'The second procedure, FTPldentifyNextMessage, retrieves information about one of the
messages in the mailbox identified in a previous call to FTPBeginRetrievalOfMessages.
FTPldentifyNextMessage is called repetitively until a byteCount of zero (signalling no more
messages) is returned. Successive calls return information about successive messages stored
in the mailbox. (The client may elect to leave some or all of the mailbox's contents
unretrieved, in which case whatever remains will be sent by the remote Ftp Server but
discarded by the local Ftp User in the final call to the FTPEndRetrievalOfMessages
procedure described later.) The information returned by the procedure is deposited in a
record, messagelnfo, supplied by the client, and consists of the messsage's size in bytes,
byteCount; the date and time, deliveryDate, at which the message was deposited in the
mailbox (the required STRING being supplied by the client); and whether or not the message
has been opened (i.e. examined) or deleted while in the mailbox (Maxc mailboxes, for
example, can be manipulated directly via the MSG subsystem):

FTPJdentifyNextMessage: PROCF.DU RF. [ftpuser: FTPUser, messageJnfo: Messagelnfo];

Messagelnfo: TYI)F. = POINTF.R TO MessagelnfoObject;
MessagelnfoObject: TYPF. = RF.CORD [byteCount: CAR[)INAL, deliveryDate: STRING,

opened, deleted: 800LF.AN];

FTPError: ERROR [{connectionTimedOut, connection Closed,
noRoute T oNetwork, missingConnection, busyConnection,
unopenedForMail}];

The third procedure. FTPRetrieveBlockOfMessage, retrieves a portion of the text of the
message identified in a previous call to FTPldentifyNextMessage.
FTPRetrieveBlockOfMessage is called repetitively until an actualByteCount of zero
(signalling no more blocks) is returned. Successive calls return successive blocks of the
message. (The client may elect to leave some or all of the message's text unretrieved, in
which case whatever remains will be sent by the remote Ftp Server but discarded by the local
Ftp User in the next call to FTPldentifyNextMessage.) Note that the client can anticipate
the end of a message on the basis of the byte count returned by FTPldentifyNextMessage.
The text returned by the procedure is deposited in the buffer whose location in the client's
address space, destination. and whose length in words, maxWordCount, are specified by the
client. The procedure returns the length in bytes. actualByteCount, of the block of text
actually retrieved (which may be shorter than the block requested). The text of the message
includes a message header conforming to ARPA NET standards as defined in [5].
Throughout the message, end of line is indicated via a carriage return (CR):

FTPRetrieveBlockOfMessage: PROCEDURE [ftpuser: FTPUser, destination: POINTF.R,

maxWordCount: CAR[)INAL] RF.TURNS [actuaIByteCount: CAR[)INAL];

FTPError: F.RROR [{connectionTimedOut, connectionClosed,
noRouteToNetwork, pupGlitch, missingConnection, busy Connection,
unopenedForMail}];

Ftp Functional Specification 23

The fourth procedure, FTPEndRetrievalOfMessages, terminates the retrieval operation and
resets the mailbox to empty. FTPBeginRetrievalOfMessages and
FTPEndRetrievalOfMessages are implemented in such a way that no new messages are lost
during the retrieval process and the contents of the mailbox are discarded only when (if)
FTPEndRetrievalOfMessages is invoked:

FTPEndRetrievalOfMessages: PROCEOURE [ftpuser: FTPUser];

FTPError: ERROR [{connectionTimedOut, connectionClosed,
noRouteToNetwork, missingConnection, busy Connection,
unopenedForMail}];

Ftp Functional Specification 24

Appendix C: Client Listener Appendages

c.1. Description of the Option

An Ftp Listener is (at least in principle) a process, distinct from its client, that creates local
Ftp Servers in response to connection requests from remote Ftp Users. Ftp Servers are also
processes and several can coexist within the local host. When a remote Ftp User terminates
its dialogue with a local Ftp Server, the Server destroys itself. In the absence of more
specific instructions from the client, this background activity continues, unattended and
unobserved, until the client orders its termination via a call to FTPDestroylistener.

If it wishes. however. the client can monitor or even influence the activity of the local Ftp
Listener and any Servers it creates by providing procedures, called listener appendages, that
are given control by Ftp at key points in the Listener's operation. By means of such
appendages, a client can, for example:

1. Handle ERROR signals raised within an Ftp Server.

2. Place an upper bound on the number of Ftp Servers that may coexist within the local
host.

3. Control access to the local file system on a per-host or per-network basis.

4. Maintain a log of Listener/Server activity.

The Ftp implementation includes one set of listener appendages which are used by default if
the client fails to supply its own. The default appendages supplied by Ftp are declared as
PUBLIC procedures and are exported as part of the Ftp interface. The client can therefore
implement certain appendages while relying on Ftp for others. or use the Ftp
implementations as building blocks for its own implementations. For example, a client
could log Server errors by supplying an implementation of the NoteServerError procedure
(described in Section C.4) that records the error and then calls Ftp's NoteServerError
procedure to decide whether or not to attempt a recovery.

C.2. Exercising the Option

The client exercises the option described above by means of the clientListenerAppendages
parameter accepted by the FTPCreateListener procedure. This parameter is a POINTER to a
RECORD containing the PROCEDUREs that constitute the appendages. Setting this parameter
to NIL causes the Ftp Listener to employ the default appendages supplied by Ftp; setting it
non-NIL causes the Listener to use the appendages contained in the record. Ftp does not
copy the client's RECORD of procedures, which must therefore be preserved intact by the
client until FTPDestroylistener is called:

ClientListenerAppendages: TYPE = POINTER TO ClientListenerAppendagesObject;
ClientListenerAppendagesObject: TYPE = RECORD [

ftp functional Specification 2S

NoteServerCreation: I'ROCEDURE [purpose: Purpose, originOfRequest:
PupDefs.PAddress] RETURNS [allowServerCreation: BOOI.li:AN, clientData:
UNSPECIFI ED],

NoteServerError: PROCEOURE [clientData: UNSPECIFIED, ftpError: FtpError] RETURNS

[allowServerContinuance: BOOI ,EA N],

NoteServerDestruction: PROCEDU R Ii: [clientData: UNSPli:CI FlED]];

Purpose: TYPIi: = {files, mail, filesAndMail};
PupDefs.PAddress: TYPE = POINTER TO PupDefs.Address;
PupDefs.Address: TYPIi: = RECORD [

network: PupDefs.Net, host: PupDefs.Host, socket: PupDefs.Pair];
PupDefs.Net: TYPE = [0 .. 377B];
PupDefs.Host: TYPE = [0 .. 3778];
PupDefs.Pair: TYPE = MACHINF. DF.PENDENT RRCORD [first, second: CARDINAL];

C.3. General Characteristics

Each of the listener appendages employed by Ftp and suppliable by the client is described
below. Statements that apply to all valid implementations of an appendage (i.e. both Ftp's
implementation and any a client might supply) are rendered in the standard font. Statements

that apply only to the default implementation supplied by Ftp are rendered in a smaller font (like this). The
procedure declarations that accompany the descriptions below apply to both Ftp and client
implementations.

Since they execute in a multi-processing environment controlled by a non-preemptive
scheduler. client listener appendages should periodically surrender control by calling the
proced u re, SchedDefs.Schedulee Yields.

While client listener appendages may respond to exceptional conditions by signalling, such
errors will not be communicated to the remote Ftp User in any meaningful way. The local
Ftp Server will simply be destroyed and its connection to the remote Ftp User broken.

CA. Server F:ncapsulatioJl Appendages

Ftp or its client provides three procedures that serve to encapsulate an Ftp Server. The first,
NoteServerCreation, is called upon the creation of each new Ftp Server. The procedure
receives as parameters the purpose for which the Server is being created and the origin,
originOfRequest, of the connection request. By returning with allowServerCreation set to
FALSE, the procedure may abort the Server (before it can communicate with the remote Ftp
User) and cause its connection to the remote Ftp User to .be broken. If it confirms the
Server's creation, the procedure may return an arbitrary parameter, clientData, which Ftp
will present to other appendages it asks to manipulate the Server, as well as to any client file
primitives associated with the Listener. The default implementation of this procedure always sets

allowServerCreation to TR U E:

Ftp Functional Specification

NoteServerCreation: PROCEOURE [purpose: Purpose, originOfRequest:

PupDefs.PAddress] RKrURNS [allowServerCreation: ROOLEAN, clientData:
UNSPEClfillm];

Purpose: TV'"E = {files, mail, filesAndMail};
PupDefs.PAddress: TYPE = POINTER TO PupDefs.Address;
PupDefs.Address: TYPE = RECORO [

network: PupDefs.Net, host: PupDefs.Host, socket: PupDefs.Pair];
PupDefs.Net: TYPF. = [0 .. 377B];
PupDefs.Host: TYPI~ = [0 .. 377B];
PupDefs.Pair: TYPE = MACHINF. nF.pF.NnF.NT RF.CORO [first, second: CAROINAL];

26

The second procedure, NoteServerError, is called whenever a signal reaches the top of an Ftp
Server's control thread without having been handled. The procedure receives as parameters
the clientData associated with the Server at creation and an indication, ftpError, of the nature
of the error encountered. The procedure may abort the Server, causing its connection to the
remote Ftp User to be broken. by returning with allowServerContinuance set to FALSE. The

default implementation of this procedure aborts the Server only if the error represents an Ftp protocol violation

or a broken network connection:

NoteServerError: PROCF.OURF. [clientData: UNSPF.CIFIED, ftpError: FtpError] RF.TURNS

[allowServerContinuance: BOOLF.A N];

The third procedure, NoteServerDestruction. is called whenever an Ftp Server is destroyed.
The procedure receives as a parameter the clientData associated with the Server at creation.
The default implementation of this procedure is a no operation:

NoteServerDestruction: PROCF.OURE [clientData: UNSPF.CIFllm];

Ftp Functional Specification 27

Appendix D: Client File Primitives

0.1. Description of the Option

An Ftp User or Server manipulates its local file system by means of a family of procedures
called file primitives. This family includes. for example. procedures for enumerating the
members of a local file group, for readi ng and writing the contents of local files. and for
deleting and renaming local files. The Ftp implement3;tion includes one set of primitives
for manipulating the standard Alto file system. In the absence of more specific instructions
from the client, this set becomes the basis upon which each new Ftp User or Server interacts
with the local file system.

Rather than accept Ftp's interface to the standard Alto file system, the client may. 'if it
wishes, provide its own file primitives to a particular Ftp User or Listener. By so doing, a
client may use Ftp to, for example:

1. Interface to another local file system (e.g. Juniper).

2. Interface to a pseudo file system (e.g. a printer).

3. Produce or consume files on the fly (i.e. files that never exist on secondary storage).

4. Transform filenames (e.g. convert abstract filenames to concrete ones).

5. Control access to particular functions on a per-user or per-host basis.

6. Maintain a log of file system activity.

The Alto file primitives supplied by Ftp are declared as PUBLIC procedures and are exported
as part of the Ftp interface. The client can therefore implement certain file primitives
while relying on Ftp for others, or use the Ftp implementations as building blocks for its
own implementations. For example, a client could log file access attempts by supplying an
implementation of the Open File procedure (described in Section 0.7) that records the event
and then calls Ftp's OpenFile procedure to actually open the file.

0.2. Exercising the Option

The client exercises the option described above by means of the clientFilePrimitives
parameter accepted by both the FTPCreateUser and FTPCreateListener procedures. This
parameter is a POINTER to a RECORD containing the PROCEDUREs by which the newly created
Ftp User or the Servers that result from the newly created Ftp Listener are to access the
local file system. Setting this parameter to NIL causes the Ftp User or Servers to employ the
standard Alto file primitives supplied as part of Ftp; setting it non-NIL causes them to use
the file primitives contained in the record. Ftp does not copy the client's RECORD of
procedures, which must therefore be preserved intact by the client until FTPDestroyUser or
FTPDestroylistener is called:

ClientFilePrimitives: TYPE = POINTER TO ClientFilePrimitivesObject;
ClientFilePrimitivesObject: TYPE = RECORO [

-- filename manipulation primitives

Ftp Functional Specification 28

DecomposeFilename: PROCEnURF. [clientData: UNSPECIFIEO, absoluteFilename:
SrRING, virtualFilename: VirtuaIFilename],

ComposeFilename: PROCEOURE [clientData: UNSPECIFIED, absoluteFilename: STRING,
virtualFilename: VirtuaIFilename],

-- access control primitives
InspectCredentials: PROCEOURE [clientData: UNSPECIFIEO, status: Status, user,
password: STRING],

-- file enumeration primitives
EnumerateFiles: PROCEOURR [clientData: UNSPECll'lfm, files: STRING, processFile:

PROCROURE [UNSPECIFIEO, STRING, Filelnfo], processFileData: UNSPECIJiIEO],

-- file transfer primitives
OpenFile: PROCEOURJi: [clientData: UNSPI~CIFIEO, file: STRING, mode: Mode,
fileTypePlease: BOOLJi:AN] RKrURNS [handle: UNSI·Ji:CIFIEO, fileType: FiJeType],

ReadFile: PROCEOURE [clientData: UNSPECIFIEO, handle: UNSPJi:CIFIJi:O, sendBlock:
PROCEOURI~ [UNSPECIFIEO, POINTER, CAROINAL], sendBlockData: UNSPECIFIEO],

WriteFile: PROCEOURI~ [clientData: UNSPECIFIEO, handle: UNSPECIFIRO, receiveBlock:
PROCEOURE [UNSPECIFIEO, POINTER, CAROINAL] RETURNS [CAROINAL],
receiveBlockData: UNSPECIFllm],

CloseFile: PROCEOURE [clientData: UNSPECIFIEO, handle: UNSPECIFIEO, aborted:
BOOLEAN],

-- file manipulation primitives
DeleteFiJe: PROCEOURE [clientData: UNSPRCIFIEO, file: STRING],
RenameFile: PROCEOURE [clientData: UNSPECIfiIEO, currentFile,· newFile: STRIN(;]];

VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RJi:CORO [device, directory, name, version: SrRING];
Status: TYPE = {primary, secondary};
Filelnfo: TYPE = pmNTER TO FilelnfoObject;
FilelnfoObject: TYPE = RJi:CORO [

fileType: FileType, byteSize: CAROINAL, byteCount: InlineDefs.LongCAROINAI"
creationDate, writeDate, readDate, author: Sf RING];

Mode: TYPE = {read, write};
FileType: TYPE = {text, binary, unknown};

D.3. General Characteristics

Each of the file primitives employed by Ftp and suppliable by the client is described below.
Statements that apply to all valid implementations of a primitive (i.e. both Ftp's
implementation and any a client might supply) are rendered in the standard font. Statements
that apply only to the default implementation supplied by Ftp are rendered in a smaller font (like this). The
procedure declarations that accompany the descriptions below are those of the Ftp

implementations. The reader will note, therefore, that file handles are declared as
StreamDefs.DiskHandles, rather than as UNSPECIFIEDs, as would be appropriate in the more
general case.

Each client file primitive receives as its first parameter the clientData supplied to Ftp via

the FTPCreateUser or FTPCreateListener procedure (or the NoteServerCreation listener
appendage). Since they execute in a multi-processing environment controlled by a non­
preemptive scheduler, client file primitives should periodically surrender control by calling
the procedure, SchedDefs.ScheduleeYields.

Ftp Functional Specification 29

In accordance with standard Mesa exception handling conventions, file pnmltlves report
errors by signalling. The standard Ftp ERROR signal, FTPError (described elsewhere in this
document), should be used for this purpose. Doing so enables the Ftp User or Server to
communicate the error to the remote Ftp Server or User in a meaningful way. FTPError's
single parameter, an enumerated type, identifies the error. Each procedure's description
below includes a list of the parameter values that seem, to the author, most appropriate for
that primitive. Should the implementor of a client file primitive need a richer vocabulary,
the author will gladly entertain suggestions for additional parameter values.

0.4. Filename Manipulation Primitives

Ftp or its client provides two procedures that serve to encapsulate Ftp's knowledge of local
file naming conventions. The first, DecomposeFilename, used by both Ftp User and Server,
constructs a virtualFilename from an absoluteFilename, verifying the syntax of the absolute
filename as a side effect. The caller provides the STRINGs into which the components of the
virtual filename are to be placed. Components that are without meaning to the local file
system should be represented as zero-length (rather than NIL) STRINGs. The Alto implementation

of this procedure sets the length of the device and directory components to zero, since these components are
without meaning to the Alto file system; returns the name component always; and returns a version component

if an exclamation point in the absolute filename signals its presence:

DecomposeFilename: PROCEOURE [clientData: UNSPECIFIEO, absoluteFilename: STRING,

virtualFilename: VirtuaIFilename];

VirtualFilename: TYPE = POINTER TO VirtualFilenameObjectj
VirtualFilenameObject: TYPE = RECORO [device, directory, name. version: SrRIN(;];

FTPError: ERROR [{illegaIFilename}];

The second procedure, ComposeFilename, used by both Ftp User and Server, inverts the
operation performed by the first procedure by constructing an absoluteFilename from a
virtualFilename. The caller provides the STRING into which the absolute filename is to be
placed. Unspecified components of the virtual filename are represented by zero-length
(rather than NIL) STRINGs. Components that are present but without meaning to the local
file system should be ignored. The Alto implementation of this procedure ignores the device and

directory components, since they are without meaning to the Alto file system; insists upon a name component;

and accepts a version component if it is present:

ComposeFilename: PROCEOURE [clientData: UNSPECIFIEO. absoluteFilename: SrRING,

virtual Filename: VirtuaIFilename];

VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RECORO [device, directory. name, version: SrRING];

FTPError: ER ROR [{iIIegaIFilename}];

Ftp Functional Specification 30

0.5. Access Control Primitives

Ftp or its client provides one procedure for inspecting credentials presented by the remote
client. This procedure, InspectCredentials, used only by Ftp Server, verifies the credentials
to be implicitly used to access the remote files specified in subsequent file primitive calls.
This procedure declares either the client's primary or secondary identity, which the Ftp
Server is to associate with the first or second remote filename, respectively, in subsequent
parameter lists. To rename a file, for example, th~ client must present two sets of
credentials, one (primary) to access the file and the other (secondary) to access its new
location. InspectCredentials verifies the existence of the indicated user and the correctness
of the supplied password, and records for later use the fact that they were correctly
supplied. Inspect Credentials simply establishes the remote client's identity; other primitives
determine whether that client has access of the appropriate kind to specifk file system
objects (e.g. the DeleteFile primitive described in Section 0.8 verifies that the client has
delete access to the target file before honoring the delete request). The Alto implementation of
this procedure is a no operation:

InspectCredentials: PROCEOURE [clientData: UNSPECIFIEO, status: Status, user,
password: STRING];

Status: TY PE = {primary, secondary};

FfPError: f.RROR [{noSuchPrimaryUser, noSuchSecondmyUser,
incorrectPrimaryPassword, incorrectSecondaryPassword}];

0.6. File F,numeration Primitives

Ftp or its client provides one procedure for enumerating the members of a local file group.
This procedure, EnumerateFiles, used by both Ftp User and Server, supplies in turn to an
Ftp-provided procedure, processFile, the (absolute) filename of each file in the local file
group whose file group designator, files, is specified, along with various pieces of
information about the file and an additional parameter, processFileData, supplied by Ftp.
Unknown or unspecified file information should be specified as unknown, zero, or NIL, as
appropriate. Ftp imposes no constraints on the order in which EnumerateFiles presents files
to it; alphabetical order is one reasonable choice. The Alto implementation of this procedure
recognizes in the file group designator, the two special characters, asterisk ('*), denoting zero or more arbitrary
characters, and pound sign (' #), denoting exactly one arbitrary character. The procedure returns to its caller all
those files in the local file system that satisfy this mask. No file information is returned. The files are
presented in the order determined by OirectoryOefs.f.numerateOirectory:

EnumerateFiles: PROCEBURf': [clientData: UNSPECIFmo, files: STRING, processFile:
PROCEOURE [UNSPI~CIFIEO, STRING, Filelnfo], processFileData: UNSPECIfiIEO];

Rlelnfo: TYPE = POINTER TO FilelnfoObject;
FilelnfoObject: TYPE = RECORO [

fileType: FileType, byteSize: CAROINAL, byteCount: InlineDefs.longCAROINAL,
creationDate, writeDate, readDate, author: STRING];

RleType: TYPE = {text, binary, unknown};

Ftp Functional Specification 31

FTPError: ERROR [{missingCredentials, requestedAccessDenied, iIIegalFilename,
noSuchFile, fileDataError}];

D.7. [<'ile Transfer Primitives

Ftp or its client provides four procedures for transferring files to and from the local file
system. The first, OpenFile, used by both Ftp User and Server, verifies either the existence
of an old file (if mode is read) or the availability of space for a new one (if mode is write),
establishes the remote client's access to it (in conjunction with the InspectCredentials
procedure described in Section 0.5), prepares the file to be read or written, and returns a
handle to it. If fileTypePlease is TRUE (in which case mode wi1l be read), the procedure also
returns the fileType--text or binary--of the file being opened. The Alto impleme~tation of this

procedure attaches a byte stream to the file and returns its handle. If the file's type is requested, the procedure

scans the file until it encounters a byte with the high-order bit set to one (in which case the file is classified as

binary) or reaches the end of the file (in which case the file is classified as text):

OpenFile: PROCEflURE [clientData: UNSPECIFlF.fl, file: STRING, mode: Mode,
fileTypePlease: ROOI,EAN] RETURNS [handle: StreamDefs.DiskHandle, fileType:
FileType];

Mode: TYPE = {read, write};
FileType: TYPE = {text, binary, unknown};

FTPError: ERROR [{missingCredentials, requestedAccessDenied, illegalFilename,
noSuchFile, noRoomForFile, fileDataError}];

The second procedure, ReadFile, used by both Ftp User and Server, transmits to the remote
Ftp Server or User the contents of the file (previously opened for read) whose handle is
specified. ReadFile supplies in turn to an Ftp-provided procedure, sendBlock, the location
and length in bytes of successive segments of the file, along with an additional parameter,
sendBlockData. supplied by Ftp. After the entire file has been output in this manner,
ReadFile signals end of file by calling sendBlock a final time with a byte count of zero. The

Alto implementation of this procedure simply allocates a buffer, reads successive blocks of the file from the

disk stream into the buffer and presents them to sendRlock, and then releases the buffer:

ReadFile: PROCEflURF. [clientData: UNSPECIFIRfl, handle: StreamDefs.DiskHandle,
sendBlock: PROCF.flURF. [UNSPF.CIFJF.O, POINTRR, CARf)JNAL], sendBlockData:
UNSPECIFllm];

FTPError: ERROR [{fileDataError}];

The third procedure, WriteFile, used by both Ftp User and Server, accepts from the remote
Ftp Server or User the contents of the file (previously opened for write) whose handle is
specified. This procedure receives successive segments of the file in turn from an Ftp­
provided procedure, receiveBlock. Write File supplies receiveBlock with the location and
length in words of a buffer into which the next segment may be placed, along with an
additional parameter, receiveBlockData, supplied by Ftp; receiveBlock returns the segment
left-adjusted in the buffer, along with its length in bytes. After the entire file has been

Ftp Function:.. Specification 32

"

input in this manner, receiveBlock signals end of file by returning a byte count of zero. The

Alto implementation of this procedure simply allocates a buffer, reads successive blocks of the file into the

buffer and appends them to 'the disk stream, and then releases the buffer:

WriteFile: PROCEOURF. [clientData: UNSPF.CIFIEO, handle: StreamDefs.DiskHandle,
receiveBlock: PROCF.OURF. [UNSI·F.CIFIF.O, POINTER, CAROINAL] RKruRNS

[CAROINAL], receiveBJockData: UNSI·F.CIFIEO];

FTPError: ERROR [{noRoomForFile, fileDataError}];

The fourth procedure, CloseFile, used by both Ftp User and Server, closes the previously
opened file whose handle is specified after the contents of the file have been transmitted to
or from the remote Ftp Server or User. If the transfer had to be aborted for some reason.
that fact is indicated to the procedure. If the transfer was aborted and the local file was
being written, the procedure should discard the partial file. The Alto implementation of this

procedure simply destroys the disk stream and then deletes the file if the transfer was aborted and the stream

was being written:

CloseFile: PROCEOURF. [clientData: UNSPF.CIFIEO, handle: StreamDefs.DiskHandle,
aborted: ROOLF.AN];

FTPError: F.RROR [{noRoomForFile, fileDataError}];

0.8. File Manipulation I~rimitives

Ftp or its client provides two procedures for manipUlating existing local files. The first.
DeleteFile. used only by Ftp Server, deletes the specified local file, reclaiming the space it
occupied on secondary storage. The Alto implementation of this procedure simply deletes the file:

DeleteFile: PROCF.OURF. [clientData: UNSPF.CIFIRO, file: SrRING];

FTPError: F.R ROR [{ missingCredentials, requestedAccessDenied, iliegalFdename,
noSuchFile, fileDataError}];

The second procedure, RenameFile, used only by Ftp Server. renames the local file whose
current name, currentFile. is specified, assigning it the new name, newFile. The Alto

implementation of this procedure creates a new file (with the appropriate name). copies the contents of the file

to it, and then deletes the original file:

RenameFile: PROCEOURF. [clientData: UNSPF.CIFIF.O, currentFile, newFile: SrRING];

FTPError: F.R ROR [{ missingCredentials, requestedAccessDenied, iIIegalFilename,
noSuchFile, noRoomForFile, fileDataError}];

Ftp functional Specific~ltion 33

,

Appendix E: Sample Configuration and l:'rogram

F..l. Introduction

The sample configuration and program presented below illustrate the Ftp's use. The reader
is referred to Appendix F for the location of the necessary files. This stand-alone program
retrieves a single file from a remote file system.

F..2. Sample Configumtion

The client must include in its configuration th~ Ftp Package, the Pup Package, and a
Scheduler. In the sample configuration below, just the Ftp User code is included, since the
sample program creates no Ftp Listener:

FTPSampleConfiguration: CON FIG U RATION
IMPORTS

DirectoryDefs, DoubleDefs, FrameDefs, ImageDefs, IODefs,
ProcessDefs, SegmentDefs, StatsDefs, StreamDefs, StringDefs,
SystemDefs, TrapDefs

CONTROl, FTPSample =
BF.GIN

-- sample program
FTPSample;

-- required packages
FTPUser;
Pup;
Sched;

F.NO. -- of FTPSampleConfiguration

F..3. Sample Program

The sample program first initializes Ftp; creates an Ftp User, using the default client file
primitives supplied by Ftp; extracts the login user name and password from the Alto
operating system and uses them as its credentials; opens a connection to I FS; retrieves the
file, FtpServer.Bcd, from the remote file system; closes the connection to IFS; destroys the
Ftp User; and finalizes Ftp:

OJRF.CroRY

FTPDefs: FROM "FTPDefs",
OsStaticDefs: FROM "OsStaticDefs",
PupDefs: FROM "PupDels",
StringDefs: FROM "StringDefs";

FTPSample: PROGRAM

IMPORTS FTPDefs, PupDefs, StringDefs =
BEGIN

-- variables

Ftp Functional Specification

ftpuser: FTPDefs.FTPUser;

user: SrRING +- [40];
password: STRING +- [40];

- - initialize pup and ftp packages
FTPDefs.FTPlnitialize[];

- - create ftp user
ftpuser +- FTPDefs.FTPCreateUser[NIL. NIL];

-- set credentials to login user and password
StringDefs.BcpIToMesaString[OsStaticDefs.OsStaticst .UserName, user];
StringDefs.BcpIToMesaString[OsStaticDefs.OsStaticst .UserPassword. password];
IF user .length # 0 AND password.length # 0 THEN

FTPDefs.FTPSetCredentials[ftpuser, primary. user, password];

-- open connection. retrieve file. close connection
FTPDefs.FTPOpenConnection[ftpuser. "IFS". files];
[] +- FTPDefs.FTPRetrieveFile[ftpuser.

"FtpServer.Bcd", "<MesaPup)Ftp2.0)FtpServer .Bcd"];
FTPDefs.FTPCloseConnection[ftpuser];

-- destroy ftp user
FTPDefs.FTPDestroyUser[ftpuser];

-- finalize pup and ftp packages
FTPDefs.FTPFinalize[];

END. -- of FTPSampie

34

Ftp Functional Specification 35

Appendix F: Production Configurations and File Locations

The following production Ftp configurations presently exist; others will be created as the
need arises:

FTPUser: Ftp User, file primitives only (i.e. the primitives of Sections 2 and 3 and
Appendix A). In FTPOpenConnection, purpose must be files.

FTPServer: Ftp Listener, file primitives only (i.e. the primitives of Sections 2 and 4).
In FTPCreateListener, purpose must be files.

FTPSystem: Ftp User and Listener, file primitives only (i.e. the primitives of Sections
2, 3, and 4, and Appendix A). In FTPOpenConnection and FTPCreateListener,
purpose must be files.

MTPUser: Ftp User, mail primitives only (i.e. the primitives of Sections 2 and 3.1-3.3
and Appendix B). In FTPOpenConnection, purpose must be mail.

Ftp 2.0 resides at IFS as the following files:

Documentation:

[I FS]< MesaPup> Ftp2.0)FtpSpecification l.Memo & .Ears
[I FS]< MesaPup> Ftp2.0>FtpSpecification2.Memo & .Ears
[IFS]<MesaPup)Ftp2.0)FtpSpecification3.Memo & .Ears

Object files:

[IFS]<MesaPup> Ftp2.0) FtpDefs.Bcd
[IFS]<MesaPup>Ftp2.0>FtpUser.Bcd & .Symbols
[IFS]<MesaPup>Ftp2.0)FtpServer.Bcd & .Symbols
[IFS]<MesaPup>Ftp2.0>FtpSystem.Bcd & .Symbols
[IFS]<MesaPup>Ftp2.0>MtpUser.Bcd & .Symbols

Source files:

[I FS]<MesaPup> Ftp2.0>FtpSources.Dm
[IFS]<MesaPup)Ftp2.0)FtpSubsystemSources.Dm
[I FS]<MesaPup>Ftp2.0>FtpUtilities.Dm

Ftp 2.0 requires (that is, imports) the 17 Oct 1977 version of PupDefs and SchedDefs
(described in [6, 7]) and version 3.0 of DirectoryDefs, DoubleDefs, SegmentDefs,
StreamDefs, StringDefs, SystemDefs, and TrapDefs. (FTPUser does not need SchedDefs.
MTPUser does not need DirectoryDefs, SchedDefs, SegmentDefs, or StreamDefs.)

