
Inter-Office Memorandum

To Debugger Planners Date June 15, 1978

From Barbara Koalkin Location Palo Alto

Subject Issues - VM to oA log file Organization SOD/SO/DE

XEROX SDD ARCHIVES

XEROX I have read and understood
Pages ____ To ____ .

Reviewer Date __ _
Filed on: [Iris] < Koalkin > XD > PilotDebugger6-15.bravo I of Pages Ref .. 7ISb.b-/~~

The following list is a set of issues related to working out the interface for the VM to OA
log file. These issues have been discussed in the June 14th meeting of Pilot Implementors
(Johnsson, Koalkin, Lauer, McJones, Redell. Sandman, and Wick).

1. We need a mapping from virtual memory to physical disk address.
Can Pitot provide this?

Pilot has agreed to provide a log of changes to its virtual memory to physical disk address
(e.g. drive. head. track. sector) map for use by the debugger. Pilot must go through several
levels of mapping in order to provide this: from virtual memory to file id and file page
number, to virtual disk address, to seek address (through the exception table and Pilot disk
driver). to physical disk address. The debugger will use this log to build a complete map of
virtual memory to disk addresses.

2. We propose having part of the file label (i.e .• 2 words) stored along with the address. for
use for (minimal) checking purposes. This means that at least 4 words per entry will be
stored in the log.

(a) Is this acceptable?
(b) Where is the space allocated for the log?

(Alto file system or fixed set of pages on Pilot disk)?
(c) How does the debugger find the log?
(d) How about Pilot maintaining an up-to-date copy of the entire map?

(a) Quite a lot of time was spent trying to nail down the details of what a log entry should
look like. We agreed to create a DEFINITIONS file contailling all of this interface information
(with the fine details to be worked out at a later meeting). 1t seems like our simple 2 word
entry has grown into a 6 word variant record containing the virtual page number and page
count as common fields (2 words), a variant tag to indicate what type of disk we are talkirog
about (Alto. Pilot, Shugart, 9730. Trident on 01. T80, T300 ..), followed by the required
information on a per disk basis (4 words for variant field). However, this new proposal
allows run-encoding which will cut down considerably on the number of entries to the log.

This is partly because of the difficulty involved in working out an easy (elegant) way for
Pilot to access Alto files to get the disk address. It was decided to pass this difficulty (and
slowness) off to the debugger, instead of Pilot, since the debugger already has access to all of
the Alto file machinery (this was proposed by McJones).

Another reason for adopting this scheme for Alto files is that since Pilot has no caching,
Pilot startup would be slow due to swapping lots of code (this was pointed out by Wick).

Issues - VM to DA log file 2

Johnsson proposed that at startup the image file could be scanned to get all the code for the
initial map entries; this would take about 2 seconds for large image files (McJones and
Redell did not seem to like this idea). Since the image file is not moved, the disk addresses
remain valid. However, Johnsson pointed out that this strategy does not work on check
files.

Therefore, in order to be able to go through the Alto file machinery, an Alto entry must
contain a file pointer and file page number (this allows run-encoding within Alto files,
although we felt most mapping to Alto files would happen during start-up); a Pilot file will
include a disk address and 3 words of check (file page number and 2 words of the file 10
were suggested). The Pilot start-up time problem (mentioned above) will go away with the
chosen scheme of logging since the slowness was only if Pilot had to log actual disk
addressses for VM pages mapped to Alto files.

With each entry consisting of 6 words, there can be approximately 40 entries per page (N 40
spaces).

There was lots of discussion on what the check should consist of. We compared the Alto
file label and the Pilot label to see if we could find an interesting word or two from each
label, that was in the same position, so that we could check that word(s). This was too
difficult; it seems that several variants are required, rather than simply a hash function on
the labels or changing the format of the Pilot label to agree with the Alto.

(b) We agreed that the log would reside on the Pilot disk; and the debugger's map would
reside on the Alto disk. If space gets extremely tight on the Al to disk, this file could be
moved to the Pilot disk (it was pointed out that we are probably already over the size of an
Alto disk anyway).

(c) Pilot will need to initialize the storage and the pointers in a section of memory that
never gets re-mapped; the debugger will find the log by being passed a pointer to it as part
of the 18 word InLoad/OutLoad message. By starting out with a virtual address and physical
disk address as a "distinguished log entry", the entire table can get initialized from that (we
have to watch out for how deep the recursion can get !!).

(d) It was suggested that Pilot consider maintaining an up-to-date copy of the entire map,
however, Melones reminded us that it is just supposed to be a dribble file (to cut down on
the amount of resident storage and/or the disk activity required by Pilot).

3. We need to get a better idea of the frequency of log entries so that we can determine how
often it will be necessary to update it.

(a) How big is the log file?
We propose that some heuristics be used for collapsing the map (since many
modes of paging activity have high locality of reference). How much work is
involved in this? Are there other optimizations that can be made?

(b) What to do when the file gets filled lip - swap to the debugger?
increase the size of the file (up to some maximum)?
Who cleans it up (ie. is it sufficient to reset the log file each you enter the
debugger or does it need to get done more than that)?

(c) The debugger needs to get access to the log file buffer so it can get all of the
changes, not just the ones that have already been wrilten in the file. How is
this done?

(a) Much time was spent discussing the size of the log file and where it should be stored.
We tried to figure out an estimate of how big the file might get; an upper bound of 16K

Issues - VM to DA log file 3

map entries at 4 words per entry (64,000 words = 256 pag~s) was proposed at first (by
Johnsson). We all agreed sometime later, that this upper bound was clearly too high and
McJones thought that even 40-50 pages would be an extravagant size (due to run encoding
and other heuristics to keep down the size). It looks like we will start off at about this size
and do further optimizations at some later time if necessary. McJones will worry about swap
units and what kind of Pilot file it should be (a volume file was suggested).

There was a suggestion to have the debugger's map run from page 0 to the highest virtual
page ever seen since it is believed that it will take us quite some time to fill up all of virtual
memory. This strategy has the disadvantage that it forces breakpoints and other such large
memory allocations to remain towards the low end of memory (ie., McJones suggested that
breakpoints could be put in the second 64K).

(b) When the:log file gets filled up, Pilot will swap to the debugger (presumably in worry
mode so as not to cause any more entries to the log), have the debugger update its copy of
the map, and let Pilot go on. This update activity will also occur each time you enter the
debugger.

(c) Redell proposed using a ring buffer strategy, with Pilot reserving two cells, for a reader
and writer, pointing to this log; the debugger would also maintain these pointers. With this
help, Pilot can swap to the debugger whenever its writer is reader-I. By knowing how much
of the file the debugger has already updated, Pilot can use some heuristics (like collapsing
all references to the same page within the one page buffer it is currently working in).

Further proposals from McJones regarding the format of the log:

The log file will be contiguous in physical address space (the base address must be
determinable at disk initialization time, in order to miss bad spots). Then the base address
of the log file can be passed to the debugger in the OutlLoad message (as well as length,
reader, writer).

The ring buffer pointers should be thought of as (page number, entry) pointers into the log
file; the debugger must also find the virtual (and if is swapped in) real memory adresses of
page containing the "writer" pointer. Two possibilities are:

(1) Pilot maps a big space to the entire log file and creates uniform I-page swap
units; the debugger accesses this file through the standard virtual memory interface
with the assistance of a fixed point log entry (passed through the Inload/Outload
message).
(2) Pilot gives the debugger a distinguished virtual pointer that contains the "writer"
(this way Pilot can have a single l-page buffer space it "windows" along the log); in
this case, the debugger cannot use the standard operations for accessing the buffer
however (check if in core, ...)

These various proposals will have to be carefully examined from both the Pilot and
debugger viewpoints to see what will work out best.

4. Presumably, when you are not debugging, you don't want to make log entries.
How do you turn the log file on and off?

When you turn the log on, you must go through the initialization code to get the debugger's
map set up. When the map is off, the debugger will complain if it has to do anything
interesting. The on/off mechanism will be worked out at some later time.

There was also some discussion abou the possibility of microcode swapping. Although there

Issues - VM to DA log file 4

will be no microcode swapping included in this proposal, provisions will be made for adding
this later (upward compatibility).

It was decided lhul Melones and 10hnsson would meet at some later time to work out the
specifics of this interface (with assistance from Redell and Koalkin).

