XEROX SDD ARCHIVES
T have read and understood

Pages To
HERD Roviewer_____ave |
BUSINESS SYSTEMS - # of Pages Ret. 788D -/ 73
System Development Division
To: Distribution Date: June 15, 1978
From: W. C. Lyach Location: Palo Alto
Subjec: Scavenger, Copydisk, Organization: SDD/SD/SSW/Pilot
InitializeDisk '
aFiled on: [Iris]<Lynch>Scavenger.Memo
Copies: Archives Belleville Bergsteinsson Bewley Clark DeSantis
Harsiem Heinrich Irby ' Kennedy LeCesne Liddle
Lynch Mendelson Metcalfe Reilly, D. Reity, J. Schwartz
Sonderegger Szelong Thacker Townsend Wallace Weaver
. Wick Wickham White
Copies: Lauer Redell McJdones Purcell Dalal Hankins
Jarvis Horsley Murray Kierr Sandman Johnsson
Ogus. Garner Bowering
Introduction

The situation regarcing & Scavenger, Copydisk, and InitializeDisk for Oak has been unclear.
This memo is intendzd 1o report the current siatus of those items and to propose a
resclution of the itsms.

izeDisk (Pilot) - A program which takes a virgin disk from the manufacturer and
s it into a Valid Pllm Disk containing no Pilot files.

Valid Pilot Disk - a disk pack which has been formartted with the proper header, label, and
data blocks. In addition, bad spots have been identified, marksd and removed from service.

Valid Pilot Volume - A Valid Pilot Disk which additionally contains a proper Pilot Volume
as described in [Iris]<Purcell>PilotVolumeFormat.nemo (attached).

Copydisk (Alto) - An existing Alto program which makes a bit-for-bit copy of one disk
pack on another.

Copydisk (Pilot) - A Pilot application client which makes copies of all of the files on the
source Pilot disk upon the target Pilot disk. This differs from a bit-for-bit copy in that
multiple FiDs for mutable Pilot files must be avoided.

Movedisk (Pilot) - A Pilot application client program which makes a bit-for-bit copy of
one Pilol disk pack on another. It differs from the Alto Copvdisk in that the source pack
must be erased or otherwise made permenantly unavailable so as to avoid dupiicate FIDs for
the same mutable Pitot fite. This should be used enly when a pack contains only immutable

[lris]<l.ynch» Stavenger.Memo June 15, 1978

hel

files or when the physical intearity of the pack itself is suspect (and the user wishes to
discard the physical pack but not the infermation on it)

Scavenger (Alto) - An existing, relatively ill defined (see below) Alto program which takes a
‘not-too-badly smashed Alto disk and makes it acceptable to a certain set of Alto subsystenis.

~ Scavenger (Pilot File) -~ A Pilot client program which takes Valid Pilot Disk and leaves it
containing an undamaged Valid Pilot Volume.

Scavenger (Pilot Disk) = A program which produces a Valid Pilot Disk from a damaged
Pilot disk. Tt identifies and records bad spots and attempts to relocate the overlaid
information to other places on the disk.

Scavenger (Star) - A Pilot client program which repairs damaged Pilot client objects which
are stored in Pilot files.

Status

1) Bob Bowering has been in the hospital and unavailable for consultation. His continued
availability is uncertain.

2) Steve Purcell has written a memo (attached) capturing the information required to deal
with the Pilot disk and required to construct a Pilot file scavenger for it. (There are other
kinds of scavengers, e.g. a Star document scavenger, which will not be discussed here. See
above.)

3) I have talked with Jim Morris (the resident Alto scavenger wizard) at some length about
tha status and functions of the Alto scavenger.

3 1 have determined that the current Alto Copydisk will function very well as the putative
ilot MoveDisk.

) Steve Purcell has already constructed an InitializeDisk routine which, with minor
ackaging, can be delivered with Oak to serve to initialize Pilot file disks. Tt does not deaal
with bad spots.

Alto Scavenger

1 wish to record here some facts about the Alto Scavenger which I gleaned from my
conversation with Jim Morris. As the author of the Alto Scavenger he has been subjected to
a wide variety of house calls for problems of one kind or another.

1) Jim confirmed our impression that far-and-away the most important thing is the
reconstruction of smached and invalid directories and allocation tables.

2) There was never a good definition of what the Scavenger would do, of where its duties
would teave off and a subsysteins duties would begin. Ex post facto negotions between the
Scavenger and the major subsystems have left a lot of anomalics, rough edges, and an endless
wish list.

3) There are specific error modes which have accounted for the bulk of the problems. These
are:

[kris]<Lynch>Scavenger.Memo June 15, 1978 3

a) Bad Spots - The current scavenger cannot deal with bad spots. Mike Overton is
slowly accumulating unusable disks that have bad spots on them. As a result I am
placing low priority on dealing with bad spot problems in Oak.

b) Disk Alignment ~ This is now less visable as many more people have their own
Altos and packs are shifted less frequently. Jim had a scheme worked out (the
details of which he could not recall on the spot) which would detect incipient
misalignment before it became a real problem. It required co-operation®from the
drive manufacturer.

¢) Power Supply run-away - Many problems could be attributed to. misbehavior on
the part of the power supplies, causing bad writing on the disk. (I would catagorize
our problems with IFS during power failures here)

d) Processor Overload - The Alto has had problems with the microcode tasks not
reacting within real time constraints under unusual circumstances. (There is an
infamous bug which caused every sixth FTP page to be badly writen due to a
combination a microcode tasks collectively taking too much time.)

e) The generation of UIDs is poorly done (it's more like a bug) causing more than
one file to have that same UID. This complicates life for the Alto Scavenger. Jim
agrees that Pilot has that problem designed out. The problem has never been
corrected o the Alto simply because the system is not being maintained (the specific
problem seems easy to fix).

Proposal

1} Steve Purcell is {0 be directed to specify, document, package, and deliver to Oak alpha test
an InitializeDisk. In Qak it will not deal with bad spots.

2} The current Alto Copydisk be used as the Pilot Movedisk in Oak. This will be run on an
) B3

Alto, Removing the old pack from circulation will be accomplished by operational
procedurss. No Pilot Copydisk will be provided with Oak.

That Steve Purcell be directed to specify, decument, and deliver a Pilot File Scavenger
ich is restricted to reconstruction of the vfm and vam. Neither a Pilot Disk Scavenger
a Star Scavenger will be delivered with QOak.

\I‘V—'

Fad

v*\EL..

er-Office Mempran :
Inter-Ofice hf}x%‘iji\zé'i\‘én)o‘éﬁvmgu Memo Jung 15, 1978 4
To Distribution) Date June 13, 1978
From Stephen Purcell Location Palo Alto
Subject Pilot Volume Format Organization SDD/SD

ROX

Filed on: [Iris]<Purcell>PilotVolumeFormat.memo

This memo describes some aspects of Pilot Volumes. Since the design of Pilot and its
volumes is still in flux, only a snapshot of the current design and implementation can be
provided. There is no guarantee that what follows will not change. The general structure is
probably correct and will remain, but many details will change.

" Pilot stores files in volumes which are physical disks with data conforming to certain

constraints. Pilot assumes the storage to consist of pages randomly accessed by volume-
page~-numbers which range continuously from zero to the size of the volume in pages. Bad
Pages will be hidden by the disk driver. A single disk Diablo 31 will have volume pages in
the range [0..4872). As far as Pilot's volume manager is concerned, a page is an 8 word label
and 256 words of data. This mewno ignores additional page fields such as the 2 word address
header used by the device drivers/controller.

Pilot partitions pages into a number of files, each with a unique identifier (Universatip) and a
type. (The generaiion and registration of types is still fuzzy, but many files can have the
same ty pe) {The file properties of immutable and temporary may be viewed as contained in
ihe type, although they are actually independent fields.) Pilot uses four types for system or
wl.‘,.ve files, present on every volume. Each page in a volume belongs to exactly one file
and has a label with the file ID, the file type and the file-page-number. A client file has
pages with compsscutive file-page-numbers from zero, while a system file is numbered by

1
i
.
I~y

Vol 'r*s-p;ge-nrm‘ca*s which are not necessarily consecutive. Page labels and page data are
stored together for safety. For efficiency and redundancy, la ne’x information is also stored
in the system files, which can be entirely discarded and reconstructed from labels if

damaged., The four system file types are root, vam, vfm and free. The root file is exactly
one page with a constant location on the volume, containing IDs (and sometimes page
numbers) of the other system files and of one client root file. The vam (volume allocation
map) is a bit map Lelling which pages are free. The vfm (volume file map) is a B-tree
which maps {file 1D, file-page~-number) keys into volume-page-numbers for all client files.
The free file has blank pages scattered over the volume that are not in use cither by clients
or by Pilot. Bad pages can be thought of as free pages but the Pilot volume manager is not
aware of them, since the disk driver ensures that there is a good page for every volume-
page-number,

The root file is created and accessed by

LogicalVolume.ROOtAccess: PROCEDURE[Volume: Volume.ID, proc: PROCEDURE[VOlume:
LogicalVolume.Handle]1;

LogicalVolume.Handle: TYPE = POINTER TO LogicalVolume.Déescriptor;

LogicalVolume.Descriptor: TYPE = RECORD[
version: CARDINAL,

[Iris}<Lynch>Scavenger.Momo June 15, 1978 5

volumaSize: Volume.PagaCount,
viD: volume.lD,

vam: File.ID,

vim: FilelD,

frea: FilelD,

vam: File.ID

wl;
LogicalVolume.nullDescriptor: LogicalVolume.Descriptor= ... ;

VolumeRootAccess is a stylized way to read and lock the root page, access and medify it by
a client procedure proc, and then write it back to the volume and unlock it. The proc can
use the handle (a pointer) to read and write the root page which will then be written back to
the volume.

The vam(volume allocation map, a bit map) is created and accessed by
VolAllceMap.Init: PROCEDURE[VOluma: Volume.lD];

VolAllocMap.GetBusy: PROCEDURE[volumePage: LogicalVolume.PageNumber] RETURNS
[busy: BOCLEANT;

VolaliocMap.SetFree: PROCEDURE[vVolumePage: LogicalVolume PageNumber];

VolAllocMap.GetSetBusy: PROCEDURE[VolumePage: LogicalVolume.PageNumber] RETURNS
[busy: BOOLEANTY;
--set a page to busy and return its previous state

VolAllocMap.GrabFirstFree: PROCEDURE[volumePage: LogicalVolume.PageNumber] RETURNS
[LogicaiVelume.PageNumber];
~-find first free page and set busy (may signal Volume.InsufficientSpace)

The vim{volume file map, a B-tree) is created and accessed by

ap
VeoiriteMap.Init: sRCCEDU [vo!ume Volume.ID1;

VelFiieMap. GetPag:G,ogo PROCEDURE[file: FilziD, filePage: File.PageNumber] RETURNS
[File w:am .PageGroup]; : -
VoifileMap.GetNext: PRoOCEDURE[file: FiledD, filsPags: File.PageNumber] RETURNS
[nextFile: FilelD, nextFilePage: File.PageNumber];

--starting and ending with null, enumerates the page group boundaries

VolFileMap.InsertPageGroup: PROCEDURE[file: FileD, group: Fileinternal.PageGroup];
VolFileMap.DeletePageGroup: PROCEDURE[file: File.lD, group: Filelnternal.PageGroup];

The vfm maps keys (file 1D, file-page-number) into volume pages, and is abstractly a
collection of entries (file ID, file-page-number, volume-page-number). The procedures for
accessing it use page groups to encode runs of entries with file-page-numbers in a closed-
open interval: [..). The nul/ volume page resulting from initialization or deletion signifies
the absence of a file or a page of a file. Entries have unique kevs, and insertions overwrite
existing entries. Therefore pages with duplicate 1D and page number cannot be pointed to
by the map. A scavenger would have to deal with such (illegal) page pairs before updating
the vfm. The vfm does nct depend on consecutive file-page-numbers so that as it is being
reconstructed, say by the scavenger, it can contain fragments of files. Client files . with gaps,
however, are not permitted in a legal Pilot volume. Insertions are most efficient when
clustered by key (ordered by TD, page number). GetNext is used as an enumerater. All
client file pages can be located on the volume in random access tashion by use of the vfm.

