Inter-Office Memorandum

To Mesa Implementors Date October 13, 1978
From Barbara Koalkin Location Palo Alto
Subject Specifics for Debugger Interface Organization SDD/SD

XEROX

Filed on: [IRIS] < KOALKIN > D5 > DUI2.BRAVO D R A FT

This memo is the specification for a new user interface for thc Mesa 5.0 dcbugger; it has been
drawn together from suggestions from the Mesa task list, Greg Shaw’s suggestion list (based on the
cxperience of ETM), the change requests classified as debugger wishes, expcriments with the Tools
Environment and the SmallTalk Browser, and discussion with experienced Mesa users.

The design is based on the following observations and goals:

* We are aiming for the cxperienced systems programmer, not a clerical person with minimal
training who will quit in 6 months.

* We must build on the capabilities (and code) of the current Mesa dcbugger as well as
maintaining the present Mesa style of debugging.

* Speeding up the performance and increasing reliability is as important as improving the
interface.

* We should try to cut down on the cdil-compile-debug loop as much as possible.
* Keep it simple.

The basic facilitics of the debugger can be divided into the following categories: sctting
breakpoints and tracing program cxecution, examining (and changing) the runlime state, sctting the
context in which user symbols arc looked up, dirccling program control, and a collection of less
frequently used low-level ulility commands. By supplementing the present teletype command
processor interface to these facilities with more window/selection/menu based capabilities, we can
both spced up and ease the debugging process.

The new debugger interface looks as follows:

* The debugger is initialized with 3 windows: DEBUG.TYPESCRIPT window, a sourcefile
window, and a window for manipulaling the stack (DEBUG.STACK). :

* Bach of these windows has a menu containing the standard set of window operations: MOVE
(change the position of the window), GROW (change the size of the window), BIG (make the window as large
as the cntire screen/restore), and SMALL (make the window as into a small window at the side of the screen).
The menu also contains the basic sclection operations that are common to all windows:
STUFF IT (stuffs the sclection of the window into the keyboard stream of the DEBUG.TYPESCRIPT
window), FIND (finds the next occurence of the sclection in the window).

* Each window has its associaled filcname in the header of the window.

Specifics for Debugger Interface 2

*

*

Each window may have a selection, but only onc selection is "the current selection” at any
time. This simplifies input to commands that involve using the current selection.

The mouse buttons remain as before: RED selects and extends the selection by characters,
YELLOW sclects and extends the selection by words, and BLUE displays the menu.

The scrolling functions remain as before: RED for scrolling up, YELLOW for thumbing,
BLUE for scrolling down, and YELLOW/BLUE for normalizing the selection. Possible
enhancements to the present capabilities are to have continuous scrolling and split windows.

Look into what is involved in adopting the Tools window/menu/selection/editor package.

Debug. Typescript window:

*

Retains the present debugger interface capabilitics with respect to typing in key letters for
invoking commands.

Is the only debugger-created window that accepls type-in. This means that the STUFF-IT key can
continue put characters into the input stream of this window; thus typing a character (when a non-scratchfile
window is current) makes this typescript window the current window.

Used to interpret expressions.

The place of all debugger to user communcation. This window is used for reporting uncaught
signals, error messages from the interpreter, and saving lists of information (such as List Breaks or Display
GlobalFrameTable). ’

In addition to the standard window operations, the menu for this window has a command
to allow you to CREATE a new scratch window.

The Debug. Typescript file can still be viewed as a log of the debugging session. If a user
wishes to save some of the information that is lost by using selections instead of typing in all of the
commands, you can record information in this window (in the form of comments) or use the old type-in
command processor.

Sourcefile window:

*

*

Used to set breakpoints and for displaying the source position when looking at the stack.

This window is the only window in which you may sct breakpoints. These breakpoint
commands enable the user to perform all of the present breakpoint operations simply by
selecting the location and choosing the appropriate menu command.

The semantics of the breakpoint commands are as follows:

Keyword Selection Action (old command)
BREAK PROCEDURE Break Entry
RETURN Break Xit
source Break Procedure, Break Module
CBREAK PROCEDURE samc¢ as above commands but must
RETURN specify condition as posl-operator
source
CLEAR PROCEDURE Clear Entry Break
RETURN Clear Xit Break
source Clear Break, Clear Module Break
BR ALL PROCEDURE Break All Entries
RETURN Break All Xits
CL ALL PROCEDURE Clear All Entries
RETURN Clear All Xits

PROGRAM Clear All Breaks

Specifics for Dcbugger Interface 3

This scheme allows us to sct conditional breakpoints by selecting the location, invoking the
CBREAK command, and then typing in the condition. Where: either a window pops up (it is nice
for this information and its window to go away after being input) or into the typescript window (which is
alrcady there but possibly not visible)? See figure 1.

The type of menu to be used is as yet undetermined; either a menu with the breakpoint commands in addition
to the window commands (as in the present scheme) or pethaps a fixed menu consisting of the keywords
BREAK, CLEAR, CONDITION, and ALL, located either in the header of the window along with the file
name or on the bottom of the window, that allows combinations of keywords to be selected, with BREAK and
CLEAR actually activating the action. More experimenting and discussion is still neccesary to resolve this.

All breakpoints are shown by a graphic indication in the source file window. What to use:
secondary selection highlighting, or a carat beneath the location? This means the window needs to be refreshed
(somehow) each time any breakpoint is sect or cleared.

Selections in the breakpoint window resolve only to places where breakpoints are allowed
to be set (according to the compiler-gencrated fine grain table).

Dcbug.stack:

%

The stack window is used for displaying current context information as well as the
procedure call stack. Whichever level of the stack is selected becomes the current context
for symbol lookup. Tt possible to change the current context by moving the seleclion in
either direction along the stack.

A subwindow of the stack window is reserved for showing context information about the
current configuration, psb, module, global frame, and local frame. The rest of this
subwindow is used to show the procedure call stack, one level at a time. If you wish to
advance along the stack, select the NEXT menu command or hit the next key. How about
using the LF key for the next key? You may go back up the stack by selecting the name at the
level you wish to look at. How to do jump (as in skip the next n levels)?

The rest of the slack window is used Lo show the variables local to the current context.
Should this Le two separate windows? Should the variable window be cleared for each SHOW or just
scrolled? This subwindow has its own scrolling capabilities; stack commands are activated by
means of a menu. See figures 2 and 3 for cxamples. The scmantics of the commands are as
follows:
Keyword Selection Action (old command)
SIIOW config Display Configuration

psb Display Process - p, r, w

module Display Module - v

procedure Display Stack - v
SOURCE module Display Module - s

procedure Display Stack - s

psb Display Process - s
NEXT procedure Display Stack - n

psb Display Process - n

This window may also be uscd for changing the context. Sclecting onc of the context
keywords (Configuration, Process, Module) mcans "change this contexl”. When the
current context gets modified in some way, all of the conlext information gets updated. See
the section below for details.

The stack window docs not “allow user type-in. Updating gets done by the debugger when
the context gets modified in some way. Only word sclection is allowed in this window,
since sclections arc only used for context sctling purposcs. Note that all messages like "No
symbols for nunnnB.." and “"Sourcelilemesa not available” continue 1o be displayed in the
DEBUG. TYPESCRIPT window,

Specifics for Debugger Interface 4

Changing the context:

*

If you wish to change the context, select one of the context keywords. A (temporary)
window (or call it a "view") appears with a list of the choices. Selecting the namc changes the
context as well as updating all of the corresponding information in the context status
subwindow,

If you select the keyword "Configuration”, a window appears, called "List.configs",
consisting of a list of all the configurations that have been loaded. Note that this is the same
output as the present List Configurations command.

If you select the keyword "Module"”, a window appears, called "List.modules", consisting
of a list of the names of all of the modules in the current configuration. Note that this is
similat to the output of the present Display Configuration command. See figure 4 for an example.

If you select the keyword "Process”, a window appears, called 'List.processes”,
consisting of a list of all processes by ProcessHandle. What other information is neccesaty in
order for this to be interesting: frame, root, source, priotity?

Directing program control:

*

Explore the idea of using the header of the DEBUG.TYPESCRIPT window to contain a menu of the
PROCEED, QUIT, and KILLL commands in order to have a menu way of directing program control.

Scratch window:

E

*

The menu for this type of window has the standard window operations in addition to
commands to CREATE a new scratch window, DESTROY a scratch window, and LOAD a file
into a scratch window.

This type of window can also accept keyboard type-in.

Mode changes:

*

The debugger keeps a "property sheet” of stale information that is not likely to change
often. When you wish to examine or change any of these modes, you invoke the Mode
Change command. This causes a window to appcar (like the specification of a Tool or a property
sheet in Desktop) in which you can reverse a mode by selecling ON/OFr, This command is
used to sct global state information that is currently maintained by the commands CAse
on/off, Worry on/off, Keys on/off. What to call this command and how to invoke and display it?
We should look into the possibility of extending this sheet to include other options (for example, whether you
would like to have rccords displayed with spaces or carriage returns between the fields).

Consistent rules for invoking commands:

*

In general, the commands that require no parameters (Userscreen), print many lines of
information (Coremap), take more¢ time to complele (List Processes), change the state
(Reset Context), and direct program control (Proceed) arc the types of commands that
require confirmation (CR) before (hey are execuled.

Menu commands with just one operand use the current selection as the object of the action,
and activate when the menu button is let up.

Menu commands that requirc two arguments (such as conditional breakpoints), usc the
current selection as the first argument and prompt (how?) for the second one when the menu
button is let up.

All octal commands (Octal Read, Write, Set break, Clear break, Set Octal Context) may
be invoked only through the command processor. ‘The same applics for other low-level

Specifics for Debugger Interface 5

utility commands.

Changes to the way things are now:

*

As a result of implementing more selection based schemes for invoking debugger
commands, WindEx has to become a standard part of the Mesa debugger.

The need for the MESA.TYPESCRIPT window has gone away, so this feature is no longer
supported.

Different types of windows have their own menu commands in addition to the basic set of
window operations.

The distinction between the old form of tracepoints and breakpoints has almost disappeared
with the new display stack mode. Therefore only breakpoints are now being supported,
with tracepoints being reserved for future design in combination with a macro facility. You
would like to be able to specify a set of aclions to be performed (including the ability to proceed) when
reaching a tracepoint, without the user having to be there to type in the commands.

The functions of the Display Variable and Interpret commands in Mesa 4.0 debugger have
been superceded by the interpreter and therefore are no longer supported.

g e
bbptr' B1tB1tDcro.Bbptr = Eth[BA tH
mapaddr: BMptr <« rectangle.bitmap.addr;

dix: xCoord ¢ rectangle, x0+x8;
dty: yCoord ¢ rectangle,yliERy
dw: xCoord ¢« MIN[rectangl
dh: yCoord « MIN[rectang]l
bbptr+ ¢ [B, FALSE, FALSE
rline,

dlx, dt;, dn dh, mapad

BitB1tDefs. [bbptr],

—————————————————————— f, Gi172578B)

B : Jrectangle=160737B+
x8=1

width=9

yA=13

height=434
gray=164124p+

oef1umh-tr'pe
DoWork napaddr=122680008+
vordsperline=4688

bbptr=164252p+

WindowExecutive

ﬂ‘L1P:FEO)fnRPerhﬂ];; L:

bbtable=(17)[1, 14B,

thlt nb Ic_]] , B

wordsperline: CARDINAL = rectangle.bitmap.wordsperline;

WBL(RhnEHLta' Te

~, uWordspe

5

>Proceed [confirm]

EE JRLerrupt kR
>tlserProc [confirm]

Proc: Press

Press file name: duil,.press
duil.press...D

L ent &l S edinire e L S i SRy
Cle aan~1nEeotanq1u, L: 1Bd2a0t (in varqnu1vhﬂ, B:l/eh7Bb
Source: ¢O>BitBItDef s.EITbLT&bbptr],
>0

O i g e Mrge” a‘s-_r, PRI ‘“‘,.-A;:;,r Lo Yo gt

E R R e N e e A :
rlag € NOVdUpb.NDVdUutLdLUutLd Por-”uavars Punrlnror pCorefFpP, Ebv
2
] REGISTER[WDCreg] ¢ savewdc;
SELECT flag FROH
8 => NovaOps.NovalnLd[InLd,CoreSuwapDefs.Puntinfo+,pDebuggerFP,E
SV,
] 1 => level « ESV.level;
ENDCASE => ESY.reasoh ¢ proceed;
REGISTER[XTS8reg] ¢ xferTrapStatus;
8D[SDDefs.sXferTrap] « xferTrapHandler;
ENDLODOP;
| DEbutptstatk 2t mar ity | SRl -' SIS s a0
Contiguration: xDebhug FsB: ’35:& mHmuryJwap, L: lbb @B (in. Res1
—————————————————————— dent, G:17 STBHB)
PSB: 2332B >pr10r1ty 1
—————————————————————— root: WindowExecutive, L: 1620248 (in WEM
Module: Resident ain, G:1154B68)

ParityProcess
Processkeyhoard
ReadChar

Tﬁtébﬁé@ﬂéﬁuiwtsﬁﬁﬁ%ﬁi‘*" o o S s e T e e ”11 i
m:8,no0log: @, partl: @, partZ341676], TeaderOs: vOS[43168), fa:FA[da: [4412
B],pagu aiB byte:8]], Ispages:2,mnaplog: 14355826517 BT,mdS:Qqu?B,T111:{3}
[, B, 8]]
- >Proceed [confirm]
#EE gnterrupt FEk
>tUserProc [confirm]
Froc: Press
Prezs file name: Duil,press
Duil.press...D

RectangtasfnneSirs S8 R T RaBRE s T 2 S i s
B}BB1tUcra.EITBLT[hbptPJ,
EP

DrawbBoxInRectangle: PUBLIC PROCEDURE [
rectangle: Rptr, x8, width: xCoord, y8, height: yCoord] =
BEGINM
bhtable: ARRAY [8..SIZE[BitB1tDefs.BBTahle]] OF WORD;
hbptr: BitBlitDefs,BBptr = EVEN[RASE[hbtable]];
mapaddr: BMptr ¢ rectangle.hitmap,addr;

f«Fﬂabuq%wam$é§¥”wii”fﬁ}”ﬂ”~ e e R
CleartoxInRectangle, L: 1b4uLBB (in Rectan
glesA, G:1725768B)

>rectangle=1667378+

xB=1
Module! Rectahglesh width=9
—————————————————————— vB=13
G: 172576B, L: 1643288 height=434
—————————————————————— gray=1641248+
tilearBaxknRectandgle bbtable=(17)[1, 14B, ... , 8]
SetJumpstripe bbptr=1642628+
DoYork " mapaddr=1220088+
WindouwExecutive wordsper 1ine=34688
SetJump3tripe dix=1

Intdenaitlebugsvsis=y g L SO SR S S
Rectangle 1ink: NIL,«1,1h1H TFHE options anr1un [NntHINW1,1h1w FALSE, Mo
telverflow: TRUE], b1rmap'1bB?5fB+ *B:8,width: 512, cw:512,v0:8, haight: 440,

ch:d443]
- >Proceed [confirm]

#EE nterrupt ke

>tUserProc [confirm]

Proc: Press

Press file name: duil.press

duil.press...D

CETE S AR Sl
Eﬁﬁ&]tﬂcra BITBLT[bbptr];

DrawBoxInRectangle: PUBLIC PROCEDURE [
rectangle: Rptr, x8, width: xCoord, y8, height: yCoord] =
BEGIN
bbtable: ARRAY [B..SIZE[BitB1tDefs.BBTable]] OF WORD;
bbptr: BitBitDefs.BBptr = EVEN[BASE[bbtable]];
mapaddr: BMptr <« rectangle.bitmap,.addr;

' l]uarﬁoffnPeut;nuﬁe} L: 1643208 (in Rectan
alesh, §:1725708)

)rPrtang1P 18@ 37B+

,fr1ng;

—————————————————————— Files

G: 172570B, L: 164328B| Streamsh
---------------------- Streamshb
ClearBoxInRectangle Fap

SetJumpStripe REET ,

DolWork) RectanglesB
WindowExecutive Display 498
~SetJumpStripe Streaml0

Fnterndillabugs teie
Rectangle[Tink i NIL, v

ch:d443]

>Proceed [confirm]
FRE ntertupt FEE
>tUzerProc [confirm]
Proc: Press
Press file name:
OuiZ.press...D

5 :1e{TﬁUE,apt1nns 3
telverflow: TRUE] bitmap: 1687570+, x8:1 @, widthi1b12,cw:b12, w8 U,hw1ght.446

DuiZ.press

Uptions [“Htrlnx191h1ﬁ FALrE~ND

