
Cub Workstation Design Goals

Provide a low cost "front end" for the OIS
market

1. Provide an imaginal display

2. Provide Ethernet connection

3. Provide personal services (text/graphics)

4. Not to provide all services in the terminal
(reach th rough)

cub-goats. bravo

A Discussion of Cub Architecture and
A Discussion of Cub UMC estimates
May 23, 1980 R. Belleville filed on cub-may80.bravo

What is a Cub?

Cub is a new workstation under development in SDD. The purpose of the design is to provide a
truly Ethernet compatible, low-cost workstation for the mainstream of the office automation market.
Cub users have at their fingertips, not only a powerful personal computer, but also network access
to servers and resources on the Ethernet.

Cub provides an 8086 based process~r running at 4.5 MHz. This is a 16 bit microprocessor with a
full range of instructions and addressing modes. Main memory consists of 262.144 bytes (8 bits data
plus 1 bit parity) of dynamic random access memory. Single bit memory errors are detected by a
parity system. A bank of up to 16,384 bytes of read only memory are also provided for "bootstrap"
program storage. Main memory is refreshed automatically.

A full page, bitmap display is also part of the Cub workstation. An image 606 bits wide by 808 bits
high is displayed on a 15 inch video monitor. The frame buffer storing these 489,648 bits is also
implemented with dynamic ram and does not use any processor main memory. In all, Cub has
320K bytes of ram.

The display controller also includes a 16 x 16 bit cursor which is "ored" into the image at the x and
y coordinate provided by software. Separate storage is provided for the cursor bitmap in a 16 word
ram associated with the display controller.

Input/Output controllers are provided for the keyboard, mouse, and a single channel RS-232 serial
interface. The serial interface can operate at speeds from 300 to 9600 baud. An 8 channel,
vectored interrupt system is also included with the processor. Interrupt based service is provided for
the serial interface, keyboard, real-time clock, network interface, and main memory parity error
detection.

An Ethernet controller is also an integral part of Cub. The interface can send or receive packets of
data, to or from main memory at speeds from 3 to 10 Mbps. Transfers are under direct memory
access control, and do not require the processor during data transfer.

Cub has little "built in" functionality. All application software is "downloaded" from a server via
the Ethernet. Data files created by the user are communicated to servers for storage and retreival
via the Ethernet. Cub provides for no fixed or removable storage at the workstation. This
approach allows the use of cost effective mass storage at the server, and frees the workstation from
the cost, noise, and reliability problems of rotating storage.

Details of the organization of Cub are shown in the block diagrams below.

How can Cub be useful without a disk?
I

By itself, a Cub ~ useless. It depends on the Ethernet to communicate with servers located on the
network.

The first dependency is for program loading. After powerup, Cub sends a message on the Ethernet
which asks for· basic system code to be loaded into memory. Cub cooperates with a server to obtain
a program which I will call the user kernal. User kernal may look to the user like the Star system
or perhaps like existing word processing systems like the 860; however, the code which performs the
function of these systems may, or may not, actually be executed by Cub.

Cub is designed to provide "personal interactive" service to the user. For example, Cub can handle
the creation and editing of text and graphics locally with little or no load on the network or its

servers. On the other hand, Cub would not run an accounts receivable program. That would
happen on a server connected to the network. A Cub user might initiate the running of the
receivables program through the user kernal. New data for the receivables data base might be
created on Cub and the results might be inspected on the display.

Functions actually executed in Cub are "downloaded" from the network.

The second dependency is file management. The concept of a file server is simple. A file server is
a computer with a relatively large, "permanent" memory (lots of disk for example) which is
programmed to store and retrieve collections of bits (files or data sets in the IBM tenninology) from
commands received from other computers on the network (workstations and servers alike). A file
server is a library and the program that runs it is a lot like a librarian. By itself a file server is not
very interesting, but combined with the Ethernet it becomes a central tool in managing information
which is, you will recall, what this whole thing is about.

Cub doesn't have any fixed or removable storage because, in the long run, we won't be able to
manage little caches of information locked away in cabinets and on non-removable disk drives.
Take the example of a large U.S. corporation with a system consisting of 1200 workstation located
in 15 cities. A worker traveling to a distant city will want to use the system and access his
documents. If these documents are stored as a matter of course on "his" workstation how will he
access them? Will he have to leave his machine running or will he have to call someone to place
them online (as I have had to do several times)? If the data is on removable media (like floppies)
will he have to carry them with him?

The databases manipulated by the workstation should be shared in common servers.

The third dependency is for communication. The Cub may be used to create or read mail but the
distribution would be left to the network (and probably file servers and mail servers).

The fourth dependency is for services outside the scope of the workstation. This is the central
reason for the network connection of servers and workstations. Actual applications will require the
user to perform actions which are outside the scope of any workstion that can be considered
"personal. "

Consider the Xerox Corporation's mailing list as one huge database. There are surely lists of the
stockholders, employees, customers, potential costomers, etc. I know that the list is in a computer
somewhere because of all the mail I get. In the OIS world this database would be a resource held
in common by the company and put to countless uses by many people throughout the organization.
Would we ever expect any workstation in the system to encompass and operate on that database?
Very unlikely. From the workstation however, one would expect to submit a request to the
machine that managed this database for a list of all customers in greater Boston. If this user was
appropiately authorized, he would expect to be able to read the results at his terminal or print the
result on a print server near his office.

What about Dandelion, doesn't it violate your DIS model?

Not in the short term for workstations. Nor ever for server applications.

Dandelion is a powerful computer in a small package. It is perhaps 7 times the power of Cub.
Dandelion is capable of executing the full range of Mesa/Pilot software and can be extended to
several important server applications. A machine of this class is clearly needed for server
applications. But it is needed as a workstation too.

As the OIS environment begins, most customers will be "testing the water". They will want to buy
1 or 2 machines at first to see how they can use OIS in their applications. So each workstation will
have to do some the the function that would be server functions later on. As these company find
cost effective jobs, their workstations can be converted to servers and Cubs added to act as

2

workstations.

The concept you propose is appealing, why don't we get the cheapest terminal we can and hook a
whole mess of them to Dandelion?

It takes too many cycles of the host machine to truly provide interactive service to the user. It is
true that, simple, fixed font editors work relatively well at about the 10 to the PDP 10 ratio. Full
multi-font work with graphics is a different story. The bottom line is that you really need a
relatively powerful, full page display to do real applications and you need a snappy processor to
handle both the display and the network.

There is a reliability issue too. If low power terminals are connected to a central computer and the
central machine fails. then all the terminals are down. So one has to add a good bit of cost to add
redundent machines or make the cluster machine more robust. Cub has the same property if there
is only one machine implementing the servers; however, it is likely that systems implemented with a
moderate to large number of Cubs will have more than one server processor and thus the
redundency is built in to the topology of the network.

Ethernet allows us to bring together the best features of time sharing (getting personal service) and
batch (sharing resources through common servers).

How would Cub be packaged?

The package would look a lot like an Alto display and keyboard. The electronics would be housed
in the base of the . display. Cub is convection cooled so no fans are needed and the workstation
would be essentially silent.

Is Cub powerful enough?

Initial performance measurements on the feasibility model show that at least one crucial parameter,
placing characters onto the display, Cub is as fast as an Alto. The 8086 processor running at 4.48
MHz is perhaps faster than an Alto for normal program execution. If the display management is
fast enough without the addition of special hardware (as is seems to be) and if the execution of
application code is as fast or faster than an Alto, then we have Alto power in a small, low cost
package. .

A Cub • Function and Performance Summary page gives more details.

Well then, maybe Cub is too powerful and we could save some cost by cutting down somewhere?

We could leave out the RS232, that really doesn't do anything in the baseline terminal. But it only
costs about $6 and might be useful to control a local printer, optical scanner, or other local
peripheral. .

The big cost item is the memory as we shall see in the umc discussion. Dynamic ram represents
56% of the cost of the electronic portion of Cub. Main memory in the feasibility model is 256K
bytes or 128K ~ords. This size allows the design and implementation of powerful user software
without the need for complex memory management schemes. Although I cannot produce an air
tight argument to set the size of main memory. 256K feels right. In the UMC section, I have
shown the impact of halving the memory size to 128K byte (64K words).

t

Cub isn't even close to being a "Princops" machine, can it run Mesa?

This is a tricky area and one where more analysis and experiment is needed. Let's look at some of
the aspects of the problem and some of the solutions.

First, the basic principal of the Cub/Ethernet/Server architecture is that the workstaion provides

3

personal service tools to the user, not the major applications. So once the basic
text/graphics/imaginal tools are written for Cub the workstation will be able to work with many
kinds of server based applications. For example, a Teletype has been used for applications far
beyond the transmissions of telegrams. With Cub the result is much the same, once one can create
and edit text and graphics and interact directly with servers via Ethernet many different applications
would use the same workstation software.

If nothing else, this split between the tasks of workstations and servers may ease some of the
constraints on the methodology used to create Cub software.

Second, in the Alto/Dolphin/Dandelion/etc., we have always resorted to microcode
implementations for the low level, performance critical, sections of the system software. With the
8086 the equivalent mechanism is native machine code written in assembly language. Microcode is
considerably more difficult to write and maintain than assembly language code. In Dolphin for
example there are more than 10,000 lines of microcode in the system and the diagnostics. Creating
and maintaining, say, 50,000 lines of 8086 assembler is managable. (not a lot of fun, but do-able)

The "c" language has been used rather successfully for the implementation of systems on the PDP
11. In fact almost all of the the UNIX operating sytem and its utilities are written in C. This may
be an alternative to assembly language. We are looking into this now and will know more in the
comming months.

Third, we could run Mesa in one of two basic ways. We could write a program in 8086 native code
that emulated the Princops machine, or we could modify the compiler to produce native 8086 code
instead of the Mesa byte stream. At this point we cannot rule out either approach because it is
possible that either approach might provide satisfactory performance. Much more study is needed
here.

How much does it cost?

A product development UMC estimate is included in this document. There are problems with the
numbers I have used for burden, etc; however, the basic cost picture can be seen. Remember that
the feasibility model is actually running code and displaying pictures on the monitor, so the parts
counts and types are not estimates but based on actual fact.

All three cases 0, 1, and 2 are interesting and different. Case 0 is the feasibility model implemented
on two PWBAs. Case 1 cuts the memory in half and uses the Intel Ethernet controller to achieve, I
believe, a very attractive cost which could be achieved with parts available today. Case 2 is, of
course, the one to shoot for in a 1982 or 1983 timeframe. The price of 64K dynamic rams is the
only unknown risk.

Package, power, keyboard, mouse, monitor, and misc. are between 600 and 700 dollars more.

In this kind of design, cost is king and a good deal of the development expense will be in the
minimurnization of cost not only in the basic UMC but also in the PLC.

4

Block Diagram of the CUB Workstation

8086
Processor

Clock

Reset and
User
Interrupt

,

I

256K Byte
Main Memory
System

byte-wise
parity error
detection

PROM
to 16K by8

16K bytes
available in
4k inc rements

,\

Serial
Communication

300to
9600
Baud

8086 Data/ Address/Control Bus
1\

II "
Bitmap Display Mouse
606 by808 Keyboard
30 Hz ref resh Keyset

32K by 16 bit Interface

refresh memory

16 x 16 bit
Cursor

8 Channel
Interrupt
System

"

"
,

,it

Ethernet
local Area
Network
Controller

.

cub-cp.block
RLB 21 May 1980

Block Diagram of the Main Memory System cUb-mc.block

I 8086 Data Bus
~

Iinput Buffer I I Output Buffer I

~

Main
Memory
Control 2 128K by 9 bit banks 72 chips per bank

Total Capacity 256K bytes

~

Refresh
Control .

'1 RAS Control I I Address Mux I
1\

A15to A 17
A18and A19 AOand BHE A8toA14 A1 to A7

I 8086 Add ress Bus

I 8086 Control Bus
1\

Hold and HLDA
'/

8086 Bus
Network ... Aribtration Request . ~

Physical Address Space Allocation

There are 16 64K byte pages

o Implemented 4 for expansion 8 for expansion C for expansion
1 Implemented 5 for expansion 9 for expansion 0 for expansion
2 Implemented 6 for expansion A for expansion E Display Refresh
3 Implemented 7 for expansion B for expansion F PROM

I

I

I

Block Diagram of the Display and Cursor cu b-dsp.block

I 8086 Data/ Address/Control Bus
1\

8086 accesses this memory
di rectly with a cycle time of
1300 ns.

Display -, Refresh Memory

Control
,

32K by 16 bits

and
Sync
Generation !

'! Final Video I ..J Monitor
\

, , i,

Cursor to Cursor ... Cursor Memory

Processor Control 16 by 16

Interface i Coordinate Data Cu rsor Bitmap (Writable)

Block Diagram of the Keyboard, ~ouse, and Keyset Interface

I 8086 Data/ Address/Control Bus

I Keyboard I

I Mouse t ...
Mouse Decode
XandY
Coo rdinates

I K'eyset I
I

A keyset is a 5 paddle Input device used with the left hand.
It Is not necessary for current User Interfaces.

i\

-
It

... ,
Input pevice
to Processor
Interface

...

,

I

I

I

Block Diagram of the Ethernet Controller cub·en.block
RLB 21 May 1980

8086 Datal AddresslControl Bus I
I' I'

II v

Ethernet to Ethernet ... DMA Access

Processor Control
Interface

""'".

I I Clocks Address
Recognition

~
... Phase -;;. Receiver 4 Receiver ...

Decode Control Buffer ..
Tranceiver

(separate Phase Transmitter Transmitter
unit) ...

~ ~
...

Encode Control Buffer

Cub· Function and Performance Summary

Microprocessor

8086 4.48 MHz 223 ns. clock
example timing reg. to reg move 446 ns.

local to reg 4 us (approx)
add reg. to reg 669 ns.
within segment call 2.5 us.

16K EPROM available in 4K increments (bytes)
Serial Communication RS232 300 to 9600 baud
8 interrupts

Main Memory

256K bytes with byte wise parity error detection

Cub-f-p.block
RLB 21 May 1980

cycle time approx 600 ns. and the 8086 runs without wait states
available for DMA transfer from the network controller
extendable to 896K bytes i

refresh of the dynamic RAMs is fully automatic and requires no processor intervention

Display

Bitmap 808 x 606 (height x width) bits active video
30 Hz refresh rate P40 phosphor
refresh memory (32K by 16) independent of the main memory
16 x 16 cursor controlled completely by hardware, no 8086 intervension
refresh memory available on the 8086 bus directly with a 1.7 us. cycle time
cursor coordinates and writable cursor bitmap on 80861/0 bus
875 line sync generation

User Input

Keyboard, Pointer

Network

10M bit Ethernet
Data input and output transfers are to main memory using DMA

Performance Measurements (Taken on operational fea~ibility model.)

Time to fill the screen with 10 point variable pitch, multifont, text· 1.5 seconds.
(Actual figures: 12pt 1241 char/sec, 10pt 1655c/s,8pt 1909c/s)
(This is about the same speed as an Alto.)

Cub PDUMC Estimate
Estimate Date: 21 May 198~

Assumptions:

Electronic components only

1982 Technology
1980 Economics

Parts type and count taken from operational feasibility model

cub·pdumc.block
RLB

except Ethernet controller data estimated from completed but untested design
15% material burden
$37 per hour labor and labor overhead
1 hr per module direct labor assumed
parts costs taken from Dandelion estimates where possible

Baseline Cub:

Configu ration:

8086 wI 8K Eprom, 256K main memory wi parity, 64K display, Ethernet,
mouse, keyboard, and RS232 (memory stated in bytes, parity on main only)

Implementation:

16K dynamic rams, two modules, commercial LSI only, multi-voltage

Cost Breakdown:

Integrated Circuits except as below (551, MSI, common LSI)
CPU IMemory cont rollRS232/keyboa rd&mouse cont rolle r Imisc.
Display controller
Ethernet

CPU LSI Group (8086, 8284, 8259A)
EPROM (8K bytes implemented with 4 2716)
Display ram (32 4116 @$3.75)
Main Memory ram (144 4116 @3.75)
Decoupling capaCitors (250 @ $0.15)
PWBA (6 layer @ $112)

Material burden (@ 15%)
2 Hours labor (@ $37)

Variations from baseline:

128K main (72 vs. 144 and bu rden)
LSI Ethernet controller
4KEPROM

Major variation from baseline:

Subtotal

Total
Case 0

Total
Case 1

128K main (18 64K parts @ $23) (not interesting at this level)
@ $11 (estimated 1983 minimum)

Single PWBA
Savings from custom LSI (guess)
LSI Ethernet controller
4KEPROM
Savings In decoupling capacitors
Costs from baseline above

Material burden (@ 15%)
1 Hour labor(@ $37)

Subtotal wI 1983 ram

Total
Case 2

$ 57
52
70
37
46
120
540
38
224

1184

178
74

1436

·310
·58
-26

1042

414
198
112

·50
·50
·23
·20

420

587

88
37

712

