XEROX

PALO ALTO RESEARCH CENTER

SMALLTALK-72

INSTRUCTION MANUAL

Adele Goldberg and Alan Kay, editors
and

The Learning Research Group
Xerox Palo Alto Research Center

March, 1976

Copyright © 1976 by Xerox Corporation

SMALLTALK-72 INSTRUCTION MANUAL

Adele Goldberg and Alan Kay, editors
SSL 76-6 March, 1976

The Smalltalk-72 instruction manual is intended for use by those persons with on-line access to the
Xerox Interim Dynabook. The first two chapters consist of an introduction to some of the methods
used for interacting with the Smalltalk system and for creating, editing, saving and retrieving
Smalltalk programs. Chapter III goes deeper into the basic concepts from which everything else in
Smalltalk is built, These include the method of evaluation of messages, message sending and
receiving, and the notion of classes and instances.

Many classes have already been built for the user's convenience. These include the various classes for
names, arithmetic, information storage methods, text display, and graphic control. The definitions of
all of these basic classes is given in Chapter IV; Chapter V then presents a number of interesting
examples that use these basic classes. Chapter IV also describes utilities already provided the user for
editing definitions, saving and retrieving files of information, viewing definitions, testing values, and
reading input devices.

Preface

The Smalltalk system described here was designed in the summer of 1972 and first conversed haltingly
with a user late that fall. It was released for more general use at the Xerox Palo Alto Research
Center (PARC) in spring 1973 when the first "Interim Dynabook” (a name for the current working
version of a small computer system) became available.

This manual is intended for use by those persons with on-line access to the Interim Dynabook. As
such, it employs a tutorial style that directs immediate experimentation with a Smalltalk system; it
also maintains a somewhat informal dialog about expected results of such experimentation. There are
references to peripheral devices, such as a keyset, a mouse, a display screen, and a disk, that have
meaning mainly in the context of the Interim Dynabook. Furthermore, the manual references disk
files that are needed in order to follow the suggested sequence for experimentation and provides
information on how to obtain these files. Such information is only useful to those persons having
access to the Smalltalk system library.

The purpose of making public an instructional manual about a language implemented on a computer
not generally available is to ease the distribution of instructional information to school-age students
(no younger than high school age) who will, in fact, have access to the Smalltalk system and materials
noted here. Because an attempt is made to describe graphic results of running example programs,
readers without access to the Smalltalk on-line materials may still gain some information about
Smalltalk by browsing through these pages. Furthermore, the manual may assist these readers in
developing their own experimental Smalltalk environment.

Many people (both from the Learning Research Group and from other groups at PARC) have worked
hard to develop the systems described in this manual and accompanying documents--the design and
implementation of the Smalltalk language, real-time music synthesis, animation, retrieval methods,
color graphics, and network communications. We take space here to mention their names: Dan
Ingalls, Chris Jeffers, Ted Kaehler, Diana Merry, Dave Robson, John Shoch, Dick Shoup, and Steve
Weyer of LRG; David Boggs, Bill Bowman, Bob Flegal, Larry Tesler, Truett Thach, and Bill Winfield
of System Science Laboratory; and Patrick Baudelaire, Larry Clark, Jim Cucinitti, Peter Deutsch, Ed
McCreight, Bob Metcalfe, Mike Overton, Bob Sproull, and Chuck Thacker of the Computer Science
Laboratory.

iii

TABLE OF CONTENTS

Chapter I.

INFORMAL ORIENTATION AND OVERVIEW OF THE SMALLTALK SYSTEM

Introduction initial comments on Smalltalkecesesssrssesesel
To Get Started how to load a disk and get Smalltalk.eeessss 1
The Mouse is what we point Witheeeessseesessssrsasosesees 2
Talking to Smalltalk how to evaluate 3+4..eureneees vesessesnsasns .
Helpful Notes how to handle typing and other errors...i.. 2
Try A Turtle make a square and a squiralieeseces crersrenss 3
Layout of the Smalltalk Screen display screen coordinate systeM.cveeessecese 4
Dialog Windows how to use some Smalltalk windows..eeesess O
A First Note on Smalltalk Classes what is a class definitionsecesessaesesnesess veeeB
Font Editing Windows how to design characters.vessvsssssssresssnnss 7

Chapter II. WRITING SMALLTALK PROGRAMS

Simple Manipulation of a Simple Program.......cnnciniee, 9

How to Edit Your Definition..icviiiiicicosasssreniercosssreinssierssniocsssesesssssassocass veee 10
Generalizing the Definition of Squareceoecenens chivessacesasserrssnranes IS | |
Fixing Your Dialog.....cicerenns vesrasrsnenes resessese reteitiesstsesarttsetasaresinsttessnssasonns cesee 13
Saving and Retrieving Programs........ccoiinnenaes cresrevereres ceresesnansessrsrsrrrenins cerens 14
Diagnosis WindowW...uieeieiresiiiiisiesiirsissessssssssresssssirsssresasesesssssssssssssesssaseseses 14
Special Characters...cccirrecincersiniesssssssrncasesssesesnsessosessssssassssrcass cessrasnss crereesnress 1D
Boxes: An Introduction to Smalltalk......... N resserernesrarenines R |

A Look at the Class BoX.cieieeiieessessorsssssrscsssasnsscssssssnsassssorscsssasssessssessnssessees 18

Alternative Box Definition cerercnse sresessrsesnnssssuresnrasensnsree versesentserennns vese 24
Class of Polygons.......cceeerinsee cerreene chrereransenenes cetvessesnistetasressenns vesnrene treserenesees 26
TUILIES ceviriiiriiiiiniiiiiniieniiirinis i seesssinesssnssesssenissasssesssssssssassssnsssssansse 27
Boxes Owning Turtles.....coorveininnnns Cerresssessarsasrsiensse Cererecaresteressasrsnrsnnsnstrsassee .29
Dispframes: An Introduction to Text Display...... PRS- 1 ¢
Placing Text on the Display Screencicciieriiceririniieccecicienne sesrsetnrsassnre 30
Boxes as Menus veseessseserens cereessarssecsrsrasaanns cersesrasinennsinrasesnnns ceessnssnrssnsens 32
A Few SKetching TriCKS..iiiice e se s e e e nes 36
Paint Brushu.cinie, cerrene cerreraenns cerernes verrerenes .. 40
BITBLTING vevvevvreernreneernesseessesssnessessanens rensresrenrresaes veresreesresressessnnsesesrnnenes 42

iv

Chapter III. THE SMALLTALK WORLD AND ITS PRIMITIVES

Objectsoboibll.....ll.llﬁhli.!.'Ol‘.....‘...l!lll.’l.00..v.l...."...l...t.ll0.!0.0.0!...00.'...00.0.‘IOQOOOOOQOIID44

Message Sending and Receiving.....cauiceiciiiiniiniecs. 44
The Notion of a Class...cccciviiisirescsnninscscosesesessesssnsssssssssssssssssercssssssassseresorse 48
The User TasK.ccmiiimimiiiimimnscss 51
The Form of Presentation of ClassesS....ccieceiraresniscrccsivssssrserssssnsessseresesssess 53
A Smalltalk Class Example.cceiiiiciceiicsesisisissnsninisssssscascssessssssssscescessss BB

Chapter IV. BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES
The Basic System Classes...iciiireimnesiiiiirensinisimnmieniiicsesssmmseissssssssssssssces 56

. 3 5 e versriseans veres B6
Arithmeticceeviinnnene Sreesescotarsesttenssrsnrnsiesnssasesanraterenserensisessosesssnrcnsrssasesssssatcas BT
Turtles for Drawing .cccciciciiicciiiiciiiiiiesiniisisssnsssiscesssscsssescssses 60
The False ClassS..ciciiiiiiiiiiicniiiiiiiiiiisinieesiiineiessssssssssssssassssosssssses 61
Sequential DictiOnNAries....ccovciisissnsirsressesressasssrsesaressserssnssssssssssnsssesessrsscsssses 62
Dispframe: The Basic Window Class........... P £
POINt ClassS.cicceressssceresnisessorsernarasssasasssserssncsssssssesesascrtorsssssssssssssssssssssssasssasassess 73

Aids for Interacting with Smalltalk.......cccceerrrann, eesrraanaes ceerrsssennisssnnnsssnensennnes T4

The Smalltalk Class EditOTe...eereesrererssseersssresaresesssssesssessossassesessssssssssossssess T4
Showing Stored Information....cciccireiieiiieieiiiniectiiiiiiiiisiiniessscasisissecscescense 19

Saving Smalltalk Definitions....... erresssssnnaes eresereareraneses creserernenserane vesesnsenesens 70
Saving and Restoring Your Context.......ceeceeenns U &
Utilities D.l.......l...'.....Q..l..l!lD..O.....l'.0l..'....0‘..."'..0.0...‘.‘.'..'..l....ll....".....'..l."77

Chapter V. EXAMPLE SMALLTALK CLASS DEFINITIONS

Arithmetic: Amortization of Loans.......ceeeuss vesecsesrnesansesane veessssases veeasesens ... 84
Sequential Dictionaries for Storage and Retrieval.......ccciiivnrirncecennees cereenee 87
Dispframe...cccccrcsnrescerericescncesens cestenncessesions cessensne cesesrsenrane seeestsenessensnns crervenneessss 90

Point Class
The Class Rectangle....... Ceressasaseserasessssrassnansasens ceessersresaniane R o P4
Dictionaries of Areas and Pointscccevsvevicenicans vesssessass careresseses vere 94
Turtles....... cesrrsesarenes cererrrsasenns cersassesasess cherssseestrsesenes ersrsersancanene cerestsesenseseseas ... 96
Commander Turtle.....ccciiiiiiiiiiiiiiiiiiiiiiiaiiiiiiiiiiniesessiiessressrsrsssccssacasens 96
Control Classes for Repetition and Alternate Paths....cciviiiniiinininiiineen 98
Scheduling Methods: sched and wWindowccccoremierecniieninienin, 102
Loopless Scheduling Cetstreieretenattiteatraenareatas cesssersenseniinestesensssnnts 107
A Sample Text EditOr.cciciiiiiiiiiiiiiiiiieiciiiisiceiitiserirssesesasessarssssssasess TP 110
Classes for Building Models................ veeseressenans cerarerrasenane Ceerssasssiariaens cerennea 117
Simpula Style Simulationcceeens Cetrresesstsriasteristrsusesstnssnaterrrtienans e 117
A Simple Hospital Simulation....cceeiiiiiiieiiiiiiiiiieiiiiiiiiicinenan 121

INDEX".........I.0..'.".!. GO RLAPOOCRITRNINRNNCRNNININRINRSOOIRNRSIIISTS 00000000 LELE R X] LA XA N RN R AN N NN IEEXE XA N RN] 124

PREPARING A BASIC SMALLTALK DISK

There exists a disk pack that contains the Basic Smalltalk System as described in this manual. To
save on disk space, only the main files have been placed on this disk. These include the Smalltalk
programming system including the windowing functions, an editing facility and printing routines, and
some Smalltalk font files. Also included are files that contain the sample class definitions presented
in the manual:

boxes, fontfns, nwindowfns, simpulafns, turtlefns,
windowfns, xydic, xfer, xyfns, xplot

Not included are all the files needed to run the music, animation, findit, and editfont frameworks.
These can be retrieved onto your disk either (1) by transferring the files noted in the documentation
on the various frameworks from a disk that already contains them, or (2) by executing one of the
following (included) command files:

animationget.cm

finditget.cm

finditvget.cm

musicget.cm

editfontget.cm
The format for executing a command file is

@©<filename>@ <(return>
To update your files, either use a Basic Smalltalk disk for transferring files, or, if you have access to
the archival file system, retrieve a file named

(smalltalk)smallmanual.cm

If you execute it as a command file, your disk will be updated with the Basic Smalltalk disk files
listed above.

vi

ORIENTATION AND OVERVIEW Page 1

Chapter L
INFORMAL ORIENTATION TO THE SMALLTALK SYSTEM

Introduction

This manual is intended for use by those persons with on-line access to the Xerox Interim Dynabook.
As such, it employs a tutorial style that directs immediate experimentation with a Smalltalk system;
jt also maintains a somewhat informal dialog about expected results of such experimentation.
Chapter 1 demonstrates some of the methods used for interacting with the Smalltalk system; it
includes the use of display graphics, dialog windows, and font editing windows.

Chapter II continues this introduction by demonstrating methods for creating, editing, saving and
retrieving Smalltalk programs. It then begins specific instruction on the development of Smalltalk
class definitions, beginning with the class box, then expanding a box-shape into any regular polygon
(the class polygon), and continuing with methods for communicating with instances of the class
turtle. Included in this chapter is definition of the set of special symbols used in Smalltalk; some
attention is paid to the idea of message sending and receiving. Finally, this chapter describes the
class dispframe, and presents a number of ways to place text on the screen and to sketch with a "pen"
and a "paint brush".

Chapter III goes deeper into the basic concepts from which everything else in Smalltalk is built.
These include the method of evaluation of messages, message sending and receiving, and the notion of
classes and instances:. One part describes subsequent presentations of basic class definitions.

Many classes have already been built for the user's convenience. These include the various classes for
names, arithmetic, information storage methods, text display, and graphic control. The definitions of
all of these basic classes is given in Chapter IV; Chapter V then presents a number of interesting
examples that use these basic classes. Chapter IV also describes utilities already provided the user for
editing definitions, saving and retrieving files of information, viewing definitions, testing values, and
reading input devices.

To Get Started
Place your Smalltalk disk in the machine, press "run" on the disk drive, and when the "ready" light
appears (yellow light), press the "bootstrap” button (the little one located near where the wires enter
the back of your keyboard). The screen will go blank for a second and then show you some
information having to do with the particular machine configuration you are using. You are talking to
the Interim Dynabook operating system. Type:

©@s@ (return’

@ is typed by holding down both the key marked 'SHIFT' and the '2' key. There will be a flash and a
rectangle (window) will appear with text in it

A Smalltalk Window
If you are on a color machine (your screen background has color rather than white), you should type:

@cs@ (return)

ORIENTATION AND OVERVIEW Page 2

The Mouse

The little rectangular object with three buttons that usually sits to the right of the keyboard is called
a mouse. Move it around .while watching the screen. An arrow (mouse cursor) will be moving in
response to it. This is how we point to objects on the screen. Smalltalk constantly "asks" the mouse
where it is. A little bit further on we will explain how you can ask the mouse the same questions.

In Case of Disaster

In case of any disaster, first push the (escape) key (marked 'ESC' and located in the upper left corner
of the keyboard). Try to put the mouse cursor in a displayed window or, by moving the mouse around,
try to wakeup a "hiding" window. If that doesn't help, then try typing <(shift)(ctrl)(escape). That
is, press the key marked 'ESC' while holding down the keys marked 'SHIFT" and 'CTRL'. Finally, as a
last resort, press the "bootstrap" button again and go through the above sequence.

Talking To Smalltalk

If you are on one of our color machines then move the mouse so that the cursor travels all the way off
the bottom of the screen. A white rectangle (a Smalltalk dialog window) will appear. It contains a
message. Move the cursor into the window. If on a black-and-white machine, simply move the mouse
so that the cursor travels into the rectangular frame at the bottom of the screen.

A small, flashing image of the Interim Dynabook will appear--this means Smalltalk is listening. To
test this, type:

3+4 1

The ! (do it) character is marked 'LF' on the upper right of your keyboard. It is used to tell
Smalltalk that this is the message you really want it to do. Now try the following:

3*41
"*' is how we express the sign for multiplication in Smalltalk. Try:
355.0/113 8

The result shows a well-known number and the accuracy of Smalltalk's fractional arithmetic.

Helpful Notes

Smalltalk will only listen to you through a window when the cursor is in it. Any characters typed
when you are out of a window will be saved until you place the cursor in a window. Try taking the
cursor outside of the window and typing 3+4. You will not see the characters appear in the dialog
window. Now move the cursor into the window. The characters '3+4' will appear in the window.
When you have learned to create multiple windows, you might repeat this experiment to prove to
yourself that the characters will indeed appear only in the window containing the cursor.

Once you start typing characters in a window, Smalltalk will wait for you to type ! before any window
wakes up again. So, if you inadvertently move the cursor out of a window while you are typing,
Smalltalk will continue to listen in that window.

ORIENTATION AND OVERVIEW Page 3

Deleting (backspacing) of unwanted characters is done with the 'BS' key located on the upper right of
your keyboard.

If you inadvertantly make an error of some kind, which is then sent to Smalltalk by saying ¥ (<do
it>), a diagnosis window will appear with a message that, at this point, will probably be obscure.

To see this, try typing a symbol for which Smalltalk does not yet have a meaning, such as:

mumble }
A diagnosis window will appear. Note that the prompt character (the Interim Dynabook image) does
not flash. Once a diagnosis window appears, it listens to you until you return to your previous
context. To get back to your previous context, either type:

done 1
or the shorter form:

C(ctrl) D

typed by striking the 'D' key while holding down the key marked 'CTRL'.

Try A Turtle

Turtles are little beasts which crawl around on the screen and can leave a variable width tracing of
where they have been. Smalltalk line drawings are done with turtles.

Smalltalk can have many turtles. Each is created as an instance of a group or class we call turtle.
One, ® (called "smiley"), has already been created for you. It is typed by holding down both the key
marked 'SHIFT' and the '2' key (i.e., the @ sign which has a different printing representation in
Smalltalk than it does in the Interim Dynabook operating system).

As with all Smalltalk objects, can receive a variety of messages asking it to do "turtlelike" things
(such as "go forward some number of steps", "turn some number of degrees”, ...), and answer
reasonable questions (such as "what kind of thing are you?", "where are you"). Type:
3 go 100! A vertical line should appear.
is 21 ? is typed holding down both the
'‘SHIFT' and '6' keys.
Is the answer (turtle) reasonable?
turn 90 go 100 ¥ Did what happened make sense?
To redo a previous statement, type:
redon 1
where n is the number of transactions (visible images of the Interim Dynabook) back from where you
are. If you type: redo 1! at this point, the & turn 90 go 100" message should be re-sent to
Smalltalk and another line will be drawn on the display screen. If you want to redo the previous

statement, simply type the equivalent statement:

redol

ORIENTATION AND OVERVIEW Page 4

Try
erase homel Clears the screen, brings the
turtle to its center position,
and points the turtle upward

do 4 (® go 100 turn 90) 1 Will make a square

erase home.
fori e 1to200do(® goi*2turn 89)1 To get a "squiral”.

The text line change in the above transaction is obtained by pushing the key marked 'RETURN' after
the message home. This "carriage return" does not affect anything except the appearance of the text
in the text window. The period is a delimiter, signifying the end of a message. It is generally good
practice to include periods when stringing together several complete messagas. Note that, although
the period signifies the end of the message, you still need to type ! ¢(do it) to actually send the
message to Smalltalk.

Notice that, as a result of the above messages, the black frame around the window has disappeared.
The window has not been destroyed. Merely, &'s drawing area overlapped with the window area, and
hence erased much of the window information. None of that information is lost. Move the cursor off
and then back into the remembered window area, refreshing the window display. This erases any part
of the turtle drawing that overlaps the window. Any turtle lines inside the window will scroll (move
up) whenever the text scrolls.

You have also just used two Smalltalk iteration methods: do and for. Each is a method for counting
the number of times a message should be evaluated. In the more general method for, the iteration
counter (in the above example, the counter is i) can be used as part of the message (in the example, i
is used to help determine the distance the turtle will travel).

Layout of the Smalltalk Screen
The x direction runs from left to right. The left hand margin is 0, the right hand one is 5§12. The y
direction runs from top to bottom. The top margin is 0, the bottom one (at the lower boundary of the

original window) is 680.

Smalltalk display screen

Now say to the turtle:

erasel
goto 100 1001 Is a line drawn to the top left quadrant?

ORIENTATION AND OVERVIEW Page 5

Type mx. Then, before fyping the 1, place the cursor somewhere in the screen and type:
!

Similarly, try
myl

Smalltalk should send you back reasonable numbers for m(ouse)x and m(ouse)y, the display
coordinates of the mouse cursor. Now type:

goto mx my!

and a line should be drawn to the cursor position. You have hooked up the mouse to the turtle. A
simple drawing program can be written by saying:

repeat (® goto mx my)!

Move the mouse and a trail will be left behind. You are in an "infinite" loop (the & goto mx my will
repeat forever). To escape from the loop and to get Smalltalk to listen to you again, press the key
marked 'ESC' in the upper left hand corner of your keyboard and move the cursor back into the
window.

Try
©rs width « 3. repeat (® goto mx my)!
The ’s is typed by striking the key marked 'S' while holding down the key marked <CTRL>.

A more involved drawing program might use the buttons on the mouse to control the turtle's ink color,
width, and erasure. More about drawing programs later.

Dialog Windows

All communication to a Smalltalk object is done through windows which contain the most useful
editor for that object (you have just been using a dialog window). The editor for a picture object is a
kind of painting and drawing aid; the editor for a paragraph of text handles characters; the font
editor allows the character defining dots to be easily changed; and so forth.

Every window can be moved, stretched, and deleted from the screen. Other abilities depend on the
particular kind of window with which you are dealing. A collection of related windows (containing
pictures, text) is a document which can be automatically archived in many different ways for later
retrieval and editing.

For example:

a. Move. Move the cursor into the upper left hand corner of the window you are in and press down
the top button. The window should go blank. You may have to play a little while holding down the
button in order to find the actual corner. The tip of the cursor (the upper left corner) must be in the
window corner.

b. Now point the cursor somewhere else on the screen and push the top button briefly again. The
window will reappear in the new position. The upper left corner of the window can not be forced off
the physical display screen; however, the other parts of the window can be slid off the display as a
method for pushing them out of the way until needed again.

ORIENTATION AND OVERVIEW Page 6

¢. Grow. Now move into the lower right corner in a similar manner. (If the corner is off the screen
due to the previous move, do another move further to the left to get the right hand side visible again.)
The next button push will change the boundaries of the window so that the new lower right corner
position will coincide with the cursor. Try it. You can not grow the window smaller than 32 units
wide or 32 units high.

d. Create. A new dialog window will be created for you by grabbing the lower left corner of an
existing dialog window (pointing the cursor and pressing the top mouse button). The new window
will appear in the upper left portion of the display screen,

e. Position the cursor inside the new window and try typing 3+41 .

f. Delete. Any dialog window can be deleted by grabbing its top right corner. Try it with the new
dialog window. For obvious reasons, a single remaining dialog window can not be deleted.

Try overlapping windows. The window that sees the mouse cursor wakes up and displays itself on top
of all other windows.

Each new dialog window appears in the upper left portion of the display screen. Unless you move
each window as it is created, the windows will pile on top of one another. Another way to define a
dialog window is to have a new window appear at a location pointed to by the mouse cursor. The
cursor could blink on and off, waiting for you to press a mouse button to indicate that the present
cursor location is the place to put the new dialog window. Later on, after you have learned more
about Smalltalk, you might make this change to your personal Smalltalk system.

A First Note on Smalltalk Classes

Every entity in Smalltalk's world is called an object. Objects can remember things and communicate
with each other by sending and receiving messages. Each example we present demonstrates the ability
of objects to receive messages and produce replies.

Every object belongs to a class (a method for grouping together objects that do similar things). ®, for
example, is an object. It is a member of the class turtle. All members of this class are able to draw
lines on the display screen. The class handles all communication (receiving messages and producing
replies) for every object which belongs to it.

We have just been looking at members of the class window. Messages are sent to a window by
pointing with the mouse cursor and pressing a mouse button. Each member of the class responds to
the message by moving to a new screen location, changing its size, creating a new member of the
class, or deleting (erasing itself from the screen). The objects are dialog windows, capable of
capturing and editing Smalltalk messages. The next example is a font window which contains an
editor for designing display characters.

ORIENTATION AND OVERVIEW Page T

Font Editing Windows

Type
filin 'fontfns'l}

filin is the Smalltalk method for reading messages stored on a disk file. Reading the file takes a
while. The display screen is purposely turned off (becomes blank) to speed up the reading process.

You now have routines for creating windows in which editing means drawing in a matrix of black and
white dots. These windows contain magnified views of display characters. Any character font (the
design of the display characters) can be described as a matrix of black and white dots. Using the
mouse cursor in a font window, you can draw in a character font of your own choosing. Moving the
cursor to a dialog window, you can immediately view font changes within the zontext of text displayed
in that dialog window. Type

fontcharl
A newly created window appears in the upper left corner of the display screen. Like dialog windows, a

font window can be moved, deleted, and its size changed. Unlike dialog windows, a new font window
is created only by typing the message fontchar.

| move delete }
| |
| |
| change change |
| baseline width |

Four actions are taken by pointing to one of the corners of a font window and pressing the top mouse
button.

1. Move the window. Point to the upper left corner and press the top mouse button. Then point to
a new position on the display screen and press the top mouse button.

2. Delete the window. Point to the upper right corner and press the top mouse button.

3. Change the bascline of the character. Point to the lower left corner and then to the relative
adjustment, up or down, of the character's baseline. Raising the baseline creates superscripts;
lowering the baseline creates subscripts. The upper limit is the baseline of the previous text display
line; no lower limit exists with the exception that an attempt to print outside the display screen
boundaries will cause Smalltalk to crash. Note that the font window appearance does not change; the
change only appears in the printed text. Move the cursor into the dialog window to see the change.

4. Change the width of the window (and, thereby, the width of the matrix). Point to the lower
right corner and then to the new right margin. 'The width is rounded to a multiple of 16 display bits
and may not exceed 16 dots, so it may not appear exactly at the mouse cursor's arrow head.

5. Drawing black and white dots. Black dots are painted into the matrix by pointing to a location
in the window and pressing the bottom mouse button. The drawing technique is to scratch black lines
through the matrix dots as long as the mouse button is pressed. As soon as the button is released, the
black dots appear in any area containing the black lines. White dots are painted by pointing to a
location in the window and pressing the middle mouse button. White lines are written through the
dots as long as the mouse button is pressed; white dots appear when the button is released.

ORIENTATION AND OVERVIEW Page 8

6. New characters. When the window is first created, the character available for editing is the

period, '.'. To change the character, place the mouse cursor inside the window and type, on the
keyboard, the desired character.

Once a new font has been designed, it is saved on a disk file by typing

filfont (filename) out !
where {filename> is some name delimited by single quote marks. For example,

filfont 'myfont’ out §
The font of the dialog window in which you are currently typing is the one that will be saved.
To read a saved font, type

filfont (filename) in 1
For example,

filfont 'myfont’ in 1
The font of the dialog window you received when you first started working is stored on a filed named

st8.al
If you have made changes but would like to return to the original (default) Smalltalk font, type

filfont 'st8.al’ inl
Other Smalltalk fonts include st6.al and st10.al; each can be retrieved from the archival file system.
The font of the dialog window in which you are currently typing will change to the font saved on
{filename). The font you edit is the one currently belonging to the dialog window in which you are
typing. Note however, that each dialog window is created with references to the identical font. In
order to have two font windows editing separate fonts for each of two dialog windows, it is necessary
to replace one of the dialog window's font with a copy of itself. For example, suppose there are two
dialog windows (A and B) and suppose you type fontchar! in window A. Results of editing the single
font window will appear in both A and B. Now type in window A

fontchar font disp’s font}
Recall that the ’s is typed by stiking the key marked 'S' while holding down the key marked <CTRL>.
The class fontchar, upon receiving the message font, will replace the font for dialog window A with a
copy of the value following the message font (in this case, with a copy of the font possessed by A).
Results of editing the new font window will then show in A and not in B; moreover, results of editing
the original font window will show only in B. Choice of which fonts are saved will depend solely on
which window is used for typing the filfont message.
The use of the name disp and the message >s are described in more detail in subsequent sections. For
now, assume their use for the above redefinition of a dialog window font.

&

Warning: some fonts have no definition for the character whose Ascii code is 31. This is the

character used to mark the black dots. Any font without this character properly defined can not be
used with this font editing system.

WRITING SMALLTALK PROGRAMS Page 9

Chapter II. WRITING SMALLTALK PROGRAMS

Simple Manipulation of a Simple Program
To hand an object 'd' the meaning '3' in Smalltalk, we say:
@°d « 3!
(The @ is typed as <shift> '). If you now say:
dl
The meaning (or value) of d (which is a number, 3) will be returned.

Each object in Smalltalk can only have one meaning. To change the meaning of the object named 'd’,
we might say

@G>d « turtle!
The new meaning (or value) of d (which is a turtle) will be returned.

In these examples, we use the symbol G& to indicate that a literal name follows. The arrow, «,
indicates a desire to give the name a meaning.

Previous turtle examples showed how we can get a turtle to draw a square. Now we need to be able to
make that definition a Smalltalk object, use it, change it, save it, and retrieve it. To do this we need
to give a name to the actions which cause a square to be drawn. In Smalltalk, actions are also
objects. So we need to say something similar to what was just said to d. Type:

to square
(do 4 (® go 100 turn 90)) !

This will cause Smalltalk to give the actions do 4(® go 100 turn 90) the name square. Here, the
symbol to (rather than the hand &) indicates the desire to give a name to some actions; the actions
are enclosed in parentheses.
Erase the screen and bring the turtle back to home position by saying:

erase home
Then say:

square 1

The stored actions will be invoked. The commonly used actions of clearing the screen and telling the
turtle to go to home can also be abbreviated:

tocl (® erase home) !
Now only 3 characters have to be typed:
cll

rather than 13.

WRITING SMALLTALK PROGRAMS Page 10

Now type:

defs!
A list of the names square and cl should be typed back at you. defs is a kind of "bushel basket" which
contains the names of user-defined programs.
How to Edit Your Definition
In any dialog window, type:

edit square 1
An editing window with a command menu will appear. ‘The "method" of square is shown as:

do 4 ()
The () stands for a parenthesized message which in this case contains:

go 100 turn 90
Actual parentheses never show in the editor, only the marker () indicating levels of parentheses. To
see the message within the parentheses, point the cursor at the word 'Enter' in the menu and push the
top button on the mouse. (Note, some versions of the mouse have buttons laid out horizontally, left
to right, rather than vertically, top to bottom. Henceforth, we will refer only to top, middle, and
bottom buttons; the left button corresponds to the top button.)
You should see the message as:

go 100 turn 90

Place the cursor on the word 'Leave' in the menu and press the top mouse button. You have now
backed up to the next higher level of parentheses.

We will use the word "grab" to stand for the compound operation of positioning the cursor on an
object (word, icon) and pushing a button on the mouse to tell the system that the object we are
pointing at is really the one we mean. (Unless specifically stated to the contrary, push the top mouse
button).

Grab 'Enter' again.

Now let's change the 100 to a 50 in the definition of square. Grab 'Replace’. It will reverse its display
color to show that the selection is understood.

Grab '100'. The top half will reverse color. This means that 'Replace' expects you to replace one or
more elements beginning at '100'. We only want one element, so grab '100' again. The bottom half
will also reverse color and a prompting Interim-Dynabook image will appear, indicating that typing is
expected. Type:

501

You will now see:

g0 50 turn 90

WRITING SMALLTALK PROGRAMS 7 Page 11

Now grab '‘Exit' to terminate the editing context. You will be returned to the previous Smalltalk
context. Say:

squarel

and one of size '50' will be drawn. So the "meaning" (or "actions") of square has been changed.

A Note on Editing

There are a number of ways to terminate an editing sequence before completion. If you grab a wrong
menu word, or have not completed the selection of a phrase to replace or delete, you can terminate by
pointing the cursor outside the editing window and pushing the top mouse button. This does not work
for 'Add', 'Insert’, nor 'Exit'. If you do not want to complete an add or insert command, but have
already received the Interim Dynabook prompt character, just type ¥ (i.e., insert or add nothing).
Once you have selected the phrase, a replace command cannot be terminated unless you are willing to
lose any previous edits. Pressing the 'ESC' key takes you out of the edit window and back to the
dialog window. Also note that if there is more than one parentheses marker displayed in the edit
window, the 'Leave' and 'Enter' commands expect you to point at the appropriate marker.

Generalizing the Definition of Square

Now suppose we would like to make square more general, so that it will draw squares of any size. To
do so we can give square a "message" saying what the size should be this time, such as:

square 150 1

We must now change the definition of square so that it can receive the message and act accordingly.
First say:

show square !
to remind yourself what the current definition of square is. We see:
to square
(do 4
(® go 50 turn 90))

It's clear that we want to do something with the place where 50 is. Everything else about the
definition (having 4 sides and turning 90 degrees) describe squares in general.

Suppose there is a way to receive a value from the message. The value needs to be some number. We
give the particular value a "name" in order to talk about it since we don't know beforehand what the
number will be. Let's call it size. Looking above, we see that size should replace the 50 :

to square
(do 4
(©® go size turn 90))

Now we just need to get square to receive the value of a message and call it size. In Smalltalk, the
request to "receive the value of a message" is expressed by a colon

So we want to add

WRITING SMALLTALK PROGRAMS Page 12

GPsize ¢ :.
to the beginning of square. Say:

edit squarel
Grab 'Insert', grab 'do', type:

Gsize « :.1
Careful--the period is necessary here. It helps to separate, in one's mind, the sequence of receiving a
message and then invoking an action for producing a response. Note that the 'Insert' command
inserts before the selected element.
To replace the 50, grab 'Enter'. You should see

go 50 turn 90

Grab 'Replace’. You want to replace the '50' so grab '50' and grab '560' again (indicating the beginning
and ending of a phrase to be replaced by new text). Now type the new text

sizel
Grab 'Exit'. You are no longer talking to the editor. Type:

show squarel
to see what you've done. It should look like:

to square

(@ size « :,
do 4
(® go size turn 90)})

Then try sending several messages to draw different squares:

square 1501
square 101

and so on.
The colon expresses a request to Smalltalk to fetch the next value in the message. The value is the
meaning of the next object (for example, the number 10). But the value can also be the result of
actions taken by the next object. For example, try

square 150+201
Smalltalk runs the definition of square. When it sees the colon in (@"size € :.), Smalltalk "activates”
the next object, the number 150. This number sees the plus sign (+), fetches the value of the next
object (in this case, the number 20), and performs the addition. The value returned as the value of
size is the sum 170.

The definition of square is obviously working but is a bit untidy. To see why, type:

sizel

WRITING SMALLTALK PROGRAMS Page 13

The value of the last size you gave square will be returned. This shows that the "name" of the message
for the size of square belongs to everyone. It is much better for size to belong only to the object which
uses it. To do this we only need to tell square that size belongs to it by putting the name size right
after the name square in the "title" part of the definition. Say:

edit square titlel

square's title line will be shown as well as (), the marker representing the body of the definition. If
you were to 'Enter’ (), you would see the definition itself. Instead, grab 'Insert’, grab (), type:

sizel
Grab 'Exit'. Type:
show squarel
You should see:

to square size
(@ size « :.
do 4
(® go size turn 90))

Later, when more of the Smalltalk system has been explained, we will adopt some abbreviations to
make our story more compact and clear. For example, a short way to talk about this program would be
to exhibit, in a general way, what has to be said to get results:

square {number>}

means the object square expects anything which evaluates to a number as a message. An example
might be

square 30.4+(111.7*65.789)/99)

Here, the colon in (GPsize « :.) fetches the result of the expression 30.4+(111.7%*65.789)/99. This
example demonstrates the left-to-right method for receiving messages; that is, Smalltalk first sees the
floating point number 30.4 which, in turn, sees the plus sign and attempts to receive a floating point
number for the augend. However, the arithmetic is right associative. The augend is obtained by
fetching a value from the message. As a result, the floating point number (111.7*65.789) is
evaluated which, in turn, sees the division sign and requests a divisor (the 99.). Hence, in this
expression, the multiplication is carried out first (because of the explicit parentheses), the division
second, and the addition last. Try

10 - 5 + 28 response is 3, not 7
or

20 -2 * 31 response is 14, not 54
Fixing Your Dialog

You can edit the command lines (or statements) in the dialog window in the same manner that you
edit a named definition (described in the previous section). To fix a previous command line, type:

fixnl

WRITING SMALLTALK PROGRAMS Page 14

where n is the number of transactions (visible images of the Interim Dynabook) back from where you
are.

An editing window with a command menu will appear. After making changes, you grab 'Exit' to
terminate the editing context. This causes the edited line to be sent and evaluated as a message to
Smalltalk. The line in the dialog window will not be altered.
Saving and Retrieving Programs
Type:
defsl
again. square and cl will still be there. To save everything in defs, type:
filout (some name in single quotes)}
such as:
filout 'mysquare'l
The screen will go blank for a second.
To test whether you actually saved them, go through the "To get started” sequence again. Then try:
square 1001
This will generate a diagnosis window with the complaint that "square has no value" . We are now in
a "clean” version of Smalltalk, one in which square has not been defined.
Diagnosis Window
The complaint is stated in a diagnosis window. Smalltalk attempts to state the complaint and then
(1) to provide the name of the program in which the complaint occurred, and (2) to point, with a big
arrow ™, to the object causing the problem.
In the context of the diagnosis window, you can type any Smalltalk messages. The value of objects
are within the context of the object in which the complaint occurred. In the above example, we are
still at the "top level" of Smalltalk; that is, the context is a global one for all objects defined in
Smalltalk. Each attempt by one object to evaluate another object takes you one level lower in
context; after completing the evaluation, you return to the object that requested the evaluation at its
higher level of context. It is possible to trace back from the current context in order to locate the
cause of complaint. Each time you type
el
you see the next higher level of context.
Type

donel or C(ctrl) D

to get out of the diagnosis window.

WRITING SMALLTALK PROGRAMS ‘ Page 15

Now type:
filin 'mysquare'l
After a few seconds, try:
square 100}
The result shows that you have retrieved your program.
Type
size §
You will get a complaint that "symbol has no value" because now size only belongs to the object
square that uses it. The object size has no value in a more global context.
Special Characters
Smalltalk uses a number of special "iconic" characters, many of which were invented by some
Smalltalk students to help remind them of important distinctions. An example is "quote" whose sign

to adults is usually ("). The children preferred to use (@) to signify a literal symbol, since in its
typical use:

@G joe

(meaning the literal symbol 'joe' rather than what or who 'joe' may stand for)--the hand points
directly at the symbol itself,

This distinction exists in English also. We can say:
Paris is a large city in France,

We shouldn't say:
Paris has five letters.

but rather:
'Paris' has five letters.

to indicate the literal word rather than the city.

WRITING SMALLTALK PROGRAMS

Page 16

Keyboard Equivalents

(Note, there are usually several ways to type a special keyboard character.

The following table

presents the methods most commonly used.)

a -QD@:}U moo4 @l-

=
[
[

@RS WK

Summary of

<esc>

{ctrl> D

<{shift> <esc>

fix <number>

redo <{number>

You Type We Call It

LF do it

<shiftd> ! hand

<shift> § eyeball (look for)
<ctrl><{shiftd;

{ctrl> k keyhole, "peek"
<shift> / if ... then

<shift> 1 return

<shift> 2 smiley

<shift> 7

letrl> 7

Lctrl> s

Lctrl> d

<shift> - unary minus
<ctrl> < less than or equal
ctrld > greater than or equal
<ctrl> = not equal

{ctrl> v percent sign
{ctrl> 2 "at" sign

{etri> 1 explanation
<ctrl> o double quote sign
Cetrl> 4 dollar sign

Special Dialog Window Operations

Escape to the "top level" of Smalltalk;
blinking the prompt character

should return youto the dialog window

Assuming you have entered a diagnostic window, returns you to the dialog
window.

While inside a diagnostic window, changes the context of names and their
values so you can investigate the cause of an error.

Creates a sub-dialog window within the current dialog window, suspending the
operation of the current window until you type <ctrl> D. Within the sub-
window you can type any Smalltalk message.

Enters the Smalltalk editor for a command line in the dialog window. The line
is <number> transactions back from where you are currently typing.

Re-sends Smalltalk the message on command line {number> where the line is
<{number> transactions back from where youare currently typing.

WRITING SMALLTALK PROGRAMS Page 17

Boxes: An Introduction to Smalltalk
First get the box programs by typing:
filin 'boxes' 1
After a few blinks they will arrive.
Type to Smalltalk:
@ joe ¢ box |}
A small box will appear in the top center of your screen. You have given it the name joe. As a
member of a class or group of objects resembling boxes, it can receive messages having to do with
"poxness”, particularly those concerned with position, size, and tilt. Try:
joe grow 50 1
joe will get bigger. Try:
joe turn 30 1
and
joe grow -20 1
and
joeis?
joe will turn, grdw, and answer that he is a box correctly. Now try:
@>jill « box }

A new box will appear. Type similar messages to jill using different numbers for size and tilt. jill will
answer the question jill is 2 with box (as did joe).

Now try:
repeat (joe turn 20. jill turn -11) 1

Both of the individuals respond. To "escape" from the endless loop, press the key marked 'ESC' located
in the upper left hand corner of your keyboard. Ask the questions:

joers size 1
and
jill’s size 1
(Don't forget that s is typed as (ctrl) s)

We see from this and the little "movie" which we created that joe and jill are really separate entities
which can do similar things.

WRITING SMALLTALK PROGRAMS Page 18

An analogy to these ideas is the common notion of classification by similar properties. For example,
we find useful the idea of grouping human beings into a class because we see so many similarities
between individuals that we would like to discuss them in the abstract. The class "human" has
properties such as 'name’, 'age’, 'weight', 'walk', 'eat’, 'eyecolor', and many others. Each individual
human (we often say instance of the class human) has particular values for these properties. Some of
the values are quantities (as with a value for 'weight'), and some are actions (an individual may have
a particular kind of rolling gait for 'walk'). Smalltalk's semantics are at a more comprehensive level
than natural language and thus make no distinction between the rather crude English notions of
"thing" and "action".

In Smalltalk, every entity is called an object; every object belongs to a class (which is also an
object). Objects can remember things about themselves and can communicate with each other by
sending and receiving messages. The class handles this communication for every object which belongs
to it; it receives messages and possibly produces a reply, typically a message to send to another
object.

The central idea in writing Smalltalk programs, then, is to define classes which handle communication
among objects in the created environment. A message is sent to an object by first mentioning the

object's name and then mentioning the message. Either the programmer (via direct keyboard typing)
or an action that is a reply from a class sends the message.

A Look at the Class Box
As an example of a class definition, here is a box. Its various parts are described below. They serve
to introduce the special Smalltalk symbols and syntax. It is a very simple class definition, but

encorporates most of what is complex about Smalltalk.

Note that you can also examine the classes we have already discussed (turtle, window), as well as any
that will be introduced, by typing

show (classname) §

The definition of box is
to box var | x y size tilt
(¥draw > (® place x y turn tilt. square size.)

“fundraw > (® white. SELF draw. black)

<fturn > (SELF undraw. G~tilt « tilt + ;. SELF draw.)
<“fgrow > (SELF undraw. G"size ¢ size + :. SELF draw.)
isnew > (GPx « Gy « 256. @size « 50.

G"tilt « 0. SELF draw)) !
addto turtle G(%f place » (SELF penup goto (:)(:) pendn up. *1SELF)) !
to square length

(&~ length « ..
do 4 (® go length turn 90))1

WRITING SMALLTALK PROGRAMS Page 19

addto. The object addto is useful for extending the definition of an object (in this case, we used it
to extend the definition of turtle). Here, we give a turtle the ability to respond to the message place.
The response is to have the turtle pick up its pen, go to a screen position that is received as a
message, put its pen down, and face in an upward direction (that is, it places itself at a new position
without leaving a trace).

square. To draw a square box on the screen, we use the definition of square that was constructed in
Chapter I. The initial explanation of the colon, :, the Smalltalk symbol for fetching the next value in
the message, was also given in Chapter L.

Explanation of the Definition of the Box Class
The format for teaching Smalltalk about a new class of objects is

to (class-name) (temporary variables) [
(names of properties describing each member (instance variables)) |
{names of properties describing the class (class variables))
(messages to receive and actions to take) !

We use the symbol, to, to refer to the next object as a literal class name (here, the name is box).
Everything following the name is its value; it is useful to think of this format as the mechanism for
storing a name with its meaning in a dictionary. There can be different dictionaries for the different
contexts in which a message might be sent; typically dictionaries are nested so that an object can
gain access to objects and their meanings that were defined in any higher level of context. So far we
have only been working at the highest level (top level) of Smalltalk context. The definitions of box,
turtle, window, fontchar, are found in the top-level dictionary.

Notice that more consistently, we might have preferred the format

G (classname) « class (temporary variables) | (instance variables) | (class variables)
(messages and responses)}

which is more like
& (name) € (value)l

the method for creating instances of the classes. Here we use the symbol G~ to refer to the next
object as a literal name and the part after the arrow, «, is the object's meaning.

Title Line

Words between the word to and the first left parenthesis are referred to as the title of the definition.
The vertical bar, /, in the title is used as a delimiter for the different kinds of variables.

Class and Instance Variables

In the title line, three different kinds of names can be specified: names for temporary storage
locations needed only when a member of the class is actually doing something; names of properties
that distinguish each member of the class; and names of objects that are common to all members of
the class.

The definition of the class box specifies two kinds of names: the four properties (x, y, size, tilt) that
distinguish members of the class; and a temporary variable (var). Properties x and y define the
location of the box on the screen; size is the length of each of its sides; and tilt is its angle of
orientation on the screen. Hence, two members of the class box can have different screen locations,
different sizes, and different orientations.

WRITING SMALLTALK PROGRAMS Page 20

Messages and Actions

All members of the class box respond to messages to grow, turn, draw and undraw. Each member also
responds to two messages which have been adopted as reasonable conventions for Smalltalk classes: a
request to learn the class type (is), and a request to learn about the class' properties (’s). The
messages that each member of the class can receive, and the actions each will take upon receiving a
message, are given within parentheses after the title line.

¥

The symbol <¥, ("eyeball") is in front of each of the message words. The symbol resembles an eyeball
because it is used to look at the message. Suppose we have created the box named joe and we send
Smalltalk the message

joe grow 100 !

Smalltalk sees the name joe, looks joe up in its dictionary of names and their associated meanings,
and finds that it is an instance of the class box. Therefore, Smalltalk runs the definition of the class
box in the context of joe; that is, with the knowledge of a dictionary containing joe's size, tilt, and
screen position. For example, joe's dictionary might indicate that size is 50, tilt 0, and x and y
coordinates equal to 256.

In sequential order, joe looks (with the «¥) for the message draw, undraw, and turn, and then
matches the message grow with the word grow in the definition. Use of the eyeball, <f, is asking a
question: do I see the following token as the next token in the message? We will use the word
"token" to refer to a single word or a group of words enclosed by parentheses. Examples of tokens are:
grow, (grow 50}, read, (read eval print).

Conditional Actions

Within the main set of parentheses for the class definition, we provide (virtually in tabular form) an
itemization of the messages each member of the class can receive and the methods for responding to
the messages. This itemization is actually in the form of a conditional statement (‘if-clause > (then-
clause) else-clause). The then-clause consists of the actions that will occur if the if-clause has a
not-false value; it must be enclosed within parentheses.

In the box definition, the if-clauses of most of the conditional statements are simply questions "do
you see the following word in the message?” Any question that can be answered "false" or "not-false"
may be asked in a conditional statement. The choice of the word "not-false" rather than "true" has
significance in Smalltalk--any object with a value other than the boolean value "false" is considered
to have the boolean value "true". The object, however, returns its "not-false" value for use by the
message sender.

The Message Grow

Suppose a box sees the message grow. The action the box takes is to send itself the message undraw
in order to erase itself from the screen. It then changes the value of size by some amount. The
specific value of the change is received as a message using the Smalltalk symbol colon, :. In this case,
joe's size increases by 100. The box then sends itself the message draw in order to show itself again
on the screen.

The Message Turn

The action taken if a box sees the message turn is similar: the box tells itself to undraw, changes the
value of the instance variable tilt, and then tells itself to draw again.

WRITING SMALLTALK PROGRAMS Page 21

The Message Draw

The meaning of draw is to place the turtle at the box's screen location (x, ¥), turn the turtle in the
box's orientation (tilt), and call on the object square with the message size, the length of each of the
box's sides. Undraw simply changes the turtle's color to white (assuming the background color is
white) in order to "erase" the drawing of the square box.

Again, notice that the evaluation (reading) of a Smalltalk message is done in a left-to-right (linear)
manner. As each object is evaluated, it is given the opportunity to read as much of the remaining
message as it is able. ;

The Message Isnew
The Smalltalk object isnew is a special question that determines if a new instance of the class is being
created. If so, the usual consequent is the action of giving values to each of the instance variables

(i.e., describing the new member of the class by assigning values to each name in a dictionary created
for the class member). In box, the new instance also sends itself a message to draw a square shape on

the screen.

If a Smalltalk class is to have any members (instances) at all, the question
isnew must be asked as part of the definition of the class.

The Message Move

To have a box grow, we change the instance variable size; to have a box turn, we change tilt. To put
a box in a different position on the display screen, we want to redraw the box with new values for x

and y.
Edit box and add to the definition

«f move » (SELF undraw. @x¢:. @ye:. SELF draw.)
Try

joe move 100 200.

joe move 200 100.}

for i « 50 to 250 by 10 (joe moveii)}

The third message causes joe to move across the screen diagonally from the upper left corner to the
lower right corner. To have joe track the mouse cursor, simply type

repeat (joe move mx my) ¥
The above is a method for having the box move to an absolute location on the screen. The box’'s
action is to tell itself to erase from the screen (undraw), change the values of x and y by receiving
new values from the message, and then drawing itself again (draw).
Suppose, instead, we would like to type messages such as

Jjoe move right 50. joe move left 100. joe move up 30. joe move down 10.1
In other words, if a box sees the message move, then it should look for one of the four messages right,

left, up, or down and then receive a number value to determine by how much to increment x or y.
The Smalltalk statement might be

WRITING SMALLTALK PROGRAMS Page 22

«§ move » (SELF undraw.
(Nright » (GPxex+:.)
Fleft » (Gxex-:.)
“fup » (yey-:.)
wfdown » (@yey+:))
SELF draw) .

The use of parentheses around the conditional statement (®fright > ()...) allows each possible form
to evaluate the last part of the statement (SELF draw); the reply to the message move contains
three actions: (1) SELF undraw. (2) look for one of the directional messages, and (3) SELF draw.
Also note that moving up means decreasing the y coordinate. If we wanted to have both kinds of
move methods (relative and absolute) available, we could make one (say the absolute one) the default
case. Try '

<% move > (SELF undraw.
(Nright » (Gxex+:.)
<fleft » (Gxex-:.)
«fup » (Gyey-:.)
«fdown » (G yey+:)
G xe: Gye:)
SELF draw)

The Message Is.

There are two messages we include, by convention, in each class definition. One is the ability to learn
the name of the class; the other is the ability to evaluate messages within the context of the class or
class instance. We adopt the word is for the first message, and the possessive for ’s for the second. If
they have not already been included in your definition of box, then type

addto box GP(is » (Wbox » (T @ box) < ? » (" G box) 8. T false)
s > (@ var « 8. ¢ » (T var « :.) T var eval))}

The message is, by convention, is a request to learn the name of the class or to ask if the name is the
same as one already known. So we might say

joe is 2l and be told box
or

joe is box} and be told box (i.e., not-false)
or

joe is turtlel and be told false

The method for responding to is (shown in the above definition of box) involves seeing (<¥) if the
class name (in this case, box), is the next word in the message. If it is, return (T) the literal class
name (G"box). Otherwise, see if the next word in the message is a question mark (?). If it is, return
the literal class name. Otherwise, the answer must be false. In order to not leave the incorrect name
sitting in the message, gather it up but do not evaluate it (8). Then return false.

The "open colon" symbol (8) is a Smalltalk symbol that says: fetch the next token (the next word or
the next words enclosed in parentheses) literally as it appears in the message. The 8 is similar to «¥
in looking at the message literally. However, the § always fetches in the next literal expression; the

«¥ only fetches the expression if there is an exact match,

WRITING SMALLTALK PROGRAMS Page 23

The Message 8

The message (’s) is, by convention, a request to evaluate the next token in the message within the
context of the message receiver (typically, the class or the instance of the class). Suppose the size of
the box joe is 50 and we say

@°x « 100}
@Ph € joe's x1

What will be the value of h? At the main (top) level of Smalltalk we examine the global dictionary
and see that the value of x is 100; but, within the context of joe (looking in the dictionary created
for the class instance), the value is 50. Hence the assigned value of h must be 50.

The method for responding to ’s involves receiving the next token literally (8), assigning this token as
the meaning of a temporary object (here named var), and then seeing if the next word in the message
is the back arrow («). If it is a back arrow, then return (1) the result of letting the meaning of var
take on the next value in the message (:). (l.e., this is a method of indirect reference.) If the next
word is not the back arrow, then simply return the value of the meaning of var (obtained by sending
var the message eval). Again, note that the evaluation of a Smalltalk message is carried out
sequentially left to right, but that the message is actually grouped in a right-associative manner
because of the Smalltalk method for letting each object read as much of the message as it chooses.

Receiving Messages

There is not one global message to which all message "fetches" (use of the Smalltalk symbols eyeball,
«f, colon, :, and open colon, 8) refer; rather, messages form a hierarchy which we explain in the
following way-- suppose I just received a message; I read part of it and decide I should send my
friend a message; I wait until my friend reads his message (the one I sent him, not the one I
received); when he finishes reading his message, I return to reading my message. I can choose to let
my friend read the rest of my message, but then I can not get the message back to read it myself
(note, however, that this can be done using the Smalltalk object apply which will be discussed later).
1 can also choose to include permission in my message to my friend to ask me to fetch some
information from my message and to give that information to him (accomplished by including «¥, :, or
8 in the message to the friend). However, anything my friend fetches, I can no longer have. In other
words,

(1) An object (let's call it the CALLER) can send a message to another object (the RECEIVER) by
simply mentioning the RECEIVER's name followed by the message.

(2) The action of message sending forms a stack of messages; the last message sent is put on the top.

(3) Each attempt to receive information typically means looking at the message on the top of the
stack.

(4) The RECEIVER uses the eyeball, <f, the colon, :, and the open colon, 8, to receive information
from the message at the top of the stack.

(5) When the RECEIVER completes his actions, the message at the top of the stack is removed and
the ability to send and receive messages returns to the CALLER. The RECEIVER may return a value
to be used by the CALLER.

(6) This sequence of sending and receiving messages, viewed here as a process of stacking messages,
means that each message on the stack has a CALLER (message sender) and RECEIVER (message
receiver). Each time the RECEIVER is finished, his message is removed from the stack and the
CALLER becomes the current RECEIVER. The now current RECEIVER can continue reading any
information remaining in his message.

WRITING SMALLTALK PROGRAMS ' Page 24

(7) Initially, the RECEIVER is the first object in the message typed by the programmer, who is the
CALLER.

(8) If the RECEIVER's message contains a eyeball, «§, colon, :, or open colon, 8, he can obtain
further information from the CALLER's message. Any information successfully obtained by the
RECEIVER is no longer available to the CALLER.

(9) By calling on the object apply, the CALLER can give the RECEIVER the right to see all of the
CALLER's remaining message. The CALLER can no longer get information that is read by the
RECEIVER; he can, however, read anything that remains after the RECEIVER completes its actions.

(10) There are two further special Smalltalk symbols useful in sending and receiving messages. One
is the keyhole, 8, that lets the RECEIVER "peek" at the message. It is the same as the & except it
does not remove the information from the message. The second symbol is the hash mark, #, placed in
the message in order to send a reference to the next token rather than the token itself. An example
of the use of # is given at the end of the next chapter.

Alternative Box Definition

An alternative method for defining the class box is given below. The main difference is the use of the
message redraw to simplify methods for growing, turning, and moving boxes.

Let's examine the definition in terms of steps (1)-(8) of the previous section. Suppose a box receives
a message, message A. In the definition of box provided below, if message A contains the token grow,
the box becomes a CALLER, sending itself another message, B--redraw G sizeesize+:. The
RECEIVER of message B sees the token redraw; as a result, it sends itself the message undraw.
After the action of undrawing is completed, the RECEIVER requests a fetch for a value (:.). The
fetch comes from the remaining part of message B (& size ¢ size + :.). This part of message B
contains a colon (:) directing it to get information from the remaining part of the CALLER's message
A (as stated in (8) above). This remaining part of message A contains a number that determines the
amount of the box's growth. The RECEIVER then sends itself the message draw, after which it
returns control to its CALLER. The CALLER's actions are now completed.

Similarly for messages containing the tokens turn or move. In order to change more than one
instance variable (that is, both x and y in the case of move), it was necessary to enclose the
appropriate messages within parentheses. (Then the fetch for a value found in the action taken by
redraw, will obtain the value of changing both the x and the y.) In general, a colon will activate
(start determining the value of the message) at the next token--either a single word or words
enclosed by parentheses.

The alternative box definition follows.

WRITING SMALLTALK PROGRAMS : Page 25

to box var [xY size tilt

(Sdraw
«fundraw
“fredraw
«fturn
«fgrow
«fmove
«§’s
“fis

isnew

£

>

(O place x y turn-.tilt. square size.)

(© white. SELE draw. black)

(SELF undraw. :. SELF draw.)

(SELF redraw G@tilt « tilt + :.)

(SELF redraw GG°size ¢ size + :.)

(SELF redraw (@x « :. @ye:.))

(G var « 8, ¢ » (Mvar « :.) T var eval)
(#box » (TG box) ¥ ? » (NG box) 8. Mfalse)

(@x ¢« Gy « 256. G size « 50.
G tilt « 0. SELF draw)) }

Extending the Box Definition. There are several ways to extend or modify the box class. We will
show one in the next section: the class of polygons, and, after introducing the class turtle, we modify
the box class to be a class whose members each own an instance of the turtle class.

WRITING SMALLTALK PROGRAMS = Page 26

Class of Polygons

This simple extension to class box allows us to create objects that have any number of sides of equal
length. The object that draws any polygon must ask the turtle to draw the appropriate number of
lines. After drawing each line, the turtle has to turn enough units so that, after drawing all the lines,
the turtle will have turned a complete circle (360 units). Since each angle of a polygon is equal, each
turn is an even division of 360 (360/number-of-sides). A polygon-drawing routine is

to poly sides size '
(@sides « :. @°size ¢ :. :
do sides (® go size turn 360/sides))Y

Using the box definition as a model, we can define a class for polygons.

to polygon var | x y size tilt sides The title line is similar to that of box; we added the number
of sides as an instance variable.

(< draw > (® place x y turn tilt. poly sides size)

The method for drawing has changed. We use poly, not
square. poly expects two messages: number of sides and
length of each side.

«f grow > (¥¥sides > (SEEF redraw @ sidesesides+:.)
<f size > (SELF redraw G sizeesize+:.))

We adopt message forms

joe grow size 100.

joe grow sides 50.
as the two alternative meanings of grow. Another method to
use is

(Gvar « &,

SELF redraw var¢var eval+:,).
Responses to messages redraw, undraw, turn, s, and move, are the same as in box. The message is,
by convention, is similar, but looks for the word polygon. Or, alternatively, we can take advantage of
a Smalltalk object, ISIT, and use
«fis » (ISIT eval)

This object is part of the basic Smalltalk system referenced in subsequent sections. It is always
possible to type show (class-name) in order to see any such "basic" objects.

In isnew, we must give sides a value as well as the other instance properties. Suppose we choose to
send the initial value of sides as a message when we create an instance of polygon. I.e.,

@&>joe « polygon 31 creates a triangle
joe ¢ polygon 61 creates a hexagon

Then we write as part of the definition of poly

isnew » (@ sidese:. @ size € 50.
@ tilt « 0. @ xcGye256.
SELF draw.)

WRITING SMALLTALK PROGRAMS Page 27

Turtles

The turtle examples in the first section showed some of the messages any turtle can understand. We
can get a turtle to draw designs, sketch, and make diagrams with a number of useful and simple

programs.
Type
@ pokey € turtle §

Now pokey understands messages

go (n)

turn ¢ n)‘
penup, pendn
black, white

xor

goto {n)> {m)

goto {point)

up

erase

home

e (string)

Where n is an integer, move n units forward (+) or backward (-).
Where n is an integer, change orientation right (+) or left (-).
Change state of pen that can leave a trace.
A turtle can have three ink colors: black, white, or xor.
This color says that whatever "color" is on the screen, show its complement
(white for black, black for white). This works only when the turtle's
width is 1.
where n and m are the horizontal, vertical locations on the display screen.
<point> is an instance of the class point explained in a subsequent section;
try

goto mp
i.e., goto the point where the mouse cursor is placed.

Points the turtle's orientation (dir) towards top of screen.

Clears the window. frame in which the turtle lives; default window is the
entire screen.

Goes to center of the window frame.

Prints the text (string of characters enclosed by single quote marks) at the
turtle's current location, with its direction, width, and color. Note that
you can make non-destructive text by using xor ink which complements the
background so that reshowing the text erases it while restoring what was
underneath,

We can query the turtle’s property values using >s (typed by striking the key marked 'S' while holding

down the 'CTRL' key). For example,

pokey ’s ink
pokey s dir
pokey *s width

Also, x, ¥, pen, and frame. We can change these values by typing

pokey *s (property) ¢ (value)l

WRITING SMALLTALK PROGRAMS = Page 28

Usually, only the width, whose value is aﬁ integer between 1 and 8, and frame, whose value is a
display screen window, are modified in this manner., There are alternative methods for each of the
other properties.

pokey s width « 2}
A simple design program might be: pokey go a little, turn some amount, go a little more, and so on.

to design var i
(@ vare:. for i to 300 (pokey go i turn var)) ¥

Try

pokey erase home up.
design 89.

pokey home up.
design 911

It is probably better Smalltalk programming style to modify the turtle class definition and give turtles
the ability to receive the message design. In this way, all turtles, not just pokey, will be able to draw
designs. addto lets us add new messages and responses to class definitions. Try

addto turtle G>(*fdesign » (G var « ;. for i to 300 (SELF go i turn var)))}

The explanations of % (eyeball), SELF, and » were given in the previous section. Recall that «f is a
method for looking at the message and seeing if there is a match between the next word in the
message and the word following the «§. The use of % is a test whose value is either not-false or false.
The arrow (=) denotes a conditional statement of the form

{test for truth> = (<action to take if the value of the boolean expression is trued)
<otherwise do this>

WRITING SMALLTALK PROGRAMS - Page 29

Boxes Owning Turtles

The definition of box as presented earlier depends on the turtle to draw each instance of the class.
Each time an instance is drawn or erased, must be placed at the appropriate location facing in the
appropriate direction, Rather than having to reposition ® each time, we might assign a turtle to each
instance of box; since the instance "owns" its turtle, we can assume that the turtle is always
correctly positioned. ’

In the new definition of box given below, we use a different turtle to draw each instance of the class
box. The turtle, whom we named turt, is an instance variable of the class box. Each time we move or
turn a box, we actually move or turn the turt belonging to that box . When we draw a box, we assume
that turt is sitting at the correct display coordinate, turned in the proper direction, waiting to draw
the geometric shape. The turt remembers its position (x, y) and its orientation (tilt) on the screen,
so the box no longer has to retain this information. There are now only two instance variables: turt

and size.

to box var | turt size

(isnew » (@’turt « turtle. @size ¢ 50. Create turt as an instance of class turtle and give
turt place 256 256. size the value 50. Place the turtle at the
SELF draw.) starting position and orientation,

“fdraw =» (do 4 (turt go size turn 90)) Ask the turtle to draw a square.

“fundraw » (turt white. SELF draw. turt black)

Change turtle's ink, assume background is white.

“fredraw » (SELF undraw. :. SELF draw.)

“fturn > (SELF redraw turt turn :.) "Rather than changing value of tilt, we simply tell
the turtle to change his orientation.

«fmove > (SELF redraw turt penup go (:) pendn)
This is a new kind of move--move forward if amount
is positive, move backward if mnegative. Turtle
always moves in the direction of his tilt. This is

useful if you think of the box as a spaceship!

“fgrow » (SELF redraw G sizeesize+:.))

There were several changes to the box definition.

(1) draw--we no longer need to reposition the turtle because turt is already correctly positioned, nor
do we need to use the object square.

(2) turn--since the turtle must sit in the proper direction, we tilt the box by changing the turtle's
direction (send turt the message turn). The box no longer has instance variable tilt.

(3) move--the turtle remembers his, and therefore the box's, position. The box no longer has
instance variables x and y.

WRITING SMALLTALK PROGRAMS Page 30

Dispframes: An Introduction to Text Display

Smalltalk dialog windows are instances of the basic Smalltalk system class dispframe. Members of
this class can show text in a rectangular area that can be framed with thick black lines. As you have
already seen, Smalltalk can have many dispframes, cach one capable of moving its screen position,
changing its size, displaying text, and hiding itsclf (deleting its representation from the display
screen). To do these tasks, an instance of dispframe understands messages such as moveto Cupper left
corner x) (upper left corner y), growto (lower right corner x) (lower right corner y), show, display,
and hide. You have sent messages to the windows by pointing at one of the four corners. To help in
this task, a dispframe understands the messages hasmouse, to determine whether or not the mouse
cursor is inside the window; and corner (x) (y), to determine at which corner, if any, the mouse
cursor points. The response to the message corner is a number between 1 and 4 depending on the
display coordinates x,y.

Each instance of a dispframe remembers text that is displayed in the rectangular area. This text is
named buf. One of the jobs of the class dispframe is to fit the text into the window:

(1) changing physical lines when the characters fill the line space ("line wrap around"),
(2) lining the characters up evenly in the right margin (right justify),

(3) scrolling (deleting the initial characters and readjusting the remaining characters upward)
when the window can not properly contain all the text.

Placing Text on the Display Screen

There are three ways to place text on the display screen, one uses a turtle, the other two rely on the
class dispframe.

With Turtles.

GPamy € turtlel
amy penup goto 100 100 pendnl Amy has width = 1 and faces upward.
amy ¢ 'hello'l Note the need for single quote marks as delimiters.

The word "hello" appears on the screen. The upper left corner of the first character shows at amy's
x,y position. Now amy has been repositioned at the end of the displayed word.

amy’s width « 21 Increase amy's width to 2.
amy « 'hi'l Print another word.

Try printing with turtles facing in different directions and having different widths and colors.
Although it is possible to print text on the display with a turtle facing in any direction, text generally
looks best when the turtle's direction is horizontal, vertical, or at 45 degree angles.
With Display Frames. To create a dispframe you send at least five messages describing the
rectangular area and its contents: the arca's upper left corner x, its width, its upper left corner y, its
length, and a string. The string is the method for storing the text characters to be displayed.

@ dp « dispframe 100 75 100 120 string 200.%

This creates a rectangular area 75 x 120 at location 100,100. It can contain up to 200 text
characters. The simplest way to place text in this area is to send the dispframe the message put.

(dispframe) put (text) at (x> (y)}

WRITING SMALLTALK PROGRAMS Page 31

Where x,y are the display screen coordinates. Fbr'example,

dp put 'hi there' at 150 100}

Now try

dp put 'hi where’ at 200 1501

Notice that the dispframe has changed its x,y position to 200,150. It has replaced its original text
with the text 'hi where’, but it has not erased the original text 'hi there'. Try

repeat (dp put 'hi’' at mx my)}
to place the word "hi" all over the screen.

Appending Text to Display Frames. A dispframe stores its text in a place named buf. The
message ¢, when sent to a dispframe, is a request to add characters to buf; buf is an instance of a
basic class named string. We can print the word "hello" in the dispframe dp by typing:

dp ¢ 'hello’.}
Now try:
dp ¢ 'how are you today? My name is dp and I am a dispframe'l

Do you see how the line-wrap-around works? And that spaces have to be explicitly stored into the
dispframe? The original text was not cleared when new characters were added; rather, the new
characters are appended to the end. Now try the various other messages to a dispframe:

dp hidel The entire area disappears and reappears.
dp displayl

dp fclear! The text area is cleared and represented.
dp showl :

dp clearl This empties the string buf so there is no longer text to display.
dp show!

dp hidel
dp growto 250 2501
dp display? Now the frame is larger.

dp hidel
dp moveto 50 501
dp displayl Now the frame is in a new position.

WRITING SMALLTALK PROGRAMS Page 32

Boxes as Menus

The Smalltalk class editor uses two instances of dispframe. The first is the window containing the
levels of the class definition; the second is the menu window. In each case, you were able to position
the mouse cursor in the window and the editor was able to determine which character or word you
were grabbing. Instances of dispframe understand three messages that aid in this task:

mfindc (which character),
mfindw (which word), and)
mfindt (which token, that is, which word
or set of words enclosed in parentheses).

The next example was chosen in order to claf‘ify the use of these messages and to provide an example
of a dispframe. :

A menu is an ordered list of objects that can be selected in a variety of ways. One way is to point at
the object with the mouse cursor. The objects might be words or pictures, each representing things to
do, or names of other objects to retrieve or to "activate" (that is, give the ability to do something,
such as to receive and/or to send messages).

We have chosen a simple example of a menu consisting of a list of words, each word being the name of
a polygon. The result of grabbing a word will be to create the corresponding instance of the class
polygon. Before the new instance is actually created, the user will select the position on the screen
where the polygon is to be drawn.

We will use a modified version of the definition of polygon, one in which the polygon position is
determined from a message received at the time the object is created. For example, we will create the

polygon joe by typing
G joe « polygon 5 150 100} joe is a pentagon (5 sides) at 150,100
to polygon | sides size ® polygon simply creates the object.

(¥draw= (do sides (® go size turn 360/sides))
Draws it on the -screen.
isnew » (G sides « :. Gsize ¢ 50. Values for sides and the turtle's position are
O « turtle. ® place (:)(:). provided when the polygon is created.
SELF draw))}

The definition of polygonmenu includes the instance variable codevector. This object will be an
instance of the basic Smalltalk class vector, a method for storing a list of things. In this case, we
store a list of the names of the possible polygons to create. For example, we might create a menu by
typing:

@G pm « polygonmenu (triangle square pentagon hexagon septagon octagon)l

The list codevector owned by pm is now a list of polygon names that will appear in the menu box on
the screen. Each item in codevector refers to a polygon that can be created.

WRITING SMALLTALK PROGRAMS Page 33

.to polygonmenu i [dp codevector

(isnew :(@’codevector e« 8. When creating a menu, fetch literally the vector of words to
be displayed in the menu,.

repeat (button 4 » Wait for the user to press button 4 to indicate the menu
’ ’ position; then create dp, the dispframe, at the mouse cursor's
position;

(GPdp « dispframe mx 75 my 120 string 100.

and print each word in the menu followed by a carriage
return.

for i to codevector length - 1 .
(dp ¢ codevector[i] chars. dp ¢« 13).

done))))! We reference items in a vector using the notation:
name[index]

The above definition of polygonmenu simply shows a rectangular area filled with words. The method
for printing each word from the list is to count down through each item using the for iteration
method. The counter is i; codevector[i] refers to the ith item. For example, in the above, if i=1
then codevector[i] = codevector[1] = GFtriangle.

Each item in the list is an atom, a basic Smalltalk system class. Each instance of an atom responds to
the message chars by forming a string of characters for the atom value. For example, the response
from the atom G triangle would be the string 'triangle’. The word "triangle" is printed in a
dispframe area by sending the string 'triangle’ to the dispframe. Hence the contents of the for
iteration is to send the dispframe dp the string codevector[i] chars.

The code for a carriage return is 13. Hence dp«13 is a method for printing a carriage return in the
dispframe. This causes each new word to appear on a new line in the menu.

Now let's find the word to which the mouse cursor points.
addto polygonmenu @G (<findex » (Tdp mfindt mx my))l

If we send a polygonmenu the message index, we will receive a list (vector) of four numbers (the
reply from the dispframe). The four numbers are: the actual index of the word in the vector
codevector, the x position of the first character in the word, the width of the word, and the y position
of the first character in the word. Suppose, as an example, we type pm index while we are pointing
to the first word in the menu.

pm index!
(16550100) The result is a vector. The first number in the vector is the index of the
word in the menu. The second is the x position, third the word width, and

fourth is the y position, Word height is generally 14.
To select the menu word from codevector, we retrieve the i[1]Jth item in the vector.

addto polygonmenu @G (“fselect » (@& i«SELF index. do something with codevector[i[1]]))}

WRITING SMALLTALK PROGRAMS Page 34

Suppose we want to delay computing i until the user can point into the menu and press a mouse
button. ’

«fselect » (repeat (button 4 » (@i ¢ SELF index.
do something with codevector[i[1]]. done)))

The done part is important. It stops the repeating and returns control to the message sender. What
we do is simply to call on the polygon class with sides = 2+i[1]. Hence, in this case, it is actually
not necessary to retrieve the i[1]th item in codevector.

«Fselect » (repeat (button 4 » (& i « SELF index.)
polygon 2+i[1] mx my. done)))

But, again, there is no delay provided in order to allow the user to point someplace on the screen
before the figure is drawn. Let's change the response to draw.

«select » (repeat (button 4 » (& i « SELF index.
SELF draw 2+i[1]. done)))

«¥draw » (repeat (button 0 »> (done)) Make certain that the button is released. Then
repeat (button 4 » wait for button press before calling on polygon.

(polygon (:) mx my. done)))

We can complete the menu selection by adding the ability to complement the color of the selected
word. There is a special routine, dcomp, that lets us complement any rectangular area of the screen.
It expects four messages: the area's upper left corner x, the width, the upper left corner y, and the
height. For example:

dcomp 100 50 100 200}

Try
do 100 (dcomp 100 50 100 200)}

The height of the font we are using is 14, so, to complement a word in the menu, we use
dcomp if[2]i[3] i[4] 14.

The change to the class definition is

<¥select » (‘repeat (button 4 »
(@i « SELF index.
deomp i[2] i[3] i[4] 14.
SELF draw 2 +i[1].
deomp if2] i[3] i[4] 14.
done)))

Of course, we assumed the index was a reasonable number. It is safer to check! We change the
response to index to first see if the mouse cursor is inside the frame, and, if so, to compute i and
check to see if i = -1. If it does, then the cursor was inside the frame but was not pointing at any
token. The completed definition is:

WRITING SMALLTALK PROGRAMS Page 35

to polygonmenu i [dp codevector
(index » (dp hasmouse »(@i ¢ dp mfindt mx my. i[1] = -1 > (1 false) i)
ftfalse)
«fselect » (repeat (button 4 »
((@"i « SELF index) >(dcomp i[2] i[3] i[4] 14.
SELF draw 2 +if1].
dcomp if[2]i[3] i[4] 14.done)
done)))
«fdraw » (repeat (button 0 »> (done))
repeat (button 4 » (polygon (:) mx my. done)))
isnew » (@ codevector « 8.
repeat (button 4 » (G dp « dispframe mx 75 my 120 string 100.
for i to codevector length - 1
(dp « codevector[i] chars. dp ¢ 13). done)))}

Another kind of menu might use the index of the menu word selected to choose a message to evaluate.
The message might be an item in a vector of messages. For example, suppose we did not want to
depend on the order of the polygonmenu to determine which polygon was created. Possibly, we want a
menu to be

hexagon
triangle
circle

Within the repeat-loop of the response to the message select, replacing SELF draw 2+i[1], we might
have

@G((polygon 6 mx my) (polygon 3 mx my)(polygon 10 mx my)) [i[1]] eval

Here i[1] is the index into the vector of messages. We select an item from the vector and send it the
message eval in order to obtain the desired polygon.

Chapters IV and V contain more information and examples about the classes dispframe and vector.

WRITING SMALLTALK PROGRAMS Page 36

A Few Sketching Tricks

Some of our favorite design programs are presented below. Caution: if you copy these routines, be
certain that you have a large enough window to accommodate all your typing. Smalltalk only sees
text that you can see in the window. You can type part of the routine and add the rest by using the
Smalltalk editor. Alternatively, you can retrieve these turtle routines from the disk pack by typing

filin 'turtlefns'l
dragon "

to dragon length

(@ length « ;.
length = 0 > (® go 10)
length) 0 » (dragon length -1. & turn 90. dragon -(length-1))
dragon -length+1. ® turn - 90. dragon length + 1.)1

Try
erase home up. dragon 8!

hilbert space filler

to hil iabd
((CGPie:)=02 (® turn 180)
(i) 0>
(GPa « 90.Gb «i-1)
GPae-90. Gbei+1)
hil1 hil2 hil1)}

to hill
(® turn a. hil 0 - b. © turn a)l

to hil2
(@ go10.hilb. @ turn 0 - a. ® go 10 turn 0 - a. hil b. ® go 10)}

i is the recursion number. Try
© erase home up 1
hil 41
squiggles
to squig90
(repeat
(® home do 200
(® go rand / 1000 turn 90 * rand mod 4)))}
to rand (MG «i* 5)1

Try
erase. s width « 2. G°i « 11. squig90!

WRITING SMALLTALK PROGRAMS Page 37

Or

to squiggle i
(@i « 13,
repeat
(® home.
do 1000
(® go 10 turn rand)))}

erase. ® s width « 1. squiggle !
Changing ink color and the width of the turtle's trace makes for interesting variations. Try

® home up erase. ® ’s width « 1. dragon 8.
home up turn 90. ® *s width « 2. dragon 8. 1

Sketching. We can sketch by telling any turtle to follow the mouse cursor. For example,

repeat (pokey goto mx my) 1
or
repeat (pokey goto mp) !

The routine mp returns the point where the mouse is located (that is, it combines mx and my).
Members of the class point respond to messages x ¥ + ~ = max min. This class is described in more
detail in Chapter 1V,

More sketching control is obtained with the mouse buttons.

to draw
(repeat
(button 4 > (pokey pendn goto mp)
button 2 » (pokey erase)
button 7 > (done)

pokey penup goto mp)) ¥

draw

Now lines are drawn only when you press the top mouse button (button 4); the bottom mouse button
(button 2) erases the screen; holding down all the mouse buttons (button 7) terminates the program;
otherwise, the turtle moves to the cursor without leaving a trace. (Note, there are two versions of the
mouse device, one having buttons ordered from top to bottom, the other ordered left (top) to right
(bottom). Henceforth, we will refer to the top-to-bottom version.)

Variations use the mouse button to control changing the turtle's width and changing turtle's ink color
to allow selective erasure.

"Rubber Bands" is another sketching technique in which a turtle expands and contracts straight
lines, always stretching towards the mouse cursor. The line starts at the point indicated by pressing
the top mouse button; the bottom mouse button indicates that the line is to be fixed in its current
position.

WRITING SMALLTALK PROGRAMS Page 38

to rubberband fp sp

(repeat
(button 4 » (® penup goto Gfpemp pendn.
repeat :
(® goto G spemp.

button 2 » (done)
white penup goto fp pendn goto sp goto fp black)))) !

Saving the points fp, sp, lets you store the method for constructing the drawing. A simple example of
storing mouse points is

G points « stream of vector 101
repeat (® goto points « mp)!

Here, the object points is an instance of the class stream, a method for storing other objects
(described in detail in Chapter IV). Members of the class stream respond to messages ¢ contents next
reset end. Each time the turtle moves, the new turtle location is stored («) in points. The routine
rubberband can be modified to store each pair (fx, sx), making these lines available for reconstructing
the sketch.

to newrubberband fp sp points
(@ points « stream of vector 10.
repeat
(button 7 » (done with stream of points contents)
button 4 » (© penup goto G>fpemp pendn.
repeat
(® goto Gspemp.

button 2 » (points ¢ fp. points « sp. done)
white penup goto fp pendn goto sp goto fp black)))) 1

@& points ¢ newrubberbandl
The sketch can be reconstructed by

to reconstruct pts
(@>pts ¢ :. pts reset.
repeat (pts end » (done)
penup goto pts next pendn goto pts next))!

reconstruct points}
That is, reset the stream, and repeatedly retrieve the next item until reaching the end.

Chinese Brush Strokes. Changing the width of the turtle's path as a line is being drawn leaves
"Chinese Brush Strokes". This class lets you draw variable-width lines as long as you press the top
mouse button.

to brush i ®
(EB « turtle.
repeat (button 2 » (@ erase)
button 4 > (© pendn.
repeat (®’s width ¢« Gic1+i mod 8. ® goto mp.
button 0 » (done)))
® penup goto mp. @i<0.)) }

WRITING SMALLTALK PROGRAMS Page 39

Feather Strokes. This next class varies the thickness of the trace depending on the direction of the
vfeather stroke", ’

to feder ox oy nx ny
(® penup.

repeat

(button 4> (® goto Gox « mx @ oy ¢« my pendn.
repeat)
(button 0 » (® penup. done)
®rs width ¢ 1 +abs (3* (G ny « my) - oy) /(@nx « mx) - ox.
goto @ox ¢ nx G oy ¢ ny))

button 2 »(® erase)))!

to abs x

((G°x ¢:)<C0> (10-x) tx)!

Cobwebs This last class uses a second turtle, turt, to form cobwebs around the lines drawn by ®.
The creation of this turtle with the message frame is explained in Chapters IV and V; the class
vector is also explained in Chapter IV. A wvector is used here as a method for storing ®&'s display
coordinates for use by turt. The class cobweb expects two messages, the color of &'s ink and the color
of turt's ink. ®'s width is set to 3 and turt's width is set to 1. Cobwebs are drawn as long as you
press the top mouse button. Clearly, this sketching method is designed for the color version of
Smalltalk.

to cobweb n i xs ys turt
(@n « 10. ©'s width « 3. s ink € ;.
GFturt « turtle frame &'s frame.
turt’s width « 1. turt’s ink « :,
G xs « vector n. @ ys « vector n.
repeat
(button 4>
(xs[1ton] «all mx. ys[1ton] «all my. store mx in all of vector xs
store my in all of vector ys
@i« 1.

® penup goto xs[1] ys[1] pendn.
repeat
(0 = mouse 4>(done)
G« 1 +imodn.
turt penup goto xsf[i] ys[i].
® goto xs[i] ¢ mx ys[i] ¢ my.
turt pendn goto xsf{i] ys[i]))}

In the black-and-white version of Smalltalk, type

cobweb (-3) (-3

WRITING SMALLTALK PROGRAMS Page 40

Paint Brush

Smalltalk also has a method for transferring blocks of designs, such as a solid black rectangle, or one
specially constructed to resemble a gray "color". The basic method of interfacing brush painting to
Smalltalk is through the class rectangle. This class definition is available by typing

filin 'xyfns'}
A sufficient abbreviated version is

to rectangle | origin extent
(¥ has > (Gt « :.
T origin t origin + extent)
¥ center » (T origin + point extent x/2 extent y/2)
«f s > (T 8 eval)
«¥ is » (ISIT eval)
«f paint » (CODE 43)
isnew » (G origin « :. Gextent « :.))1

As you can see, this definition includes an escape to machine code (CODE) which supports the
movement of bits on the display screen. The two instance variables, origin and extent, must be
instances of the class point, a basic system class defined completely in Chapter IV. The class point is
a method for working with two coordinates as one entity, for example, as a display point. To create a
rectangle, type

GPsource « rectangle
Cupper left corner point)
(extent of area as a point whose parts are the area’s width and height)!

For example, try
Gsource « rectangle point 50 50 point 10 20} width is 10, height is 20
The rectangle does not, as yet, appear on the display.

Suppose you want to fill the rectangle with "color”. "Gray color" is obtained by combining black and
white dots to form a spatial half-tone which gives the impression of a gray color (like that in
newspaper print). The number 1 represents a black dot, 0 a white dot. The "paint brushing" works
by painting "gray" into the source rectangle and then transferring from the source to a destination,
The destination is designated as a point, the upper left corner of a rectangle that will be made the
same size as the source. "Gray" is specified as an integer which gets folded into a 4x4 rectangle to
form a pattern which then gets replicated throughout the area being painted. The folding is

ABCD --->
1A
IB |
1C |
ID |

Where A,B,C,D are binary numbers. For example, suppose the desired gray pattern is

WRITING SMALLTALK PROGRAMS : Page 41

1101
0111
1101
0111

The corresponding single binary number is
1101 0111 1101 0111

which in octal is 0153727. Hence, the integer to store as the paint "color" is 01563727, (Note, octal
numbers in Smalltalk must begin with the number.0.) Try

G dest « mp.! Place the mouse cursor somewhere on the screen,
source paint 12 01537271 Store the gray "color" into the source rectangle.
source paint 0 destl Copy the source into the destination.
source paint 0 mpl Copy the source into the mouse point destination,
Now try
source paint 4 dest! Copy the complement of the source area into the destination.
source paint 8 dest 321251 The integer 32125 is another "gray" color. This brushes the new

gray into the destination where the destination is a rectangle the
same size as the source.

The number following the message paint is an operation indicator. As we have seen:

copy source to destination point

copy complement of source to destination point

source brushes a new gray to destination point
2 fill source with a gray

- 0O B O

Each of these four operations has one of 4 modes, obtained by adding the following integers to the
above operation code.

store source into destination (paint--do operation as indicated above)
OR source into destination (merge the 1's and 0's)

XOR source into destination (invert)

AND complement of source into destination (erase)

W N =O

Hence, you might try the following variations using objects source and dest defined above.

source paint 1 dest! Take source and OR it to the destination.

source paint 2 dest! Take source and XOR it to the destination.

source paint 5 dest! Take complement of source and OR it to the destination.
source paint 10 dest 321254 Source brushes the XOR of the gray (32125) to the destination.

and so on. Some integers you might use as gray include (these are decimal numbers)
°1 32125 °5161 "21931 23130 15420 5160 "32126 0 11892 "10213 13260 61 ~62

(Recall that the negative indicator sign is typed as (shift)>-, that is, press the key marked '-' while
holding down the key marked 'SHIFT".)

WRITING SMALLTALK PROGRAMS

Suppose you want to create a shaped area of gray color in the upper left portion of the screen.

@ palette « rectangle point 0 0 point 16 161
The shape can be a paint brush shape.
@ brush « rectangle point 20 20 point 16 16}
and the tone is one of the numbers representing the gray colér.
@ tone ¢ 154201
The palette is then the mixture of brush and tone. Design the brush.
penup goto brush center pendn.
®-s width « 8.
do 2 (® go 2 turn 90)}
The combination is
brush paint 8 palette’s origin tonel
To spread the paint around, try

repeat (button 4 » (palette paint 8 mp tone))t

Try building your own painting system using the Smalltalk painting brushes.

Page 42

BITBLTing. A part of the Smalltalk system is the ability to move blocks of bits (0's and 1's) from
one part of the memory of the computer to another, quickly., The Smalltalk program that should be

used with caution is
to BLT (CODE 41)1
It requires twelve messages which are, in order:

base address of the destination of blocks of bits
destination raster

destination x

destination width

destination y

destination height

operation code as defined above for paint
base address of the source of blocks of bits
source raster

10 source x

11 source y

12 gray color

O 00 -IM U bW =

Without too much explanation, we offer the following useful definitions for saving and changing the

shape and color of the mouse cursor.

WRITING SMALLTALK PROGRAMS Page 43

to cursor p buf gray
(¥ loadfrom »
(@Gp e«
BLT 281 1 0 16 0 16 0 mem 60 32 px py 0)
«f copyto »
(G°p «:.
BLT mem 60 32 px 16 py 16 0 281 1 0 0 0)
<f show »
(@ buf ¢ :. @p ¢ PNT buf.
BLT 281 1 0 16 0 16 0 p+2 1 0 0 0)
«f makebuff >
(G@Pbuf ¢ string 32.
G p « PNT buf.
BLT p+2 1 0 16 0 16 0 281 1 0 O 0.
T buf))}

to PNT (mem 255 « :. mem 255)1
Try

@>source « rectangle point 0 0 point 16 161

GPsavecursor € cursor makebuffl A string containing bits representing the cursor,
source paint 12 “51611} Paint gray color in the source rectangle.
cursor loadfrom source’s origin.! . loadfrom requires a pointer to the upper left corner of

a 16x16 area (source rectangle upper left corner).
cursor show savecursor,! Restore‘ the cursor to original shape.
Or try the palette example given earlier. Then say
cursor loadfrom palette’s origin}
Now
repeat (button 4 » (palette paint 8 mp tone))!

The cursor looks like the paint brush!

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 44

Chapter III. THE SMALLTALK WORLD AND ITS PRIMITIVES

Up to this point, we have provided a "try it and see the flavour of what happens" style of
presentation. In this chapter, and in the next, we modify the style in order to provide a direct
discussion of the basic Smalltalk concepts: classes, instances, and message sending and receiving. We
assume, however, that the reader has examined earlier chapters and is familiar with the special
Smalltalk symbol set presented there. The following is a summary of these symbols.

¥ look to see if a specific word appears as the next word in the message.

: receive the next value from the message.

[+1-]

receive the next literal token (single word or words enclosed in parentheses) from
the message.

= indicates conditional statement: if-clause » (then-clause) else-clause.

return the following object; the object is "active" in the sense that the next action
taken is to run this object's class definition and to let this object examine the

message.
SELF name used to refer within a class definition to the active instance of a class.
/ delimiter used between names of class, instance, and temporary variables in the

title line of a class definition.

Objects

Every entity in Smalltalk's world is called an object. Objects can remember things and communicate
with cach other by sending and receiving messages. Every object belongs to a class (which is also an
object). The class handles all communication (receiving a message and possibly producing a reply) for
every object which belongs to it.

Examples of objects:

Class Name Objects

number 3 4 3.14159 6.28e-23

string "'this is some text’ 'here is some more'
atom x Yy file3 number

vector (1 3 5 7 9 11 13)

turtle

Message Sending and Receiving
A message is sent to an object by first mentioning the object and then mentioning the message.
Messages are simply strings of words separated by spaces. A "word" is either (1) a string of

alphanumeric characters beginning with an alphabetic character, (2) a string of all numeric
characters, or (3) one of the special symbols listed above, &, or any arithmetic operator.

THE SMALLTALK WORLD

Examples of sending messages:

AND ITS PRIMITIVES

Communication Object Message Reply Graphics Action
1. 3+4+8 3 +4+5 12 none
2. 5mod3 5 mod 3 2 none
3. 'abc'+'def’ ‘abe’ +'def’ 'abedef’ none
4, go 100 go 100 draws a line 100 units long
5. do4 do 4 none draws a square with side
(® go 50 (® go 50 50 units long
turn 90.) turn 90.)
6. Joe grow §0 Jjoe grow 50 none Jjoe, the box, grows his
sides by 50 units
7. Jjoe turn 25. Joe turn 25 none joe turns 25 degrees
Jill grow 30. Jill grow 30 none Jill grows her sides 30 units

The class of an object can receive messages in a variety of ways. In addition, the user can add new
ways for messages to be received. Once a message is received, the object can take some action, such
as returning a message to the sender (reply) or modifying a graphic display (graphics action).

Notes on the Examples:

Communication Object

1, 3+4+5 3

The expression 3+4+5 is handled by sending the reply of the message 4+5 back to 3. First, let's look
at a simpler message: 3+4. In the class number, we have
<+ > (@b « :. T 'result of computing the sum of SELF and b')

The action taken after sceing the '+' is to receive a value from the message and give it the name b.
Then return (1) to the sender a reply calculated somehow. The calculation uses the value of the
active instance of the class (referred to by the name SELF) as well as the value of b. In the
simplified example, the value of SELF is 3 and the value of b is 4. (This is usually done using more
Smalltalk code as in the first example, but can also be an escape to lower levels of the system, as in
this example. Such escapes are seen in the definition as CODE <number>.)

Hence, after seeing the '+', the receiver (3) receives a value (4) and returns the sum (7).

In example 1, after the object 3 first sces the message +, the action G b «:. tries to receive a value
from the rest of the message. In this case, the rest of the message is 4+5. The 4 is a number also. It
is sent the message +5, which will activate the same line in the definition of number as 3 was using.
4 sees the + and tries to get a value (5) into ITS 'b'. There is nothing more in the message so 4+5 is
computed and 9 is returned to 3 as the value of its message. The 3 adds itself to the 9 and returns 12
to the original sender. All messages in Smalltalk are handled in a similar manner.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 46

Communication Object Message - Reply ' Graphics Action

2, 5mod 3 5 mod 3 ‘2 none

In the example above, a message is sent to a member of class number (the literal 5). 'mod’' is a token
which class number can recognize (we'll see how in a bit). It indicates a desire for finding the modulo
of the number with respect to another number. We need another item from the message, this time a
numerical value. The part of class number which receives this general message form looks like:

“fmod » (T SELF - (&b ¢ :,)* SELF / b)

This means: if, in the message,

you see «f
the word 'mod' mod
then >

do the following:
receive a value from
the message and give

it the name b &b «:.
then
return to the sender T

a reply calculated by
dividing yourself

by the value received; SELF/b

multiplying the result

by that same value; b * SELF/b

and subtracting this last

result from yourself. SELF - b* SELF /b

To clarify the right-associative nature of the evaluation, we add the following, somewhat redundant
explanation of the above message. The uparrow (1) expresses the action of actively returning some
value (that is, the returned value is an object that becomes the immediate next message receiver; it
is able to examine the rest of the message). The value returned is obtained by evaluating the next
object in the message, here, SELF. Because SELF is an instance of class number, it looks for and
finds an arithmetic operator (-) and asks to fetch the next value from the message. This in turn
effects the evaluation of the parenthesized message (G"be:.). The value received is a number, hence
the value of b is an instance of number. This instance is still active and is able to look at the message
and see the multiplication operator (so far, the subtraction has not been completed). Upon seeing
that multiplication is indicated, a fetch is made for the multiplier. This activates the second
reference to SELF, a number that sees the division, retrieves the value of b, and completes the
division operation. The result of the divison operation is the multiplier; the result of the
multiplication is the subtrahend; the result of the subtraction is the value returned.

Most lines in class definitions resemble this one strongly because Smalltalk is modelled on the notion
of communication by sending and receiving messages.

Since everything in Smalltalk is an object and every object can send and receive messages,
"expressions" (as in example 1) can be built by simply sending more messages to returned values
which have already been calculated. The messages can be cascaded in a single message stream, or
determined conditionally as actions 'specified in a class definition. Message streams are typed to
Smalltalk by the user or included as part of the definition of a class.

If a number can answer the question is number affirmatively, then we can easily test the value in the
previous example (which was given the name 'b") by:

THE SMALLTALK WORLD AND ITS PRIMITIVES ' Page 47

«fmod » ((@b ¢ :.) is number » (% SELF - b * SELF / b)
error @>('non-numeric operand’))

We don't usually bother to do this as it is much better for the action to discover that a value is of the
wrong class by sending a message which it doesn't understand.

The object error handles printing the specified message in a Smalltalk sub-window and letting the
user investigate the context of the error.

Communication Object Message Reply Graphics Action

3. ‘abe'+'def’ ‘abe' +'def’ ‘abedef’ none

Class string has a way very similar to number for receiving a message and then doing something.
Here, the action is string concatenation. ’

F+ > (@b ¢ :. T 'result of concatenating SELF and b')

In other words, receive a value from the message and give it the name b. Then return to the sender a
reply calculated somehow. Again, this is probably done using an escape to lower levels of the system.

4. go 100 go 100 draw a line 100 units long
The message to the turtle to go 100 units (100 "dots" on the display screen) is received in a manner
similar to the second example. A turtle actively returns itself, thus permitting the cascading of turtle

messages.

“fgo > (@ dist « :. 'Somehow make turtle go dist’ ® SELF)

Communication Object Message Reply Graphics Action
5. do4 do 4 none draws a square with
(® go 50 (® go 50 side 50 units long
turn 90.) turn 90.)

"Control Structures” in Smalltalk work the same way. The object do receives its message:
@GN « :. Gexp « 8. 'method for doing exp N times'

The § means receive the message "literally”. We use it here because we don't want the value of & go
50 turn 90 (which are actions by the turtle), but rather its literal form (which is a request for actions
by the turtle) to be iterated over and over. We do want to calculate a value for the repetition number
to allow expressions such as:

do a+b*5 (...)

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 48

Communication Object Message Reply Graphics Action
6. joe grow 60 joe grow 50 none joe, the box, grows his
sides by 50 units; a larger
box is displayed

This is a typical message to a graphical object. We will show both the receipt of the message and its
method:

“¥grow » (SELF undraw.
Gsize « size + ¢,
SELF draw)

When grow is seen, we 'undraw' ourSELF using the old size, compute the new size by adding a new
value received to the old size, and tell ourSELF to 'draw' using the new size.

Communication Object Message Reply Graphics Action
7. joe turn 25. joe turn 25 none one box on screen tilts 25 degrees, and
jill grow 30. jill grow 30 none then another box grows 30 units

Here we see a bunch of send messages done in sequence. The period '.' terminates a message and
hence separates two message communications. In many cases, the period is not needed, as the
message receiver will be able to determine how much of the message to examine. The period does,
however, serve the syntactic purpose of disambiguating the end of a message.
The order of communications is done sequentially from left to right (as with English text), so:

joe turn 285,

is done before

Jill grow 380.

The Notion of Class

The basic class definition deals with just two ideas:

1. The notion of creating objects which have independent existence and memory.

2. The control of the flow of evaluation by sending and receiving messages in various ways.

For example, a send message is a control action because flow of control is suspended in the sender
and resumed in the receiver. A reply suspends the context in which it is found and resumes the
object which originally sent it a message. Send messages may be ordered in time or be indifferent to
sequence. "Conditional branching” chooses one path to follow from many depending on a test of some
kind. "Repeats" of various kinds cause evaluation to happen over and over; they may be terminated or
restarted.

The independent state and message properties of Smalltalk make it possible to construct arbitrary
structures or control structures.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 49

Here are some of the abilities which have already been built for you to use. In the table below, the
word joe is the name of an object that has been created. In creating a Smalltalk object, an entry is
formed in a dictionary; each entry has two parts-=the name of the object and the value of the object.
Typically, the object has value as a class or as an instance of a class. As explained in previous
chapters, class definitions have information known locally to the class as a whole (class variables) or
to each instance of the class individually. Information known locally to each instance is either
retained as part of the description of the instance (instance variables) or exists only when the
instance is actively doing something (temporary variables). Dictionaries exist at each level of
definition and activation of classes and their instances: there is a "global" dictionary known to all
objects, one for each class, one for each instance of each class, and one for each object currently
active.

Message Form Meaning

joebe Send the object joe the message b ¢. Any message can be terminated with a period (.).
There will always be a reply of some kind,

joe Send the object joe an empty message. Usually the reply will be just a reference to joe's
value.
@joe The "hand", @&, says consider the next token literally--i.e., the literal word ‘joe' instead

of the object joe. A literal word is simply a string of characters; an object, however,
refers to its value as a class or class instance. Here G is an object being sent the message
joe, and the reply is the literal word 'joe'.

@’(ab..) The reply is the literal chain (or vector) (a b ...).

«fgrow look («¥) in the message to see if the token (grow) is literally there. The reply will be
‘not-false' if the token grow is literally there and the next thing in the message will now
be available for scrutiny. Otherwise, the reply will be 'false’ and whatever was there is

still available.

H The reply is the value of the next expression in the message.

(-1~}

The reply is the next literal token in the message.
it Same as 8 except that the current place in the message will be retained regardless of the
result of gathering the next token. This allows the receiver to "peek" at the message.

The reply is a reference to the meaning (class or class instance) of the next expression in
the message. So, for example, if we have GPfunc ¢ #hp, then the value of func is a
reference to the meaning of hp; i.e., if hp is a class definition, then func becomes another
name for the definition hp. Hence, mentioning func is identical to mentioning hp.

The user can construct other ways to receive messages from these primitives (such as "receivers"
which check the class of the received object, and so on).

ft 3+4 reply (*) to the sender the value of '3+4' which is 7; the 7 can now examine the current
message.
a>(b) c> (d) .. if a evaluates to 'not-false' then evaluate b and continue evaluation after the next

enclosing parentheses. Otherwise evaluate c; if it replies 'not-false', evaluate d and
continue evaluation after the next enclosing parentheses. Otherwise ...

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 50

The conditional expression @ = (b) may be used anywhere in Smalltalk. Don't forget about the
"escape” from the 'not-false' branch! If you would like to deliver one value or another depending on a
condition, enclose the expression in '(...)'. Parentheses in Smalltalk serve a grouping or delimiting
function: they delimit the 'then-clause' from the rest of a conditional expression; they delimit
message parts to disambiguate or order the evaluation of the message; they group expressions for
iteration using repeat or do, in general, they group a sequence of words together as a token that is
received when the symbol 8 is used.

3+(ab » (4) 5)

will evaluate to 7 or 8, depending on the values associated with a and b. Here the outermost set of
parentheses is used to order the evaluation of the message; the innermost parentheses define the
limits of the 'then-cluase' for the conditional statement. Some examples of conditionally structured
evaluation include: :

evaluating a or b but not both a>()b

letting evaluation of ¢ depend ona or b (a>()b)>c

letting evaluation of ¢ depend on a and b (as(()a>c

repeat (...) The contents of () will be re-executed until a 'done' is encountered (or if you hit 'ESC').

The escape will be from the innermost loop in which the 'done' is enclosed.

done Will cause the most recent repeat-loop to be exited.

done with 3+4 Will cause the most recent repeat-loop to be exited with the value 7 as a reply.
again Will restart the most recent repeat-loop in which the again resides.

for An iteration control feature included in the basic Smalltalk system.

for i « 2 to 50 by 4 do (...)
Contents of () will be re-executed until the value of index i, starting at 2 and stepped by
4 each time, exceeds 50. In general, the '¢' part may be omitted and the default index
start is 1; the 'by' part may be omitted and the default step is 1. If the 'to' part is
omitted, the end condition value is the same as the start index value.

do n() The contents of () will be re-executed until the index counter N, starting at 1, equals n
(i.e., for n « 1 to n by 1), The counter N is not available as a number to use inside the
parentheses.

Objects are created in one of two ways:
1. Creating a class

to (class name) (temporary variables) [{instance variables) | (class variables)
(messages and responses)}

2. Creating an instance of a class
G (name’ ¢ (value)l
where (value) is either the result of activating a class or activating an instance.

Other available (basic) abilities are described in subsequent sections.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 51

The User Task

Smalltalk has a USER task which is evaluated continually. You can see the message that is evaluated
by typing

Gt « GET USER &*DO. } Get the USER task.
t print.} Ask to see the message.

In a Smalltalk system that does not include the dialog window class, the reply is
(cr. read eval print) The reply is a vector, a request to evaluate a typed message.
The task shown above effectively:

(1) prints a carriage return in the Smalltalk dialog window (cr);

(2) prints the Interim Dynabook prompt character (£&3), reads characters from the keyboard
until the <do it> character (1) is typed,

(3) assembles the characters into a list we call a vector;

(4) this vector is then an object that receives the message eval print; after seeing (%f) the
token eval, it evaluates its contents as a message; and then

(5) whatever object the vector returns can receive the remaining message print. Some object
is always returned, possibly the object nil (an object without value). The default object

returned from running (activating) a class is the class instance (referred by the name
SELF).

Some Comments. The routine read expects to print the characters typed at the keyboard in a dialog
window whose name is disp. Vectors only respond correctly to the message eval when the last item in
the vector is nil; hence the length of a vector containing Smalltalk message tokens ("code") is one
item longer than the number of message tokens in the vector.

Effect of the Message Print and the Period. In order to fully understand the results of messages
sent to Smalltalk, it helps to understand the implications of the print message. As an example, if you
simply type a number or an arithmetic expression, without explicitly telling the resulting number to
print itself, the number will, in fact, print. Try

3+41 Reply is the number printed.
Now try
(3+4) print} Reply is the number 7 printed twice without an intermediate space.
3+4.1 Note the period. Nothing ;seems to happen. The last message evaluated in the code
vector is a period; the period returns itself as the reply; it then receives the

message print and does nothing.

(3+4) print.! The number 7 sees the message print and prints itself in the dialog window; the
next token is a period; the period receives the print message (from the USER task);
hence only one 7 prints.

This means that any object obtained as a result of evaluating a message at the top-level of Smalltalk
will be sent the message print unless the original message is terminated with a period. If the
resulting object does not respond to the message print, Smalltalk runs a "dummy" class named print
which does nothing. Unexpected results might occur if the object does respond to the print message
and the receipt of this message was not intended.

If you look at the USER task in a Smalltalk system with the dialog window class running, you will see
the following (code) vector:

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 52

(sched map @G°(G task « vec[i]. apply task tg @ (run) in GLOB)!

This USER task assumes that there is an object named sched (an instance of the class obset), and that
that object contains references to other objects (for example, dialog windows and/or font windows),
each of which should receive the message run each time the USER task is evaluated. The usual
response to the message run is to check to see if there is any keyboard input (kbck) and, if so, to
evaluate the message (cr. read eval print).

More information about this task is provided in the Chapter V section entitled Scheduling Methods:
sched and window.

Active and Passive Return. We mentioned that the result of evaluating a message is a Smalltalk
object that can receive the message print, unless a message terminator (a parenthesis or period) is
used. Here we are saying that the result of evaluating a message is some value, an object that might
be able to further examine the message.

This ability to let an object further examine the message depends on the method used to return it to
the message sender. There are two methods for returning a value: passive return and an active
return. The former is the default case--every evaluation results in some object whose value is,
perhaps, nil. That object is returned to the message sender. Because it is returned passively, the
object can not further examine the remaining message, if any.

The method of active return requires an explicit request to return the object. The Smalltalk symbol
up arrow (1) is this explicit request. The form is T (value); the (value) is an object that can
examine the rest of the message. All numbers return actively; the class turtle returns its instance
values actively (hence their ability to cascade messages). By default, instances return themselves
passively unless the definition includes T SELF as a response to each message. The class vector
receives the message eval and actively returns the result. Hence, the result of read eval is an object
that can receive the next message: print.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 53

The Form of Presentation of Smalltalk Classes In the next chapter, we present
definitions for the basic Smalltalk system: the classes already defined for general use, aids for
interacting with Smalltalk and with the Smalltalk file system. Chapter V contains examples of
applications of these classes. The basic Smalltalk classes will be presented by showing how instances
of each class are created and what happens when messages are sent to a class instance. In most cases,
the messages are annotated; in some cases, the actual definition of the class will be shown. For
example, a version of the class box defined in Chapter II can be presented as:

box The name of the class.

@’joe € boxl Creating an instance of the class,
I'ma box : x 256 y 300 size 50 tilt 0

joe is ?1 What is the instance type.

box

joe is box1 ‘Not-false' is the same as 'true'.
box

joers x « 2001 Assigning meaning in joe's context.
200

joe’s x! Querying joe's context.
200

joe’s y « 2501
250

joes y!1
250

joe’s size « 1001
100

joe’s sizel
100

joers tilt « 321
32

joers tiltd
32

joe drawl

joe undraw!
joe grow 3+4%
joe turn 20*21

joe move 100 2001

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 54

Abbreviations

In order to present these examples a bit more concisely, we need to adopt some abbreviations.

We Abbreviate By

a property of a class instance <{property>
expected value (any type) <value>
expected number value <{number>
expected nonnegative integer value <integer>
instance of a class named classname <classname>
name of an object <{name>
expected string value {text>
expected message stream {message>
forms involving [] i {selection>

We can further simplify the presentation of classes if some class conventions are adopted, such as: all
classes will respond reasonably to the following messages:

is? replies with (classname)

is (classname) replies (classname) or false

print prints in standard format

’s (property) ¢ C(value) makes (property) stand for the (value)
’s (property) replies with (value) of (property)

Class box then can be described compactly as:

box

@>joe « box]
Draws a square at x = 256, y = 300, size of each side = 50, and
angle of tilt = 0.

joe draw!

joe undrawl

Jjoe grow ¢(number)! joe erases, makes himself bigger by <number> units, and redraws,

joe turn (number)1 joe erases, turns himself by <number> degrees and redraws.

joe move (number) {number)}l joe erases, changes his coordinates, and redraws in a new location.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 55

A Smalltalk Class Example

Link is a typically complete form which we present as an example of the conventions for presenting a
class definition. It is a structure familiar to LISP users: pairs of objects which may in turn also be
pairs. Instances of link receive and respond to the following messages.

link init! Set up help and mail box information.
@Ppair ¢ link @’john Gmary.1 Create an instance whose name is pair (or, as in LISP, "cons").
pair head} Ask for the value of instance variable h (or, as in LISP, the "car").
john
pair taill ~ Ask for the value of instance variable t (or, as in LISP, the "cdr").
mary
GPtriangle ¢ pair + @& jim.1 Create another instance whose head is the instance pair and whose tail is
@”jim,
triangle print.} Show the value of triangle.

((john . mary) . jim)

triangle is ?1 triangle is an instance of what class?
link
pair lprtl Provide some helpful information about the instance pair.

I am a link.
I consist of (john . mary)

The form of the class definition is
to link a [ht [helpprint mailbox
(¥+ > (% link SELF :)
«fhead » (T (¢ > (Ghe:.) h))
“ftail > (T (e > (Gte:) t))
«flprt > (helpprint SELF)
<«fprint » (dispe'(’. h print. dispe'.’. t print. dispe')’.)
Fis > (<F link > (T G7link) ¥ ? > (N Glink) 8. ffalse.)
s (Eaed T (e (ac:) aeval))
«finit » (G helpprint € #hp. G mailbox €« 'no mail'.)
isnew » (Gh « ;. @Gt « :.))¥
to hp ob
(@0b ¢« :. cr.disp¢'ITama’. (obis?) print.

cr. disp ¢ 'I consist of '. ob print.)}

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 56

Chapter IV, BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES

The Basic System Classes

See the end of Chapter III for an explanation of the method for presenting the basic Smalltalk system
class definitions.

Atoms

Smalltalk atoms are unique tokens which are usually associated with Smalltalk objects in dictionary

entries. If a user attempts to create an atom which will print the same as an already created atom,
the system will force the two to be the same.

atom
& a « @bl The value of a is the atom b,
b .
GFa € atom (text) Reply is the new name which prints as <text>.
a chars! Reply is the <text) of names value,
'b'
a ¢ Cvalue)l The <value is associated with the name b
(i.e., this is indirect reference to the name b).
al ' The value of a is b,
b
bl The value of b is {valued.
C(value)
a evall Indirect reference--a eval is the value of a which
(value) is b, and the value of b prints, which is <value).

a = (name)l Value of a if 'not-false', 'false’ otherwise.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 57

Arithmetic
There are two classes for handling numerical operations: number and float. They are compatible and
interchangable. An operation containing both classes will have a reply in the class of the first object

(that is, in the class of the object being sent the message).

100/8.01
12

100.0/81
12.5

The value range of number is
-32768 to 32767
that of float is (where the form 1.2e3 denotes 1.2 times (10 to the power 3))
-99999.99999e4095 to 99999.99999e4095
An integer beginning with the digit 0 is an octal number; all other numbers are base 10. float must

begin with a digit from {0, ..., 9}. float must have an embedded period, numbers must not. In
addition, float may be expressed in scientific notation as a product of a power of 10.

Good Forms Bad Forms
123
-123
0.0 .0
355.0 355.
6.28¢-23 28e-23
number
@ a « 1281 Value of a is 128, a number.
128
a + (number)} Reply is the numeric sum of the two objects.
a - (number)! Reply is the numeric difference of the two objects.
a * (number)! Reply is the numeric product of the two objects,
a / (number)} Reply is the integer quotient of the two objects.
a mod {number)}! Reply is the integer remainder.
- a! Reply is the numeric negative of a. The unary minus
is typed holding down the <shift> key and pressing -.
a = (number)! Reply is the value of a if 'not-false', otherwise 'false’.

a * (number)} Reply is the value of a if 'not-false', otherwise 'false'.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 68

a ¢ (number)} Reply is a if ‘not-false’, 'false’' otherwise.
a % (number)! Reply is a if 'not-false', 'false’ otherwise.
a) (number)} Reply is a if 'not-false', 'falge’ otherwise.
a = (number)! Reply is a if 'not-false', 'false’ otherwise.
a D ¢(number)} Reply is the bitwise logical operation of the two values.

afJ number)} logical AND

af)number)! logical OR

aB) number)} logical XOR

alJ¢number)l LSHIFT by the <number>
a min¢{number)l Reply is the minimum of the two values.
a max (number)} Reply is the maximum of the two values.

In the above, (number) can be an instance of number or of float, but the result is the proper number
result,

float
@ a « 3.14159%
3.14159
&a « float (number)} Reply is the floating point equivalent of the number,
a + (number>l In the following, reply i; the proper floating point result, but

<number> can be an instance of number or of float.

a - ¢number)}
a * (number)}
a / (number)}
- al

a = (number>l
a * (number>}
a ¢ (number)}
a £ (number>!
a > (number)}

2 (number>l

3

Q

ipart! Reply is the integer part of the floating point number; can
not be in scientific notation, :
E.g., 27.3 ipart! Reply is 27,

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES

a fpartl

a ipow (number)}

a epart (float)}

Reply is the fractional part of the floating point number; can
not be in scientific notation.
E.g., 27.3 fpart! Reply is 3.

Reply is the result of a to the power {number>.

Reply is X where X ipow <float) = a .

E.g., 27.0 epart 3.01

Reply is 3.0.

This is used for printing floating point numbers.

Page 69

BASIC SMALLTALK SYSTEM CLASSES_AI\iD UTILITIES Page 60

Turtles for Drawing

A turtle is a method for drawing on the display screen. The class turtle was introduced earlier in
Chapters I and II. Turtles, like &, can receive any number of cascaded messages. For example,

penup goto 200 300 pendnl
is equivalent to:

penup.

goto 200 300.

® pendnl!

However, there is no cascading after the ’s message. A turtle's width can vary from 0 to 8 dots. Say:

®'s width « 4. © go 100}

turtle
&G® « turtle frame (dispframe)! Turtle's range is defined by the boundaries of the dispframe.
G « turtlel Turtle's range is the entire display screen.
homel Picks up pen, takes to geometric center
of range, faces upward.
erasel FErases range.
up! Faces turtle towards top of display screen.
penu.p! Any travelling will not leave a trace.
pendnl ' Any travelling will leave a trace if ink is different
from background.
blackl Sets ink to black.
whitel Sets ink to white.
xor! Trail exclusive-or-ed with other stuff on screen, if width=1,
go (number)} Travels in current direction a distance <number.
® turn (numberl Turns clockwise <number> degrees from current direction.
© goto (number> (number)! Travels to x = <number)>, y = <number>.
goto (point)} Travels to the place represented by the point and
does not change its direction.
e (text)l Prints the text (or the character represented
€ (integer)l by the Ascii code <integer>) at the turtle's

current location, with its direction, width and
color.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES

The False Class
is a method for handling boolean operations.

false

@ bool « falsel

bool » ((message)>)l
bool or (message)}
bool and (message)!
bool ¢ (message)l
bool = {message)l

bool) (message)l

Since bool is 'false', gathers up the message without
evaluating.

Reply is result of evaluating <{message>.

Evaluates message; reply is SELF.
Evaluates message; reply is SELF.
Evaluates message; reply is SELF,

Evaluates message; reply is SELF,

Page 61

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 62

Sequential Dictionaries

include the classes: vector, string, obset, stream, file.

Vectors and Strings
are both organized like beads on a string. Their only difference is the way they respond to:
is ?

and that a vector may have any Smalltalk object as a bead while string may only contain whole
numbers ranging from 0 to 255. String objects are thus not absolutely necessary (since vector beads
can contain any Smalltalk number), but are very useful as a compact way to store textual
information. The characters you type to Smalltalk are first captured as a string object and the textual
information which Smalltalk shows you is held as a string object belonging to a dispframe object. To
save space, the messages of both these classes will be shown together, repeating messages in the
separate columns only when expected values and replies differ.

vector string

@ a € @G(this is a vector literal)} GPa « 'this is a string literal'l
(this is a vector literal) ‘this is a string literal’

GFa « vector (number)l GFa « string (<number)!

Objects of the class are created with initial length <number>,

a[(number)]! " Reply is the value of the bead found at position {number> Note that
the first position is 1, not 0.

a[(number:lb) to (number:ub) J1 Reply is a 'subvector' or 'substring’ of beads whose values are copied
starting at Unumber:1b> (lower bou‘nd) and ending with the value at
<number:ub> (upper bound). We call either of the forms involving
[], [<number>] and [<number:1b> to <number:ub>], a <selectiond.

a ¢selection) ¢ (value)l If the <selection is of a single element, the value of the bead found at
position <{number> becomes {value>. Otherwise, {value> is expected to
be a string of beads of the same class as a and of any length. The
(selection> is replaced by the {(value>.

a (selection) ¢ (value) (selection)} The form <{value><selection> is a method for obtaining a string of beads
of the same class as a

a (selection) € all (value)l Copies the {value> into each element in the selection. This was used in
the sketching example in Chapter 1l: cobweb.

a (selection) find first (value)}l Reply is the first bead position <number> where a[<number>] is the
same as <value> if a[<number>] is found in the range of the

{selection>, 0 otherwise.

a (selection) find first non (value)l Similar to previous, except elements of {value> are ignored.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 63

a (selection) find last (value’!

a (selection) find last non (value)l

a evall

a lengthl
a + Cvector)!
a + (string)}

a map Cvector)]

a = (string)}

Reply is the last bead position <number> where a[<number>] is the
same as <valued if a[<number>] is found in the range of the
<selection>, 0 otherwise,

Similar to previous, except elements of {value> are ignored.

Vectors only. Treats the contents as Smalltalk code. Evaluation is in
current context; last item of vector must be nil.

Reply is the number of bead positions
Joins copies of a and {vector> ({string>) into a new vector
(string).

Vectors only. The value of {vector)> is sent as a message to each of
the beads of a.

Strings only. Reply is <string> if a is identical to {string>; otherwise
false,

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 64

Obsets

Obsets are "bushel baskets" which can hold things for you. They can be used like mathematical sets
(having only unique values) or like "bags" (being able to contain duplicate values). Instances of obset
are frequently used as schedulers for the objects which they contain. For example, the display windows
of various kinds are all contained in an obset called sched. An instance of obset owns its own instance
of vector and provides a method for automatically expanding the vector, storing objects in the next
available position in the vector, and removing objects.

obset

@ob « obset! An instance of obset is given the name ob.

ob ¢ (value)! If the <value) is not already in ob it will be added, otherwise ob stays the
same. This addition method (set union) depends on checking for
equivalence of the values in ob. Since ob actually contains pointers to the
Smalltalk objects, large integers of the same value will typically not be
equivalent, as their pointers are not equivalent.

ob delete (value)l Assuming there is only one occurrence of <{value>, it will be deleted if in
ob; if there are multiple occurrences, only the first will be deleted; reply
is 'false' if there is no occurrence.

ob add (value)l The <valued is added whether or not one already exists there.

ob unadd! The most recently added <value> will be deleted. add and unadd can be

: used to implement a "stack".
ob vecl Reply is a vector containing all the objects of ob.
ob map (vector) : Evaluates the <vector> n times where n = the number of objects in ob's

vector,

An obset is one method of using vectors. Objects in an obset are actually stored in a vector that is
locally bound to the instance of the obset. The vector instance is named vec; i is the index counter
used in replying to the message map. Hence, if we wanted to send every object in the obset sched the
message run, we would say

sched map G (vec [i] run)!

where vec[i] refers to the ith object in the obset. It is also possible to refer to each object by the
object each so that the above message could be written as

sched map @G°(each run)l

Many users add their own version of intersection, union, and so on, to the definition of obset.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 65

Streams

Streams are similar to the BCPL programming language method for storing and retrieving
information. A pointer, i, is kept to the current stream item; pointer L keeps track of the last
storable item. The actual storage method is either a string or a vector bound to the instance of
stream. We use double quotes " to indicate optional forms.

@s « stream! Default is to create storage in a string of length
10; i=0; L=10.

@s ¢ stream of vector {(m)! Create storage in a vector of length m; i=0; L=m.

s « stream of string (m>1 Create storage in a string of length m; i=0; L=m,

@s « stream "of vector (m>" "from (integer1)" "to (integer2)"}
@>s « stream "of string (m)" "from (integer1>" "to (integer2>"}

Initially, s is either a string or vector referenced starting before the
first item (i=0) up to the last storable position (L= length of the
string or vector). Or, optionally, s may be a different length string
or vector (m) whose contents are referenced beginning with an index
other than 0 (i= <integer1> - 1) up to an index other than the
actual string or vector length (L = <integer2)).

s € (value)l Stores in the next (@rici+1) item of the stream, expanding the
) length of the stream if i=L.

s contents! Returns the stored items (from the first up to the ith item).

s nextl Returns O if i=L; otherwise, returns the i+1st item and increments
i.

s resetl Resets i to 0 (points to the beginning of the stream)

s endl Returns 'true’ if i is the end of the stream (i=L); otherwise returns

‘false’

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 66

Files

The Smalltalk file system provides for instances of the class directory divided into files. A file is

found in a directory by its file name (fname). A file name must be an instance of the class string.

Each file has in its local context a character pointer (bytec) and a 512-character string as an i/o

buffer (sadr). Each file also knows the directory in which it can be found (dirinst).

Initially, there are two directories: dp0, dpl. However, only dp0O should be used unless the Interim

Dynabook is equipped, for example, with two Diablo model-31 disk drives or with a Diablo model-44

disk. When creating a file instance, you actually send a message to an instance of the class directory.

Effectively, this sets the instance of the directory as the value of curdir. If the directory reference is

omitted, Smalltalk runs the class file with curdir equal to nil, indicating that the directory should be

the default name stored as defdir. Unless specified, defdir is defaulted to dp0. To modify this, type
(directory) usel

In the following, "<directory>" is therefore optional.

Creating File Instances

@°fi « (directory) file (text) old! Searches for a file previously defined in the
directory; returns 'false’ if not found.

@fi « (directory) file (text) new! Creates a new file or returns 'false' if a file with
the same name already exists.

@>fi « (directory) file (text)l First attempts to find an old file; if it fails, then
creates a new file.

(directory) file (text) existl Answers the question, does the file already exist
in the directory?
Deleting a File

(directory) file (text) deletel Deletes the file if it exists; returns 'false’' otherwise,

Renaming a File

(directory) file (text) rename (text)}
Loading and Saving Entire Smalltalk Context
(directory) file (text) loadl

(directory) file (text) savel

Interrogating the Directory
(directory) listl Will print the names of all the files on the directory.

Reading and Writing a File

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 67

It

is possible to read and write strings, words, or characters from a file. A word is simply two

characters on even character boundaries, while a string is a set of n characters. In the following,
local context for a file instance includes:

fi
fi
fi
fi

fi
fi

fi

leader disk address of page 0
curadr disk address of current page
nextp disk address of next page
sadr 512 character string
bytec character index into sadr
numch number of characters on the current page, must be
512 unless current page is the last page
pagen current page number
snl1,sn2 unique 2 word serial number for the file
version version number, currently always 1
« Cinteger)} Store a number (Ascii code).
€ Ctext)l Store each character in the string onto fi.
next! Read the next character from fi (8 bits).
next wordl Read an integer from fi (16 bits). Adjusts character pointer to
retrieve the logical next word.
next word ¢ (number)! Write the number into the next word of fi.
next into (text>}l Read enough characters from fi to fill the string <text>. This is
essentially, but not identical code as,
for j to <text> length do (<text>[j] « fi next)
flushl Write out sadr (the i/o buffer) onto fi.

Addressing a File

fi

fi

-~

f
f

.

~
-

fi
f

o~

-

f

-

f

skipnext (number)! Relatively positions a file.
Same as fi set to read pagen bytec + :.

end! Returns file instance if pagen, bytec points to the end of the file;
returns 'false' otherwise.

shorten to (integer) Cnumber)l Set nextp to 0, pagen to integer, bytec and numch to number.

shorten to herel Same as fi shorten to current file location, i.e., pagen bytec,

i print! Prints the file name.

reset! Same as fi set 1 0 (point to beginning of file).

set to write (integer)(nu,mber)! Sets bytec to number; pagen to integer; allocates new pages if try to
go beyond the end of file.

set to read (integer) (number)} Same as write but will stop if try to go beyond the end without
allocating new pages.

set (integer)(number)! Same as set to read.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 68
fi set to endl Same as fi set to read 037777 0 (i.e., forces end of file).

Files Open List

A list of file and directory instances currently being referenced for each directory is kept in a "files
open list".

(directory) printl Prints the entry names of each open file in the directory.
(directory) flushl Write out the current state of each file in the filesopen list.
(directory) closell Flush the directory and reset the filesopen list.

Individual files can be added or removed from the files open list,
(directory) remember (value’l

(directory) forget (value)l

fi removel Remove file from the files open list.

fi closel Remove file from the files open list and flush the bittable and the
current page.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 69

Dispframe: The Basic Window Class
Text Display Routines

Smalltalk has a multiple-window display capability which allows viewports composed of text, pictures,
musical notation, and so on, to be created. The main method for creating and editing windows of text
is to create instances of the class dispframe. These display frames are rectangular areas on the
screen. They are specified with five values: an upper left corner horizontal position x, a width, an
upper left corner vertical position y, and a height. A fifth value specifies either an instance of class
string or creates the instance by including the words string (integer). Hence

@ df « dispframe 16 256 16 256 string 4001

gets you a rectangular area on the upper left portion of the display screen. The upper left corner is
16,16; the width and height are 256; and a string of 400 characters (whose local name is buf) serves
as the text buffer. This buffer is altered by « (store characters) and by scrolling in the window. Or,

GPef ¢ dispframe 3 100 50 200 ' '}

gets you a rectangular area at upper left corner 3,50 with a width of 100 and height of 200. The
buffer is a string with length 1. The instance variable last is set to 0. It is possible to create a
dispframe by stating the actual text of the frame, i.e.,

G gf « dispframe 3 100 50 200 'hello there'l

However, the text will not show because the index into the text string is last = 0, indicating that no
characters are to be shown.

There are actually two entities associated with a display frame: a frame and a window. Clipping and
scrolling are done on the basis of window boundaries. Window boundaries are intersected with the
physical display screen. The frame may be smaller or larger than the window and smaller or larger
than the physical display screen. Frame boundaries are the basis for word-wraparound.

Presently, dimensions defining frame and window boundaries are given the same values upon creating
an instance of dispframe. The following are local bindings (instance variables) for each instance of
the class.

winx window upper left corner x

winwd window width

winy window upper left corner y

winht window height (note, automatically increased on creation of the instance

to make the window extend to the bottom of the display screen)

frmx frame upper left corner x

frmwd frame width

frmy frame upper left corner y

frmht frame height

buf string buffer

last pointer to the current last character stored in buf

Istin pointer to the character in buf that Legins the last line of text in the frame
mark pointer to the character in buf representing the last prompt output

charx right x position of the character pointed to by index last

chary top y position of the character pointed to by index last

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 70

reply

justify

font

editor

indicator for frame and window control (see below)

toggle for right justifying the contents of the window
0 means no justification; 1 means justify on frame boundaries

font for displaying characters
if nil, then default font used; otherwise, the value of font is

a string defining the font to be used (see below)

available storage for associating a unique editor with any display frame.

The text buffer buf contains only characters that can be displayed within the window boundaries.
Scrolling occurs when an attempt to store more characters causes overflow of the bottom of the
window. In this case, the first line of characters (where a line is defined according to frame
boundaries) is stripped out of buf.

The reply variable is useful in cbntrolling window and frame boundaries and scrolling. The following
are meaningful values for reply:

0 everything is okay--there was intersection between window
and display and between the window and the frame.

D OV W

no intersection between window and display

no intersection between window and frame

window height less than font height so not even one text line can be displayed
frame height has been increased to accommodate new text

overflowed bottom of window (scrolling)

both 4 and 5 occurred

To get a different font other than the default font, it is necessary to read the font string from a
previously created file (see section on Editfont on how to create fonts). Type

@G ff « file (text) intostring]!

Then, assuming the name of the dispframe is disp, say

disp’s (@font « ff)1

Or, you can declare the font at the same time you create the instance of the dispframe.

@G~df « dispframe (integer) (integer) (integer) Cinteger) (text)}
GPdf « dispframe (integer) (integer) (integer) (integer) string (integer)!

Create an instance of dispframe with values for window and frame

boundaries and length of the text buffer. The window will appear

on the display screen with a black double line around it. In the

first case, where a text string has been specified, it will not appear

because the variable last is set to 0. It would be necessary to type
df's (G"last « buf length). df display.!

to actually sce the text.

GFdf « dispframe (integer) (integer) Cinteger) (integer) (text) font {fontstring>l
G~df « dispframe (integer) (integer) (integer) (integer) string (integer) font {fontstring)l

Create an instance of dispframe with value for font.

@G~df « dispframe (integer) (integer) (integer) (integer) (text) noframel
@G df « dispframe (integer) (integer) (integer) (integer) string (integer) noframel

BASIC SMALLTALK SYSTEM CLASSES IAND UTILITIES Page 71

df € (text)l
df € Cinteger)}

df show!
df display!

df framel

df frame blackl

df frame whitel

df frame color <integer)}

df hasmousel

df fclearl
df wclear}
df clearl

df scrolll

df mfindc (integer)(integer)!

df mfindw (integer) (integer>}

df mfindt (integer) (integer)}

Create an instance of dispframe with values for window and frame
boundaries and length of the text buffer., Window will not have a
black line around it.

Append the string (text> to buf and display if possible
Append this Ascii character to buf and display its corresponding
character if possible.

Clears the intersection of window and frame and displays buf.
Does a show, then draws double black line around the window,

Draws a double black line around the window.

Same as df frame.

Draws a double white line around the window,

(color display only) Draws double line around the window in color
denoted by the integer number.

Returns 'not-false' if the mouse cursor is within the frame;
otherwise returns 'false',

Clears the intersection of the window and frame.

Clears the intersection of the window and the physical display.

Does an fclear and then sets last to 0 and Istln to 1, effectively
cleaning out the text buffer.

Removes the top line of text from buf and moves the text up one
line in the frame.

Find character located at <integer),<integer).
Returns vector vec such that

vec[1] subscript of character in string
vec[2] left x of character

vec[3] width of character in string
vec[4] top y of character

If vec[1]=-1 then position is after the end of string.
If vec[1]=-2 then position is not in the window,

Find word located at <integer>,{integer>.
Returns vector vec such that

vec[1] subscript of first character in word
vec[2] left x of word
vec[3] width of word
vec[4] top y of word

If vec[1]=-1 then position is after end of string.
If vec[2]=-2 then position is not in the window.

Find token located at <integer>,<integer>.
Returns vector vec such that
vec[1] token count where spaces and carriage returns
are considered delimiters but multiple
delimiters do not increment the count. {textd

counts as one token.

vec[2] left x of token
vec[3] width of token
vec[4] top y of token

If vec[1]=-1 then position after end of string or not in frame.
If vec[1]=-2 then position is not in the window,

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 72

df readl

df reread Cinteger)>l

df sub (value)l

df hidel

df put (string) at (x) (y)}

df corner (x) ¢(y>}

df moveto (x) (y)l

df growto (x> (y>}

Makes a vector out of keyboard input. Assumes the name of the
dispframe is disp.

(Used by fix and redo). Counts back from end of buf an Cinteger>
number of prompts in the buffer and does a read from there.

Evaluates <value> in the context of the dispframe. (Used by fix to
evaluate the editor within the window and by shift-esc to create a
window within the window).

Same as df fclear. df frame white,

Prints the text <string> starting at position x,y.
Upper left corner of df becomes x,y.

Returns O if position x,y in no corner

returns 1 if position x,y in upper left corner
returns 2 if position x,y in upper right corner
returns 3 if position x,y in lower left corner
returns 4 if position x,y in lower right corner

Set winx and frmx to <x>; set winy and frmy to <{y>.

Set winwd and frmwd to (<x> - frmx); set winht and frmht to
(<y>-frmy).

The last three messages are added to dispframe when the window framework is included in the basic

Smalltalk system.

Four routines are available for manipulating rectangular areas of the display.

dclear Cinteger) (integer) (integer) (integer) (number)}

will clear the rectangular area defined by the four integers, where the order
specifies:{upper left corner x> <width> <upper left corner y> <height>. The cleared area
is then filled with black and white dots according to the binary representation of the
number given (1's = black, 0's = white). For example, if the number is -1, the area will be
all black.

dcomp (integer) (integer) (integer) (integer)l

will complement the rectangular area defined by the four integers, where the order
specifies: <upper left corner x> <width> <upper left corner y> <height>.

dmove (integer) (integer) (integer) {integer) (integer) Cinteger) (integer)>l

will take the source rectangular area defined by the first four integers (same order as
above), and move it to the destination defined by the fifth and sixth integers (destination
upper left corner x,y). The seventh integer is a mode indicator: if the mode is 0, the
source rectangular area will be stored as given; if the mode is not 0, the black and white
dots in the source rectangle will be 'or-ed' with the dots in the destination area (0 or 0 =
0;0orl1=110r0=1;1or1-=1).

dmovec Cinteger) (integer) (integer) (integer) (integer) (integer) (integer)l

same as dmove except that the non-intersecting source rectangular area is cleared.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 73

Point Class

A point is an example of a storage method. Several examples of its use have already been given in the
Chapter II section on sketching ideas.

point
@"pt « point 100 2001 Create a point whose horizontal coordinate is 100 and vertical coordinate is 200,
pt x!
100
pt ¥t
200
pt + (point)} Reply is point obtained by adding coordinates of pt and <point>,
pt - (point)! Reply is point obtained by subtracting coordinates of pt and <point>.
pt = (point)! Reply is pt y if they are the same points, otherwise false.
pt £ (point)! Reply is pt y if pt is a point whose horizontal and vertical positions are smaller or
equal to those of <point>.
pt max <(point)} Reply is a point whose horizontal position is the maximum of that for pt and
<point>; similarly for the vertical position.
pt min (point)} Reply is a point whose horizontal position is the minimum of that for pt and

<point>; similarly for the vertical position.
This class is provided partly at the machine code level. The corresponding code is equivalent to

topointa | xy
(isnew » (@x ¢ :. @y ¢)

& x> (e > (Exe:) T x)

Ly (e (G ye)Ty)

F+ » (Ea €:. T point x+a x y+a y)

«f - (GPae:, T pointx-axy-ay)

&z ((Gae:) s> (T false) x=ax=> Ty =ay)? false)
£, ((GPac:) > (M false)x ax o> (Ty ay)® false)

< max » (@ae:. T point (x maxax) (ymaxay))

<f min » (@Gae:. T point (x mina x) (y minay))

<4 print » (G point print. sp. x print. sp. y print))}

Also provided in the basic Smalltalk system is the routine mp

tomp (T point mx my)!

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 74

Aids for Interacting with Smalltalk

The Smalltalk Class Editor

edit ¢classname)!
will get you the Smalltalk editor for the class which is named <classname>,

fix Cinteger)}
where integer is the number of transactions (images of the Interim Dynabook) back from
where you are, will get you the Smalltalk editor for transaction integer. Upon exiting, the
edited transaction will be evaluated, but the original transaction will not be modified.

edit (classname) titlel
will start the editing with the title line,
The editor shows two frames. The righthand frame contains a menu of commands, the left
hand frame contains a structured representation of the definition. All tokens at a single level
of parenthezation are shown. A lower level of parentheses is shown as (). An example is:
do 4 (® go 100 turn 90)
is shown as
do 4 ()
All editing is done by "grabbing" a command in the righthand menu (pointing to it with the
cursor and pushing the top or middle mouse button).

In the following, "text" refers to characters typed from the keyboard and terminated with L.

Commands Number of Times Action Taken
Grabbing Needed

- o = o 2 = P = VY = Y S e S = % T T 8 e s e e o s e

Add 0 Append text to end of current level.

Insert 1 Add text before designated word.

Replace 2 Replace the text indicated by pointing to the
beginning and end words with new text.

Delete 2 Delete the text indicated by pointing to the
beginning and end words.

Move 3 Combination of deleting text and inserting new

text before the word pointed to as third 'grab’'.

Up Remove parentheses.

Push 2 Put parentheses around words indicated by pointing
to the beginning and end of the intended grouping.

fory

Enter 1 See the next lower level.
Leave 0 See the next higher level.
Exit 0 Terminate editing.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 75

The only exceptions are Enter and Up. If there is only one level marker, (), showing in the current
level, no grabbing is required.

Showing Stored Information

show (name)}
will show you what meaning the {name> currently has.

defsl
will show you the names of classes you have defined that are currently available,

dpo list}
will show you the names of filés stored on your disk pack.

type Ctext)

will show you the contents of file named <text>; returns 'false' if the file does not exist.
Saving Smalltalk Definitions
filin Ctext)l

will go to a file whose name is {text> and tell Smalltalk to read what it finds on the file.
Example:

filin 'boxes'l

Usually the file will contain programs written there by running filout as defined next.
filout Ctext)l

will write every program whose name is in defs to a file called {text>. Example:

filout 'boxes'l

will write out every program whose name is currently in defs. There are a few other useful
variations of filout.

filout (text) (vector)}
will ignore defs and only write out the programs mentioned in the vector. Example:
filout 'boxes’ G&~(box square triangle)}
will ignore defs and only write out the three programs whose names appear in the vector.
Suppose the vector contains vectors, for example,

filout 'boxes.’
GF(boxes square (addto turtle G(«fplace » (SELF penup goto (:)(:) pendn up))))}

will write out the programs boxes and square, and then the vector

(addto turtle (*¥place > (SELF penup goto (:)(:) pendn up))).

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 76

On filing in this file, the ability to receive the message place will be added to the class turtle.

filout pretty (text)}
filout pretty (text) Cvector)}

will format the programs so they will print nicely (in show format).
filout Ctext) addl

will not overwrite file {text> but instead will add the new definitions at the end of {text).
Obvious variations include

filout pretty (text) addl
filout (text) add (vector)}
filout pretty (text) add Cvector)!
The (vector) could be given a name such as list:
@liste (vector)l
and then it is possible to type
filout (text) list}
will write out the definitions of objects named in list.
Or
filout (text) G list}
will first write out the definition of the vector iist and then the definitions of the objects
named in list. Variations with pretty and add are also possible.
Saving and Restoring Your Context

file (text) savel

will save your entire current state verbatim on the file <{text).
Example:

file 'blockworld.sv' savel
Try
file 'dmt.boot’ load}
to start the Interim Dynabook memory diagnostic.
file (text) load}
will restore you to the exact state when the file {text> was saved. Example:
file 'blockworld.sv’ loadl

This file is also one that you can resume from the operating system. That is:

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 77

resume blockword.sv (return)
will restore you to the exact state when the file was saved.
Utilities

are already written programs which provide useful services such as reading the keyboard and the
mouse, telling you how much room is available, and so forth,

nil

stands for the empty value in Smalltalk. It may be tested by saying:

null (value)}

which will reply 1 if the <value> is nil (i.e., the empty value), and 'false' otherwise.
corel

will tell you how many words are left. Any reply smaller than 500 is courting disaster. If
your space gets that low, or (worse) you get a diagnostic window with the message:

I've run out of memory
say:
expand (number)}

This will remove <number> of scan lines from the screen and convert them to usable space
at the rate of 32 words of space per scan line. So:

expand 100}
will increase your workspace by 3200 words.
addto (classname) Cvector)!
will add a definition whose meaning is {vector> to the class whose name is {classname).
Example, after typing:
addto box G°(«fmove » (SELF redraw (G xe:. @Gye:.)))8
box will know how to move.
{ Cvalue) (value) ... (value) }1
will construct a vector of the values found between the curly brackets.
stringof (value)l

will convert the <value> into an instance of the class string only if <{value is an object that
responds to the message print.

base8 (integer!l

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 78

will construct an instance of class string containing the octal representation (unsigned) of
<integer>.

eq (value) (value)l
compares two Smalltalk pointers.
Keyboard Keys
(return)
moves following text to a new line when typing in. Will otherwise be ignored.
<(bs)
removes any previous character (including <return>).

Reading the Keyboard

kbd
will wait until a character has been typed and then reply with the numeric code of the
character which was typed after being passed through a table which assigns (basically)
standard codes to the character,
To receive an uninterpreted version of a character, use:

TTY

which will wait for a character to be typed and then reply with an uninterpreted result.

Smalltalk will not lose typed characters if no program is listening. Instead they are held in an ordered
buffer waiting for a program to use TTY or kbd. To find out if there are any characters in the buffer,
use:

kbck
which replies 'not-false' if characters have been typed and 'false’ otherwise. A typical use
would be:
kbck » (G char « kbd)
which will only use kbd if there is already a character waiting, and will then save the new
character in char.

read

will gather up a vector of Smalltalk code. It first sends a prompt & to the display.
Everything you type until a ! will then be made into a vector which is sent back.

read of (text)

is the same as read except that the characters are found in <{text> rather than taken from
the keyboard.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 79

evl

repeatedly evaluates the vector (cr read eval print); will, in effect, give you another level
of Smalltalk evaluation. .

to ev (repeat (cr. read eval print))1

Over and over, it will do a carriage return, put out a prompt character &, wait for input
terminated by a 3, send the resulting vector the message eval to get Smalltalk to execute the
vector, and, finally, give the result of evaluation the message print in order to show the reply
back to the user. The loop is infinite but:

donel or (etrl)D

will terminate it. Here is a fancier version which will tell you the current level of
evaluation:

@ level « 11
to ev
(@ level « level + 1.
repeat (cr. @ level print. sp. level print. sp. read eval print)
GFlevel € level - 1.)1

Notice that if the last token in the message is a period, then the sequence is not unlike
G? a « read of '.". ais (.)

@ a ¢ a evall a evaluates to nil.
a print} nil prints as nothing

C(shift) Cesc)

Cetr> (

creates a subwindow in the dialog window. Allows Smalltalk evaluation as in the dialog
window. (In effect, evaluates ev in the subwindow). To return to main window, type

donel or (ectrl)D

Subwindows can be nested as long as there is space to create a window with height greater
than the font height. When a subwindow is created, reading characters is suspended in the
main window; a return to the main window returns you to the precise place you left off, for
example, in the middle of typing some expression.

does an evaluation of the next expression at the time the keyboard input is read. This gives
you an opportunity to perform a computation and have the result be used in the main
expression being typed.

Transferring Messages

apply (name’

will send the current message (the one which was sent to the context we are currently in) to
the object which has name <{name>. For example, suppose 'we' are called 'bogus' and have a
number of things we can do. Somebody sends us the message:

BASIC

SMALLTALK SYSTEM CLASSES AND UTILITIES Page 80

bogus sq 100+501
and we have a line:
«¥sq » (apply square)

then square will be applied to the remainder of our message 100+50 so that it can pick up
the value 150 and draw the square with sides 150 units long.

apply (name) to Cvector)

gets the object which has name <{name> and sends it the message {vector>. Example:
apply square to @(150)!

will draw the square with sides 150 units long. The important thing here, of course, is that
we can compute a message and then send it to Smalltalk.

apply (name) in (value)

will send the current message to the object which has name <name> using dictionaries whose
vector starts with context {value>. For example, if you would like to evaluate the message
using only "top level" names (ignoring the dynamic environment), then try:

apply mumble in GLOB!

apply (name) to (vector) in (value)

evapply

Display

disp

is the fullblown apply.

has exactly the same meaning as apply except that it expects a <message> of some kind to
be evaluated rather than a {name>. Example:

evapply (a<b » ('abcdefg’)G (this is vector)) to @& (length)

will reply with the length of either the string 'abedefg’, or the vector G(this is vector),
depending on the values of a and b.

The optional formats for evapply are the same as for apply as described above.

Utilities

is the local name of any dialog window. It is an instance of the class dispframe. When the
mouse activates the window, disp may be used to send messages to the window or to find out
things about it.

disp’s frmx}

will tell you the x position (upper left corner) of the frame.

indisp (value) (message>l

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 81

will temporarily redefine disp to be <value> and evaluate the message in this new context.
This is usually used when the message contains print or read routines which assume that
they will be using a dispframe named disp. The routine is defined as

to indisp disp
(GFdisp « :.
T 8eval)l

sp
will print a space character.
cr
will print a carriage return.
dsoff
turns off the display and speeds up Smalltalk by a factor of 2.
dson

turns the display on again.
redo (integer)

where <integer> is the number of transactions (images of the Interim Dynabook) back from
where you are, will re-evaluate the message at transaction <integer>.

Control Utilities

repeat (...)

contents of () will be re-evaluated until a done is encountered (or you strike the escape
key). The escape will be from the innermost loop in which the done is enclosed.

done

will cause the loop to be exited.
done with (value)

will cause the loop to be exited with the value <value.
again

will restart the innermost loop in which the again resides.
for Catom) « (numberl) to (number2) by (number3) do ()

an iteration control feature--will re-evaluate contents of () until the value of the index
<{atom>, starting at <numberl> and stepped by <number3> each time, exceeds {nmumber2>.

if (value) then (messagel) else (message2)

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 82

if the value of <{value® is 'not-false', then evaluate <messagel> and do not evaluate
{message2>. Otherwise, evaluate <message2>, ignoring <{messagel>.

do Cinteger) (...)
the contents of () will be re~executed <{integer> times.

Mouse Utilities

mx
replies with the horizontal position of the mouse. 0 is at the left margin, 512 is the right
margin.

my
replies with the vertical position of the mouse. 0 is at the top of the screen, 808 is at the
absolute bottom, 512 at the top and 680 at the bottom of the original dialog window.

mp

replies with an instance of class point such that mx = mp x, my = mp y.
button (numeric value between 0 and 7)

tests the mouse buttons singly and in combination.

button 0 'not-false' if no buttons are on

button 1 ‘not-false' if middle button is on (top is button nearest wire)
button 2 *not-false' if bottom button is on

button 3 'not-false' if bottom and middle are on

button 4 '‘not-false' if top button is on

button 5§ " ‘not-false' if top and middle button are on

button 6 ‘not-false' if top and middle are on

button 7 ‘not-false' if all the buttons are on

mem

mem loads integers from and stores them into real core. The important locations are:

clock

mem 0430 Read the clock
mem 0430 « 0 Set the clock to zero
mouse

mem 0424 Read mouse x

mem 0425 Read mouse y

mem 0424 « 0 Reset mouse x

mem 0425 « 0 Reset mouse y

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES

cursor

mem 0431 for i « 1 to 16 (mem 0430 + i) are the cursor bits
for i€ 1to16 (mem 0430 + i ¢ shape[i])

Put new bits into cursor from vector named shape

mem 010§ Connections between mouse and cursor
mem 0105 « 0 Disconnect cursor from mouse
mem 0426 ¢« x. mem 0427 ¢ y, Move the cursor

interrupt character

mem 0107 « 0177 Make DEL the interrupt character (instead of ESC)

display control block

mem 0420 Get pointer to display control block

keyboard, keyset, and mouse inputs

mem 0177034 Reads the first of 4 keyboard input words
mem 0177030 Reads the word with mouse and keyset bits.

Page 83

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 84

Chapter V. EXAMPLE SMALLTALK CLASS DEFINITIONS

This chapter provides some examples of the use of various Smalltalk basic system classes and utilities,
Included are samples of programming techniques as well as the contruction of new, interesting class
definitions. The examples correspond to the basic classes defined in Chapter IV; they are presented
in a "try it out" style with suggestions on problems and projects.

Arithmetic

Example: Figuring the Amortization of Loans

The problem we chose to demonstrate the use of float is the amortization of a loan in equal monthly
payments. The main routine payment requests values for the loan principal, loan interest, number of

years to pay off the loan, and the number of payments per year. It then carries out the following
computation:

Let
rate = interest rate/ (100 * number of payments per year).
Let
increase = (1 + rate) raised to the power (number of years to pay off the loan
* number of payments per year).
Then each
monthly payment = (amount of the loan * rate * increase) / (increase - 1).
The

total amount paid over the period =
(number of years to pay off the loan * number of payments per year) * monthly payment.

To report the results of the calculations, we need a reporting routine where we might say.
report 'Interest Rate as a Percentage is ' ratel

and expect to see
Interest Rate as a Percentage is 54.

The Smalltalk definition is

to report
(er. Print a carriage return.
disp € :. Print the textual message in the dispframe.
g P
(.‘) print)! Print the value received in the dispframe.

Next we need to be able to receive the values from the keyboard for the parameters: number of years,
rate, etc. We can use the Smalltalk utility read.

read will gather up a vector of Smalltalk tokens. It first sends a prompt &} to the display. Everything
you type until a 1 will then be made into a vector which is sent back. For example, the result of
saying:

G a € readl

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 85

aﬁd then typing:
do 4 (® go 100 turn 90)!
will associate the literal vector (do 4 (® go 100 turn 90)) with the name a. If we say:
al
the following will be the reply:
(do 4 (® go 100 turn 90))
If you send the message eval to a, Smalltalk will evaluate its contents:
a evall
and a square will be drawn, To select the second element of the vector a:
a[Z]!
4

To select the fourth element of the third element:

a[3][4]}

turn
Vectors have many capabilities. To see more, take a look at the definition of vector in Chapter 1V,

read of (text) is the same as read except that the characters are found in {text> rather than taken
from the keyboard. To help get values from the keyboard, you might define:

to demand nm

(@&nm « 8.
(%as > (dispe:) nm print)
fnm ¢ read eval)l

Try it with:

demand spd as 'I want a new speed ' 1
I want a new speed &3671

Then type:

spdl
367

or, without a specific message:

demand anglel
angle &¥591

anglel
59

We will also need a method for converting the floating point numbers to nearest whole dollar
notation. We can send the message $ to members of the class float and receive the value rounded to
the nearest dollar.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 86

addto float @ (< $ (% 0.0+ (0+ (0.5+SELF)* 100) / 100))"

The class float can now take a floating point number and round to the
nearest dollar.

Now for the definition of payment, a method for computing the total amount of dollars paid on a loan
at the end of the load period.

The Definition of the Class Payment

to payment principal interest period
payments rate increase total Request four values

(demand principal as 'Amount of the Loan in decimal d--d.dd ',

demand interest as 'Interest Rate as a percentage’.

demand period as 'Number of Years to Pay Off the Loan '.

demand payments as 'Number of Payments per Year'.
Compute the rate, adding

@ rate «(0.0 + interest) / 100 * payments. 0.0 to guarantee floating
point number.
Compute the increase.

@ increase « (1.0 + rate) ipow (period * payments).
Compute the total amount
paid over the period to the
nearest dollar,

@ amount ¢ ((principal * rate * increase) / (increase - 1)) $.

report 'Each Payment is $! amount,. and report it.
Compute and tell total
. amount paid over the period
report 'Total Amount Paid is $' @ total « amount * (period * payments).

Compute and
report 'Total Interest Paid $ ' total - principal.)! tell total interest paid.

Sample Interaction
Run this by typing
payment 1
For example, the interaction between the user and payment might look like
Amount of the Loan in decimal d--d.dd & 30000.00!
Interest Rate as a percentage 391
Number of Years to Pay Off the Loan & 30!
Number of Payments per Year & 121
Each Payment is $ 241.0

Total Amount Paid is 86760.0
Total Interest Paid is $ 56760.0

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 87

Sequential Dictionaries
include the classes: vector, string, obset, stream, file.
Stream.

Stringof is' a method for converting a non-string value to a string. It is included in the basic
Smalltalk system.

to stringof n
(G°n « ;.
T indisp stream (n print. T disp contents))1l

Recall we have already defined indisp as

to indisp disp
(&disp € :.
T 8 eval)l

n is a value that we would like converted to a string. The simplest way to do this is to assume that
the print method for any class is to convert its printable form into a string that it can send to disp
(the generic name for a text display frame). We use indisp to set up a context in which disp is an
instance of the class stream. We then send n the message print which should basically do: disp ¢
(string form of n). Since disp is a stream, it will store the string form as its contents, which we
return as the proper reply.

Files.

The following routines (xfer, copym, xplot) are examples of the use of the class file. Each is a useful
utility to have around. ’

(1) xfer

copies a single file. It is useful mainly for transferring files between disks on an Interim Dynabook
with two disk drives. For example

xfer dpl file 'valuable' old to dpO file 'valuable' new!

copies a file named 'valuable' from disk 1 onto a newly created file of the same name on disk 0. To
obtain this object type

filin 'xfer.'}

The definition is

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 88

toxfer fghi

(dsoff. Turn off the display.
@ fe.. Fetch the instance of a file.
(‘&'{to E (@' g €. The message (to) must appear for the format to be correct.

repeat (g ¢ f*s (numch = 512 » (‘sadr) sadr[1 to numch]).
f7s nextp = 0 » (done) f set to f’s pagen + 1 0).
The repeat-loop is copying each page of the file.
g shorten to here) Sets the pagen and bytec for g.
@& g € Otherwise say format is incorrect

disp « 'proper format is:
disp € 'xfer (file) to (file)}
disp ¢ 'where (file) may be preceded by dp0 or dpl1')

f close. g close. dson.)! Close the two files and turn the display on.

(2) copym

copies multiple files from one directory to a directory on the same or on another disk. For example,
type

copym dp1 to dp0 @°('file1’) ".sr' §
This copies 'filel' from disk 1 to 'filel.sr' on disk O (the new file). The complete syntax for copym is
copym (source directory) to {(destination directory) (vector of file names) (text)!

where <{text> is the extension for the files on the destination directory. The extension is optional.
The definition uses the object xfer,

to copym sourcedir destdir filenames ext i

(@sourcedir « :.
«3jto.
G destdir « .
Gfilenames ¢ :.
(null (GPext « :.) » (Gext « "))
for i to filenames length - 1

(xfer sourcedir file filenames[i] old to destdir file filenames[i] + ext new))

(3) xplot

xplot writes a screen image (bitmap) onto a file (86-87 disk pages, takes about one minute) for
printing on an XGP with the XPLOT program. (llence this is particularly useful to those readers with
these facilities.) Either low or high resolution screcen images can be plotted, but not both; i.e., only
the low resolution (picture) part of a screen with both low and high resolution parts will be saved.
Type

filin 'xplot.’}

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 89

The following definition requires the class AREA which is also provided below. Note AREA is a
simple form of class rectangle defined in Chapter II and later in this chapter. The response of an
instance of AREA to the message makebuff is a string containing the sequence of bits in the
rectangular area. The file 'xplot’ also includes the objects BLT, PNT, and bringitin. This last one is
a method for restoring a display screen from a file written by the object xplot. It expects one
message--the file name.

to AREA a b ¢ [origin extent
(s > (1 8eval)
«¥ is » (ISIT eval)
«f makebuff > (G?’a € string 2 * extent y * @& b « (extent x + 15) / 16.
@ ce¢ PNT a.
BLT ¢ + 2 b 0 extent x 0 extent y O mem 60 32 origin x origin y extent y 0.
Ta)
isnew » (@G origin « :. G extent « :))}

to PNT (mem 255 ¢ :. t mem 255)}
toxplot fhirsw
(((@°f «:) isfiles ()
@°f « file f >() Tfalse). Make sure f is a file.

@G w ¢ 255 Fmem (G~h ¢ mem 272)+ 1. Number of words per scan line.

(0 < mem h + 1= (f next word ¢ 2. High resolution -- enlargement,
@s ¢ 2*memh +3) Number of scan lines.

f next word « 4. G°s ¢ mem h + 3). Low resolution.
dsof f. The screen area is written out on the file -
@& r « AREA point 0 0 point w*16 1. each time in the next loop.
do 4 (f next word « 0). Default values.
foritos -word count followed by bits in scan line,

(f next word ¢ - w. f « r makebuff.
rs (GPorigin « point 0i)). Move the area down the screen.

f close. dson.)}

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 90

Dispframe

disp. As explained in Chapter III, disp is the local name of any dialog window. It is, in fact, an
instance of the class dispframe and is created as

@>disp « dispframe 16 480 415 168 string 520}
A Smalltalk window, as demonstrated in Chapter I, owns an instance of a dispframe whose name is
disp. This particular name must be used because the Smalltalk read method assumes that all
keyboard interactions will be carried out by displaying the typed characters in an instance of

dispframe named disp.

As an example both of using this generic name as well as of using the four display routines (dclear,
dcomp, dmove, and dmovec), try the following sequence.

1. Create four new windows on your display screen.

2. Place them in four quadrants of the screen, enlarging them to fill the area above the
original dialog window.

| original |
| dialog window |
3. Place the mouse cursor in window 1 and type G turtl « turtle frame displ

This creates a turtle who lives only in this first window. home for turtl is the center of
the window,

4. Repeat the above process: enter each of the remaining three windows and create turtles
turt2, turt3, and turt4.

5. Now point in the original dialog window and try:

turtl home erasel Note only window 1 is erased.

for i to 200 (turtl go i turn 89)1 Note the turtle draws lines only in its own window.

turtl’s frame’s (dcomp frmx frmwd frmy frmht)}
Complement window 1.

Try different designs in each of the four windows. Or try

turt2’s frame’s (delear frmx frmwd frmy frmht 13107)}
turt3’s frame’s (dclear frmx frmwd frmy frmht 12121)1

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 91

As examples of using dmove, try making window 4 small and then

to mover
(turtd’s frame’s (dmove frmx frmwd frmy frmht Gfrmxefrmx-5 @ frmy«frmy-5§ IN

do 10 (mover 0)1 turtd’s window moves toward the bottom left corner,
replacing any information already displayed in the areas.

or
do 10 (mover 1)} turt’'s window moves toward the bottom left corner,

interacting with any information already displayed in the
area,

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 92

Point class

This data type is used to design the class rectangle which can compute areas of intersection between
two rectangles and create the rectangle that encloses two rectangles. An abbreviated version of the
class rectangle was introduced at the end of Chapter II section on Paint Brush. To obtain this
definition of rectangle, type

filin 'xyfns.'}

@joe « rectangle point 100 100 point 150 1501
Rectangle at upper left corner 100,100 and lower right
corner 250, 250

joe has point 120 1051}

point 100 100 That is, 'not false' and therefore true
Jjoe comp! Complements joe's bits.
joe clear ~11 Clears joe to all black,

joe clear 21212"
joe clear 052525} Sone nice patterns.

joe intersect @G”jim ¢ rectangle point 140 120 point 150 1701

jim is a rectangle at upper left 140,120 and lower right
290,290. Reply is intersection of joe and jim, a rectangle at
upper left 140,120 and lower right 250, 250 (origin is point
140 120; extent is point 110 130).

joe include jim! Creates rectangle around joe and jim.
joe moveto 200 3001 Upper left corner is moved to 200, 300.
joe framel Draw a black border around the rectangular area.

The code for the class rectangle and some useful routines follow. Note two messages (makebuff and
loadbuff) used in the definition of AREA as stored on file 'xplot’ could be included as messages
understood by a rectangle.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 93

to rectangle a b c | origin extent

(<¥has> Is a point inside rectangle?
(GPc « ;. Morigin c¢ origin + extent)

“«Ps> (T 8 eval)

“fcomp>
(dcomp origin x extent x origin y extent y)

«fclears Expects bit patterns as a message
(dclear origin x extent x origin y extent y :)

<fintersect
(@"c €2, Creates a rectangle that is the intersection of ¢
GPa « origin max c¢’s origin. and SELF if they have common area

@b «(origin + extent) min ¢’s(origin + extent). else, ‘false'.

a £bs (frectangle a b - a) ffalse)

«finclude> Creates rectangle around SELF and e.
(GPc « ..
GPa € origin min ¢’s origin.
Gb «(origin + extent) max ¢’s(origin + extent).
frectangle a b - a)

“fmoveto » (G origin ¢ :) Move origin to a new point.
«fframe > Turtles understand how to go to a point as
(G?’a « turtle. well as two numeric coordinates.

a penup goto origin turn 90 pendn’s width « 2,
a penup goto origin turn 90 pendn’s width ¢ 2.
do 2 (a go extent x turn 90 go extent y turn 90))
«fis »>(ISIT eval)
<fprint »
(G rectangle print sp origin print sp extent print)
«¥ paint > (CODE 41) This message was discussed in Chapter 11
section on Paint Brush,

isnew » (G origin ¢ ;. Pextent ¢ :))!

to waitnext x

(@’x 8. Stay in this routine until
repeat (x eval »> () done) x is first 'false' and then finally
repeat (x eval » (done)))} 'not-false' again.

to bug Wait to get the mouse point
(waitnext butlon. Tmp)! when button 1 is pressed.

A demonstration to try often is

to xydemo « classa b ¢
(Ga « rectangle G°b « bug bug - b.
a comp.
GFc « rectangle @b « bug bug - b.
¢ comp.
GFb « a intersect c.
(b=(b clear 13107))
(a include ¢) frame.)}

Type
xydemol

The result of pointing to different screen locations is a geometric design formed by the interaction of
black, white, and gray rectangles.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 94

Dictionary of Areas and Points

An Obscure Challenge for the Day: when does this blow up?

Suppose the screen is divided into a main area that is a rectangle point 30 20 point 100 80; and the
subareas within the main area are 50 wide and 40 high. There are four such subareas. The purpose of

a dictionary of points on the screen is to be able to designate areas as menu locations or nodes of a
tree or whatever, and to be able to recognize, quickly, in which area the monse is located.

..................... 130, 100

Suppose we create a menu that has five menu squares (1, 2, 3, 4, 5) located in subareas 1 and 2. Each
menu square has length 14 units. Further, suppose the upper left corner of the first square is point 45
30.

Then, we have
GFdictiondry « xydic 50 40 in rectangle point 30 20 point 100 801

Create the main area and subareas.
& menu « vector 51
forito 5 do
(dictionary « menu[i] ¢ rectangle point 45+(i-1)*14 30 point 14 14)}

Store menu squares 1 - 5.

dictionary printl Print number of items in each
3 in area 1 subarea followed by the subarea index.
3 in area 2
0 in area 3
0 in area 4

dictionary map @’(comp)! Tell all the menu squares to complement.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 95

dictionary index point 50 701 Given a point (50 70), compute in which
3 subarea it falls.
dictionary find mp} Given a point (mouse point), ask all the

_ stored areas if they have the point.
Return the first one that says yes.

dictionéry delete menu[3]} Delete the third menu square,
dictionary edit (delete) menu[3]} Editing method used by messages delete and ¢,
A file exists on the basic Smalltalk disk that contains the following definition. Type
filin 'xydic'}
to try out this dictionary method.
to xydic exp i input p val | all areas brect ncols xsize ysize

(Findex > (@ p « :.
T1 +((p x - brect’s origin x) / xsize) + ncols * (p y - brect’s origin y) / ysize)

“find > (Gp € :.
brect has p» (@ val « nil.
areas[SELF index p] map G~
(vec[i] has p » (done with Gval « vec[i])).
fval)
Tfalse)

Kedit » (G exp « vecmod 8 2 0 @ input ¢ :.
GPval ¢ (SELF index input frame’s(origin + point extent x 0))
- &°i « SELF index input frame’s origin.
for i « i to SELF index input frame’s(origin + point 0 extent y) by ncols
(for p « itoi+ val (evapply areas[p] to exp)).
apply all to exp)

“fe > (SELF edit (¢) :)
«f¥delete » (SELF edit (delete) :)

«¥map > (all map :)

isnew-s (G xsize « ;. @G ysize € :.
Gbrect « (f¥ins(:) rectangle point 0 0 point 512 512).
G nceols « brect’s extent x / xsize.
GPareas € vector ncols * brect’s extent y / ysize.
for p to areas length (areas[p] € obset).
Gall « obset)

<fprint » (for p to arcas length (areas[p] length print. sp.

disp ¢ ' in area '. p print. cr)))h

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 96

Turtles
Try

@ turt « turtle frame dispframe 16 100 16 100 " A
turt home erase.l

for i to 300 (turt go i turn 89).1

turt’s frame’s (dcomp frmx frmwd frmy frmht).\

The first three statements create a turtle in a 100 by 100 rectangular area in the upper left portion of
the display screen, clear that area to white and draw a spiral using black lines. The last statement
enters the context of the turtle's display frame in order to use the frame boundary parameters in
order to complement the area (white to black, black to white).

To sketch with characters or text, try

to draw turt t

(GPturt « turtle. Create a drawing turtle,
turt home xor turn 90. Painting is different if the ink
is black or white.
Gte:. Fetch the “paint brush”

repeat (‘button 4 »> (turt penup goto mp pendn ¢ t)
button 2 » (done)))}

draw '@'1 Paint with "smiley"
draw 'hello'l or the text 'hello’
draw 971 or the character 'a'.

Designing your own character is another way to design a paint brush!

Commander Turtle

Here is a nice way to distribute turtle messages to more than one turtle at a time. The idea is to
create a "commander" turtle. Any messages he receives, he sends on to all the members of his troop.

@’joe « commander 41 joe commands a troop of 4 turtles. Each turtle moves to the center (home)
of the display area. Then joe sends himself the message fan.

joe go 1001 Each member of the troop moves <number> of units,

Joe turn ¢(number)l Each member of the troop turns <number> of units,

joe penup! Each member of the troop picks its pen up.

joe pendnl Each member of the troop put its pen down.

joe home? Each member of the troop moves to the center of the display area.

jOC fan! Each member of the troop turns in a unique direction and changes ink color
such that member i has ink color i+1,

joe’s ink € (integer)} Set the ink color of each member to Cinteger>.

joe's width « (integer)l Set the width of each member to {integer>.

Try

@G*® ¢ commander 41
dragon 61 Recall the definition of dragon in Chapter II sends messages to ®. Here,
is no longer a turtle, but a turtle commander.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 97

to see four dragon curves draw on the screen. For those curious, we include the class definition. Note
the use of colored ink assumes a color version of Smalltalk., The dispframe colorframe is defined as

@ colorframe « dispframe 0 256 0 128 ',

to commander a b | turts

(% go > (@ a ¢ :. turts map G(goa). NSELF)
<« turn » (@ a «: turts map G(turna). NSELF)
¥ penup » (turts map G°(penup). "SELF)
«f pendn = (turts map G°(pendn). t1SELF)
<f home =» (turts map @ (home). SELF pendn. ®SELF)
>

«¥ fan (for a to turts length do
(turtsfa] turn(a - 1) * 360 / turts length.
turtsfa]’sink ¢« a + 1).
TSELF)
<« ’s > (Wink > (e, Ga €.
turts map @ (vec[i]'s ink ¢ a))
<fwidth. <. G°a « ;.
turts map G°(’s width « a).)
isnew > (@a €.
GPturts « vector a.
for btoa (turts[b] « turtle frame colorframe)
SELF home fan))}

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 98

Control Classes for Repetition and Alternate Paths
repeat, do, for, if

The usual methods for repeatedly evaluating an expression use one of three routines already
presented: repeat, for, and do . The method of for can be defined as

to for step stop var start exp

(G var « 8.
G>start « (4 ¢ > (:) 1)
GPstop « (< to » (:) start)
G step « (¥ by »(:) 1)
<Jdo. do is optional
GPexp ¢ 8.
var € start.
repeat ((step) 0 » (var eval) stop » (done))

var eval ¢ stop » (done))
exp eval. var ¢ (var eval) + step.))}

The form of a Smalltalk conditional statement, if-clause » (‘then~clause) else~-clause, has also already
been shown in many contexts. The Algol "if...then...else..." syntax can be achieved by defining if as
follows.
to if exp
((@Pexp ¢ :) » (¥ then » (G exp ¢ ;. “felse » (8. exp) exp)
error @(no then))

«f then » (8. «felse » (G exp ¢ :) false)

error @ (no then)) !
For example,

GPval « if a) 10 then 4 else (if a ¢ 10 then (-4) else 0)!}

val will be 4, -4, or 0, depending on the value of a.

again

is a Smalltalk method for redoing the most recent repeat, do or for loops. It is one way of iterating
on a given condition, while defaulting to end the loop. For example, suppose we send the message

GPset « makelist mary or joe or henryl
expecting to form a list of alternatives terminating when no further alternatives exist.

to makelist list
(GFlist « obset.

repeat (list « 8. Obsets form unions.
«for > (again) done) Continue if see word "or".
T list)! Reply with the list,

while

A while clause lets us send messages of the form

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 99

@°str € stream])
while (kbck and ((@°t « kbd) * 13))
do (str « t)!

That is, store keyboard strokes into the stream str as long as there is a character in the input buffer
and the character typed is not a carriage return (whose Ascii code representation is 13), This
definition is not part of the basic Smalltalk system.

to while Cond Exp
(@ Cond ¢ 8.
«f do. do is optional
GExp ¢ 8.
repeat (apply Boolean to Cond » (Exp eval) done))l

to Boolean result
(@result « ;.
repeat (%for » (result »> (8) GPresult ¢ ;)
«fand » (result » (@result « :) 8) Right side of the and part will not
be evaluated if left part is 'false’.

T result))l

Zahn's Device

The following is an implemention of a simple "until-like" structure, very much like Zahn's original
suggestion, which allows multiple exits from a loop [Zahn, A control statement for natural top-down
structured programming, Symposium on Prog. Languages, Paris, 1974]. The intent was to be able to
write in Smalltalk a minimal, event-driven keyboard/display routine like this one:

until CR or DEL do

(Gt € kbd.
disp « t.
t=13 3 (CR)
t=127 »> (DEL))

case
CR : (disp ¢ 'normal exit.')
DEL : (disp ¢ 'punt exit.’)%

To implement this control structure in Smalltalk, a class of objects called events was defined such
that each instance, when it is awakened, executes a piece of code and breaks out from a loop.

to until tempatom statement
(repeat (G tempatom « 8.
tempatom ¢ event.
< or » (again) done)
(<¥do » (G~ staternent € 8))
(<Fcase » (repeat (G tempatom € 8,
tempatorn eval is event »
(<}:. tempatom eval newcode 6.)

done)))

repeat (statement eval))t

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 100

to event | mycode
(isnew » (@mycode ¢ vector 3.
mycode [2] « G done.)
< newcode » (mycode[1] ¢ :.)
< is » (ISIT eval)
mycode eval)l

Event is an example of constructing a vector of code that will be evaluated at some later time. When
an instance of event receives the message newcode, it stores away some message as the first objects in

the vector mycode. The last object is the message done which, when mycode is evaluated, forces a
break out of the repeat loop in until. Hence, if we run the above example of using until, we have

G tempatom « 8.
tempatom ¢ event.
<for

=»(again)

done

«fdo

Gstatement « §
<fcase

repeat (G tempatom«$.
tempatom eval is event
(1.

tempatom eval newcode 8)

done)
repeat ((statement eval)

Case Statement

Pick up the word CR and store in tempatom.

CR is made an instance of the class event.

We see or, so

go back, pick up DEL, and make it an instance of event.

Now we are done.

We see the word do.

Statement is the vector (@*te«kbd. ... »(DEL).

We see the word case.

We see the word CR again and store the name in tempatom.
The value of tempatom is Cr, an event.

We see colon, :, so we

send the event CR the message newcode and pick up the code
disp ¢ 'normal exit'. Do this again: pick up DEL and send it the
message newcode, picking up code disp ¢ 'punt exit'.

There are no more case statement words so

repeatedly evaluate the vector (@t«kbd...), an expression

that will continually request keyboard input until that input is
a carriage return or delete character in which case the
corresponding event will be run in order to evaluate mycode.
Evaluating mycode results in execution of a done message, hence
terminating the repeat loop.

A method for simulating case statements in Smalltalk is to index into a vector of vectors or atoms
that can be evaluated. The general message form is

Cvector) [(integer)] evall

Such a case statement can be seen in the routine used to yealize a displhy window move, delete,
create, or grow depending on which window corner has the mouse cursor. The routine returns 'false’
if the cursor is not in a corner. Note, in the statements below, the index = 1 + corner selected.

EXAMPLE SMALLTALK CLASS DEFINITIONS

to frmedit disp
(&=disp « :.
@ ((ffalse)
(disp fclear. waitnext (butlon),
disp frame white. disp moveto mx my.
disp display)
(1=sched vec length »>() disp hide.
sched delete task. done.)
(contents copy)
(disp fclear. waitnext (butlon).
disp frame white. disp grow mx my.
disp display))
[1 + disp corner mx my] eval)}

index =1, no corner selected
index=2, move

index=3, delete
index=4, create

index=5, grow

index evaluation

For instance, if the mouse is in upper right hand corner of the display window, then

disp corner mx my = 2

Add 1 and we get and index of 3, picking out the code to delete the current window.

Page 101

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 102

Scheduling Methods: sched and window

Recall that Smalltalk has a USER task which is continually evaluated. (See Chapter III section
entitled The User Task).

One method useful for scheduling the display windows we have been working with is to replace the
USER task with a request to send the message run to each item stored in an obset. We have chosen
to name this obset sched.

PUT USER G°DO @G°(sched map G(G task « vec[i].
apply task to G>(run) in GLOB))Y
or
PUT USER G”DO @G>(sched map @(apply each to G(run) in GLOB))!

Suppose sched contains three items, each one an instance of the class window (we will examine the
code for this class in a bit). Then, in sequence, the temporary variable task is set to the value of
vec[1], vec[2], and vec[3] (the local bindings in sched for the three instances of window). Each
value of task is sent the message run. This is a round robin method for scheduling objects, giving
each object the opportunity to run if it so chooses. Each object stored in sched must be able to
receive the message run.

A window that can be scheduled has two instance variables, an instance of the dispframe in which we
expect to read and print any keyboard i/o, and an instance of a class that knows about and can edit
the objects living in the dispframe. We will present three examples of this second kind of class: a
Smalltalk dialog window (stwindow), a window for invoking the Smalltalk class editor (edwindow),
and a picturewindow (picturewindow).

Window. The class window looks like

G w « window dispframe 10 100 10 50 string 50 <editor)}

Create a window in which the contents is defined as some editor.
"~ w runl . This is the message we expect to send as part of the USER task.
w contents (message)! window contents is Ceditor>. Send this <editor> the message {message>

to window [disp contents
(run »> (disp hasmouse »
(contents enter.
repeat (disp hasmouse » (kbck = (contents kbd)
0 (mouse 7 { » (contents bug)
contents running)
done)
contents exit))
«fcontents » (T apply contents)
«Jis > (ISIT eval)
«'s o> (T 8 eval)
isnew » (@ disp « :. GPcontents « :. contents new))1

The value of disp does not have to be a dispframe, but it does have to respond to the message
hasmouse. Notice that the main method for sending a message to the object whose name is contents is
to send it indirectly through the class window. When a window sees the message word contents it
gives the object contents permission to examine the message. For example, if contents is an instance
of stwindow, defined next, and we want to send that instance the message running, we could do so
indirectly by typing

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 103

w contents running!

where w is an instance of window and the value of w contents is an instance of stwindow.,

Smalltalk Dialog Window.

Now for some examples of <editor>, each of which must understand the messages sent to it by
window: enter, running, kbd, bug, exit, new.

The particular method used to define stwindow says that the final action in creating an instance of
the class is to return an instance of window. Hence it is not possible to send messages directly to
instances of stwindow; it is only possible to send messages indirectly through the class window.

sched ¢ GPst « stwindow dispframe 10 100 10 50 string 501

Create a Smalltalk window where the display area is initially at 10,10 with
width 100 and height 50. Note that st is an instance of window, not
stwindow. The value of st contents is the desired instance of stwindow.

st contents enterl Show the dispframe

st contents runningl Blink the prompter,

st contents kbdl Read an expression from keyboard.

st contents bug! : See where the mouse is pointing and take any appropriate actions.
st contents newl Print a message in the window.

st contents copy! Create another stwindow in st's own image.

to stwindow
(<¥enter » (disp display)
<frunning »> (disp ¢ 20. do 10 (). disp ¢ 8) blink the prompt character in the window

®frbd » (cr. read eval print sp)

“fbug > (frmedit disp) frmedit was defined previously.
<Jexit » ()
®fcopy » ((sched«stwindow newframe) newframe creates dispframe in the upper left corner

of the display screen.
“frew » (disp €« 'A SMALLTALK window ')
«fis > (ISIT eval)
s o (T 8 eval)

isnew » (Twindow (:) SELF))!

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 104

to newframe f

(@°f « dispframe 16 256 16 112 string 1000 font disp’s (font).

s (@G winht ¢ frinht).
Ll

Edit Window. The content of this window is a list of names of defined classes. Pointing at one of
the names in the window invokes the Smalltalk class editor for the class. This is a useful utility for
avoiding typing edit (name)! The same method for defining the window is used here as was used in
stwindow: the reply from isnew is an instance of window; messages to edwindow must be sent

indirectly through window.
sched « GPedw « edwindow!

edw contents enterl
edw contents runningl

edw contents kbdl

edw contents bugl

edw contents showl
edw contents exitl
edw contents newl
to edwindow a i | setname

(¥fenter > (disp display)

edw is an instance of window; its instance variable contents is an
instance of edwindow. The window's dispframe is newframe.

Display the dispframe.
Blink a thick-lined square image (Ascii 4).

Create a subwindow and call on ev. l.e., repeat (cr read eval print
sp).

Check the four corners (copy does not work)...if mouse is not in
corners find which name the mouse is pointing at and call on the
editor for the appropriate class.

Print the token ‘edit:' followed by name stored in the vector.

Do nothing special.

Display the dispframe.

<Frunning »> (disp « 4. do 10 (). disp ¢« 8)

«fhbd > (disp sub @ (ev))

“Fbug » (frmedit disp » ()

@G®i « disp mfindt mx my [1].

(2> ().

GPa « (setname eval)[i—]]. The word "edit:" adds a token to the count. value of
a is the class name.

Gi « a eval. i 1s now a pointer to the class to be edited.

edit i.

a = setname » (SELF show))

“«fshow > (disp clear. disp «'
edit:’.
& a ¢ setname eval.

Print the token 'edit:' followed by the names in the
atom a.

for ito alength -1 (sp. afi] print))

EXAMPLE SMALLTALK CLASS DEFINITIONS

“fexit » ()

«fnew » (disp frame black. SELF show.)
«fis »> (ISIT eval)

s » (1 8 eval)

isnew » (@ setname ¢ 8.

T window newframe SELF))}

Page 105

Picture Window.

This simple picture editor is an example of the use of a turtle "living" in a

dispframe. It makes use of the class point as well as obset and apply.

sched « G°pw ¢ picturewindow 16 100 16 100 string 501

pw

pw

pw

bpw

pw

pw

pw

pw

contents enter!
contents runningl
contents kbdl

contents bugl

contents exitl
contents newl

contents sketchl

contents copyl

Creates a window for sketching at location 16,16. window is 100
wide, 100 high. Again, pw is an instance of window, pw contents is
an instance of picturewindow.

Show display frame and sketch.

Do nothing special,

"Read the keyboard but do not evaluate expression.

Check four corners; otherwise, draw a line to the mouse point. If
middle mouse button pressed, pick turtle pen up.

Do nothing special.
Erase the display area.

Draw lines between the points in the sketch unless point preceded
by penup command.

copy has a new meaning: erase the sketch.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 106

to picturewindow var | df pics
(enter » (df display. SELF sketch)
“frunning >()
«Fkbd »(cr read)

«Fbug » (frmedit df>(SELF sketch)

(pics vec length = 0 » (pics « G penup. penup)
When first start pick pen up, or if

button 1 » (pics add @ penup. ® penup)

pendn) middle button prassed, pen up.

pics « @ var «(mp - (point df frmx df frmy)).
Find mouse point and store point relative to
the display window,

goto var) Draw the line,

“fexit > ()
<fnew » (© erase)

“fsketch »> (pics vec length = 0>(). Nothing to sketch. Should pen be up?

pics map G (GPpenup = vec[i]>(® penup)
oto vec[i] pendn Draw line to the point.
g p P
“fcopy » (df clear. G pics ¢ obset) Delete sketch points.

“fs> (1 8 eval)

«fis » (ISIT eval)

isnew = (@’df «(apply dispframe). Instance of dispframe created by receiving
values from picturewindow's message.
GB « turtle frame df. Turtle lives in this new frame.
@’pics €« obset. Sketch points stored in an obset.

fwindow df SELF))} Create the window,

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 107

Loopless Scheduling

The following is an attempt to select some conventions for scheduling classes, while minimizing, if not
eliminating, the use of explicit repeat or for loops. We define startup, a method for waking up each
class instance and giving each a chance to grab control and remain in control until some quit
condition becomes true.

to startup task
(@ task « :.

(¥in » (GGLOB ¢ :)) Define context for evaluation.
task startif > (task firsttime. Task starts, send firsttime,
repeat(task quitif » (done)
task eachtime) Keep sending message eachtime
until quitif returns 'not-false' value.
Ttask lasttime) Finally send message lasttime.
ffalse)l

We will still use sched to hold the scheduled objects. The USER task is
PUT USER G~DO G(sched map G~(startup each in GLOB))!

A task may choose to start, for example, if mouse cursor is in particular location or mouse buttons are
pressed or objects are waiting in a queue. The first time the task runs it may want to clean up some
graphic information or set a timer or take first object out of the queue. A task may decide to quit if
some clock timer has run out or the mouse is no longer in the correct position. Each time a task
runs, it takes whatever actions are appropriate; for example, the window might check to see if a
mouse button is pressed and the mouse cursor is in one of the corners. Hence, by convention, a
scheduled object must respond to startif, firsttime, quitif, eachtime, lasttime. So that no errors occur
if an object does not respond to these messages, we initialize things with

@ startif « @ firsttime « @ eachtime ¢ Glasttime « nil.
to quitif (Mfalse)l

The class window which acted as a task master before is no longer neceded. Methods for blinking the
prompter and waiting for an expression to evaluate true (waitnext) can be (re)defined. The class
prompt simply sets a timer, displays the prompt character and does nothing until the timer runs out
at which time it backspaces to erase the image. When prompt is the only scheduled object, we see a
blinking prompt character.

to prompt [t

(Kfirsttime » (disp « 20) Show Interim Dynabook image.
“Fquitif »> (Tt ¢ mem 280) mem 280 is the clock.
<flasttime » (disp « 8) Print backspace to erase iinage.
isnew » (@7t « 10 + mem 280))} Sel timer.

The next object, waitnext, also ignores some of the messages.

to waitnext [notoffyet expr
(<¥quitif » (notoffyet » (Texpr eval is false) T expr eval)
isnew » (@ expr « 8. GPnotoffyet € true. startup SELF.
GPnotoffyet « false. startup SELF))Y

The object frmedit is almost the same. The only exception is index 4 which originally was (‘contents
copy) but now must be the actions previously taken by (contents copy). In the case of stwindow, this
should be (sched ¢ stwindow newframe). But edwindow wants to do nothing and picturewindow

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 108

wants to say (disp clear. G pics « obset). Alternatives are to write separate frmedit routines or to
send the code as a message to be evaluated at a later time. We will use this last idea.

to frmedit disp expr
(@ disp « :. Gexpr ¢ nil. G expr « 8,
@ ((Tfalse)
(disp fclear. waitnext (butlon).
disp frame white. disp moveto mx my. disp display)
(1=sched vec length »() disp hide. sched delete task. done.)
(expr eval) '
(disp fclear. waitnext (butlon).
disp frame white. disp growto mx my. disp display))
[1 + disp corner mx my] eval)}

The Smalltalk dialog window i.s now defined as

to stwindow |/ disp
(“fstartif » (Mdisp hasmouse)
«ffirsttime »> (disp display)
«fquitif » (Mdisp hasmouse is false)
<Feachtime » (kbck » (cr read eval print sp)
0 < mouse 7 > (frmedit disp (sched ¢ stwindow newframe))
startup prompt)
«fis o> (ISIT eval)
s> (1 8 eval)
isnew » (@>disp ¢ :. disp clear. disp « 'SMALLTALK at your service '))1

edwindow and picturewindow can be defined as

to edwindow a i | setname disp
(S¥startif > (Ndisp hasmouse)
<ffirsttime » (disp display)
<“fquitif > (fdisp hasmouse is false)
«Feachtime » (kbck > (disp sub @& (ev))
0 (mouse 7 >
(frmedit disp () > ()
@"i « disp mfindt mx my [1].
2> ().
@G a « (setname eval)[i-1].
@i ¢ a eval.
edit i.
a = setname » (SELF show))
startup prompt) The prompt character is different.
«F¥show » (disp clear. disp « 'edit: '
a « setname eval.
foritoalength -1 (sp. a[i] print))
«fis » (ISIT eval)
«t's> (T 8 eval)
isnew » (@ setname « 8.
G disp « dispframe 16 256 16 112 string 1000.
disp clear. SELF show))}

EXAMPLE SMALLTALK CLASS DEFINITIONS

to picturewindow | df ® pics
(startif » (Tdf hasmouse)
<ffirsttime » (df display. SELF sketch)
«Fquitif » (Tdf hasmouse is false)
“feachtime > (kbck » (cr read)
0 ¢ mouse 7 »>
(frmedit df (df clear. GPpicseobset) » (SELF sketch)
(pics vec length =0 » (pics ¢« G>penup. ® penup)
1 = mouse 7 » (pics add @ penup. ® penup)
pendn)
pics « GPvar «(mp - (point df frmx df frmy)).
goto var))
«fsketch » (pics vec length = 0>().
pics map G (G penup = vec[i]>(® penup)
goto vec[i] pendn))
<f is > (ISIT eval)
«fss (T 8 eval)
isnew » (@df « apply dispframe.
@G « turtle frame df.
G pics « obset.
erase. df display))!

Messages can now be sent directly to instances of stwindow, edwindow, and picturewindow.

Page 109

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 110

A Sample Text Editor

The purpose of this example is to demonstrate text management within a display frame (dispframe)--
how to

i. display text

ii. use mouse for pointing, keyboard for editing (or alternatively, set up an editing menu such as
in the Smalltalk editor)

iii. manipulate the text

Insert, delete, replace and append text can be accomplished with insert only:

action interpretation
point someplace and start typing insert, append
point to subset of the text and
start typing characters replace
point to subset and type 'del’ delete

Note: when typing, will handle backspace (bs); If ({doit>) as character, not as terminator; and delete
(del) key.

A paragraph has some area on the display screen, is framed, and does not scroll unless it reaches the
bottom of the screen.

Call it pdisp.

pdisp is a dispframe.

The window height of pdisp (winht) should extend from the upper left corner
to the bottom of the display screen in order to avoid scrolling.

The frame height of pdisp (frmht) should indicate bottom of last line of text.

Gfontheight « 14,
G pdisp « dispframe 0 1 0 fontheight string 0 noframe.

A paragraph contains some text.

Call it buf.

buf is a string.

There is a pointer to the last character in buf.

Call it last.

last is a number.

These correspond to instance variables in a dispframe but paragraph wants
local manipulative control of the textual information.

We can give buf a textual value when we create the instance.

GPbuf ¢ (Kof » (:) string 0).
GFlast « buf length.l

A paragraph contains pointers into a subset of the text.

Call the points pl and p2.

pl and p2 are each instances of the class point.

They indicate the beginning and ending of a selected subset of text.
These points correspond to indices into the text string

Call the indices locl and loc2.

EXAMPLE SMALLTALK CLASS DEFINITIONS

GPlocl « @ loc2ebuf length.}

A paragraph has the selected subset of text compleinented to provide graphic feedback.

Assume there is a class, dfcomp, owned by the paragraph class to perform the
complementation from pl to p2 within the dispframe.

dfcomp pdisp p1 p2l

A paragraph's text can be manipulated,

(1) Show correct text tell pdisp to show buf[1 to last]

(2) Select an area of text start with mouse button press in order to
select space between characters = pl;
hold down button to pick up characters
dynamically and then release the button. The
final mouse position = p2

(3) Replace selected text by new text start typing
if 'del' and loc1 not same as loc2, then
delete selected text
otherwise delete selected text and replace
with keyboard input
otherwise, keyboard input replaces
selected text.

(4) Might want to give the paragraph a name and store/retrieve it on a disk file

A solution to the text complement problem for a dispframe

Assume have two points indicating beginning and ending of line of text

pl beginning point

p2 ending point

df dispframe

If p1 and p2 are the same point, complement nothing

If pl is lower in the dispframe than is p2, complement nothing or reevaluate

the routine, changing roles of pl1 and p2

If p1 is higher in the dispframe than

is p2:

pl---------- complement from pl to p2 requires possibly
-------------------- three parts
-------------------- (1) complement first line starting at p1
____________ p2 (2) complement full middle lines
(3) complement last line up to p2

Since the last line may be the first line pl--------- P2,
(3) is solved by dcomp pl x (p2 x - pl x) p2 y fontheight.

(1) is needed if pl y < p2 y; it is solved by
decomp pl x (df (frmx + frmwd) - pl x) pl y fontheight.

Page 111

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 112

If we then redefine pl as .
@G~pl « point df frmx pl y + fontheight.
we set pl at the beginning of the second line.
If now pl and p2 are at same height and therefore same line, (3) solves it.
Otherwise, (2) is needed to fill middle lines by
decomp pl x (df frmwd) pl y (p2y - ply).

Putting this together we have

to dfcomp df pl p2

(@Pdf « :.
@’pl L
@’pZ « 2,
(ply<(p2y= (dcomp pl x (df (frmx + frmwd) - pl x) pl y fontheight.

pl « point df frmx pl y + fontheight.
ply < p2y= (dcomp pl x (df frmwd) ply (p2y-ply))))

ply>p2y= ()
dcomp p1 x (p2 x - pl x) p2 y fontheight.)}

A solution for finding out where you are pointing with the mouse

This routine returns a vector such that

first item index of character after which you will insert
second item left x of character
third item width of character
fourth top y of character

That is, if we point to character 3, return index 2; point to character 1, return index 0. This will
permit forward and backward movement of the cursor in order to select the subset of text. Sending
the dispframe the message mfindc gives most of the desired information:

GFtve df mfinde mx my.

tv is now a vector with the correct information with the exception of decreasing tv[1] (the index of
the character) and accounting for a "feature" of mfindc: if you point to the right of last character it
tells you the last character--in this case the intention is to append to the end and the returned index
should be last, not last-1, and the x position should be mx. The mouse is to the right of the last
character if its x position is greater than the character's x position plus the character's width (tv[2] +

tv[3]).

addto dispframe
GP(findchar » (Gt « mx.

GPtv « SELF mfinde t my.

twf[1]<0> Going outside frame?
(" {last charx O chary})

(tv[1] =last > (tD>tw[2] +tw[3] > (tv[2] «t)
tof[1]etvf1]-1)

tv[1] «tv[1]-1.)

v))t

Some other useful additions to basic system classes

G bottomscreen « disp (frmy + frmht)l Where disp is lowest possible window on the screen.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 113

addto dispframe Reset frame and window parameters.
@GP (dispset » (G frmx ¢« Gwinx « :.
GPwinht « bottomscreen - @ frmy « @’winy €,
GPfrmwd « Gwinwd « :.))}

G (A fshow » ((<fof > (@’buf « ., Reset text information
GPlast « :.))
SELF clear.
G>frmht « 1.
SELF show))! Then show the display.

addto number G°(<fchars > (T stringof SELF))}

Reading the keyboard: Algorithm A

The following routine, as part of the paragraph class definition, will repeatedly handle one character
at a time, adjusting buf and the index pointers locl and loc2. The effect will be to delete, replace,
insert, and append to buf.

Special characters Ascii code
bs 8
carat 2 (looks like , a small carat character that has 0 width)
del 1217

The following expression assumes we have already computed locl and loc2. We want backspacing (bs)
to decrease locl and delete (del) to delete the selection (buf[locl+1 to loc2]).

buff[locl + 1 to loc2] ¢« all carat. Replace each character in the selected text by the 0 width
carat character,
repeat (@ char ¢ kbd. Get character.
(del = char » (SELF delete) Is it delete?
bs = char »> Is it the backspace?
(locl > 0> If so, test to see if locl is at beginning of text.
(buf[locl] « carat. If not, can decrease locl and replace with the carat.
@”locl ¢ locl - 1.)) Otherwise, do nothing.
(locl = loc2 » Here if character not a backspace. Ordinarily can replace

buf[loc1] by character, and increase locl; special case exists
if locl = loc2. The special algorithm says that a "hole" into
which characters can be stuffed should exist, always
providing extra input space permits replacements larger than
the sclected text.

((buf length < G~last « lust+hole Start by making certain there is room for the "hole" to
> (Gi%buf «buf[1tolast])) be inserted after locl (GPhole « 30).
buf[locl + hole + 1 to last] « There's room for the hole so slide over the part to the
buf[locl + 1 to last-hole] right of locl and replace the middle "hole" part with carats.
buf[locl+2 to @"locEéloclHLolc]«all carat)) The "hole” created has 0 width and therefore is not seen.
bu.f[@’loc] « locl + 1] € char) This is always done regardless of input character...
just replace the character.
kbck » () See if there is more to do.
pdisp fshow of buf last. If not, replace/insert/append/delete completed.

done)

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 114

Making selection if button pressed: Algorithm B

SELF cleanup. : Remove old indications of "hole"” and of complementing.
SELF showselection of pdisp findchar. Find the first location and set locl,loc2 and pl=p2.
repeat
(button 4 > As long as the button is pressed, keep changing
complemented area and loc2.
(@Pchar « pdisp findchar. Get next location,
char[1] =loc2 » () If no change, do nothing.
G repoint char[2] char[4]. t is new location's point.
(char[1] ¢ loc2 » (dfcomp pdisp t p2) Complement changed area (possibly back to white).
dfcomp pdisp p2 t)
GPloc2 ¢ char[1]. Gp2 ¢ t) Store the new loc2 and p2.
done) Done if button 4 not pressed.
GPchar « false. Indicate no characters typed yet.
loc2 ¢ locl » (@IOCZ « @locl swap loc2. When completed, make certain first location
@’pt « @’pI swap p2) is earlier in the window than second location.

Above algorithm assumes the following addition to the class atom:

addto atom @ (fswap » (& x«SELF eval. Lets each instance of atom receive new value
SELF ¢ :. % x))} and return the old value.

Now the class definition for a paragraph

to paragraph t tv |/ temporary variables
pdisp char buf last loc1 loc2 p1 p2 ht] instance variables
dfcomp hole carat bs del class variables

(init > (to dfcomp df pl p2 (above definition) Define in context of class.
Ghole « 30, GPearat « 2, GPbse 8, GPdel « 127)

«fretrieve > (filin :.) Create instance from a file; filin checks if value is a file.
«¥ store » (G?’:t €« file 2. Write text such that, when evaluated

t « 'sched ¢« paragraph of ' creates instance of a paragraph

t « 39.t«buf.t e 39. and stores in scheduler.

t « ' '+last chars + ' at '+ pdisp (frmx chars + ' ' +
frmy chars + ' ' + frmwd chars).
t close.)

CREATE INSTANCE
isnew » (G pdisp « dispframe 0 1 0 fontheight string 0 noframe.

Create display area.
@buf ¢« (¥fof > (:) string 0)
@G locl « GPloc2 « G last « buf length. Create indices.
“fat > (SELF showat (:) (:):) If told where, show area.
pdisp frame black.) Frame the window.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 115

SEE TEXT

<¥ show » ((*¥at > (pdisp dispset (:) (:) :)) Reset display location.
pdisp fshow of buf last) Tell text information.

SCHEDULING MESSAGES
¥ startif » (Tpdisp hasmouse) " Condition for starting is mouse inside the area.
«¥ quitif > (Mpdisp hasmouse is false) Quit if mouse no longer in area.

«f firsttime » (pdisp hasmouse » (@ ht « pdisp frmht. SELF showselection))

eachiime > CR > yping anything?
«¥ eachti kbck Typi hing?
orithm eyboard algorithm
Algorithm A Keyboard algorith
button 4 » Pressing button to make new selection?

(Algorithm B))

«¥ lasttime » (pdisp’s (G frmht ¢ ht). Reset frame height to clear black frame.
pdisp frame white.
SELF cleanup.
pdisp frame black.)

MANIPULATING THE TEXT
4 showselection » Upon entering the window, set the cursor at the end for

automatic append; can receive parameter values from the
message.

(@"tv €« Determine value of first sclection: as message or as last

(sfof > (:) text character.

{last pdisp (last=0 »>(frmx)charx) 0 pdisp (last= 0 » (frmy)chary)}).
GPlocl« G loc2¢tv[1].

GPpl « point tu[2] tv[4].

&p2 ¢ point tv[2]+1 tv[4]. p2 is a little wider to help "see" current place.
dfcomp pdisp pl p2.)

<4 delete » Reorganize buf removing text between locl, loc2.

(@ buf « buf[1 to locl J+buf[loc2 to last].
GPloc2 € locl. GPp2epoint pl x+1 pl y.
Glast « buf length)

ﬁcleamlp = ((char = (G:Chal’ €« false. Clear the window of complemented text and
G?”bu/’ e buffltolocl] + buffloc2 + 1 tolast]. remove the “hole”.
Glast « buf length.
GPloc2 € locl.))
pdisp fshow of buf last)
«¥ is » (ISIT eval)

«s » (1 8 eval)}

paragraph init}

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 116

It is possible to schedule a paragraph text editor by typing

sched ¢« paragraph! window appears in the upper left corner of the screen with
no width or height.

sched ¢ paragraph at 100 50 2001 window appears at 100, 50 with width of 200.

sched ¢ paragraph of 'I am a text editing window'l

window appears in upper left corner with the text showing.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 117

Classes for Building Models
"Simpula”: Simula-style Simulation

We have chosen a simple example of a scheduling mechanism for building simulations of dynamic
environments such as hospitals and classrooms. The basis for this example is the simulation language
Simula (a major inspiration for Smalltalk). :

The basic entities of Simula are instances of classes and ALGOL-like data-types. Simula simulation
operates primarily through scheduling pseudoparallel processes by means of a sequencing set which
holds the quiescent processes sorted by desired time of activation. Associated with each process are the
object itself, the time the object is scheduled to wakeup and do something, and a message telling the
object what state to go to next. This message was either constructed by the object when it last ran, or
is a default message (we will use run).

There is a system time (now) which indicates where the simulation's progress has currently reached.
All activation times in the sequencing set are equal to or greater than the system time. A great idea
of Simula is that system time is not advanced until there is no more computing to be done by the
currently active event. This means that an event can consume an arbitrary amount of computing
power; then, if there is nothing scheduled for the next one hundred (simulated) years, the system
time will be advanced one hundred years without any "clock ticking” in between.

An item in the sequencing set (SQS) is an instance of an Event Notice, a simple structure containing
the object to be activated (ob), the desired event time (etime, a floating point number), the message
telling the object what state to go to next (msg), and next and prev--indicators to the next and
previous elements in the sorted set.

Event Notice

| Event | Event | Event |
| Notice | Notice | Notice |

Note that one object can be scheduled as more than one event, each event applying a different
message to (requesting a different activity from) the object. Hence we place the message in the
Event Notice rather than storing it as information local to the object. This is an improvement over
Simula which only allows one phase of an event to be scheduled. The main activity of the SQS will be
to add to, delete from, and sort the set of Event Notices. This job differs according to where the
event time is stored, that is, in the Event Notice or more local to the object.

to LventNotice prop | ob msg etime prev next
(isnew » (@GPobe:. Gmsge:. Getimee:, Gpreve:. Gnexte:.)
s> (G prop « 8. %f« » (Mprop « :) prop eval)

«fis > (ISIT eval))l

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 118

The sequencing set is not much more complex. It maintains now; current, the current process under
activation; and the ordered set of Event Notices, set. In order to make this explanation simpler, we
will include two dummy Event Notices with event times 0.0 and "infinity", that will, by default, be
the first and the last elements in the set. This means that we will not have to check for a special
termination condition, and that we avoid the possibility of a circular list. We always select the
second item in set as the next active event.

We need to provide messages to schedule a new event, to remove an event, and to activate the next
event, as well as initialization for the set itself.

@’Simpula. « SQst Initializing the set means to create two Event Notices, the first and last
scheduled events, The event objects are meaningless, so we choose to define
them as 0; the first time is 0.0, which is also the value of now; the last is
a large number like 1.0e1000. Simpula's set is an Event Notice linked in an
ordered chain to other Event Notices

------------- L Rt |

lob | 0 | |

Imsg | 0 | |

| etime | 0.0 | |

| prev | O | |

| next |----==emeean I |

"""""""" i | |

| |

| |

EventNotice | |

"""""""""""""" | |

| ob i1 o | |

Imsg | O l |

| etime | 1.0e¢1000 | |

| prev | sm-=mm-mmmmmemeeen |

| next | 0 |
____________________ |

Simpula schedule blobl An EventNotice, whose object is blob, whatever it may be, is added to the
chain of events. By default, its msg is G(run) and its event time is the
same as now. In the above example, this new EventNotice will be the

second event, The (default) event whose object is O and event time is
1,0e1000 is always the last event in the set.

Simpula schedule blob for &G°(changeplace) at 201

The object is scheduled as explained above, but the msg is @G*(changeplace)
and the event time is Simpula's now+20.

Simpula activatel Get the next scheduled event (newOb), set current to newOb's object, set
now to newOb's etime, and send current newOb's message.

Simpula removel Takes and returns the next event off the set, meanwhile reorganizing the
chain of Event Notices.

Simpula fulll Reply is true if there is an event, other than the two dummy events,
scheduled.

EXAMPLE SMALLTALK CLASS DEFINITIONS

to SQS finger newOb time msg | now current set

(isnew » (@G set « EventNotice 0 0 0.0 0 0.
set’s next ¢ EventNotice 0 0 1.0e1000 set 0.
@ now « 0.0)

«fschedule » (G newOb « :,
@Gmsg « (¥for>(:) G(run)).
@G time ¢ (<fat > (now + :) now).
G finger ¢ set’s next,

repeat (time * finger’s etime » (& finger « finger’s next. again)
@G newOb ¢ EventNotice newOb msg time finger’s prev finger.

newOb’s prev’s next « newOb.
finger’s prev « newOb,
done))

“factivate » (@ newOb « SELF remove.
now ¢ newOb’s etime.
Gcurrent ¢ newOb’s ob.
apply current to newOb’s msg)

<fremove » (Gfinger « set’s next.
finger’s next’s prev « finger’s prev.
finger’s prev’s next ¢ finger’s next.
T finger)

«ffull » (% O * set’s next ob)

“print » (Gfinger « set’s next.
repeat (0 = finger’s ob » (done)

finger’s ob print.
@ finger « finger’s next.))

«i's > (1 8 eval)
«fis » (ISIT eval))!

Page 119

The above definitions are quite general, having two properties that might not be necessary in some
applications: (1) backwards pointers for an EventNotice which take extra time to rechain, and (2)

the instance variable current for SQS. As a response to the message activate, we say

GPcurrent € newOb’s ob. apply current to newOb’s msg.
We might instead have

evapply newOb’s ob to newOb’s msg.
elimminating the instance variable.

Now to test it out.

By convention, a scheduled object, such as a blob, must respond to the default message (run) or to

some equally useful activation message.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 120

to blob x y | sides
(isnew » (@G sides ¢ 0. @ © « turtle. ® width ¢ 2. SELF draw)
«frun » (SELF undraw. SELF draw.
Simpula schedule SELF at avgwaitime+rand mod 100)
Fdraw » (® penup goto &x « rand mod 500 @y ¢ rand mod 500 pendn up.
poly GPsidese (‘sides + 1) mod 7.
penup goto x y pendn up.)
“fundraw » (® white. poly sides. & black)
<¥print > ()
5 » (T 8 eval)
«fis 5 (ISIT eval))}

to poly s
(do (@s¢:) (® go 10 turr. 360/s))}

@i « 131
@ avgwaitime « 1001

torand (TG ei* 5)1

Try
G"Simpula ¢ SQS!
Simpula schedule blobl
Simpula schedule blobl
repeat (Simpula activate)l
or

PUT USER G”DO GP(kbck » (ev) Simpula activate)

The result is two polygons bouncing around the screen. With the modified USER task, it is possible
to temporarily interrupt the bouncing in order to type some messages (such as scheduling another blob
or examining the scheduled events).

Note, another rand expression, that avoid the need to initialize the variable and also allows ranges to
be specified, is given below.

randl
rand between 10 401

to rand low high [| n
(@n « (null n» (13) n*5).
«Fbetween » (@ low « :. Ghigh « :.
T low + n mod high + 1 - low)
T n)lt

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 121

A Simple Hospital Simulation

A hospital will be composed of departments (including admissions, surgery, wards, labs), each of which
has a number of resources (such as attendants, doctors, beds, operating tables) and patients. A typical
patient (there will be many of them) has a name, age, and so on, a schedule which contains a route
through the hospital specified at admissions, and a reference to the patient's current department.
The patient visits the indicated department on the schedule, stopping at the department's front desk
to check to see if there is a resource available for him. If there is, the patient will occupy that
resource for some average treatment time. If there is no resource available, the patient must wait
indefinitely on the department’'s line until one is available. After consuming the resource, the patient
will check the waiting line and send the next waiting patient, if any, to the desk.

If this simulation is set up with typical entrance intervals and treatment times found in a given
hospital, an examination of the department's lines after the simulation is in progress will give some
insight into the "bottleneck” departments of the hospital.

The hospital can include a Smalltalk vector of elements, each of which is a department.

@ dept ¢ vector 201

will contain 20 departments. A department has two main parts: resources available and its waiting
line. It also has a name and an average treatment time for each patient.

to department prop | resources line available nme treatime
(isnew »> (@ available ¢ G resources « :. G line ¢ SQS.
GFPnme « stringof 8.
GPtreatime « (ftime » () avgwaitime))
«ftake » (G available ¢ available - 1)
«fgiveup » (G available ¢ resources min available+1)
s 5 (G prop ¢ 8. *f¢ » (M prop « :) 1 prop eval)
«fis » (ISIT eval))

Initialize the departments for 1 te 5 resources.

for j to dept length (dept[j] ¢
department rand between 1 4 noname time 20* rand between 0 4)1

We have to define a typical patient.

GFroutine « stream of {dept[3] dept[6] dept[7] }!
Setup for the patient's schedule.
routine reset.l Reset the stream to the first item.

Gf"janc « patient 'jane' 22 routinel Create jane as a patient whose name is jane, age 22, schedule
to be in three departments: 3, 6, and 7. Notice that the
third message to patient must be an instance of stream

Simpula schedule jane for G (wakeup)! The patient is scheduled to wakeup now.

jane wakeup! The patient schedules herself to visit the department
(newplace).

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 122

jane visitl The patient sees if there are available resources in the
department. If so, the patient takes a resource and schedules
herself to move on after the department's treatment time;
otherwise, she enters the waiting line.

The patient can also receive this message by being removed
from the department's line and scheduled again for a visit.

Jjane treatmentl The patient gives up her resource in the current department
and wakes up the next patient, if any, in the waiting line;
if there are other departments to visit, she schedules herself
to visit the next one,

to patient prop | nme age schedule newplace

(isnew » (@ nme € ;. @age ¢ :, @ schedule € :.
@GPnewplace « schedule next)

“fvisit » (newplace’s available) 0 »
(newplace take.
Simpula schedule SELF for GP(treatment) at newplace’s treatime)
newplace’s line schedule SELF for G°(waiting).)

«<ftreatment > (newplace giveup.
(newplace’s line full » (G prop « newplace’s line remove.
prop’s ob wakeup))
schedule end » () GPnewplace ¢ schedule next. SELF wakeup.)

“fwakeup » (Simpula schedule SELF for G™(visit)})
*fprint » (nme print. sp.)

«Ps » (G prop « 8. e » (Mprop « :) Mprop eval)
«fis » (ISIT eval))}

All that remains is to make up an admittance process which creates new patients at reasonable
intervals. We can add mechanisms for stopping the simulation and asking departments about their
resources and waiting line as well as asking patients about their schedule. A patient might also know
his disease and keep around a history of waiting times. A query method can be implemented by
creating a display window (a talkwindow) that can be scheduled in Simpula. Any time a key is
pressed on the keyboard, the window is scheduled to wakeup and expect inquiries about objects in the
environment. The main USER task might be

kbck » (Simpula schedule talkwindow for GF(wakeup))
Simpula full » (Simpula activate)

Graphic feedback can be provided by having a department print itself as a rectangular area containing
marks for each resource. The marks can be differently colored depending on whether or not they are
available. The department might have three stations: a desk for the patient coming to visit, a
waiting room for the waiting patient, and a staff room for the patient under treatment. We can also
add a graphic representation of the system clock to display the value of now. Pressing a mouse button
can indicate that you are making an enquiry about a particular department or patient. The
department or patient has a graphic representation that is pointed at by the mouse cursor. The
intention of pointing at the object is to schedule it for talking about itself. The USER task might
now be

EXAMPLE SMALLTALK CLASS DEFINITIONS

kbck > (Simpula schedule talkwindow for G*(wakeup))
0 ¢ mouse 7 » (Simpula schedule (findobject at mx my) for @G>(talk))
Simpula full » (Simpula activate)

Instances of patient and department should respond to the message talk.

Page 123

INDEX Page 124

This index was prepared from a Smalltalk Information Storage and Retrieval System in which the
contents of the sections of the manual are referenced. As a result, the pages given below generally
refer to the beginnings of the sections in which the information can be found. We have identified
three types of indexed items: basic system classes, utilities, and examples created especially for this
manual, The basic classes and utilities are provided in the Smalltalk system when you type resume
small.sv. The index distinguishes between pages where the items are defined (def) and those where
the item is referenced (ref).

8 basic def 22, 48
ref 15, 23, 44
i basic def 48
ref 15, 23
s utility def 23
! basic ref 23,15
T basic def 22,48,52
ref 15,23,44,45
& basic def 48
ref 15
basic def 48
ref 23
<5 basic def 20,22,48
ref 15,23,44,45
basic def 11,48
ref 18,23,44,45
> basic def 48
ref 15, 44
utility ref 3,9,10,37
{ utility def 717
ref 121
abs example def 39
addto utility def 19, 717

ref 18, 22, 27, 32, 34, 35

again utility def 81

ref 418, 98
apply utility def 79

ref 98, 102, 105
AREA example def 87

ref 92

atom basic def 56

INDEX

base8

blob

BLT

Boolean

boot (button)

box

brush
bs
bug

button

cl

class definition

class instance
cobweb
commander

conditional
statement

copym
core

cr

ctrl (
cursor

mouse cursor

dclear

utility
example
utility
example
utility

example

example
utility
example

utility

utility

example
basic
basic
example
example

utility

example
utility

utility

utility
example

utility

basic

ref
def
def
def
def
ref

def
ref

def
def
def

def
ref

def
ref

def
def
def
def
def

def
ref

def
def

def
ref

def
def

def
ref

def
ref

9, 11, 17, 32-35,44

71
117
42
98
2

18, 25, 29
17-22, 45, 53

38
78
92

82
32-39, 96

13
16

9

19
19
39
96

27
48

87
71

80
51

78,79
42

2

2,56,17,10, 32, 34, 35

69
90

Page 126

INDEX

dcomp

defs

demand

department
design
dfcomp

disp

dispframe

display screen

dmove

dmovec

do

done

dp0

dragon

draw
dsoff
dson

edit
edwindow
eq

esc

ey

basic
utility
example

example
example
example

utility
basic

utility

basic

basic

utility
utility
utility
example

example
utility
utility
utilitf
example
utility
utility ref

utility

def
ref

def
ref

def
ref

def
def
def

def
ref

def
ref

ref

def
ref

def

def
ref

def

ref

def
ref

def
ref

def

def

def

def

def

def

def

72
32, 34, 35, 90, 110

9, 16
14, 75

84
86

121
27
110, 114

80, 90
87, 100, 102, 104

30-31, 69
31-35, 80, 90, 100-105, 110-114

4

69
90

69

3, 81
9, 10, 32, 34, 35, 45, 48, 74

2, 13, 81
16, 32, 34, 35, 48,78,79

75
76

317
96

37, 96
80

80

10, 74
104, 107

17

78,79

Page 126

INDEX

evapply
event
EventNotice
expand

false

feder

file

filfont

filin

filout

fix

float

font editor
fontchar
fonts

for

frmedit

hil
hil1
hil2
hp

if
indisp
ISIT

isnew

utility
example
example
utility
basic
example

basic

example

utility

utility

utility

basic

example
example
utility

utility

example

example
example
example
example
utility
utility
utility

basic

def
def
def
def
def

def

def -

ref

def

def
ref

def

def
ref

def
ref

def
def
ref

def
ref

def
ref

def
def
def
def
def
def
def

def
ref

79
98, 99
117
71
61
39

66
69, 76, 87, 114

1

76
7, 13, 17, 317, 40

14, 75

13, 74
16

57
2, 11, 84

7
7
7

3, 81,98

32, 34, 35, 48, 121

100, 107
104

37
37
317
55
81, 98
80, 87
26

21
26

Page 127

INDEX

kbck

kbd
keyboard
link
makelist
mem

mouse

mover

mp

my

newframe

newrubberband
nil
null

number

obset

paragraph
patient
payment
picturewindow
PNT

point

poly

utility

utility
utility
example
example
utility

utility

example

utility

utility

utility

example

example
utility
utility

basic

basic

example
example
example
example
utility

basic

example

def
ref

def
ref
def
def
def

def
ref

def

def
ref

def
ref

def
ref

def
ref

def
def
def

def
ref

def
ref

def
def
def
def
def

def
ref

def

78,79
51, 98, 121

78,79
2

56

98

82

2
2, 4, 39, 100

90

37, 73, 82
40

4, 82
37, 100

4, 82
37, 100

103
104

317
11
71

57
2, 5,9, 11, 16, 39, 40, 44, 45, 51, 110

64
51, 102, 105

114
121

86

105, 107
43, 89

73
40, 92, 94, 105, 110

26, 117

Page 128

INDEX

polygon
polygonmenu
print

prompt

rand

read

reconstruct
rectangle
rectangle

redo

repeat

report

return
rubberband
SELF

show

sp

special keyboard
characters

SQS

square

squig90
squiggle
startup

stream

example
example
utility

example
example

utility

example
basic
example

utility

utility

example

utility
example
basic

utility

utility

utility

example

example

example
example
example

basic

def
def
ref
def
def

def
ref

def
ref
def

def
ref

def
ref

def
ref

def
def
ref

def
ref

def

def

def

def
ref

def
def
def

def
ref

26, 32, 34, 35
32, 34, 35
51

107

a7, 117

78,79
51, 84

317
94
40, 92

3, 80
16

4, 81

17, 30, 32, 34, 35, 317, 40, 48, 98

84
86

78
317
44

75
18, 26

80

15

117

9, 11, 18
10, 13, 14, 19

317
317
107

65
37, 87, 98, 121

Page 129

INDEX

string basic
stringof utility
stwindow example

text (see dispframe, turtle)

title line basic

to basic
TTY utility
turtle basic
type utility
until example
USER basic
vector basic
waitnext example
while example
window utility
window utility
(diagnosis)

window example
(dialog)

xfer example
xplot example
xydemo example
xydic example
xyfns example

Zahn's Device example

def
ref

def

def
ref

def

def

def

def
ref

def
def

def
ref

def
ref
def

ref

def
ref

def
ref

def

def

def

def

def

def

def

def

62
30, 31, 44, 45, 65, 87, 110

71, 817

103, 107
104

19
9, 19, 48
78,79

27, 60
3, 4, 9, 18, 29, 30, 37, 39, 44, 45, 75, 90, 96

75
98, 99

51
102, 107,117

62
32, 34, 35, 37, 39, 44, 64
65, 75, 84, 94, 99, 100, 121

92, 107
100

98
102-1056

69
2,17, 14, 32, 34, 35

13

817
817
92
94
92

99

Page 130

