
SMALLTALK-72 INSTRUCTION MANUAL 
ADELE GOLDBERG AND ALAN KAY, EDITORS 

~ 
~ 

\ \ 
\ 
\ 



SMALLTALK-72 

INSTRUCTION MANUAL 

Adele Goldberg and Alan Kay, editors 

and 

The Learning Research Group 
Xerox Palo Alto Hesearch Center 

March, 1976 

Copyright © 1976 by Xerox Corporation 



SMALLTALK-72 INSTRUCTION MANUAL 

Adele Goldberg and Alan Kay, editors 

SSL 76-6 March, 1976 

The Smalltalk-72 instruction manual is intended for use by those persons with on-line access to the 
Xerox Interim Dynabook. The first two chapters consist of an introduction to some of the methods 
used for interacting with the Small talk system and for creating, editing, saving and retrieving 
Small talk programs. Chapter III goes deeper into the basic concepts from which everything else in 
Small talk is built. These include the method of evaluation of messages, message sending and 
receiving, and the notion of classes and instances. 

Many classes have already been built for the user's convenience. These include the various clal\ses for 
names, arithmetic, information storage methods, text display, and graphic control. The definitions of 
all of these basic classes is given in Chapter IV; Chapter V then presents a number of interesting 
examples that use these basic classes. Chapter IV also describes utilities already provided the user for 
editing definitions, saving and retrieving files of information, viewing definitions, testing values, and 
reading input devices. 



Preface 

The Small talk system described here was designed in the summer of 1972 and first conversed haltingly 
with a user late that fall. It was released for more general use at the Xerox Palo Alto Research 
Center (PARe) in spring 1973 when the first "Interim Dynabook" (a name for the current working 
version of a small computer system) became available. 

This manual is intended for use by those persons with on-line access to the Interim Dynabook. As 
such, it employs a tutorial style that directs immediate experimentation with a Small talk systemj it 
also maintains a somewhat informal dialog about expected results of such experimentation. There are 
references to peripheral devices, such as a keyset, a mouse, a display screen, and a disk, that have 
meaning mainly in the context of the Interim Dynabook. Furthermore, the manual references disk 
files that are needed in order to follow the suggested sequence for experimentation and provides 
information on how to obtain these files. Such information is only useful to those persons having 
access to the Small talk system library. 

The purpose of making public an instructional manual about a language implemented on a computer 
not generally available is to ease the distribution of instructional information to school-age students 
(no younger than high school age) who will, in fact, have access to the Small talk system and materials 
noted here. Because an attempt is made to describe graphic results of running example programs, 
readers without access to the Small talk on-line materials may still gain some information about 
Small talk by browsing through these pages. Furthermore, the manual may assist these readers in 
developing their own experimental Small talk environment. 

Many people (both from the Learning Research Group and from other groups at PARC) have worked 
hard to develop the systems described in this manual and accompanying documents--the design and 
implementation of the Small talk language, real-time music synthesis, animation, retrieval methods, 
color graphics, and network communications. We take space here to mention their names: Dan 
Ingalls, Chris Jeffers, Ted Kaehler, Diana Merry, Dave Robson, John Shoch, Dick Shoup, and Steve 
Weyer of LRG; David Boggs, Bill Bowman, Bob Flegal, Larry Tesler, 'rruett Thach, and Bill Winfield 
of System Science Laboratory; and Patrick Baudelaire, Larry Clark, Jim Cucinitti, Peter Deutsch, Ed 
McCreight, Bob Metcalfe, Mike Overton, Bob Sproull, and Chuck Thacker of the Computer Science 
Laboratory. 

iii 



TABLE OF CONTENTS 

Chapter I. 

INFORMAL ORIENTATION AND OVERVIEW OF THE SMALLTALK SYSTEM 

Introduction 
To Get Started 
The Mouse 
Talldng to Smalltalk 
Helpful Notes 
Try A Turtle 
Layout of the Small talk Screen 
Dialog Windows 
A First Note on Slnalltalk Classes 
Font Editing Windows 

initial comments on Smalltalk •••••••••••••••• l 
how to load a disk and get Smalltalk •••••••• 1 
is what we point with ........................... 2 
how to evaluate 3+4 ••••••••••••••••••••••••••••• 2 
how to handle typing and other errors •••••• 2 
make a square and a squiral ••• ••••••••••••••• 3 
display screen coordinate system ............. 4 
how to use some Small talk windows ••••••••• 5 
what is a class dcfinition ••••••••••••••••••••••• 6 
how to design characters ....................... 7 

Chapter II. WRITING SMALLTALK PROGRAMS 

Simple Manipulation of a Simple Program ..................................................... 9 

How to Edit Your Definition ......•........•.•..•.....•..•.••....•...••....••.....•.•.......••.•••. 10 
GeneraliziIlg tIle Defini tion of Sq uare •....•...•....•.......•......•.••.............•.•.•• 11 
FixiJlg YOllr Dialog ...........•...•.....•......•••....•.•.....••••.••.••...••................••.....••...• 13 
Saving all{l Retrieving 11rograms .....•..............•......................................•..... 14 
Diagllosis Window ........•••....••••.....••••••...••.•••..•...•••••.....•...••.•.•..•••.....•......••••••. 14 
Special Cllaracters .....••••.•.••.•..•.....•.•••.••...••........••..•.•.•........•....•..................•.. 15 

Boxes: An Introduction to Small talk .............................................................. 17 

A Look at the Class Box ....•........•.••••.•...•....•.•••••..............•.•......•••••......•.•••.• 18 
Alternative Box Definition .........•........•...•.•...•.•....•................•.•.•.•....•...•.••.• 24 
Class of Polygons ...................•.......•...................•••.•..•.....................•.•....•....•. 26 

Turtles •• I. I I I ••••••••• I •••••• I ••••••••• I •• I •••••••••••••• I •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 27 

Boxes Owning Turtles ..•......... 1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 29 

Dispframes: An In trod uction to Text Display .............................................. 30 

Placillg Text on the Display Screen •.•••....•...•••.•..•....................••.•......•..... 30 
Boxes as MelIUS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 32 

A Few Sketching Tricks ..................................................................................................... 36 

Paint Brush ......................................................................................................... 40 

BI"rBLTing .....••..............•...............•....•...•.•..............................•..•••.•...........•• 42 

iv 



Chapter III. THE SMALLTALK WORLD AND ITS PRIMITIVES 

Objects ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•.••••••••••••••••••••••••••••••••• 44 
Message Sending and Receiving •••..•.•••••••••••.•.•••••.••••••••••••••••••••••.•••••••••••••.•• 44 
The Notion of a Class .••••..•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••• 48 
The User Task ••.••••••••••••••.•••••••••••••• II II ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 51 
TIle Form of Presentation of Classes ••••.•••••••••••••••••••••••••••••••••••••••••••••••••••• 53 
A Small talk Class Example •.•••••••••••••••••••••••••••••••.•••••••.••••••••••••••••••••.••••••••••• 55 

Chapter IV. BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES 

The Basic System Classes .........................................................................•....... 56 

Atoms ......•.••.•..•••••..••••....•..•.....•.••••.•....••.•.•.•••.•.....•..••.•....••.••..••......••.•....••.•••.• 56 
Ari tlllTletic ••••••••.••••••••••••••.•.••••••••••.•••••••••.••••••.•••••.••••••••••••••••••••••••••••••••••••••.• 67 
Turtles for Drawing ••....•.••••..•.•••••....••...•••••.•..•.•...•••...•••••.•••••••••••.•••••.••.••••.• 60 
The False Class ..................•.••.•..•.........•..........•••••...•.•...•..•.•.•.•......••.•.•••••.•.•.• 61 
Sequen tial Dictionaries ....•.••••.•••.•......•.•....•••.•.••.••..••.•••.••••..•••.•.•••.•.••.•.•••••••.• 62 
Dispframe: The Basic Window Class ....•......••••••.••.•.••••••••..•••...•..•••..•••••••.•• 69 
Point Class .•..••••.•••...••....••••..•.••••.••••...••..••..••....•••....•..•••.••...•.....••••••..•...•••.••..• 73 

Aids for Interacting with Smalltalk ............................................................... 74 

The SDlal1 talk Class Edi tor .••.....••..••..••••..••.•....•.••..•.•...••.•••..••••.••.••.••••••••...•• 74 
Sllowing Stored InforJ11ation ..•••••••.•••••••••••••••••.•••••••••••.••.•••••••••••••••••••••••••••.• 75 
Saving SInalltalk Defillitions .......•........•......•••••...•...........•.••..........•••..••••..•..• 75 
Saving and Restoring Your Context ...•....•..•..•.•..........•...•••.•••..••..••••...••.•.••.. 76 
Utilities .....•.•..•.•...••••.••...••..••.•.•••.••••...........••.•.•.•.•.•..•••.•..••.•••.••.•.••..•••...•••.•..•• 77 

Chapter V. EXAMPLE SMALLTALK CLASS DEFINITIONS 

Ari thlnetic: AInortiza tion of Loans ...............•.••...•......•.....••••.......•..•........• 84 
Sequential Dictionaries for Storage and Retrieval. ............••.....•.....•.•••..... 87 
Dispfratne ...•...•••....•.................•..•••..•........•........•..•..•......•••••....••......•....•••.•....• 90 
Point Class 

TIle Class Rectangle .......••••..•...•....••••....•.......•............•.•....•..••.••.•.•..... 92 
Dictionaries of Areas and Points .....................•..•......•...••...•......•..• 94 

Turtles ...........••••..........................•........•.•....•......•....•......•••.......•.••...•••.•..•.•..•.• 96 
Commallder Turtle ............................................................................. 96 

Control Classes for Repetition and Alternate Paths ................................ 98 
Scheduling Methods: sched and window ...................................... 102 
Looplcss Scl1eduling ••.....•••.........••......••..•...••.••..••..•..•...•....••••.•••..•... 107 

A Sal11ple Text Editor ........................................•....•.......................•....••..... 110 
Classes for Buil(ling Moclels ....................................................................... 117 

Sirnpllla Style Silnulation ............•.•..•.•.•....•..........•...••.....•.••••.....•.. 117 
A Simple I-Iospital Simulation ........................................................ 121 

INDEX .........••.•••.....•.......••..•...••......•....•......................•.............••.................••••.... 124 

v 



PREPARING A BASIC SMALLTALK DISK 

There exists a disk pack that contains the Basic Small talk System as described in this manual. To 
save on disk space, only the main files have. been placed on this disk. These include the Smalltalk 
programming system including the windowing functions, an editing facility and printing routines, and 
some Small talk font files. Also included are files that contain the sampl'3 class definitions presented 
in the manual: 

boxes, fontfns, nwindowfns, simpulafns, turtlefns, 
windowfns, xydic, xfer, xyfns, xplot 

Not included are all the files needed to run the music, animation, findit, and editfont frameworks. 
These can be retrieved onto your disk either (1) by transferring the files noted in the documentation 
on the various frameworks from a disk that already contains them, or (2) by executing one of the 
following (included) command files: 

animationget .em 
finditget.cm 
finditvget.cm 
musicget.cm 
editfontget.cm 

The format for executing a command file is 

@<filename>@ <return> 

To update your files, either use a Basic Small talk disk for transferring files, or, if you have access to 
the archival file system, retrieve a file named 

< smalltalk>smallmanual.cm 

If you execute it as a command file, your disk will be updated with the Basic Smalltalk disk files 
listed above. 

vi 



ORIENTATION AND OVERVIEW Page 1 

Chapter I. 

INFORMAL ORIENTATION TO THE SMALLTALK SYSTEM 

Introduction 

This manual is intended for use by those persons with on-line access to the Xerox Interim Dynabook. 
As such, it employs a tutorial style that directs immediate experimentation with a Small talk system; 
it also maintains a somewhat informal dialog about expected results of such experimentation. 
Chapter I demonstrates some of the methods used for interacting with the Smalltalk system; it 
includes the use of display graphics, dialog windows, and font editing windows. 

Chapter II continues this introduction by demonstrating methods for creating, editing, saving and 
retrieving Smalltalk programs. It then begins specific instruction on the development of Small talk 
class definitions, beginning with the class box, then expanding a box-shape into any regular polygon 
(the class polygon), and continuing with methods for communicating with instances of the class 
turtle. Included in this chapter is definition of the set of special symbols used in Smalltalkj some 
attention is paid to the idea of message sending and receiving. Finally, this chapter describes the 
class dispframe, and presents a number of ways to place text on the screen and to sketch with a "pen" 
and a "paint brush". 

Chapter III goes deeper into the basic concepts from which everything else in Small talk is built. 
These include the method of evaluation of messages, message sending and receiving, and the notion of 
classes and instances; One part describes subsequent presentations of basic class definitions. 

Many classes have already been built for the user's convenience. These include the various classes for 
names, arithmetic, information storage methods, text display, and graphic control. The definitions of 
all of these basic classes is given in Chapter IV; Chapter V then presents a number of interesting 
examples that use these basic classes. Chapter IV also describes utilities already provided the user for 
editing definitions, saving and retrieving files of information, viewing definitions, testing values, and 
reading input devices. 

To Get Started 

Place your Smalltalk disk in the machine, press "run" on the disk drive, and when the "ready" light 
appears (yellow light), press the "bootstrap" button (the little one located near where the wires enter 
the back of your keyboard). The screen will go blank for a second and then show you some 
information having to do with the particular machine configuration you are using. You are talking to 
the Interim Dynabook operating system. Type: 

@s@ <return> 

@ is typed by holding down both the key marked 'SHIFT' and the '2' key. There will be a flash and a 
rectangle (window) will appear with text in it 

A Small talk Window 

If you are on a color machine (your screen background has color rather than white), you should type: 

@cs@ <return> 



ORIENTATION AND OVERVIEW Page 2 

The Mouse 

The little rectangular object with three buttons that usually sits to the right of the keyboard is called 
a mouse. Move it around .while watching the screen. An arrow (mouse cursor) will be moving in 
response to it. This is how we point to objects on the screen. Smalltalk constantly "asks" the mouse 
where it is. A little bit further on we will explain how you can ask the mouse the same questions. 

In Case of Disaster 

In case of any disaster, first push the (escape) key (marked 'ESC' and located in the upper left corner 
of the keyboard). Try to put the mouse cursor in a displayed window or, by moving the mouse around, 
try to wakeup a "hiding" window. If that doesn't help, then try typing (shift>(ctrl>(escape>. That 
is, press the key marked 'ESC' while holding down the keys marked 'SHIFT' and 'CTRL'. Finally, as a 
last resort, press the "bootstrap" button again and go through the above sequence. 

Talking To Small talk 

If you are on one of our color machines then move the mouse so that the cursor travels all the way off 
the bottom of the screen. A white rectangle (a Smalltalk dialog window) will appear. It contains a 
message. Move the cursor into the window. If on a black-and-white machine, simply move the mouse 
so that the cursor travels into the rectangular frame at the bottom of the screen. 

A small, flashing image of the Interim Dynabook will appear--this means Smalltalk is listening. To 
test this, type: 

3+4 I 

The I (do it> character is marked .'LF' on the upper right of your keyboard. It is used to tell 
Small talk that this is the message you really want it to do. Now try the following: 

'*' is how we express the sign for mUltiplication in Small talk. Try: 

355.01113 I 

The result shows a well-known number and the accuracy of Smalltalk's fractional arithmetic. 

Helpful Notes 

Small talk will only listen to you through a window when the cursor is in it. Any characters typed 
when you arc out of a window will be saved until you place the cursor in a window. Try taking the 
cursor outside of the window and typing 3+4. You will not see the characters appear in the dialog 
window. Now move the cursor into the window. The characters '3+4' will appear in the window. 
When you have learned to create mUltiple windows, you might repeat this experiment to prove to 
yourself that the characters will indeed appear only in the window containing the cursor. 

Once you start typing characters in a window, Small talk will wait for you to type! before any window 
wakes up again. So, if you inadvertently move the cursor out of a window while you are typing, 
Small talk will continue to listen in that window. 



ORIENTATION AND OVERVIEW Page 3 

Deleting (backspacing) of unwanted characters is done with the 'BS' key located on the upper right of 
your keyboard. 

If you inadvertantly make an error of some kind, which is then sent to Small talk by saying ! «do 
it», a diagnosis windo~ will appear with a message that, at this point, will probably be obscure. 

To see this, try typing a symbol for which Small talk does not yet have a meaning, such as: 

mumble I 

A diagnosis window will appear. Note that the prompt character (the Interim Dynabook image) does 
not flash. Once a diagnosis window appears, it listens to you until you return to your previous 
context. To get back to your previous context, either type: 

done! 

or the shorter form: 

<ctrl> D 

typed by striking the '0' key while holding down the key marked 'CTRL'. 

Try A Turtle 

Turtles are little beasts which crawl around on the screen and can leave a variable width tracing of 
where they have been. Smalltalk line drawings are done with turtles. 

Small talk can have many turtles. Each is created as an instance of a group or class we call turtle. 
One, ® (called "smiley"), has already been created for you. It is' typed by holding down both the key 
marked 'SHIFT' and the '2' key (Le., the @ sign which has a different printing representation in 
Small talk than it does in the Interim Dynabook operating system). 

As with all Small talk objects, ® can receive a variety of messages asking it to do "turtlelike" things 
(such as "go forward some number of steps", "turn some number of degrees", ... ), and answer 
reasonable questions (such as "what kind of thing are you?", "where are you"). Type: 

® go 100! 

® is 1.! 

® turn 90 go lOa! 

To redo a previous statement, type: 

redo 11. ! 

A vertical line should appear. 

? is typed holding down both the 

'SlIIFT' and '6' keys. 

Is the answer (turtle) reasonable? 

Did what happened make sense? 

where 11. is the number of transactions (visible images of the Interim Dynabook) back from where you 
are. If you type: redo I! at this point, the ® turn 90 go lOa! message should be re-sent to 
Small talk and another line will be drawn on the display screen. If you want to redo the previous 
statement, simply type the equivalent statement: 

redo! 



ORIENTATION AND OVERVIEW 

Try 
® erase home! 

do 4 (® go 100 turn 90) ! 

® erase home. 
for i ~ 1 to 200 do (@ go i*2 turn 89)! 

Clears the screen, brings the 

turtle to its center position, 

and points the turtle upward 

Will make a square 

To get a "squiral". 

Page 4 

The text line change in the above transaction is obtained by pushing the key marked 'RETURN' after 
the message home. This "carriage return" does not affect anything except the appearance of the text 
in the text window. The period is a delimiter, signifying the end of a message. It is generally good 
practice to include periods when stringing together several complete messages. Note that, although 
the period signifies the end of the message, you still need to type ! <do it> to actually send the 
message to Smalltalk. 

Notice that, as a result of the above messages, the black frame around the window has disappeared. 
The window has not been destroyed. Merely, ®'s drawing area overlapped with the window area, and 
hence erased much of the window information. None of that information is lost. Move the cursor off 
and then back into the remembered window area, refreshing the window display. This erases any part 
of the turtle drawing that overlaps the window. Any turtle lines inside the window will scroll (move 
up) whenever the text scrolls. 

You have also just used two Small talk iteration methods: do and for. Each is a method for counting 
the number of times a message should be evaluated. In the more general method for, the iteration 
counter (in the above example, the counter is i) can be used as part of the message (in the example, i 
is used to help determine the distance the turtle will travel). 

Layout of the Smalltalk Screen 

The x direction runs from left to right. The left hand margin is 0, the right hand one is 512. The ;y 
direction runs from top to bottom. The top margin is 0, the bottom one (at the lower boundary of the 
original window) is 680. 

Small talk display screen 

X 
------) 

0,0 

0,680 ------------

Now say to the turtle: 

® erase! 
® goto 100 100! 

512,0 

y 

v 
512,680 

Is a line drawn to the top left quadrant? 



ORIENTATION AND OVERVIEW Page 5 

Type mx. Then, before typing the !, place the cursor somewhere in the screen and type: 

! 

Similarly, try 

my I 

Smalltalk should send you back reasonable numbers for m(ouse)x and m(ouse)y, the display 
coordinates of the mouse cursor. Now type: 

rID goto mx my! 

and a line should be drawn to the cursor position. You have hooked up the mouse to the turtle. A 
simple drawing program can be written by saying: 

repeat (@ goto mx my)! 

Move the mouse and a trail will be left behind. You are in an "infinite" loop (the ® goto mx my will 
repeat forever). To escape from the loop and to get Smalltalk to listen to you again, press the key 
marked 'ESC' in the upper left hand corner of your keyboard and move the cursor back into the 
window. 

Try 

rID's width ~ 3. repeat (@ goto mx my)! 

The '5 is typed by striking the key marked'S' while holding down the key marked (CTRL). 

A more involved drawing program might use the buttons on the mouse to control the turtle's ink color, 
width, and erasure. More about drawing programs later. 

Dialog Windo,vs 

All communication to a Smalltalk object is done through windows which contain the most useful 
editor for that object (you have just been using a dialog window). The editor for a picture object is a 
kind of painting and drawing aid; the editor for a paragraph of text handles characters; the font 
editor allows the character defining dots to be easily changed; and so forth. 

Every window can be moved, stretched, and deleted from the screen. Other abilities depend on the 
particular kind of window with which you are dealing. A collection of related windows (containing 
pictures, text) is a document which can be automatically archived in many different ways for later 
retrieval and editing. 

For example: 

a. Move. Move the cursor into the upper left hand corner of the window you are in and press down 
the top button. The window should go blank. You may have to playa little while holding down the 
button in order to find the actual corner. The tip of the cursor (the upper left corner) must be in the 
window corner. 

b. Now point the cursor somewhere else on the screen and push the top button briefly again. The 
window will reappear in the new position. The upper left corner of the window can not be forced off 
the physical display screen; however, the other parts of the window can be slid off the display as a 
method for pushing them out of the way until needed again. 



ORIENTATION AND OVERVIEW Page 6 

c. Grow. Now move into the lower right corner in a similar manner. (If the corner is off the screen 
due to the previous move. do another move further to the left to get the right hand side visible again.) 
The next button push will change the boundaries of the window so that the new lower right corner 
position will coincide with the cursor. Try it. You can not grow the window smaller than 32 units 
wide or 32 units high. 

d. Create. A new dialog window will be created for you by grabbing the lower left corner of an 
existing dialog window (pointing the cursor and pressing the top mouse b1\tton). The new window 
will appear in the upper left portion of the display screen. 

e. Position the cursor inside the new window and try typing 3+4! . 

f. Delete. Any dialog window can be deleted by grabbing its top right corner. Try it with the new 
dialog window. For obvious reasons. a single remaining dialog window can not be deleted. 

I Move 
I 
I 
I Create 

Delete 

Grow 

Try overlapping windows. The window that sees the mouse cursor wakes up and displays itself on top 
of all other windows. 

Each new dialog window appears in the upper left portion of the display screen. Unless you move 
each window as it is created, the windows will pile on top of one another. Another way to define a 
dialog window is to have a new window appear at a location pointed to by the mouse cursor. The 
cursor could blink on and off, waiting for you to press a mouse button to indicate that the present 
cursor location is the place to put the new dialog window. Later on, after you have learned more 
about Small talk, you might make this change to your personal Small talk system. 

A First Note on Small talk Classes 

Every entity in Small talk's world is called an object. Objects can remember things and communicate 
with each other by sending and receiving messages. Each example we present demonstrates the ability 
of objects to receive messages and produce replies. 

Every object belongs to a class (a method for grouping together objects that do similar things). ®, for 
example, is an object. It is a member of the class turtle. All members of this class are able to draw 
lines on the display screen. The class handles all communication (receiving messages and producing 
replies) for every object which belongs to it. 

We have just been looking at members of the class window. Messages are sent to a window by 
pointing with the mouse cursor and pressing a mouse button. Each member of the class responds to 
the message by moving to a new screen location, changing its size, creating a new member of the 
class, or deleting (erasing itself from the screen). The objects are dialog windows, capable of 
capturing and editing Smalltalk messages. The next example is a font window which contains an 
editor for designing display characters. 



ORIENTATION AND OVERVIEW Page 7 

Font Editing Windows 

Type 

filin 'fontfns'l 

fUin is the Small talk method for reading messages stored on a disk file. Reading the file takes a 
while. The display screen is purposely turned off (becomes blank) to speed up the reading process. 

You now have routines for creating windows in which editing means drawing in a matrix of black and 
white dots. These windows contain magnified views of display characters. Any character font (the 
design of the display characters) can be described as a matrix of black and white dots. Using the 
mouse cursor in a font window, you can draw in a character font of your own choosing. Moving the 
cursor to a dialog window, you can immediately view font changes within the !;!ontext of text displayed 
in that dialog window. Type 

fontchar! 

A newly created window appears in the upper left corner of the display screen. Like dialog windows, a 
font window can be moved, deleted, and its size changed. Unlike dialog windows, a new font window 
is created only by typing the message fontchar. 

I move 
I 
I 
I change 
I baseline 

delete 

change 
width 

Four actions are taken by pointing to one of the corners of a font window and pressing the top mouse 
button. 

1. Move the window. Point to the upper left corner and press the top mouse button. Then point to 
a new position on the display screen and press the top mouse button. 

2. Delete the window. Point to the upper right corner and press the top mouse button. 

3. Change the baseline of the character. Point to the lower left corner and then to the relative 
adjustment, up or down, of the character's baseline. Raising the baseline creates superscripts; 
lowering the baseline creates subscripts. The upper limit is the baseline of the previous text display 
line; no lower limit exists with the exception thn t an attempt to print outside the display screen 
boundaries will cause Small talk to crash. Note that the font window appearance docs not change; the 
change only appears in the printed text. Move the cursor into the dialog window to see the change. 

4. Change the width of the window (and, thereby, the width of the matrix). Point to the lower 
right corner and then to the new right margin. The width is rounded to a multiple of 16 display bits 
and may not exceed 16 dots, so it may not appear exactly at the mouse cursor's arrow head. 

5. Drawing black and white dots. Black dots are painted into the matrix by pointing to a location 
in the window and pressing the bottom mouse button. The drawing technique is to scratch black lines 
through the matrix dots as long as the mouse button is pressed. As soon as the button is released, the 
black dots appear in any area con taining the black lines. White dots are painted by pointing to a 
location in the window and pressing the middle mouse button. White lines are written through the 
dots as long as the mouse button is pressed; white dots appear when the button is released. 



ORIENTATION AND OVERVIEW Page 8 

6. New characters. When the window is first created, the character available for editing is the 
period, '.'. To change the character, place the mouse cursor inside the window and type, on the 
keyboard, the desired character. 

Once a new font has been designed, it is saved on a disk file by typing 

filfont <filename> out! 

where (filename> is some name delimited by single quote marks. For example, 

filfont 'myfont' out! 

The font of the dialog window in which you are currently typing is the one that will be saved. 

To read a saved font, type 

filfont <filename> in ! 

For example, 

filfont 'myfont' in ! 

The font of the dialog window you received when you first started working is stored on a filed named 

stB.al 

If you have made changes but would like to return to the original (default) Smalltalk font, type 

fillont 'stB.al' in! 

Other Small talk fonts include st6.al and stlO.al; each can be retrieved from the archival file system. 

The font of the dialog window in which you are currently typing will change to the font saved on 
<filename>. rl'he font you edit is the one currently belonging to the dialog window in which you are 
typing. Note however, that each dialog window is created with references to the identical font. In 
order to have two font windows editing separate fonts for each of two dialog windows, it is necessary 
to replace one of the dialog window's font with a copy of itself. For example, suppose there are two 
dialog windows (A and B) and suppose you type fontchar! in window A. Results of editing the single 
font window will appear in both A and B. Now type in window A 

fontchar font disp's font! 

Recall that the's is typed by stiking the key marked'S' while holding down the key marked (CTRL>. 

The class fontchar, upon receiving the message font, will replace the font for dialog window A with a 
copy of the value following the message font (in this case, with a copy of the font possessed by A). 
Results of editing the new font window will then show in A and not in B; moreover, results of editing 
the original font window will show only in B. Choice of which fonts are saved will depend solely on 
which window is used for typing the filfont message. 

The use of the name disp and the message's are described in more detail in subsequent sections. For 
now, assume their use for the above redefinition of a dialog window font. 

t. 

Warning: some fonts have no definition for the character whose Ascii code is 31. This is the 
character used to mark the black dots. Any font without this character properly defined can not be 
used with this font editing system. 



WRITING SMALLTALK PROGRAMS Page 9 

Chapter II. WRITING SMALLTALK PROGRAMS 

Simple Manipulation of a Simple Program 

To hand an object 'd' the meaning '3' in Smalltalk, we say: 

(The @=' is typed as <shift> ' ). If you now say: 

d! 

The meaning (or value) of d (which is a number, 3) will be returned. 

Each object in Small talk can only have one meaning. To change the meaning of the object named 'd', 
we might say 

@='d ~ turtle! 

Thc new meaning (or value) of d (which is a turtle) will be returned. 

In these examplcs, we use the symbol GT to indicate that a literal name follows. The arrow, +-, 

indicates a desire to give the name a meaning. 

Previous turtle examples showed how we can get a turtle to draw a square. Now we need to be able to 
make that definition a Small talk object, use it, change it, save it, and retrieve it. To do this we need 
to give a name to the actions which cause a square to be drawn. In Smalltalk, actions are also 
objects. So we need to say something similar to what was just said to d. Type: 

to square 
(do 4 (@ go 100 turn 90)) ! 

This will cause Small talk to give the actions do 4{® go 100 turn 90) the name square. Here, the 
symbol to (rather than the hand ~) indicates the desire to give a name to some actions; the actions 
are enclosed in parentheses. 

Erase the screen and bring the turtle back to home position by saying: 

® erase home ! 

Then say: 

square! 

The stored actions will be invoked. The commonly used actions of clearing the screen and telling the 
turtle to go to home can also be abbreviated: 

to cl (® erase home) ! 

Now only 3 characters have to be typed: 

el! 

rather than 13. 



WRITING SMALLTALK PROGRAMS Page 10 

Now type: 

dels! 

A list of the names square and cl should be typed back at you. dels is a kind of "bushel basket" which 
contains the names of user-defined programs. 

How to Edit Your Definition 

In any dialog window, type: 

edit square ! 

An editing window with a command menu will appear. The "method" of square is shown as: 

do 4 () 

The 0 stands for a parenthesized message which in this case contains: 

® go 100 turn 90 

Actual parentheses never show in the editor, only the marker () indicating levels of parentheses. To 
see the message within the parentheses, point the cursor at the word 'Enter' in the menu and push the 
top button on the mouse. (Note, some versions of the mouse have buttons laid out horizontally, left 
to right, rather than vertically, top to bottom. Henceforth, we will refer only to top, middle, and 
bottom buttons; the left button corresponds to the top button.) 

You should see the message as: 

® go 100 tu.rn 90 

Place the cursor on the word 'Leave' in the menu and press the top mouse button. You have now 
backed up to the next higher level of parentheses. 

We will use the word "grab" to stand for the compound operation of positioning the cursor on an 
object (word, icon) and pushing a button on the mouse to tell the system that the object we are 
pointing at is really the one we mean. (Unless specifically stated to the contrary, push the top mouse 
button). 

Grab 'Enter' again. 

Now let's change the 100 to a 50 in the definition of square. Grab 'Replace'. It will reverse its display 
color to show that the selection is understood. 

Grab '100'. The top half will reverse color. This means that 'Replace' expects you to replace one or 
more elements beginning at '100'. We only want one element, so grab '100' again. The bottom half 
will also reverse color and a prompting Interim-Dynabook image will appear, indicating that typing is 
expected. Type: 

50! 

You will now see: 

® go 50 turn 90 



WRITING SMALLTALK PROGRAMS Page 11 

Now grab 'Exit' to terminate the editing context. You will be returned to the previous Smalltalk 
context. Say: 

square! 

and one of size '50' will be drawn. So the "meaning" (or "actions") of square has been changed. 

A Note on Editing 

There are a number of ways to terminate an editing sequence before completion. If you grab a wrong 
menu word, or have not completed the selection of a phrase to replace or delete, you can terminate by 
pointing the cursor outside the editing window and pushing the top mouse button. This docs not work 
for 'Add', 'Insert', nor 'Exit'. If you do not want to complete an add or insert command, but have 
already received the Interim DynaboQk prompt character, just type ! (i.e., insert or add nothing). 
Once you have selected the phrase, a replace command cannot be terminated unless you are willing to 
lose any previous edits. Pressing the 'ESC' key takes you out of the edit window and back to the 
dialog window. Also note that if there is more than one parentheses marker displayed in the edit 
window, the 'Leave' and 'Enter' commands expect you to point at the appropriate marker. 

Generalizing the Definition of Square 

Now suppose we would like to make square more general, so that it will draw squares of any size. To 
do so we can give square a "message" saying what the size should be this time, such as: 

square 150 ! 

We must now change the definition of square so that it can receive the message and act accordingly. 
First say: 

show square ! 

to remind yourself what the current definition of square is. We see: 

to square 
(do 4 

(@ go 50 turn. 90)) 

It's clear that we want to do something with the place where 50 is. Everything else about the 
definition (having 4 sides and turning 90 degrees) describe squares in general. 

Suppose there is a way to receive a value from the message. The value needs to be some number. We 
give the particular value a "name" in order to talk about it since we don't know beforehand what the 
number will be. Let's call it size. Looking above, we see that size should replace the 50 : 

to square 
(do 4 

(© go size turn 90)) 

Now we just need to get square to receive the value of a message and call it size. In Small talk, the 
request to "receive the value of a message" is expressed by a colon 

So we want to add 



WRITING SMALLTALK PROGRAMS Page 12 

~size of- :. 

to the beginning of square. Say: 

edit square! 

Grab 'Insert', grab 'do', type: 

cV-size of- :.! 

Careful--the period is necessary here. It helps to separate, in one's mind, the sequence of receiving a 
message and then invoking an action for producing a response. Note that the 'Insert' command 
inserts before the selected element. 

'ro replace the 50, grab 'Enter'. You should see 

® go 50 tu.rn 90 

Grab 'Replace'. You want to replace the '50' so grab '50' and grab '50' again (indicating the beginning 
and ending of a phrase to be replaced by new text). Now type the new text 

size! 

Grab 'Exit'. You are no longer talking to the editor. Type: 

show square! 

to see what you've done. It should look like: 

to square 
(G?size of- :. 

do 4 
(® go size turn 90)) 

Then try sending several messages to draw different squares: 

square ISO! 
square 10! 

and so on. 

The colon expresses a request to Small talk to fetch the next value in the message. The value is the 
meaning of the next object (for example, the number 10). But the value can also be the result of 
actions taken by the next object. For example, try 

square 150+20! 

Smalltalk runs the definition of square. When it sees the colon in (r:Jrsize ~ :.), Small talk "activates" 
the next object, the number 150. This number sees the plus sign (+), fetches the value of the next 
object (in this case, the number 20), and performs the addition. The value returned as the value of 
size is the sum 17 O. 

The definition of square is obviously working but is a bit untidy. To see why, type: 

size! 



WRITING SMALLTALK PROGRAMS Page 13 

The value of the last size you gave square will be returned. This shows that the "name" of the message 
for the size of square belongs to everyone. It is much better for size to belong only to the object which 
uses it. To do this we only need to tell square that size belongs to it by putting the name size right 
after the name square in the "title" part of the definition. Say: 

edit square title! 

square's title line will be shown as well as 0, the marker representing the body of the definition. If 
you were to 'Enter' (), you would see the definition itself. Instead, gra-b 'Insert', grab 0, type: 

size! 

Grab 'Exit'. Type: 

show square! 

You should see: 

to square size 
(eg-. size ~ :. 

do 4 
(@ go size turn 90)) 

Later, when more of the Small talk system has been explained, we will adopt some abbreviations to 
make our story more compact and clear. For example, a short way to talk about this program would be 
to exhibit, in a general way, what has to be said to get results: 

square < number> 1 

means the object square expects anything which evaluates to a number as a message. An example 
might be 

square 30.4+( 111. 7*65. 789 )/99! 

Here, the colon in (~size ~ :.) fetches the result of the expression 30.4+(111.7*65.789)/99. This 
example demonstrates the left-to-right method for receiving messages; that is, Small talk first sees the 
floating point number 30.4 which, in turn, sees the plus· sign and attempts to receive a floating point 
number for the augend. However, the arithmetic is right associative. The augend is obtained by 
fetching a value from the message. As a result, the floating point number (111.7 *65.789) is 
evaluated which, in turn, sees the division sign and requests a divisor (the 99.). Hence, in this 
expression, the multiplication is carried out first (because of the explicit parentheses), the division 
second, and the addition last. Try 

10 - 5 + 21 response is 3, not 7 

or 
20 - 2 * 3! response is 14, not 54 

Fixing Your Dialog 

You can edit the command lines (or statements) in the dialog window in the same manner that you 
edit a named definition (described in the previous section). To fix a previous command line, type: 

fix n ! 



WRITING SMALLTALK PROGRAMS Page 14 

where n is the number of transactions (visible images of the Interim Dynabook) back from where you 
are. 

An editing window with a command menu will appear. Arter making changes, you grab 'Exit' to 
terminate the editing context. This causes the edited line to be sent and evaluated as a message to 
Small talk. The line in the dialog window will not be altered. 

Saving and Retrieving Programs 

Type: 

defs! 

again. square and cl will still be there. To save everything in defs, type: 

filout (some name in single quotes>! 

such as: 

filout 'mysquare'! 

The screen will go blank for a second. 

To test whether you actually saved them, go through the "To get started" sequence again. Then try: 

square 100! 

This will generate a diagnosis window with the complaint that "square has no value". We are now in 
a "clean" version of Small talk, one in which square has not been defined. 

Diagnosis Window 

The complaint is stated in a diagnosis window. Small talk attempts to state the complaint and then 
(1) to provide the name of the program in which the complaint occurred, and (2) to point, with a big 
arrow Jo+, to the object causing the problem. 

In the context of the diagnosis window, you can type any Smalltalk messages. The value of objects 
are within the context of the object in which the complaint occurred. In the above example, we are 
still at the "top level" of Smalltalk; that is, the context is a global one for all objects defined in 
Small talk. Each attempt by one object to evaluate another object takes you one level lower in 
context; after completing the evaluation, you return to the object that requested the evaluation at its 
higher level of context. It is possible to trace back from the current context in order to locate the 
cause of complaint. Each time you type 

c ! 

you see the next higher level of context. 

Type 

done! or (ctrl> D 

to get out of the diagnosis window. 



WRITING SMALLTALK ~ROGRAMS Page 15 

Now type: 

filin 'mysquare'! 

After a few seconds, try: 

square 1001 

The result shows that you have retrieved your program. 

Type 

size! 

You will get a complaint that "symbol has no value" because now size only belongs to the object 
square that uses it. The object size has no value in a more global context. 

Special Characters 

Small talk uses a number of special "iconic" characters, many of which were invented by some 
Small talk students to help remind them of important distinctions. An example is "quote" whose sign 
to adults is usually ("). The children preferred to use (@:» to signify a literal symbol, since in its 
typical use: 

Grjoe 

(meaning the literal symbol 'joe' rather than what or who 'joe' may stand for)--the hand points 
directly at the symbol itself. 

This distinction exists in English also. We can say: 

Paris is a large city in France. 

We shouldn't say: 

Paris has five letters. 

but rather: 

'Paris' has five letters. 

to indicate the literal word rather than the city. 



WRITING SMALLTALK PROGRAMS Page 16 

Keyboard Equivalents 

(Note, there are usually several ways to type a special keyboard character. The following table 
presents the methods most commonly used.) 

To Get You Type We Call It 
------- -------- -----------
! LF do it 
~ <shift> ' hand 
<t <shift> 5 eyeball (look for) 
0 <ctrl><shirt>; 0 

n <ctrl> k keyhole, "peek" 
=> <shirt> / if ... then 
1t <shift> 1 return 
® <shift> 2 smiley 
0 <shift> 7 
? <ctrl> 1 
's <ctrl> s 
done! <ctrl> d 

<shirt> - unary minus 
~ <ctrl> < less than or equal 
~ <ctrl> > greater than or equal 
$. <ctrl> = not equal 
% <ctrl> v percent sign 
@ <ctrl> 2 "at" sign 
! <ctrl> 1 explana tion 

<ctrl> 0 double quote sign 
$ <ctrl> 4 dollar sign 

Summary of Special Dialog Window Operations 

<esc> 

<ctrI> D 

c 

<shift> <esc> 

fix <number> 

Escape to the "top level" or Small talk; should return you to the dialog window 
blinking the prompt character 

Assuming you have entered a diagnostic window, returns you to the dialog 
window. 

While inside a diagnostic window, changes the context of names and their 
values so you can investigate the cause of an error. 

Creates a sub-dialog window within the current dialog window, suspending the 
operation of the current window until you type <ctrD D. Within the sub­
window you can type any Small talk message. 

Enters the Small talk editor for a command line in the dialog window. The line 
is <number> transactions back from where you are currently typing. 

redo <number> Re-sends Small talk the message on command line <number> where the line is 
<number> transactions back from where youare currently typing. 



WRITING SMALLTALK PROGRAMS 

Boxes: An Introduction to Small talk 

First get the box programs by typing: 

filin 'boxes' I 

After a few blinks they will arrive. 

Type to Smalltalk: 

~joe <f- box! 

Page 17 

A small box will appear in the top center of your screen. You have given it the name joe. As a 
member of a class or group of objects resembling boxes, it can receive messages having to do with 
"boxness", particularly those concerned with position, size, and tilt. Try: 

joe grow 50 ! 

joe will get bigger. Try: 

joe turn 30 ! 

and 

joe grow -20 ! 

and 

joe is 1 ! 

joe will turn, grow, and answer that he is a box correctly. Now try: 

Gr jill <f- box ! 

A new box will appear. Type similar messages to jill using different numbers for size and tilt. jill will 
answer the question jill is ? wi th box (as did joe). 

Now try: 

repeat (joe turn 20. jill turn -11) ! 

Both of the individuals respond. To "escape" from the endless loop, press the key marked 'ESC' located 
in the upper left hand corner of your keyboard. Ask the questions: 

joe's size! 

and 

jill's size ! 

(Don't forget that's is typed as < ctrl> s) 

We see from this and the little "movie" which we created that joe and jill are really separate entities 
which can do similar things. 



WRITING SMALLTALK PROGRAMS Page 18 

An analogy to these ideas is the common notion of classification by similar properties. For example, 
we find useful the idea of grouping human beings into a class because we see so many similarities 
between individuals that we would like to discuss them in the abstract. The class "human" has 
properties such as 'name', 'age', 'weight', 'walk', 'eat', 'eyecolor', and many others. Each individual 
human (we often say instance of the class human) has particular values for these properties. Some of 
the values are quantities (as with a value for 'weight'), and some are actions (an individual may have 
a particular kind of rolling gait for 'walk'). Small talk's semantics are at a more comprehensive level 
than natural language and thus make no distinction between the rather crude English notions of 
"thing" and "action". 

In Small talk, every entity is called an object; every object belongs to a class (which is also an 
object). Objects can remember things about themselves and can communicate with each other by 
sending and receiving messages. The class handles this communication for every object which belongs 
to it; it receives messages and possibly produces a reply, typically a message to send to another 
object. 

The central idea in writing Small talk programs, then, is to define classes which handle communication 
among objects in the created environment. A message is sent to an object by first mentioning the 
object's name and then mentioning the message. Either the programmer (via direct keyboard typing) 
or an action that is a reply from a class sends the message. 

A Look at the Class Box 

As an example of a class definition, here is a box. Its various parts are described below. They serve 
to introduce the special Small talk symbols and syntax. It is a very simple class definition, but 
encorporates most of what is complex about Small talk. 

Note that you can also examine the classes we have already discussed (turtle, window), as well as any 
that will be introduced, by typing-

show < classname > ! 

The definition of box is 

to box var I x y size tilt 

(<(draw 

<1undraw 

<1turn 

<1grow 

isnew 

=> 

=> 

=> 

=> 

=> 

(® place x y turn tilt. square size.) 

(@ white. SELF draw. ® black) 

(SELF undraw. @=>tilt (- tilt +:. SELF draw.) 

(SELF undraw. ursize (- size +:. SELF draw.) 

(Grx (- Gry (- 256. G?size (- 50. 
r:J"=>tilt (- O. SELF draw)} ! 

add to turtle @=>(<( place => (SELF penup gota (:)(:) pendn up. 1tBELF)} ! 

to square length 
(GT length (- :. 
do 4 (® go length turn 90})! 



WRITING SMALLTALK PROGRAMS Page 19 

addto. The object addto is useful for extending the definition of an object (in this case, we used it 
to extend the definition of turtle). Here, we give a turtle the ability to respond to the message place. 
The response is to have the turtle pick up its pen, go to a screen position that is received as a 
message, put its pen down, and face in an upward direction (that is, it places itself at a new position 
without leaving a trace). 

square. To draw a square box on the screen, we use the definition of square that was constructed in 
Chapter I. The initial explanation of the colon, :, the Smalltalk symbol for fetching the next value in 
the message, was also given in Chapter I. 

Explanation of the Definition of the Box Class 

The format for teaching Small talk about a new class of objects is 

to (class-name> (temporary variables> I 
(names of properties describing each member (instance variables» I 
(names of properties describing the class (class variables» 
(messages to receive and actions to talle) ! 

We use the symbol, to, to refer to the next object as a literal class name (here, the name is box). 
Everything following the name is its value; it is useful to think of this format as the mechanism for 
storing a name with its meaning in a dictionary. There can be different dictionaries for the different 
contexts in which a message might be sent; typically dictionaries are nested so that an object can 
gain access to objects and their meanings that were defined in any higher level of context. So far we 
have only been working at the highest level (top level) of Small talk context. The definitions of box, 
turtle, window, fontchar, are found in the top-level dictionary. 

Notice that more consistently, we might have preferred the format 

('{? < class name > ~ class < temporary variables> I (instance variables> I (class variables> 
(messages and responses)! 

which is more like 

(iF <name> ~ <value>! 

the method for creating instances of the classes. Here we use the symbol Gr to refer to the next 
object as a literal name and the part after the arrow, +-, is the object's meaning. 

Title Line 

Words between the word to and the first left parenthesis are referred to as the title of the definition. 
The vertical bar, /, in the title is used as a delimiter for the different kinds of variables. 

Class and Instance Variables 

In the title line, three different kinds of names can be specified: names for temporary storage 
locations needed only when a member of the class is actually doing something; names of properties 
that distinguish each member of the class; and names of objects that are common to all members of 
the class. 

The definition of the class box specifies two kinds of names: the four properties (x, y, size, tilt) that 
distinguish members of the class; and a temporary variable (var). Properties x and y define the 
location of the box on the screen; size is the length of each of its sides; and tilt is its angle of 
orientation on the screen. Hence, two members of the class box can have different screen locations, 
different sizes, and different orientations. 



WRITING SMALLTALK PROGRAMS Page 20 

Messages and Actions 

All members of the class box respond to messages to grow, turn, draw and undraw. Each member also 
responds to two messages which have been adopted as reasonable conventions for Smalltalk classes: a 
request to learn the class type (is), and a request to learn about the class' properties ('s). 'rhe 
messages that each member of the class can receive, and the actions each will take upon receiving a 
message, are given within parentheses after the title line. 

The symbol «, ("eyeball") is in front of each of the message words. The symbol resembles an eyeball 
because it is used to look at the message. Suppose we have created the box named joe and we send 
Small talk the message 

joe grow 100 ! 

Small talk sees the name joe, looks joe up in its dictionary of names and their associated meanings, 
and finds that it is an instance of the class box. Therefore, Small talk runs the definition of the class 
box in the context of joej that is, with the knowledge of a dictionary containing joe's size, tilt, and 
screen position. For example, joe's dictionary might indicate that size is 50, tilt a, and x and y 
coordinates equal to 256. 

In sequential order, joe looks (with the «) for the message draw, undraw, and turn, and then 
matches the message grow with the word grow in the definition. Use of the eyeball, «, is asking a 
question: do I see the following token as the next token in the message? We will use the word 
"token" to refer to a single word or a group of words enclosed by parentheses. Examples of tokens arc: 
grow, (grow 50), read, (read eval print). 

Conditional Actions 

Within the main set of parentheses for the class definition, we provide (virtually in tabular form) an 
itemization of the messages each member of the class can receive and the methods for responding to 
the messages. This itemization is actually in the form of a conditional statement (if-clause => (then­
clause) else-clause). The then-clause consists of the actions that will occur if the if -clause has a 
not-false value; it must be enclosed within parentheses. 

In the box definition, the if-clauses of most of the conditional statements are simply questi'ons "do 
you see the following word in the message?" Any question that can be answered "false" or "not-false" 
may be asked in a conditional statement. The choice of the word "not-false" rather than "true" has 
significance in Smalltalk--any object with a value other than the boolean value "false" is considered 
to have the boolean val~e "true". The object, however, returns its "not-false" value for use by the 
message sender. 

The Message Grow 

Suppose a box sees the message grow. The action the box takes is to send itself the message undraw 
in order to erase itself from the screen. It then changes the value of size by some amount. The 
specific value of the change is received as a message using the Small talk symbol colon,:. In this case, 
joe's size increases by 100. The box then sends itself the message draw in order to show itself again 
on the screen. 

The Message Turn 

The action taken if a box sees the message turn is similar: the box tells itself to undraw, changes the 
value of the instance variable tilt, and then tells itself to draw again. 



WRITING SMALLTALK PROGRAMS Page 21 

The Message Draw 

The meaning of draw is to place the turtle at the box's screen location (x, y), turn the turtle in the 
box's orientation (tilt), and call on the object square with the message size, the length of each of the 
box's sides. Undraw simply changes the turtle's color to white (assuming the background color is 
white) in order to "erase" the drawing of the square box. 

Again, notice that the evaluation (reading) of a Small talk message is done in a left-to-right (linear) 
manner. As each object is evaluated, it is given the opportunity to read as much of the remaining 
message as it is able. 

The Message Isnew 

The Small talk object isnew is a special question that determines if a new instance of the class is being 
created. If so, the usual consequent is the action of giving values to each of the instance variables 
(i.e., describing the new member of the class by assigning values to each name in a dictionary created 
for the class member). In box, the new instance also sends itself a message to draw a square shape on 
the screen. 

If a Small talk class is to have any members (instances) at all, the question 
isnew must be asked as part of the definition of the class. 

The l\1essage Move 

To have a box grow, we change the instance variable size; to have a box turn, we change tilt. To put 
a box in a different position on the display screen, we want to redraw the box with new values for x 
and y. 

Edit box and add to the definition 

<I move => (SELF undraw. ~x~:. GT'y~:. SELF draw.) 

Try 

joe move 100 200. 

joe move 200 lOa.! 

for i ~ 50 to 250 by 10 (joe move i i) ! 

The third message causes joe to move across the screen diagonally from the upper left corner to the 
lower right corner. To have joe track the mouse cursor, simply type 

repea.t (joe move mx my) ! 

The above is a method for having the box move to an absolute location on the screen. The box's 
action is to tell itself to erase from the screen (undraw), change the values of x and y by receiving 
new values from the message, and then drawing itself again (draw). 

Suppose, instead, we would like to type messages such as 

joe move right 50. joe move left 100. joe move up 30. joe move down 10.! 

In other words, if a box sees the message move, then it should look for one of the four messages right, 
left, up, or down and then receive a number value to determine by how much to increment x or y. 
The Smalltalk statement might be 



WRITING SMALLTALK PROGRAMS 

<t move => {SELF undraw. 
{«right => (~xt-x+:.) 

«left => (Grxt-x-:.) -
«up => (Gryt-y-:.) 
«down => (~yt-y+:)) 

SELF draw) 

Page 22 

The use of parentheses around the conditional statement (<(right => () ... ) allows each possible form 
to evaluate the last part of the statement (SELF draw); the reply to the message move contains 
three actions: (1) SELF undraw. (2) look for one of the directional messages, and (3) SELF draw. 
Also note that moving up means decreasing the y coordinate. If we wanted to have both kinds of 
move methods (relative and absolute) available, we could make one ·(say the absolute one) the default 
case. Try 

<t move => (SELF undraw. 
(<(right => (@:>xt-x+:.) 

«left => (Grxt-x-:.) 
«up => (Gryt-y-:.) 
«down => (Gryt-y+:) 
Gr x t-:. (? y t- :.) 

SELF draw) 

The Message Is. 

There are two messages we include, by convention, in each class definition. One is the ability to learn 
the name of the class; the other is the ability to evaluate messages within the context of the class or 
class instance. We adopt the word is for the first message, and the possessive for's for the second. If 
they have not already been included in your definition of box, then type 

add to box GT-(<(is => (<(box => {11' (iT> box) « 1 => (11' r:;r box) 8.11' false) 
«'s => (@=' var t- 8. «t- => (11' var t- :.) 11' var eval))! 

The message is, by convention, is a request to learn the name of the class or to ask if the name is the 
same as one already known. So we might say 

joe is 1! and be told box 

or 
joe is box! and be told box (i.e., not-false) 

or 
joe is turtle! and be told false 

The method for responding to is (shown in the above definition of box) involves seeing (<I) if the 
class name (in this case, box), is the next word in the message. If it is, return (11') the literal class 
name (GT'box). Otherwise, see if the next word in the message is a question mark (?). If it is, return 
the literal class name. Otherwise, the answer must be false. In order to not leave the incorrect name 
sitting in the message, gather it up but do not evaluate it (8). Then return false. 

The "open colon" symbol (8) is a Small talk symbol that says: fetch the next token (the next word or 
the next words enclosed in parentheses) literally as it appears in the message. 1'he 8 is similar to « 
in looking at the message literally. However, the 8 always fetches in the next literal expression; the 
<l only fetches the expression if there is an exact match. 



WRITING SMALLTALK PROGRAMS Page 23 

The Message 'S 

The message ('8) is, by convention, a request to evaluate the next token in the message within the 
context of the message receiver (typically, the class or the instance of the class). Suppose the size of 
the box joe is 50 and we say 

~x f- 100! 
W'h f- joe's x! 

What will be the value of h? At the main (top) level of Small talk we examine the global dictionary 
and see that the value of x is 100j but, within the context of joe (looking in the dictionary created 
for the class instance), the value is 50. Hence the assigned value of h must be 50. 

The method for responding to's involves receiving the next token literally (8), assigning this token as 
the meaning of a temporary object (here named var), and then seeing if the next word in the message 
is the back arrow (4-). If it is a back arrow, then. return (1t) the result of letting the meaning of var 
take on the next value in the message (:). (I.e., this is a method of indirect reference.) If the next 
word is not the back arrow, then simply return the value of the meaning of var (obtained by sending 
var the message eval). Again, note that the evaluation of a Small talk message is carried out 
sequentially left to right, but that the message is actually grouped in a right-associative manner 
because of the Smalltalk method for letting each object read as much of the message as it chooses. 

Receiving Messages 

There is not one global message to which all message "fetches" (use of the Smalltalk symbols eyeball, 
<I, colon, :, and open colon, 8) referj rather, messages form a hierarchy which we explain in the 
following way-- suppose I just received a message; I read part of it and decide I should send my 
friend a message; I wait until my friend reads his message (the one I sent him, not the one I 
received); when he finishes reading his message, I return to reading my message. I can choose to let 
my friend read the rest of my message, but then I can not get the message back to read it myself 
(note, however, that this can be done using the Smalltalk object apply which will be discussed later). 
I can also choose to include permission in my message to my friend to ask me to fetch some 
information Crom my message and to give that inCormation to him (accomplished by including <I, :, or 
8 in the message to the Criend). However, anything my Criend Cetches, I can no longer have. In other 
words, 

(1) An object (let's call it the CALLER) can send a message to another object (the RECEIVER) by 
simply mentioning the RECEIVER's name followed by the message. 

(2) The action of message sending forms a stack of messages; the last message sent is put on the top. 

(3) Each attempt to receive information typically means looking at the message on the top of the 
stack. 

(4) The RECEIVER uses the eyeball, «, the colon, ., and the open colon, 8, to receive information 
from the message at the top of the stack. 

(5) When the RECEIVER completes his actions, the message at the top of the stack is removed and 
the ability to send and receive messages returns to the CALLER. The HECEIVER may return a value 
to be used by the CALLER. 

(6) This sequence of sending and receiving messages, viewed here as a process of stacking messages, 
means that each message on the stack has a CALLER (message sender) and RECEIVER (message 
receiver). Each time the RECEIVER is finished, his message is removed from the stack and the 
CALLER becomes the current RECEIVER. The now current RECEIVER can continue reading any 
information remaining in his messago. 



WRITING SMALLTALK PROGRAMS Page 24 

(7) Initially, the RECEIVER is the first object in the message typed by the programmer, who is the 
CALLER. . 

(8) If the RECEIVER's message contains a eyeball, <I, colon, :, or open colon, 8, he can obtain 
further information from the CALLER's message. Any information successfully obtained by the 
RECEIVER is no longer available to the CALLER. 

(9) By calling on the object apply, the CALLER. can give the RECEIVER the right to see all of the 
CALLER's remaining message. The CALLER can no longer get information that is read by the 
RECEIVER; he can, however, read anything that remains after the RECEIVER completes its actions. 

(10) There are two further special Small talk symbols useful in sending and receiving messages. One 
is the keyhole, a, that lets the RECEIVER "peek" at the message. It is the same as the g except it 
does not remove the information from the message. The second symbol is thn hash mark, #, placed in 
the message in order to send a reference to the next token rather than the token itself. An example 
of the use of # is given at the end of the next chapter. 

Alternative Box Definition 

An alternative method for defining the class box is given below. The main difference is ·the use of the 
message redraw to simplify methods for growing, turning, and moving boxes. 

Let's examine the definition in terms of steps (1)-(8) of the previous section. Suppose a box receives 
a message, message A. In the definition of box provided below, if message A contains the token grow, 
the box becomes a CALLER, sending itself another message, B--redraw rJ?sizef-size+:. The 
RECEIVER of message B sees the token redraw; as a result, it sends itself the message undraw. 
After the action of undrawing is completed, the RECEIVER requests a fetch for a value (:.). The 
fetch comes from the remaining part of message B (rJ?size f- size + :.). This part of message B 
contains a colon (:) directing it to get information from the remaining part of t.he CALLER's message 
A (as stated in (8) above). This remaining part of message A contains a number that determines the 
amount of the box's growth. The RECEIVER then sends itself the message draw, after which it 
returns control to its CALLER. The CALLER's actions are now completed. 

Similarly for messages containing the tokens turn or move. In order to change more than one 
instance variable (that is, both x and y in the case of move), it was necessary to enclose the 
appropriate messages within parentheses. (Then the fetch for a value found in the action taken by 
redraw, will obtain the value of changing both the x and the y.) In general, a colon will activate 
(start determining the value of the message) at the next token--either a single word or words 
enclosed by parentheses. 

The alternative box definition follows. 



WRITING SMALLTALK PROGRAMS 

to box var I x y size tilt 

(<(draw => 

«undraw => 

«redraw => 

«turn => 

«grow 

«move 

«is 

isnew 

(® place x y turn ,tilt. square size.) 

(® white. SELF draw. ® black) 

(SELF undraw. :. SELF draw.) 

(SELF redraw ~tilt ~ tilt + :. ) 

(SELF redraw @="size ~ size + :.) 

(SELF redraw (~x +- :. ~y+-:.)} 

(@=>var +- g. <I +- => (1t var +- :.) 'It var eval} 

(<[box => ('ltGT-box) <I ? => ('ltGrbox) g. 1tfalse) 

(~x +- (/?y ~ 256. Grsize +- 50. 
Grtilt ~ O. SELF draw)} ! 

Page 25 

Extending the Box Definition. There are several ways to extend or modify the box class. We will 
show one in the next section: the class of polygons, and, after introducing the class turtle, we modify 
the box class to be a class whose members each 'own an instance of the turtle class. 



WRITING SMALLTALK PROGRAMS Page 26 

Class of Polygons 

This simple extension to class box allows us to create objects that have any number of sides of equal 
length. The object that draws any polygon must ask the turtle to draw the appropriate number of 
lines. After drawing each line, the turtle has to turn enough units so that, after drawing all the lines, 
the turtle will have turned a complete circle (360 units). Since each angle of a polygon is equal, each 
turn is an even division of 360 (360/number-of-sides). A polygon-drawing routine is 

to poly sides size 
(@=»sides f- :. Grsize f- :. 

do sides (® go size turn 360lsides))1 

Using the box definition as a model, we can define a class for polygons. 

to polygon var I x y size tilt sides 1'he title line is similar to that or box; we added the number 

or sides as an instance variable. 

(<( draw => (@ place x y turn tilt. poly sides size) 

The method for drawing has changed. We use poly, not 

square. poly expects two messages: number or sides and 

length or each side. 

« grow => (<(sides => (SELF redraw @='sidesf-sides+:.) 
« size => (SELF redraw Grsizef-siz~+:.)) 

We adopt message forms 

joe grow size 100. 

joe grow sides 50. 

as the two alternative meanings of grow. Another method to 

use is 
(G1-var +- 8. 

SELF redraw var+-var eval+:.). 

Responses to messages redraw, undraw, turn, '5, and move, are the same as in box. The message is, 
by convention, is similar, but looks for the word polygon. Or, alternatively, we can take advantage of 
a Smalltalk object, ISIT, and use 

<lis => ([SIT eval) 

This object is part of the basic Small talk system referenced in subsequent sections. It is always 
possible to type show < class-name) in order to see any such "basic" objects. 

In isnew, we must give sides a value as well as the other instance properties. Suppose we choose to 
send the initial value of sides as a message when we create an instance of polygon. I.e., 

@=>joe f- polygon 3! 
Gr joe ~ polygon 6! 

creates a triangle 

creates a hexagon 

Then we write as part of the definition of poly 

isnew => (@='sides~:. @='size f- 50. 
@'>tilt f- O. @'>x~@'>yf-256. 
SELF draw.) 



WRITING SMALLTALK PROGRAMS Page 27 

Turtles 

The turtle examples in the first section showed so.me of the messages any turtle can understand. We 
can get a turtle to draw designs, sketch, and make diagrams with a number of useful and simple 
programs. 

Type 

G1="pokey f- turtle ! 

Now pokey understands messages 

go <n> 

turn <n> 

pen up, pendn 

black, white 

xor 

goto <n> <m> 

goto (point> 

up 

erase 

home 

f- <string> 

Where n is an intcger, move n units forward (+) or backward (-). 

Where n is an integer, change orientation right (+) or left (-). 

Change state of pen that can leave a trace. 

A turtle can have three ink colors: black, white, or xor. 

This color says that whatcver "color" is on the screen, show its complement 

(white for black, black for white). This works only when the turtle's 

width is 1. 

where nand m are the horizontal, vertical locations on the display screen. 

<point> is an instance of the class point explained in a subsequent section; 

try 

go to mp 
Le., goto the point where the mouse cursor is placed. 

Points the turtle's orientation (dir) towards top of screen. 

Clears the window. frame in which the turtle lives; default window is the 

entire screen. 

Goes to center of the window frame. 

Prints the text (string of characters enclosed by single quote marks) at the 
turtle's current location, with its direction, width, and color. Note that 
you can make non-destructive text by using xor ink which complements the 

background so that reshowing the text crases it while restoring what was 

underneath. 

We can query the turtle's property values using's (typed by striking the key marked '8' while holding 
down the 'CTRL' key). For example, 

pokey's ink 
pokey '5 (lir 
pokey '5 width 

Also, x, y, pen, and frame. We can change these values by typing 

pokey's <property> f- <value>! 



WRITING SMALLTALK PROGRAMS Page 28 

Usually, only the width, whose value is an integer between 1 and 8, and frame, whose value is a 
display screen window, are modified in this manner. There are alternative methods for each of the 
other properties. 

pokey's width to 2! 

A simple design program might be: pokey go a little, turn some amount, go a little more, and so on. 

Try 

to design var i 
(~varto:. for i to 300 (pokey go i turn var)) ! 

pokey erase home up. 
design 89. 
pokey home up. 
design 91! 

It is probably better Small talk programming style to modify the turtle class definition and give turtles 
the ability to receive the message design. In this way, all turtles, not just pokey, will be able to draw 
designs. addto lets us add new messages and responses to class definitions. Try 

addto turtle GT(<(design => (cJrvar to :. for i to 300 (SELF go i turn var )))! 

The explanations of « (eyeball), SELF, and => were given in the previous section. Recall that « is a 
method for looking at the message and seeing if there is a match between the next word in the 
message and the word following the «. The use of « is a test whose value is either not-false or false. 
The arrow (=» denotes a conditional statement of the form 

<test for truth> => «action to take if the value of the boolean expression is true» 
<otherwise do this> 



WRITING SMALLTALK PROGRAMS Page 29 

Boxes Owning Turtles 

The definition of box as presented earlier depends on the turtle ® to draw each instance of the class. 
Each time an instance is drawn or erased, ® must be placed at the appropriate location facing in the 
appropriate direction. Rather than having to reposition ® each time, we might assign a turtle to each 
instance of boxj since the instance "owns" its turtle, we can assume that the turtle is always 
correctly positioned. 

In the new definition of box given below, we use a different turtle to draw each instance of the class 
box. The turtle, whom we named turt, is an instance variable of the class box. Each time we move or 
turn a box, we actually move or turn the turt belonging to that box. When we draw a box, we assume 
that turt is sitting at the correct display coordinate, turned in the proper direction, waiting to draw 
the geometric shape. The turt remembers its position (x, y) and its orientation (tilt) on the screen, 
so the box no longer has to retain this information. There are now only two instance variables: turt 
and size. 

to box var I turt size 

(isnew => 

«draw => 

(~turt f- turtle. @:=>size f- 50. 
turt place 256 256. 
SELF draw.) 

(do 4 (turt go size turn 90)) 

Create turt as an instance of class turtle and give 

size the value 50. Place the turtle at the 

starting position and orientation. 

Ask the turtle to draw a square. 

<lundraw => (turt white. SELF draw. turt black) 

«redraw => (SELF undraw. :. SELF draw.) 

«turn => (SELF redraw turt turn :.) 

Change turtle's ink, assume background is white. 

. Hather than changing value of tilt, we simply tell 

the turtle to change his orientation. 

«move => (SELF redraw turt penup go (:) pendn) 

«grow => (SELF redraw ~sizef-size+:.))! 

There were several changes to the box definition. 

This is a new kind of move--move forward if amount 

is positive, move backward if negative. Turtle 

always moves in the direction of his tilt. This is 

useful if you think of the box as a spaceship! 

(1) draw--we no longer need to reposition the turtle because turt is already correctly positioned, nor 
do we need to use the object square. 

(2) turn--since the turtle must sit in the proper direction, we tilt the box by changing thc turtlc's 
direction (send turt the message turn). The box no longer has instance variable tilt. 

(3) move--the turtle remembers his, and therefore the box's, position. The box no longer has 
instance variables x and y. 



WRITING SMALLTALK PROGRAMS Page 30 

Dispframes: An Introduction to Text Display 

Small talk dialog windows are instances of the basic Smalltalk system class dispframe. Members of 
this class can show text in a rectangular area that can be framed with thick black lines. As you have 
already seen, Small talk can have many dispframes, each one capable of moving its screen position, 
changing its size, displaying text, and hiding itself (deleting its representation from the display 
screen). To do these tasks, an instance of dispframe understands messages such as moveto (upper left 
corner x> (upper left corner y>, growto (lower right corner x> (lower right corner y>, show, display, 
and hide. You have sent messages to the windows by pointing at one of the four corners. To help in 
this task, a dispframe understands the messages hasmouse, to determine whether or not the mouse 
cursor is inside the window; and corner <x> (y>, to determine at which corner, if any, the mouse 
cursor points. The response to the message corner is a number between 1 and 4 depending on the 
display coordinates x,y. 

Each instance of a dispframe remembers text that is displayed in the rectangular area. This text is 
named buf. One of the jobs of the class dispframe is to fit the text into the window: 

(1) changing physical lines when the characters fill the line space ("line wrap around"), 

(2) lining the characters up evenly in the right margin (right justify), 

(3) scrolling (deleting the initial characters and readjusting the remaining characters upward) 
when the window can not properly contain all the text. 

Placing Text 011 the Display Screen 

There are three ways to place text on the display screen, one uses a turtle, the other two rely on the 
class dispframe. 

With Turtles. 

~amy <f- turtle! 
amy penup goto 100 100 pendn! 
amy <f- ' hello'! 

Amy has width = 1 and faces upward. 

Note the need for single quote marks as delimiters. 

The word "hello" appears on the screen. The upper left corner of the first character shows at amy's 
x,y position. Now amy has been repositioned at the end of the displayed word. 

amy's width <f- 2! 
amy <f- 'hi'! 

Increase amy's width to 2. 

Print another word. 

Try printing with turtles facing in different directions and having different widths and colors. 
Although it is possible to print text on the display with a turtle facing in any direction, text generally 
looks best when the turtle's direction is horizontal, vertical, or at 45 degree angles. 

With Display Frames. To create a dispframe you send at least five messages describing the 
rectangular area and its contents: the area's upper left corner x, its width, its upper left corner y, its 
length, and a string. The string is the method for storing the text characters to be displayed. 

~ dp <f- dispframe 100 75 100 120 string 200.! 

This creates a rectangular area 75 x 120 at location 100,100. It can contain up to 200 text 
characters. The simplest way to place text in this area is to send the dispframe the message put. 

<dispframe> put <text> at <x> <y>! 



WRITING SMALLTALK PROGRAMS Page 31 

Where x,y are the display screen coordinates. For example, 

dp put 'hi there' at 150 100! 

Now try 

dp put 'hi where' at 200 ISO! 

Notice that the dispframe has changed its x,y position' to 200,150. It has replaced its original text 
with the text 'hi where', but it has not erased the original text 'hi there'. Try 

repeat (dp put 'hi' at mx my)! 

to place the word "hi" all over the screen. 

Appending Text to Display Frames. A dispframe stores its text in a place named buf. The 
message ~, when sent to a dispframe, is a request to add characters to bufi buf is an instance oC a 
basic class named string. We can print the word "hello" in the dispframe dp by typing: 

dp ~ 'hello'.! 

Now try: 

dp ~ 'how are you today? My name is dp and 1 am a dispframe'! 

Do you see how the line-wrap-around works? And that spaces have to be explicitly stored into the 
dispframe? The original text was not cleared when new characters were added; rather, the new 
characters are appended to the end. Now try the various other messages to a dispframe: 

dp hide! 
dp display! 

dp fclear! 
dp show! 

dp clear! 
dp show! 

dp hide! 
dp growto 250 250! 
dp display! 

dp hide! 
dp moveto 50 50! 
dp display! 

The entire area disappears and reappears. 

The text area is cleared and represented. 

This empties the string bur so there is no longer text to display. 

Now the frame is larger. 

Now the frame is in a new position. 



WRITING SMALLTALK PROGRAMS Page 32 

Boxes as Men us 

The Small talk class editor uses two instances of dispframe. The first is the window containing the 
levels of the class definitionj the second is the menu window. In each case, you were able to position 
the mouse cursor in the window and the .editor was able to determine which character or word you 
were grabbing. Instances of dispframe understancl three messages that aid in this task: 

mfindc (which character), 
mfindw (which word), and 
mfindt (which token, that is, which word 

or set of words enclosed in parentheses). 

The next example was chosen in order to clarify the use of these messages and to provide an example 
of a dispframe. 

A menu is an ordered list of objects that can· be selected in a variety of ways. One way is to point at 
the object with the mouse cursor. The objects might be words or pictures, each representing things to 
do, or names of other objects to retrieve or to "activate" (that is, give the ability to do something, 
such as to receive and/or to send messages). 

We have chosen a simple example of a menu consisting of a list of words, each word being the name of 
a polygon. The result of grabbing a word will be to create the corresponding instance of the class 
polygon. Before the new instance is actually created, the user will select the position on the screen 
where the polygon is to be drawn. 

We will use a modified version of the definition of polygon, one in which the polygon position is 
determined from a message received at the time the object is created. For example, we will create the 
polygon joe by typing 

G?joe f- polygon 5 150 100! joe is a pentagon (5 sides) at 150,100 

to polygon I sides size ® polygon simply creates the object. 

(<ldraw=,> (do sides (® go size turn 360/sides)) 

isnew => (Grsides f- :. UT'size f- 50. 
G?@ f- turtle. ® place (:)(:). 
SELF draw))! 

Draws it on the -screen. 

Values for sides and the turtle's position are 

provided when the polygon is created. 

The dcfinit.ion of polygonmenu includes the instance variable codevector. This object will be an 
instance of the basic Small talk class vector, a method for storing a list of things. In this case, we 
store a list of the names of the possible polygons to create. For example, we might create a menu by 
typing: 

@=> pm ~ polygonmenu (triangle square pentagon hexagon septagon octagon)! 

The list code vector owned by pm is now a list of polygon names that will appear in the menu box on 
the screen. Each item in codevector refers to a polygon that can be created. 



WRITING SMALLTALK PROGRAMS Page 33 

to polygonmenu i I dp ,codevector 

(isnew ~(~cadevectar ~ 8. When creating a menu, letch literally the vector o( words to 

be displayed in the menu •. --
repeat (buttan 4 => Wait (01' the user to press button 4 to indicate the menu 

po~itionj then create dp, the dispframe, at the mouse cursor's 

position; 

(Grdp f- dispframe mx 75 my 120 string 100. 

and print each word in the menu followed by a carriage 

return. 

far i to codevectar length - 1 

(dp f- cadevectar[i] chars. dp f- 13). 

done))))! We reference items in a vector using the notation: 

name[index] 

The above definition of palygonmenu simply shows a rectangular area filled with words. The method 
for printing each word from the list is to count down through each item using the for iteration 
method. The counter is ii cadevectar[i] refers to the ith item. For example, in the above, if i=l 
then codevector[i] = cadevectar[ 1] = Grtriangle. 

Each item in the list is an atam, a basic Small talk system class. Each instance of an atom responds to 
the message chars by forming a string of characters for the atom value. For example, the response 
from the atom Grtriangle would be the string 'triangle'. The word "triangle" is printed in a 
dispframe area by sending the string 'triangle' to the dispframe. Hence the contents of the far 
iteration is to send the dispframe dp the string codevector[i] chars. 

The code for a carriage return is 13. Hence dpf-13 is a method for printing a carriage return in the 
dispframe. This causes each new word to appear on a new line in the menu. 

Now let's find the word to which the mouse cursor points. 

add to palyganmenu Gr( <lindex => (1tdp mfindt mx my))! 

If we send a polyganmenu the message index, we will receive a list (vector) of four numbers (the 
reply from the dispframe). The four numbers are: the actual index of the word in the vector 
codevector, the x position of the first character in the word, the widt.h of the word, and the y position 
of the first character in the word. Suppose, as an example, we type pm index while we are pointing 
to the first word in the menu. 

pTn index! 
(16550100) The result is a vector. The first number in the vector is the index of the 

word ill the menu. The second is the x position, third the word width, and 

fourth is the .y position. 'Nord height is generally 14. 

To select the menu word from cadevectar, we retrieve the i[ 1 Jth item in the vector. 

addto polygonmenu GT( <lselect ~ (Grif-SELF index. do something with cadevector[i[ I]]))! 



WRITING SM:ALLTALK PROGRAMS Page 34 

Suppose we want to delay computing until the user can point into the menu and press a mouse 
button. 

<lselect ~ (repeat (button 4 ~ (~i f- SELF index. 
do something with codevector [i[ 1] ]. done))) 

The done part is important. It stops the repeating and returns control to the message sender. What 
we do is simply to call on the polygon class with sides = 2+i[ 1]. Hence, in this case, it is actually 
not necessary to retrieve the i[ 1 ]th item in code vector . 

<Iselect ~ (repeat (button 4 ~ (Gr if-SELF index. 
polygon 2+i[1] mx my. done))) 

But, again, there is no delay provided in order to allow the user to point someplace on the screen 
before the figure is drawn. Let's change the response to draw. 

<Iselect ~ (repeat (button 4 ~ (Gr if-SELF index. 
SELF draw 2+i[1]. done))) 

<Idraw => (repeat (button 0 ~ (done)) Make certain that the button is released. Then 

repeat (button 4 ~ wait for button press before calling on polygon. 

(polygon (:) mx my. done))) 

We can complete the menu selection by adding the ability to complement the color of the selected 
word. There is a special routine, dcomp, that lets us complement any rectangular area of the screen. 
It expects four messages: the area's upper left corner x, the width, the upper left corner y, and the 
height. For example: 

dcomp 100 50 100 200! 

Try 

do 100 (dcomp 100 50 100 200)! 

The height of the font we are using is 14, so, to complement a word in the menu, we use 

dcomp i[2] i[3] i[4] 14. 

The change to the class definition is 

«select => (repeat (button 4 => 
(Gri +- SELF index. 

dcomp i[2] i[3] i[4] 14. 
SELF draw 2 + i[l]. 
dcornp i[2] i[3] i[4] 14. 
done)) ) 

Of course, we assumed the index was a reasonable number. It is safer to check! We change the 
response to index to first see if the mouse cursor is inside the frame, and, if so, to compute i and 
check to see if i = -1. If it does, then the cursor was inside the frame but was not pointing at any 
token. The completed definition is: 



WRITING SMALLTALK PROGRAMS 

to poly gonmenu i I dp code vee tor 
(<(index => (dp hasmouse =>(GFi f- dp mfindt mx my. ill] = -1 => (1t false) 1ti) 

1tfalse) 
«select => (repeat {button 4 => 

((G1='i f- SELF index) =>(dcomp i[2] i[3] i[4] 14. 
SELF draw 2 + i[l]. 
dcomp i[2] i[3] i[4] l4.done) 

done))) ,_ 
«draw => (repeat (button 0 => (done)) 

repeat (button 4 => (polygon (:) mx my. done))) 
isnew => (~codevector f- 8. 

repeat (button 4 => (G?dp f- dispframe mx 75 my 120 string 100. 
for i to codevector length - 1 

(dp f- codevector[i] chars. dp f- 13). done))))! 

Page 35 

Another kind of menu might use the index of the menu word selected to choose a message to evaluate. 
The message might be an item in a vector of messages. For example t suppose we did not want to 
depend on the order of the polygonmenu to determine which polygon was created. PossiblYt we want a 
menu to be 

hexagon 
triangle 
circle 

Within the repeat-loop of the response to the message select t replacing SELF draw 2+i[ 1] t we might 
have 

GT'((polygon 6 mx my) (polygon 3 mx my)(polygon 10 mx my)) [ill]] eval 

Here i[ 1] is the index into the vector of messages. We select an item from the vector and send it the 
message eval in order to obtain the desired polygon. 

Chapters IV and V contain more information and examples about the classes dispframe and vector. 



WRITING SMALLTALK PROGRAMS Page 36 

A Few Sketching Tricks 

Some of our favorite design programs are presented below. Caution: if you copy these routines, be 
certain that you have a large enough window to accommodate all your typing. Small talk only sees 
text that you can see in the window. You can type part of the routine and add the rest by using the 
Small talk editor. Alternatively, you can retrieve these turtle routines from the disk pack by typing 

filin 'turtlefns'l 

dragon' 

Try 

to dragon length 
(~length f- ,'. 

length = 0 => (® go 10) 
length > 0 => (dragon length -1. ® turn 90. dragon - (length-l ) ) 
dragon -length+ 1. ® turn - 90. dragon length + 1.) 1 

® erase home up. dragon 81 

hilbert space filler 

to hil i a b 
((@='i f- :) = 0 => (® turn 180) 

(i > O=> 
(G?a f- 90. Grb f- i-I) 
Gra f- - 90. @=>b f- i + 1) 

hill hil2 hill)l 

to hill 
(® turn a. hil 0 - b. ® turn a)! 

to hil2 
(® go 10. hil b. ® turn 0 - a. ® go 10 turn 0 - a. hil b. ® go 10)1 

i is the recursion number. Try 

® erase home up I 
hil 41 

squiggles 

Try 

to squig90 
( repeat 
(© home do 200 
(0 go rand / 1000 turn 90 * rand nwd 4)))! 

to rand Crt'ctri f- i * 5)! 

® erase. ®'s width f- 2. (!Pi f- 11. squig90! 



WRITING SMALLTALK PROGRAMS 

Or 

to squiggle i 
(@'>i ~ 13. 
repeat 

(© home. 
do 1000 
(® go 10 turn rand)))! 

® erase. ® 'S width ~ 1. squiggle ! 

Changing ink color and the width of the turtle's trace makes for interesting variations. Try 

® home up erase. ®'s width ~ 1. dragon 8. 
® home up turn 90. ® '5 width ~ 2. dragon 8. ! 

Sketching. We can sketch by telling any turtle to follow the mouse cursor. For example, 

repeat (pokey goto mx my) ! 
or 

repeat (pokey goto mp) ! 

Page 37 

The routine mp returns the point where the mouse is located (that is, it combines mx and my). 
Members of the class point respond to messages x y + - = max min. This class is described in more 
detail in Chapter IV. 

More sketching control is obtained with the mouse buttons. 

to draw 
(repeat 

(button 4 => (pokey pendn goto mp) 
button 2 => (pokey erase) 
button 7 => (done) 
pokey penup goto mp)) ! 

draw! 

Now lines are drawn only when you press the top mouse button (button 4); the bottom mouse button 
(button 2) erases the screen; holding down all the mouse buttons (button 7) terminates the programj 
otherwise, the turtle moves to the cursor without leaving a trace. (Note, there are two versions of the 
mouse device, one having buttons ordered from top to bottom, the other ordered left (top) to right 
(bottom). Henceforth, we will refer to the top-to-bottom version.) 

Variations use the mouse button to control changing the turtle's width and changing turtle's ink color 
to allow selective erasure. 

"Rubber Bands" is another sketching technique in which a turtle expands and contracts straight 
lines, always stretching towards the mouse cursor. The line starts at the point indicated by pressing 
the top mouse button; the bottom mouse button indicates that the line is to be fixed in its current 
position. 



WRITING SMALLTALK PROGRAMS 

to rubberband fp sp 
{repeat 

(button 4 => (@ penup goto r:itfp~mp pendn. 
repeat 

(@ goto ~sp~mp. 
button 2 => (done) 
@ white penup goto fp pendn goto sp goto fp black)))) ! 

Page 38 

Saving the points fp, sp, lets you store the method for constructing the drawing. A simple example of 
storing mouse points is 

~ points ~ stream of vector 10! 
repeat (@ goto points ~ mp)! 

Here, the object points is an instance of the class stream, a method for storing other objects 
(described in detail in Chapter IV). Members of the class stream respond to messages ~ contents next 
reset end. Each time the turtle moves, the new turtle location is stored (f-) in points. The routine 
rubber band can be modified to store each pair (fx, sx), making these lines available for reconstructing 
the sketch. 

to newrubberband fp sp points 
(G?points ~ stream of vector 10. 

repeat 
(button 7 => (done with stream of points contents) 

button 4 => (@ penup goto Ci.?fp~mp pendn. 
repeat 

(@ goto (JJ=>sp~mp. 
button 2 => (points ~ fp. points ~ sp. done) 
® white penup goto fp pendn goto sp goto fp black)))) ! 

(3:::. points ~ newrubberband! 

The sketch can be reconstructed by 

to reconstruct pts 
((G=>pts ~ :. pts reset. 
repeat (pts end => (done) 
® penup go to pts next pendn goto pts next))! 

reconstruct points! 

That is, reset the stream, and repeatedly retrieve the next item until reaching the end. 

Chinese Brush Strokes. Changing the width of the turtle's path as a line is being drawn leaves 
"Chinese Brush Strokes". This class lets you draw variable-width lines as long as you press the top 
mouse button. 

to brush i ® 
(ur@) ~ turtle. 
repeat (button 2 => (® erase) 

button 4 => (® pendn. 
repeat (rID's width ~ (G=>i~ 1 +i mod 8. ® goto mp. 

button 0 => (done))) 
® penup goto mp. @=>i~O.)) ! 



WRITING SMALLTALK PROGRAMS Page 39 

Feather Strokes. This next class varies the thickness of the trace depending on the direction of the 
"Ceather stroke". 

to f eder ox oy nx ny 
(® penup. 

repeat 
(button 4=> (® goto ~ox ~ mx ~oy ~ my pendn. 

repeat . 
(button 0 => (@ penup. done) 
®'s width ~ 1 + abs (3 * (G1='ny ~ my) - oy) I (~nx ~ mx) - ox. 
® goto @=>ox ~ nx Groy ~ ny)) 

button 2 =>(® erase)))! 

to abs x 
((~x ~ :) < 0 => (1to - x) 1tx)! 

Cobwebs This last class uses a second turtle, turt, to Corm cobwebs around the lines drawn by ®. 
The creation of this turtle with the message frame is explained in Chapters IV and Vj the class 
vector is also explained in Chapter IV. A vector is used here as a method for storing ®'s display 
coordinates for use by turt. The class cobweb expects two messages, the color of ®'s ink and the color 
of turt's ink. ®'s width is set to 3 and turt's width is set to 1. Cobwebs are drawn as long as you 
press the top mouse button. Clearly, this sketching method is designed for the color version of 
Small talk. 

to cobweb n i xs ys turt 
(@=>n ~ 10. ®'s width ~ 3. @'s ink ~ :. 
@='turt ~ turtle frame ®'s frame. 
turt's width ~ 1. turt's ink ~ :. 
Grxs ~ vector n. Grys ~ vector n. 
repeat 

(button 4=> 
(xs[ 1 to n] ~ all mx. ys[ 1 to n] ~ all my. 

(J=>i ~ 1. 
® penup goto xs[ 1] ys[ 1] pendn. 
repeat 

(0 = mouse 4=>(done) 
@':>i ~ 1 + i mod n. 
turt penup goto xs[i] ys[i]. 
® goto xs[i] ~ mx ys[i] ~ my. 
turt pendn go to xs[i] ys[i]))))! 

In the black-and-white version of Small talk, type 

cobweb (-3) (-3)1 

store mx in all of vector xs 

store my in all of vector ys 



WRITING SMALLTALK PROGRAMS Page 40 

Paint Brush 

Small talk also has a method for transferring blocks of designs, such as a solid black rectangle, or one 
specially constructed to resemble a gray "color". The basic method of interfacing brush painting to 
Small talk is through the class rectangle. This class definition is available by typing 

filin 'xyfns'l 

A sufficient abbreviated version is 

to rectangle I origin extent 
(<( has => (@at +- :. 

-n- origin t origin + extent) 
<I center => (1t origin + point extent xl2 extent y12) 
« 'S => Cit g eual) 
<I is => ([SIT eual) 
<I paint => (CODE 43) 
isnew => (@aorigin +- .'. (J'=>extent +- .'.))! 

As you can see, this definition includes an escape to machine code (CODE) which supports the 
movement of bits on the display screen. The two instance variables, origin and extent, must be 
instances of the class point, a basic system class defined completely in Chapter IV. The class point is 
a method for working with two coordinates as one entity, for example, as a display point. To create a 
rectangle, type 

~source +- rectangle 
(upper left corner point> 
<extent of area as a point whose parts are the area's width and height>! 

For example, try 

~source +- rectangle point 50 50 point 10 20! width is 10, height is 20 

1'he rectangle does not, as yet, appear on the display. 

Suppose you want to fill the rectangle with "color". "Gray color" is obtained by combining black and 
white dots to form a spatial half-tone which gives the impression of a gray color (like that in 
newspaper print). The number 1 represents a black dot, 0 a white dot. The "paint brushing" works 
by painting "gray" into the source rectangle and then transferring from the source to a destination. 
The destination is designated as a point, the upper left corner of a rectangle that will be made the 
same size as the source. "Gray" is specified as an integer which gets folded into a 4x4 rectangle to 
form a pattern which then gets replicated throughout the area being painted. The folding is 

ABC D ---) 

I A I 
I n I 
I C I 
I D I 

Where A,B,C,D are binary numbers. For example, suppose the desired gray pattern is 



WRITING SMALLTALK PROGRAMS 

1101 
0111 
1101 
0111 

The corresponding single binary number is 

1101 0111 1101 0111 

Page 41 

which in octal is 0153727. Hence, the integer to store as the paint "color" is 0153727. (Note, octal 
numbers in Small talk must begin with the number 0.) Try 

@'='dest ~ mp.! 
SOll,rce paint 12 0153727! 
source paint 0 dest! 
source paint 0 mp! 

Now try 

source paint 4 dest! 
source paint 8 dest 32125! 

Place the mouse cursor somewhere on the screen. 

Store the gray "color" into the source rectangle. 

Copy the source into the destination. 

Copy the source into the mouse point destination. 

Copy the complement of the source orea into the destination. 

The integer 32125 is another "gray" color. This brushes the new 

gray into the destination where the destination is a rectangle the 

same size as the source. 

The number following the message paint is an 'operation indicator. As we have seen: 

o 
4 
8 
12 

copy source to destination point 
copy complement of source to destination point 
source brushes a new gray to destination point 
fill source with a gray 

Each of these four operations has one of 4 modes, obtained by adding the following integers to the 
above operation code. 

o 
1 
2 
3 

store source into destination (paint--do operation as indicated above) 
OR source into destination (merge the l's and D's) 
XOR source into destination (invert) 
AND complement of source into destination (erase) 

Hence, you might try the following variations using objects source and dest defined above. 

source paint 1 dest! Take source and OR it to the destination. 

source paint 2 dest! Take source and XOR it to the destination. 

source paint 5 dest! Take complement of source and OR it to the destination. 

source paint 10 dest 32125! Source brushes the XOR of the gray (32125) to the destination. 

and so on. Some integers you might use as gray include (these are decimal numbers) 

-1 32125 -5161 -21931 23130 15420 5160 -32126 0 11892 -10213 13260 51 -52 

(Recall that the negative indicator sign is typed as (shift)-, that is, press the key marked '-' while 
holding down the key marked 'SHIFT'.) 



WRITING SMALLTALI{ PROGRAMS 

Suppose you want to create a shaped area of gray color in the upper left portion of the screen. 

~ palette +- rectangle point 0 0 point 16 161 

The shape can be a paint brush shape. 

~ brush +- rectangle point 20 20 point 16 16! 

and the tone is one of the numbers representing the gray color. 

~ tone f- 15420! 

The palette is then the mixture of brush and tone .. Design the brush. 

® penup goto brush center pendn. 
@'s width f- 8. 
do 2 (® go 2 turn 90)1 

The combination is 

brush paint 8 palette'S origin tonel 

To spread the paint around, try 

repeat (button 4 => (palette paint 8 mp tone))! 

Try building your own painting system using the Small talk painting brushes. 

Page 42 

BITBLTing. A part of the Small talk system is the ability to move blocks of bits (O's and 1 's) from 
one part of the memory of the computer to another, quickly. The Small talk program that should be 
used with caution is 

to BLT (CODE 41)1 

It requires twelve messages which are, in order: 

1 base address of the destination of blocks of bits 
2 destination raster 
3 destination x 
4 destination width 
5 destination y 
6 destination height 
7 operation code as defined above for paint 
8 base address of the source of blocks of bits 
9 source raster 
10 source x 
11 source y 
12 gray color 

Without too much explanation, we offer the following useful definitions for saving and changing the 
shape and color of the mouse cursor. 



WRITING SMALLTALK PROGRAMS 

Try 

to cursor p buf gray 
(<l loadfrom => 

(~p ~ :. 
BLT 281 1 0 16 0 16 0 mem 60 32 P x P Y 0) 

<l copy to => 
(@='p ~ :. 

BLT mem 60 32 p x 16 P Y 16 0 281 1 0 0 0) 
<I show => 

(@=>buf ~ :. ~p ~ PNT buf. 
BLT 281 1 0 16 0 16 0 p+2 1 0 0 0) 

<l makebuff => 
(@=>buf ~ string 32. 
~ P ~ PNT buf, 
BLT p+2 1 0 16 0 16 0 281 1 0 0 O. 
11' buf ))! 

to PNT (mem 255 ~ :.11' mem 255)! 

Grsource f- rectangle point 0 0 point 16 16! 

@=>savecursor f- cursor mahebuff! A string containing bits representing the cursor. 

source paint 12 -5161! Paint gray color in the source rectangle. 

Page 43 

cursor loadfrom source'S origin! loadfrom requires a pointer to the upper left cornor of 

8 16x16 area (source rectangle upper left corner). 

cursor show savecursor! Restore the cursor to original shape. 

Or try the palette example given earlier. Then say 

cursor loadfrom palette's origin! 

Now 

repeat (button 4 => (palette paint 8 mp tone))! 

The cursor looks like the paint brush! 



THE SMALLTALK WORLD AND ITS PRIMITIVES Page 44 

Chapter III. THE SMALLTALK WORLD AND ITS PRIMITIVES 

Up to this point, we have provided a "try it and see the flavour of what happens" style of 
presentation. In this chapter, and in the next, we modify the style in order to provide a direct 
discussion of the basic Small talk concepts: classes, instances, and message sending and receiving. We 
assume, however, that the reader has examined earlier chapters and is familiar with the special 
Small talk symbol set presented there. The following is a summary of these symbols. 

o o 

=> 

1t 

SELF 

I 

Objects 

look to see if a specific word appears as the next word in the message. 

receive the next value from the message. 

receive the next literal token (single word or words enclosed in parentheses) from 
the message. 

indicates conditional statement: if-clause => (then-clause) else-clause. 

return the following object; the object is "active" in the sense that the next action 
taken is to run this object's class definition and to let this object examine the 
message. 

name used to refer within a class definition to the active instance of a class. 

delimiter used between names of class, instance, and temporary variables in the 
title line of a class definition. 

Every entity in Smalltalk's world is called an object. Objects can remember things and communicate 
with each other by sending and receiving messages. Every object belongs to a class (which is also an 
object). The class handles all communication (receiving a message and possibly producing a reply) for 
every object which belongs to it. 

Examples of objects: 

Class Name 

number 
string 
atom 
vector 
turtle 

Objects 

3 4 3.14159 6.28e-23 
'this is some text' 'here is some more' 
x y file3 number 
(1 3 5 7 9 11 13) 
© 

Message Sending and Receiving 

A message is sent to an object by first mentioning the object and then mentioning the message. 

Messages are simply strings of words separated by spaces. A "word" is either (1) a string of 
alphanumeric characters beginning with an alphabetic character, (2) a string of all numeric 
characters, or (3) one of the special symbols listed above, ®, or any arithmetic operator. 



THE SMALLTALK WORLD AND ITS PRIMITIVES Page 45 

Examples of sending messages: 

Communication Object Message Reply Graphics J\ction 
--------------- -------- ------- ------------------

1. 3+4+5 3 +4+5 12 none 

2. 5 mod 3 5 mod 3 2 none 

3. 'abc'+'def' 'abc' +'def' 'abcdef' none 

4. ® go 100 ® go 100 ® draws a line 100 units long 

5. do 4 do 4 none draws a square with side 
(® go 50 (® go 50 50 units long 

turn 90.) turn 90.) 

6. joe grow 50 joe grow 50 none joe, the box, grows his 
sides by 50 units 

7. joe turn 25. joe turn 25 none joe turns 25 degrees 
jill grow 30. jill grow 30 none jill grows her sides 30 units 

The class of an object can receive messages in a variety of ways. In addition, the user can add new 
ways for messages to be received. Once a message is received, the object can take some action, such 
as returning a message to the sender (reply) or modifying a graphic display (graphics action). 

Notes on the Examples: 

Communication Object Message Reply Graphics Action 

1. 3+4+5 3 +4+5 12 none 

The expression 3+4+5 is handled by sending the reply of the message 4+5 back to 3. First, let's look 
at a simpler message: 3+4. In the class number, we have 

<1+ => (cJ='b ~:. 1t 'result of computing the sum of SELF and b') 

The action taken after seeing the '+' is to receive a value from the message and give it the name b. 
Then return (1't) to the sender a reply calculated somehow. The calculation uses the value of the 
active instance of the class (referred to by the name SELF) as well as the value of b. In the 
simplified example, the value of SELF is 3 and the value of b is 4. (This is usually done using more 
Small talk code as in the first example, but can also be an escape to lower levels of the system, as in 
this example. Such escapes are seen in the definition as CODE <number>.) 

Hence, after seeing the '+', the receiver (3) receives a value (4) and returns the sum (7). 

In example 1, after the object 3 first sees the message +, the action ctr b (-:. tries to rl'ceive a value 
from the rest of the message. In this case, the rest of the message is <1+5. The 4 is a number also. It 
is sent the message +5, which will activate the same line in the definition of number as 3 was using. 
4 sees the + and tries to get a value (5) into ITS 'b'. There is nothing more in the message so 4+5 is 
computed and 9 is returned to 3 as the value of its message. The 3 adds itself to the 9 and returns 12 
to the original sender. All messages in Smalltalk are handled in a similar manner. 



THE SMALLTALK WORLD AND ITS PRJ~ITIVES Page 46 

Communication Object Message Reply Graphics Action 

2. 5 mod 3 5 mod 3 2 none 

In the example above, a message is sent to a member of class number (the literal 5). 'mod' is a token 
which class number can recognize (we'll see how in a bit). It indicates a desire for finding the modulo 
of the number with respect to another number. We need another item from the message, this time a 
numerical value. The part of class number which receiv~s this general message form looks like: 

«mod:::> Cit SELF - (r.? b ~ :.) * SELF I b) 

This means: if, in the message, 

you see 
the word 'mod' 
then 
do the following: 
receive a value from 
the message and give 
it the name b 
then 

return to the sender 
a reply calculated by 

dividing yourself 
by the value received; 
multiplying the result 
by that same value; 
and subtracting this last 
resul t from yourself. 

<I 
mod 

=> 

~b ... :. 

1t 

SELF/b 

b * SELF/b 

SELF - b* SELF I b 

To clarify the right-associative nature of the evaluation, we add the following, somewhat redundant 
explanation of the above message. The uparrow Cit) expresses the action of actively returning some 
value (that is, the returned value is an object that becomes the immediate next message receiver; it 
is able to examine the rest of the message). The value returned is obtained by evaluating the next 
object in the message, here, SELF. Because SELF is an instance of class number, it looks for and 
finds an arithmetic operator (-) and asks to fetch the next value from the message. This in turn 
effects the evaluation of the parenthesized message (Grb~:.). The value received is a number, hence 
the value of b is an instance of number. This instance is still active and is able to look at the message 
and see the multiplication operator (so far, the subtraction has not been completed). Upon seeing 
that multiplication is indicated, a fetch is made for the multiplier. This activates the second 
reference to SELF, a number that sees the division, retrieves the value of b, and completes the 
division operation. The result of the divison operation is the mul tiplierj the result of the 
multiplication is the subtrahend; the result of the subtraction is the value returned. 

Most lines in class definitions resemble this one strongly because Smalltalk is modelled on the notion 
of communication by sending and receiving messages. 

Since everything in Small talk is an object and every object can send and receive messages, 
"expressions" (as in example 1) can be built by simply sending more messages to rctul'llcd values 
which have already been calculated. The messages can be cascaded in a single message stream, or 
determined conditionally as actions 'specified in a class definition. Message streams are typed to 
Small talk by the user or included as part of the definition of a class. 

If a number can answer the question is number affirmatively, then we can easily test the value in the 
previous example (which was given the name 'b') by: 



THE SMALLTALK WORLD AND ITS PRIMITIVES 

«mod ~ ((G1='b +- :.) is number => (ft SELF - b • SELF I b) 
error ~('non-numeric operand')) 

Page 47 

We don't usually bother to do this as it is much better for the action to discover that a value is of the 
wrong class by sending a message which it doesn't understand. 

The object error handles printing the specified message in a Small talk sub-window and letting the 
user investigate the context of the error. 

Communication Object Message Reply Graphics Action 

3. 'abc'+'def' 'abc' +'def' 'abcdef' none 

Class string has a way very similar to number for receiving a message and then doing something. 
Here, the action is string concatenation. 

«+ => (~b +-:. ft 'result of concatenating SELF and b') 

In other words, receive a value from the message and give it the name b. Then return to the sender a 
reply calculated somehow. Again, this is probably done using an escape to lower levels of the system. 

Communication Object Message Reply Graphics Action 

4. ® go 100 go 100 draw a line 100 units long 

The message to the turtle to go 100 units (100 "dots" on the display screen) is received in a manner 
similar to the second ex"ample. A turtle actively returns itself, thus permitting the cascading of turtle 
messages. 

« go ~ (@="dist +- :. 'Somehow mall.e turtle go dist' 1t SELF) 

Comm u nica tion Object Message Reply Graphics Action 

--------------- -------- ------- ------------------
5. do 4 do 4 none draws a square with 

(@ go 50 (® go 50 side 50 units long 
turn 90.) turn 90.) 

"Control Structures" in Small talk work the same way. The object do receives its message: 

@=>N +- :. GPexp +- g. 'method for doing exp N times' 

The g means receive the message "literally". We use it here because we don't want the value of © go 
50 turn DO (which are actions by the turtle), but rather its literal form (which is a request for actions 
by the turtle) to be iterated over and over. We do want to calculate a value for the repetition number 
to allow expressions such as: 

do a+b*5 ( ... ) 



TIlE SMALLTALK WORLD AND ITS PRIMITIVES 

Communication Object Message 

6. joe grow 50 joe grow 50 

Reply 

none 

Graphics Action 

joe, the box, grows his 
sides by 50 units; a larger 
box is displayed 

Page 48 

This is a typical message to a graphical object. We will show both the receipt of the message and its 
method: 

«grow => (SELF undraw. 
Grsize +- size + :. 
SELF draw) 

When grow is seen, we 'undraw' ourSELF using the old size, compute the new size by adding a new 
value received to the old size, and tell ourSELF to 'draw' using the new size. 

Communication Object Message Reply Graphics Action 

--------------- -------- ------- ------------------
7. joe turn 25. joe turn 25 none one box on screen tilts 25 degrees, and 

jill grow 30. jill grow 30 none then another box grows 30 units 

Here we see a bunch of send messages done in sequence. The period '.' terminates a message and 
hence separates two message communications. In many cases, the period is not needed, as the 
message receiver will be able to determine how much of the message to examine. The period does, 
however, serve the syntactic purpose of disambiguating the end of a message. 

The order of communications is done sequentially from left to right (as with English text), so: 

joe turn 25. 

is done before 

jill grow 30. 

The Notion of Class 

The basic class definition deals with just two ideas: 

1. The notion of creating objects which have independent existence and memory. 

2. The control of the flow of evaluation by sending and receiving messages in various ways. 

For example, a send message is a control action because flow of control is suspended in the sender 
and resumed in the receiver. A reply suspends the context in which it is found aIld resumes the 
object which originally sent it a message. Send messages may he orderc<l in time or be iIldifferent to 
sequence. "Conditional branching" chooses one path to follow from many depencling on a test of some 
kind. "Hepeats" of various kinds cause evaluation to happen over and over; they may be terminated or 
restarted. 

The independent state and message properties of Small talk make it possible to construct arbitrary 
structures or control structures. 



TI-IE SMALLTALK WORLD AND ITS PRIMITIVES Page 49 

Here are some of the abilities which have alreapy been built for you to use. In the table below, the 
word joe is the name of an object that has been created. In creating a Small talk object, an entry is 
formed in a dictionary; each entry has two parts--the name of the object and the value of the object. 
Typically, the object has value as a class or as an instance of a class. As explained in previous 
chapters, class definitions have information known locally t.o the class as a whole (class variables) or 
to each instance of the class individually. Information known locally to each instance is either 
retained as part of the description of the instance (instance variables) or exists only when the 
instance is actively doing something (temporary variables). Dictionaries exist at each level of 
definition and activation of classes and their instances: there is a "global" dictionary known to all 
objects, one for each class, one for each instance of each class, and one for each object currently 
active. 

Message Form 

joe b c 

joe 

@=>joe 

@>( a b ... J 

«grow 

o 
o 

# 

Meaning 

Send the object joe the message b c. Any message can be terminated with a period (.), 

There will always be a reply of some kind. 

Send the object joe an empty message. Usually the reply will be just a reference to joe's 

value. 

The "hand", GJ-, says consider the next token literally--i.e., the literal word 'joe' instead 

of the object joe. A literal word is simply a string of characters; an object, however, 

refers to its value 8S 8 class or class instance. Here G? is an object being sent the message 

joe, and the reply is the literal word 'joe', 

The reply is the literal chain (or vector) (a b ... ). 

look «0 in the message to see if the token (grow) is literally there. The reply will be 

'not-false' if the token grow is literally there and the next thing in the message will now 

be available for scrutiny. Otherwise, the reply will be 'false' and whatever was there is 

still available. 

The reply is the value of the next expression in the message. 

The reply is the next literal token in the message. 

Same as g except that the current place in the message will be retained reganUess of the 

result of gathering the next token. This allows the receiver to "peek" at the message. 

The reply is a reference to the meaning (class or class instance) of the next expression in 

the message. So, for example, if we have G?func f- IIhp, then the value of func is 8 

reference to the meaning of hpj i.e., if hp is a class definition, then func becomes another 

name for the definition hp. lIenee, mentioning func is identical to mentioning hp. 

The user can construct other ways to receive messages from these primitives (such as "receivers" 
which check the class of the received object, and so on). 

1l 3+4 

a~(bJ c~(dJ ... 

r('ply (t) to the sender the value of '3+4' which is 7; the 7 can now eXilll1i!1e the current 

message. 

if a evaluates to 'not-false' then evaluate b and continue evaluation after the next 

enclosing parentheses. Otherwise evaluate C; if it replies 'not-false', evaluate d and 

continue evaluation after the next enclosing parentheses. Otherwise ... 



THE SMALLTALK WORLD AND ITS PRIMITIVES Page 50 

The conditional expression a ~ (b) may be used anywhere in Smalltalk. Don't forget about the 
"escape" from the 'not-false' branch I If you would like to deliver one value or another depending on a 
condition, enclose the expression in '( ... )'. Parentheses in Small talk serve a grouping or delimiting 
function: they delimit the 'then-clause' from the rest of a conditional expression; they delimit 
message parts to disambiguate or order the evaluation of the messagej they group expressions for 
iteration using repeat or do; in general, they group a sequence of words together as a token that is 
received when the symbol g is used. 

3+(a(b ~ {4} 5} 

will evaluate to 7 or 8, depending on the values associated with a and b. Here the outermost set of 
parentheses is used to order the evaluation of the message; the innermost parentheses define the 
limits of the 'then-cluase' for the conditional st.atement. Some examples of conditionally structured 
evaluation include: 

evaluating a or b but not both a ~ 0 b 
letting evaluation of c depend on a or b 
letting evaluation of c depend on a and b 

(a => () b) ~ c 
(a => (b)) ~ c 

repeat ( ... ) 

done 

done with 3 + 4 

again 

for 

do n( ... } 

The contcnts of () will be re-executed until a 'done' is encountered (or if you hit 'ESC'). 

The escape will be from the innermost loop in which the 'done' is enclosed. 

Will cause the most recent repeat-loop to be exited. 

Will cause the most recent repeat-loop to be exited with the value 7 as a reply. 

Will restart the most recent rcpeat-Ioop in which the again resides. 

An iteration control feature included in the basic Small talk system. 

for i ..- 2 to 50 by 4 do ( ... ) 

Contents of ( ) will be re-executed until the value of index i. starting at 2 and stepped by 

4 each time, exceeds 50. In general, the '..-' part may be omitted and the default index 
start is 1; the 'by' part may be omitted and the default step is 1. If the 'to' part is 

omitted, the end condition value is the same as the start index value. 

The contents of ( ) will be re-executed until the index counter N, starting at 1, equals n 

(i.e., for n ..- 1 to n by 1). The counter N is not available as a number to use inside the 

parentheses. 

Objects are created in one of two ways: 

1. Creating a class 

to (class name) (temporary variables) I (instance variables) I (class variables) 
( messages and responses)! 

2. Creating an instance of a class 

(if> (name) ~ (value)! 

where (value) is either the result of activating a class or activating an instance. 

Other available (basic) abilities are described in subsequent sections. 



THE SMALLTALK WORLD AND ITS PRIMITIVES Page 51 

The User Task 

Small talk has a USER task which is evaluated continually. You can see the message that is evaluated 
by typing 

~t ~ GET USER G?DO. ! 
t print.! 

Get the USER task. 

Ask to see the message. 

In a Small talk system that does not include the dialog window class, the reply is 

( cr. read eval print) The reply is a vector. a request to evaluate a typed message. 

The task shown above effectively: 

(1) prints a carriage return in the Smalltalk dialog window (cr); 
(2) prints the Interim Dynabook prompt c-haracter (a.), reads characters from the keyboard 

until the <do it> character (!) is typed, 
(3) assembles the characters into a list we call a vector; 
(4) this vector is then an object that receives the message eval print; after seeing (<() the 

token eval, it evaluates its contents as a message; and then 
(5) whatever object the vector returns can receive the remaining message print. Some object 

is always returned, possibly the object nil (an object without value). The default object 
returned from running (activating) a class is the class instance (referred by the name 
SELF). 

Some Comments. The routine read expects to print the characters typed at the keyboard in a dialog 
window whose name is disp. Vectors only respond correctly to the message eval when the last item in 
the vector is nil; hence the length of a vector containing Smalltalk message tokens ("code") is one 
item longer than the number of message tokens in the vector. 

Effect of the Message Print and the Period. In order to fully understand' the results of messages 
sent to Smalltalk, it helps to understand the' implications of the print message. As an example, if you 
simply type a number or an arithmetic expression, without explicitly telling the resulting number to 
print itself, the number will, in fact, print. Try 

3+4! 

Now try 

(3+4) print! 

3+4.! 

(3+4) print.! 

Reply is the number printed. 

Reply is the number 7 printed twice without an intermediate space. 

Note the period. Nothing seems to happen. The last message evaluated in the code 

vector is a prriod; t.he period retllrns itself as the reply; it t1H:11 receives the 

message print and does nothing. 

The number 7 sees the message print and prints itself in the dialog window; the 

next token is a period; the period receives the print message (from the USER task); 

hence only one 7 prints. 

This meallS that any object obtained as a result of evaluating a message at the top-level of Small talk 
will be sent the message print unless the original message is terminated with a period. If the 
resulting object does not respond to the message print, Small talk runs a "dummy" class named print 
which does nothing. Unexpected results might occur if the object does respond to the print message 
and the receipt of this message was not intended. 

If you look at the USER task in a Small talk system with the dialog window class running, you will see 
the following (code) vector: 



THE SMALLTALK WORLD AND ITS PRIMITIVES Page 52 

(sched map Gr(Grtask ~ vec[i]. apply task t2 @=>(run) in GLOB)I 

This USER task assumes that there is an object named sched (an instance of the class obset), and that 
that object contains references to other objects (for example, dialog windows and/or font windows), 
each of which should receive the message run each time the USER task is evaluated. The usual 
response to the message run is to check to see if there is any keyboard input (1tbck) and, if so, to 
evaluate the message (cr. read eval print). 

More information about this task is provided in the Chapter V section entitled Scheduling Methods: 
sched and window. 

Active and Passive Return. We mentioned that the result of evaluating a message is a Small talk 
object that can receive the message print, unless a message terminator (a parenthesis or period) is 
used. Here we are saying that the result of evaluating a message is some vahle, an object that might 
be able to further examine the message. 

This ability to let an object further examine the message depends on the method used to return it to 
the message sender. There are two methods for returning a value: passive return and an active 
return. The former is the default case--every evaluation results in some object whose value is, 
perhaps, nil. That object is returned to the message sender. Because it is returned passively, the 
object can not further examine the remaining message, if any. 

The method of active return requires an explicit request to return the object. The Small talk symbol 
up arrow (1t) is this explicit request. The form is 1t <value>; the <value> is an object that can 
examine the rest of the message. All numbers return actively; the class turtle returns its instance 
values actively (hence their ability to cascade messages). By default, instances return themselves 
passively unless the definition includes 1t SELF as a response to each message. The class vector 
receives the message eval and actively returns the result. Hence, the result of read eval is an object 
that can receive the next message: print. 



THE SMALLTALK WORLD AND ITS PRIMITIVES Page 53 

The Form of Presentation of Smalltalk Classes In the next chapter, we present 
definitions for the basic Smalltalk system: the classes already defined for general use, aids for 
interacting with Smalltalk and with the Small talk file system. Chapter V contains examples of 
applications of these classes. The basic Small talk classes will be presented by showing how instances 
of each class are created anJ what happens when messages are sent to a class instance. In most cases, 
the messages are annotated; in some cases, the actual definition of the class will be shown. For 
example, a version of the class box defined in Chapter II can be presented as: 

box The name of the class. 

(3=» joe ~ box! Creating an instance of tho class. 

I'm a box: x 256 y 300 size 50 tilt 0 

joe is ?! What is the instance type. 

box 

joe is box! 
box 

joe's x ~ 200! 
200 

joe's x! 
200 

joe's y ~ 250! 
250 

joe's Y! 
250 

joe's size ~ laO! 
100 

joe's size! 
100 

joe's tilt ~ 32! 
32 

joe's tilt! 
32 

joe draw! 

joe undraw! 

joe grow 3+4! 

joe turn 20* 2! 

joe move 100 200! 

'Not-false' is the same as 'true'. 

Assigning meaning in joe's context. 

Querying joe's context. 



THE SMALLTALK WORLD AND ITS PRIMITIVES 

A b brevia tiona 

In order to present these examples a bit more concisely, we need to adopt some abbreviations. 

We Abbreviate 

a property of a class instance 
expected value (any type) 
expected number value 
expected nonnegative integer value 
instance of a class named classname 
name of an object 
expected string value 
expected message stream 
forms involving [ ] 

By 

<property> 
<value> 
<number> 
<integer> 
<classname> 
<name> 
<text) 
<message> 
<selection> 

Page 54 

We can further simplify the presentation of classes if some class conventions are adopted, such as: all 
classes will respond reasonably to the following messages: 

is 1 
is < classname > 
print 
'S <property> ~ <value> 
's <property> 

replies with < classname > 
replies < classname> or false 
prints in standard format 
makes <property> stand for the <value> 
replies with <value> of <property> 

Class box then can be described compactly as: 

box 

~joe ~ box! 
Draws a square at x = 256, y 300, size or each side 60, and 

angle of tilt = O. 
joe draw! 

joe undraw! 

joe grow <number>! joe erases, makes himself bigger by <number> units, and redraws. 

joe turn < number>! joe erases, turns himself by <number> degrees and redraws. 

joe move <number> <number)! joe erases, changes his coordinates, and redraws in a new location. 



THE SMALLTALK WORLD AND ITS PRIMITIVES Page 55 

A Small talk Class Example 
Link is a typically complete form which we present as an example of the conventions for presenting a 
class definition. It is a structure familiar to LISP users: pairs of objects which may in turn also be 
pairs. Instances of link receive and respond to the following messages. 

link init! 

C;-pair +- link GT'john ~mary.! 

pair head! 
john 

pair tail! 
mary 

S~t up help and mail box information. 

Create an instance whose ~ame is pair (or, as in LISP, "cons"). 

Ask for the value of instance variable h (or, as in LISP, the "car"). 

Ask for the value of instance variable t (or, as in LISP, the "cdr"). 

~triangle f- pair + ~ jim.! Create another instance whose head is the instance pair and whose tail is 

""'jim. 

triangle print. I Show the value of triangle. 
(( john. mary) . jim) 

triangle is 1! triangle is an instance of what class? 

link 

pair lprtl Provide some helpful information about the instance pair. 

I am a link. 
I consist of (john. mary) 

The form of the class definition is 

to link a,l h t I helpprint mailbox 

( <1+ => (1t link SELF: ) 

<lhead => (1t (<If- => (~hf-:.) h)) 

<ltail => (1t (<If- => (((;=-tf-:.) t)) 

<llprt => (helpprint SELF) 

<[print => (dispf-'{'. h print. dispf-'.'. t print. dispf-')'.) 

<ii,s => (<i link => (1t Grlin}l,) <f ? => ('It GTlink) g. 1t(alse.) 

<['S => (ura f- g. 1t (<I f- => (a f-:) a eval)) 

<linit => (Grhelpprint f- # hp. GT'rnailbox f- 'no mail'.) 

isnew:=> (Grh f- :. @-=>t f- :.))! 

to hp ob 

(~ob f-:. cr. disp f- 'I am a '. (ob is ?) print. 

cr. disp f- 'I consist of '. ob print.)! 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 56 

Chapter IV. BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES 

The Basic System Classes 

See the end of Chapter III for an explanation of the method for presenting the basic Smalltalk system 
class definitions. 

Atoms 

Small talk atoms are unique tokens which are usually associated with Small talk objects in dictionary 
entries. If a user attempts to create an atom which will print the same as an already created atom, . ' the system WIll force the two to be the same. 

atom 

GFa If- atom <text >! 

a chars! 
'b' 

a If- <value>! 

a! 
b 

b! 
<value> 

a eval! 
<value> 

a = <name>! 

The value of a is the atom b. 

Reply is the new name which prints as <text>. 

Reply is the <text> of names value. 

The <value> is associated with the name b 

(i.e., this is indirect reference to the name b). 

The value of a is b. 

The value of b is <value>. 

Indirect reference--a eval is the value of a which 

is b, and the value of b prints, which is <value>. 

Value of a if 'not-false', 'faIse' otherwise. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 57 

Arithmetic 

There are two classes for handling numerical operations: number and float. They are compatible and 
interchangable. An operation containing both classes will have a reply in the class of the first object 
(that is, in the class of the object being sent the message). 

10018.0! 
12 

100.018! 
12.5 

The value range of number is 

-32768 to 32767 

that of float is (where the form 1.2e3 denotes 1.2 times (10 to the power 3)) 

-99999.9999ge4095 to 99999.9999ge4095 

An integer beginning with the digit 0 is an octal number; all other numbers are base 10. float must 
begin with a digit from {O, ... , 9). float must have an embedded period, numbers must not. In 
addition, float may be expressed in scientific notation as a product of a power of 10. 

number 

Good Forms 

123 
-123 
0.0 
355.0 
6.28e-23 

(/}='a +- 128! 
128 

a + <number>! 

a - <number>! 

a II< <number)! 

a I <number>! 

a wad < number)! 

- a! 

a = <number>! 

a * <number>! 

Bad Forms 

.0 
355. 
28e-23 

Value of a is 128, a number. 

Reply is the numeric sum of the two objects. 

Reply is the numeric difference of the two objects. 

Reply is the numeric product of the two objects. 

Reply is the integer quotient of the two objects. 

Heply is the integer remainder. 

Reply is the numeric negative of a. The unary minus 

is typed holding down the <shift> key and pressing -. 

Reply is the value of a if 'not-false', otherwise 'false'. 

Reply is the value of a if 'not-false', otherwise 'false'. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES 

a < <number>1 

a ~ <number>! 

a > <number>1 

a ~ <number>! 

a 0 <number>! 
aEJ( number>! 
alt] ( number> ! 
a[](number >! 
a[) ( number> ! 

a min< number> I 

a max < number>! 

JReply is a if 'not-false', 'Calse' otherwise. 

'Reply is a if 'not-Calse', 'Calse' otherwise. 

Reply is a if 'not-Calse', 'false' otherwise. 

Reply is a if 'not-false', 'false' otherwise. 

Reply is the bitwise logical operation oC the two values. 
logical AND 

logical OR 

logical XOR 

LSHlFT by the <number> 

Reply is the minimum of the two values. 

Reply is the maximum oC the two values. 

Page 58. 

In the above, <number> can be an instance of number or of float, but the result is the proper number 
result. 

float 

~a ~ 3.14159! 
3.14159 

@="a ~ float <number>! 

a + <number>! 

a - <number>! 

a * <number>! 

a I <number>! 

- a! 

a = (number>! 

a ;t! (number>! 

a ( <number>! 

a ~ (number>! 

a > (number>! 

a ~ <number>! 

a ipart! 

Reply is the noating point equivalent of the number. 

In the following, reply is the proper noating point result, but 
<number> can be an instance of number or oC float. 

Reply is the integer part oC the noating point number; can 
not be in scientific notation. 

E.g., 27.3 ipartl Reply is 27. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES 

a (part! 

a ipow (number>! 

a epart «(loat>! 

Reply is the fractional part of the floating point number; can 

not be in scientiCic notation. 

E.g., 27.3 fpartl 'Reply is 3. 

Reply is the result of a to the power <number>. 

Reply is X where X ipow <float> = a • 

E.g., 27.0 epart 3.01 
Reply is 3.0. 
This is used for printing floating point numbers. 

Page 59 



BASIC SMALLTALK SYSTEM CLASSES. AND UTILITIES Page 60 

Turtles for Drawing 

A turtle is a method for drawing on the display screen. The class turtle was introduced earlier in 
Chapters I and II. Turtles, like ®, can receive any number of cascaded messages. For example, 

® penup goto 200 300 pendn! 

is equivalent to: 

® penup. 
® goto 200300. 
® pendn! 

However, there is no cascading after the '8 message. A turtle's width can vary from 0 to 8 dots. Say: 

®'s width ~ 4. ® go 1 DO! 

turtle 

~® ~ turtle frame < dispframe>! 
GP® ~ turtle! 

® home! 

® erase! 

® up! 

® penup! 

® pendn! 

® black! 

® white! 

® xor! 

® go (number>! 

® turn (number>! 

® goto (number> (number>! 

© goto (point>! 

® ~ <text>! 
® ~ (integer>! 

Turtle's range is defined by the boundaries of the dispframe. 

Turtle's range is the entire display screen. 

Picks up pen, takes ® to geometric center 

of range, faces upward. 

Erases range. 

Faces turtle towards .top of display screen. 

Any travelling will not leave a trace. 

Any travelling will leave a trace if ink is different 

from background. 

Sets ink to black. 

Sets ink to white. 

Trail exclusive-or-ed with other stuff on screen, if width: 1. 

Travels in current direction a distance <number>. 

Turns clockwise <number> degrees from current direction. 

Travels to x = <number>, y = <number>. 

Travels t.o the place represented by the point and 

does not change its direction. 

Prints the text (or the character represented 

by the Ascii code <integer» at the turtle's 

current location, with its direction, width and 

color. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES 

The False Class 

is a method for handling boolean operations. 

false 

@=>bool (- false! 

bool => (message»! 

bool or (message>! 

bool and '(message>! 

bool ( (message>! 

bool = (message>! 

bool > (message>! 

Since bool is 'false' J gathers up the message without 

evaluating. 

.Reply is result of evaluating <message>. 

Evaluates message; reply is SELF. 

Evaluates message; reply is SELF. 

Evaluates message; reply is SELF. 

Evaluates message; reply is SELF. 

Page 61 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 62 

Sequential Dictionaries 

include the classes: vector, string, obset, stream, file. 

Vectors and Strings 

are both organized like beads on a string. Their only difference is the way they respond to: 

is 1 

and that a vector may have any Smalltalk object as a bead while string may only contain whole 
numbers ranging from 0 to 255. String objects are thus not absolutely necessary (since vector beads 
can contain any Smalltalk number), but are very useful as a compact way to store textual 
information. The characters you type to Small talk are first captured as a string object and the textual 
information which Smalltalk shows you is held as a string object belonging to a dispframe object. To 
save space, the messages of both these classes will be shown together, repeating messages in the 
separate columns only when expected values and replies differ. 

vector 

G1="a f-- GT{this is a vector literal)! 

(this isa vector literal) 

ara f-- vector < number>! 

a[<number> ]! 

a[ <number:lb> to <number:ub> ]! 

a <selection> f-- <value>! 

a < selection> f-- <value> <selection>! 

a < selection> f-- all < value>! 

a <selection> find first <value>! 

a (selection> find first non <value>1 

string 

Gra f-- 'this is a string literal'! 

'this is a string literal' 

@=oa +- string < number>! 

Objects of the class are created with initial length <number>. 

Reply is the value of the bead found at position <number> Note that 

the first position is 1, not O. 

Reply is a 'subvector' or 'substring' of beads whose values are copied 

starting at <number:lb> (lower bou"nd) and ending with the value at 

<number:ub> (upper bound). We call either of the forms involving 

[], [<number>] and [<number:lb> to <number:ub>], a <selection>. 

If the <selection> is of a single element, the value of the bead found at 

position <number> becomes <value>. Otherwise, <value> is expecled to 
be a string of beads of the same class as a and of any length. The 

<selection> is replaced by the <value>. 

The form <value><selection> is a method for obtaining a string of beads 

of the same class as a 

Copies the <value> into each element in the selection. This was used in 

the sketching example in Chapter II: cobweb. 

Reply is the first bead position <number> where a[ <number>] is the 

same as <value> if a[ <number>] is found in the range of the 

<selection>, 0 otherwise. 

Similar to previous, except elements of <value> are ignored. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 63 

a <selection> find last <value>! 

a <selection> find last non <value>! 

a eval! 

a lengthl 

a + <vector>! 

a + <string>1 

a map <vector>! 

a = <string>! 

Reply is t.he last. bead position <number> where a[<number>] is t.he 

same as <value> if a[<number>] is found in t.he range of the 

<selection>, 0 otherwise. 

Similar to previous, except. elements of <value> are ignored. 

Vectors only. Treats the contents as Smalltalk code. Evaluation is in 

current context; last item of vector must. be nil. 

Reply is the number of bead positions 

Joins copies of a and <vector> «string» into 8 new vector 

(string). 

Vectors only. The value of <vector> is sent as a message to each of 

the beads of a. 

Strings only. Reply is <string> if a is identical to <string>; otherwise 

false. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 64 

Obsets 

Obsets are "bushel baskets" which can hold things for you. They can be used like mathematical sets 
(having only unique values) or like "bags" (being able to contain duplicate values). Instances of obset 
are frequently used as schedulers for the objects which they contain. For example, the display windows 
of various kinds are all contained in an obset called sched. An instance of obset owns its own instance 
of vector and provides a method for automatically expanding the vector, storing objects in the next 
available position in the vector, and removing objects. 

obset 

C:V-ob ~ obset! 

ob ~ <value>! 

ob delete <value>! 

ob add <value>! 

ob unadd! 

ob vec! 

ob map < vector> 

An instance of obset is given the name ob. 

If the <value> is not already in ob it will be added, otherwise ob stays the 

same. This addition method (set union) depends on checking for 

equivalence of the values in ob. Since ob actually contains pointers to the 

Small talk objects, large integers of the same value will typically not be 

equivalent, as their pointers Bre not equivalent. 

Assuming there is only one occurrence of <value>. it will be deleted if in 

obj if there arc multiple occurrences, only the first will be deleted; reply 

is 'false' if there is no occurrence. 

The <value> is added whether or not one already exists there. 

The most recently added <value> will be deleted. add and unadd can be 
used to implement a "stack". 

Reply is a vector containing all the objects of ob. 

Evaluates the <vector> n times where n = the number of objects in ob's 

vector. 

An obset is one method of using vectors. Objects in an obset are actually stored in a vector that is 
locally bound to the instance of the obset. The vector instance is named vec; i is the index counter 
used in replying to the message map. Hence, if we wanted to send every object in the obset sched the 
message run, we would say 

sched map G:J=>(vec [i] run)! 

where vec[i] refers to the ith object in the obset. It is also possible to refer to each object by the 
object each so that the above message could be written as 

selted map G.i-"{ each run)! 

Many users add their own version of intersection, union, and so on, to the definition of obset. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 65 

Streams 

Streams are similar to the BCPL programming language method for storing and retrieving 
information. A pointer, i, is kept to the current stream item; pointer L keeps track of the last 
storable item. The actual storage method is either a string or a vector bound to the instance of 
stream. We use double quotes" to indicate optional forms. 

~s f- stream! 

~s f- stream of vector < m>! 
~s f- stream of string <m>! 

Default is to create storage in a string of length 

10; i=O; L= 10. 

Create storage in a vector of length m; i=O; L=m. 

Create storage in a string of length m; i=O; L=m. 

~s f- stream "of vector (m>" "from (integerl >" "to (integer2>"! 
Grs f- stream "of string (m>" "from (integerl>" "to (integer2>"1 

S f- <value>! 

s contents! 

s next! 

s reset! 

send! 

Initially, s is either a string or veclor referenced starling before the 

first item (i=O) up to the last storable position (L= length of the 

string or vector). Or, optionally, s may be a different length string 

or vector (m) whose contents arc referenced beginning with an index 

other than 0 (i= <integerl> - 1) up to an index other than the 

actual string or vector length (L = <integer2». 

Stores in the next (~i~i+1) item of the stream, expanding the 

length of the stream if i=L. 

Returns the stored items (from the first up to the ith item). 

Returns 0 if i=L; otherwise, returns the i+ lst item and increments 

i. 

Resets i to 0 (points to the beginning of the stream) 

Returns 'true' if i is the end of the stream (i=L)j otherwise returns 

'false' 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 66 

Files 

The Small talk file system provides for instanc.es of the class directory divided into files. A file is 
found in a directory by its file name (fname). A file name must be an instance of the class string. 
Each file has in its local context a character pointer (bytec) and a 512-character string as an ito 
buffer (sadr). Each file also knows the directory in which it can be found (dirin.st). 

Initially, there are two directories: dpO, dpl. However, only dpO should be used unless the Interim 
Dynabook is equipped, for example, with two Diablo model-31 disk drives or with a Diablo model-44 
disk. When creating a file instance, you actually send a message to an instance of the class directory. 
Effectively, this sets the instance of the directory as the value of curdir. If the directory reference is 
omitted, Small talk runs the class file with curdir equal to nil, indicating that the directory should be 
the default name stored as defdir. Unless specified, defdir is defaulted to dpO. To modify this, type 

(directory> use! 

In the following, "<directory>" is therefore optional. 

Creating File Instances 

~fi ~ <directory> file (text> old! 

~fi ~ (directory> file (text> new! 

G1="fi ~ (directory> file (text>! 

(directory> file (text> exist! 

Deleting a File 

(directory> file (text> delete! 

Renaming a File 

< directory> file < text> rename < text> I 

Loading and Saving Entire Small talk Context 

(directory> file < text> loadl 

(directory> file (text> save! 

Interrogating the Directory 

( directory> list I 

Reading and Writing a File 

Searches for a file previously defined in the 

directory; returns 'false' if not found. 

Creates a new file or returns 'false' if a file with 

the same name already exists. 

First attempts to find an old file; if it fails, then 

creates a new file. 

Answers the question, does the rile already exist 

in the directory? 

Deletes the file if it exists; returns 'false' otherwise. 

Will print the names of all the files on the directory. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 67 

It is possible to read and write strings, words, or characters from a file. A word is simply two 
characters on even character boundaries, while a string is a set of n characters. In the following, 
local context for a file instance includes: 

leader 
curadr 
nextp 
sadr 
by tee 
numeh 

pagen 
snl,sn2 
version 

fi ~ (integer>! 

fi ~ (text>! 

fi next! 

fi next word! 

fi next word ~ <number)! 

fi next into < text> I 

fi flush! 

Addressing a File 

fi skipnext <number>! 

fi end! 

disk address of page 0 
disk address of current page 
disk address of next page 
512 character string 
character index into sadr 
number of characters on the current page, must be 
512 unless current page is the last page 
current page number 
unique 2 word serial number for the file 
version number, currently always 1 

Store a number (Ascii code). 

Store each character in the string onto ri. 

Read the next character from fi (8 bits). 

Read an integer from fi (16 bits). Adjusts character pointer to 

retrieve the logical next word. 

Write the number into the next word of ri. 

Read enough characters from fi to fill the string <text>. This is 

essentially, but not identical code as, 

for j to < text> length do « text>[j] +- fi next) 

Write out sadr (the i/o buffer) onto ri. 

Relatively positions a file. 

Same as £i set to read pagen by tee + :. 

Helurns file instance if pagen, bytec points to the end of the file; 

returns 'false' otherwise. 

fi shorten to (integer) (number>! Set nextp to 0, pagen to integer, by lee and numch to number. 

fi shorten to here! 

fi print! 

fi reset! 

fi set to write <integcr><nwnber)! 

fi set to read < integer> (number>! 

fi set <integer><number>! 

Same as fi shorten to current file location, i.e., pagcn bylec. 

Prints the file name. 

S:lll1e as fi set 1 0 (point to beginning of file). 

Sets byt.l'c to number; pagen to integer; allocates new pngl's if try to 

go beyond the end of file. 

Same as write but will stop if try to go beyond the end without 

allocating new pages. 

Same as set to read. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 68 

fi set to end! Same as fi set to read 037777 0 (i.e., forces end of file). 

Files Open List 

A list of file and directory instances currently being referenced for each directory is kept in a "files 
open list". 

< directory> print! Prints the entry names oC each open Cile in the directory. 

< directory> flush! Write out the current state oC each file in the Cilesopen list. 

< directory> close! Flush the directory and reset the filesopen list. 

Individual files can be added or removed from the files open list. 

< directory> remember <value>! 

< directory> forget <value>! 

Ii remove! 

Ii close! 

Remove file from the Ciles open list. 

Remove file Crom the files open list and flush the bittable and the 
current page. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 69 

Dispframe: The Basic Window Class 

Text Display Routines 

Small talk has a multiple-window display capability which allows viewports composed of text, pictures, 
musical notation, and so on, to be created. The main method for creating and editing windows of text 
is to create instances of the class dispframe. These display frames are rectangular areas on the 
screen. They are specified with five values: an upper left corner horizontal position x, a width, an 
upper left corner vertical position y, and a 'height. A fifth value specifies either an instance of class 
string or creates the instance by including the words string (integer>. Hence 

~df ~ dispframe 16 256 16 256 string 400! 

gets you a rectangular area on the upper left portion of the display screen. The upper left corner is 
16,16; the width and height are 256; and a string of 400 characters (whose local name is buf) serves 
as the text buffer. This buffer is altered by +- (store characters) and by scrolling in the window. Or, 

Gref ~ dispframe 3 100 50 200 ' , ! 

gets you a rectangular area at upper left corner 3,50 with a width of 100 and height of 200. The 
buffer is a string with length 1. The instance variable last is set to O. It is possible to create a 
dispframe by stating the actual text of the frame, i.e., 

(Jpgf ~ dispframe 3 100 50 200 'hello there'! 

However, the text will not show because the index into the text string is last = 0, indicating that no 
characters are to be shown. 

There are actually two entities associated with a display frame: a frame and a window. Clipping and 
scrolling are done on the basis of window boundaries. Window boundaries are intersected with the 
physical display screen. The frame may be smaller or larger than the window and smaller or larger 
than the physical display screen. Frame boundaries are the basis for word-wraparound. 

Presently, dimensions defining frame and window boundaries are given the same values upon creating 
an instance of dispframe. The following are local bindings (instance variables) for each instance of 
the class. 

winx 
winwd 
winy 
winht 

frmx 
frmwd 
frmy 
frmht 

buf 
last 
lstln 
mark 

charx 
chary 

window upper left corner x 

window width 

window upper left corner y 

window height (note, automatically increased on creation of the instance 

to make the window extend to the bottom of the display screen) 

frame upper left corner x 

frame width 

fralile upper left corner y 

frame height 

string buffer 

pointer to the current la~t character stored in buf 

pointer to the character in buf that begins the last line of text ill the frame 

pointer to the character in buf representing the last prompt output 

right x position of the character pointed to by index last 

top y position of the character pointed to by index last 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES 

reply 

justify 

font 

editor 

indicator for frame and window control (see below) 

toggle for right justifying the contents of the window 

o means no justification;· 1 means justify on frame boundaries 

font for displaying characters 

if nil, then default font used; otherwise, the value of font is 
a string defining the font to be used (see below) 

available storage for associating a unique editor with any display frame. 

Page 70 

The text buffer buf contains only characters that can be displayed within the window boundaries. 
Scrolling occurs when an attempt to store more characters causes overflow of the bottom of the 
window. In this case, the first line of characters (where a line is defined according to frame 
boundaries) is stripped out of buf. 

The reply variable is useful in controlling window and frame boundaries and scrolling. The following 
are meaningful values for reply: 

o 

1 
2 
3 
4 
5 
6 

everything is okay--there was intersection between window 

and display and between the window and the frame. 

no intersection between window and display 

no intersection between window and frame 

window height less than font height so not even one text line can be displayed 

frame height has been increased to accommodate new text 

overflowed bottom of window (scrolling) 

both 4 and 5 occurred 

To get a different font other than the default font, it is necessary to read the font string from a 
previously created file (see section on Editfont on how to create fonts). Type 

t1rff ~ file <text> intostring! 

Then, assuming the name of the dispframe is disp, say 

disp's (~font ~ If)! 

Or, you can declare the font at the same time you create the instance of the dispframe. 

@=>df ~ dispframe (integer> < integer> <integer> (integer> (text>! 
@=>dl ~ dispframe (integer> (integer> < integer> (intega > string (integer>! 

Create nn instance of dispframe with values for window and frame 
boundaries and length of the text buffer. The window will appear 

on the displilY screen with a hlack double line around it. In the 

first case, where a text string has been specified, it will not appear 

because the variable last is se:t to O. It would be necessary to type 

df's (GrJast f-- buf length). df display.! 

to actually see t.he text. 

(Jj=>df ~ dispframe < integer) < integer) (integer) (integer) (text> font (fontstring)! 
G.rdf ~ dispframe (integer) (integer) (integer) (integer) string <integer) font (fontstring>! 

Create an instance of dispframe with value for Cont. 

Grdl ~ dispframe (integer> <integer> <integer> (integer> (text> nolrame! 
Grdl ~ displrame (integer> < integer> < integer> (integer> string (integer> noframe! 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 71 

df ~ <text>! 
df ~ (integer>! 

df show! 

df display! 

df frame! 
df frame blac1t! 
df frame white! 
df frame color < integer>! 

df hasmouse! 

df fclear! 
df wclear! 
df clear! 

df scroll! 

df mfindc (integer> <integer>! 

df mfindw (integer> (integer>! 

df mfindt (integer> (integer>! 

Create an instance ofdispframe with values for window and frame 
boundaries and length of the text buffer. Window will not have a 
black line around it. 

Append the string <text> to buf and display if possible 
Append this Ascii character to buf and display its corresponding 
character if possible. 

Clears the intersection of window and frame and displays buf. 

Does a show, then draws double black line around the window. 

Draws a double black line around the window. 
Same as df frame. 
Draws a double white line around the window. 
(color display only) Draws double line around the window in color 
denoted by the integer number. 

Returns 'not-false' if the mouse cursor is within the frame; 
otherwise returns 'false'. 

Clears the intersection of the window and frame. 
Clears the intersection of the window and the physical display. 
Does an fclear and then sets last to 0 and Istln to 1, effectively 
cleaning out the text buffer. 

Removes the top line of text from buf and moves the text up one 
line in the frame. 

Find character located at <integer>,<integer>. 
Returns vector vee such that 

vec[ 1] subscript of character in string 
vec[2] left x of character 
vec[3] width of character in string 
vec[ .j] top y of character 

If vec[ 1]= -1 then position is after the end of string. 
If vec[1]=-2 then position is not in the window. 

Find word located at <integer>,<integer>. 
Returns vector vec such that 

vec[ 1] subscript of first character in word 
vec[2] left x of word 
vec[3] width of word 
vec[4] top y of word 

If vcc[l]=-l then position is after end of string. 
If vec[2]=-2 then position is not in the window. 

Find token located at <intcger>,<integcr>. 
Hcturns veclor vee such that 

vec[ 1] token count where spaces and carriage returns 
are considered delimit.ers but multiple 
delimiters do not increlllent the count. <lext> 
COllIlts as one tokC'n. 

vcc[2] ldt x of token 
vec[3] width of token 
vec[ 4] top y of token 

If vec[l]=-l then position after end of string or not in frame. 
If vec[1]=-2 then position is not in the window. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 72 

df read! Makes a vector out of keyboard input. Assumes the name of the 

dispframe is disp. 

df reread (integer>! (Used by fix and redo). Counts back from cnd of buf an <integer> 
number of prompts in the buffer and does II read from there. 

df sub (value>! Evaluates <value> in the context of the dispframe. (Used by fix to 
evaluate the editor within the window and by shirt-esc to create a 
window within the window). 

df hide! Same as df felear. df frame white. 

df put (string> at (x) (y>! Prints the text <string> starting at position x,y. 
Upper left corner of df becomes x,y. 

df corner (x> (y>! 

df moue to (X> (y>! 

df growto (x> (y>! 

Returns 0 if position x,y in no corner 
returns 1 if position x,y in upper lelt corner 
returns 2 if position x,y in upper right corner 
returns 3 if position x,y in lower left corner 
returns 4 if position x,y in lower right corner 

Set winx and frmx to <x>; set winy and frmy to <y). 

Set winwd and frmwd to «x> - frmx); set winht llnd frmht to 
«y)-frmy). 

The last three messages are added to dispframe when the window framework is included in the basic 
Small talk system. 

Four routines are available for manipulating rectangular areas of the display. 

dclear (integer> (integer> (integer> (integer> (number> I 

will clear the rectangular area defined by the four integers, where the order 
specifies:<upper left corner x> <width> <upper left corner y> <height>. The cleared area 
is then filled with black and white dots according to the binary representation of the 
number given (l's = black, O's = white). For example, if the number is -1, the area will be 
all black. 

dcomp (integer> (integer> (integer> (integer>! 

will complement the rectangular area defined by the four integers, where the order 
specifies: <upper left corner x> <width> <upper left corner y> <height>. 

dmove (integer) (integer) (integer) (integer) (integer) (integer) (integer)! 

will take the source rectangular area defined by the first four integers (same order as 
above), and move it to the destination defined by the fifth and sixth illt('Gers (destination 
upper left corner x,y). The seventh integer is a mode indicator: if the mode is 0, the 
source rectangular area will be stored as given; if the mode is not 0, the black and white 
dots in the source rectangle will he 'or-ed' with the dots in the destination area (0 or ° = 
0; 0 or 1 = 1; 1 or 0 = 1; 1 or 1 = 1). 

dmouec (integer> (integer> (integer> (integer> (integer> (integer> (integer>! 

same as dmove except that the non-intersecting source rectangular area is cleared. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 73 

Point Class 

A point is an example of a storage method. Several examples of its use have already been given in the 
Chapter II section on sketching ideas. 

point 

Gt-"pt f- point 100 2001 Create a point whose horizontal coordinate is 100 and vertical coordinate is 200. 

pt x! 
100 

pt y! 
200 

pt + < point>! Reply is point obtained by adding coordinates of pt and <point>. 

pt - < point>! 

pt = <point>! 

pt ~ <point>! 

pt max <point>! 

pt min < point> ! 

Reply is point obtained by subtracting coordinates of pt and <point>. 

Reply is pt y if they are the same points, otherwise false. 

Reply is pt y if pt is a point whose horizontal and vertical positions are smaller or 

equal to those of < point>. 

Reply is a point whose horizontal position is the maximum of that for pt and 

<poinO; similarly for the vertical position. 

Reply is a point whose horizontal position is the minimum of that for pt and 

<poinO; similarly for the vertical position. 

This class is provided partly at the machine code level. The corresponding code is equivalent to 

to point a I x y 
(isnew => (~x f- :. (ff' y f- :.) 

<l x => (<If- => (~Xf-:.) 'It x) 
<l y => (<l f- => (ur yf-:.) 'It y) 
<l + => (GFa f-:. 'It point x+a x y+a y) 
<l - => (G¥>af-:. 1t point x - a x y - a y) 
<l = => (((ff>af-:) => (1t false) x = a x => ('lty = a y) 'It false) 
<l ~ => ((@=>af-:) => ('It false) x a x ~ ('It yay) 'It false) 
<l max => ((ff>af-:. 'It point (x max a x) (y max a y)) 
<l min => (GrUf-:. 'It point (x min a x) (y min a y)) 
<I' print => (Grpoint print. sp. x print. sp. y print))! 

Also provided in the basic Small talk system is the routine mp 

to mp ('It point mx my)! 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 74 

Aids for Interacting with Smalltalk 

The Small talk Class Editor 

edit < classname >! 

will get you the Small talk editor for the class which is named <c1assname>. 

fix < integer> I 

where integer is the number of transactions (images of the Interim Dynabook) back from 
where you are, will get you the Smalltalk editor for transaction integer. Upon exiting, the 
edited transaction will be evaluated, but the original transaction will not be modified. 

edit < classname> title! 

will start the editing with the title line. 

The editor shows two frames. The righthand frame contains a menu of commands, the left 
hand frame contains a structured representation of the definition. All tokens at a single level 
of parenthezation are shown. A lower level of parentheses is shown as O. An example is: 

do 4 (® go 100 turn 90) 

is shown as 

do 4 () 

All editing is dOone by "grabbing" a command in the righthand menu (pointing to it with the 
cursor and pushing the top or middle mouse button). 

In the following, "text" refers to characters typed from the keyboard and. terminated with !. 

Commands 

Add 
Insert 
Replace 

Delete 

Move 

Up 
Push 

Enter 
Leave 
Exit 

Number of Times 
Grabbing Needed 

0 
1 
2 

2 

3 

1 
2 

1 
0 
0 

Action Taken 

Append text to end of current level. 
Add text before designated word. 
Replace the text indicated by pointing to the 
beginning and end words with new text. 
Delete the text indicated by pointing to the 
beginning and end words. 
Combination of deleting text and inserting new 
text before the word pointed to as third 'grab'. 
Remove parentheses. 
Put parentheses around words indicated by pointing 
to the beginning and end of the intended grouping. 
See the next lower level. 
See the next higher level. 
Terminate editing. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 75 

The only exceptions are Enter and Up. If there is only one level marker, (), showing in the current 
level, no grabbing is required. 

Showing Stored Information 

show < name> ! 
will show you what meaning the <name> currently has. 

defs! 
will show you the names of classes you have defined that are currently available. 

dpO list! 
will show you the names of ril~s stored on your disk pack. 

type <text>! 
will show you the contents of rile named <text>; returns 'false' if the file does not exist. 

Saving Snlalltalk Definitions 

filin <text>! 

will go to a file whose name is <text) and tell Small talk to read what it finds on the file. 
Example: 

filin 'boxes'! 

Usually the file will contain programs written there by running filout as defined next. 

filout < text> ! 

will write every program whose name is in defs to a file called <text>. Example: 

fHout 'boxes'! 

will write out every program whose name is currently in defs. There are a few other useful 
variations of filout. 

fHout (text> (vector>! 

will ignore defs and only write out the programs mentioned in the vector. Example: 

filout 'boxes' @='(box square triangle)! 

will ignore defs and only write out the three programs whose names appear in the vector. 

Suppose the vector contains vectors, for example, 

filout 'boxes.' 
G.r(boxcs square (addto turtle G.r(<[place => (SELF penup goto (:)(:) pendn up))))! 

will write out the programs boxes and square, and then the vector 

(addto turtle (<(place => (SELF penup goto (:)(:) pendn up))). 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 76 

On filing in this file, the ability to receive the message place will be added to the class turtle. 

filout pretty (text> I 
filout pretty (text> (vector>1 

will format the programs so they will print nicely (in show format). 

filout (text> add! 

will not overwrite file <text> but instead will add the new definitions at the end of <text>. 
Obvious variations include 

filout pretty (text> addl 
fUout < text> add < vector> I 
filout pretty < text> add (vector>! 

The (vector> could be given a name such as Hst: 

~list~ <vector>! 

and then it is possible to type 

fHout <text> list! 

will write out the definitions of objects named in list. 

Or 

filout < text> G1-"'list! 

will first write out the definition of the vector list and then the definitions of the objects 
named in list. Variations with pretty and add are also possible. 

Saving and Restoring Your Context 

file < text> savel 

will save your entire current state verbatim on the file <text>. 
Example: 

file 'blockworld.sv' save! 

Try 

file'dmt.boot' load! 

to start the Interim Dynabook memory diagnostic. 

file (text> load! 

will restore you to the exact state when the file <text> was saved. Example: 

file 'blockworld.sv' load! 

This file is also one that you can resume from the operating system. That is: 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 77 

resume blockword.sv <return> 

will restore you to the exact state when the file was saved. 

Utilities 

are already written programs which provide useful services such as reading the keyboard and the 
mouse, telling you how much room is available, and so forth. 

nil 

core! 

stands for the empty value in Small talk. It may be tested by saying: 

null <value>! 

which will reply 1 if the <value> is nil (i.e., the empty value), and 'false' otherwise. 

will tell you how many words are left. Any reply smaller than 500 is courting disaster. If 
your space gets that low, or (worse) you get a diagnostic window with the message: 

I've run out of memory 

say: 

expand < number>! 

This will remove <number> of scan lines from the screen and convert them to usable space 
at the rate of 32 words of space per scan line. So: 

expand lOa! 

will increase your workspace by 3200 words. 

addto <classname> <vector>! 

will add a definition whose meaning is <vector> to the class whose name is <classnarne>. 

Example, after typing: 

addto box G7'(<(move => (SELF redraw (({}=x~:. @"y~:.)))! 

box \\'ill know how to move. 

{ <value> <value> ... <value> }! 

will construct a vector of the values found between the curly brackets. 

stringor <value>! 

will convert the <value> into an instance of the class string only if <value is an object that 
responds to the message print. 

base8 <integer>! 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 78 

will construct an instance of class string containing the octal representation (unsigned) of 
<integer>. 

eq <value> <value>! 

compares two Smalltalk pointers. 

Keyboard Keys 

<return> 

moves following text to a new line when typing in. Will otherwise be ignored. 

<bs> 

removes any previous character (including <return». 

Reading the Keyboard 

kbd 

TTY 

will wait until a character has been typed and then reply with the numeric code of the 
character which was typed after being passed through a table which assigns (basically) 
standard codes to the character. 

To receive an uninterpreted version of a character. use: 

which will wait for a character to be typed and then reply with an uninterpreted result. 

Small talk will not lose typed characters if no program is listening. Instead they are held in an ordered 
buffer waiting for a program to use TTY or kbd. To find out if there are any characters in the buffer. 
use: 

kbck 

read 

which replies 'not-false' if characters have been typed and 'false' otherwise. A typical use 
would be: 

kbck => (Grchar .- kbd) 

which will only use kbd if there is already a character waiting, and will then save the new 
character in char. 

will gather up a vector of Small talk code. It first sends a prompt n to the display. 
Everything you type until a ! will then be made into a vector which is sent back. 

read of (text> 

is the same as read except that the characters are found in <text> rather than taken from 
the keyboard. 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 79 

evl 

repeatedly evaluates the vector (cr read eval print); will, in effect, give you another level 
of Smalltalk evaluation. 

to ev (repeat (cr. read eval print)) I 

Over and over, it will do a carriage return, put out a prompt character A, wait for input 
terminated by a !, send the resulting vector the message eval to get Small talk to execute the 
vector, and, finally, give the result of evaluation the message print in order to show the reply 
back to the user. The loop is infinite but: 

done! or <ctrl>D 

will terminate it. Here is a fancier version which will tell you the current level of 
evaluation: 

~ level 4- 11 
to ev 
(~level 4- level + 1. 

repeat (cr. ~level print. sp. level print. sp. read eval print) 
GT'level ~ level - 1.)1 

Notice that if the last token in the message is a period, then the sequence is not unlike 

CiT a ~ read of '.'. 
(/)" a ~ a eval! 
a print! 

8 is (.) 

8 evaluates to nil. 

nil prints as nothing 

< shift> <esc> 

<ctrl> ( 

creates a subwindow in the dialog window. Allows Small talk evaluation as in the dialog 
window. (In effect, evaluates ev in the subwindow). To return to main window, type 

done! or < ctrl> D 

Subwindows can be nested as long as there is space to create a window with height greater 
than the font height. When a subwindow is created, reading characters is suspended in the 
main windowj a return to the main window returns you to the precise place you left off, for 
example, in the middle of typing some expression. 

does an evaluation of the next expression at the time the keyboard input is read. This gives 
you an opportunity to perform a computation and have the result be used in the main 
expression being typed. 

Transferring Messages 

apply <name> 

will send the current message (the one which was sent to the context we are currently in) to 
the object which has name <name>. For example, suppose 'we' are called 'bogus' and have a 
number of things we can do. Somebody sends us the message: 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 80 

bogus sq 100+501 

and we have a line: 

</sq ~ (apply square) 

then square will be applied to the remainder of our message 100+50 so that it can pick up 
the value 150 and draw the square with sides 150 units long. 

apply <name> to <vector> 

gets the object which has name <name> and sends it the message <vector>. Example: 

apply square to @=>(150)1 

will draw the square with sides 150 units long. The important thing here, of course, is that 
we can compute a message and then send it to Small talk. 

apply <name> in <value> 

will send the current message to the object which has name <name> using dictionaries whose 
vector starts with context <value>. For example, if you would like to evaluate the message 
using only "top level" names (ignoring the dynamic environment), then try: 

apply mumble in GLOB! 

apply <name> to <vector> in <value> 

evapply 

is the fullblown apply. 

has exactly the same meaning as apply except that it expects a (message> of some kind to 
be evaluated rather than a <name>. Example: 

evapply (a<b => ('abcdefg' )Gr( this is vector)) to @=>(length)! 

will reply with the length of either the string , abcdef g', or the vector (3=»( this is vector), 
depending on the values of a and b. 

The optional formats for evapply are the same as for apply as described above. 

Display Utili ties 

disp 

is the local name of any dialog window. It is an instance of the class dispframe. When the 
mouse activates the window, disp may be used to send messages to the window or to find out 
things about it. 

disp's frmx! 

will tell you the x position (upper left corner) of the frame. 

indisp <value> <message>1 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 81 

sp 

cr 

dsoff 

dson 

will temporarily redefine disp to be <value> and evaluate the message in this new context. 
This is usually used when the message contains print or read routines which assume that 
they will be using a dispframe named disp. The routine is defined as 

to indisp disp 
(~disp f- :. 

1t g eval) ! 

will print a space character. 

will print a carriage return. 

turns off the display and speeds up Small talk by a factor of 2. 

turns the display on again. 

redo (integer> 

where <integer> is the number of transactions (images of the Interim Dynabook) back from 
where you are, will re-evaluate the message at transaction <integer>. 

Control Utilities 

repeat ( ... ) 

done 

contents of 0 will be re-evaluated until a done is encountered (or you strike the escape 
key). The escape will be from the innermost loop in which the done is enclosed. 

will cause the loop to be exited. 

done with <value> 

will cause the loop to be exited with the value <value>. 

again 

will restart the innermost loop in which thc again resides. 

for <atom> +- (nwnbcrl) to (numbcr2> by (nwnbcr3> do () 

an iteration control feature--will re-evaluate contcnts of () until the value of the index 
<atom>, starting at <number1> and stepped by <number3> each time, exceeds <number2>. 

if (value> then < message 1> else (message2 > 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 82 

if the value of <value> is 'not-false', then evaluate <message 1 > and do not evaluate 
<message2>. Otherwise, evaluate <message2>, ignoring <message1>. 

do <integer> ( •.. ) 

the contents of ( ) will be re-executed <integer> times. 

Mouse Utilities 

mx 

replies with the horizontal position of the mouse. 0 is at the left margin, 512 is the right 
margin. 

my 

replies with the vertical position of the mouse. 0 is at the top of the screen, BOB is at the 
absolute bottom, 512 at the top and 6BO at the bottom of the original dialog window. 

mp 

replies with an instance of class point such that mx = mp x, my = mp y. 

button <numeric value between 0 and 7 > 

tests the mouse buttons singly and in combination. 

mem 

button 0 
button 1 
button 2 
button 3 
button 4 
button 5 
button 6 
button 7 

'not-Ialse' il no buttons are on 

'not-Ialse' if middle button is on (top is button nearest wire) 

'not-Ialse' if bottom button is on 

'not-Ialse' if bottom and middle are on 

'not-Ialse' if top button is on 

'not-Ialse' il top and middle button are on 

'not-Ialse' if top and middle are on 

'not-Ialse' if all the buttons are on 

mem loads integers from and stores them into real core. The important locations are: 

clock 

mem 0430 
mem 0430 +- 0 

mouse 

mem 0424 
mem 0425 
mem. 0424 +- 0 
mem 0425 +- 0 

Read the clock 

Set the clock to zero 

Read mouse x 

Read mouse y 

Reset mouse x 

Reset mouse y 



BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES 

cursor 

mem 0431 for i ... 1 to 16 (mem 0430 + i) are the cursor bits 
for i ~ 1 to 16 (mem 0430 + i ~ shape[i]) 

mem 0105 
mem 0105 ~ 0 
mem 0426 ~ x. mem 0427 ~ y. 

interrupt character 

mem 0107 ~ 0177 

display control block 

mem 0420 

keyboard, keyset, and mouse inputs 

mem 0177034 
mem 0177030 

Put new bits into cursor from vector named shape 
Connections between mouse and cursor 
Disconnect cursor from mouse 
Move the cursor 

Make DEL the interrupt character (instead of ESC) 

Get pointer to display control block 

Reads the first of 4 keyboard input words 
Reads the word with mouse and keyset bits. 

Page 83 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 84 

Chapter V. EXAMPLE SMALLTALK CLASS DEFINITIONS 

This chapter provides some examples of the use of various Small talk basic system classes and utilities. 
Included are samples of programming techniques as well as the contruction of new, interesting class 
definitions. The examples correspond to the basic classes defined in Chapter IV; they are presented 
in a "try it out" style with suggestions on problems and projects. 

Arithmetic 

Example: Figuring the Amortization of Loans 

The problem we chose to demonstrate the use of float is the amortization of a loan in equal monthly 
payments. The main routine payment requests values for the loan principal, loan interest, number of 
years to payoff the loan, and the number of payments per year. It then carries out the following 
computation: 

Let 

Let 

rate = interest ratel (100 * number of payments per year). 

increase = (1 + rate) raised to the power (number of years to payoff the loan 
* number of payments per year). 

Then each 

monthly payment = (amount of the loan * rate * increase) I (increase - 1). 

The 

total amount paid over the period = 
(number of years to payoff the loan * number of payments per year) * monthly payment. 

To report the results of the calculations, we need a reporting routine where we might say. 

report' Interest Rate as a Percentage is ' rate! 

and expect to see 

Interest Rate as a Percentage is 54. 

The Small talk definition is 

to report 
(cr. 

disp ~ :. 
(:) print)! 

Print a carriage return. 

Print the textual message in the dispframe. 

Print tile value rcet'ivcd in t.he dispframe. 

Next we need to be able to receive the values from the keyboard for the parameters: number of years, 
rate, etc. We can use the Small talk utility reacl. 

read will gather up a vector of Small talk tokens. It first sends a prompt Jl to the display. Everything 
you type until a ! will then be made into a vector which is sent back. For example, the result of 
saying: 

GT-a ~ read! 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

and then typing: 

do 4 (® go 100 turn 90)! 

will associate the literal vector (do 4 (® go 100 turn 90)) with the name a. If we say: 

a! 

the following will be the reply: 

(do 4 (@ go 100 turn 90)) 

If you send the message eval to a, Small talk will evaluate its contents: 

a eval! 

and a square will be drawn. To select the second element of the vector a: 

a[2J! 
4 

To select the fourth element of the third element: 

a[3][4]! 
turn 

Page 85 

Vectors have many capabilities. To see more, take a look at the definition of vector in Chapter IV. 

read of (text> is the same as read except that the characters are found in <text> rather than taken 
from the keyboard. To help get values from the keyboard, you might define: 

to demand nm 
(GFnm ~ 8. 

(<las => (disp~:) nm print) 
1tnm ~ read eval)! 

Try it with: 

demand spd as ' 1 want a new speed' ! 
1 want a new speed &1367! 

Then type: 

spd! 
367 

or, without a specific message: 

demand angle! 
angle D,,59! 

angle! 
59 

We will also need a method for converting the floating point numbers to nearest whole dollar 
notation. We can send the message $ to members of the class float and receive the value rounded to 
the nearest dollar. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 86 

addto float G7 (<I $ => (1t 0.0 + (0 + (0.5 + SELF.) .. 100) 1100))! 

The class float can now take 8 floating point number and round to the 

nearest dollar. 

Now for the definition of payment, a method for computing the total amount of dollars paid on a loan 
at the end of the load period. 

The Definition of the Class Payment 

to payment principal interest period 
payments rate increase total Request four values 

(demand principal as 'Amount of the Loan in decimal d·--d.dd I. 

demand interest as 'Interest Rate as a percentage'. 
demand period as 'Number of Years to Pay Off the Loan '. 
demand payments as ' Number of Payments per Year'. 

~ rate f-(O.O + interest) I 100 .. payments. 

@=> increase f- (1.0 + rate) ipow (period .. payments). 

~ amount f- ((principal * rate * increase) I (increase - 1)) $. 

Compute the rate, adding 

0.0 to guarantee floating 
point number. 

Compute the increase. 

Compute the total amount 
paid over the period to the 
nearest dollar. 

report' Each Payment is $ , amount. and report it. 

Compute and tell total 
. amount paid over the period 

report 'Total Amount Paid is $' G1='total f- amount * (period" payments). 

report 'Total Interest Paid $ , total - principal.)! 

Sample Interaction 

Run this by typing 

payment! 

For example, the interaction between the user and payment might look like 

Amount of the Loan in decimal d--d.dd D .. 30000.00! 
Interest Rate as a percentage J.:l9! 
Number of Years to Pay Off the Loan a 30! 
Number of Payments per Year D,,j 2! 

Each Payment is $ 241.0 
Total Amount Paid is $ 86760.0 
Total Interest Paid is $ 56760.0 

Compute and 
tell total interest paid. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 87 

Sequential Dictionaries 

include the classes: vector, string, obset, stream, file. 

Stream. 

Stringof is' a method for converting a non-string value to a string. It is included in the basic 
Small talk system. 

to stringof n 
(@:»n ~ :. 

1t indisp stream (n print. 1t disp contents))! 

Recall we have already defined indisp as 

to indisp disp 
(Grdisp ~ :. 

1t g eval)! 

n is a value that we would like converted to a string. The simplest way to do this is to assume that 
the print method for any class is to convert its printable form into a string that it can send to disp 
(the generic name for a text display frame). We use indisp to set up a context in which disp is an 
instance of the class stream. We then send n the message print which should basically do: disp f­

(string form of n>. Since disp is a stream, it will store the string form as its contents, which we 
return as the proper reply. 

Files. 

The following routines (xfer, copym, xplot) are examples of the use of the class file. Each is a useful 
utility to have around. 

(1) xfer 

copies a single file. It is useful mainly for transferring files between disks on an Interim Dynabook 
with two disk drives. For example 

xfer dpl file 'valu.able' old to dpO file 'valu.able' new! 

copies a file named 'valuable' from disk 1 onto a newly created file of the same name on disk O. To 
obtain this object type 

filin 'xfer.'! 

The definition is 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

to xfer f g h i 
(dsoff· 
c:;a f ~ :. 

Turn off the display. 

Fetch the instance of 8 file. 

Page 88 

('<lto => ((I:- g ~ :. The message (to) must appear for the format to be correct. 

, . 
, . 

repeat (g ~ f's (numch = 512 => (sadr) sadr[l to numch]). 
f's nextp = 0 => (done) f set to f's pagen + 1 0). 

g shorten to here) 
Gr g ~ :. 
disp ~ 'proper format is: 

disp ~ 'xfer (file> to (file>! 

The repeat-loop is copying each page of the file. 

Sets the pagen and bytcc for g. 
Otherwise say format is incorrect 

disp ~ 'where <file> may be preceded by dpO or dpl') 

f close. g close. dson.)1 Close the two files and turn the display on. 

(2) copym 

copies multiple files from one directory to a directory on the same or on another disk. For example, 
type 

copym dpl to dpO Gr('filel') ',sr' I 

This copies 'filel' from disk 1 to 'file1.sr' on disk 0 (the new file). The complete syntax for copym is 

co pym <source directory> to < destination directory> < vector of file names> (text> I 

where <text> is the extension for the files on the destination directory. The extension is optional. 
The definition uses the object xfer. 

to copym sourcedir destdir filenames ext i 
(~sourcedir ~ :. 

<#"to. 
@==»destdir ~ :. 
@==»filenames ~ :. 
(null (G?ext ~ :.) => (@='ext ~ ")) 
for i to filenames length - 1 

(xfer sourcedir file filenames[i] old to destdir file filenames[i] + ext new))! 

(3) xplot 

xplot writes a screen image (bitmap) onto a file (86-87 disk pages, takes about one minute) for 
printing on an XGP with the XPLOT program. (lIenee this is particularly useful to those readers with 
these facilities.) Either low or high resolution screen images can be plotted, but not both; i.e., only 
the low resolution (picture) part of a screen with both low and high resolution parts will be saved. 
Type 

fHin 'xplot.'! 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 89 

The following definition requires the class AREA which is also provided below. Note AREA is a 
simple form of class rectangle defined in Chapter II and later in this chapter. The response of an 
instance of AREA to the message makebuff is a string containing the sequence of bits in the 
rectangular area. The file 'xplot' also includes the objects BLT, PNT, and bringitin. This last one is 
a method for restoring a display screen from a file written by the object xplot. It expects one 
message--the file name. 

to AREA abc I origin extent 
{<l's => (11' g eval) 

<I is => (ISIT eval) 
<I makebuff => ((f?a ~ string 2 '" extent y '" Gr b ~ (extent x + 15) I 16. 

@:. c~ PNT a. 
BLT c + 2 b 0 extent x 0 extent y 0 mem 60 32 origin x origin y extent y O. 
11' a) 

isnew => (ctrorigin ~ :. Gr extent ~ :))! 

to PNT (mem 255 ~ :. 11' mem 255)! 

to xplot f h irs w 
( ((("ff>f ~ :) is file => ( ) 

~f ~ file f =>( ) ltfalse). 

GT'w ~ 255 Elmem (Grh ~ mem 272)+ 1. 

(0 < mem It + 1 => (f next word ~ 2. 
Cff's ~ 2 * mem h + 3) 

f next word ~ 4. Grs ~ mem h + 3). 

dsoff· 
@=' r ~ AREA point 0 0 point w· 16 1. 
do 4 (f next word ~ 0). 

for i to s 
(f next word ~ - w. f ~ r makebuff. 

r's (urorigin ~ po~nt 0 i)). 
f close. dson.)! 

Make sure f is a file. 

Number of words per scan line. 

High resolution -- enlargement. 

Number of scan lines. 

Low resolution. 

The screen area is written out on the file 

each time in the next loop. 

Default values. 

-word count followed by bits in scan line. 

Move the area down the screen. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 90 

Dispframe 

disp. As explained in Chapter III, disp is the local name of any dialog window. It is, in fact, an 
instance of the class dispframe and is created as 

cJ?disp f- dispframe 16 480 415 168 string 520! 

A Small talk window, as demonstrated in Chapter I, owns an instance of a dispframe whose name is 
disp. This particular name must be used because the Small talk read method assumes that all 
keyboard interactions will be carried out by displaying the typed characters in an instance of 
dispframe named disp. 

As an example both of using this generic name as well as of using the four display routines edelear, 
dcomp, dmove, and dmovec), try the following sequence. 

1. Create four new windows on your display screen. 
2. Place them in four quadrants of the screen, enlarging them to fill the area above the 

original dialog window. 

window 1 I 
I 

window 3 I 
I 

original 
dialog window 

window 2 I 
I 

window 4 I 
I 

3. Place the mouse cursor in window 1 and type @=>turt1 (- turtle frame disp! 
This creates a turtle who lives only in this first window. home for turtl is the center of 
the window. 

4. Repeat the above process: enter each of the remaining three windows and create turtles 
turt2, turt3, and turt4. 

5. Now point in the original dialog window and try: 

turt1 home erase! Note only window 1 is erased. 

for i to 200 (tartl go i turn 89)! Note the turtle draws lines only in its own window. 

turtl's frame'S (dcomp frmx frmwd frmy (rmht)! 
Complement window 1. 

Try different designs in each of the four windows. Or try 

turt2's frame'S (delear frmx frmwd frmy fnnht 13107)! 
turt3's frame'S (delear frmx {rmwd frmy (rmILt 12121)! 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 91 

As examples of using dmove, try making window 4 small and then 

or 

to mover 
(turt4's frame's (dmove frmx frmwd frmy frmht ~frmx~frmx-5 ~frmy~frmy-5 :))! 

do 10 (mover O)! 

do 10 (mover 1)! 

turt4's window moves toward the bottom leCt corner, 

replacing any information already displayed in the areas. 

turt·s window moves toward the bottom left corner, 

interacting with any information already displayed in the 

area. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 92 

Point class 

This data type is used to design the class rectangle which can compute areas of intersection between 
two rectangles and create the rectangle that encloses two rectangles. An abbreviated version of the 
class rectangle was introduced at the end of Chapter II section on Paint Brush. To obtain this 
definition of rectangle, type 

filin 'xyfns.'! 

~joe ~ rectangle point 100 100 point 150 1501 

joe has point 120 1051 
point 100 100 

joe campi 

joe clear -1 I 

joe clear 21212! 
joe clear 052525! 

Rectangle at upper leCt corner 100,100 and lower right 

corner 250, 250 

That is, 'not Calse' and thereCore true 

Complements joe's bits. 

Clears joe to all black. 

Some nice patterns. 

joe intersect ~ jim f- rectangle point 140 120 point 150 1701 

joe include jim! 

joe move to 2003001 

joe frame! 

jim is a rectangle at upper left 140,120 and lower right 

290,290. Reply is intersection of joe and jim, a rectangle at 

upper left 140,120 and lower right 250, 250 (origin is point 

140 120j extent is point 110 130). 

Creates rectangle around joe and jim. 

Upper leCt corner is moved to 200, 300. 

Draw a black border around the rectangular area. 

The code for the class rectangle and some useful routines follow. Note two messages (makebu,ff and 
loadbuff) used in the definition of AREA as stored on file 'xplot' could be included as messages 
understood by a rectangle. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 93 

to rectangle abc I origin extent 
( <[has=> 

(c;rc ~ :. 1torigin c origin + extent) 
<['s:>(1t g eval) 
<[comp=> 

(dcomp origin x extent x origin y extent y) 
<[clear=> 

(dclear origin x extent x origin y extent y :) 
<[intersect=> 

(Grc ~ :. 
Gra ~ origin max c'S origin. 
Grb ~ (origin + extent) min c's( origin + extent). 

a ~ b=> (1trectangle a b - a) 1tfalse) 
<[include=> 
(~c ~:. 
@=oa ~ origin min c'S origin. 
CJ.rb ~ (origin + extent) max c's( origin + extent). 
1trectangle a b - a) 

<[moveto => (urorigin ~ :) 
<[frame => 

(@""a ~ turtle. 
a pen up goto origin turn 90 pendn's width ~ 2. 
a penup goto origin turn 90 pendn's width ~ 2. 

do 2 (a go extent x turn 90 go extent y turn 90)) 
<[is =>( ISIT eval) 
<[print => 
(~rectangle print sp origin print sp extent print) 

<[ paint => (CODE 41) 

isnew => (Grorigin ~:. ~extent ~ :))! 

to waitnext x 
(urx ~ 8. 

repeat {x eval => ( ) done) 
repeat (x eval => (done)))! 

to bug 
(waitnext but 1 on. 1tmp)! 

A demonstration to try often is 

Type 

to xydemo ~ class abc 
(ura f- rectangle Grb ~ bug bug - b. 
a camp. 
G?c ~ rectangle Grb +- bug bug - b. 
c camp. 
Grb ~ a intersect c. 
(b=>(b clear 13107)) 
(a include c) frame.)! 

xydemo! 

Is a point inside rectangle? 

Expects bit patterns as a message 

Creates a rectangle that is the intersection of c 

and SELF if they have common arca 

else, 'false'. 

Creates rectangle around SELF and c. 

Move origin to a new point. 

Turtles understand how to go to a point as 

well as two numeric coordinates. 

This message was discussed in Chapter II 

section on Paint Brush. 

Stay in this routine until 

x is first 'false' and then finally 

'not-false' again. 

Wait to get the mouse point 

when button 1 is preEsed. 

The result of pointing to different screen locations is a geometric design formed by the interaction of 
black, white, and gray rectangles. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 94 

Dictionary of Areas and Points 

An Obscure Challenge for the Day: when does this blow up? 

Suppose the screen is divided into a main area that is a rectangle point 30 20 point 100 80; and the 
subareas within the main area are 50 wide and 40 high. There are four such subareas. The purpose of 
a dictionary of points on the screen is to be able to designate areas as menu locations or nodes of a 
tree or whatever, and to be able to recognize, quickly, in which area the monse is located. 

30,20 

1 
1 1 2 

1 
1 1 1 
1--------------------
1 1 1 
1 3 1 4 1 
1 1 1 
1 1 1 
--------------------- 130, 100 

Suppose we create a menu that has five menu squares (1, 2,3, 4, 5) located in subareas 1 and 2. Each 
menu square has length 14 units. Further, suppose the upper left corner of the first square is point 45 
30. 

[1][2][3][4][5] 

1 
1 

1 1 1 
1--------------------
1 1 1 
1 1 1 
I 1 I 

Then, we have 

@='dictionciry ~ xydic 50 40 in rectangle point 30 20 point 100 80! 

UPmenu ~ vector 5! 
for i to 5 do 

Create the main area and subareas. 

(dictionary f- menu[i] ~ rectangle point 45+(i-1)*14 30 point 14 14)! 

dictionary print! 
3 in area 1 
3 in area 2 
o in area 3 
o in area 4 

dictionary map @="(comp)! 

Store menu squares 1 - 5. 

Print number of items in each 

subarea followed by the subarea index. 

Tell all the menu squares to complement. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

dictionary index point 50 701 
3 

dictionary find mp! 

dictionary delete menu[ 3l! 

dictionary edit (delete) menu[ 3]! 

Given a point (50 70), compute in which 

subarea it falls. 

Given a point (mouse point), ask all the 

. stored areas if they have the point. 

Return the first one that says yes. 

Delete the third menu square. 

Editing method used by messages delete and .... 

A file exists on the basic Small talk disk that contains the following definition. Type 

fUin 'xydic'! 

to tryout this dictionary method. 

to xydic exp i input p val I all areas brect ncols xsize ysize 

{«index => {~p ~ :. 

Page 95 

11' 1 +{ (p x - brect's origin x) / xsize) + ncols * (p y - brect's origin y) / ysize) 

«find => {Gfrp ~ :. 
brect has p=> {GT-val ~ nil. 

lI'false) 

areas[SELF index p] map @=' 
{vec[i] has p => (done with Grval ~ vec[iJ)). 

lI'val) 

«edit => {GT'exp ~ vecmod g 2 0 r;=-input ~ :. 
(U=»val ~ (SELF index input frame's{ origin + point extent x 0)) 

- Gri ~ SELF index input frame's origin. 
for i ~ i to SELF index input frame's( origin + point 0 extent y) by ncols 

{for p ~ i to i + val (evapply areas[p] to exp)). 
apply all to exp) 

«~ => (SELF edit (~) :) 

« delete => ( SE LF edit (delete) :) 

«map => (all map:) 

isnew-> {GT'xsize ~ .'. urysize ~ .'. 
G/=>brcct (- {<lin~{.'} rectangle point 0 0 point 512 512). 
cY""ncols ~ brect's extent x / xsize. 
G?areas ~ vector ncols * brect's extent y / ysize. 
(or p to areas length (areas[p] (- obset). 
G}"all (- obset) 

<f print ~ ((or p to areas length (areas [p] length print. sp. 
disp ~ , in area'. p print. cr }))! 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

Turtles 

Try 

G7'turt ~ turtle frame disp{rame 16 100 16 100 " .1 
turt home erase.! 
for i to 300 (turt go i turn 89).! 
turt's frame's (dcomp frmx frmwd {rmy frmht).! 

Page 96 

The first three statements create a turtle in a 100 by 100 rectangular area in the upper left portion of 
the display screen, clear that area to white and draw a spiral using black lines. The last statement 
enters the context of the turtle's display frame in order to use the frame boundary parameters in 
order to complement the area (white to black, black to white). 

To sketch with characters or text, try 

to draw turt t 

(@=tturt ~ turtle. 
turt home xor turn 90. 

Gr t ~ :. 

Create a drawing turtle. 

Painting is different if the ink 

is black or white. 

Fetch the "paint brush" 

repeat (button 4 => (turt penup goto mp pendn ~ t) 
button 2 => (done)))! 

draw'@J'! Paint with "smiley" 

draw 'hello'! or the text 'hello' 

draw 97! or the character 'a'. 

Designing your own character is another way to design a paint brush! 

Commander Turtle 

Here is a nice way to distribute turtle messages to more than one turtle at a time. The idea is to 
create a "commander" turtle. Any messages he receives, he sends on to all the members of his troop. 

@='joe f- commander 41 

joe go lOa! 
joe turn (number)! 
joe penup! 
joe pendn! 
joe horne! 
joe fan! 

joe's inh f- (integer)! 
joe's width f- (integer)! 

Try 
Gr@ f- commander 4! 
dragon 6! 

joe commands a troop of 4 turtles. Each turtle moves to the center (home) 

of the display area. Then joe sends himself the message fan. 

Each member of the troop moves <nulIlber> of units. 

E<Jch member of the troop turns <nullIber> of units. 

Each member of the troop picks its pen up. 

Each member of t.he troop put its pen down. 

Each member of the troop moves to the ccnter of the display area. 

Each member of fhe troop turns in a unique direction aIld changes ink color 

sllch that membcr i has ink color i+ 1. 

Set the ink color of each member to <integer>. 

Set the width of each member to <integer>. 

Recall the definition of dragon in Chapter II sends messages to O. Here. 0 
is no longer a turtle. but a turtle commander. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 97 

to see four dragon curves draw on the screen. .For those curious, we include the class definition. Note 
the use of colored ink assumes a color version of Small talk. The dispframe colorframe is defined as 

~colorframe ~ dispframe 0 256 0 128 ". 

to commander a b I turts 

(<( go 
<I turn 
<I penup 
<I pendn 
« home 
<I fan 

<I 's 

isnew 

=> (G1='a ~:. turts map ~(go a). ftSELF} 
=> (G1='a ~:. turts map G?(turn a). ftSELF} 
=> (turts map Gr(penup). ftSELF} 
=> (turts map ~(pendn). ftSELF} 
=> (turts map Gr(home). SELF pendn. ftSELF} 
=> ( for a to turts length do 

(turts[ a] turn( a - 1) * 360 / turts length. 
turts[ aJ's ink ~ a + 1}. 

ftSELF} 
=> (<link => (<l~. GFa ~ :. 

turts map @=' (vec[iJ's inll. ~ a)} 
«width. «~. ~a ~ :. 
turts map @='('s width ~ a).} 

=> (Gt'a ~ :. 
GT>turts ~ vector a. 
for b to a (turts[b] ~ turtle frame colorframe) 
SELF home fan}}! 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 98 

Control Classes for Repetition and Alternate Paths 

repeat, do, for, if 

The usual methods for repeatedly evaluating an expression use one of three routines already 
presented: repeat, for, and do. The method of for can be defined as 

to for step stop var start exp 
(@:>var ~ 8. 

@:>start ~ (<I ~ => (:) 1) 
Grstop ~ (<( to => (:) start) 
GTstep ~ (<I by =>(:) 1) 
<I do. do is optional 
Grexp ~ 8. 
var ~ start. 
repeat ((step> 0 => (var eval > stop => (done)) 

var eval (stop => (done)) 
exp eval. var ~ (var eval) + step.))! 

The form of a Small talk conditional statement, if-clause => (then-clause) else-clause, has also already 
been shown in many contexts. The Algol "if...thcn ... else ... " syntax can be achieved by defining if as 
follows. 

to if exp 
((GTexp ~ :) => {<1 then => {Grexp ~ :. <lelse => (g. exp) exp) 

error Gr{ no then)) 
<I then => (g. <1 else => (GTexp ~ : ) false) 
error GT(no then)) ! 

For exa~ple, 

@'oval ~ if a > 10 then 4 else {if a ( 10 then (-4) else OJ! 

val will be 4, -4, or 0, depending on the value of a. 

again 

is a Small talk method for redoing the most recent repeat, do or for loops. It is one way of iterating 
on a given condition, while defaulting to end the loop. For example, suppose we send the message 

Grset ~ makelist mary or joe or henry! 

expecting to form a list of alternatives terminating when no further alternatives exist. 

while 

to makelist list 
(Grlist ~ obset. 

repeat (list ~ g. 
<lor => (again) done) 

11" list)! 

A while clause lets us send messages of the form 

Obsets form unions. 

Continue if see word "or". 

Reply witll the list. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

~str ~ streanl! 
while {kbck and {{(l=ot ~ kbd) *' 13)) 

do (str ~ t)! 

Page 99 

That is, store keyboard strokes into the stream str as long as there is a character in the input buffer 
and the character typed is not a carriage return (whose Ascii code representation is 13). This 
definition is not part of the basic Small talk system. 

to while Cond Exp 
{@=>Cond ~ 8. 
« do. . do is optional 

GrExp ~ 8. 
repeat {apply Boolean to Cond ::> (Exp eval) done))! 

to Boolean result 
{GfPresult ~ :. 

repeat { «or::> (result::> (g) @='result ~ :) 
«and => {result => (Grresult ~ :) 8) Right side of the and part will not 

be evaluated if left part is 'false'. 

11' result))1 

Zahnts Device 

The following is an implemention of a simple "until-like" structure, very much like Zahn's original 
suggestion, which allows multiple exits from a loop [Zahn, A control statement for natural top-down 
structured programming, SYnlposiunl on Prog. Languages, Paris, 1974]. The intent was to be able to 
write in Small talk a minimal, event-driven keyboard/display routine like this one: 

until CR or DEL do 
(@:at ~ kbd. 

disp ~ t. 
t = 13 ::> feR) 
t = 127 ::> (DEL)) 

case 
CR : (disp ~ 'nornlal exit.') 
DEL: (disp ~ 'punt exit.')! 

To implement this control structure in Smalltalk, a class of objects called events was defined such 
that each instance, when it is awakened, executes a piece of code and breaks out from a loop. 

to until tempatom statement 
(repeat ((y~tempatom ~ 8. 

tempatom ~ event. 
« or => (again) done) 

( <l do => (Q=-statcTTlcnt ~ g)) 
(<1 case => (repeat (Gl"'tl'Tnpatom ~ g, 

tcmpntom ('val is event => 
(<l:, tcmpCl tom eval newcode 8,) 

done)) ) 
repeat (statement eval))! 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

to event I mycode 
(isnew => ((I=omycode ~ vector 3. 

mycode [2] ~ GT"done.) 
<l newcode => (mycode [ 1] f- :.) 

<l is => (ISIT eval) 
mycode eval)! 

Page 100 

Event is an example of constructing a vector of code that will be evaluated at some later time. When 
an instance of event receives the message newcode, it stores away some message as the first objects in 
the vector mycode. The last object is the message done which, when mycode is evaluated, forces a 
break out of the repeat loop in until. Hence, if we run the above example of using until, we have 

GJ""tempatom f- 8. 
tempatom ~ event. 
<lor 
=>(again) 
done 
<ldo 
Grstatement f- g 
<lease 
repeat (Grtempatom+-8. 
tempatom eval is event 
(<I:. 
tempatom eval newcode 8) 

done) 
repeat (statement eval) 

Case Statement 

Pick up the word CR and store in tempatom. 

CR is made an instance of the class event. 

We see or, so 

go back, pick up DEL, and make it an instance of event. 

Now we are done. 

We see the word do. 

Statement is the vector (G1-t+-kbd .... ~(DEL). 

We see the word case. 

We see the word CR again and store the name in tempatom. 
The value of tempatom is Cr, an event. 

We see colon, :, so we 
send the event CR the message newcode and pick up the code 

disp +- 'normal exit'. Do this again: pick up DEL and send it the 

message newcode, picking up code disp +- 'punt exit'. 

There arc no more case statement words so 

repeatedly evaluate the vector (~t+-kbd ... ), an expression 

that will continually request keyboard input until that input is 

a carriage return or delete character in which case the 

corresponding event will be run in order to evaluate mycode. 

Evaluating mycode results in execution of a done message, hence 

terminating the repeat loop. 

A method for simulating case statements in Small talk is to index into a vector of vectors or atoms 
that can be evaluated. The general message form is 

(vector) [ (integer) ] eval! 

Such a case statement can be seen in the routine used to Jealize a display window move, dele~, 
create, or grow depending on which window corner has the mouse cursor. The routine returns 'false' 
if the cursor is not in a corner. Note, in the statements below, the index = 1 + corner selected. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

to frmedit disp 
(@='disp ~ :. 

@="((1tfalse) 
(disp (clear. waitnext (butlon). 

disp frame white. disp move to mx my. 
disp display) 

(1 =sched vec length =>( ) disp hide. 
sched delete task. done.) 

(conte.nts copy) 
(disp fclear. waitnext (butlon). 

disp frame white. disp grow mx my. 
disp display)) 

[ 1 + disp corner mx my] eval )! 

index = 1, no corner selected 
index= 2, move 

index= 3, delete 

index=4, create 
index=5, grow 

index evaluation 

For instance, if the mouse is in upper right hand corner of the display window, then 

disp corner mx my = 2 

Add 1 and we get and index of 3, picking out the code to delete the current window. 

Page 101 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 102 

Scheduling Methods: sched and window 

Recall that Small talk has a USER task which is continually evaluated. (See Chapter III section 
entitled The User Task). 

One method useful for scheduling the display windows we have been working with is to replace the 
USER task with a request to send the message run to each item stored in an obset. We have chosen 
to name this obset sched. 

or 

PUT USER r::irDO Gr(sched map Gr(@=>task ~ vec[iJ. 
apply task to Gr(run) in GLOB))! 

PUT USER r::irDO Gr(sched map Gr{apply eaeh to G?(run) in GLOB))! 

Suppose sched contains three items, each one an instance of the class window (we will examine the 
code for this class in a bit). Then, in sequence, the temporary variable task is set to the value of 
vec[l], vec[2], and vec[3] (the local bindings in selted for the three instances of window). Each 
value of tasll. is sent the message run. This is a round robin method for scheduling objects, giving 
each object the opportunity to run if it so chooses. Each object stored in sched must be able to 
receive the message run. 

A window that can be scheduled has two instance variables, an instance of the dispframe in which we 
expect to read and print any keyboard i/o, and an instance of a class that knows about and can edit 
the objects living in the dispframe. We will present three examples of this second kind of class: a 
Smalltalk dialog window (stwindow), a window for invoking the Smalltalk class editor (edwindow), 
and a picturewindow (pieturewindow). 

Window. The class window looks like 

Grw ~ window dispframe 10 100 10 50 string 50 <editor>! 
Create a window in which the contents is defined as some editor. 

w run! This is the message we expect to send 8S part of the USER task. 

w contents <message>! window contents is <editor>. Send this <editor> the message <message> 

to window I disp contents 
(<(run => (disp hasmouse => 

(contents enter. 
repeat (disp hasmouse => {kbck => (contents kbd) 

done) 
contents exit)) 

«contents => CIt apply contents) 
<lis => (ISIT eval) 
<['s => (1t g eval) 

o ( mouse 7 ( => (contents bug) 
contents running) 

isnew => (G?disp +- :. GPcontents +- .. contents new))! 

The value of disp does not have to be a dispframe, but it does have to respond to the message 
hasmouse. Notice that the main method for sending a message to the object whose name is contents is 
to send it indirectly through the class window. When a window sees the message word contents it 
gives the object contents permission to examine the message. For example, if contents is an instance 
of stwindow, defined next, and we want to send that instance the message running, we could do so 
indirectly by typing 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 103 

w contents running! 

where w is an instance of window and the value of w contents is an instance of stwindow. 

Small talk Dialog Window. 

Now for some examples of <editor>, each of which must understand the messages sent to it by 
window: enter, running, kbd, bug, exit, new. 

The particular method used to define stwindow says that the final action in creating an instance of 
the class is to return an instance of window. Hence it is not possible to send messages directly to 
instances of stwindow; it is only possible to send messages indirectly through the class window. 

sched f- ~st ~ stwindow dispframe 10 100 10 50 string 50! 

st contents enter! 

st contents running! 

st contents kbd! 

st contents bug! 

st contents new! 

st contents copy! 

to stwindow 

(<lenter => (disp display) 

Create a Small talk window where the display area is initially at 10,10 with 

width 100 and height 50. Note that st is an instance of window, not 

stwindow. The value of st contents is the desired instance of stwindow. 

Show the dispframe 

Blink the prompter. 

Read an expression from keyboard. 

See where the mouse is pointing and take any appropriate actions. 

Print a message in the window. 

Create another stwindow in st's own image. 

<lrunning => (disp f- 20. do 10 ( ). disp ~ 8} blink the prompt character in the window 

<lkbd => (cr. read eval print sp) 

<lbug => (frmedit disp) 

«exit => ( ) 

<lcopy => (sched~stwindow newframe) 

«new ~ (disp ~ 'A SM ALLTALK window ') 

«is => (ISIT eval) 

<I's => (1t g eval) 

isnew => (1twindow (:) SELF))! 

frmedit was defined previously. 

newframe creates dispframe in the upper left corner 

of the display screen. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 104 

to newframe I 

(~f f- displrame 16256 16 112 string 1000 lont disp's (Iont). 

I's (~winht f- frTltht). 

11' I}! 

Edit Window. The content of this window is a list of names of defined classes. Pointing at one of 
the names in the window invokes the Small talk class editor for the class. This is a useful utility for 
avoiding typing edit <name>! 'fhe same method for defining the window is used here as was used in 
stwindow: the reply from isnew is an instance of window; messages to edwindow must be sent 
indirectly through window. 

sched f- ~edw f- edwindowl 

edw contents enter! 

edw contents running! 

edw contents kbd! 

edw contents bug! 

edw contents show! 

edw contents exit! 

edw contents new! 

to edwindow a i I setname 

(<(enter ~ (disp display) 

edw is an instance of window; its instance variable contents is an 

instance of edwindow. The window's dispframe is ncwframe. 

Display the dispframe. 

Blink a thick-lined square image (Ascii 4). 

Create a subwindow and call on eVe I.e., repeat (cr read eval print 

sp). 

Check the four corners (copy does not work) ... if mouse is not in 

corners find which name the mouse is pointing at and call on the 

editor for the appropriate class. 

Print the token 'edit:' followed by name stored in the vector. 

Do nothing special. 

Display the dispfrnme. 

«running ~ (disp f- 4. do 10 (). disp f- 8) 

«hbd ~ (disp sub G}=>( ev)) 

«bug => (fnnedit disp ~ ( ) 
@"'i f- disp mfindt mx my [1]. 
i(2:;')(). 
Gra f- (setname eval)[i-l]. 

Gri f- a eval. 
edit i. 
a = setname :;') (SELF show)) 

«show ~ (disp clear. disp ~ , 
edit:' . 

Gra f- setname eval. 

The word "edit:" adds a token to the count. value of 

a is the r.lass name. 

i is no\\' <I pointer to the class to be edited. 

Print the token 'edit:' followed by the names in the 

atom a. 

for i to a length - 1 (sp. a[i] print)) 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 105 

«exit ~ () 

«new => (disp frame black. SELF show.) 

<lis => (ISIT eval) 

<I's => ('It g eval) 

isnew => (Grsetname ~ 8. 

'It wirtdow newframe SELF))! 

Picture Window. This simple picture editor is an example of the use of a turtle "living" in a 
dispframe. It makes use of the class point as well as obset and apply. 

sched ~ r1?pw ~ picturewindow 16 100 16 100 string 50! 

pw contents enter! 

pw contents running! 

pw contents kbd! 

pw contents bug! 

pw contents exit! 

pw contents new! 

pw contents sketch! 

pw contents copy! 

Creates a window for sketching at location 16,16. window is 100 

wide, 100 high. Again, pw is an instance of window, pw contcnts is 

an instance of picturewindow. 

Show display frame and sketch. 

Do nothing special. 

Read the keyboard but do not evaluate expression. 

Check four corners; otherwise, draw a line to the mouse point. If 

middle mouse button pressed, pick turtle pen up. 

Do nothing special. 

Erase the display area. 

Draw lines between the points in the sketch unless point preceded 

by penup command. 

copy has a new meaning: erase the skctch. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

to pieturewindow var I df ® pies 

(<[enter ~ (df display. SELF sketch) 

<[running -:?>( ) 

<[kbd ~(er read) 

<[bug ~ (frmedit df~(SELF sketch) 
(pies vec length = 0 => (pies ~ ClFpenup. @ penup) 

When first start pick pen up. or it 

button 1 ~ (pies add ~penup. ® penup) 
@ pendn) middle button prfJssed. pen up. 

pies ~ @=>var +-(mp - (point df frmx df frmy)). 

Page 106 

Find mouse point and store point relative to 

the display window. 

® goto var) Draw the line. 

<[exit ~ () 

<l new ~ (® erase) 

<l sketch => (pies vee length = 0=>( ). Nothing to sketch. Should pen be up? 

pies map G? (GT'penup = vec[i]=>(@ penup) 
® goto vee[i] pendn)) Draw line to the point. 

<[copy => (df clear. G?pics ~ obset) 

<['S=> (1t g eval) 

<lis => (ISIT eval) 

isnew => (~df +-( apply dispframe). 

@='@ +- turtle frame df. 
@='pics ~ obset. 
1twindow df SELF ))1 

Delete sketch points. 

Instance of dispframe created by receiving 

values from picturewindow's message. 

Turtle lives in this new frame. 

Sketch points stored in an obset. 

Create the window. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 107 

Loopless Scheduling 

The following is an attempt to select some conventions for scheduling classes, while minimizing, if not 
eliminating, the use of explicit repeat or for loops. We define startup, a method for waking up each 
class inztance and giving each a chance to grab control and remain in control until some quit 
condition becomes true. 

to startup task 
((ff>task f- :. 

(<lin => (GrGLOB f- :)) 

task startif => (task firsttime. 

1tfalse)! 

repeat( tash quitif => (done) 
task eachtime) 

1ttask lasttime) 

Define context for evaluation. 

Task starts, send firsttime. 

Keep sending message eachtime 

until quitif returns 'not-false' value. 

Finally send message lasttime. 

We will still use sched to hold the scheduled objects. The USER task is 

PUT USER ~DO ({J=>(sched map Gr(startup each in GLOB))! 

A task may choose to start, for example, if mouse cursor is in particular location or mouse buttons arc 
pressed or objects are waiting in a queue. The first time the task runs it may want to clean up some 
graphic information or set a timer or take first object out of the queue. A task may decide to quit if 
some clock timer has run out or the mouse is no longer in the correct position. Each time a task 
runs, it takes whatever actions are appropriatej for example, the window might check to see if a 
mouse button is pressed and the mouse cursor is in one of the corners. Hence, by convention, a 
scheduled object must respond to startit, tirsttime, quitit, eachtime, lasttime. So that no errors occur 
if an object does not respond to these messages, we initialize things with 

GTstartif f- r:Y->tirsttime f- @='eachtime f- (ff>lasttime f- nil. 
to quitif (1tfalse)! 

The class window which acted as a task master before is no longer needed. Methods for blinking the 
prompter and waiting for an expression to evaluate true (waitnext) can be (re)defined. The class 
prompt simply sets a timer, displays the prompt character and does nothing until the timer runs out 
at which time it backspaces to erase the image. When prompt is the only scheduled object, we see a 
blinking prompt character. 

to prompt I t 
(<(firsttime => (disp f- 20) 

«quitif => ('Itt ( mem 280) 
<llasttime => (rlisp f- 8) 
isnew => (Grt (- 10 + mem 280))! 

The next object, waitnext, also ignores some of the messages. 

to waitncxt / not off yet expr 

Show Interim Dynabook image. 

mem 280 is the clock. 

Print b3ckspace to erase imnge. 

Set timer. 

(<iquitif => (noto((yet => (1tcxpr eval is false) 1t expr eval) 
isncw => (w,;:>cxpr +- 8. u?=>notoffyct f- true. stnrtup SELF. 

Grnotof(yet +- false. startup SELF))! 

The object trmedit is almost the same. The only exception is index 4 which originally was (contents 
copy) but now must be the actions previously taken by (contents copy). In the case of stwindow, this 
should be (sched f- stwindow newframe). But edwindow wants to do nothing and picturewindow 



EXAMPLE SMALLTALK CLASS DEFINITIONS P~ge 108 

wants to say (disp clear. G1="pies f- obset). Alternatives are to write separate frmedit routines or to 
send the code as a message to be evaluated at a later time. We will use this last idea. 

to frmedit disp expr 
(G7-disp f- :. ~expr f- nil. t1rexpr f- 8. 

c;=a( (ftfalse) 
(disp felear. waitnext (butlon). 

disp frame white. disp moveto mx my. disp display) 
(1 =sehed vee length ~( ) disp hide. Behed delete task. done.) 
(expr eval) 
(disp fclear. waitnext (butlonj. 

disp frame white. disp grow to mx my. disp display)) 
[ 1 + disp corner mx my] eval )! 

The Smalltalk dialog window is now defined as 

to stwindow I disp 
(<(startif ~ (ftdisp has mouse) 

<I firsttime ~ (disp display) 
«quitif ~ (ftdisp hasmouse is false) 

<leaehtime ~ (kbck => (cr read eval print sp) 
o < mouse 7 => (frmedit disp (sehed f- stwindow newframe)) 
startrLp prompt) 

<lis ~ (ISIT eval) 
<I's~ (ft g eval) 
isnew ~ (c;=adisp f- :. disp clear. disp f- 'SMALLTALK at your service' ))! 

edwindow and picturewindow can be defined as 

to edwindow a i I setname disp 
(<lstartif => (ftdisp hasmouse) 

<lfirsttime ~ (disp display) 
«quitif ~ (ftdisp has mouse is false) 
<leachtime ~ (hbck => (disp sub ~(ev)) 

o < mouse 7 => 
(frmedit disp ( ) => ( ) 

Gri f- disp mfindt mx my [1]. 
i<2~(). 

~a f- (setname eval)[i-l). 
@=>i f- a eval. 
edit i. 
a = setname ~ (SELF show)) 

startup prompt) 
«show::> (disp clear. disp f- 'edit: I 

ura +- setname eval. 
for i to a length - 1 (sp. a[i] print)) 

«is => (ISIT eval) 
<['s=> (11 g eval) 
isnew => (Grsctname +- g. 

Gi='disp +- dispframe 16 256 16 112 string 1000. 
disp clear. SELF show))! 

The prompt character is different. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

to picturewindow I df ® pics 
(<( startif => (1tdf hasmouse) 

<ffirsttime => (df display. SELF sketch) 
<fquitif => (1tdf hasmouse is false) 
<feaehtime => (kbek => (cr read) 

o ( mouse 7 => 
(frmedit df (df clear. ~pies~obset) => (SELF sll,etch) 
(pies vec length = -0 => (pies ~ (ft->penup. ® penup) 
1 = mouse 7 => (pies add Grpenup. @ penup) 
@ pendn) 

pies ~ Grvar ~ (mp - (point df frmx df frmy)). 
® goto var)) 

<1 sketch => (pies vec length = 0=>( ). 
pies map (if> (G?peTmp :: vec[iJ=>(® penup) 
® goto vec[iJ pendn)) 

<f is => (ISIT eval) 
<1's=> (1t g eval) 
isnew => (({?df ~ apply dispframe. 

GT'@ ~ turtle frame df. 
urpies ~ obset. 
® erase. df display))! 

Messages can now be sent directly to instances of stwindow, edwindow, and picturewindow. 

Page 109 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 110 

A Sample Text Editor 

The purpose of this example is to demonstrate text management within a display frame (dispframe)-­
how to 

i. display text 
ii. use mouse for pointing, keyboard for editing (or alternatively, set up an editing menu such as 

in the Small talk editor) 
iii. manipulate the text 

Insert, delete, replace and append text can be accomplished with insert only: 

action 

point someplace and start typing 
point to subset of the text and 

start typing characters 
point to subset and type 'del' 

interpretation 

insert, append 

replace 
delete 

Note: when typing, will handle backspace (bs); If «doit» as character, not as terminator; and delete 
(del) key. 

A paragraph has some area on the display screen, is framed, and does not scroll unless it reaches the 
bottom of the screen. 

Call it pdisp. 
pdisp is a dispframe. 
The window height of pdisp (winht) should extend from the upper left corner 

to the bottom of the display screen in order to avoid scrolling. 
The frame height of pdisp (frmht) should indicate bottom of last line of text. 

Grfontheight ~ 14. 
@=>pdisp ~ dispframe 0 1 Olontheight string 0 noframe. 

A paragraph contains some text. 

Call it buf. 
buf is a string. 
There is a pointer to the last character in buf. 
Call it last. 
last is a number. 
These correspond to instance variables in a dispframe but paragraph wants 

local manipUlative control of the textual information. 
We can give buf a textual value when we create the instance. 

@='buf +- (<lof ~ (:) string O}. 
C'i?last f- buf length.! 

A paragraph contains pointers into a subset of the text. 

Call the points pJ and p2. 
p1 and p2 are each instances of the class point. 
They indicate the beginning and ending of a selected subset of text. 
These points correspond to indices into the text string 
Call the indices loel and loc2. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

~loc1 *"(ff>loc2*"buf length .• 

A paragraph has the selected subset of text complemented to provide graphic feedback. 

Assume there is a class, dfcomp, owned by the paragraph class to perform the 
complementation from pI to p2 within the dispframe. 

dfcomp pdisp p1 p2! 

A paragraph's text can be manipulated. 

( I) Show correct text 

(2) Select an area of text 

tell pdisp to show buf [1 to last] 

start with mouse button press in order to 
select space between characters = pI; 
hold down button to pick up characters 
dynamically and then release the button. The 
final mouse posi tion = p2 

(3) Replace selected text by new text start typing 
if 'del' and loc I not same as loc2, then 

delete selected text 
otherwise delete selected text and replace 

with keyboard input 
otherwise, keyboard input replaces 

selected text. 

(4) Might want to give the paragraph a name and store/retrieve it on a disk file 

A solution to the text complement problem for a dispframe 

Assume have two points indicating beginning and ending of line of text 

pl beginning point 
p2 ending point 
df dispframe 

If p1 and p2 are the same point, complement nothing 

If p I is lower in the dispframe than is p2, complement nothing or reevaluate 

If p I is higher in the dispframe than 
is p2: 

P 1----------

------------p2 

the routine, changing roles of p 1 and p2 

complement from p I to p2 requires possibly 
three parts 
(1) complement first line starting at pI 
(2) complement full middle lines 
(3) complement last line up to p2 

Since the last line may be the first line p 1---------p2, 
(3) is solved by dcomp p1 x (p2 x - p1 x) p2 y fontheight. 

(1) is needed if pI Y < p2 Yj it is solved by 
dcomp pI x (df (frmx + frmwd) - p1 x) p1 y fontheight. 

Page 111 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

If we then redefine pI as 
@=opI ~ point df frmx pI y + fontheight. 

we set pI at the beginning of the second line. 
If now pI and p2 are at same height and therefore same line, (3) solves it. 
Otherwise, (2) is needed to fill middle lines by 

dcomp pI x (df frmwd) pI y (p2 Y - pI y). 

Putting this together we have 

to dfcomp df pI p2 
(~df ~:. 

GT-pl ~ :. 
GTp2 ~ :. 
(pI y ( p2 Y => (dcomp pI x (df (frmx + frmwd) - pI x) pI y fontheight. 

~pI ~ point df frmx pI y + fontheight. 
pI y ( p2 Y => (dcomp pI x (df frmwd) pI y (p2 Y - p1 y).))) 

pI Y > p2 y => ( ) 
dcomp pI x (p2 x - p1 x) p2 y fontheight.)! 

A solution for finding out where you are pointing with tho mouse 

This routine returns a vector such that 

first item 
second item 
third item 
fourth 

index of character after which you will insert 
left x of character 
width of character 
top y of character 

Page 112 

That is, if we point to character 3, return index 2; point to character 1, return index O. This will 
permit forward and backward movement of the cursor in order to select the subset of text. Sending 
the dispframe the message mfindc gives most of the desired information: 

@='tv~ df mfindc mx my. 

tv is now a vector with the correct information with the exception of decreasing tv[ 1] (the index of 
the character) and accounting for a "feature" of mfindc: if you point to the right of last character it 
tells yuu the last character--in this case the intention is to append to the end and the returned index 
should be last, not last-I, and the x position should be mx. The mouse is to the right of the last 
character if its x position is greater than the character's x position plus the character's width (tv[2] + 
tV[3]).' 

addto disp{rame 
G?( <l{indchar ::) (G?t ~ mx. 

GT'tv ~ SELF mfindc t my. 
tv[ 1] ( 0 ::) Going outside frame? 

(11 {last charx 0 chary}} 
(tv[l] = last => (t > tv[2] + tv[3] => (tv[2] +- t) 

tv [ 1 ] ~- tv [ 1] - I} 
tV[I] ~ tv[l]-I.} 
1Itv.}}! 

Some other useful additions to basic system classes 

Gr bottomscreen ~ disp ({rmy + {rmht}! Where disp is lowest possible window on the screen. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 113 

addto dispframe Reset frame and window parameters. 

eV'{<fdispset => {Grfrmx +- G1='winx +- :. 
Grwinht +- bottomscreen - Grfrmy +- Grwiny +- :. 
Gi='frmwd +- Grwinwd +- :.))1 

@=>{<ffshow => {(<lof => (@=>buf +- :. 
GT'last +- :.)) 

SELF clear. 
GT'frmht +- 1. 
SELF show))! 

Reset text information 

Then show the display. 

addto number ~{<lchars => {1t stringof SELF))I 

Reading the keyboard: Algorithm A 

The following routine, as part of the paragraph class definition, will repeatedly handle one character 
at a time, adjusting buf and the index pointers loc 1 and loc2. The effect will be to delete, replace, 
insert, and append to buf. 

Special characters Ascii code 

8 bs 
carat 
del 

2 (looks like .. a small carat character that has 0 width) 
127 

The following expression assumes we have already computed locI and loc2. We want backspacing (bs) 
to decrease locI and delete (del) to delete the selection (buf[locl+1 to loc2]). 

buf[locl + 1 to loc2] +- all carat. 

repeat (Grchar +- kbd. 
(del = char => (SELF delete) 

bs = char => 
(loel > 0 => 

(blLf[loc1] +- carat. 
@='loc1 +- loel - 1.)) 

(loel = loc2 => 

((buf length ( r:if>last (- lust+hole 
=? (GJ~blLr (- bur [1 to la.st] )) 
IJllr[locl + hole + 1 to last] f­

bllf[loc1 + 1 to last-hole] 
buf[loc1+2 to G.i='loc2docl+holc]+-oll carot)) 

buI [G'F'loc 1 (- loel + 1] +- cha.r) 

kbck => ( ) 
pdisp fshow of buf last. 
done) . 

Replace each character in the selected text by the 0 width 

carat character. 

Get character. 

Is it delete? 

Is it the backspace? 

If so, test to see if locI is at beginning of text. 

If not, can decrease loc 1 and replace with the carat. 

Otherwise, do nothing. 

Here if character not a backspace. Ordinarily can replace 

buf[loc1] by character, alld increase loel; special case exists 

if loel = loc2. The special algorithm says that a "hole" into 

which characters can be stuffed should exist, always 

providinG extra input space permits replacements larger than 

the selected text. 

Start by making certain there is room for the "hole" to 

be insf'r(('d after loel (Gr1101e f- 30). 

There':,- room for the hole so 51 ide over the part to the 

ril~ht of lor 1 and replace the middle "hole" part with carats. 

Th(, "hole" created has 0 width <llld t1H:rcfore is not seen. 

This is always clone regardless of input character ... 

just replace the character. 

See if there is more to do. 

If not, replace/insertlappend/delete completed. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 114 

Making selection if button pressed: Algorithm B 

SELF cleanup. Remove old indications of "hole" and of complementing. 

SELF showselection of pdisp findchar. Find the first location and set locl,loc2 and pl=p2. 

repeat 

(button 4 => 

(@='char f- pdisp findchar. 
char[l] = loc2 => () 
CJT>t~ point char [2] char [ 4]. 
(char[ 1] ( loc2 => (dfcomp pdisp t p2) 

df comp pdisp p2 t) 
~loc2 f- char [ 1]. urp2 f- t) 

done) 
G?char f- false. 
loc2 ( loc1 => (Grloc2 f- @:>loc1 swap loc2. 

~Pt f- GrpI swap p2) 

As long as the button is pressed, keep changing 

complemented area and loc2. 

Get next location. 

If no change, do nothing. 

t is new location's point. 

Complement changed area (possibly back to white). 

Store the new loc2 and p2. 

Done if button 4 not pressed. 

Indicate no characters typed yet. 

When completed, make certain first location 

is earlier in the window than second location. 

Above algorithm assumes the following addition to the class atom: 

addto atom ur(<lswap => (@='Xf-SELF eval. 
SELF f- :. 1t x))! 

Now the class definition for a paragraph 

to paragraph t tv / 
pdisp char buf last locI loc2 pI p2 ht/ 
df comp hole carat bs del 

Lets each instance of atom receive new value 

and return the old value. 

temporary variables 

instance variables 

class variables 

(init => (to dfcomp df pI p2 (above definition) Define in context of class. 

CJT>hole f- 30. Grcarat f- 2. Grbs~8. urdeZ f- 127) 

« retrieve => (filin :.) Create instance from a file; filin checks if value is a file. 

« store => ((fJ=>t f- file:. Write text such that, when evaluated 

t ~ , sched ~ paragraph of ' creates instance of a paragraph 

t ~ 39. t ~ buf. t f- 39. and stores in scheduler. 

t ~ , , +last chars + ' at ' + pdisp (frmx chars + ' , + 
(rmy chars + ' , + frmwd chars). 

t close.} 

CREATE INSTANCE 

isnew => (Grpdisp f- disp(rame 0 1 0 fontheight string 0 noframe. 

~buf ~ (<lof => (:) string 0) 
(ff>loc 1 f- ~loc2 f- (ff>last f- buf length. 
<fat => (SELF show at (:) (:) :) 
pdisp frame black.) 

Create display area. 

Create indices. 

If told where, show area. 

Frame the window. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

SEE TEXT 

<I show ~ (( 4at :;> (pdisp dispset (:) (:) :)) Reset display location. 

pdisp fshow of buf last) Tell text information. 

SCHEDULING MESSAGES 

<I startif ~ (1tpdisp hasmouse) Condition for starting is mouse inside the area. 

<I quitif ~ (1tpdisp hasmouse is false) Quit if mouse no longer in area. 

<l firsttime :;> (pdisp hasmouse :;> (GT-ht f- pdisp frmht. SELF showselection)) 

<f eachtime :;> (kbck :;> 

(Algorithm A) 
button 4 :;'> 

( Algorithm B)) 

<llasttime:;,> (pdisp's ((J=>frmht f- ht). 
pdisp frame white. 
SELF cleanup. 
pdisp frame black.) 

Typing anything? 

Keyboard algorithm 

Pressing button to make new selection? 

Reset frame height to clear black frame. 

MANIPULATING THE TEXT 

Page 115 

<l showselection :;'> Upon entering the window, set the cursor at the end for 

automatic append; can receive parameter values from the 

message. 

(Gf:>tv f- Determine value of first selection: as message or as last 

(<lof :;> (:) text character. 

{last pdisp (last=O =>( frmx)charx) 0 pdisp (last= 0 :;'> (frmy )chary)}). 
ctrloc 1 f-Grloc2f-tv[ I}. 
@='pI f- point tv[2} tv[4}. 
CV=-p2 f- point tV[2]+1 tv[4]. p2 is a little wider to help "see" current place. 

dfcomp pdisp pI p2.) 

« delete :;'> 

(@=>buf f- buf[1 to loc1]+buf[loc2 to last]. 
U?lac2 f- loel. GT--p2+-paint pI x+I p1 y. 
Grlast +- buf length) 

«cleanup::> ((char::> (Grchar +- false. 
G?buI +- bur [1 to loel] + bur [loc2 + 

ClT'last +- bu,( length. 
GPloc2 +- lael.}) 

pdisp (show o( buf last) 

<l is::> (15fT eval) 

«'s ::> (11 g eval)}! 

paragraph init! 

Reorganize buf removing text between loel, loc2. 

elf',u the window of complemented t.ext and 

to last]. rf'lllOVe the "hole". 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 116 

It is possible to schedule a paragraph text editor by typing 

sched f- paragraph! 

sched f- paragraph at 100 50 200! 

window appears in the upper left corner of the screen with 

no width or height. 

window appears at 100, 50 with width of 200. 

sched f- paragraph of '1 am a text editing window'! 

window appears in upper left corner with the text showing. 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 117 

Classes for Building Models 

"Simpula": Simula-style Simulation 

We have chosen a simple example of a scheduling mechanism for building simulations of dynamic 
environments such as hospitals and classrooms. The basis for this example is the simulation language 
Simula (a major inspiration for Smalltalk). 

The basic entities of Simula are instances of classes and ALGOL-like data-types. Simula simulation 
operates primarily through scheduling pseudoparallel processes by means of a sequencing set which 
holds the quiescent processes sorted by desired time of activation. Associated with each process are the 
object itself, the time the object is scheduled to wakeup and do something, and a message telling the 
object what state to go to next. This message was either constructed by the object when it last ran, or 
is a default message (we will use run). 

There is a system time (now) which indicates where the simulation's progress has currently reached. 
All activation times in the sequencing set are equal to or greater than the system time. A great idea 
of Simula is that system time is not advanced until there is no more computing to be done by the 
currently active event. This means that an event can consume an arbitrary amount of computing 
power; then, if there is nothing scheduled for the next one hundred (simulated) years, the system 
time will be advanced one hundred years without any "clock ticking" in between. 

An item in the sequencing set (SQS) is an instance of an Event Notice, a simple structure containing 
the object to be activated (ob), the desired event time (etime, a floating point number), the message 
telling the object what state to go to next (msg), and next and prev--indicators to the next and 
previous elements in the sorted set. 

Event Notice 

SQS 

I ob I msg I etime I prev I next I 

I Event I Event I Event I 
I Notice I Notice I Notice I 

Note that one object can be scheduled as more than one event, each event applying a different 
message to (requesting a different activity from) the object. Hence we place the message in the 
Event Notice rather than storing it as information local to the object. This is an improvement over 
Simula which only allows one phase of an event to be scheduled. The main activity of the SQS will be 
to add to, delete from, and sort the set of Event Notices. This job differs according to where the 
event time is stored, that is, in the Event Notice or more local to the object. 

to EventN otice prop I ob msg etime prev next 

(isnew::) ( G?ob+-:. Grmsg+-:. Gretimc+-:. GTprev+-:. Grnext+-:.) 

<I's::) {Cff>prop f- 8. <I+- => (1tprop f- :) 1tprop eval) 

<lis => (ISIT eval))! 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 118 

The sequencing set is not much more complex. It maintains now; current, the current process under 
activation; and the ordered set of Event Notices, set. In order to make this explanation simpler, we 
will include two dummy Event Notices with event times 0.0 and "infinity", that will, by default, be 
the first and the last elements in the set. This means that we will not have to check for a special 
termination condition, and that we avoid the possibility of a circular list. We always select the 
second item in set as the next active event. 

We need to provide messages to schedule a new event, to remove an event, and to activate the next 
event, as well as initialization for the set itself. 

(lFSimpula ~ SQS! 

Simpula schedule blob! 

Initializing the set means to create two Event Notices, the first and last 
scheduled events. The event objects are meaningless, so we choose to define 
them as OJ the first time is 0.0, which is also the value of now; the last is 
8 large number like 1.0el000. Simpula's set is an Event Notice linked in an 
ordered chain to other Event Notices 

------------- ~----------
lob 1 0 
1 msg 1 0 
1 etime 1 0.0 
1 prev 1 0 
1 next 1------------ 1 
-------------1 1 

1 
I 

EventNotice I 
--------------------1 
lob 1 0 1 
1 msg 1 0 1 
1 etime 1 1.0el000 1 
1 prev I" .-----------------
1 next 1 0 1 
--------------------1 

An EventNotice, whose object is blob, whatever it may be, is added to the 
chain of events. By default, its msg is &""(run) and its event time is the 
same as now. In the above example, this new EventNotice will be the 
second event. The (default) event whose object is 0 and event time is 
1.0el000 is always the last event in the set. 

Simpula schedule blob for Gr{ changeplace) at 20! 

Simpula activate! 

Simpula remove! 

SimpuZa full! 

The object is scheduled as explained above, but the msg is ~(changeplace) 
and the event time is Simpula's now+20. 

Get the next scheduled event (newOb), set current to newOb's object, set 
now to newOb's eli me, and send current newOb's message. 

Takes and returns the next event off the set, meanwhile reorgnnizing the 
chain of Event Notices. 

Reply is true if there is an event, other than the two dummy events, 
scheduled. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

to SQS finger newOb time msg I now current set 

(isnew => (G1=»set f- EventNotice 0 0 0.0 0 O. 
set'S next f- EventNotice 0 0 1.0el000 set O. 
~now f- 0.0) 

<l schedule => (G?newOb f- :. 

(ff>msg f- (<lfor=>(:) ~(run)). 
GPtime f- (<[at => (n.ow + :) now). 
rJrfinger f- set'S next. 
repeat (time ~ finger's etime => (~finger f- finger's next. again) 

GrnewOb f- EventNotice newOb msg time finger's pre v finger. 
newOb's prev's next f- newOb. 
finger's prev f- newOb. 
done)) 

<[activate => ((J=>newOb f- SELF remove. 
ur-now f- newOb's etime. 
G:T'current f- newOb's ob. 
apply current to n.ewOb's msg) 

«remove => (G:T'finger f- set'S next. 
finger's next'S prev f- finger's prevo 
finger's prev's next f- finger's next. 
1t finger) 

<lfull => (1t 0 ~ set'S next ob) 

«print => (G?finger f- set'S next. 
repeat (O = finger's ob => (done) 

finger's ob print. 
Grfinger f- finger's next.)) 

«'5 => (1t g eval) 
«is => (ISIT eval))! 

Page 119 

The above definitions are quite general, having two properties that might not be necessary in some 
applications: (1) backwards pointers for an EventNotice which take extra time to rechain, and (2) 
the instance variable current for SQS. As a response to the message activate, we say 

~current (- newOb's ob. apply current to newOb's msg. 

We might instead have 

evapply newOb's ob to newOb's msg. 

eliminating the instance variable. 

Now to test it out. 

By convention, a scheduled object, such as a blob, must respond to the default message (run) or to 
some equally useful activation message. 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

Try 

or 

to blob x y I sides ~ 
(isnew => (@:'sides ~ O. ~ ® ~ turtle. ® width ~ 2. S,ELF draw) 

«rurt => (SELF undraw. SELF draw. 
SimpuZa schedule SELF at avgwaitime+rand mod 100) 

«draw => (@ pen up goto GT'x ~ rand mod 500 @='y ~ rand mod 500 pendn up. 
poly GT>sides(- (sides + 1) mod 7. 
® penup goto x y pendn up. ) 

«undraw => (® white. poly sides. ® black) 
«print => ( ) 
«'5 => (1' g eval) 
«is => (ISIT eval))1 

to poly s 
(do (Grs(-:) (® go 10 turn 360/s))! 

Gri ~ 13! 
Clravgwaitime ~ 100! 

to rand (1' GTi (- i * 5)! 

~Simpula ~ SQS! 

Simpula schedule blob! 

Simpula schedule blob! 

repeat (Simpula activate)! 

PUT USER arDO GT(kbck => (ev) Simpula activate)! 

Page 120 

The result is two polygons bouncing around the screen. With the modified USER task, it is possible 
to temporarily interrupt the bouncing in order to type some messages (such as scheduling another blob 
or examining the scheduled events). 

Note, another rand expression, that avoid the need to initialize the variable and also allows ranges to 
be specified, is given below. 

rand! 

rand between 10 40! 

to rand low high I I n 
(r:J=>n (- (null ll-> (13) n*5). 

<[between"=> (Gi""low (- :. Grhigh (- :. 
11 low + n Tnod high + 1 - low) 

1t n)! 



EXAMPLE SMALLTALI{ CLASS DEFINITIONS Page 121 

A Simple Hospital Simulation 

A hospital will be composed oC departments (including admissions, surgery, wards, labs), each oC which 
has a number of resources (such as attendants, doctors, beds, operating tables) and patients. A typical 
patient (there will be many of them) has a name, age, and so on, a schedule which contains a route 
through the hospital specified at admissions, and a reference to the patient's current department. 
The patient visits the indicated department on the schedule, stopping at the department's front desk 
to check to see if there is a resource available for him. If there is, the patient will occupy that 
resource for some average treatment time; If there is no resource available, the patient must wait 
indefinitely on the department's line until one is available. After consuming the resource, the patient 
will check the waiting line and send the next waiting patient, if any, to the desk. 

If this simulation is set up with typical entrance intervals and treatment times found in a given 
hospital, an examination of the department's lines after the simulation is in progress will give some 
insight into the "bottleneck" departments of the hospital. 

The hospital can include a Smalltalk vector of elements, each of which is a department. 

@='dept ~ vector 201 

will contain 20 departments. A department has two main parts: resources available and its waiting 
line. It also has a name and an average treatment time for each patient. 

to department prop I resources line available nme treatime 

{isnew => {GT'available f- @='resources ~ :. G?line f- SQS. 
Grnme f- stringof 8. 
GT'treatime f- (<ltime => (:) avgwaitime)) 

<ltake => (Gravailable f- available - 1) 

<I giveup => (~available of- resources min available+ 1) 

<I's => {Grprop ~ 8. <l f- => (1t prop f- :) 1t prop eval) 

<lis => (ISIT eval))! 

Initialize the departments for 1 to 5 resources. 

for j to dept length (dept[ j] f-
department rand between 1 4 noname time 20* rand between 0 4)! 

We have to define a typical patient. 

Ci.T'routine t- stream of {dept[3] dept[6] dept[7]}! 

routine reset.! 

Gt' jane t- I)(LticTLt ' ja,ne' 22 routine! 

Simpula schedule jane for Gr(wakeup)1 

jane wakeup! 

Setup for the patient's schedule. 

Reset tlw stream to the first item. 

CrC<lte j<llle as a p<ltient v.'hos(: nalTle is j<lTlC', <lCe 22, schedule 

to 1)(' in three departments: 3, 6, and 7. Notice that the 

third mes;iilge to patient must be an instance of stream 

The patient is scheduled to wakeup now. 

The patient schedules herself to visit the department 

(newplace). 



EXAMPLE SMALLTALK CLASS DEFINITIONS Page 122 

jane visit! The patient sees if there are available resources in the 

department. If so, the patient takes a resource and schedules 
herself to move on after the department's treatment time; 

otherwise, she enters the waiting line. 

jane treatment! 

to patient prop I nme age schedule newplace 

The patient can also receive this message by being removed 

from the department.'s line and scheduled again for a visit. 

The patient gives up her resource in the current. department 
and wakes up the next patient, if any, in the waiting line; 

if there are other departments to visit, she schedules herself 

to visit the next one. 

(isnew => (~nme ~ :. "Grage ~:. CiT'schedule f- :. 

Grnewplace ~ schedule next) 

<lvisit => (newplace's available> 0 => 
(newplace talte. 

Simpula schedule SELF for Gr(treatment) at newplace's treatime) 
newplace's line schedule SELF for @='(waiting).) 

<ltreatment => (newplace giveup. 
(newplace's line full => (r:.i?prop ~ newplace's line remove. 

prop's ob wall-eup)) 
schedule end => () GTnewplace ~ schedule next. SELF wakeup.) 

<lwal/-eup => (SimpuZa schedule SELF for GT(visit)) 

<lprint => (nme print. sp.) 

<I's => (Grprop ~ 8. <I~ => eft-prop ~:) 1tprop eval) 

<lis => (ISIT eval))1 

All that remains is to make up an admittance process which creates new patients at reasonable 
intervals. We can add mechanisms for stopping the simulation and asking departments about their 
resources and waiting line as well as asking patients about their schedule. A patient might also know 
his disease and keep around a history of waiting times. A query method can be implemented by 
creating a display window (a talkwindow) that can be scheduled in Simpula. Any time a key is 
pressed on the keyboard, the window is scheduled to wakeup and expect inquiries about objects in the 
environment. The main USER task might be 

hbck =-> (Simpula schedule talhwindow for G? (wakeup)) 
Simpula full => (Simpula activate) 

Graphic feedback can be provided by having a department print itself as a rectangular area containing 
marks for each resource. The marks can be differently colored depending on whether or not they are 
available. The department might have three stations: a desk for the patient coming to visit, a 
waiting room for the waiting patient, and a staff room for the patient under trea.tment. We can also 
add a graphic representation of the system clock to display the value of now. Pressing a mouse button 
can indicate that you are making an enquiry about a particular department or patient. The 
department or patient has a graphic representation that is pointed at by the mouse cursor. The 
intention of pointing at the object is to schedule it for talking about itself. The USER task might 
now be 



EXAMPLE SMALLTALK CLASS DEFINITIONS 

1l,bck ~ (Simpula schedule talkwindow for ctr(wakeup)) 
o ( mouse 7 ~ (Simpula schedule (findobject at mx my) for ~(talk)) 
Simpula full => (Simpula activate) 

Instances of patient and department should respond to the message talk. 

Page 123 



INDEX Page 124 

This index was prepared from a Small talk Information Storage and Retrieval System in which the 
contents of the sections of the manual are referenced. As a result, the pages given below generally 
refer to the beginnings of the sections in which the information can be found. We have identified 
three types of indexed items: basic system classes, utilities, and examples created especially for this 
manual. The basic classes and utilities are provided in the Small talk system when you type resume 
small.sv. The index distinguishes between pages where the items are defined (def) and those where 
the item is referenced (ref). 

8 basic def 22,48 
ref 15, 23, 44 

B basic def 48 
ref 15,23 

'8 utility def 23 

! basic ref 2,3,15 

'It basic def 22,48,52 
ref 15,23,44,45 

basic def 48 
ref 15 

# basic def 48 
ref 23 

basic .def 20,22,48 
ref 15,23,44,45 

basic def 11,48 
ref 18,23,44,45 

basic def 48 
ref 15,44 

utility ref 3,9,10,37 

{ utility def 77 
ref 121 

abs example def 39 

addto utility clef 19, 77 
ref 18, 22, 27, 32, 34,35 

again utility def 81 
ref ,18, 98 

apply utility def 79 
ref 98, 102, 105 

AREA example def 87 
ref 92 

atom basic def 56 



INDEX Page 125 

ref 9, 11, 17, 32-35,44 

baseS utility def 77 

blob example def 117 

BLT utility def 42 

Boolean example def 98 

boot (button) utility ref 2 

box example def 18, 25, 29 
ref 17 -22, 45, 53 

brush example def 38 

bs utility def 78 

bug example def 92 

button utility def 82 
ref 32-39, 96 

c utility def 13 
ref 16 

cl example def 9 

class definition basic def 19 

class instance basic def 19 

cobweb example def 39 

commander example def 96 

condi tional utility def 27 
statement ref 48 

copym example def 87 

core utility def 77 

cr utility def 80 
ref 51 

ctrl ( utility def 78,79 

cursor example def 42 

mouse cursor utility def 2 
ref 2,5, 7, 10, 32, 34, 35 

dclear basic def 69 
ref 90 



INDEX Page 126 

dcomp basic def 72 
ref 32, 34, 35, 90, 110 

defs utility def 9,75 
ref 14,75 

demand example def 84 
ref 86 

department example def 121 

design example def 27 

dfcomp example def 110, 114 

disp utility def 80,90 
ref 87, 100, 102, 104 

dispframe basic def 30-31, 69 
ref 31-35, 80, 90, 100-105, 110-114 

display screen utility ref 4 

dmove basic def 69 
ref 90 

dmovec basic def 69 

do utility def 3,81 
ref 9, 10, 32, 34, 35, 45, 48, 74 

done utility def 2, 13, 81 
ref 16,32,34,35,48,78,79 

dpO utility def 75 
ref 76 

dragon example def 37 
ref 96 

draw example def 37,96 

dsoff utility def 80 

dson utility def 80 

edit utility def 10, 74 

edwindow example def 104, 107 

eq utility def 77 

esc utility ref 16 

ev utility def 78,79 



INDEX Page 127 

evapply utility def 79 

event example def 98,99 

Even tN otice example def 117 

expand utility def 77 

false basic def 61 

feder example def 39 

file basic def 66 
ref 69,76,87,114 

filfont example def 7 

filin utility def 75 
ref 7, 13, 17, 37, 40 

filout utility def 14, 75 

fix utility def 13, 74 
ref 16 

float basic def 57 
ref 2,11,84 

font editor example def 7 

fontchar example def 7 

fonts utility ref 7 

for utility def 3, 81, 98 
ref 32, 34, 35, 48, 121 

frmedit example def 100, 107 
ref 104 

hi! example def 37 

hill example def 37 

hil2 example def 37 

hp example def 55 

if utility def 81, 98 

indisp utility def 80,87 

ISIT utility def 26 

isnew basic def 21 
ref 26 



INDEX Page 128 

kbck utility def 78,79 
ref 51,98, 121 

kbd utility def 78,79 

keyboard utility ref 2 

link example def 55 

make list example def 98 

mem utility def 82 

mouse utility def 2 
ref 2, 4, 39, 100 

mover example def 90 

mp utility def 37,73,82 
ref 40 

mx utility def 4, 82 
ref 37, 100 

my utility def 4,82 
ref 37, 100 

newframe example def 103 
ref 104 

newrubberband example def 37 

nil utility def 77 

null utility def 77 

number basic def 57 
ref 2, 5, 9, 11, 16, 39, 40, 44, 45, 51, 110 

obset basic def 64 
ref 51, 102, 105 

paragraph example def 114 

patient example def 121 

payment example def 86 

picturewindow example def 105, 107 

PNT utility def 43, 89 

point basic def 73 
ref 40, 92, 94, 105, 110 

poly example def 26, 117 



INDEX Page 129 

polygon example def 26, 32, 34, 35 

polygonmenu example def 32,34, 35 

print utility ref 51 

prompt example def 107 

rand example def 37, 117 

read utility def 78,79 
ref 51,84 

reconstruct example def 37 

rectangle basic ref 94 

rectangle example def 40,92 

redo utility def 3, 80 
ref 16 

repeat utility def 4,81 
ref 17, 30, 32, 34, 35, 37, 40, 48, 98 

report example def 84 
ref 86 

return utility def 78 

rubberband example def 37 

SELF basic ref 44 

show utility def 75 
ref 18,26 

sp utility def 80 

special keyboard utility def 15 
characters 

SQS example def 117 

square example def 9, 11, 18 
ref 10, 13, 14, 19 

squig90 example def 37 

squiggle example def 37 

startup example def 107 

stream basic def 65 
ref 37,87,98,121 



INDEX Page 130 

string basic def 62 
ref 30, 31, 44, 45, 65, 87 J 110 

stringof utility def 77,87 

stwindow example def 103, 107 
ref 104 

text (see dispframe, turtle) 

title line basic def 19 

to basic def 9, 19, 48 

TTY utility def 78, 79 

turtle basic def 27,60 
ref 3, 4, 9, 18, 29, 30, 37, 39, 44, 45, 75, 90, 96 

type utility def 75 

until example def 98, 99 

USER basic def 51 
ref 102, 107,117 

vector basic def 62 
ref 32, 34, 35, 37, 39, 44, 64 

65, 75, 84, 94, ,99, 100, 121 

waitnext example def 92, 107 
ref 100 

while example def 98 
ref 102-105 

window utility def 69 
ref 2, 7, 14, 32, 34, 35 

window utility def 13 
( diagnosis) 

window example def 5 
(dialog) 

xfer example def 87 

xplot example def 87 

xydemo example def 92 

xydic example def 94 

xyfns example def 92 

Zahn's Device example def 99 


