
XEROX

.~:. •• , •• ~... .~> ... 1·~ .. a.~._ .. ~.) .

··ViewPoint·
AppUcationDeveloper's Guide

610EOO200
September 1985

Xerox Corporation
Office Systems Division
2100 Geng Road
MS 5827
Palo Alto, california 94303

Copyright to 1985, Xerox Corporation. All rights reserved.
XEROX (I), 8010,and XOE are trademarks of XEROX CORPORATION.

Printed in U.S. A.

TABLE OF CONTENTS

Section I: Introduction to ViewPoint

1.0verview
1.1 Reference documentation

1.2 Typographical considerations

1.3 Programming conventions

1.3.1 Resource management

1.3.2 Application termination

1.3.3 Multilingual considerations

2.User interlace
2.1 The desktop and icons

2.2 Windows

2.3 Pop-up menus

2.4 Attention window

2.5 Form windows and property sheets

2.6 Wastebasket

2.7 The Directory icon

2.8 Documents, folders, and file drawers

Section II. Building an application

3.Getting started
3.1 Logging on and off

3.2 The user profile

3.3 The workstation profile

4.Running an application
4.1 The programming cycle

4.2 Command Central

4.3 The System Folder

4.4 The ApplicationFolder

4.5 .autorun files

VIEWPOINT DEVELOPER'S GUIDE

1-1

'-1

'-1
1-2

'-2

1-3

'-4

1-4

2-1

2-1

2-2

2-4

2-4

2-5

2-6

2-7

2-8

11-1

3-1

3-1

3-1

3-1

4-1

4-1

4-2

4-3

4-3

4-4

T·'

TABLE OF CONTENTS

S.Strings and messages 5-1

5.1 XChar 5-1

5.2 XString 5-1

5.2.1 Readers and ReaderBodys 5-2

5.2.2 Writers and WriterBodys 5-6

5.3 XMessage 5-7

5.4 Attention 5-9

6.TIP 6-1

6.1 TIP tables 6-1

6.2 NotifyProcs 6-3

7.Creating a simple application 7-1

7.1 Attention menu 7-1

7.2 StarWindowShelis 7-2

7.2.1 Creating the shell 7-3

7.2.2 Transition procedures 7-3

7.2.3 IsCloseLegalProc 7-4

7.2.4 Bodywindows 7-4

7.2.5 Displaying information in a window 7-5

7.2.6 Commands and menus 7-6

7.2.7 Displaying windows on the screen 7-7

7.3 Context 7-7

7.4 Complete example 7-9

8. Form windows and property sheets 8-1

8.1 Form window 8-1

8.1.1 Creating a form window 8-1

8.1.2 Creating form items 8-3

8.1.3 MakeCommandltem 8-3

8.1.4 Layout 8-4

8.1.5 Recognizing changes in the form window 8-6

8.1.6 Getting and setting values 8-7

8.1.7 Destroying a form window 8-7

8.2 Property sheets 8-7

8.2.1 Creating a property sheet 8-8

8.2.2 Linked property sheets 8-9

9. Icon applications 9-1

9.1 What is an icon? 9-1

9.2 File types and icon applications 9-1

9.3 Getting icons on the desktop: the Prototype folder 9-2

T·2 VIEWPOINT DEVELOPER'S GUIDE

TABLE OF CONTENTS

9.3.1 Opening the Prototype folder; the user's perspective 9-2

9.3.2 Putting icons in the Prototype folder: the programmer's
perspective 9-3

9.4 Registering an application with the desktop 9-4

9.4.1 Picture procs 9-4

9.4.2 Generic procs 9-5

9.5 Examples 9-6

10. Selection 10-1

10.1 Some basic guidelines 10-1

10.2 Requestors 10-1

10.2.1 Can you convert the selection? 10-3

10.2.2 Enumerating selections 10-3

10.2.3 Resource allocation and deallocation 10-4

10.3 Managers 10-4

11. Packaging an application 11-1

11.1 Building an application folder 1 1 - 1

11.1.1 Identify the components of an application 11-1

11.1.2 Build the data files 11-2

11.1.3 Write an application description file 11-2

11.1.4 Change or add code to access data files 11-3

11.2 Code samples

11.1.5 Integrate the components into an application folder 11-5

11-6

11.2.1 Message files 11-6

11.2.2 Private icon file 11-8

11.2.3 Private TIP file 11-8

11.3 ADF syntax 11-9

Section III. Tools 111-1

12. Icon editor 12-1

12.1 Getti ng started 12-1

12.2 Editing an icon 12-2

13. Message tools 13-1

13.1 Message Master File Creation tool 13-1

13.2 Message Master Editor 13-3

13.2.1 Searching Message Master files 13-3

13.2.2 Search parameters 13-5

13.2.3 Editing 13-5

13.2.4 Closing, saving, and resetting 13-8

13.2.S Merging message files 13-8

VIEWPOINT DEVELOPER'S GUIDE T·3

TABLE OF CONTENTS

13.2.6 Printing message files 13-9

13.2.7 Displaying message entries 13-9

13.3 Message file property sheet 13-11

13.4 Runtime File Creation tool 13-12

14. Bitmap edit tool 14-1

14. 1 Getti ng started 14-1

14.2 Draw mode 14-2

14.3 Edit mode 14-2

14.3.1 Selection 14-2

14.3.2 Move, copy, and erase 14-3

14.3.3 Magnify 14-3

14.3.4 Loading and storing bitmaps and press files 14-5

14.4 Restrictions 14-5

1 s. Keyboard tool 15-1

15. 1 Getti ng started 15-1

15.2 Keyboard file subwindow . 15-1

15.3 Keyboard and bitmap subwindows 15-2

15.4 Key subwindow 15-5

15.5 How to edit a keyboard 15-7

15.5.1 Getting started 15-7

15.5.2 Editing the bitmap 15-7

15.5.3 Creating a new keyboard file 15-8

15.5.4 Changing the interpretation of the keys 15-8

15.5.5 Using a keyboard file 15-9

15.6 Restrictions 15-9

Appendices:
A. Boot switches A-l

B. Scavenging B-1

C. Maintenance panel codes C-l

T-4 VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER'S GUIDE

Section I. Introduction

This section introduces you to the ViewPoint environment. It
explains some basic programming conventions and highlights
some of the features cf ViewPoint. It also gives you an
illustrated. step-by-step introduction to the user interface and
office metaphors of ViewPoint.

1·1

1.1 Reference documentation

VIEWPOINT DEVELOPER'S GUIDE

1. OVERVIEW

This document introduces the basics of View Poi nt
programming. It is a condensed version of the material
contained in the ViewPoint Programmer's Manual. ViewPoint
is both a set of applications programs and a set of interfaces
that can be used to build new applications programs. Thus, a
ViewPoint user can be either an end user or someone who uses
the ViewPoint interfaces to create new applications programs.
This manual is directed primarily at the latter kind of user: an
applications programmer who is interested in adding new
programs to the environment.

This document is divided into three sections. The first section
discusses the philosophy behind ViewPoint and introduces the
basic user interface features. This section will be of use to both
end users and programmers. The second section focusses on
how to write a new ViewPoint application. The chapters in this
section build upon one another, starting with how to create a
very simple application and progressing to how to create a
polished application. The third section discusses some of the
ViewPoint tools (application programs) that are available to
help you build new applications.

The appendixes contain useful information that will help you
with routine operations. Appenidix A lists switches that are
consulted at boot time. Appendix B discusses how to scavenge
the volume holding the desktop and the ViewPoint system
files, and Appendix C lists codes that may appear on the
maintenance panel of your hard disk during routine operations
and describes any actions you should take if they appear.

This document assumes that you are familiar with the Mesa
Language and the Xerox Development Environment, at least to
the degree required to complete the Mesa Course. It does not
assume any prior knowledge of ViewPoint. Some experience
the Star or ViewPoint user interface would be helpful,
although it is not necessary.

Here is a list of other documentation that you might want to
consult and a brief description of the area that it covers:

XDE User Guide introduces the user interface
used in the development
environment and descri bes
the available programming
tools.

,.,

OVERVIEW

ViewPoint Series
Reference Library

Mesa Language Manual

ViewPoint Programmer's Guide

manuals for ViewPoint
applications software

Reference guide for Mesa
programming language.

complete reference for
ViewPoint programming,
including descri ptions of
ViewPoint interfaces.

1.2 Typographical conventions

1.3 Programming conventions

1·2

In this manual, the Mesa language is represented in boldface
type. Comment lines within code appear in italics, as does
input the user is expected to type. Commands that the user
selects with the mouse are presented as regular text.

This section introduces the system architecture and philosophy
underlying ViewPoint. The ViewPoint architecture is open and
flexible: ViewPoint makes no assumptions about the programs
that will be running above it. In effect, it waits for applications
to call it and state that they implement some facility. This is
referred to as a plug-in approach: an application "plugs itself
in" to the lower-level ViewPoint software.

Because ViewPoint knows nothing about the applications that
will be running above it, and the applications know nothing
about one another, a set of conyentions has developed to
facilitate. cooperation among applications and to ensure a
consistent user interface. Since ViewPoint assumes that all
applications are friendly, there is no enforcement of these
conventions; you are expected to follow them voluntarily.

The basic premise for writing an application is that the user
should be free to interact with any application at any time. For
example. the user is in charge of window layout and the
current selection. Although it is easy to write an application
that changes the selection or the window layout. this is
strongly discouraged.

To avoid preempting the user, an application should only
perform actions in response to an explicit user request. When a
new application is loaded, it waits for ViewPoint to notify it
when the user wants the application to do something. This is
known as the "Don't call us, we'll call you" principle; it
prevents programs from seizing control of the processor while
getting user input. Figure 1.1 illustrates a sample ViewPoint
application. When this application is loaded, the window
appears on the screen, but the program does not actually do
anything. Instead. it waits for the user to invoke one of its
commands.

Instead of a main procedure that calls subroutines, therefore,
each application program contains an initialization procedure
and individual command execution routines. Loading an

VIEWPOINT DEVELOPER'S GUIDE

1.3.1 Resource Management

VIEWPOINT DEVELOPER'S GUIDE

OVERVIEW

Figure 1.1 A typical window

application program calls its initialization procedure, which
registers the available commands with the system and provides
call-back procedures that are to be called when the user
invokes those commands. When the program is fully initialized,
control returns to the system. Thus, a application program
simply provides a set of functions and arranges for ViewPont to
notify it when the user wants it to perform some action. This
idea will be discussed more fully in Chapter 7, Creating a Simple
Application.

To simplify application development, as well as to encourage a
consistent user interface, ViewPoint provides programming
interfaces to support its primary user interface characteristics,
such as icons, windows, and property sheets. This makes life
easier both for the programmer and for the end user, since the
programmer doesn't have to write his own user interface code,
and the user is presented with a consistent user interface. The
user interface is discussed in greater detail in Chapter 2, User
Interface.

ViewPoint programs must explicitly manage resources. For
example, applications must explicitly allocate and deallocate
memory; there is no garbage collector to reclaim unused
memory. All programs share the same pool of resources, and
there is no scheduler watching for programs using more than
their share of execution time, memory, or any other resource.

When interfaces exchange resources, programsmust be very
careful about who is responsible for the resource. The program
that is responsible for the deallocation of a resource is the

1·3

OVERVIEW

1.3.2 Application termination

1.3.3 Multilingual considerations

1-4

owner of that resource. One example of a resource is a file
handle. If a program passes a file handle to another program,
both programs must agree about who owns that file handle.
Did the caller transfer ownership by passing the file handle, or
is it retaining ownership and only letting the called procedure
use the file handle? If there is disagreement between the two
programs, either the file will be released twice, or it will never
be released at all. All interfaces involving resources must state
explicitly whether ownership is transferred.

The ViewPoint environment consists of cooperating processes.
There are no facilities for cleanly terminating an arbitrary
collection of processes. You are expected to design your tools
to stop voluntarily when asked to do so.

An application should stop if the user aborts the application.
There are two ways to determine if the user has aborted an
application. An application's window can have a
TIP.AttentionProc that will be called as soon as the user presses
the STOP key. Or, procedures in the Terminal Interface Package
(TIP) can check whether a user has aborted an appli(:ation with
the STOP key in the application's window. (Note: The TIP
package is responsible for processing user input such as mouse
clicks and keystrokes. See Chapter 6, TIP, for details) An
application should check for a user abort at frequent intervals
and be prepared to stop executing and clean up after itself.
Because the application controls when it checks, it can check at
points in its execution when its state is easy to clean up.
Packages that can be called from several programs should take
a procedure parameter that can be called to see whether the
user has aborted.

ViewPoint is designed so that applications can easi Iy be
translated into other languages. The ViewPoint string package
supports the Xerox Character Code Standard, which allows
strings in many languages to be intermixed. Other facilities
support the translation of user messages into other languages
by encouraging the application programmer to put all these
messages into a module separate from the rest of the
application code. The messages can thus be edited or
translated without recompiling the code itself.

Application programmers are strongly encouraged to allow
their application to be multilingual. This means that you
should use the ViewPoint string facilities, and it also means
that you should not make any language assumptions about
characters received from the user. An application that expects
typing input from the user should be prepared to receive
characters from any character set. We discuss the string and
message facilities more fully in Chapter 5, Strings and
Messages.

VIEWPOINT DEVELOPER'S GUIDE

2.1 The Desktop and icons

VIEWPOINT DEVELOPER'S GUIDE

2. USER INTERFACE

This chapter describes the ViewPoint user interface, which is
based on the metaphor of a physical office. The user interface
includes symbols for standard components of the business
office, such as the desktop, folders, file drawers, baskets for
incoming and outgoing mail, and wastebaskets. This metaphor
provides a user interface that is consistent, intuitive, and easy
to use.

In addition, ViewPoint also provides programming interfaces
to support these user interface characteristics. By using these
facilities when you write new applications, you ensure that
your applications integrate well with existing software. This
chapter describes the user interface; the rest of this document
describes how to use the ViewPoint interfaces to incorporate
these user interface features into a new application.

The ViewPoint user interface is based on the idea of icons that
reside on a desktop. The desktop represents the typical
business office; an icon is a pictorial representation of a
ViewPoint object. A typical desktop might include icons that
represent various documents, folders, spreadsheets, mail
baskets, a printer, and other such objects.

The user accesses the object through the icon, generally by
selecting the icon and pressing the OPEN key. The user can also
use the MOVE, COPY, and DELETE keys on icons.

When it first appears, the desktop looks like a gray pattern that
occupies the entire display. Internally, the surface is organized
as an array of 1-inch squares, each of which can contain an
icon. Figure 2.1 illustrates a desktop with several different icons
and one open document.

2·1

USER INTERFACE

2.2 Windows

2·2

Figure 2.1 Icons on a desktop

The user can move the icons to different POSitions on the
surface, but two icons cannot occupy the same square at the
same time. If the user creates more icons than can fit on the
screen at one time, a message appears indicating the number
of undisplayed icons and the Move Undisplayed Icons
command appears in the desktop pop-up menu. The user
should delete the icons that are not needed and then select the
Move Undisplayed Icons command; the system places the
undisplayed icons on the empty spaces.

The use of icons is simple and intuitive. Therefore, you should
use icons to represent those applications that the end user will
access frequently. However, since associating an icon with an
application requires a fair amount of programming overhead
and the icon itself uses screen real estate, icons are not a cost­
effective or efficient way of representing simple, infrequently
used applications. Instead, you can have such applications run
from a command in a global pop-up menu, as described in the
next section.

For more information on writing applications that use icons,
see Chapter 9, Icon Applications.

A window is a rectangular region of the display screen in which
an application can display information to the user. Windows
have the following attributes, as illustrated in Figure 2.2:

Borders

Header

Title

VIEWPOINT DEVELOPER'S GUIDE

I Control point

Header

Commands

VIEWPOINT DEVELOPER'S GUIDE

Figure 2.2 A basic window

Commands (visible and in the pop-up menu)

Scroll bars

Window control points

USER INTERFACE

commands

manager

Windows can be in one of two modes: overlapping mode or
tiled mode. In overlapping mode, windows can appear on top
of each other; there is no limit to the number of windows that
can appear. In tiled mode, each window occupies its own
section of the screen, and there is no overlap. Windows must
be in one mode or the other; you cannot have some windows
in overlapping mode and others in tiled mode.

Initially, windows are in overlapping mode: each window has a
single-line header and a control point in each corner. Pressing
POINT (the left mouse button) in any control point invokes a
Top/Bottom operation. Pressing POINT down in any control
point and then moving the mouse moves the entire window.
Pressing ADJUST (the right mouse button) in any control point
and then moving the mouse resizes the window.

You can specify whether overlapping windows employ simple
offset. repeat offset. or don't offset. Simple offset means that
up to six windows can appear at one time, starting at the upper
left and going to the lower right. The seventh window appears
on top of the first window and the same pattern continues for

2·3

USER INTERFACE

2.3 Pop-up menus

2.4 Attention window

2-4

each succeeding window. If you close a window and then re­
open it, the system remembers the window's initial position
and redisplays it in that position. Repeat offset opens windows
in the same way as simple offset. However, if you close and
then reopen a window, the system does not remember the
initial location of the window, but rather places it in the first
available position. With don't Offset, there is no rigid
ordering; windows can appear anywhere on the screen.

When windows are in tiled mode, no more than six windows
can appear on the screen at one time. You cannot move a tiled
window on top of another tiled window. You can only move it
to an empty space on the screen.

To switch between overlapping and tiled mode and between
simple, repeat, and don't offset, you can either use the
Window Management property sheet or edit the User Profile.
The Window Management property sheet is available through
the Attention Window menu; it specifies whether windows
appear overlapping or tiled and with single- or double-line
headers.

If you want to change the defaults for these parameters, you
can edit the User Profile. (For a complete discussion of the User
Profile, see Chapter 3.) Here is an example of a User Profile
entry for window characteristics:

[Windows]

Arrangement: overlapping --or tiled

Header Style: single line -- or double line

Placement: simple offset -- or repeat or don't offset

A menu is a list of named commands. A pop-up menu is a menu
that appears only when the user specifically requests it by
holding down the left mouse button over the pop-up menu
symbol (==). Each application generally has a pop-up menu; the
author of the application chooses which commands go directly
in the header and which go in the pop-up menu. Using pop-up
menus conserves screen space while the menus are not in use,
but means that the commands are not readily visible and that
the user must go through an extra step to access a command.

For more information, see Chapter 7, Creating a Simple
Application.

The Attention window is the window that appears across the
top of your screen. The Attention window has an associated
pop-up menu with a list of system-wide commands. The
Attention window also allows applications to display messages
to the user. Figure 2.3 illustrates the Attention window and its
associated menu. (The Attention window is also shown in
Figure 2.1.)

VIEWPOINT DEVELOPER'S GUIDE

Attention
window wIth
pop-up
menu symbol
and message

AttentIon
window
wIth menu
shown

USER INTERFACE

I Please confirm the command

Date and tIme I Please confirm the command I End sessIon

~
Show User Profile

Show S,ze

Spelling Checker

PagInate

Figure 2.3 Attention window

You can access a standard set of commands available from the
Attention menu, and applications can add additional
commands to this menu. For example, many applications run
from a command in the Attention window menu rather than
from an icon. Thus, when the user wants an application's
window to appear, he invokes the appropriate command from
the Attention window menu, instead of selecting an icon and
opening it. As a programmer, you get to choose whether your
application runs from an icon or from a command in the
Attention window. Placing commands in the Attention
Window menu conserves screen space, but makes them less
accessi ble than icons.

Note that to prevent possible "scrambling" of messages, only
one process can post messages to the Attention window at a
given time. For more information on the Notifier or on posting
messages to the Attention window, see Chapter 5, Strings and
Messages. For more information on writing applications that
run from a command in the Attention window menu, see
Chapter 7, Creating a Simple Application.

2.5 Form windows and property sheets

VIEWPOINT DEVELOPER'S GUIDE

A Form window is a window that displays one or more items.
There are many types of items, the most common of which are
boolean, choice (enumerated), and text. The user can observe
the current value of each item in the form and change that
value if he desires. Figure 2.4 illustrates a form window for a
calendar application.

A property sheet is a Form window in which the items control
the properties of an object. Different objects have different
properties; for example, the properties of a paragraph include
left and right margins, justification, and line height. The head
of a property sheet can contain only the standard commands: ?
(Help), Done, Cancel, Apply, and Defaults. Property sheets
provide a consistent method of viewing and changing object

2·S

USER INTERFACE

CALENDAR

Scan

For

Text items
Time 9 Aug 85 19:00

"--------------' filled in by ~:======~:::::::~~t1 (to be r---------------, user)
Place

Title

DuratIon

Details

RemmderType

Figure 2.4. Sample Form window

Choice
items

attributes for all ViewPoint objects. To see the properties of an
object, press the PROPs key.

For more information, see Chapter 8, Form Windows and
Property Sheets.

2.6' Wastebasket

2-6

The Wastebasket allows the user to delete icons from the
desktop by moving the icon and depositing it in the
Wastebasket icon.

The Wastebasket icon has an associated property sheet that
allows the user to specify whether the deposisted icons are
purged immediately or simply stored, as illustrated in Figure
2.5. If the items are stored, the user must invoke the Purge
Wastebasket command from the Attention window.

The Wastebasket icon also has an associated window that
appears when the user presses the OPEN key. This displays the
object name and the time and date that the last object was
moved to the Wastebasket, which allows the user to retrieve
objects deposited in the wastebasket. If the user specifies
immediate purging, however, the Wastebasket window is
always empty and retrieval is therefore not possible.

Note that if the user specifies "Never" as the purge mode, any
objects he deletes from his mail in-basket will also go to his
Wastebasket. Also note that if two or more Wastebaskets are

VIEWPOINT DEVELOPER'S GUIDE

2.7 The Directory icon

USER INTERFACE

Purge deleted items I IMMEDIATELY

Number of contained items: 2 Total size: 158 disk pages

Figure 2.5 Property sheet for the Wastebasket icon

set up, they all point to the same Wastebasket file inside the
directory. A change to the property sheet for one Wastebasket
affects all of them.

The Directory icon is on every ViewPoint desktop. This icon
provides access to various ViewPoint applications and features.
Opening the Directory icon provides three choices:
Workstation, User, and Network. The Workstation category
E:ontains workstation-specific items, such as blank documents,
the Converter, and the Loader. (The Converter allows you to
convert documents from other formats, such as ASCII, into
ViewPoint documents. The Loader, which allows you to load
new ViewPoint applications, is discussed more fully in Chapter
4, Running an Application.) The User category contains user­
specific items, such as mail in and out baskets, a Wastebasket,
and the User Profile. The Network category provides access to
icons for remote servers, such as printers and file drawers. You
can copy icons out of the Directory as needed.

2.8 Documents, folders, and file drawers

VIEWPOINT DEVELOPER'S GUIDE

ViewPoint's document handling is based on documents,
folders, and file drawers, just as in the typical business office. A
document is a metaphor for a piece of paper. You can edit
documents, create new documents, file documents, and so
forth. A folder is a metaphor for a physical folder: you can
store vartious documents within a folder either on the desktop
or in a file drawer. A file drawer represents a a physical file
drawer: it allows you .to access additional storage space on a
remote server and organize that space much like a standard file
cabinet. For more information on document editing, folder
properties, or using file drawers, .consult the appropriate

2·7

USER INTERFACE

2-8

sections of the ViewPoint Series Reference Library and the
ViewPoint Series Training Guides.

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER'S GUIDE

Section II. Buildin9 an Application

This section describes the process of building an application. It
details the interaction of your application with the underlying
ViewPoint system. introduces you to some of the more
common ViewPoint interfaces. illustrates the use of procedures
from those interfaces. and explains basic ViewPoint
programming concepts. It includes many examples of code to
illustrate ViewPoint programming. .

II·'

3.1 Logging on and off

3.2 The User Profile

VIEWPOINT PROGRAMMER"S GUIDE

3. GETTING STARTED

This chapter presents some of the information you will need to
get started using your ViewPoint system. It provides only
developer-specific information, which means that it does not
cover general topics such as setting up a desktop. If you don't
know how to retrieve icons for your initial desktop, consult the
appropriate sections of the ViewPoint Series Reference Library
and Training Guides.

Before you can access the items on your desktop, you must first
log on using the logon window. To get this window on a newly
booted system, press the STOP key to stop the bouncing symbol,
and the logon window will automatically open. Enter your
name and password as registered with the authentication
service, and select START or press NEXT. If you already have
created a desktop on the machine, you will be logged in to that
desktop; if you don't have a desktop, you will be given the
opportunity to create a new ohe.

To log off, invoke the End Session command from the
Attention window menu. This will bring up a property sheet,
from which you can choose whether to delete your desktop,
store it on a file server, or retain it locally.

The User Profile is used to customize the desktop by specifying
user options. The information in the User Profile usually
represents user-selected default values for specified
applications. At start-up, many applications look in the User
Profile for a relevant section and initialize designated values
accordingly. As a user, you can find out what User Profile
information an application recognizes by consulting its
documentation. As a programmer, you can write your
application so that it reads the User Profile by using the
OptionFile interface. See the ViewPoint Programmer's Manual
for more information.

To look at the User Profile, select the Show User Profile
command from the Attention window menu. Alternatively you
can open the Directory icon, then the User folder, and finally
the User Profile. Figure 3.1 is an illustration of a User Profile.
(Because of space constraints, the Edit command is not visible
in the illustration).

The SimpleEditor, which is exactly what its name implies, is
available with the User Profile window. To edit, just select the

3·'

GETTING STARTED

3.2 The Workstation Profile

3·2

[Folder]
Showlcon: TRUE
ShowSize: FALSE
ShowCreateData: TRUE
Version: SeparateColumn

[Windows]
Arrangement: Overlapping
Header Style: single line
Placement: simple offset

+-
Figure 3.1 A User Profile

t

Edit command in the header of the window. Here is an
example of a User Profile that illustrates the syntax:

[Section]
StringEntry: This is a string entry value
BooleanEntry: TRUE -- or FALSE

IntegerEntry: 12345

The section and entry names can have spaces in them. The
square brackets around the section name, the colon following
the entry name, the double dashes introducing a comment,
and the carriage return at the end of each entry are significant.
Warning: putting a comment after a section heading causes
the entire section to be treated as a comment. For example:

[Windows] -- This comments out the Windows section
Arrangement: Overlapping

The Workstation Profile is similar to the User Profile, except
that it is intended for selecting parameters forthe workstation
rather than the desktop. There is one Workstation Profile per
workstation, whereas there is one User Profile per desktop. The

VIEWPOINT PROGRAMMER'S GUIDE

VIEWPOINT PROGRAMMER'S GUIDE

GETTING STARHU

Workstation Profile is similar to the User Profile in that it has
the same syntax, its contents can be modified by opening its
window and invoking the Edit command, and it can be
programatically accessed via the OptionFile interface.

To modify the contents of the Workstation Profile, you must
first have the SystemFolder application running (see Chapter 4
for an explanation of how to run it). Select the Attention
window menu System Folder command to open the System
folder. Look for the Workstation Profile in the folder, then
select and open it. You can then select the Edit command to
modify its contents.

A default Workstation Profile is provided on your desktop
when you first install ViewPoint.

3-3

4.1 The programming cycle

VIEWPOINT DEVELOPER'S GUIDE

4. RUNNING AN APPLICATION

The ViewPoint programming cycle involves both the Xerox
Development Environment (XDE) as a development
environment and ViewPoint as the target environment,
introducing dependencies between the two. In this chapter we

. discuss those dependencies and the related issue of how to run
a ViewPoint application.

As a ViewPoint programmer, you will actually spend a fair
amount of time in XDE developing and debugging your
applications. A typical programming cycle involves the
following steps, repeated as many times as necessary:

1. Write, edit and compile a program in XDE

2. Copy the object code to ViewPoint and execute it

3. Debug with the XDE debugger.

You can copy the code from XDE to ViewPoint with XDE's
CommandCentral, or you can put the code in a remote file
drawer from XDE and then retrieve it from ViewPoint. During
development, it is most convenient to use CommandCentral.
Once your application is stable, you should put it on a file
server so that it can be run directly from ViewPoint. (See the
XDE User's Guide for more information on CommandCentral,
the debugger, the editor, the compiler, and the binder.)

A few words of warning about running ViewPoint
applications: generally, there is no visible indication that a
program has been started. Since an application can be accessed
either from a menu command (see Chapter 7, Creating a
Simple Application) or through an icon (see Chapter 9, Icon
Applications), starting your program will either make an icon
available in a designated folder or generate a menu command.
If the application runs from a command in the Attention menu,
you need to bring up that menu to see the command. If the
application runs from an icon, you need to copy that icon from
the Prototypes folder onto your desktop. You access this folder
by opening the Directory icon, then the Workstation folder,
and then the Basic Documents, Folders, and Record Files folder
(which is the Prototypes folder.) Once you have copied an icon
onto your desktop, it will remain there. The next time you
reboot, you need to run the application to activate the icon,
but you won't have to retrieve the icon from the Prototypes
folder.

4-1

RUNNING AN APPLICATION

4.2 CommandCentral

4-2

XDE's CommandCentral is the inter-volume link that allows you
to transfer programs developed in XDE to ViewPoint for
testing. Before we explain the details of how this works, we
present some important points about ViewPoint's volume and
file structure.

The system volume is a ViewPoint volume that contains the
installed ViewPoint boot file. The data volume is a ViewPoint
volume that contains the local filing system. (Frequently the
system and data volumes are the same, but they need not be.)
Residing on the data volume in the System directory are data
files, which can be anything from executable programs to
auxiliary files such as font or icon files. Files in the System
directory are accessible through the SystemFolder application
(described below).

XDE's CommandCentral, in cooperation with the ViewPoint
boot file, will copy files over to the System directory of the data
volume and then start them. The steps are:

1. In XDE, use the CommandCentral option sheet to set the
correct client volume, which is your ViewPoint System
volume, or the volume containing the ViewPoint boot
file. Also set appropriate client switches at this time.

2. Put the names of your programs and data files, if any, on
the Run: line in CommandCentral's form subwindow.
Since data files are auxiliary files not meant for
execution, follow the names of data files by the /-e
switch, which tells CommandCentral to copy them to the
System directory, but not to execute them. (Meaningless
if used with I-c; see below.)

3. Invoke the Run! command in CommandCentral.
ViewPoint will be booted and the specified files will be
copied to ViewPoint's System directory; those not
accompanied by the I-e switch will be started before the
ViewPoint bouncing keyboard is displayed.

In addition to the switches documented in the
CommandCentral chapter of the XDE User's Guide, the
ViewPoint boot file reco~nizes the following Run line switches:

I! Causes a return to XDE with the message" Nub: ! switch
detected". This switch is useful when you want to install
data files such as system icon files, TIP tables, and others
and not boot ViewPoint until they have been installed.
Since you will probably install ViewPoint with scripts
provided by Xerox, it is not likely that you will need this
switch.

Ie Unconditionally copy the file to the System directory. I-e
means do not copy the file. Ie is the default.

Ip make parallel loading activity pause while this program
is being started. Used in conjunction with P boot switch,
explained in Appendix A. I-p is the default.

VIEWPOINT DEVELOPER·S GUIDE

4.3 The System Folder

4.4 The Application Loader

VIEWPOINT DEVELOPER'S GUIDE

RUNNING AN APPLICATION

--Example:
Run: FoolmplThatlmportsBaz/p BazlmplThatlmportsFoo

lu Copy the file to the ViewPoint volume if it is newer than
the version already there, or if there is no such file there.
I-u is the default.

1# Copy the file if it is different than the version already
there or if there is no such file there. 1-# is the default.

If you want to get back to XDe at any time, simultaneously
depress both SHIFT keys and the STOP key.

The SystemFolder application provides access to all files in the
System directory. If you do not run this application, files will be
in your System directory, but you will not have any way of
accessing them. When run, SystemFolder registers the System
Folder command in the Attention window menu.

Invoking the System Folder command opens a window
showing the contents of the System folder, including object
files, TIP files, font files, and icon picture files. (Files are put
into the System folder by copying them from XDe using
Command Central.)

SystemFolder also registers an auxiliary command: Set System
Folder Filter. Invoking this command from the Attention menu
displays a small property sheet with a single text item. If you
enter a wildcard string into the text field and select the Done
command, the next time you open the System folder, it will be
filtered by the string you typed. For example, if you only want
to see a list of object files, enter the string "*.bcd" in the text
field of the filter property sheet and then open the System
folder via the System Folder menu command. This time you will
see only the fi les that end with the" * .bcd" extension.

The SystemFolder application registers a third command,
Prototype Folder, which provides easy access to the Prototypes
folder.

Copying files from XDE via Command Central is one way to run
an application; the other way is to use the Application Loader
to load and start programs directly from ViewPoint. To use the
Application Loader, you must have a Loader icon on your
desktop. If you don't, open the Directory icon, and then the
User folder. Inside the User folder you will find the Loader icon;
copy it to your desktop. You can then copy or move object code
icons (bcds) or application icons to the Application Loader for
subsequent loading and starting, with associated feedback
appearing in the Attention window.

Using the Application Loader in conjunction with the
System Folder application makes it very easy to load files that

4·3

RUNNING AN APPLICATION

4.5 .autorun files

4-4

are in the System directory. You just open the System folder,
select the desired files, and move or copy them to the Loader
icon.

You can also load applications directly from remote file
drawers. To do so, just open the file drawer, select the
application, and copy it either directly to the Loader or onto
your desktop.

Opening the Loader icon will show all the applications on the
workstation and their status; that is, whether they are idle or
running. An additional way of running a program that is on
the desktop but not yet started is to select it from within the
open Loader icon and select the Run command in the header of
the Loader window.

You should note, however, that the term application is a loose
one; there is actually a difference between a file of obect code
and something called an application folder. An application
folder is a complete application; it always contains at least one
bcd file, but it can also contain other items such as information
on the picture that will appear on the icon, messages that the
application will post to the user, and other supplementary
information. A bcd file is a single file of object code.
Application folders represent finished applications; bcds often
represent applications that are still under development. Thus,
"standard" applications such as the document editor are
actually application folders; applications with the extension
.bcd are object files. (See Chapter 11, Packaging an
Application, for more details on application folders.) .

This distinction is important because the Loader looks for the
following entry in the Workstation Profile: (See Chapter 3,
Getting Started, for more information on the Workstation
Profile):

[Application Loader]
. Developer: TRUE (or FALSe)

If the Developer value is TRUE, the opened Loader icon will
show application folders and bcds. If Developer is FALSE, it will
only display application folders.

At boot time, the loader looks in the system catalog for files
with an extension of .autorun and automatically. loads and
starts any files with that extension. Thus, commonly used tools,
such as SystemFoJder. usually have the .autorun extension. To
change a file's extension to .autorun, either name it that way in
xoe and use CommandCentral to copy it into the System
folder, or change its name in ViewPoint by selecting it within
the System folder and modifying its name via its property
sheet. If you rename the file from XOE and use
Command Central to copy it to ViewPoint, you must use the /-e
client switch in CommandCentral. If you don't. ViewPoint will
attempt to start it twice, which will cause problems.

You can also use property sheets to specify that an application
should be run automatically. To do this, just open the Loader
icon, select the name of the application from the list, and press
the PROPS key. This will bring up a property sheet that allows

VIEWPOINT DEVELOPER'S GUIDE

. ation Properties

Name

Version

Creation Date

RUNNING AN APPLICAnON

you to specify whether or not the application should be run
automatically. For example, if you want to have the ViewPoint
document editor run each time you boot ViewPoint, you would
set up the property sheet as illustrated in Figure 4.1. (Note: this
only works with application folders.)

VP Document Editor

Basic Docs 2.0g

15-Jul-85 15:47:22

Auto Run at System Startup

VIEWPOINT DEVELOPER'S GUIDE

Figure 4. 1 Property sheet for the document editor

Note also that there are built-in applications that are always
run automatically. Such applications are not the same as
.autorun applications, because you do not get to choose
whether they are run. Such applications are referred to as
invisible applications, because they appear even when not
explicitly run. The Wastebasket and the Directory are examples
of invisible applications.

4-S

5.1 XChar

5.2 XString

VIEWPOINT DEVELOPER'S GUIDE

5. STRINGS AND
MESSAGES

This chapter introduces some of the underpinnings of
ViewPoint programming: how characters are represented,
how strings of characters are represented, and how messages
are directed to the user.

For a system to be truly multilingual, it must have a character
representation that allows for a tremendous number of
different characters. English-only systems usually represent
characters with either a 7-bit code (ASCII), or an 8-bit code
(ISO). An S-bit code allows 256 characters, which is plenty for
English and associated special characters, but not nearly
enough for multilingual capability.

The Xerox solution to this problem is a character encoding
system (The Xerox Character Code Standard) that normally
conforms to the ASCII and ISO S-bit character codes, but
expands to a 16-bit code when necessary. Defining a character
as 16 bits provides 65,536 distinct characters; reserving space
for control characters reduces it to 35,532. This 35.532 range is
partitioned into 256 blocks (character sets) of 256 character
codes each. Thus, each character is composed of two S-bit
quantities: a character set and a character code. The character
set is optional; it can be omitted when a special charact~r set is
not required. When no character set is specified. the character
code conforms to the ASCII and ISO codes. This approach thus
provides both versatilty and compactness.

The XChar interface defines the basic character type and some
operations on that character type.

XChar.Character: TYPE. WORD;

XChar.CharRep: TYPE. MACHINE DEPENDENT RECORD [
set. code: Environment.byte];

The XString interface provides data structures and operations
for strings of characters encoded by the Character Code
Standard. Again, multilingual considerations make the XString
design somewhat different from "standard" string packages.
In particular, XString declares two kinds of strings: one for
reading (Ureader") and one for writing ("writer"). The basic
idea is that examining and manipulating existing strings is
fundamentally different than building and creating new
strings, and that most strings do not need to be changed once

5-1

STRINGS AND MESSAGES

5.2.1 Readers and ReaderBodys

offset = 0

limit = (3-0) + 1 = 4

offset = 2

limit = (10-2)+1 = 9

S-2

they are created. Thus, since readers use less space than writers,
programs that only examine strings can save signficant space.

XString defines the following types for read-only strings:

XString.Reader: TYPE == LONG POINTER TO XString.ReaderBody;

XString.ReaderBody: TYPE == PRIVATE MACHINE DEPENDENT RECORD[
context(O): XString.Context.
Iimit(1): CARDINAL.
offset(2): CARDINAL.
bytes(3): XString.ReadOnlyBytes];

XString.Context: TYPE == MACHINE DEPENDENT RECORD [
suffixSize(O:O .. 6): [1 •• 2], --bit positions 0-6 in word 0
homogeneous(O:7 .. 7): BOOLEAN.
prefix(O:8 •• 15): Byte];

XString.ReadOnlyBytes: TYPE ==
LONG POINTER TO READONLY XString.ByteSequence;

XString.ByteSequence: TYPE == RECORD (
PACKED SEQU ENCE COMPUTED CARDINAL OF XString.Byte 1;

XString.Byte: TYPE == Environment.Byte;

The basic structure is the sequence of bytes pointed to by
bytes. limit is the offset from the pointer to the byte after the
last byte in the byte sequence (the "length" of the string); and
offset is the offset from the pointer to the first byte (the
"beginning" of the string). These fields are illustrated in Figure
5.1.

Figure 5.1. XString.ReaderBody

VIEWPOINT DEVELOPER'S GUIDE

Reader

STRINGS AND MESSAGES

A Context contains information about how characters are
encoded in the byte sequence. The suffixSize field describes
whether the first byte is encoded as a 8-bit character or a 16-bit
character. The homogeneous field is an accelerator specifying
whether the byte sequence contains any character shifts.
Setting it to TRUE may make some operations faster, but it's
important to set it to TRUE only when it really is true. It is always
safe to set it to FALSE. The prefix field specifies the character set
of the first character. Subsequent characters in the string use
the same prefix unless an encoding transition is encountered.
(The prefix field is used only for 8-bit characters, since the 16-
bit representation includes a character set.)

Figure S.2 illustrates these data structures.

. . .

• context

limit

offset

bytes

. .

ReaderBody

. .

context
.·r-----------------------i

• • • : suffixSize (7 bits) :
I I

: homogeneous (1 bit) :
I I

: prefix (8 bits) :
. .---- ----: .----- - -------.-.....

offset: the offset from the pointer to the first byte

limit: the offset from the pointer to the byte after the last byte

context: describes how characters are encoded
suffixSize: states whether the first character is

encoded in 8 bits or 16 bits

prefix: contains the character set of the first
character (only for 8-bit characters>

homogeneous: TRUE if no character shifts in sequence

Figure S.2 Reader and ReaderBody

VIEWPOINT DEVELOPER'S GUIDE 5-3

STRINGS AND MESSAGES

5.2.1.1 Accessing the contents of a reader

5.2.1.2 Creating readers

S-4

Because of the character encodings, you shouldn't access the
contents of a reader just by indexing. Instead, you should
always use procedures from the XString interface:

XString.First: PROCEDURE [r: XString.Reader) RETURNS [c: Character);

XString.NthCharacter: PROCEDURE [r: XString.Reader, n: CARDINAL)
RETURNS [c: Character);

XString.Lop: PROCEDURE [r: XString.Reader) RETURNS [c: Character];

First and NthChar return the specified character; Lop removes
the first character and returns it. First and Lop are more
efficient than NthCharacter; you should use them when
appropriate. XString also provides procedures to determine
other information about a reader, such as the number of
logical characters that it contains; consult the XString chapter
of the ViewPoint Programmer's Manual for details.

There are several ways to create readers. One way is to start
with a writer; once the contents are fixed, you can use
XString.ReaderFromWriter to convert from a writer toa reader.
You can also use XString.FromSTRING or XString.FromNSString to
convert a Mesa string or an NSString into a reader:

XString.ReaderFromWriter: PROCEDURE [w: XString.Writer]
RETURNS [XString.Reader) = INLlNE ... ;

XString.FromSTRING: PROCEDURE [s: LONG STRING.
homogeneous: BOOLEAN ~ FALSE]
RETURNS [XString.ReaderBody];

XString.FromNSString: PROCEDURE [s: NSString.Stri ng,
homogeneous: BOOLEAN ~ FALSE]
RETURNS [XString.ReaderBody];

You can also use procedures from the XFormat interface to
format various types (such as a stream of characters or a
sequence of strings) into Readers, or vice versa. The primary
data structure of the XFormat interface is the Handle:

XFormat.Handle: TYPE = LONG POINTER TO XFormat.Object;

XFormat.Object: TYPE :I RECORD [
proc: XFormat.FormatProc,
context: XString.Context ~ XString.VanillaContext,
data: XFormat.ClientData ~ NIL];

XFormat.FormatProc: TYPE = PROCEDURE [r:xString.Reader, h:
XFormat.Handle];

XFormat.ClientData: TYPE = LONG POINTER;

There are two major classes of operations in XFormat. One class
has a built-in format procedure, and the other does not. The
four data structures for which there are default output

VIEWPOINT DEVELOPER"S GUIDE

5.2.1.3 Readers vs. ReaderBodys

VIEWPOINT DEVELOPER'S GUIDE

STRINGS AND MESSAGES

procedures are: XString.Writer, Stream.Handle, TTY.Handle and
NSString.String. Here is an example that uses both kinds of
procedures to put the contents of a string directly into a
stream:

fileStream: Stream.Handle foo;
rb: XString.ReaderBody XString.FromSTRING ["Lysol"L);
obj: XFormat.Object xFormat.StreamObject(sH :fileStream);
XFormat. Reader(h:@obj. r: rb);

XFormat.StreamObject has a built-in format procedure; it always
directs its output to a Stream.Handle. Thus, the call to
SreamObject constructs and returns an object whose
FormatProc is StreamProc (the built-in default) and whose data
is sH (the stream). Reader, on the other hand, is an example of
the other kind of procedure. When you call this procedure, you
need to provide a handle to an object with a format procedure.
Thus, Reader calls StreamProc, with r as a pc;lrameter;
StreamProc puts the bytes of the reader to the stream handle.
Here is a second example of how to use XFormat:

writerBody: XString. WriterBody
XString.NewWriterBody(maxLength: 250, z:z);

xfo: XFormat.Object xFormat.WriterObject(
w: @writerBody];

XFormat.String(h:@xfo, s: "My name is "L];
··Concatenate strings into writer

XFormat.String[h:@xfo, s: namePassedlnAsAParameter);
XFormat.String[h:@xfD, s:" and my age is "L};
xFormat.Oecimal[h:@xfD, n: agePassedlnAsAParameter];
XFormat.Char[h:@xfo, char: ' .. ORO];
[] SimpleTextDisplay.StringlntoWindow [

string: XString.ReaderFromWriter{@writerBody], ...);

In this example, we first create a new writer (discussed later in
the chapter), and then we call WriterObject to create an object
initialized with the format procedure WriterProc and data
writerBody. Next, we use the String procedure to concatenate
a series of strings into the writer. Finally, we convert the
finished writer into a reader, and then display the reader.

When you use readers, you must decide whether to use the
actual ReaderBody or just the Reader. Obviously, since readers
are just pointers, they require less space than ReaderBodys.
However, you should use the ReaderBody itself when keeping
track of who owns the storage is a problem. Thus, you should
generally put a ReaderBody, not just a reader, in your data
structure.

For procedures, the guideline is to take a Reader and return a
ReaderBody. The idea is that passing readers as parameters
reduces the number of words of parameters, while returning
ReaderBodys allows the client to manage the storage for the
ReaderBody.

Another guideline is that clients should be able to pass pointers
to local ReaderBodys. That is, clients should be able to allocate
ReaderBodies from the local frame, rather than from

5·5

STRINGS AND MESSAGES

5.2.2 Writers and WriterBodys

5-6

permanent storage. For example, consider the following
fictional procedure that renames a file:

RenameFile: PROCEDURE [oldName:xstring.Reader) = {
rb: XString.ReaderBody +- Somelnterface.GetNewName[) ;
file +- somelnterface.lookupByName{oldName);
somelnterface.Rename[file: file. newName: @rb)};

The procedure RenameFile takes a reader, which it passes to
LookupByName. In this case, we are just passing pointers
around, so using readers is the right thing to do.
GetNewName, on the other hand, returns a ReaderBody. If it
returned a Reader, there would be a problem with where the
storage for the ReaderBody was kept. Either it would have to
be global, or it would have to be -deallocated from a known
place after RenameFile was done with it. Returning the
ReaderBody itself makes it dear that RenameFile owns that
storage and can deallocate it when appropriate. The newName
parameter to the Rename operation is a poi nter to a local
ReaderBody. Rename should copy the ReaderBody (and the
bytes) if it intends to save the characters.

XString.Writer: TYPE = LONG POINTER TO XString.WriterBody;

XString.WriterBody: TYPE = PRIVATE MACHINE DEPENDENT RECORD [
context(O): Context.
limit(1): CARDINAL.
offset(2): CARDINAL.
bytes(3): Bytes,
maxLimit(5): CARDINAL,
endContext(6): Context,
zone(7): UNCOUNTED ZONE);

Bytes: TYPE • LONG POINTER TO ByteSequence;

A WriterBody contains the same information as a ReaderBody,
plus three additional fields. maxLimit describes the limits of the
allocation unit, endContext is the context that describes how
the last character is encoded (this is an accelerator for
operations that append characters), and zone is the zone that
contains the allocation unit.

Including a zone in the WriterBody enables operations that
add characters to the writer to allocate a larger byte sequence,
copy the old bytes, and update the byte pointer in the
WriterBody without invalidating the writer variable that the
caller owns.

You can allocate a writer with XString.NewWriterBody:

NewWriterBody: PROCEDURE [maxLength: CARDINAL,
Z: UNCOUNTED ZONE]
RETURNS [XString.WriterBody];

NewWriterBody allocates a byte sequence that has room for
maxLength bytes using z and returns an empty WriterBody
that contains the bytes. You can expand a WriterBody with a
call to XString.ExpandWriter:

VIEWPOINT DEVELOPER'S GUIDE

5.3 XMessage

VIEWPOINT DEVELOPER'S GUIDE

STRINGS AND MESSAGES

ExpandWriter: PROCEDURE [w: XString.Writer, extra: CARDIII/AL];

ExpandWriter assures that at least extra bytes are available in
the writer's bytes. There are several procedures for writing and
editing writers; check the Viewpoint Programmer's Manual to
find out what is available.

The idea behind the XMessage interface is that all messages
that the user sees (generally speaking, all the readers in a
program) should be grouped together. Eventually, when an
application is finished, you can use Message Tools to make your
messages independent of your application. That way, you can
change the messages without recompiling the application,
which makes it easy to convert applications for multilingual
use. We discuss how to make your messages independent of
compilation in Chapter 13, Message Tools; for now, we present
the messages mechanism used during development.

There are three pieces to the messages mechanism: a
definitions module, an implementation module that provides
the raw material for the messages, and program modules that
use the messages provided by the implementation.

The definitions module defines the messages for the
application, and defines a procedure for clients to call when
the they need to access the messages. Programs access
messages via an XMessage.Handle, which represents a collection
of messages. A handle is normally associated with a particular
application. The definitions file provides a procedure for
programs to call when they need to access the handle. Thus,
this procedure provides an easy way for message suppliers and
message users to communicate.

The second piece is the module that provides the raw material
for the messages. This module is used to supply the message
text while running the application and supply the raw data to
the message translators. The third piece is the module or
modules that uses the messages. The example that follows
shows each of these three pieces.

-- MsgDefs.mesa
DIRECTORY

XMessage USING [Handle, MsgKey];

MsgDefs: DEFINITIONS,. {
GetMessageHandle: PROC RETURNS [h: XMessage.Handle];
MessageKey: TYPE" {hiMom, elephant, missingfile, invalidlnput};
khiMom: XMessage.MsgKey ,. MessageKey.hiMom.oRD;
kelephant: XMessage.MsgKey ,. MessageKey.elephant.oRD;
kmissingfile: XMessage.MsgKey ,. MessageKey.missingfile.oRD;
kinvalidlnput: xMessage.MsgKey ,. MessageKey.invalidlnput.oRD;

- Msglmpl.mesa
DIRECTORY

MsgDefs,
XMessage,
XString;

Msglmpl: PROGRAM IMPORTS XMessage, XString EXPORTS MsgOefs ,. {

5·7

STRINGS AND MESSAGES

5·8

OPEN XS:XString;

h: XMessage.Handle +- NIL; - The messages handle

GetMessageHandle: PUBlICPROCRETURNS [h: XMessage.Handle] = {
RETURN [h]}; - Returns the message handle

Init: PROC • { -- Creates, allocates, and registers messages
msgArray: ARRAY MsgDefs.MessageKey OF xMessage.MsgEntry +- [

hiMom: [
msgKey: MsgDefs.khiMom, -- Key used by msg customer
msg: XS.FromSTRING ["Hi Mom"L], -- Actual message
id: 1], --Internal key

elephant: [
msgKey: MsgDefs.kelephant,
msg: xS.FromSTRING ["Elephants should be chartreuse."L],
id: 2],

missingFile: [
msgKey: MsgDefs.kmissingFile,
msg: xs.FromSTRING ["Error ••• file not found"L],
type: errorMsg, -- Hint as to how message will be used
id: 3],

invalidlnput: [
msgKey: MsgDefs.kinvalidlnput,
msg: XS.FromSTRING ["Invalid input. "L],
id: 4]];

messages: XMessage.Messages +- DESCRIPTOR [LOOPHOLE [
msgArray, ARRA Y(

O •• MsgDefs.MessageKey.LAST.ORD] OF XMessage. MsgEntry]];

h +- XMessage.AllocateMessages [
applicationName: "TestApplication"L,
maxMessages: MsgDefs.MessageKey.LAST.ORD + 1,
clientData: NIL,
proc: DeleteMessages];

XMessage.RegisterMessages [
h: h,
messages: messages,
stringBodiesAreReal: FALSE]};

DeleteMessages: PROC (clientData: XMessage.ClientData] =
0;

--Mainline code
Init [];} •••

Typical message usage
mh: XMessage.Handle +-MsgDefs.GetMessageHandle[];
missingFile: XString.ReaderBody +- XMessage.Get [

mh, MsgDefs.kmissingFile];

Attention.POSt (@missingFile];}. --Discussed in the next section

The definitions module declares a procedure that can be used
to get the message handle, as well as keys (which are just
CARDINALS) to identify the messages. The implementation
module declares the handle and exports GetMessageHandle.
The Init procedure then initializes the elements in the message
array, which are of type XMessage.MsgEntry:

VIEWPOINT DEVELOPER'S GUIDE

5.4 Attention

VIEWPOINT DEVELOPER'S GUIDE

STRINGS AND MESSAGES

MsgEntry: TYPE = RECORD [
msgKey: Msgkey.
msg: Xstring.ReaderBody. . -The actual message
owner: LONG STRING ~ NIL. --Who owns the ReaderBody
severity: MsgSeverity ~ good,
translationNote: LONG STRING ~NIL.
translatable: BOOLEAN ~ TRUE.
type: MsgType ~ userMsg.
id: MsgIDI ••

The type is used to give a hint as to how the message will be
used. Some examples of possible types are userMsg, for
messages that will appear in the Attention window.
pSheetltem for messages that will appear in a property sheet.
and errorMsg, for error messages. See the ViewPoint
Programmer's Manual for a complete list of the possible types.

The id provides a unique identifier for a particular message.
This id is what ties a message to previous occurrences of that
message and helps translators to determine when a new
message is added or an old one deleted. You should never
change the id during the lifetime of a message. The
translationNote parameter allows you to include extra
information for the translator in case a message is potentially
ambiguous.

Once the array has been set uP. Init creates a descriptor for the
msgArray and calls XMessage.AllocateMessages to define a
range of messages to be associated with this application. This
procedure returns a message handle. which must be used to
access the messages for that application. Next. Init calls
XMessage.RegisterMessages to associate the messages with the
handle. Thus, Init provides the correspondence between the
message keys declared in MessageDefs. and the actual text in
the readers.

Client modules call GetMessageHandle to get the handle to
the correct messages. and then call Get to retrieve the
appropriate message.

The Attention interface implements a single window into
which messages are displayed. The Attention window also has
a menu to which you can add system-wide commands; this
menu is discussed in section 7.1.

There are three types of messages: simple messages, sticky
messages and confirmed messages. Simple messages have no
special semantics. Sticky messages are redisplayed when a non­
sticky message is cleared. Attention keeps track of one sticky
message. Confirmed messages ask for confirmation by the user.
Attention allows messages to be logically appended. There are
three posting operati ons: Post, PostSticky, and
PostAndConfirm.

Post: PROCEDURE [s: XString.Reader, clear: BOOLEAN ~TRUE];

P05tSticky: PROCEDURE [5: Xstring.Reader,
clear: BOOLEAN ~ TRUE];

S·9

STRINGS AND MESSAGES

5-10

PostAndConfirm: PROCEDURE [
5: XString.Reader,
clear: BOOLEAN ...-TRUE,
confirmChoices: ConfirmChoices ...- [NIL, NIL],
timeout: Process. Ticks ...-dontTimeout]
RETURNS [confirmed, timedOut: BOOLEAN];

The Post procedures display the message 5 in the Attention
window. If clear is TRUE, it clears the Attention window before
displaying 5, otherwise it displays it after whatever text is
currently showing. PostAndConfirm acts like Post in displaying
the message 5 but waits for confirmation by the user. See the
ViewPoint Programmer's Manual for details on how to use
PostSticky and PostAndConfirm. There are also the inverse
operations:

Clear: PROCEDURE;

ClearSticky: PROCEDURE;

Clear clears the Attention window of any simple message. If a
simple message is being displayed and there is a current sticky
message, the sticky message will now be displayed. Clear has
no effect if a sticky message is being displayed. ClearSticky
clears any current sticky message. If a sticky message is being
displayed, the window is cleared. ClearSticky has no effect if
there is no sticky message.

constructing messages in the single global Attention window
does not work well if multiple processes try to display messages
simultaneously. Thus, you should follow this guideline: only
call procedures in the Attention interface from the notifier
process. Following this rule guarantees that only well-formed
messages will be displayed.

VIEWPOINT DEVELOPER'S GUIDE

6.1 TIP tables

VIEWPOINT DEVELOPER'S GUIDE

6. TIP

This chapter provides a brief overview of how user actions are
translated into program actions. When the user presses a key or
moves the mouse, that action must be recognized, directed to
the correct window, and then acted upon. This multiplexing of
user input is the job of the Terminal Interface Package (TIP),
and two processes called the Stimulus and the No tifier.

The Stimulus is a high-priority process that just watches for user
actions and enqueues them. The Notifier then dequeues each
event and directs it to a window. All user actions are directed
either to the window with the input focus or to the window
with the cursor. Most user actions are sent to the input focus;
only actions such as mouse clicks are sent to the window with
the cursor.

Once it has determined the correct window for a user action,
the Notifer checks for that action in the window's TIP tables. A
TIP table is essentially a giant SELECT statement. The left side of
the table contains various user actions, and the right side of the
table has a list of results. When an action is located in the left
side of a TIP table, the corresponding result on the right side is
passed to a special procedure called a NotifyProc. The
NotifyProc is then responsible for executing whatever program
actions are to be associated with the user action.

The Notifier process is used to avoid mUlti-process interference.
Some operations, such as setting the selection, must be
guaranteed no asynchronous interference, and thus are
restricted to happening only in the Notifier process. The
Notifier process is also the one most closely tied to the user. If
an operation will take an extended time to complete, it should
be forked from the Notifier to run in a separate process so that
the Notifier is free to respond to the user's actions.

TIP tables provide a flexible method of translating user actions
into program actions. A given window always has at least one
associated TIP table, and may have a chain of tables. The
Notifier checks a given user action against each table in the
chain until it finds a match or until it runs out of tables to
check. If there are no more tables, the action is discarded. This
sequence is illustrated in Figure 6.1.

6-1

TIP

6·2

User presses a keyboard key or mouse button.

H

Stimulus process enqueues the action.

~,

The Notifier process dequeues the action and

determines which window the event is for.

"
The Notifier searches the window's TIP tables for the

action. If the action is found, the Notifier calls the

window's NotifyProc with a list of results contained in

the TIP table.

~,

The NotifyProc then performs actions corresponding

to the results passed in.

Figure 6.1 How user input is handled

In its simplest form, a TIP table is a user-editable file. These TIP
tables are stored in the system catalog, and have the extension
. TIP. For every TIP table, there is a program somewhere that
translates the user-readable TIP table into a program-readable
TIP table, with a call to TIP.CreateTable. When the program is
run, the information in the .TIP file is parsed into a runtime
data structure. In addition, a compiled version of the TIP file
(.TIPC) is created. Each subsequent time the program is run, it
will use the .TIPe file to create the runtime data structure. This
makes building the runtime data structure much faster, since
there is no need to parse the TIP table.

Here is an example of a text version of a TIP table:

SELECT TRIGGER FROM
Point Down • >

SELECT TRIGGER FROM
Point Up BEFORE 200 AND Point Down BEFORE 200 = >

SELECT ENABLE FROM

VIEWPOINT DEVELOPER'S GUIDE

6.2 NotifyProcs

VIEWPOINT DEVELOPER'S GUIDE

LeftShift Down • > COORDS, ShiftedDoubleClick
ENDCASE • > COORDS, NormalDoubleClick;

Adjust Down BEFORE 300 .. > PointAndAdjust;
ENDCASE • > COORDS, SimpleClick;

TIP

A trigger action is an action that has just been dequeued from
the user action queue; this is the action that caused the
Notifier to check the TIP table. An enabled action is an action
that is also true at the time, but did not necessarily just become
true. Thus,this TIP table matches the two actions Point Down
and Adjust Down. When the left mouse button goes down,
remains there no longer than 200 milliseconds, and goes -lown
again before another 200 milliseconds has elapsed, the state of
the left shift key is checked. If the key is down, the result
ShiftedDoubleClick is passed; otherwise, the result
NormalDoubleClick is passed. The convention for writing TIP
tables is to have information results precede the action result.
Thus, in the example above, COORDS is information, and
ShiftedDoubleClick or NormalDoubleClick is the actual action.

When the Notifer process recognizes a user action in the left
side of a TIP table, it passes the associated results to a
NotifyProc. NotifyProcs are ususally associated with the
window, but they can also be associated with the TIP table
itself. The job of a NotifyProc is to interpret the results and take
appropriate program action. A NotifyProc is of type
TIP.NotifyProc:

TIP.NotifyProc: TYPE .. PROCEDURE [
window: Window.Handle, results: TIP.Results];

Results is a pointer to a linked list of ResultsObjects. Each
ResultsObject contains a pointer to the next ResultsObject and
a body, as illustrated in Figure 6.2.

The body is a variant record that may be an atom or one of a
number of standard results. Standard results represent
information that is commonly needed, such as the time or the
current mouse coordinates. An atom is a unique string It can
be a string shared by many TIP tables, such as "point up," or it
can be a special-purpose string defining a program-specific
result.

ResultObject: TYPE .. RECORD [
next: Results,
body: SELECT type: .. FROM

atom .. > [a: ATOM],
bufferedChar .. > NULL,
coords II > [place: Window.Place],
int .. > [i: LONG INTEGER],
key. > [key: KeyName, downUp: DownUp],
nop .. > n,
string • > [rb: XString.ReaderBody],
time .. > [time: System.Pulses],
ENDCASE];

6·3

TIP

6-4

ResultsObject

next'"

next - - - ---------.
ResultsObject body

body " ~~ __ -.l ~

~--------,

ResultsObject

next = NIL

body

Figure 6.2: The structure of a results list

Thus, a NotifyProc for the above TIP table would look
something like this:

TIPMe: TIP.NotifyProc • {
place: Window.Place;
FOR input: TIP.Results f- results, input.next UNTIL input = NIL
DO

WITH z: input SELECT FROM
coords • > place f- z.place;
atom • > SELECT z.a FROM

SimpleClick • > Simple[place];
NormalDoubleClick • > NormaIDouble[place];
ShiftedDoubleClick • > ShiftedDouble[place];
PointAndAdjust • > Chord[];
ENDCASE;

ENDCASE;
ENDLOOP};

This is a contrived example, so this NotifyProc doesn't really do
anything interesting. You should concentrate on the syntax.

Typically, when you receive an information result, such as
COORDS, you store the value of the coordinates into another
variable and act on them when a later result comes in. In this
case, we store the coordinates into the variable place, and then
pass place to our procedures Simple. NormalDouble. and
Shifted Double. Naturally, you don't have to call another
procedure from the NotifyProc; you can do whatever it is that
you have to do straight from the NotifyProc if that is more
convenient. Note that the NotifyProc is called once for every
successful match in the TIP table. The loops in the NotifyProc
are only there because the results list may have more than one
element (e.g.,coORDS, NormaIDoubleClick).

Note also that you must" create" all of the atoms that you wish
to recognize in your NotifyProc. For each atom, you must make
a call to the procedure Atom.MakeAtom. This is typically done in

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER'S GUIDE

TIP

a separate procedure, but can be done within the NotifyProc if
you so desire. MakeAtom returns the atom corresponding to
the character string that you pass in. You have to call this for
standard atoms as well as for atoms that you declare yourself;
if MakeAtom can't find an existing atom corresponding to the
string that you pass in, it creates a new one. (See the Atom
chapter of the ViewPoint Programmer's Manual for details.)
For example:

InitAtoms: PROCEOURE • {

SimpleClick Atom.MakeAtom[HSimpleClick"L];
NormalDoubleClick
Atom.MakeAtom["NormaJDoubleClick'·L);
ShiftedDoubleClick
Atom.MakeAtom['·ShiftedDoubJeClick"L);
PointAndAdjust Atom.MakeAtomC"PointAndAdjust"L]};

There are a number of procedures in the ViewPoint
Programmer's Manual for setting up the structure of TIP tables.
Check this manual to find out how to write your own TIP table
and link it into the existing chain, and how to manipulate the
relationships between windows, tables, and NotifyProcs. The
chapters that you should look at are TIP, TIPStar, and Atom.

6·5

7.1 The Attention menu

VIEWPOINT DEVELOPER'S GUIDE

7. Creating a Simple Application

The ViewPoint architecture is an open-ended design, allowing
Xerox applications, such as the document editor, to reside as
equal citizens next to user-supplied applications. This chapter
discusses how to create a simple application and integrate it
into the existing environment.

A Viewpoint application can be structured to run either from a
command in the attention menu or from an icon. Using icons is
discussed in Chapter 9, Icon Applications; for now, we discuss
how to use the attention menu.

To make a tool run from the attention menu, you create a
menu item and then call Attention.AddMenultem:

MenuData.Createltem: PROCEDURE [
zone: UNCOUNTED ZONE,
name: XString.Reader.
proc: MenuProc.
itemData: LONG UNSPECIFIED ~ 0]
RETURNS [Itemhandle];

Attention.AddMenultem: PROCEDURE [item:
MenuData.ltemHandle] ;

The call to Createltem returns a handle to a menu item, which
you can then pass to AddMenultem. (An Itemhandle is a
pointer to a private object; you can't see what the object looks
like.) In the call to Createltem, zone is the name of the zone
you want the storage to come from, name is the name of the
command that you want to put in the menu, and proc is the
procedure that will be called when the user invokes the
command. itemData is for your own use. The MenuData
implementation passes item Data to proc; if there is any
information that you want to make available in proc, you can
pass it in via item Data. Here is an example of how to register a
command with the attention menu:

--This procedure gets called from the mainline code
Init: PROC = {

sampleTool: XString.ReaderBody +­
XString.FromSTRING["Sample Tool lt L1;

Attention.AddMenultem [
MenuData.Createltem [
zone: sysZ.
name: @sampleTool.
proc: MenuProc]];

7·'

~lltA T1NG A :UMPLt APPU(;.A ffUN

7.2 StarWindowShelis

Commands

7-2

In ViewPoint the abstract idea of a window is implemented by
a StarWindowShell. A StarWindowShell is a basic window with
a header that can have a title, commands, pop-up menus, and
scroll bars (horizontal or vertical), as illustrated in Figure 8.1

Interior

Figure 8.1 A StarWindowShell

Pop-up menu

Horizontal
Scrollbar

ViewPoint windows are organized in a tree structure, with the
desktop window at the root of the tree. When you write an
application, the StarWindowShell for that application is
generally a child of the desktop window. A StarWindowShell is
in turn the parent of an interior window that is exactly the size
of the available window space in the shell (i.e., the
StarWindowShell minus its borders, header, and scroll bars).
The interior window may in turn have children: children of
interior windows are called body windows. Body windows are
what define the functionality of a window shell.

VIEWPOINT DEVELOPER'S GUIDE

7.2.1 Creating the shell

7.2.2 Transition procedures

VIEWPOINT DEVELOPER'S GUIDE

CREATING A SIMPLE APPLICATION

When the user invokes your command from the attention
menu, your specified procedure will be called. This procedure
should call StarWindowShell.Create:

Create: PROCEDURE [
transitiDnProc: TransitionProc Eo- NIL. --See below
name:xString.Reader Eo- NIL. --The name of the tool
namePicture:xString.Character Eo- XChar .null. -
host: Handle Eo- NIL.
type: Shell Type Eo- regular.
sleeps: BOOLEAN Eo- FALSE.--see below
considerShowingCoverSheet: BOOLEAN Eo- TRUE.
currentlyShowingCoverSheet: BOOLEAN Eo- FALSE.
pushersAreReadonly: BOOLEAN Eo- FALSE.
readonly: BOOLEAN Eo- FALSE.
scrollData: Scroll Data Eo- vaniliaScrollData.
garbageCollectBodiesProc: PROCEDURE [Handle] Eo- NIL.
isCloseLegalProc: IsCioseKegalProc _NIL. --See below
bodyGravity: Window. Gravity Eo- nw.
zone: UNCOUNTED ZONE _ NIL]
RETURNS [Handle];

Handle: TYPE =- RECORD [Window.Handlel;

Note that all of these parameters are defaulted, which means
that they are all optional. However, most calls to Create include
at least the first two (name and transitionProc), however. We
discuss transitionProc and isCioseLegal below; for information
on the other parameters, consult the ViewPoint Programmer's
Manual.

A transitionProc for a window shell is a procedure that will be
called whenever the state of the shell is about to change. A
StarWindowShell is always in one of three states: awake,
sleeping, or dead. awake indicates that the shell is currently
displayed. sleeping indicates that the shell still exists, but is not
being displayed and therefore resources associated with the
display state should be freed. dead indicates that the shell is
just about to be destroyed and therefore all resources
associated with the shell should be freed. If you have any
storage associated with your shell, you should use a
transitionProc to allocate and free that storage. (The sleeps
parameter to Create indicates whether your application has
any resources dedicated only to displaying information.) Here
is a simple example of a transition procedure:

SimpleTransitionProc: StarWindowShell. TransitionProc =
BEGIN

SELECT state FROM
awake • > IF data = Nil THEN AliocateData[sws];
sleeping, dead :I> FreeData[data];

ENDCASE;
END;

State is a parameter to the transition procedure, indicating the
new state of the shell.

7·3

CREATING A SIMPLE APPliCATION

7.2.3 IsCloseLegalProc

7.2.4 Body windows

7·4

State: TYPE = {awake(O), sleeping, dead.last(7)};

TransitionProc: TYPE = PROCEDURE [sws: Handle. state: State];

An isCloseLegalProc allows you to lIeto an attempt to close
your window. The isCloseLegalProc that you supply will be
called when the either a user or a client program attempts to
close the StarWindowShel1. If it's okay to close the window, it
should return TRUE; otherwise, it should return FALSE. (The
isCloseLegalProc is also a convenient way to get control when
the window is being dosed.) Here is a simple example:

SimplelsCloseLegalProc: StarWindowShell.lsCloseLegalProc =
BEGIN

IF YouDon'tCarelfTheWindowlsClosed THEN RETURN [TRUE];
RETURN [FALSE];

END;

An isCloseLegalProc is of type isCloseLegalProc:

IsCloseLegalProc: TYPE. PROCEDURE [sws: Handle, doseAII:
BOOLEAN]

RETURNS [BOOLEAN];

closeAII indicates whether the current command is a Close! or a
CloseAII!.

After you create a StarWindowShell, you can create an
arbitrary number of body windows within the shell. Each body
window will be a child of the StarWindowShell's interior
window. The body windows define the functionality of the
window; their arrangement depends on what you want your
application to do. Here are some common arrangements of
body windows:

• One very long body window. This makes scrolling easy; you
simply slide the body window within the window shell. This
is how the StarWindowSheli default scrolling works. You can
make a long window by specifying the dimensions of your
body window during creation;the StarWindowShell will
then take care of all scrolling operations.

• One body window with BodyWindowJustFits = TRUE. With
this kind of body window, the size of the body window
changes any time the size of the StarWindowShell changes.
This type is difficult to implement, since you have to write
the procedures for the display adjustment.

• Several body windows, each of which holds a segment of
information. This is similar to a document that has been
paginated. Here too scrolling is done by the
StarWindowShell; you need to provide new pages as body
windows are scrolled off the shell.

To create a body window, you call StarWindowshell.CreateBody:

VIEWPOINT DEVELOPER'S GUIDE

CREATING A SIMPlE APPLICATION

CreateBody: PROCEDURE [
sws: Handle. --the StarWindowShell
repaintProc: PROCEDURE [Window.Handle] NIL.
bodyNotifyProc: TIP.NotifyProc NIL.
box: Window. Box [[0.0].[0.29999]]]

RETURNS [Window.Handle];

Window.Box: TYPE = RECORD [place: Place. dims: Dims];

Window.Place: TYPE. UserTerminal.Coordinate; --[X,y: INTEGER}

Window.Dims: TYPE. RECORD [w.h: INTEGER];

Create Body creates a body window that is a child of the
ir.terior window of sws. repaintProc is the display proc that is
called by the Window implementation whenever part or all of
the body window needs to be displayed (more on this in the
next section). bodyNotifyProc is a TlP.NotifyProc that is
attached to the window.

box indicates the size and location of the body window within
the shell's interior window. If box.dims.w and/or box.dims.h is
zero, the body window will take on the dims.w and/or dims.h
of the shell's interior window.

Note that body windows can themselves have child windows.
and so on. There are a number of useful procedures (such as
GetBody) in the StarWindowShell interface that allow you to
take a look the window structure; see the
ViewPointProgrammer's Manual for details.

7.2.5 Displaying information in a window

VIEWPOINT DEVELOPER'S GUIDE

The simplest way to display text to a body window is to call
SimpleTextDisplay.StringlntoWindow. (We discuss more complex
ways of displaying information in a window in Chapter 8, Form
Windows and Property Sheets). With StringlntoWindow, you
can specify a string and a place in the window; the string will
always be displayed in the system font. For example:

Redisplay: window.DisplayProc • {
wBody: XStrin9. WriterBody +- XStrin9.NewWriterBody [

maxLength: 250. z: sysZ];
xfo: XFormat.Object +- XFormat.WriterObject [w: @wBody);

XFormat.String [h: @xfo. s: "This is a sample string
displayed in a body window of a StarWindowShell
using SimpleTextDisplay.StringlntoWindow."];

[] SimpleTextDisplay.StringlntoWindow [
string: XStrin9.ReaderFromWriter [@writerbody).
window: window, --The body window
place: [10,101.-Upper-left corner is [O,O}
lineWidth: 300, --Arbitrary (in pixels)
maxNumberOfLines: 10. --Arbitrary
flags: Display.replaceFlags]];; --Clear old data

The standard way to paint information in a window is by
letting the window implementation do most of the work. The
basic idea is that you update your data structures, invalidate
the area of the window that needs repainting, then call a
validate routine to perform the repainting. The window

7·5

CREATING A SIMPLE APPUCA TION

7.2.6 Commands and menus

7-6

implementation will call your Window.DisplayProc procedure to
do the actual repainting. For example: '

RepaintMenuProc: MenuData.MenuProc == {
body: Window.Handle == StarWindowShell.GetBody[[window]];
Window.lnvalidateBox(body, ([O, 0], [30000, 30000]]];
Window.Validate[body); };

The call to Window.Validate results in a call to the Redisplay
procedure' above, which in turn displays the desired
information. Since this is a simple example, there are no
internal data structures to update; Redisplay always displays
the same thing.

Every StarWindowShell can have commands and pop-up menus
that the user can invoke. (Commands are actually individual
menu items; the name of the item appears with a rounded
corner box around it.) When you specify the commands for a
window, you associate a procedure (of type
MenuData.MenuProc) to go with each command. When the user
invokes a command, the corresponding procedure is called.

z: UNCOUNTED ZONE +- StarWindowSheli. GetZone [shell];
- Gets the zone attached to the SWS

items: ARRAY [0 .. 3) OF MenuData.ltemHandle +- [
MenuData.Createltem[zone: Z, name: @another.

proc: MenuProc],
MenuData.Createltem [zone: z. name: @repaint. proc:

RepaintMenuProc).
MenuData.Createltem [zone: z. name: @post. proc: Post11;

myMenu: MenuData.MenuHandle = MenuData.CreateMenu [
zone: z. -- Generally use zone attached to SWS
title: NIL.
array: DESCRIPTOR [items]];

StarWindowShell.SetRegularCommands[
sws: shell, commands: myMenu];

Post: MenuData.MenuProc == {
msg: XString.ReaderBody +- XString.FromSTRING [

"This is a sample attention window message."L];
Attention.PoSt [@msg);};

-- Destroy the Post command
Destroyltem[z: z. item: items[2]];

To add a command to the header of a StarWindowShell, you
first call MenuData.Createltem to associate a procedure with
each command, then you store each menu item into an array.
Next, you call CreateMenu to put the array into a menu. Once
you have a MenuData.MenuHandle, you can call either
StarWindowShell.SetRegularCommands or StarWindowShell.Add­
PopUpMenu, depending on whether you want the item to
appear as a command or in a menu. In the example above, we

VIEWPOINT DEVELOPER'S GUIDE

called SetRegularCommands, The procedure declarations are
very similar:

SetRegularCommands: PROCEDURE [
sws: Handle, commands: MenuData.MenuHandle] ;

AddPopupMenu: PROCEDURE [
sws: Handle, menu: MenuData.MenuHandle] ;

AddPopupMenu adds menu to the available pop-up menus in
SW5. The title of menu is displayed in the StarWindowShell
header with the small pop-up menu symbol (::) just to the left
of it, surrounded by a rounded corner box. When you have
more commands than can fit in the window shell, the
implementation automatically overflows the rightmost
commands into an overflow pop-up menu.

7.2.7 Displaying windows on the screen

7.3 Context

VIEWPOINT DEVELOPER'S GUIDE

Create generates a StarWindowShell but does not display it on
the screen. A shell is displayed on the screen with a call to
StarWindowShell.Push, which inserts the new window into the
existing tree structure.

Push: PROCEDURE [
newShell: Handle, topOfStack: Handle ~ NIL,
poppedProc: PoppedProc ~ NIL];

Push displays newShell by inserting it into the visible window
tree. If topOfStack is NIL, newSheli is placed directly on the
desktop. If topOfStack is not NIL, then newShell is "pushed on
top of" topOfStack and topOfStack is removed from the
display. If poppedProc is not NIL, it will be called when newShell
is Popped. The poppedProc must either sleep the shell or
destroy the shell, usually by call i ng SleepOrDestroy. If
poppedProc is NIL, newS hell will be destroyed when it is
Popped.

Note that you do not always have to make the call to Push
directly. For example, when the user selects an icon and presses
OPEN, the application creates a StarWindowSheli and returns it.
The desktop implementation then displays the
StarWindowSheli by doing a Push.

You can remove a StarWindowSheli from the screen by calling
StarWindowShell.POp. You will almost never call this procedure
yourself, however; it is usually called by StarWindowShell as
the result of an operation such as Close!.

When possible, you should structure your application so that
the user can have more than one copy of it running at any
given time. This means that there may be many open windows
associated with a particular program, giving rise to the
problem of preserving state information for each window. For
example, if you are editing three documents simultaneously on
your desktop, the document editor must know which window
you are typing in, which portion of the screen to update, and
how to update it. To solve this problem, the notion of a context
was introduced. A context is a data object associated with a

7-7

CREATING A SIMPLE APPLICATION

7·8

window; thus, global state information is stored with the
window rather than in the program's global frame (which is
shared by all instances of the application.) Figure 7.2 illustrates
this idea; notice that each window has the same context type
but distinct data.

Window
Context data Type = 337778

Instance 1 ~ • x • 5,
y.10,
z.a

Window
Context data Type = 337778

Instance 2 ~ • x.22,
y=6,
z =45

Context data Type = 337778
Window

Instance 3 ~ • x .12,
y.9,
z.3

Figure 7.2 Context

In your mainline code, get a context type for the body window
on which you intend to put the context. This type is unique for
each client of the Context interface; you use it to identify your
context in later calls to the Context interface.

context: Context. Type ~Context.UniqueType[); --Global

Next, declare a data structure that represents your tool's global
state variables:

DataObject: TYPE • RECORD [-Global
lastMouse8utton: PointOrAdjust,
place: Window.Place ~ [0,0));

At initialization, allocate the context with a call to
Context.Create :

Context. Create [
type: context,
data: SYSZ.NEw[DataObject ~ [neither)),
proc: DestroyContext,
window: body);

In this example, we allocated the context from the
systemZone. In this case, a DestroyContext procedure is
unnecessary, since the default assumes the data was allocated
from the systemZone and frees it from there. However, even
though it is redundant, here is an example of a DestroyContext
procedure:

VIEWPOINT DEVELOPER·S GUIOE

CREATING A SIMPLE APPLICATION

DestroyContext: PROC [data: Data, window: Window.Handle] . {
SySZ.FREE [@data]};

When you need to look at or change the information in your
context, call Context.Find or Context.Acquire. Acquire is just like
Find except that it monitors the data so that only one process
can have the context at a time. For example:

GetContext: PROC [body: Window.Handle] RETURNS [data:
Data] :I {

data ~Context.Find[context, body];
IF data • Nil THEN ERROR; -- Just in case.
RETURN [data]};

The only case where this is slightly tricky is when you want to
retrieve context data from within a MenuProc. In this case, use
the StarWindowShell handle, which was passed in to the
MenuProc, to get a handle to the body window whose context
you want. If you have only one body window, you can use the
eldest child of the StarWi ndowShell by call i ng
StarWindowShell.GetBody; to get the body's context you simply
call Context.Find.

The following is an example of how to get the context from the
MenuProc:

RepaintMenuProc: MenuOata.MenuProc ,. {
body: Window.Handle •

StarWindowShell.GetBody[[window]];
data: Data GetContext[body]; --Find context
window.lnvalidateBox[body, [[0, 0], [30000, 30000]11;
Window. Validate[body];

7.4 Complete example

VIEWPOINT DEVELOPER'S GUIDE

Table 7.1 is a brief outline for writing a simple application. The
program example that follows shows how to implement the
outline.

-< < This is a sample tool that can be used as a template for ViewPoint
programs. Note that no special files or file types are needed to create such a
tool. This tool adds a command to the attention window menu. When the
user invokes this command, the MenuProc creates a StarWindowShell with
a single body window in it. Several menu items are placed in the header of
the StarWindowShell. > >

DIRECTORY
Atom USING [ATOM, MakeAtom, nulll,
Attention USING [AddMenultem, Post],
Context USING [Create, Data, Find, Type, UniqueType],
Display USING [replaceFlags],
Heap USING [systemZone],
MenuData USING [Createltem, CreateMenu, ItemHandle, MenuHandle,

MenuProc],
SimpleTextDisplay USING [StringlntoWindow],
StarWindowShell USING [Create, CreateBody, GetBody, GetZone, Handle,

Push, SetRegularCommands],
TIP USING [NotifyProc, Results],
Window USING [Dims, Handle, InvalidateBox,Object, Place, Validate],
XFormat USING [Char, Decimal, Handle, Object, String, WriterObject),

7·9

CREA TING A SIMPLE APPLICATION

7·10

Outline for creating a simple application:

1. Create a StarWindowSheli

2. Create a body window inside the shell.

3. Create menu items and a menu.

4. Add the menu to the StarWindowSheli
header.

S. Create a context for the body window.

6. Push the StarWindowShell onto the visible
window tree.

Table 7.1 Creating a Simple Application

XString USING [FromSTRING. NewWriterBody. ReaderBody.
ReaderFromWriter. WriterBody];

SampleVPTool: PROGRAM
IMPORTS Atom. Attention. Context. Heap. MenuData. SimpleTextDisplay,

StarWindowSheli. Window, XFormat. XString = BEGIN

- TYPEs
Data: TYPE = LONG POINTER TO DataObject;
DataObject: TYPE • RECORD [
lastMouseButton: PointOrAdjust.
place: Window.Place +- [0.0]];

PointOrAdjust: TYPE = {point. adjust. neither};

-- Constants
bodyWindowDims: Window.Dims = [1000.1000];
sysZ: UNCOUNTED ZONE. Heap.systemZone;

-Data
context: Context. Type +-Context.UniqueType[];
poi ntDown, adj ustDown

-- Procedures
DestroyContext: PROC [data: Data, window: Window.Handle] = {

- Note that since Data was allocated out of the
systemZone, this procedure is unnecessary, but it is
included here as an example of a Context. DestroyProcType.
The default assumes the data was allocated out of the
systemZone and frees it from there,

sysZ.FREE [@data);
};

GetContext: PROC [body: Window.Handle1 RETURNS [data: Data] = {
data +-Context.Find[context, body];
IF data = NIL THEN ERROR; --Just in case.
RETURN [data];
};

Init: PROC • {
sampleTool: XString.ReaderBody +­

XString.FromSTRING["Sample Tool "L];

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER'S GUIDE

CREATING A SIMPLE APPLICATION

Attention.AddMenultem [
MenuData.Createltem [
zone: sysZ.

};

name: @sampleTool.
proc: MenuProc]];

InitAtoms: PROC • {
pointDown ~ Atom.MakeAtom["PointDown "L];
adjustDown ~Atom.MakeAtom["AdjustDown"L];
};

MenuProc: MenuData.MenuProc • {
another: XString.ReaderBody ~ XString.FromSTRI NG[" Another"L];
repaint: XString.ReaderBody ~ XString.FromSTRING["Repaint"L];
post: XString.ReaderBody ~XString.FromSTRING["Post Message"L];
sample Tool: XString.ReaderBody ~

XString.FromSTRING["Sample Tool"L];

- Create the StarWindowShell.
shell: StarWindowshell.Handle II StarWindowshell.Create [

name: @sampleTool];

-- Create a body window inside the StarWindowShell.
body: Window.Handle • StarWindowShell.CreateBody [

sws: shell.
box: [[0.0]. bodyWindowDims].
repaintProc: Redisplay.
bodyNotifyProc: NotifyProc];

-- Create some menu items and a menu.
z: UNCOUNTED ZONE ~ StarWindowShell.GetZone [shell];
items: ARRAY [0 .. 3) OF MenuData.ltemHandle ~ [

MenuData.Createltem [zone: z, name: @another, proc: MenuProcl,
MenuData.Createltem [zone: z, name: @repaint,

proc: RepaintMenuProc],
MenuData.Createltem [zone: z, name: @post, proc: Post]
];

myMenu: MenuData.MenuHandle = MenuData.CreateMenu [
zone: z,
title: NIL,
array: DESCRIPTOR [items]];

-- Add the menu to the StarWindowShell header.
StarWindowshell.SetRegularCommands [sws: shell, commands:

myMenu];

- Create a context for the body window.
Context. Create [

type: context,
data: sysZ.NEW[DataObject ~ [neither]],
proc: DestroyContext,
window: body];

-- Put the StarWindowShell on the screen.
StarWindowShell.Push [shell];
};

NotifyProc: TIP.NotifyProc :I {

data: Data ~ GetContext [window];
FOR input: TIP.Results ~ results, input.next UNTIL input = NIL DO

WITH z: input SELECT FROM
coords II > data.place ~ z.place;
atom :I > SELECT z.a FROM

7·11

CREATING A SIMPLE APPLICATION

7·12

pointOown • > data.lastMouseButton .- point;
adjustOown = > data.lastMouseButton .- adjust;
ENOCASE;

ENDCASE;
ENDLOOP;

Redisplay [window]};

--This procedure is called when the user invokes the Post command.
Post: MenuData.MenuProc •

msg: XString.ReaderBody +-
XString.FromSTRING ["This is a sample attention window

message. ilL);
Attention.Post [@msg);
};

Redisplay: Window.OisplayProc = {
data: Data GetContext [window);
writerBody: XString. WriterBody +- XString.NewWriterBody [

maxLength: 250, z: sysZ);
xfo: xFormat.Object +-XFormat.WriterObject [w: @writerBody);

XFormat.String [h: @xfo, s: "This is a sample string displayed in a body
window of a StarWindowShell using
SimpleTextOisplay.StringlntoWindow. ");

XFormat.String [h: @xfo,s: SELECTdata.lastMouseButton FROM
point. > "Point"L,
adjust. > II Adjust"L,
ENDCASE = > "Neither"L];

XFormat.String en: @xfo.s: "and the mouse was at window relative
location: [x: ilL);

XFormat.Oecimal [n: @xfo. n: data.place.x);
XFormat.String [h: @xfo.s: ", y: "L);
XFormat.Oecimal [h: @xfo. n: data.place.y];
XFormat.Char [n: @xfo. char: ').ORO);

[] .- SimpleTextDisplay.StringlntoWindow [
string: XString.ReaderFromWriter [@writerbody),
window: window. --The body window
place: [10.10). --Upper-left corner is [O,OJ
lineWidth: 300. --Arbitrary (in pixels)
maxNumberOfLines: 10, --Arbitrary
flags: Oisplay.replaceFlags]];; --Clear old data

};

RepaintMenuProc: MenuData.MenuProc = {
body: Window.Handle • StarWindowShell.GetBody[[window]];
Window.lnvalidateBox[body. [[0.0). [30000. 30000) J];
Window.Validate[body); };

-- Mainline code

Init[];
InitAtoms[];

ENO ..•

VIEWPOINT DEVELOPER'S GUIDE

8.1 Form windows

8.1.1 Creating a form window

VIEWPOINT DEVELOPER'S GUIDE

8.
FORM WINDOWS AND

PROPERTY SHEETS

Form windows and property sheets are specialized windows
that provide an intuitive and consistent user interface for
invoking commands and setting parameters. This chapter
discusses how to write an application that uses form windows.

If your application has commands that require parameters, you
should put those commands and parameters in a form window.
Form windows are made up of form items, such as commands,
booleans, and strings; each form item has a specific user
interface. The form window is based on the abstraction of a
form, such as a personnel form or an income tax form, that has
specific blanks to be filled in by the person using it. A form
window contains keywords, such as the name of a command or
parameter, and space for the user to fill in values for those
parameters. The user fills in the appropriate parameters and
then invokes a command. Form windows thus standardize
parameter collection and reduce the restrictions on the order
in which parameters are provided. Figure 8.1 illustrates a form
window, showing the possible form items.

You create a form window by calling FormWindow.Create:

Create: PROCEDURE[

window: Window.Handle.
makeltems: MakeltemsProc,
layoutProc: LayoutProc ~ NIL.
windowChangeProc: GlobalChangeProc ~NIL.
zone: UNCOUNTED ZONE ~ NIL.

cI ientOata: LONG POINTER ~ NIL];

Create takes an ordinary window and makes it a form window.
Typically, the window that you pass to this procedure will be
one that you created by calling StarWindowshell.CreateBody.

The three most imortant parameters are the call-back
procedures makeltems, layoutProc, and windowChangeProc.
makeltems is responsible for creating the items that you want
in your form window; layoutProc specifies the desired position
of the items in the window, and windowChangeProc is called
whenever the user changes the value of an an item in the
window. We discuss each of these three call-back procedures in
detail in the following sections.

8-1

FORM WINDOWS AND PROPERTY SHEETS

8-2

Boolean
.... ,.r--------------,

Check for Validity NAME EMPNO. DEPT. ,
.....

.....
~-----------------------------,

Description Name: William Baumann

Aliases: "Wild Billy"

Born: 5 - 12 - 60

.....

.,,'"
Text

boolean item

choice item

text item

decimal item

integer item

command item

tagonly item

window item

.,)J' Emp No: 3903
." ." Dept: Maintenance

Choices

Known Vices: Square Dancing

has two states: on and off (or TRUE and FALSE). When the value is
TRUE, the item is highlighted.

has an enumerated list of choices, only one of which can be
selected. A choice item's value is of type FormWindow.Choicelndex.

a user-editable string; its value is of type XString.ReaderBody.

a text item that has a value of type XLReal.Number.

a text item that has a value of type LONG INTEGER.

has an associated procedure. When the user invokes the
command, the procedure is called.

a string that the user can neither select nor edit.

a window that is a child of the form window and can contain
anything you like. A window item's value is a Window.Handle.,

Figure 8.1. Form window

zone is the zone out of which storage for the items will be
allocated. If you don't supply a zone, FormWindow will use its
own private zone.

clientData is passed to makeltems, layoutProc, and
windowChangeProc. This parameter is for your own use; if
there is any additional information that you want to pass to
your makeltems, layoutProc, or windowchangeProc, you can
do it via c1ientData.

VIEWPOINT DEVELOPER'S GUIDE

8.1.2 Creating form items

8.1.3 MakeCommandltem

VIEWPOINT DEVELOPER·S GUIDE

FORM WINDOWS AND PROPERTY SHEETS

The first step is to write a Makeltems procedure to pass to
Create. This procedure should be of type
FormWindow.MakeitemsProc:

MakeitemsProc: TYPE • PROCEDURE [
window: Window.Handle.
clientData: LONG POINTER];

This procedure is responsible for creating the various items that
you want to have displayed in your form window.
FormWindow provides a procedure for making each type of
item: MakeBoolea nltem, Ma keChoiceltem,
MakeCommandltem, MakeDecimalltem, Makelntegerltem,
MakeMultipleChoiceltem, MakeTagOnlyltem, MakeTextltem,
MakeWindowltem. Thus. all you need to do in this procedure is
call the appropriate procedure for each item that you want in
your form window.

Here is a part of the MakeltemsProc for the appl ication
illustrated in Figure 8.1:

MakeFormltems: FormWindow.MakeltemsProc s (

boolLabel: XString.ReaderBody +­
XString.FromSTRING["Check for Validity"L];

commandLabel: xString.ReaderBody +­
XString.FromSTRI NG["Execute Query"L];

choice1 Label: ... ("NAME")
choice2Label: .•. (HEMP NO.")

FormWindow.MakeBooleanltem [
window: window. myKey: 1, label: booILabel];

FormWindow.MakeCommandltem [
window: window,
myKey: 2,
commandProc: CommProc,
command Name : command Label ;

FormWindow.MakeTextltem [
window: window, myKey: 3, •••];

FormWindow.MakeChoiceltem [window: window. myKey: 4,
...] ;
... };

As an example of the make item procedures. we discuss
MakeCommandltem. If you want information on the other
procedures, consult the FormWindow chapter of the ViewPoint
Programmer's Manual.

MakeCommandltem: PROCEDURE [
window: Window.Handle,
myKey: Item Key.
tag: XString.Reader NIL,
suffix: XString.Reader NIL,
visibility: Visibility visible,
boxed: BOOLEAN _ TRUE,
readOnly: BOOLEAN _FALSE,

8-3

FORM WINDOWS AND PROPERTY SHEETS

8.1.4 Layout

8-4

commandProc: CommandProc.
commandName: xstring.Reader1;

This procedure creates a command item. The first seven
parameters are common to all the procedures that create form
items.

window is the form window that the item is in. (This should be
the same as the window passed to your MakeltemsProc.)

myKey is a key that you define for the item. The item key
uniquely identifies the item and should be used to make calls
on other FormWindow procedures. The key must be unique
within this form window.

tag is the text to be'displayed before (to the left of) the item on
the same line. The default is for no tags.

suffix is the text to be displayed after (to the right of) the item
on the same line.

visibility indicates whether the item should be displayed on the
screen. If an item is displayed in the form window, it is visible. If
an item is not currently displayed, it is either invisible or
invisibleGhost. If it is invisible, it does not take up any space on
the screen, i.e. any items below it move up to take its screen
space. If an item is invisibleGhost, the space that it would
occupy were it visible is white on the screen. You can change an
item's visibility by calling FormWindow.SetVisibility,

boxed indicates whether the item should have a box drawn
around it.

readOnly • TRUE indicates whether the user can change the
value of the item. If an item is readOnly, you can still change
the value by calling appropriate procedures in the
FormWindow interface.

Only the last two parameters are specific to a command item.
The commandName is the name that will appear in the form
window. When the user clicks over the commandName,
commandProc is called. The commandProc is of type
FormWindow.CommandProc:

CommandProc: TYPE = PROCEDURE [
window: Window.Handle.
item:ltemKey);

Once you have written a MakeFormltems procedure to create
the items in your form window, you need to write a LayoutProc
to specify how those items are to be displayed. The layout
procedure must be of type FormWindow.LayoutProc:

layoutProc:TYPE • PROCEDURE [
window: Window. Handle.
clientData: LONG POINTER];

If an item is not explicitly laid out, it will not appear in the form
window at all. If you don't want to write your own layout

VIEWPOINT DEVELOPER'S GUIDE

8.1.4.1 Flexible layout

VIEWPOINT DEVELOPER'S GUIDE

FORM WINDOWS AND PROPERTY SHEETS

procedure, you can use FormWindow.DefaultLayout, which
places each item on a separate line. If you prefer to write your
own layout procedure, you can use either flexible layout or
fixed layout.

Flexible layout allows text, decimal, integer, and window items
to grow and shrink (and other items to move around
accordingly) as the user or program changes values. Fixed
layout, on the other hand, does not allow any movement; you
specify where the items are to go, and they remain there until
you explicitly move them. Flexible layout is the preferred
method.

A form window with flexible layout consists of horizontal lines
with zero or more items on each line. Each line may be a
different height, but should be at least
FormWindow.defaultLineHeight to avoid overlap. You can
control vertical spacing by using appropriate heights for the
lines. Similarly, you can control horizontal spacing by using
appropriate margins between items. Items may be lined up
horizontally with TabStops; see the ViewPoint Programmer's
Manual for details.

The first step to creating a layout is to create a line by calling
either FormWindow.AppendLine or Formwindow.lnsertLine. Once
you have a line, you put items on that line by calling
FormWindow.Appendltem or Formwindow.lnsertltem. The Append
routines add items after the previously created line or item; the
Insert routines add items between previously created items or
lines.

AppendLine: PROCEDURE [
window: Window.Handle,
height: CARDINAL _ defaultLineHeight]
RETURNS [line: Line];

InsertLine: PROCEDURE [
window: Window.Handle,
before: Line,
height: CARDINAL_ defaultLineHeight]
RETURNS [line: Line];

Appendltem: PROCEDURE [
window: Window.Handle,
item: ItemKey I
line: Line,
preMargin: CARDINAL_O,
tabStop: CARDINAL _ nextTabStop,
repaint: BOOLEAN _TRUE];

Insertltem: PROCEDURE [
window: Window.Handle,
item: Item Key,
line: Line,
beforeltem: Item Key,
preMargin: CARDINAL _ 0,
tabS top: CARDINAL _ nextTabStop,
repaint: BOOLEAN _TRUE];

--In pixels

8·5

FORM WINDOWS AND PROPERTY SHEETS

8.1.4.2 Fixed layout

Here is an example of a layout procedure using the flexible
method:

LayoutFormltems: FormWindow.LayoutProc - {
line: FormWindow.Line +-FormWindow.AppendLine

[window: window,
- height +- defaultLineHeight -I;

FormWindow.Appendltem [
window: window, item: 1, line: line];

FormWindow.Appendltem
[window: window, item: 4, line: line];

line +- FormWindow.AppendLine [
window: window);

FormWindow.Appendltem [
window: window, item: 2, line: line];

line +-FormWindow.AppendLine [window: window];
FormWindow.Appendltem [

window: window, item: 3, line: line);
};

With fixed layout, you call FormWindow.SetltemBox to specify
the exact position of each item:

SetltemBox: PROCEDURE [
window: Window.Handle,
item: Item Key,
box: Window.Box];

With this method, all items stay where you put them unless you
make another call to SetltemBox. Thus, text, decimal, integer,
and window items will not grow or shrink. SetltemBox is
incompatible with flexible layout: either all layout must be
flexible, or all layout must be fixed. Here is an example of
laying out a window using the fixed method:

LayoutFormltems: FormWindow.LayoutProc - {
FormWindow.SetltemBox [

window: window, item: 1, box: [[10,20],[60,20]];
FormWindow.SetltemBox [w

indow: window, item: 2, box: [[10,50],[45,20)];
FormWindow.SetltemBox [

window: window, item: 3, box: [[20,80],[150,120));
FormWindow.SetltemBox [w

indow: window, item: 4, box: [[70,20],[60,80]];
};

8.1.5 Recognizing changes in the form window

8-6

When the user changes something in the form window, you
typically need to recognize that change and act upon it. There
are three ways that you can monitor changes ina form
window: with a global change procedure, with a local change
procedure, or with a changed boolean. A global change
procedure is a procedure that is called whenever a user or a
program changes the value of an item in the form window. A
GlobalChangeProc is called whenever anything in the form
window changes. You associate a GlobalChangeProc with a

VIEWPOINT DEVELOPER'S GUIDE

8.1.6 Getting and setting values

8.1.7 Destroying a form window

8.2 Property sheets

VIEWPOINT DEVELOPER"S GUIDE

FORM WINDOWS AND PROPERTY SHEETS

window by passing it in as a call-back procedure in the call to
FormWindow.Create.

You can also associate local change procedures with particular
kinds of items, such as booleans and choice items. You can
associate a local change procedure with an item when you
make the item. (Note: if a window has both a global change
procedure and a local change procedure, the local one will be
called first.)

The third way to keep track is with the "changed boolean."
Every item that has a value that the user can change (all except
tag-only, command, and window items) has a changed
boolean associated with it. When an item is created, this
boolean is set to FALSE. When the user changes the value of the
item, FormWindow automatically sets the boolean to TRUE.
Once you look at a boolean and act accordingly, you are
responsible for setting its value back to FALSE.

Every item that has a value that the user can change (all except
tagonly and command items) also has procedures for the client
to get and set the value. For example, the procedures for
boolean items are called GetBooleanltemValue and
SetBooleanltemValue. See the ViewPoint Programmer's
Manual for details.

Destroy: PROCEDURE [window: Window.Handle];

Destroy destroys all FormWindow data associated with
window, turning it back into an ordinary window. This
procedure does not destroy the window itself; it destroys the
form items within the window. You can also use either
FormWindow.Destroyltem or FormWindow.Destroyltems to destroy
individual items without destroying all of the items in the
window.

In addition to functioning as forms to be filled in, form
windows also function as the basis for property sheets. Figure
8.2 shows a generic property sheet.

Property sheets are specialized forms that show properties of
an object. Object is a very general term and can refer to almost
anything; printer icons, documents, paragraphs withi n
documents, mail baskets, and the Directory icon are all
examples of objects that have properties. Properties for a
paragraph in a document include margins, whether to justify,
and line spacing, for example. Properties for a printer icon
include number of copies to print and paper size. User-supplied
applications have properties, too; naturally they vary according
to the semantics of the objects defined by the application.

8·7

FORM WINDOWS AND PROPERTY SHEETS

Tag BOOLEAN Suffix

CHOICE 1 II CHOICE 2 CHOICE 3

Tag I Text item

8.2.1 Creating a property sheet

8-8

Figure 8.2. Property sheet

A property sheet is a StarWindowShell with a formwindow.
Therefore, creating a property sheet requires that you first
create a form window by making form items, laying them out,
and writing procedures for items that require some action. The
major difference between creating a form window and a
property sheet is that you do not have to call FormWindow.Create
to change the body window into a form window; instead, call
PropertySheet.Create to get a property sheet. Another significant
difference is that you will need a procedure that updates the
object's properties when the user modifies items in the
property sheet. ApplyAnyChanges below is an example of such
a procedure:

MakePropertySheet: PROC [•••] • {
mh: XMessage.Handle • Defs.GetMessageHandle[];
title: XString.ReaderBody +- XMessage.Get [mho Oefs.xxx];
pSheetShell: StarWindowShell.Handle +-PropertySheet.Create[

};

formWindowltems: MakeFWltems.
menultemProc: MyMenultemProc.
menultems: [done:TRuE, cancel:TRuE],
size:size,
title: @title,
formWindowltemsLayout: Oolayout]];

MakeFWltems: FormWindow.MakeltemsProc = {
};

MyMenultemProc: PropertySheet.MenultemProc = {
SELECT menultem FROM

VIEWPOINT DEVELOPER'S GUIDE

8.2.2 Linked property sheets

VIEWPOINT DEVELOPER'S GUIDE

FORM WlNOOWS AND PROPERTY SHEETS

done - > RETURN [ok:ApplyAnyChanges[formWindow).ok);
cancel - > RETURN (Ok:TRuE];
ENOCASE;

RETURN [Ok:FALSE];
};

DoLayout: FormWindow.LayoutProc - {

};

AppJyAnyChanges: PROC [fw:Window.Handle) RETURNS
[Ok:BOOL) • {

IF NOT FormWindow.HasAnyBeenChanged[fw) THEN RETURN
Ok:TRUE);
Otherwise, check each item in the form; if it's been
changed, make the appropriate update

};

One property sheet can contain several other property sheets.
These sheets are considered to be linked, and each has its own
form window. Only one form window is displayed at a time;
the displayed form window is indicated by a choice item in a
link window. The Text Property Sheet available with the
document editor is an example of a linked property sheet. In
the link window you see choices for Character, Paragraph, and
Tab Setting property sheets; selecting one of them causes the
appropriate sheet to be displayed. Figure 7.3 shows a generic
linked property sheet with three possible property sheets:
PSHEET1, PSHEET2, and PSHEET3.

To create a linked property sheet, first create form windows for
all choices. Next, declare a ChoiceChangePro(that swaps form
windows each time the user selects a new property sheet. Last,
in your MakeltemsProc, make a choice item for the property
sheet choices, initializing the window to display the desired
initial property sheet and passing in your ChoiceChangeProc
for swapping the form windows. For example:

MakePropertySheet: PROC [...) = {
pSheetShell: StarWindowShell.Handle ~

PropertySheet.CreateLinked [
formWindowltems: MakeSheet1,
menultemProc: MakeMenultems1,
size: .•• ,
linkWindowltems: MakeLinkWindowltems,
linkWindowltemsLayout: Nil); --Use default

layout of link window
};

MakeLinkWindowltems: FormWindow.MakeltemsProc = {
--Create an array of FormWindow.Choiceltem
FormWindow.MakeChoiceltem [

window:window, myKey:ltems.radix.ORD,
tag:@rb, vaJues:oEscRIPToR[radixChoices),
initChoice:1,

8·9

FORM WINDOWS AND PROPERTY SHEETS

I
I
I
I

/

Link

Window

Tag

Tag

PSHEET 2

BOOLEAN Suffix

I CHOICE 1 I CHOICE 2 I CHOICE 3 I

I Text item

Figure 8.3 Linked property sheet

. changeProc: ChangeFormWindow);
};

ChangeFormWindow: FormWindow.ChoiceChangeProc = {
SELECT newValue FROM

1 • > PropertySheet.SwapFormWindows [
shell: pSheetShell,
newFormWindowltems: MakeSheet1];

2 • > PropertySheet.SwapFormWindows [
shell: pSheetShell, newFormWi ndowltems:
MakeSheet2];

3 • > PropertySheet.SwapFormWindows [
shell: pSheetShell, newFormWi ndowltems:
MakeSheet3];

ENDCASE;

9.1 What is an icon?

9. ICON APPLICATIONS

As mentioned earlier, you can write applications to run either
from a command in the Attention menu or from an icon. We
discussed the Attention window method in Chapter 7; this
chapter covers how to write an icon application.

Icons are pictorial representations of applications. You can
operate on them in various ways, with each operation carrying
an application-specific significance. Generally, you can SELECT,
OPEN, COpy and MOVE icons. The OPEN operation is generally
implemented similarly across applications and is usually
associated with opening and displaying the application's
window. Copying and moving on the other hand, tend to have
more application-specific semantics. For example, if you copy
or move a document to a folder icon, it will be added to the list
of documents in that folder. However, moving or copying
documents to a printer icon is quite different; it causes an
associated Interpress master to be generated and transferred
to a local printer.

9.2 File types and icon applications

VIEWPOINT DEVELOPER'S GUIDE

Applications represented by icons are software packages that
implement the manipulation of one type of file. All icons
corresponding to a particular application have the same file
type and are distinct from icon file types of other applications.
Icon applications" register" with the desktop (see below) and
in so doing, they state the type of file on which they operate.

Since file types must be unique across applications, it is
important to establish a central distribution mechanism to
keep track of previously allocated file types. During
development, you can pick an arbitrary file type with the single
constraint that it be distinct from other applications on the
workstation. However, when you want to distribute your
application for public use, it cannot use an arbitrary file type
but instead must use one guaranteed to be different from all
other public applications. Only a central distribution
mechanism can provide such a guarantee.

File types and other filing capabilities are provided by the
NSFile interface. See the Services Programmer's Guide for more
information on NSFile.

9-1

ICON APPLICATIONS

9.3 Getting icons on the desktop: the Prototype folder

When you run an application, its icon does not automatically
appear on the desktop. Instead, you must open a specialized
system folder, known as the Prototype folder, select the
desired icon in it, and copy it to the desktop. Figure 9.1
illustrates the Prototype folder when opened.

o BasIc Graphics Transfer Document

o Blank Document

Ej Blank Folder

Ej Blank Mail Folder

~ Blank Mail Note

~ Blank Reference

Figure 9.1 Prototype folder

9.3.1 Opening the Prototype folder: the user's perspective

9-2

There are two ways for a user to access the Prototype folder.
The first method is automatically included with the ViewPoint
boot file, but is initially confusing, since the prototype folder is
called Basic Documents, Folders, and Record Files. To access it,
open the Directory icon, then the Workstation folder, and
finally open the Basic Documents, Folders, and Record Files
folder. Inside the Basic Documents folder you will probably
find such icons as Blank Folder, Blank Document, and any
additional icons associated with system and user-supplied
applications.

VIEWPOINT DEVELOPER'S GUIDE

ICON APPLICATIONS

The second method is a shortcut, and requires that the
program SystemFolder be running. To run System Folder, start
it either from CommandCentral or by dropping it on the
ViewPoint Loader icon. (See Chapter 3 for details on how to
run an application.) System Folder registers three commands in
the Attention window menu, one of which is Prototype Folder.
Simply select the command to open the Prototype folder.

9.3.2 Putting icons in the Prototype folder: the programmer's perspective

VIEWPOINT DEVELOPER'S GUIDE

Your icon application must include code that places its icon in
the Prototype folder so that the user can select and copy it to
the desktop. Icons in the Prototype folder, referred to as
prototype files, are uniquely identified by file type, subtype,
and version. subtype distinguishes objects of the same type;
version helps determine if the prototype is current. Use the
ViewPoint interface Prototype for creating prototype files. Its
main procedures are Find and Create:

Find: PROCEDURE [type: NSFile.Type,
version: Version,
subtype: Subtype 0,
session: NSFile.Session NSFile.nuIlSession]
RETURNS [reference: NSFile.Reference];

Create: PROCEDURE [
name: XString.Reader,
type: NSFile.Type,
version: Version,
SUbtype: Subtype 0,
size: LONG CARDINAL 0,
isDirectory: BOOLEAN FALSE,
session: NSFile.Session NSFile.nullSession]
RETURNS [prototype: NSFile.Handle);

Find returns a reference for the file with the specified type,
version, and SUbtype. If the file doesn't exist, Find returns
NSFile.nuIiReference. Create creates a file in the Prototype
catalog with the specified name, type, version, subtype, size (in
bytes), and isDirectory attribute. The following code fragment
shows typical usage of Prototype. Find and Prototype.Create:

sampleType: NSFile.Type •.•. ;
version: CARDINAL •••• ;

--This procedure is called from the mainline code
FindOrCreatelconFile: PROCEDURE [name: XString.ReaderBody)
= {

IF Prototype.Find[type:sampleType, version:version) =
NSFile.nullReference

THEN NSFile.Close[Prototype.Create[
name:@name, type:sampleType, version:version]];

In this example, Find is called; if that call returns
NSFile.nuIlReference, then Create is called. Create returns an
NSFile.Handle (opens the file), so NSFile.Close is called to
release the handle.

9·3

ICON APPliCATIONS

9.4 Registering an application with the desktop

9.4.1 Painting icons

9-4

As mentioned above, icon applications must register
themselves with the desktop. Registration informs ViewPoint
of the application's existence, states the file type the
application will manipulate, and defines operations that can
be' performed on it. You register an icon by calling
Containee.Setlmplementation and passing to it the application's
file type and a number of procedures. These procedures specify
operations such as how to paint the application's icon, what to
do when the user OPENS the icon, what to do when the user
selects the icon,.

Containee.Setlmplementation: PROCEDURE(
NSFile.Type.lmplementation] RETuRNs[lmplementation];

Implementation: TYPE = RECORD [
implementDrs: LONG POINTER oE- NIL.
smallPicture: XString.Character oE-XChar.null.
small Ref Picture: XString.Character oE- XChar.null,
pictureProc; PictureProc oE- NIL,
convertProc: Selection.ConvertProc oE- NIL,
genericProc; GenericProc oE- NIL);

The first parameter of Setlmplementation is the file type the
application will operate on. The second parameter is a record
containing state data and procedures of type
Containee.PictureProc for displaying the icon picture, and
Containee.GenericProc for performing various operations on the
icon, such as OPEN. Don't worry about the other fields in the
Implementation record for now.

If you want your icon to have a picture, you need to write a
Containee,PictureProc and pass it to
Containee.Setlmplementation. There are two methods for
defining and using the actual iconic bitmap. The first solution
involves determining the bitmap values and hardcoding them
into the implementation as shown in the following example:

InitBigPicture: PROC • {
mylconPic oE- Space.ScratchMap[1].pointer;
mylconPic f .oE- [177777B. 177777B. 000063B J -­
Hardcoded bitmap
};

PaintlconName: PROC [...] • {

[] oE- SimpleTextDisplay.StringlntoWindow [...];
};

PictureProc: Containee.PictureProc • {
textBox: Window. Box oE- [[x:7, y:10].[w:55. h:36]];
name: XString.ReaderBody;
ticket: Containee.Ticket;
IF new = garbage THEN RETURN;
box.dims oE- [64,64];
[name. ticket] oE- Containee.GetCachedName[data];
SELECT old FROM

VIEWPOINT DEVELOPER'S GUIDE

9.4.2 Generic procs

VIEWPOINT DEVELOPER'S GUIDE

ICON APPLICATIONS

garbage.ghost • > {Display.Bitmap(
window:window, address:mylconPic ••••];
PaintlconName[window. box, textBox, @name]};

ENDCASE;
SELECT new FROM

highlighted. > Display.lnvert(window, box];
ghost. > {Display.White(window, box];

PaintlconName[window. box. textBox,
@name]};
ENDCASE;
Containee.ReturnTicket(ticket);
};

The second method is to use icon files. An icon file associates an
icon bitmap with a file type. When an application is loaded, the
icon file in the application folder is opened to read the bitmap
and display the icons. You can create new icon files or edit
existing ones with the icon editor, which is discussed in Chapter
12.

If you are going to use an icon file, rather than a hardcoded
bitmap, you can either use an icon file from the standard
directory, or you can package an icon as part of your
application. We discuss packaging an application in Chapter
11. If you choose to use icon files, you should omit the
reference to the pictureProc in your Setlmplementation
procedure.

The second kind of procedure that you need to include in your
Impelmentation record that you pass to Setlmplementation is a
GenericProc. A GenericProc is where most of the real
implementation for an application resides. A GenericProc is of
type Containee.GenericProc:

GenericProc: TYPE == PROCEDURE [
atom: Atom.ATOM,
data: DataHandle,
changeProc: ChangeProc f- NIL,
changeProcData: LONG POINTER f-NIL]
RETURNS [LONG UNSPECIFIED];

The atom specifies which operation to perform. For example,
when the user selects an icon and presses the OPEN key, the
application's GenericProc is called with an atom of "Open. n

Here is an example of a GenericPrDc; for a complete discussion
of GenericPrDcs and a list of possible atoms, see the Containee
chapter of the ViewPoint Programmer's Guide.

GenericProc: Containee.GenericProc = {
SELECT atom FROM

canVouTakeSelection == > RETURN[
IF CanlTake[] THEN @true ELSE @falsel;

open == > RETURN[
MakeShell[data, changeProc, changeProcData]];

props • > RETURN[
Defs.MakePropertySheet(
data. changeProc, changeProcData]];

takeSelection, takeSelectionCopy = > RETURN[
IF Take[data, changeProc, changeProcData] THEN

@true ELSE @false;

9-5

ICON APPLICATIONS

9.S Examples

9·6

ENDCASE .. > RETURN(
oldlmpl.genericProc(

atom, data, changeProc, changeProcData]];
};

A general program format for registering an application with
the desktop is:

1. Initialize the atoms you want reconized from the
GenericProc (see Chapter 6 for more information on TIP
and atoms).

2. Write the GenericProc that determines what operations
are performed on the file associated with the
application.

3. Write picture procs for iconic representation of the file
on the desktop.

4. Register the application with the desktop, passing the
GenericProc and picture proc.

The following program fragment illustrates registering an
application with the desktop:

open, props, canYouTakeSelection,
takeSelection, takeSelectionCopy: Atom.ATOM +- Atom.null;

InitAtoms: PROC .. {
open +-Atom.MakeAtom["Open"L];
props +- Atom.MakeAtom["Props"L);
takeSelection +- Atom.MakeAtom("TakeSelection" L];
takeSelectionCopy+- Atom.MakeAtom["TakeSelectionCopy"L];
};

GenericProc: Containee.GenericProc • {
SELECT atom FROM

open. > RETURN(MakeShell[data, changeProc, changeProcDatal1;
props .. > RETURN[

Defs.MakePropertySheet[data, changeProc, changeProcData]];
takeSelection, takeSelectionCopy .. > RETURN[

IF Take(data, changeProc, changeProcData] THEN @true
ELSE @false;

ENDCASE .. > RETURN[
oldlmpl.genericProc[atom, data, changeProc, changeProcData));

};

PictureProc: Containee.PictureProc .. {
textBox: Window. Box +- [[x:7, y:10],[w:SS, h:36]];
name: XString.ReaderBody;
ticket: Containee. Ticket;
IF new .. garbage THEN RETURN;
box.dims +- [64,64];
[name. ticket) +-Containee.GetCachedName[data];
SELECT old FROM

garbage, ghost .. > {Display.Bitmap[...];
PaintlconName[window, box, textBox, @name]};

ENDCASE;
SELECT new FROM

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER·S GUIDE

ICON APPLICATIONS

highlighted .. > Oisplay.Jnvert(window. box];
ghost .. > {oisplay.White[window, box];
. PaintlconName[window, box, textBox, @name]};

ENDCASE;
Containee.ReturnTicket[ticket];
};

bits: ARRAV[O •• 13) OFWORO +- [.•.];
smalllconPicture: XString.Character +­

SimpleTextFont.AddClientOefinedCharacter(
width: 13, height: 13, bitsPerLine: 16, bits: @bits];

SmaliPictureProc: Containee.SmaIiPictureProc .. {
RETURN[smalliconPicture];
};

Setlmplementation: PROC .. {
oldlmpl +- newlmpl +- Containee.Getlmplementation(myFileType);
newl mpl.convertProc +-Containee.OefaultFi leConvertProc;
newlmpl.genericProc +- GenericProc;
newlmpl.pictureProc +- PictureProc;
newlmpl.smaliPictureProc +- SmaliPictureProc;
[] +-Containee.Setlmplementation[myFileType, newlmpl);
};

9·7

10.1 Some basic guidelines

VIEWPOINT DEVELOPER'S GUIDE

10. SELECTION

The Selection interface defines the abstraction of the user's
current selection. Selection provides procedures that allow
programs to do operations such as setting, saving, and clearing
the selection.

There are two kinds of programs that use the facilities of the
Selection interface. Most programs wish merely to obtain the
value of the current selection in some particular format; such
programs are called requestors. If your program is just a
requestor, you don't need to understand all the details of the
Selection interface.

The other class of programs consists of those who wish to own
or set the current selection; these are called managers. If you
are going to write such an application, you do need to
understand all the details of the interface.

The goal of the Selection interface is that the requestor need
never know, and should never care, what module is managing
the selection. All that matters is whether the selection can be
rendered in a suitable form. For example, suppose the user
presses COpy and selects a printer icon as the destination. The
printer implementation needn't know what is printable and
what isn't. It simply queries the selection to determine whether
it can be rendered as an Interpress master, and if so it obtains it
and sends it. Otherwise, it queries whether the selection can be
enumerated as a sequence of Interpress masters (as would be
true of a folder, for instance). If this also fails, the object is
rejected.

The selection belongs to the user, and he should be free to
change it at any time. To synchronize this correctly, changes to
the selection occur only in the Notfier. (See Chapter 6 for more
information on the Notifier.)

If you are writing an application that needs to read the
selection, you must deal with the fact that the user can change
the selection at any time that the notifier process is running.
The obvious solution to this problem is that the selection
should only be read from within the Notifier. This guarantees
that the user cannot alter the selection while the application is
reading it. Thus the first rule for dealing with the selection is:

The selection may only be read or changed in the Notifier.

Once an application returns to the Notifier, any knowledge it
retains about the selection is no longer guaranteed to be valid.
Similarly, if an application running in the Notifier passes some
information about the selection to another process, that

10-1

SELECTION

10.2 Requestors

10·2

information may similarly be invalidated at any time. In these
circumstances, the application must copy the selection's value,
using Selection.COpy, Selection. Move, or Selection.CopyMove, to
assure that its data remains valid. Thus the second rule for
dealing with the selection is

Copy the selection's value before returning to the system or
before passing it to another process.

The fundamental operation performed by a selection
requestor is to obtain the value of the current selection by
call i ng Selection. Convert:

Convert: PROCEDURE [
target: Target,
zone: UNCOUNTED ZONE +-NIL]
RETURNS [value: Value);

Target: TYPE = MACHINE DEPENDENT{
window(O). shell. subwindow, string, length, position,
integer, interpressMaster, file, fileType, token, help,
interscriptScript, interscriptFragment, serializedFile,
name, firstFree. last(1777B)};

Value: TYPE = RECORD [value: LONG POINTER, ... J;

The target is the TYPE of data to which the selection should be
converted. The value is a RECORD containing a pointer to the
converted selection. For example, Selection.Convert [target:
string] returns an XString.Reader. Note that not all selections
can be converted to all Targets; in fact most selections can be
converted to only a small number of Targets. For example, if
the selection is a text string, it can be converted to Target
string and perhaps to integer, but probably not to file or
fileType.

Converting to some Targets is not so much requesting the
value of the selection as requesting some general information
about the selection or its en vi ronment. For example,
Selection.Convert [target: window] is a request for the window
that the selection is in, Selection.Convert [target: help] is a
request for user help information about the selection, etc.

You should remember that Convert returns a read-only value
and you must free any storage associated with that value when
you are finished. Here is an example of using Selection.Convert:

streamHandle: Stream.Handle +- GetStreamToSomeFile[];
xfo: XFormat.Object;
xfo +- XFormat.StreamObject(streamHandle);
-- Convert returns NIL ifsefection can't be converted
savedString: Selection. Value +- Selection.Convert[string);
IF saveString = NIL THEN RETURN;
xFormat.Reader[@xfo, LOOPHOLE [savedStri ng]];
Stream.Delete[streamHandle);
Selection.Free[@savedString);

'VIEWPOINT DEVELOPER'S GUIDE

SELECTION

10.2.1 Can you convert the selection?

10.2.2 Enumerating selections

Since all selections do not convert to all target types, you may
want to ask whether a given selection will convert. To ask such
a question, you should call Selection.CanYouConvert.
CanYouConvert returns a BOOLEAN specifying whether the
value will convert to the particular target type.

CanYouConvert: PROCEDURE [
target: Target. enumeration: BOOLEAN FALSE]
RETURNS [yes: BOOLEAN] • INLINE {

RETURN[HowHard[target, enumeration] # impossible]};

Here is an example of calling CanYouConvert. This type of
procedure is generally called from the canYouTakeSelection
arm of a Containee.GenericProc:

CanlTake: PROCEDURE RETURNs[yes: BOOLEAN] =
BEGIN

-- Take anything that is a string, token, or integer
RETURN[

END;

Selection.Can YouConvert[
target: string. enumeration: FALSE] OR

Selection.CanYouConvert(
target: integer ,enumeration :FALSE] OR

Selection. Can YouConvert(
target: token, enumeration: FALSE]];

A selection is often a collection of items (several files in a
folder) or a single large item that can be split up (e.g., a long
string that can be broken up). A requestor can ask that each
item or part of such a selection be converted to some target by
calling Selection.Enumerate.

Absorb: PROcEDuRE(data: Containee.DataHandle,
changeProc: Containee.ChangeProc ~ NIL,
changeProcData: LONG POINTER ~ NIL]
RETURNs[absorbed: BOOLEAN ~ FALSE] -=
BEGIN

AbsorbString: Selection.EnumerationProc =
XFormat.Reader[@xfo, LOOPHOLE[element. val ue]];
Selection.Free(@element);

END;

xfo: XFormat.Object
fileStream: NSFileStream.Handle ~ GetStream [data);
Stream.SetPosition[

fileStream, NSFileStream.GetLength(fileStream]];
xfo: XFormat.StreamObject [fileStream];
SELECT TRUE FROM

Selection.CanYouConvert[target: file, enumeration: TRUE] • >
[] ~ selection.Enumerate[AbsorbString. string. NIL];

Selection.CanYouConvert[target: file, enumeration: FALSE] • >
[] ~ AbsorbString[selection.Convert[stringl. NILl;

ENDCASE;
NSFileStream.SetLength [

[fileStream], Stream.GetPosition[fileStream]J;

VIEWPOINT DEVELOPER'S GUIDE 10-3

SELECTION

Stream.Delete[fileStream];
-- Ensure that the file will be read again when the icon is opened
IF changeProc # NIL THEN

changeProc[changeProcData. data. [interpreted: [name:
TRUE]]];
END;

10.2.3 Resource allocation and deallocation

10.3 Managers

10-4

It is a strict rule that the Values produced by Selection. Convert
and Selection.Enumerate describe objects owned by the
selection manager. The requestor may examine the data
referenced by the value field, but must not alt",r it.
Furthermore, the requestor must free the Value (using
Selection. Free) once he no longer needs it.

If you want to keep the value O'r pass the value to another
process, you must call Selection.COpy, Selection.Move, or
Selection.CopyMove. After the Move or Copy, you own any
storage associated with the Value. You can free this storage by
calling Selection.Free.

For example, suppose the selection manager uses a Mesa STRING
as the internal selection representation. Then Convert(string]
simply builds the string pointer into an XString.Reader using
XString.FromSTRING. If the requestor wants to save the string
for very long, he should call Copy, and the manager will
allocate a copy of the original string using the zone passed to
Convert. An alternative, somewhat simpler, is for the requestor
to call XString.CopyReader or XString.CopyToNewReaderBody or
XString.CopyToNewWi-iterBody to copy the bytes, and then call
Selection. Free to dispose of the original Reader.

The fundamental operation performed by a selection manager
is to become the current manager by calling Selection. Set:

Set: PROCEDURE (
pointer: ManagerOata. conversion: ConvertProc. actOn:

ActOnProc];

ManagerOata: TYPE. LONG POINTER;

ConvertProc: TYPE = PROCEDURE [
data: ManagerData.
target: Target.
zone: UNCOUNTED ZONE.
info: Conversionlnfo +- (convert(J])
RETURNS [value: Value];

Conversionlnfo: TYPE = RECORD [SELECT type: * FROM
convert = > NULL.
enumeration :I > [proc: PROCEDURE [Value]

RETURNS [stop: BOOLEAN]].
query = > [

query: LONG DESCRIPTOR FOR ARRAY OF QueryElement),
ENDCASE];

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER'S GUIDE

ActOnProc: TYPE. PROCEDURE [data: ManagerData,
action: Action]

SELECTION

RETURNS [cleared: BOOLEAN FALSE];Selection.HOwHard.
Conversionlnfo is a variant record passed to the
ConvertProc that indicates which operation to perform:
convert, enumeration, or query.

The ActOnProc is called to perform various Actions on the
selection, such as mark, unmark, and clear.

The ManagerData passed to Set is passed back to the
ConvertProc and the ActOnProc. Typically, the ManagerData
identifies exactly what portion of the manager's domain is
currently selected. For example, if the current selection is some
text in a document, the actual manager is the document
application, which has some ManagerData that indicates
exactly which characters are currently selected.

When a manager calls Selection. Set, the previous manager is told
to ActOn [clear], and Selection forgets about the previous
manager. Hence, there is only one selection at a time.
However. Selection also supports the notion of a "saved"
selection. A client can become the current manager by calling
Selection.SaveAndSet, which does a Set but also saves the
previous selection. Later, the manager that did the SaveAndSet
can do a Selection. Restore, which restores the previous selection.

For more details on managing the selection. consult the
Selection chapter of the ViewPoint Programmer's Manual.

10-5

11. PACKAGING AN APPLICATION

During the last stages of development, you generally focus
your attention on testing and debugging the code modules of
your application. You load and run your modules from
CommandCentral in XDE, and use standard icons provided by
ViewPoint. If your application posts messages, they are
probably contained in a message bcd.

However, once your code is running to your satisfaction, it is
time to package it as a finished application. You may want to
design an icon specifically for your application; if so, you will
generate an icon file. If your application posts messages and is
potentially multilingual, you should create a separate message
file from your message bcd with the MessageTool. Having a
separate message file makes it easy for a translator to convert
all of the application's messages to another language.

The motivation behind packaging an application is to make the
details of finding the application and all of its dependent fjles
transparent to the user. Instead of being represented as a
collection of files, a packaged application is a single object.
Additionally, packaging makes multinationalization easier,
since it permits language dependent aspects, such as message
and keyboard files, to be extracted, translated, and reinserted
without touching the application code.

To facilitate the packaging of an application, ViewPoint
provides an object called an application folder. An application
folder groups the components of an application together into
one object.

This chapter defines the components of an application,
describes the steps for building an application folder, and gives
examples of the code you need to add to your modules before
you put them in an application folder. For more information
on the topics in this chapter, consult the ViewPoint
Programmer's Manual.

11.1 Building an application folder

VIEWPOINT DEVELOPER'S GUIDE

There are five steps to building an application folder:

• Identify the application's components.
• Build the data files for the application (such as messge files,

icon files, TIP files).
• Write an application description file.
• Change or add code to access the data files in the

application folder.
• Integrate the components into an application folder.

11-1

PACKAGING AN APPLICATION

11.1.1 Identify the components of an application

11.1.2 Build the data files

Data File

Message file

Icon file

An application consists of its object files and data files. The
object files contain the executable application code. There
must be at least one object file.

An application may also have the following data files:

• A message file if the application posts messages. This makes
multilingual conversion easier.

• An icon file if the application's icon is not in the standard
icons file. For example, you might want your application to
be represented by a picture of a duck. Since a duck icon is
not part of the standard ViewPoint package, you would
have to create your own duck icon file and include it in the
application folder.

• One or more TIP files if the application requires its own TIP
files. An application requires its own TIP files if it redefines
the meaning of the keyboard in any way; for example,
having the MOVE key map to the COpy operation.

• A keyboard file if the application uses a keyboard that is not
in the standard keyboard file.

• Other private data files, such as translation tables. If your
application translates ASCII to EBCDIC, you might wish to
include a translation table for this purpose.

There are four common types of data files: message, icon,
keyboard, and TIPe. Detailed documentation for creating
message, icon, and keyboard files is contained in the Tools
section of this manual. Use the following table as a quick
reference:

Chapter: Title

13: Message Tools

12: Icon Editor

Keyboard file 15: Keyboard Tool & 14:Bitmap Edit Tool

TIPe file 6:TIP

11.1.3 Write an Application Description File

11-2

In addition to the application components, an application
folder contains an Application Description File (ADF). There is

VIEWPOINT DEVELOPER'S GUIDE

PACKAGING AN APPLICATION

only one ADF in each application folder. The ADF contains the
names of the data files in the application folder, somewhat like
a table of contents. The application uses the ADF to determine
the names of the data files in its application folder so it can
open and read them. An ADF is required so that data file names
are not hardcoded into the application; if they were,
multilingual applications would be more difficult.

An ADF also indicates the loading priority for an application.
The priority is important only for an application that depends
on another application. In such a situation, the application that
must start first has a lower priority number than the dependent
application.

An ADF's file type must be that of an option file, and it is read
using the OptionFile interface. See the OptionFile chapter of
the ViewPoint Programmer's Manual for details of option files.
The syntax for an ADF follows option file syntax, and is given at
the end of this chapter. Here is an example of an ADF:

[SampleApplieation]
bed: Sample.bed -- Object file
MessageFile: Sample.messages
leonFile: Sample.ieons
KeyboardFile:Sample.keyboards
TIPFile: Sample. TIP - Really a TIPC file
Priority: 0

Only the section name and bcd entry are mandatory.

The easiest way to create an ADF is to copy the user profile from
the directory to the desktop, delete the text in it, and enter the
ADF text. To do this, your Workstation Profile must have

[System]
Developer: TRUE

(See Chapter 3 for details on the Workstation Profile).

The application folder has an external name, which appears on
the folder. The external name can be changed, making
multilingual conversion easier and more complete. The
application also has an unchangeable internal name, supplied
by the implementor. The internal name is used by the
application code to reference components of the application
folder, and is not modified by multilingual conversion or by
any other process.

The section name that appears in an ADF is the application's
internal name. In the example, the internal name is
SampleApplieation. For this example, the name of the file
would typically be SampleApplieation.adf.

11.1.4 Change or add code to access data files in the application folder

Once you have created your data files and written an ADF for
them, you must change your code to access the data files. There
are three steps to accessing a data file in an application folder:

• Getting a reference to the ADF

VIEWPOINT DEVELOPER'S GUIDE 11·3

PACKAGING AN APPLICA nON

11.1.4.1 Getti ng a reference to the ADF

11·4

• Getting the name of or reference to the data file of interest,
and

• Using the data file.

The following ADF will be used to illustrate the three steps:

[SampleBWSApplication]
bcd: SampleBWSApplication.bcd
MessageFile: SampleBWSApplication.messages
TlPFile: SampleBWSApplication.TlP

The SampleBWSAppJication folder contains the above ADF,
the bed, one message file, and one TIPC file. The complete code
for accessing the data files appears at the end of this chapter.

As you develop your application code, you should include the
capability of running either from the system folder or from an
application folder. If you do this, during development you can
run your application from Command Central without having to
worry about your data files. Later, you can incorporate your
code and data files into an application folder without having
to change as much of the code. When an application runs in
the system folder, it uses the Workstation Profile as its ADF and
its data files reside in the system folder. Here is an example of
getting a reference to the ADF, whether it is a real ADF or the
Workstation Profile:

--Get the internal name of the application
internalName: XString.ReaderBody +-XString.FromSTRING
["SampleBWSApplication"L);

-Get a reference to the application folder
folder +-ApplicationFolder.FromName [@internaIName]

- Check to see in there's an application folder or if it's the
system folder
IF folder. NSFile.nullReference THEN {

· - No application folder, so use the system folder and the
WorkstationProfile

folderHandle +-Catalog.Open
[BWSFileTypes.systemFileCataJog];

-- Get a reference to the ADF
adf +-OptionFile.GetWorkstationProfile []}

ELSE {

-- There was an application folder, so use the folder and the
ADF inside it

foJderHandle +-NSFile.OpenByReference [folder];

-- Get a reference to the ADF
adf +-ApplicationFolder.FindDescriptionFile [folderHandle]};

VIEWPOINT DEVELOPER'S GUIDE

PACKAGING AN APPLICATION

11.1.4.2 Getting a reference to the data file

Once you have a reference to the ADF. you need to get a
reference to the data file of interest. This example illustrates
getting a reference to the message file. Note that the complete
file for this example is included at the end of this chapter.

msgFile: NSFile.Reference ~ NSFile.Reference;
internalName: XString.ReaderBody ~

XString.FromSTRING["SampleBWSApplication "l);
--Get the name of the entry in the ADF
messageFile: XString.ReaderBody ~ XString.FromString["MessageFile"L);

FindMessageFileFromName: PROCEDURE [value: XString.Reader] = {
nssName: NSString.String ~

XString.NSStringFromReader [r: value, z: localZone1;
msgFileHandle: NSFile.Handle ~ NSFile.nuIlHandle;

-- Look for the message file
msgFileHandle ~NSFile.Find [directory: folderHandle,

scope: [filter: [matches[attribute: [name[nssName)]]]] !
NSFile.Error = > {msgFileHandle ~NSFile.nuIlHandle; CONTINUE}];

IF msgFileHandle = NSFile.nullHandle THEN ERROR; --No message file
--Since there is a message file. get a reference to it

msgFile ~NsFile.GetReference [msgFileHandle1;
--Free the file when you're done using it

NSFile.Close [msgFileHandle];
NSString.FreeString [z: localZone, 5: nssName];};

OptiOnFile.GetStringValue [section: @internaIName,
entry: @messageFile,
callBack: FindMessageFileFromName,
file: adf];

11.1.5 Integrate the components into an application folder

VIEWPOINT DEVELOPER'S GUIDE

Once you have constructed all of the components of your
application, you must run the application folder tool to
combine them into an application folder .

• Copy all of the components. including the ADF, into a folder .

• Run the application folder tool. Applize.bcd. This will put
two items in the Attention window menu:

Folder - Application

Application -Folder

The first item takes the folder and turns it into an
application folder. It does this by changing the file type of
the folder and stamping the create date with the current
date and time. It also sets the version to OS 6.0.

The second item turns an application folder back into a
regular folder. It changes the file type back to "folder" and
sets the version to NIL.

11·5

PACKAGING AN APPLICATION

Thus, to turn a folder into an application folder, just.select the
folder, and then invoke Folder - Application. Figure 11.1
illustrates the steps of buildng an application folder.

0mp,s~
~on Fil~.--...JI-

11.2 Code Samples

11.2.1 Message Files

11·6

folder

Figure 11.1 Building an application folder

This is the message file impl from the sample application.This
example shows how to write an application so it can run either
in an application folder or as a bcd in the System folder. It also
illustrates the method for supporting wildcards in the ADF.

- File: SampleMsgFilelmpl.mesa
-- Created by editing SampleBWSApplicationMessageslmpl

-- Copyright (C) 1985 by Xerox Corporation. All rights reserved.

DIRECTORY

ApplicationFolder USING (FindDescriptionFile, FromName],
BWSFileTypes USING (systemFileCatalog],
Catalog USING [Open],
Heap USING (systemZone),
NSFile USING (Close. Error, Find, GetReference, Handle. null Handle,

nullReference, OpenByReference. Reference],
NSString USING (FreeString, String],
OptionFile USING [GetStringValue. GetWorkstationProfile],
SampleBWSApplicationOps,
XMessage USING (ClientData. FreeMsgDomainsStorage, Handle,

MessagesFromReference, MsgDomains),
XString USING [FromSTRING, NSStringFromReader, Reader, ReaderBody);

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER·S GUIDE

PACKAGING AN APPLICATION

SampleMsgFilelmpl: PROGRAM
IMPORTS ApplicationFolder. Catalog. Heap. NSFile. NSString. OptionFile.

XMessage. XString
EXPORTS SampleBWSApplicationOps ,. {

-- Data
h: XMessage.Handle ~NIL;
localZone: UNCOUNTED ZONE ~ Heap.SystemZone;

- Procedures
DeleteMessages: PROCEDURE [clientData: XMessage.ClientData) ,. 0;

GetMessageHandle: PUBLIC PROCEDURE RETURNS [XMessage.Handle) ,.
{RETURN[h]};

InitMessages: PROCEDURE,. {
internalName: XString.ReaderBody ~

XString.FromSTRING ["SampleBWSApplication"L);
msgDomains: XMessage.MsgDomains ~ NIL;
msgDomains ~ XMessage.MessagesFromReference [

file: GetMessageFileRef
[ApplicationFolder.FromName[@internaIName)).

clientData: NIL.
proc: DeleteMessages);

h ~ msgDomains[O).handle;
XMessage.FreeMsgDomainsStorage [msgDomains);
};

GetMessageFileRef: PROCEDURE [folder: NSFile.Reference)
RETURNS [msgFile: NSFile.Reference ~NSFile.nuIlReference] = {
folderHandle: NSFile.Handle ~ NSFile.nuIiHandle;
adf: NSFile.Reference ~NSFile.nuIlReference;
internalName: XString.ReaderBody ~

XString.FromSTRING ["SampleBWSApplication "L);
messageFile: XString.ReaderBody ~

XString.FromSTRING ["MessageFile"L);

FindMessageFileFromName: PROCEDURE [value: XString.Reader] = {
nssName: NSString.String ~XString.NSStringFromReader [

r: value. z: locaIZone];
msgFileHandle: NSFile.Handle ~ NSFile.nullHandle;
- We do NSFile.Find here in case the name has an asterisk in it
msgFileHandle ~ NSFile.Find [directory: folderHandle.

scope: [filter: [matches[attribute: [name[nssName]]]]] !
NSFile.Error • > {msgFileHandle ~NSFile.nuIlHandle; CONTINUE}];

IF msgFileHandle • NSFile.nullHandle THEN ERROR; -- No message file
msgFile ~NSFile.GetReference [msgFileHandle];
NSFile.Close [msgFileHandle];
NSString.FreeString [z: localZone. s: nssName];
};

IF folder. NSFile.nullReference THEN {
-- No application folder, so use the system catalog and the Workstation
Profile

folderHandle +- Catalog.Open [BWSFile Types.systemFileCatalog];
adf ~ OptionFile.GetWorkstationProfile []}

ELSE {
-- There was an application folder, so use the folder and the adf inside it.

folderHandle ~ NSFile.OpenByReference [folder];
adf ~ApplicationFolder.FindDescriptionFile [folderHandle]};

OptionFile.GetStringValue [section: @internaIName.
entry: @messageFile.
callBack: FindMessageFileFromName.

11·7

PACKAGING AN APPLICATION

11.2.2 Private icons file

11.1.3 Private TIP file

11·8

file: adf];
NSFile.Close [folderHandle];
};

-- Mainline code

InitMessages[];

} ..

This example shows how to register an application that uses a
private icons file. Note that this is no different from an
application that uses the standard icons file. All the application
must do is register its type. ViewPoint will locate the icon file
when the user loads the application and associate the
application and its icon by type.

samplelconFileType: NSFile.Type :I 100100; -- arbitrary

Setlmplementation: PROCEDURE. {
mh: XMessage.Handle :I SampleBWSApplicationOps.GetMessageHandle[];
oldlmpl newlmpl .-containee.Getlmplementation[samplelconFileType);
newt mpl.convertProc Containee.DefaultFileConvertProc;
newlmpl.genericProc GenericProc;
newlmpl.name XMessage.Get [
mh, SampleBWSApplicationOps.kAppl ication Name];
[) Containee.Setlmplementation [samplelconFileType, newlmpl];
};

Note that for this to work you need to omit any reference to
either pictureProc or smallPictureProc. For more information,
see Chapter 9 of this manual.

This example shows how to find a TIP file in an application
folder and create a TIP table by calling TlP.CreateTable.
Applications should include only TIPC files in their application
folders. Name them <name>.TIP in the TIPFile entry of the
ADF, and give <folder name>l<name>.TIP to
TIP.CreateTable. If you want to load applications that use their
own TIP files, you must boot ViewPoint with the '0 switch.

sampleTIPTable: TIP.Table NIL;
InitTIPTable: PROCEDURE :I {

separator: XChar.Character :I LOOPHOLE[
NSFileName.nameVersionPairSeparator];

pathName: XString.WriterBody XString.NewWriterBody[40, zone];
AppendTIPFileName [@pathName];
sampleTIPTable TIP.CreateTable [

file: xString.ReaderFromWriter [@pathName]];
XString.FreeWriterBytes [@pathName];
};

AppendTIPFileName: PROCEDURE [writer: XString.Writer] = {
separator: xChar.Character :I LOOPHOLE

(NSFileName.nameVersionPairSeparator);
internalName: XString.ReaderBody XString.FromSTRING

["SampleBWSAppl ication" L);

VIEWPOINT DEVELOPER'S GUIDE

11.3 ADF Syntax

VIEWPOINT DEVELOPER'S GUIDE

PACKAGING AN APPLICATION

tipfile: XString.ReaderBody 4-XString.FromSTRING ["TIPFile"L);
folderHandle: NSFile.Handle;
folderRef: NSFile.Reference 4- ApplicationFolder.fromName

[@internaIName);

AppendName: PROCEDURE [value: XString.Reader) • {
XString.AppendReader [to: writer. from: value];
};

IF folderRef • NSFile.nullReference THEN {
XString.AppendSTRING [writer. "SampleBWSApplication. TIP"L];
RETURN};

-- ELSE--
folderHandle 4-NSFile.OpenByReference [folderRef];
AppendFolderName [folderHandle. writer];
XString.AppendChar [to: writer. c: separator];
OptionFile.GetStringValue [section: @internaIName. entry: @tipFile.

callBack: AppendName.
file: ApplicationFolder.FindDescriptionFile [folderHandle]];

NSFile.Close [folderHandle];
};
AppendfolderName: PROCEDURE [

applFolder: NSFile.Handle. writer: XString.Writer] = (
attrs: NSFile.AttributesRecord;
rb: XString.ReaderBody;
NSFile.GetAttributes[appIFolder. [interpreted: [name: TRUE]]. @attrs);
rb 4- XString.FromNSString [attrs.name];
XString.AppendReader [writer. @rb);
NSFile.ClearAttributes[@attrs];
};

An ADF consists of the application's internal name, the names
of the data files, the loading priority of the application, and
any other entries an application requires. The application's
object files are listed in starting order. All other entries may
occur in any order.

An application that must start before another application is
assigned a lower priority number. The loader starts
applications in increasing priority number order. Thus you can
think of the priority number as indicating the number of
dependencies for an application. If your application has no
dependencies, use a priority of zero.

The Requires entry in the ADF lists the internal names of
applications that must be loaded and started for this
application to run.

An ADF is named <application internal name> .adf. Its
contents follow this syntax:

<ADF> :: = [<application internal name»<keyword series> I NIL

< keyword series> :: = < keyword series> < component>
I < component>

11-9

PACKAGING AN APPLICATION

"·10

< component> :::1 < object file> I < message file> I < icon file> I
< keyboard file> I < TIPC File> I < priority> I
<requires>

<object file> :::1 bcd: <any legal NSFile name>.bcd

< message file> ::. < Entry Identifier>: < any legal NSFi Ie name>

< icon file> :::1 < Entry Identifier>: < any legal NSFile name> .icons

<keyboard file> :::1 <Entry Identifier>: <any legal NSFile name>

< TIPC file> :::1 < Entry Identifier>: < any legal NSFi Ie name>

<priority> :::1 Priority: <Integer>

< requires> :: = Requires: < Required application internal Name 1 >,. ,
< Required application internal Name n>

Note that the <Entry Identifier>s may be any identifier of
your choice, but should indicate the type of entry. For example.
the entry name for translation tables could be TransTable. The
standard identifiers are MessageFile. IconFile, KeyboardFile,
and TIPFile.

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER'S GUIDE

Section III. Pro9rammin9 Tools

This section documents four tools that were designed
specifically to aid programmers in developing ViewPoint
applications. These tools are:

• Chapter 12: Icon Editor

• Chapter 13: Message Tools

• Chapter 14: Bitmap Edit Tool

• Chapter 15: Keyboard Tool

You should note that these tools have limited functionality, as
this is their initial release. Read the restrictions for each tool
carefully, and use the tool with regard to the restrictions.

111-1

12.1 Getting started

VIEWPOINT DEVELOPER'S GUIDE

12. ICON EDITOR

The icon editor is a tool that is used to modify or delete an
existing icon picture or to create a new icon picture. You will
want to use this tool if you want to change an icon for a
standard tool, or if you want to design an icon for a new
application. The Icon Editor helps you create the new icon;
once you have the icon, you can include it in an application
folder (see Chapter 11), or add it to the file of standard icons.

To use this tool, run the files BWSlconEditor.bcd and
Standard.icons from CommandCentral with the I-e switch.
Your Run line should look something like this:

un: BWSlconEditor .bcd/-e Standard.icons/-e

Note that you can also load them directly from ViewPoint using
the Application Loader, as described in Chapter 3.

To get started, you need to perform the following steps:

1. Open your System folder and copy Standard. icons to your
desktop. By copying this file, you ensure that you don't
accidentally overwrite any of the existing icons.
Standard.icons contains a list of the icons currently available,
and the file types with which those icons are associated.

2. Use the PROPS key to rename the icon to be New.icons, and
change the file type to be 6010. (The new name that you
choose is arbitrary; in fact, you don't even have to rename it.
However, the new fi I e type must be 601 0.)

3. Move or copy BWSlconEditor.bcd to the Loader.

4. Open the New.icons file, and you will get a list of icons and
associated file types. Choose an icon that you want to
modify, and open it. If you want to modify one of the
standard icons, you should open that icon; if you want to
create a new one, you can select any of them to modify.

When you open an icon, you will get a list of sizes, such as 8
X 8 or 65 X 65. These sizes correspond to the various possible
forms of that icon, such as tiny, cursor, and reference. Select
the size that you want to modify and open it to start editing.
As an illustration of the possible icon forms, consider a
document. When you select a standard document icon and
invoke an operation such as MOVE, the icon changes to a
tiny copy of the document icon. This is the cursor form of
that icon. Similarly, if you make an icon a reference icon, the

12·1

ICON EOITOR

12.2 Editing an icon

12-2

form of the icon will change. (See the ViewPoint Series
Reference Library for more information on icons.)

5. When you have finished editing the file, you need to save
the bitmap before you close everything, or you will lose your
new icon.

While you are editing an icon file, you have the following
operations available:

Left mouse button

Right mouse button

Magnification

Shift

Save

Reset

Clear

Make a white box black

Make a black box white

Change the size of the icon. Provides
a popup menu that allows you to
choose the power of the
magnification.

Shift the current bitmap pixel by
pixel. Supplies a menu that allows
you to specify the direction of the
shift.

Save the current bitmap in a file. You
should use this command when you
have finished.

Restore a bitmap to its original
condition (before any edits)

Clear bitmap completely

You can also use the PROPS key to change the dimensions of the
text box (where the icon name is displayed.) To do this, select
an icon from the list of icons in the .icons file, and press PROPS.

VIEWPOINT DEVELOPER'S GUIOE

13. MESSAGE TOOLS

This chapter describes the tools that are available for creating,
modifying, and translating message files. Using message files
for an application enables you to change or translate the
messages without recompiling the application. There are three
ViewPoint tools that support this process: the Message Master
File Creation tool. the Message Master Editor, and the Message
Runtime File Creation tool. These tools build files that facilitate
the task of translating text messages and placing the translated
messages in the running application.

The Message Master File Creation tool builds a Message Master
file from the message bed files. A Message Master file is a file
that contains the original text, a translation of that text, and
additional information used by the translator. The File
Creation tool produces an icon for each Message Master File.
The application programmer (or a translator) can then open
the icon to edit the messages it represents.

The Message Master Editor is used both by application
programmers and by translators. It allows them to merge
current and previous versions of a Message Master File,
translate, edit, and print the file, check the validity of its
translated text, compare two message files, and search for
messages that have been translated.

The Message Runtime File Creation tool builds a Message
Runtime file from a Message Master file. The runtime file
contains only the textual information that is required by a
runnning application. It cannot be edited.

13.1 Message Master File Creation tool

VIEWPOINT DEVELOPER'S GUIDE

The first step is to copy the file containing your message
information to the Message Master File Creation tool. To use
this tool, you need to run the file MasterFileCreate.bcd; this
will create an icon identified by the words "Msg Master
Maker." (The file with the message information is the compiled
version of the message implementation module; it can be
either a single file or a folder containing several files. See
Chapter 5, Strings and Messages.)

When you copy a file to the Message Master icon, an options
window appears that allows you to specify the application
name, language abbreviation, and version. The default
application name is the name of the Message bed file or folder.
The default language is US. You must specify a version number,
however; there is no default. Figure 13.1 illustrates this option
sheet.

13·1

MESSAGE TOOLS

Application Name: I The name of the application

Version: 13.3i

Language: G!J
Figure 13.1 Message Master Creation Tool

To start the actual creation of the Message Master file, select
Start in the tool window header. If you do not enter a version
number, you will get an error message; the message master
creation process will not continue until you enter a version
number and select Start again. During file creation, the
window disappears from the screen. Until the wi ndow
disappears, you can abort the operation by selecting Cancel in
the tool window header.

This tool produces an icon and places it either on the desktop
or in the folder containing the source files. The name of the
Message Master file that is created is:

< Application Name>, < version>, < language> .master

For example: Cusp.3.3i.US.master is the Message Master file
for version 3.3i of the application, Cusp. Its language is US. For
Mtssage Master files created using a folder, the number of bcd
files included in the Message Master file is indicated by the
number of dots posted between the user messages "Creating
Message Master File" and "Placing on Desktop" or "Placing in
Folder" displayed in the Attention window. This allows you to
gauge the progress of the creation application; each dot
indicates one file.

This file contains an untranslated version of all the messages.
The next step is typically to edit or translate the messages,
using the Message Master Editor, as described in the next
section.

The Message Master Creation tool also produces an errorlog
and places it on the desktop. The possible errors are:

• Duplicate IDs: This error indicates that a set of
Messagelmpl beds has messages in identical domains
with identical IDs. This error means that the source will
have to be changed and recompiled. (See Chapter 5 for a
discussion of 105.)

• Unbound Procedure: This error indicates that a
Messagelmpl bed contains references to other bcds that
are not bound in. To fix this, you must remove the

13-2 VIEWPOINT DEVELOPER'S GUIDE

13.2 Message Master Editor

MESSAGE TOOLS

offending unbound reference or bind the files with the
appropriate implementation.

• No domains: This error indicates that the Messagelmpl
bcd contains no calls to XMessage.AllocateMessages or
xMessage.RegisterMessages.

• RegisterMessageslAllocateMessages Error: This error
indicates that the bcd has either called
xMessage.AllocateMessages and
XMessage.RegisterMessages in the wrong order or has
only referenced one of them.

The file generated by the Message Master Creation tool will
appear on the desktop as illustrated in Figure 13.3:

SampleApp
lication

MASTER

Figure 13.3 Master File icon

Once you have the message master icon, you can edit its
contents with the Message Master Editor. To use this tool, load
the program MessageFileTooJ.bcd. The editor allows you to
search, edit, translate or print the text of the messages. To edit
a message master, select the icon and press OPEN. This will bring
up the editor window, as illustrated in Figure 13.4. .

The top message window of the editor window is used for
error messages concerning the message text. For example, if a
translated message contains mismatched leading or trailing
spaces or parameters, an error message appears when you
attempt to initiate a further search. The search will not be
performed until you correct the translated text or indicate that
you want to ignore the errors.

13.2.1 Searching Message Master files

VIEWPOINT DEVELOPER'S GUIDE

To search the message file to find a message that satisfies a
particular criterion, use the commands Firstlnstance and
Nextl nstance:

First Instance - searches the Message Master file from the
beginning to find and display the first message that satisfies
the given search criteria.

Next Instance - finds the next instance (going either forward or
backward from the last successful search) of the specified
message type. You can also execute this command by pressing
the NEXT key.

13·3

rl
~I
i

I
I MESSAGE TOOLS
i
I

13-4

Print Messages

1--------------------------------1 Search Archive
Window for Editor Messages e.g. message has Incorrect parameters Check Msg FIle

I First Instance I Next Instance ,ForWard···· I Backward

Find Msg uSing

I Sequential II New II Untranslated II Translated II--changed II Deleted II Parameters I
..............
: Current Message

Key: 27

Status: Untranslated Msg Type: menultem Translatable: Yes

Old US Message: Text of old message (only for ·changed- messages)

US Message: Text of new message

Translation: Editable field for message translation

Note: Implementor's note to the translators.

Figure 13.4 Message Master Editor window

The Find Msg Using field allows you to specify the type of
message searched for. The search proceeds either forward or
backward. depending on the value selected in the form
window. The choices are:

Sequential

New

Untranslated

finds the first or next message in the file.

finds the next message with the status
"new."

finds the next message with the status
"untranslated. n

VIEWPOINT DEVELOPER'S GUID

13.2.2 Search parameters

13.2.3 Editing

VIEWPOINT DEVELOPER'S GUIDE

Translated

Changed

Deleted

Parameters

MESSAGE TOOLS

finds the next message with the status
"translated. "

finds the next message with the status
"changed." If an entry of this type is
found, an additional field appears that
contains the previous version of the
original text. (This field is not displayed for
other types of messages.) If you have not
specified the previous original text in the
file properties, an error message appears
and no text is displayed.

finds the next message with the status
"deleted ...

displays a set of options that specify the
search criteria. This is discussed more fully
in the next section.

If no message of the type specified can be found, .. No message
Found" appears in the Message window and the currently
displayed message remains in the tool window.

You can also search by parameter, as illustrated in Figure 13.5.
A search is successful only if all specified criteria are met. If you
specify Message Text, you can search for the original text (by
specifying US) or for a translation of the original text (by
specifying Trans).

Simple searches by Key, 10, Status field, or Msg Type are
reasonably quick. However, specifying the Key or 10 fields in
conjunction with other fields is slow and unproductive, as
these fields are specific to the message.

When searching for strings (either translated or original text),
setting the Status field or the Msg Type field accelerates the
search. String searches are based on a search for the substring
entered in the Message Text field.

When a search is successful, a message appears with the
following information:

• Message key number

The developer-assigned number of the message.

• Message ID number

The unique message 10. It is developer-assigned and can
never be reassigned.

• Message status (e.g., new. changed, translated)

13-S

MESSAGE TOOLS

Print Messages

t----------------------------------..... Search Archive
Window for Editor Messages e.g. message has incorrect parameters Check Msg File

I First Instance I Next Instance I Forward . I BaCKward

Find Msg uSing

I Sequential II New I Untranslated I Translated II Changed II Deleted II-flltra'l'tletersl

..............
: Current Message
••••••••••••• til

Key: 27 10: 25

Status: Untranslated Msg Type: menultem Translatable: Yes

Old US Message: Text of old message (only for Wchanged W messages}

US Message: Text of new message

Translation: Editable Field for message translation

Note: Implementor's note to the translators .

• • • • • • • • • • • • • 411

: Search Parameters :
Key: I Key No. 10: I 10 No. I
Message Text:

Status: I New I I Changed I I Deleted I lany I
Msg Type: I userMsg I template I I argLlst I @

Figure 13.5 Searching by parameter

VIEWPOINT DEVELOPER'S GUIDE

MESSAGE TOOLS

See section 13.2.2, Search Parameters, above, for a
complete list of parameters. Message status is assigned
by the Message Translation tools.

• Msg type (e.g., userMsg, template)

Message type defines the use of the message (e.g.,
whether it is an argument list or a template for a
composed message). The possible message types are:

userMsg - an Attention Window message.

template -contains fields to be filled in later by an
item of type arglist ..

argList • a list of arguments for use with a template.

menultem - an item used in a form window item
(e.g., an item tag) or in a user menu selection.

pSheetltem . a property sheet message.

errorMsg - a highlighted error message that appears
within the application.

infoMsg • an informative message displayed to the
user.

prompt/tern - a user prompt.

windowMenuCommand . a menu command in a
window header.

others· all other types.

Note that these meanings are only a suggestion; you are
free to allocate the types as you see best.

• Whether the message is translatable

• Previous original text (for changed messages only)

When the text for a message has ch'anged from a
previous version, both versions of the original text
appear on the screen. This field presents the previous
text.

• Present original text

When the text for a message has changed from a
previous version, both versions of the original text
appear on the screen. This field presents the present
original text.

• Translation field (for translatable mesages oniy)

The translator uses this field to enter his translation.

• limplementor's note

This field allows the developer to enter any notes
that he thinks might be useful to the translator. The
translator may add additional notes. These
additional notes are saved when two message
master files are merged if the complete text from the
original note is retained within the new note.

13·7

MESSAGE TOOLS

Important:

Translators can only edit the contents of the translation field
and implementors can only edit note fields. If the message is
non-translatable, the translation field cannot be edited.

Translators particularly should note that opening a new,
untranslated message file does not give the file translated
status. However, if either of the editable fields within any
message is altered (even if it is subsequently returned to its
previous state), the message file is considered translated, thus
prohibiting any merging operation.

13.2.4 Closing, saving, and resetting

13.2.5 Merging message files

13·8

Once a 'developer or a translator has edited a file, there are
three ways to save the resulting file:

1 Use the Save command in the main window header. This
function saves all changes made since the file was opened or
since the last save (user or automatic).

2 Use the Automatic Save function in the Message File property
sheet. See the property sheet section for details.

3 Use the Close command. This function closes the edit window
and saves any changes made to the file since it was opened or
since the last save (user or automatic).

If you make some edits that you want to get rid of, you can use
the Reset command. If no Save operation has taken place,
Reset returns the file its state when first opened. If you have
changed the file, you must confirm the command (by
reselecting the Reset command.) You can only reset back to the
last user or automatic save performed.

When you need to change a message file that has been
translated, make sure that the changes are reflected in the
translated version as well. To approach this problem, start by
editing the file in the original language, Then copy the
translated version of the earlier version (without the changes)
into the untranslated version with the changes. To copy the
text, select the translated file, press COPY, and select the new
message file as the destination of the copy.

When you copy the translated version into the untranslated
version, the two files are merged and the status of each
message 'is set to one of the following states:

• new - This a new message that was not present in the earlier
version. This message will have to be translated,

• changed - The message was present in the earlier version,
but either the text itself or the translator's note has been
changed.

• notTranslated - The message is exactly the same in both
languages, so there is no need to translate it. An example of

VIEWPOINT DEVELOPER'S GUIDa

13.2.6 Printing message files

Printer Name:

MESSAGE TOOLS

such a message might be a roman numeral, a direct
quotation, or the name of a city.

• translated - The translation field has been changed .

• deleted - The message was included in the early version, but
not in the new version.

Note that for this to work, the new version must not include

To obtain hardcopies of information contained within the
Message Master, use the Print Messages pop-up menu
command. This command displays a list of print options, as
illustrated in Figure 13.6.

',nky:sBD-E:Rx

Print Messages:

13.2.7 Displaying message entries

VIEWPOINT DEVELOPER'S GUIDE

Untranslated I Changed II New II Deleted I
I VerbOse· I I Terse I

Figure 13.6 Print options

Selecting the Start command produces an Interpress-format
document and sends it to the printer specified in the Printer
Name field. You can print all messages or a category of
messsages. Specify anyone of the following categories:
translated, untranslated, changed, new, or deleted messages.

In additiona, you can specify verbose or terse. Verbose
produces a document containing all available information (i.e.,
original text, translated text and translation information).
Terse produces a document containing only the original text,
message key number, and message 10.

This feature allows you to view several messages
simultaneously in one window, as illustrated in Figure 13.7. To
do so, select the Display Window menu command in the main
window header. A window for displaying the text required and

13-9

MESSAGE TOOLS

13·10

an option sheet for selecting messages appears, as illustrated in
Figure 13.8.

Key: 27 10: 25
Status: Untranslated MsgType: menu Item Translatable: Yes
Original Text: Text of original message ...

Translation: translated text ...

Note: translator's note ...

Key: 28 10: 26
Status: Untranslated MsgType: menu Item Translatable: Yes
Original Text: Text of original message ...

Translation: translated text ...

Note: translator's note ...

Key: 29 10:27
Status: Untranslated MsgType: menu Item Translatable: Yes
Original Text: Text of original message ...

Translation: translated text ...

Note: translator's note ...

Key: 30 10:28
Status: Untranslated MsgType: menu Item Translatable: Yes
Original Text: Text of original message ...

Translation: translated text ...

Note: translator's note ...

Figure 13.7 Viewing several messages simultaneously

The display window has two commands:

• Close - closes the window.

VIEWPOINT DEVELOPER'S GUIDE'

Key: I Key No.

Message Text:

MESSAGE TOOLS

• Options - presents a window in which you specify the search
options. The same search options are available as in the main
window.

I"~ON: I 10: IlONa. IfDON I I F;o/d "" m ten 11o", I Trans

Status: 81 Changed I Translated II Deleted II Untranslated I [;]
Msg Type: I userMsg I template I ~ I menultem I pSheetltem I I any I

Figure 13.8 Display window options

13.3 Message File property sheet

VIEWPOINT DEVELOPER'S GUIDE

To display the properties of a file, select the corresponding
Message File icon and press the PROPS key. The property sheet
that appears is shown in Figure 13.2.

You cannot change the application name, creation date, or last
edit date. (You can use the Message Master Editor tool
Runtime Message file to specify the format of the creation date
and last edit date). You can, however, change the remaining
fields of the property sheet, as described below:

Application Name - the name of.the Message Master file.

Previous Message File - This is the file you use to find the
previous original text of changed messages. The default is the
name of the last Message Master file that has been merged
with this file. If no name appears in this field, an error message
appears and no previous text is displayed.

Automatic Save - When set, edits are saved automatically. Use
the" No. of Keys Edited before save" field to specify the save
frequency. This function affects the execution of the main
editor window RESET function. When you specify the save
interval, keep in mind that Automatic Save entails considerable
overhead since it writes the complete file to disk. Keep this in
mind when specifying the save interval.

No. of Keys Edited before save - This field defines the
Automatic Save frequency. It is defined as type CARDINAL. An
edit is defined as editing one message and requesting another.

13-11

MESSAGE TOOLS

Application

I Application Name

Date Created: dd-mm-yy Last Edit on dd-mm-yy

PrevIOUS Message Master I File for finding changed messages I
I Automatic Save I No. of Keys Edited before save: D
Figure 13.2 Message Master property sheet

When the value in this field is zero, Automatic Save is ignored.
The default value for this field is zero.

13.4 Runtime File Creation tool

13·12

The final step is to create a Runtime Message file. A Runtime
Message file is essentially a compiled version; it can be loaded
with an application, but it can't be edited or viewed. To create
a Runtime Message file, you need to run the program
RuntimeFileCreate.bcd. Once you have done so, select the
Create Message File command from the pop-up menu.
Invoking this command creates the Vl(indow illustrated in
Figure 13.9.

IT~nstat~dl Original I

Figure 13.9 Using the Create Message File command

This window allows you to specify the type of text (original or
translated) included in the Runtime Message file. If you specify
Original, the command produces a Runtime Message file that
contains only the original text. If you specify Translated, the

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER'S GUIDE

MESSAGE TOOLS

command produces a Runtime Message file that contains only
the translated text.

The Runtime Message file is produced when you select Start.
The resulting file appears as an icon on the current desktop. As
illustrated in Figure 13.10, this icon is similar, but not identical,
to the Message Master file icon. You cannot perform any
operations on the runtime file.

Master File Icon Runtime File Icon

SampleApp
lication

MASTER

Figure 13.10 The resulting icon

SampleApp
lication

RUNTIME

To create a Runtime Message file without using the Message
File Editor, use the Runtime Message Creation tool. The icon
for this tool is identified by the words "Runtime Msg Maker".
Use the COpy key to copy a Message Master file containing the
message information to this icon. The tool then produces an
original language Runtime Message file with the same name as
the Message Master file followed by the extension .messages.

When the operation is complete, the tool places a Runtime
Message file in the container (either a folder or the desktop)
containing the Message Master file. If the Runtime Message

. file has been placed in a folder, you must redisplay the file.

13·13

14.1 Getting started

Bitmap Edit Tool

Clear! File Name:

• • . -

VIEWPOINT DEVELOPER'S GUIDE

14. BITMAP EDIT TOOL

The Bitmap Edit tool is an XDE tool that allows you to edit any
bitmap, including keyboard bitmaps. It is used in conjunction
with the Keyboard tool to create new keyboards. (See the
Keyboard Tool chapter for more information.) It also provides
limited freehand drawing capability.

The Bitmap Edit tool provides two modes, Draw and Edit. Draw
mode is used for freehand drawing with a variety of brushes.
Edit mode is used to read in a bitmap, move, copy, delete, or
magnify portions of the bitmap, and store the edited bitmap.

Running BitmapEditTool.bcd produces the window shown in
Figure 14.1:

Figure 14.1 The Bitmap Edit Tool

The uppermost subwindow is a message 5ubwindow for
feedback and error messages. The second 5ubwindow is a
command subwindow, with two items, Clear and File Name, in
it. Clear erases the bitmap subwindow. You can store the
current bitmap to File Name or read in a bitmap to edit from
File Name.

14·1

THE BITMAP EDIT TOOL

14.2 Draw mode

14.3 Edit mode

14.3.1 Selection

14-2

The third subwindow is the brush subwindow, which contains
several sizes of rectangular and circular brushes that are
available in Draw mode. If you select the crosshairs symbol, you
will enter Edit mode.

The lowermost window is the bitmap subwindow, where the
current bitmap will be displayed.

To use the Bitmap Edit 001 in Draw mode, select a brush and
move the cursor into the bitmap subwindow. To draw, move
the mouse while holding down the left button; to erase, hold
down the right button. Selecting Clear erases the entire bitmap
subwindow.

Edit mode is used to select and manipulate portions of the
current bitmap. When you are in Edit mode, you can

• Select a rectangular portion of any size from the bitmap
• Move, copy, delete or magnify any portion of the bitmap
• Write portions of the bitmap to press or bitmap files
• Read in press or bitmap files to edit or examine

To enter Edit mode, select the crosshairs brush. Holding down
the left mouse button brings up a pair of crosshairs that can be
moved across the bitmap to the section that you want to
manipulate. Releasing the left button sets one corner of a
rectangle. Holding down the right mouse button gives you a
rectangular highlighted area that you can stretch to include
any portion of the bitmap; releasing the right button sets the
rectangular selection.

The granularity of the selection is controlled by the Grid menu,
which is invoked by chording (pressing both. mouse buttons
simultaneously) in the command or message subwindow. The
Grid menu offers the following choices, as shown in Figure
14.2:

Grid

1x1
2x2
4x4
8x8
16x16

Figure 14.2
Grid menu

VIEWPOINT DEVELOPER'S GUIDE

14.3.2 Move, copy, and erase

VIEWPOINT DEVELOPER'S GUIDE

THE BITMAP EDIT TOOL

With Grid set to 1x1, you can use the cursor to point at an
individual pixel. With Grid set to 16x16, you can only point to
each 16x16 pixel block. When editing keyboards, it is most
useful to have Grid set to 1 x 1.

You can manipulate portions of the bitmap with the pop-up
Edit menu or with the function keys on the left side of the
keyboard.

You activate the Edit menu, illustrated in Figure 14.3, by
chording in the command or message subwindow.

Edit

Copy
Move
Erase
Load Keyboard
Store Keyboard
Load Press File
Write Press File
Magnify

Figure 14.3 Edit menu

If you want to use the keyboard keys instead of the Edit menu,
the key mapping is shown in Figure 14.4:

Function Key

Copy COpy

Move MOVE

Erase DELETE

Load Kbd AGAIN

Store Kbd FIND

Load Press SAME

Write Press OPEN

Magnify PROPS

Figure 14.4 Key mapping

Select the portion of the bitmap that you want to manipulate,
then select the desired operation from the menu or press the
appropriate key. The Bitmap Edit tool will give you feedback
and instructions in the message subwindow.

14-3

THE BITMAP EDIT TOOL

14.3.3 Magnify

14-4

You can also select and magnify a portion of the bitmap. This is
the easiest way to edit a keyboard bitmap, since the pictures of
the keys are usually quite detailed. Invoke the Magnify window
from the Edit menu or by pressing the FINO key. Figure 14.5
shows a picture of the Magnify window, with the letter "s"
magnified in it:

Bitmap Magnify Tool

Destroy! Repaint! Magnification: {10x}

Figure 14.5 The Magnify window

To draw, turn the grid squares on (black) with the left mouse
button and off (white) with the right mouse button. By
selecting the desired value from the Magnification
enumerated field, you can set the magnification of the
window to any even value between 4 and 16. As you draw in
the Magnify window, the scaled-down version of the drawing
appears in the bitmap subwindow. .

The Repaint command repaint sthe Magnify window to reflect
any changes you have made by drawing in the bitmap window.
For example, if you magnify a letter, return to Draw mode, and
draw a circle around the letter in the bitmap subwindow, you
won't see the circle appear in the Magnify window until you
select Repaint.

The Destroy command destroys the Magnify window. Any
changes you have made will remain reflected on the non­
magnified bitmap in the bitmap subwindow of the Edit tool.
You can open up to four magnify windows at once; thus, you
can edit several portions ofthe bitmap at the same time.

VIEWPOINT DEVELOPER'S GUIDE

THE BITMAP EDIT TOOL

14.3.4 Loading and storing bitmaps and press files·

14.4 Restrictions

VIEWPOINT DEVELOPER·S GUIDE

You can store your edited bitmap or read in a bitmap to edit or
examine with the Load Keyboard and Store Keyboard
commands, or with the Load Press File and Write Press File
commands. Load Keyboard and Store Keyboard are somewhat
limited in that they will only load or store a bitmap that is
exactly the size of a standard keyboard bitmap (505x 145
pixels.) For example, if you are building the middle row of keys,
and you want to store only that portion of the bitmap, you
select the middle row. However, when you invoke Store
Keyboard, the selection will be automatically extended from
the upper-left corner downward and to the right, until it is the
size of a standard keyboard bitmap.

If, however, you select Write Press File, you can store any
portion of the bitmap, no matter how small. There is no
functional difference between the Load Keyboard and Load
Press File commands.

The tool has limited space to store bitmaps. Reading a press file
or bitmap file that is too large will crash the tool.

The mapping of edit functions to function keys is only in effect
ifthe cursor is in the bitmap subwindow.

Pop-up menus can only be accessed from the message and
command subwindows.

14·5

1 5.1 Getting started

15.2 Keyboard file subwindow

VIEWPOINT DEVELOPER'S GUIDE

15. KEYBOARD TOOL

ViewPoint is equipped with a standard keyboard file that
contains definitions for many keyboards, including European
and Arabic languages, math and logic symbols, and terminal
emulators. However, in case you are writing an aoplication that
requires a keyboard that is not part of the standard release,
ViewPoint also provides facilities for defining your own
keyboard. A new keyboard is usually defined by editing an
existing keyboard that has similar characteristics; the new
keyboard is limited by the available font set.

The Keyboard tool is an XOE tool for building and maintaining
the black keys of ViewPoint keyboards data files. (Function
keys are changed via TIP tables; see the TIP chapter for more
information.) The Keyboard tool allows you to examine the
keyboards in a keyboard file, change existing entries, and add
new entries.

A keyboard file is actually a collection of definitions for
different keyboards. A keyboard definition is composed of
three items: a bitmap, an interpretation table, and a geometry
table. The bitmap is the picture of the keyboard that would
appear on the screen. The interpretation table defines what
happens when you press a particular key or key combination.
The geometry table defines the area of the keycap on the
bitmap that is highlighted when you use the mouse to select
the keycap. Each of these tables has an index in the keyboard
file, and these indices are used by the Keyboard tool to refer to
the components of the file.

The KeyboardTool is activated by running KeyboardTool.bcd in
XOE. It has six subwinc1ows. The uppermost subwindow is a
message subwindow for displaying feedback and error
messages. The lowermost window is a log window for listings
of keys and keyboards. The middle four windows will be
discussed in detail in the following sections.

The file subwindow contains facilities for manipulating the
keyboards in the keyboard file. In the keyboard file
subwindow, you can:

• Open a keyboard file
• List the keyboard definitions in the open keyboard file
• Add a newly created keyboard to the keyboard file
• Close the keyboard file

15-1

KEYBOARD TOOL

Here is an example with a keyboard file that has already been
opened:

Open! Close! ReadOnly List! Keyboard File: Keyboards
Set! Installed Keyboards: USEnglish French Russian German

American UKEnglish Hiragana

Default Keyboard: {}
Phsyical Keyboard: {}
Date Format: {}
Decimal Separator: {}
Default Units: {}
Sort Order: {}

Default Language: {}
Time Format: {}
Thousands Separator: {}
Paper Sizes: {}
Default Pri nt Wheel: {}

The Open command opens the file whose name is specified in
the string Keyboard File. If the boolean ReadOnly is set, you
can examine the file but not edit it. Otherwise, the file is
read/write, and the Close command will write all changes to
the file and close it.

When you select Open, the list of installed keyboards will be
filled in with the contents of the keyboard file. This is the list of
keyboards that will appear on the soft keys when the KEYBOARD

key is pressed. In the example above, the keyboard file is
named "Keyboards", and the keyboard definitions contained
in that file are listed on the Installed Keyboards line. You can
change this list by editing the line and using the Set command.
If you try to add the name of a keyboard whose definition does
not appear in the keyboard file, you will get an error message.

The list! command provides a brief summary of each keyboard
definition in the bottom subwindow, listing the indices of the
bitmap, interpretation, and geometry tables. Here is a sample
list:

Keyboard: USEnglish
Bitmap index: 29
Interpretation index: 4
Geometry index: 21

Keyboard: MathSymbols
Bitmap index: 1
Interpretation index: 1
Geometry index: 2

The rest of the parameters shown are obsolete. Because of
changes in recent software releases, these parameters are now
set by the Workstation Profile.

15.3 Keyboard and bitmap subwindows

15-2

The bitmap subwindow contains the bitmap associated with
the keyboard specified by the Keyboard parameter. This
bitmap is the picture of the keyboard that you see in ViewPoint
when you press KEYBOARD and select the keyboard you want to
view.

The keyboard subwindow contains the facilities for
manipulating the bitmap, interpretation, and geometry tables.
You can:

VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER'S GUIDE

KEYBOARD TOOL

• Select a keyboard definition for examination or editing
• Remove a keyboard definition from the keyboard file
• Insert into the open definition a bitmap, geometry table, or

interpretation table from another keyboard definition
• Write the bitmap to a file for editing
• Write the geometry table to a file for editing
• Load a bitmap or geometry table into the definition
• List the functions and parameters of the black keys.

The keyboard subwindow has the following format:

Keyboard: {} Remove!
Bitmap Index • Replace!
Kbdlnt Index. Replace!
Geom Table Index. Replace!
Source Keyboard: {} Same File Keyboard File:
Load Bitmap! Store Bitmap! Bitmap File:
Load Geom! Store Geom! Geom File:
List! AIiKeys

When you select a keyboard from the Keyboard enumerated.
menu, the indices and the bitmap subwindow will be filled in
according to the definition of the keyboard you selected.

The Remove command removes a keyboard from the file.
Note, however, that Remove only removes the index entry
from the file; it leaves the components (the bitmap,
interpretation table, and geometry table) in the keyboard file.
This will be corrected in a later version of the Keyboard tool.

The Store Bitmap command stores the current bitmap, pictured
in the bitmap subwindow, to the file specified by Bitmap File.
You can then load this bitmap file into the Bitmap Edit tool for
editing. (See the Bitmap Edit Tool chapter for more
information.) The Load Bitmap command takes the specified
bitmap and writes it back into the current keyboard. This is
used for replacing the current bitmap with a bitmap that you
have edited.

Store Geom is used to write the current geometry file to Geom
File so that you can bring it up in a file window and examine or
alter it. Load Geom loads the file specified by Geom File into
the geometry table of the current keyboard. A sample
geometry file looks like this:

[[75, 75], 27, 14], k3, One
[[75,88),27, 14], k3, None
[[75,75],27, 14], k3, One
[(75,88], 27, 14], k3, None

Each keycap is divided into an upper and lower section, and
there is a one-line entry for each section.On each line. the first
set of coordinates is the location of the upper-left corner of the
keycap section. The second set of coordinates is the width and
height of the keycap section. The next parameter is the
keystation name (as defi ned in the Pilot Programmer's
Manuaf), followed by the number of shifts allowed with the
key. For example, keystation k3 produces the character "a"
when pressed, and the character "A H when one SHIFT key is
pressed along with the key; therefore it has one significant

15-3

KEYBOARD TOOL

15-4

shift. (Shifts are noted only on the line for the upper section of
the keycap.)

By editing the geometry file, you can change the area that is
highlighted when you se'ect a keycap on the bitmap. This
feature is useful when defintng new keyboards with odd-sized
keycaps. For example, store the geometry table to a file, bring
it up in a file window, doubJe the width of a keycap, load the
edited geometry file, and select the altered keycap with the
mouse in the bitmap subwindow. You will notice that the
selected (highlighted) area is now twice as wide as the keycap.
For clarity, the measurements of a keycap in the geometry
table should correlate to the area of that keycap on the
bitmap.

The List command produces a listing of the keys in the bottom
subwindow. Here is the list for the letter" A" on the USEnglish
keyboard:

k3 REPEAT LOCKABLE OneShift .
UNSHIFTEO: Character CHSET: 0 CODE: 141 B
SHIFTED: Character CHSET: 0 CODE: 101 B

You can replace various components of the current keyboard
with the components of other keyboards. Source Keyboard,
Same File. and Keyboard File are used to interchange the
components of keyboards. For instance. you might want to
have two different keyboard definitions with identical
bitmaps, or even have two keyboards point to -the same
bitmap. To do this, you would use the Replace command on
the Bitmap Index line. This will replace the bitmap for the
current keyboard with the bitmap for the source keyboard. If
you wanted to replace the interpretation table, you would use
the Replace command on the Kbdlnt Index line. For replacing
the geometry table, use the Repla(e command on the Geom
Table Index line. Geometry tables can easily be shared by many
different keyboards, since the physical area occupied by each
keycap often remains the same, although the characters on the
key faces and the Ascii codes that they generate are different.

Source Keyboard is the source of the bitmap, geometry table,
or interpretation table that you want to insert into the current
keyboard. If the source keyboard is in the same keyboard file as
the current keyboard, the boolean Same File should be on. If
not, you should type the name of the source keyboard file. For
the following examples, assume that USEnglish is the source
keyboard, and French is the current keyboard that we wish to
alter, as illustrated in Figure 15.1.

If Same File is on, you have an additional parameter choice,
Copy, for each keyboard component. If you turn on Copy, an
identical copy of the source keyboard's component (for
example, a geometry table) will be created and the current
keyboard's pointer set to the new geometry table. If Copy is
off, the current geometry table pointer will to point to the
source keyboard's geometry table. instead of creating a new
copy of the geometry table. Figure 15.2 illustrates the action of
the Copy command:

VIEWPOINT DEVELOPER'S GUIDE

KEYBOARD TOOL

USEnglish iJ'1 EnglishBitmap I French

1-+ Nil bitmap bitmap

interp table r+ I Englishlnterp I interp table f-+ Nil

geom table r--. .. geom table f-+ Nil I EnglishGeom I
Source Keyboard Current Keyboard (to be altered)

USEnglish

bitmap

interptable

geom table

~
I EnglishGeom I
after Replace with:

15.4 Key subwindow

VIEWPOINT DEVELOPER'S GUIDE

Figure 15.1 Altering a keyboard

French USEnalish French

bitmap bitmap bitmap

interp table interp table interp table

geomtable geom table geom table

t ~ ,/
I EnglishGeom I I EnglishGeom I

Same File ON after Replace with: Same FileON
Copy On Copy Off

Figure 15.2 Effect of the Copy command

If Same File is off, no Copy parameters will appear, but there
may be a parameter called All References. This appears if a
component is referenced by more than one keyboard. Let's
assume that there is a geometry table that is shared by several
keyboards. If you try to replace that geometry table and All
References is on, the geometry table will simply be replaced, so
that all pointers now point to the new geometry table. If,
however, All References is off. a copy of the new geometry
table will be made and only the current keyboard will be set to
point to the new copy. Figure 15.3 illustrates the effect of All
References.

When you select a key in the bitmap subwindow, information
about the key will appear below in the key subwindow. It is the
same information that you get from List, described above. You
use the key subwindow to:

15-5

KEYBOARD TOOL

15-6

before Replace

Current Keyboard (to be altered)is French Source Keyboard is USEnglish

I French I I USEnglish I ~ I EuroGeom I
r t

I German I EnglishGeom I
I French I ~ I EnglishGeom I I French ~I EnglishGeom I
I German r I German ~I EuroGeom I

after Replace with: All References ON after Replace with: All References OFF

Figure 15.3 Effect of All References

• Select a key and examine its attributes
• Change the attri butes of the key

Remember, you can only examine and change the
interpretation of black keys, which are the only ones shown on
the bitmap. The interpretation of function keys is controlled by
TIP tables. Here is an example of the key subwindow:

KeyStation: {k3} Set! Reset!
Ignore Repeat Type: {OneShift}
Unshifted: {Character} ChSet :I 08 Code = 1418
Shifted: {Character} ChSet,. 08 Code:l 1018
Lockable .

KeyStation is the key station name of the key as defined by the
KeyboardWindow interface in the ViewPoint Programmer's
Manual. You can also select the key station from the
enumerated list of KeyStation, instead of selecting the key
from the bitmap.

The Set command causes any changes you make to take effect;
Reset sets the parameters back to the way they are in the
keyboard file.

Ignore will be set if the key is ignorable, Lockable if the Lock
key can be used to lock the key, and Repeat if the key is
repeatable. Lockable only appears if the key can be shifted. If
the key can be shifted, its Type will be OneShift or TwoShift,
and the Shifted and Unshifted interpretations must be
defined. TwoShift is used on keyboards with many characters,
such as the Japanese keyboard, where a single key may have
three separate meanings, depending on whether the SHIFT key
has been pressed once, twice, or not at all. At the time of this
release, it is recommended that you always define
interpretations as Character, since the other choices are
functions that are no longer defined by the keyboard, but are

VIEWPOINT DEVELOPER'S GUIDE

15.5 How to edit a keyboard

15.5.1 Getting started

15.5.2 Editing the bitmap

VIEWPOINT DEVELOPER'S GUIDE

KEYBOARD TOOL

instead defined by TIP tables. (See the TIP chapter for more
information.)

The Type option SendUpStroke refers to whether the character
is sent when the key is pressed down or let up--normal
operation is to use the down stroke, but some emulators may
need to use the up stroke. A key can also be defined as Type
ShiftKey.

ChSet refers to the Xerox Character Set, and Code shows
theASCII codes that are generated by the key.

Now you'll see a complete example of how to alter a keyboard
file for your own uses. Let's say you want to interchange the
"T" and the "5" key on the English keyboard. (This is a
contrived example, but it will illustrate the use of the Keyboard
tool.) Take the following steps:

1. Change the appearance of the bitmap.

2. Assign the edited bitmap to a new keyboard file.

3. Change the interpretation of the keys so that pressing the
new "5" will really print an "S" on the screen, and pressing the
new "T" will print a "T".

Run Keyboa rdTool. bed. You must have on your search path
the standard keyboard file, which is currently called
"Keyboards". Open Keyboards, and select USEnglish from the
Keyboard enumerated menu. This wil! paint the USEnglish
keyboard bitmap in the bitmap subwindow, and fill in the
other parameters for USEnglish.

First, you need to write the bitmap to a file so that you can edit
it. In the Keyboard subwindow, type TempBitmap on the
Bitmap File: line, and select Store Bitmap. This saves the
USEnglish bitmap in the file TempBitmap.

Type TempGeom on the Geom File: line, and use the Store
Geom command to save the USEnglish geometry tables. They
will enable you to select keys and change their interpretations.

Select the "T" key. Note that the octal codes in the key
subwindow are 164B and 124B. The codes for the "S" key are
163B and 123B.

In the Bitmap Edit tool, enter Edit mode by selecting the
crosshairs brush. Type TempBitmap on the File name: line and
select Load Keyboard from the Edit menu, which you get by
chording in the command subwindow. In the bitmap window,
press the left mouse button to see where the bitmap will be
placed' in the window; move the mouse until you are satisfied
with the bitmap's location. Then release the' left button. The

15-7

KEYBOARD TOOL

15.5.3 Creating a new keyboard file

USEnglish keyboard will now be painted in the Bitmap Edit
tool.

Select the "T" key by pressing the left mouse button while in
the upper-left corner of the "T" key and holding down the
right button to adjust the selection to include the whole key.
Select Move from the Edit menu (or use the MOVE key on the
keyboard) to move the "T" to a vacant part of the window,
outside of the keyboard bitmap. Similarly, move the "S" to the
old "T" key, and move the "T" to the "s" key. (If you wanted
to alter the appearance of any of the characters on the
keyboard at this time, you could select the character, select
Magnify from the Edit menu, and change the appearance of
the character by turning the grid bits on and off. See the
Bitmap Edit Tool chapter for more information.) Select the
entire keyboard, and save the changes you have made to
TempBitmap by selecting Store Keyboard from the Edit menu.
Now you are finished editing the bitmap.

There are no facilities for naming your own keyboard. You
must use an existing keyboard definition and write your
definition on top of it. In the Keyboard tool, choose a keyboard
name from the enumerated Keyboard list. Choose a keyboard
which you aren't likely to need for anything else. For this
example, we'll use the Korean keyboard. First, select the
Korean keyboard. Unless you have Korean installed on your
machine, a blank keyboard will probably be painted in the
bitmap window. Load your edited file TempBitmap with the
Load Bitmap command. The "T" and "S" keys should appear
interchanged.

15.5.4 Changing the interpretation of the keys

Your new keyboard, Korean, has no geometry file or
interpretation file attached to it yet. The geometry file enables
you to select the keycap labeled "T" and have the
interpretation for the "T" key, which is provided by the
interpretation table, appear in the key sub~indow. It is much
easier to edit an existing file than to create a new one, so we'll
use the USEnglish tables.

Set Source Keyboard to US English and turn on the Copy
booleans on the Kbdlnt and Geom Table lines. This will copy
the USEnglish tables into the Korean keyboard definition,
rather than just having the Korean definition point to the
USEnglish definition.

Invoke Replace on the Kbdlnt line and then on the Geom Table
line.

Select the "T" key. The codes displayed are 1638 and 1238,
which are really the codes for "S". Change the codes to 1648
and 1248 and invoke Set!. Select "S" and set its codes to 1638
and 1238.

You now have a keyboard file called Korean, which is really the USEnglish keyboard with the "T" and "S" keys
interchanged.

15-8 VIEWPOINT DEVELOPER'S GUIDE

15.5.5 Using a keyboard file

15.6 Restrictions

VIEWPOINT DEVELOPER'S GUIDE

KEYBOARD TOOL

Creating a new keyboard definition is only part of the process
you must complete to be able to use your new keyboard. The
Keyboard tool only provides facilities for changing the pictorial
representation and the interpretation of the black keys. In
addition, the interpretation of the black keys is limited to
characters; the Keyboard tool cannot be used to map functions
to keys. For more information about assigning functions to
keys, read the TIP chapter of this manual and the TIP chapter of
the ViewPoint Programmer's Manual.

To integrate your new keyboard file into a program, you will
need to become familiar with the following interfaces in the
ViewPoint Programmer's Manual:

• BlackKeys
• Keyboard Key
• KeyboardWindow

File subwindow: The Keyboard tool will crash if you type an
invalid file name in File: and select Open. Also, all of the
default parameters are obsolete.

Keyboard subwindow: The parameter AIiKeys does not
currently have any effect.

Key subwindow: Use Character as the Type for all keys. There
are other types available from the menu, but they date back to
an earlier release, before functions were implemented by TIP
tables.

15-9

A.1 Boot switches

A.1.1 More details on the 'P switch

VIEWPOINT DEVELOPER'S GUIDE

A APPENDIX

The following list represents boot switches that affect the
booting sequence and are consulted at boot time. They are
recognized either by the ViewPoint boot file or by Pilot, the
XDE operating system. Generally, you decide on a default
switch combination and set it from the utility program called
Othello to avoid having to set them every time you boot.

In addition to the switches presented below, see also Chapter 4
for a list of Command Central client switches. They too take
affect at boot time, but are implemented by CommandCentral.

'd Disable the debugger substitute; for example, rUr} with a
debugger (CoPilot) volume.

'I Empty the Prototypes folder. This is useful for upgrading
from one version to another. Boot time is increased with
the 'I switch, and it should only need to be used once.

'N Do not run .autorun applications. Invisible applications
are still run. If Developer is TRUE in the System section of
the Workstation Profile, then nothing is run.

'0 Use only .TlPC files and do not look for .TIP files.

'P Copy, load, and start CommandCentral files in parallel

When ViewPoint is booted with the 'P switch, the files handed
to it by CommandCent~al are processed in parallel: that is, one
process copies the files to the System folder, one process loads
them, and another process starts them up. This speeds system
startup.

This overlapped loading and starting are fine if a program's
imports are satisfied only by programs in the boot file, or by
programs started previously; this should be the usual case.

If instead a program's imports are satisfied by a program that is
later in the load sequence, the importer could get confused by
the partially loaded following program. This should not be
much of a problem in practice because applications should only
import interfaces from ViewPoint and common software
packages (which therefore, should be loaded first).

Note: Do not use the 'P switch when installing data files

A·1

BOOT SWITCHES

A.1.2 Pilot switches

A·2

needed by ViewPoint itself, or when installing .autoRun files;
(See Chapter 4 for a discussion of .autoRun).

The /p CommandCentral Run line switch is used to handle
loading programs whose imports will be satisfied by configs
loaded subsequently (not the normal case). /p means .. make
Parallel loading activity Pause while this program is being
started." See Chapter 4 for details.

'T Use software TextS.t.

'u Use a volume named User as the data volume. If this
switch is not given, the system volume will be used for
the data volume.

'y Allocate Pilot backing store from available space on
neighboring volume named Scavenger, System, or Star.
This allows you to save 2000 pages of disk space on the
User volume when running ViewPoint on a single User
volume. You can boot with the '{ switch (see below)
when booting with 'y.

'J VP Standalone and Remote operations should be run at
full duplex.

's Enables local thermal printer.

'u Tells VP Standalone and Remote that the workstation is
a standalone or a remote workstation.

'V Indicates to VP Standalone and Remote that the
workstation administration option sheet should appear
after the idle procedure is interrupted. If this switch is
not used (the normal case), the Logon option sheet
appears.

'w Enables foreground/background operation for the
impact printer.

The remaining switches are recognized by Pilot. See the Pilot
Programmer's Manual for more information.

& Hang with a maintenance panel code instead of going
to the debugger.

o Go to the debugger as early as possible in Pilot
initialization.

1 Go to the debugger as soon as all code is map-logged.
2 Go to the debugger just before calling PilotClient.Run.
3 Simulate 192K memory size for a Dandelion with no

display.
4 Initialize scratch memory pages to zero.
S Go to the Ethernet for the debugger.
6 Turn owner checking on for the system zones.
7 Disable map logging.
S Create a Pilot interrupt key watcher.
9 Simulate 2S6K memory size for a Dandelion with

display.

Suppress clock failure errors.

,
VIEWPOINT DEVELOPER'S GUIDE

VIEWPOINT DEVELOPER·S GUIDE

<

=
>

{

~
t
?

%

/350

/360

/370

/371
/372
/373

/374

/375
/376

BOOT SWITCHES

Go to the debugger as early as possible in the
initialization of the File manager.
Go to the debugger as early as possi bl e in the
initialization ofthe VM manager.
Pretend that there is no Ethernet 1 attached to the
system element.
Do not initialize the Communication package at system
startup.
Pretend that there is no Ethernet attached to the
system element.
Set the VM backing file size to 750 pages.
Set the VM backing file size to 1400 pages.
Set the VM backing file size to 2000 pages.
Turn on checking, for the system zones.
Make loadstate resident (for debugging on UtilityPilot
- based clients).
Create a tiny heap,with tiny increment values.
Create a medium-size heap with medium-size
increment values (default).
Create a large heap with large increment values.

Helps to save MDS space. ViewPoint is usually booted
with this switch. However, be advised that using this
switch will affect the use of the XDE Packager, and
integral swap units will no longer be guaranteed
(contrary to the documentation in the Packager
chapter of the XDE User's GUide.) Also, you cannot use
this switch if you boot from CommandCentral.
Display error code, global frame, and pc on boot loader
errors.
Bypass the debugger substitute by going to the real
debugger.
Tile code with one page swap units.
Give display memory to Pilot for client use.
Give display memory to Pilot for client use if there is no
bitmap display.
Allows special clients to set parameters of system
zones.
Disable map logging.
Delete boot loader so that the memory that it uses can
be recycled.

Booting your workstation with boot switches to give it more
data space backing storage cache may significantly improve
performance.

Many ViewPoint applications get good performance by
caching data in scratch virtual memory. However, more scratch
virtual memory may be used up than is expected. Also, more of
Pilot's VM backing file cache may be used up than might be
expected.

A·3

B.1 Scavenging

VIEWPOINT DEVELOPER'S GUIDE

B APPENDIX

This section describes how to scavenge the NSFiling volume
that holds the desktop and system files for ViewPoint.
Scavenging is required when the system crashes at an
inopportune moment and the file system is not consistent.

The scavenger for NSFiling cannot scavenge the data volume if
it is the same as the volume the boot file is running on. In this
case, attempting to scavenge eventually arrives in the
debugger with a message that says "Can't scavenge system
volume".This makes scavenging more difficult since users often
use the same volume both for the boot file and for data.

If the data volume needs scavenging, ViewPoint will break to
CoPilot with the message, "Proceed to scavenge data volume".

If the boot file volume is the same as the data volume,
proceeding will automatically boot another volume named
Scavenger, System, or Star. This allows you to put a Scavenger
boot file (for example, BWSScavengerOLion.boot) on the other
volume. The Scavenger boot file is much smaller than the full
ViewPoint boot file. When the Scavenger is finished, it will
return to CoPilot with the message "Done scavenging". The
ViewPoint boot file can the'n be successfully booted.

If the boot file volume is different from the data volume,
proceeding will scavenge the volume, and everything will be in
order.

If there is no debugger volume and the data volume needs
scavenging, maintenan.ce panel code 7501 will be displayed.
Pressing the F and C keys simultaneously will change the MP
code to 7502, then releasing the keys will change the MP code
to 7500, indicating that the scavenge is being done. As above,
if there is a boot file on another volume named Scavenger,
System, or Star, that volume is booted. After the Scavenger
boot file finishes on a machine with no debugger, the physical
volume is booted.

8-1

c APPENDIX

C.1 ViewPoint Scavenger Maintenance Panel Codes

C.1.1 Normal MP Codes

From time to time, codes will appear on the maintenance panel
of your hard disk during routine operations. They are listed
here, together with any actions you should take when they
appear.

7500 Scavenging in progress. No action required.
7501 User volume requires scavenging. Press the F and C

keys to proceed.
7502 Appears after you press F and C from 7501, should go

to 7500 when you release F and C;
7504 Volume needs initializing. Press and release the I and

V keys.
7508 Volume needs converting Press and release the F and

C keys to proceed.
7511 There is no scavenger boot file on the Scavenger,

System, or Star vol ume.

7920 Starting ViewPoint.
7940 Starting invisible application folders.
7960 Starting visible application folders with

autorun = TRUE.
8000 Done booting.

C.1.2 Debugger Substitute MP Codes

VIEWPOINT DEVELOPER'S GUIDE

7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552

AddressFault
Breakpoint
Bug
CaHDebugger
CleanMapLog
Diskerror
Interrupt
Rreturn
Retu rnAborted
UncaughtSignal
VisitDebugger
WriteProtectFault
Other

c-,

	0001
	0002
	001
	002
	003
	004
	1_001_Introduction
	1_002
	1_01-01_Overview
	1_01-02
	1_01-03
	1_01-04
	1_02-01_User_Interface
	1_02-02
	1_02-03
	1_02-04
	1_02-05
	1_02-06
	1_02-07
	1_02-08
	2_001_Building_an_Application
	2_002
	2_03-01_Getting_Started
	2_03-02
	2_03-03
	2_03-04
	2_04-01_Running_an_Application
	2_04-02
	2_04-03
	2_04-04
	2_04-05
	2_04-06
	2_05-01_Strings_and_Messages
	2_05-02
	2_05-03
	2_05-04
	2_05-05
	2_05-06
	2_05-07
	2_05-08
	2_05-09
	2_05-10
	2_06-01_TIP
	2_06-02
	2_06-03
	2_06-04
	2_06-05
	2_06-06
	2_07-01_Creating_a_Simple_Application
	2_07-02
	2_07-03
	2_07-04
	2_07-05
	2_07-06
	2_07-07
	2_07-08
	2_07-09
	2_07-10
	2_07-11
	2_07-12
	2_08-01_Form_Windows_and_Property_Sheets
	2_08-02
	2_08-03
	2_08-04
	2_08-05
	2_08-06
	2_08-07
	2_08-08
	2_08-09
	2_08-10
	2_09-01_Icon_Applications
	2_09-02
	2_09-03
	2_09-04
	2_09-05
	2_09-06
	2_09-07
	2_09-08
	2_10-01_Selection
	2_10-02
	2_10-03
	2_10-04
	2_10-05
	2_10-06
	2_11-01_Packaging_an_Application
	2_11-02
	2_11-03
	2_11-04
	2_11-05
	2_11-06
	2_11-07
	2_11-08
	2_11-09
	2_11-10
	3_001_Programming_Tools
	3_002
	3_12-01_Icon_Tool
	3_12-02
	3_13-01_Message_Tools
	3_13-02
	3_13-03
	3_13-04
	3_13-05
	3_13-06
	3_13-07
	3_13-08
	3_13-09
	3_13-10
	3_13-11
	3_13-12
	3_13-13
	3_13-14
	3_14-01_Bitmap_Edit_Tool
	3_14-02
	3_14-03
	3_14-04
	3_14-05
	3_14-06
	3_15-01_Keyboard_Tool
	3_15-02
	3_15-03
	3_15-04
	3_15-05
	3_15-06
	3_15-07
	3_15-08
	3_15-09
	3_15-10
	A_01_Appendix
	A_02
	A_03
	A_04
	B_01
	B_02
	C_01
	C_02

